WorldWideScience

Sample records for beam generated plasmas

  1. Slow electrostatic fluctuations generated by beam-plasma interaction

    CERN Document Server

    Pommois, Karen; Pezzi, Oreste; Veltri, Pierluigi

    2016-01-01

    Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regime. In 1968, O'Neil and Malmberg [Phys. Fluids {\\bf 11}, 1754 (1968)] dubbed these waves "beam modes". In the present paper, it is shown that, in the presence of a cold and low density electron beam, these beam modes can become unstable and then survive Landau damping unlike the Langmuir waves. When an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, if the initial density perturbation is setup in the form of a low amplitude rand...

  2. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  3. Electron beam generated plasmas for the processing of graphene

    Science.gov (United States)

    Walton, S. G.; Hernández, S. C.; Boris, D. R.; Petrova, Tz B.; Petrov, G. M.

    2017-09-01

    The Naval Research Laboratory (NRL) has developed a processing system based on an electron beam-generated plasma and applied it to the processing of graphene. Unlike conventional discharges produced by electric fields (DC, RF, microwave, etc), the plasma is driven by a high-energy (~few keV) electron beam, an approach that simplifies the relative production of species while providing comparatively high ion-to-radical production rates. The resulting plasmas are characterized by high charged particle densities (1010-1011 cm-3) and electron temperatures that are typically about 1.0 eV or lower. Accordingly, the flux to adjacent surfaces is generally dominated by ions with kinetic energies in the range of 1-5 eV, a value at or near the bond strength of most materials. This provides the potential for controllably engineering materials with monolayer precision, an attribute attractive for the processing of atomically thin material systems. This work describes the attributes of electron beam driven plasma processing system and its use in modification of graphene.

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  6. High power, fast, microwave components based on beam generated plasmas

    Science.gov (United States)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.

    1998-10-01

    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  7. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Tyunkov, A. V.; Yushkov, Yu. G., E-mail: YuYushkov@sibmail.com; Zolotukhin, D. B.; Klimov, A. S. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation); Savkin, K. P. [High Current Electronics Institute, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2014-12-15

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  8. Naphthalene and acenaphthene decomposition by electron beam generated plasma application

    Energy Technology Data Exchange (ETDEWEB)

    Ostapczuk, A.; Hakoda, T.; Shimada, A.; Kojima, T. [Institute for Nuclear Chemistry and Technology, Warsaw (Poland)

    2008-08-15

    The application of non-thermal plasma generated by electron beam (EB) was investigated in laboratory scale to study decomposition of polycyclic aromatic hydrocarbons like naphthalene and acenaphthene in flue gas. PAH compounds were treated by EB with the dose up to 8 kGy in dry and humid base gas mixtures. Experimentally established G-values gained 1.66 and 3.72 mol/100 eV for NL and AC at the dose of 1 kGy. NL and AC removal was observed in dry base gas mixtures showing that the reaction with OH radical is not exclusive pathway to initialize PAH decomposition; however in the presence of water remarkably higher decomposition efficiency was observed. As by-products of NL decomposition were identified compounds containing one aromatic ring and oxygen atoms besides CO and CO{sub 2}. It led to the conclusion that PAH decomposition process in humid flue gas can be regarded as multi-step oxidative de-aromatization analogical to its atmospheric chemistry.

  9. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses......, and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...

  10. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    OpenAIRE

    Arzhannikov, A.V.; Timofeev, I. V.

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps....

  11. Intense ion beam generation, plasma radiation source and plasma opening switch research

    Science.gov (United States)

    Hammer, D. A.; Coleman, M. D.; Qi, N.; Similon, P. L.; Sudan, R. N.

    1989-04-01

    This report describes research on intense ion beam diodes, plasma opening switches and dense z-pinch plasma radiators. Laser induced fluorescence spectroscopy has been used to map the electrostatic potential profile in a plasma-prefilled magnetically insulated ion diode. In a simple planar diode, the measured profile is inconsistent with the electrons being confined in a sheath near the cathode by the magnetic field. Rather, the profile implies the presence of electrons throughout the accelerating gap. A theoretical model of the penetration of current and magnetic field into a plasma, and of the current-driven effective collision frequency has been developed. The snowplow action of the rising magnetic field causes a steep rise in the plasma density at the leading edge. The subsequent multistreaming of the ions caused by ion reflection at the current layer could lead to ion heating through collective effects. The two-dimensional electron flow in the plasma cathode vacuum gap is also treated. Dense z-pinch plasma radiation source experiments have been initiated on the LION accelerator using gas puff and fine wire loads. The x-pinch was found to be a more effective way to generate soft x-rays than a single wire pinch or a gas puff implosion. Plasma opening switch experiments being initiated, and plasma anode ion diode development work being terminated are also briefly described.

  12. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption

    Science.gov (United States)

    Singh, Navpreet; Gupta, Naveen; Singh, Arvinder

    2016-12-01

    This paper investigates second harmonic generation (SHG) of an intense Cosh-Gaussian (ChG) laser beam propagating through a preformed underdense collisional plasma with nonlinear absorption. Nonuniform heating of plasma electrons takes place due to the nonuniform irradiance of intensity along the wavefront of laser beam. This nonuniform heating of plasma leads to the self-focusing of the laser beam and thus produces strong density gradients in the transverse direction. The density gradients so generated excite an electron plasma wave (EPW) at pump frequency that interacts with the pump beam to produce its second harmonics. To envision the propagation dynamics of the ChG laser beam, moment theory in Wentzel-Kramers-Brillouin (W.K.B) approximation has been invoked. The effects of nonlinear absorption on self-focusing of the laser beam as well as on the conversion efficiency of its second harmonics have been theoretically investigated.

  13. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  14. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  15. Temporal evolution of electron beam generated Argon plasma in pasotron device

    Science.gov (United States)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.

    2016-10-01

    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  16. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    Science.gov (United States)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  17. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    CERN Document Server

    Sydorenko, D; Chen, L; Ventzek, P L G

    2015-01-01

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...

  18. Low Temperature Plasmas Generated and Sustained Indefinitely Using a Focused Microwave Beam

    Science.gov (United States)

    Reid, Remington; Hoff, Brad; Lepell, Paul; AFRL Team

    2016-10-01

    The Air Force Research Laboratory has constructed a device that can initiate a plasma discharge in a focused microwave beam and sustain it indefinitely. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 GHz radiation. The pressure windows are large enough in diameter to prevent any interactions between the beam and the metallic chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. This novel plasma source generates low temperature, low density plasmas that have no contact with the walls which minimizes contamination and sheath formation.

  19. Measurement of stability of electron beam generated by laser-driven plasma-based accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, S; Miura, E; Koyama, K; Kato, S [National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)], E-mail: shi-masuda@aist.go.jp

    2008-05-01

    Quasi-monoenergetic electron beams with the energy of 30-80 MeV and large number of electrons more than 10{sup 8} were produced by focusing a 8TW, 50 fs Ti:sapphire laser pulse onto 1.6-1.9 x 10{sup 19} cm{sup -3} plasmas. Stability of the quasi-monoenergetic electron beam generation was evaluated using an in-situ observation system for the electron beam diagnostics.

  20. Generation of powerful terahertz emission in a beam-driven strong plasma turbulence

    CERN Document Server

    Arzhannikov, A V

    2012-01-01

    Generation of terahertz electromagnetic radiation due to coalescence of upper-hybrid waves in the long-wavelength region of strong plasma turbulence driven by a high-current relativistic electron beam in a magnetized plasma is investigated. The width of frequency spectrum as well as angular characteristics of this radiation for various values of plasma density and turbulence energy are calculated using the simple theoretical model adequately describing beam-plasma experiments at mirror traps. It is shown that the power density of electromagnetic emission at the second harmonic of plasma frequency in the terahertz range for these laboratory experiments can reach the level of 1 ${MW/cm}^3$ with 1% conversion efficiency of beam energy losses to electromagnetic emission.

  1. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  2. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    Science.gov (United States)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  3. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  4. Inclined slot-excited annular electron cyclotron resonance plasma source for hyperthermal neutral beam generation.

    Science.gov (United States)

    You, H-J; Kim, D-W; Koo, M; Jang, S-O; Jung, Y-H; Hong, S-H; Lee, B-J

    2011-01-01

    An inclined slot-excited antenna (ISLAN) electron cyclotron resonance (ECR) plasma source is newly designed and constructed for higher flux hyperthermal neutral beam (HNB) generation. The developed ISLAN source is modified from vertical slot-excited antenna (VSLAN) source in two aspects: one is the use of inclined slots instead of vertical slots, and the other is a cusp magnetic field configuration rather than a toroidal configuration. Such modifications allow us to have more uniform arrangement of slots and magnets, then enabling plasma generation more uniform and thinner. Moreover, ECR plasma allows higher ionization rate, enabling plasma density higher even in submillitorr pressures, therefore decreasing the collision rate and∕or the reionization rate of the reflected atoms while passing through the plasma, and eventually getting higher flux of HNBs. In this paper, we report the design features and the plasma characteristics of the ISLAN source by doing plasma measurements and electromagnetic simulations. It was found that ISLAN source can be a high potential source for larger flux HNB generation; the source was found to give higher plasma densities and better uniformities than inductively coupled plasma source, particularly in low pressure ranges. Also, it is important that using ISLAN gives easier matching and better stability, i.e., ISLAN shows similar field patterns and good plasma symmetries irrespective of the variations of the mean diameter of the ring resonator and∕or the presence of a limiter or a reflector, and the operating pressures.

  5. Plasma wave and third harmonic generation by a Gaussian electromagnetic beam in a collisionless magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Sodha, M.S.; Govind; Sharma, R.P. (Indian Inst. of Tech., New Delhi. Centre of Energy Studies)

    1981-05-01

    An investigation of the plasma wave and third harmonic generation by a Gaussian electromagnetic (em) beam, propagating in extraordinary mode in a collisionless hot magnetoplasma has been made. On account of the (VXB) force, a plasma wave at twice the pump wave frequency gets excited. The interaction of the plasma wave with the pump wave leads to third harmonic generation. By taking into account the self-focusing of the pump wave on account of non-uniform intensity distribution along the wave front, a modification is effected in the power of the plasma wave and the third harmonic em wave. The dependence of these phenomena on the strength of the static magnetic field has also been studied.

  6. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    Science.gov (United States)

    Zengchao, Ji; Shixiu, Chen; Shen, Gao

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  7. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    Science.gov (United States)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  8. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    Science.gov (United States)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  9. Whistler Wave generation by an electron beam in a LAPTAG Plasma Physics experiment

    Science.gov (United States)

    Bridges, Gabriel; Pribyl, Patrick; Gekelman, Walter; Thomas, Sam; Birge-Lee, Henry; Wise, Joe; Katz, Cami; Baker, Bob; Marmie, Ken; Wolman, Ben; Buckley-Bonnano, Samuel

    2015-11-01

    A multi-grid pulsed electron beam (Ebeam = 1-4.8 KV, area =1.32 cm2, τ >5 μs) is inserted into a background plasma (He, n = 5X1010 cm3, B0z = 80 G, L = 1.5 m, dia = 40 cm). The pulsed electron beam power supply, can generate up to 4800 Volts at 10 Amps and was constructed by the LAPTAG high school students. The beam can be oriented at any angle with respect to the background magnetic field. The pulsed beam generates whistler waves by Cherenkov radiation. The waves are detected with 3 axis magnetic pickup probes which can be moved in planes transverse or parallel to the background magnetic field under computer control. The whistler wave pattern is used to determine the wavenumber k and Fourier analysis of the signal determines ω. The wave dispersion relation is compared to theory. Work done at BaPSF at UCLA and supported by NSF and DOE.

  10. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    Science.gov (United States)

    Sydorenko, Dmytro; Kaganovich, Igor D.; Ventzek, Peter L. G.

    2016-10-01

    Electrons emitted from electrodes are accelerated by the sheath electric field and become the electron beams penetrating the plasma. The electron beam can interact with the plasma in collisionless manner via two-stream instability and produce suprathermal electrons. In order to understand the mechanism of suprathermal electrons acceleration, a beam-plasma system was simulated using a 1D3V particle-in-cell code EDIPIC. These simulation results show that the acceleration may be caused by the effects related to the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. Rich complexity of beam- plasma interaction phenomena was also observed: intermittency and multiple regimes of two-stream instability in a dc discharge, band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma, multi-stage acceleration of electrons in a finite system.

  11. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com [Department of Physics, National Institute of Technology Jalandhar (India); Singh, Navpreet, E-mail: navpreet.nit@gmail.com [Guru Nanak Dev University College, Kapurthala, Punjab (India)

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.

  12. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  13. Large diameter permanent-magnets-expanded plasma source for spontaneous generation of low-energy ion beam.

    Science.gov (United States)

    Takahashi, Kazunori; Suzuki, Tatsuya; Ando, Akira

    2014-02-01

    Diameter of a permanent-magnets-expanded, radiofrequency (rf) plasma source is enlarged up to ∼13 cm for an application to a space propulsion device and tested with being attached to a diffusion chamber. The source is operated at 13.56 MHz 300 W rf power in low-pressure (40 mPa) argon. Measurement of ion energy distribution functions downstream of the source exit shows generation of a supersonic ion beam of about 20 eV. The detailed radial measurements demonstrate that the diameter and energy of the ion beam corresponds to the source tube diameter and the potential difference between the source and downstream plasmas, and that the radial profile of the beam flux is similar to the plasma density profile in the source cavity.

  14. On the role of secondary electrons in beam plasma generation inside a dielectric flask by fore-vacuum plasma-cathode electron source

    Science.gov (United States)

    Zolotukhin, D. B.; Burdovitsin, V. A.; Oks, E. M.

    2017-09-01

    The paper presents the results of experimental research and numerical simulation, demonstrating a considerable influence of secondary electrons on parameters of the beam-produced plasma generated at a pressure range of 1-13 Pa by injection of a continuous (with current of tens mA) electron beam into a dielectric (quartz) flask. An electron beam was formed by a fore-vacuum plasma-cathode electron source based on a hollow cathode discharge. The secondary electrons were emitted as a result of high-energy (3-8 keV) electron beam bombardment mainly a bottom end of the flask. These electrons provide an additional contribution to the ionization of the gas and also affect on the longitudinal distribution of the plasma density along the flask.

  15. Plasma electron source for the generation of wide-aperture pulsed beam at forevacuum pressures

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E.; Burdovitsin, V.; Medovnik, A.; Yushkov, Yu. [Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2013-02-15

    This article reports on design and application of wide-aperture pulsed beam source, based on hollow cathode discharge. The source is intended for electron beam generation in pressure range 2-15 Pa. Multi-aperture extraction system, used in a source, provided beam cross-section uniformity of 10% on diameter 40 mm. The limiting values of the current density, pulse duration, and accelerating voltage are 350 mA/cm{sup 2}, 250 {mu}s, and 10 kV, respectively. These parameters are sufficient for surface modification of various materials, including non-conducting matters.

  16. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  17. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Science.gov (United States)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  18. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P., E-mail: WPLeemans@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-05-15

    Laser pulses with peak power 0.3 PW were used to generate electron beams with energy >4 GeV within a 9 cm-long capillary discharge waveguide operated with a plasma density of ≈7×10{sup 17} cm{sup −3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ≳2 mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1 GeV. The pointing fluctuation was 0.6 mrad rms, which was less than the beam divergence of ≲1 mrad full-width-half-maximum.

  19. Plasma Beam Measurements

    Science.gov (United States)

    1991-08-01

    GUN PLASMA BEAM / ,I 21 cm diameter = 0 GLASS DRIFT TUBE 50 cm diameter MCP CAMERA CLASS CROSSES (a) Gun muzzle /"- PLASA BEAM / TAROT z = 10 m MCP...discusses some of the hydrodynamic issues related to the calcula- tions. The reader may well wonder why hydrodynamics should be an issue in a 116 WL-TR-90...answer is yes for the slow beam cases and no for the fast beam cases. This is explained further. 118 WL-TR-90-83 The reader will recall the

  20. Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan; Xie Bai-Song; Hong Xue-Ren; Wu Hai-Cheng; Aimierding Aimidula; Zhao Xue-Yan; Liu Ming-Ping

    2011-01-01

    In one-dimensional particle-in-cell simulations, this paper shows that the formation of multiple ion bunches is disadvantageous to the generation of monoenergetic ion beams and can be suppressed by choosing an optimum target thickness in the radiation pressure acceleration mechanism by a circularly polarised laser pulse. As the laser pulse becomes intense, the optimum target thickness obtained by a non-relativistic treatment is no longer adequate. Considering the relativistic Doppler-shifted pressure, it proposes a relativistic formulation to determine the optimum target thickness. The theoretical predictions agree with the simulation results well. The model is also valid for two-dimensional cases. The accelerated ion beams can be compelled to be more stable by choosing the optimum target thickness when they exhibit some unstable behaviours.

  1. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  2. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Directory of Open Access Journals (Sweden)

    Ronghao Hu

    2016-09-01

    Full Text Available The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0  μm. The results present a very promising way to drive coherent x-ray sources.

  3. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    Science.gov (United States)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  4. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC 20375-5346 (United States)

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positive ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.

  5. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn [Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology, Academicheskaya Str. 1, 61108 Kharkov (Ukraine); Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  6. Parametric study of low-pressure electron beam generated Ar–SF6 plasma and implications for processing

    Science.gov (United States)

    Petrov, G. M.; Petrova, Tz B.; Boris, D. R.; Walton, S. G.

    2017-09-01

    The dissociation products and fluxes of sulfur hexafluoride are theoretically studied in electron beam generated plasmas produced in Ar–SF6 mixtures at low pressure (10–100 mTorr). Parameter variation is used to determine scaling laws, which are otherwise difficult to derive analytically and time consuming to determine empirically. Volume-averaged densities of SF6 dissociation products such as SF x , x = 1…5, F2 and F, as well as electron and ion fluxes on reactor wall are calculated using a one-dimensional steady-state hydrodynamic model. It is established that SF x and F2 have similar trends with the variation of pressure, electron beam current and SF6 concentration, while the scaling of F atoms is markedly different. Attention is paid to the ratio of absorbed neutral-to-ion flux on the reactor wall due to its importance for ion-assisted etching in reactive plasmas. At typical operating conditions, this ratio is between 10 and 103. At very low SF6 concentrations (<1%), F atoms dominate the radical flux to the reactor walls. In contrast, at concentrations above 1%, SF x radicals deliver the most F to the walls.

  7. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Lehe, R.; Lifschitz, A. F.; Shadwick, B. A.

    2016-03-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ˜10-5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ˜107 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV.

  8. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  9. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  10. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    in the focal region, and the transition from the donut profile to a central peak is consistent with propagation of a Bessel–Gauss beam, as shown by simulations based on a recent transient photocurrent model (You et al 2012 Phys. Rev. Lett. 109 183902). We combine our measurements to the first full 3D...

  11. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    Science.gov (United States)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  12. Electromagnetic radiation from beam-plasma instabilities

    Science.gov (United States)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  13. Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas

    CERN Document Server

    Palaniyappan, Sasi; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Shah, Rahul C; Fernandez, Juan C

    2015-01-01

    Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~TV/m) and magnetic (~10${}^{4}$ Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak ene...

  14. Compact Cryogenic Source of Periodic Hydrogen and Argon Droplet Beams for Intense Laser-Plasma Generation

    CERN Document Server

    Fraga, R A Costa; Kühnel, M; Hochhaus, D C; Schottelius, A; Polz, J; Kaluza, M C; Neumayer, P; Grisenti, R E

    2011-01-01

    We present a cryogenic source of periodic streams of micrometer-sized hydrogen (H2) and argon (Ar) droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art low-repetition rate high-power lasers, in which a precise synchronization between the laser pulses and the droplets is mandatory. We demonstrate this explicitly by irradiating Ar droplets with pulses from a Petawatt laser.

  15. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, R. A. Costa; Kalinin, A.; Kuehnel, M.; Schottelius, A. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Hochhaus, D. C.; Neumayer, P. [EMMI Extreme Matter Institute and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); FIAS Frankfurt Institute for Advanced Studies, J. W. Goethe-Universitaet, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Polz, J. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Kaluza, M. C. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Froebelstieg 3, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2012-02-15

    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

  16. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    CERN Document Server

    Kim, H H; Kojima, T

    2003-01-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ( sup 3 P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO sub 2 , and NO sub 2 was also produced from background N sub 2 -O sub 2. The sum of the yields of HQ, CO sub 2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yield...

  17. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ha [Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hakoda, Teruyuki [Department of Material Development, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kojima, Takuji [Department of Material Development, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute (JAERI), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2003-03-07

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ({sup 3}P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO{sub 2}, and NO{sub 2} was also produced from background N{sub 2}-O{sub 2}. The sum of the yields of HQ, CO{sub 2} and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yields of primary products. NO scavenges oxygen atoms and decreases the DPE decomposition, while the addition of n-butane causes positive effect on the decomposition of DPE due to the several secondary radicals (HO{sub 2}, alkyl and alkoxy radicals) produced during the decomposition of n-butane.

  18. Light Beam Generation

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method and a system for synthesizing a set of controllable light beams by provision of a system for synthesizing a set of light beams, comprising a spatially modulated light source for generation of electromagnetic radiation with a set of replicas of a predetermined......(x-xs, y-ys), a Fourier transforming lens for Fourier transforming the electromagnetic radiation, a first spatial light modulator for phase shifting the Fourier transformed electromagnetic radiation with the phase -F(u, v) of S*, S* is the complex conjugate of the Fourier transformed symbol s, a Fourier...... transforming lens for Inverse Fourier transforming the spatially modulated radiation, whereby a set of light beams are formed propagating through the inverse Fourier plane (x', y') at desired positions (x's, y's), and a controller for controlling the position of a replica of the symbol, s, for movement...

  19. Beam-Plasma Interaction in a 2D Complex Plasma

    Science.gov (United States)

    Kyrkos, Stamatios; Kalman, G. J.; Rosenberg, M.

    2006-10-01

    In a complex (dusty) plasma, penetrating ion or electron beams may lead to beam-plasma instabilities. The instability displays interesting new properties when either the plasma or the beam, or both, are strongly interacting^1. Foremost amongst them is the possible generation of transverse instabilities. We consider the case when a 2D plasma is in the crystalline phase, forming a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a realistic Yukawa potential. The beam particles are assumed to be weakly coupled to each other and to the lattice^2. Using the full phonon spectrum for a 2D hexagonal Yukawa lattice^3, we determine and compare the transverse and longitudinal growth rates. The behavior of the growth rates depends on the direction of the beam and on the relationship between the beam speed v and the longitudinal and transverse sound speeds sL, sT. For beam speeds between the longitudinal and transverse sound speeds, the transverse instability could be more important, because it appears at lower k values. ^1 G. J. Kalman and M. Rosenberg, J. Phys. A: Math. Gen. 36 5963 (2003) ^2 M. Rosenberg, G. J. Kalman, S. Kyrkos and Z. Donko, J. Phys. A: Math. Gen. 39 4613 (2006) ^3 T. Sullivan, G. J. Kalman, S. Kyrkos, P. Bakshi, M. Rosenberg and Z. Donko, J. Phys. A: Math. Gen. 39 4607 (2006)

  20. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  1. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  2. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  3. Solid expellant plasma generator

    Science.gov (United States)

    Stone, Nobie H. (Inventor); Poe, Garrett D. (Inventor); Rood, Robert (Inventor)

    2010-01-01

    An improved solid expellant plasma generator has been developed. The plasma generator includes a support housing, an electrode rod located in the central portion of the housing, and a mass of solid expellant material that surrounds the electrode rod within the support housing. The electrode rod and the solid expellant material are made of separate materials that are selected so that the electrode and the solid expellant material decompose at the same rate when the plasma generator is ignited. This maintains a point of discharge of the plasma at the interface between the electrode and the solid expellant material.

  4. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Turco, F., E-mail: turcof@fusion.gat.com; Hanson, J. M.; Navratil, G. A. [Columbia University, 116th and Broadway, New York, New York 10027 (United States); Turnbull, A. D. [General Atomics, PO Box 85608, San Diego, California 92186-5608 (United States)

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  5. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  6. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  7. Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target

    Energy Technology Data Exchange (ETDEWEB)

    Pisarczyk, T.; Kalinowska, Z.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Kasperczuk, A.; Parys, P.; Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Gus' kov, S. Yu.; Demchenko, N. N. [P.N. Lebedev Physical Institute of RAS, 53 Leninsky Ave., 119 991 Moscow (Russian Federation); Batani, D.; Antonelli, L.; Folpini, G.; Maheut, Y. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence (France); Baffigi, F.; Cristoforetti, G.; Gizzi, L. A.; Koester, P.; Labate, L. [Intense Laser Irradiation Laboratory at INO-CNR, Pisa (Italy); Krousky, E. [Institute of Plasma Physics ASCR, v.v.i., ZaSlovankou 3, 182 00 Prague 8 (Czech Republic); and others

    2014-01-15

    Efficiency of the laser radiation energy transport into the shock wave generated in layered planar targets (consisting of massive Cu over coated by thin CH layer) was investigated. The targets were irradiated using two laser pulses. The 1ω pulse with the energy of ∼50 J produced a pre-plasma, imitating the corona of the pre-compressed inertial confinement fusion target. The second main pulse used the 1ω or 3ω laser harmonics with the energy of ∼200 J. The influence of the pre-plasma on parameters of the shock wave was determined from the crater volume measurements and from the electron density distribution measured by 3-frame interferometry. The experimental results show that the energy transport by fast electrons provides a definite contribution to the dynamics of the ablative process, to the shock wave generation, and to the ablation pressure in dependence on the target irradiation conditions. The strong influence of the pre-plasma on the investigated process was observed in the 1ω case. Theoretical analysis supports the explanation of experimental results.

  8. Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target

    Science.gov (United States)

    Pisarczyk, T.; Gus'kov, S. Yu.; Kalinowska, Z.; Badziak, J.; Batani, D.; Antonelli, L.; Folpini, G.; Maheut, Y.; Baffigi, F.; Borodziuk, S.; Chodukowski, T.; Cristoforetti, G.; Demchenko, N. N.; Gizzi, L. A.; Kasperczuk, A.; Koester, P.; Krousky, E.; Labate, L.; Parys, P.; Pfeifer, M.; Renner, O.; Smid, M.; Rosinski, M.; Skala, J.; Dudzak, R.; Ullschmied, J.; Pisarczyk, P.

    2014-01-01

    Efficiency of the laser radiation energy transport into the shock wave generated in layered planar targets (consisting of massive Cu over coated by thin CH layer) was investigated. The targets were irradiated using two laser pulses. The 1ω pulse with the energy of ˜50 J produced a pre-plasma, imitating the corona of the pre-compressed inertial confinement fusion target. The second main pulse used the 1ω or 3ω laser harmonics with the energy of ˜200 J. The influence of the pre-plasma on parameters of the shock wave was determined from the crater volume measurements and from the electron density distribution measured by 3-frame interferometry. The experimental results show that the energy transport by fast electrons provides a definite contribution to the dynamics of the ablative process, to the shock wave generation, and to the ablation pressure in dependence on the target irradiation conditions. The strong influence of the pre-plasma on the investigated process was observed in the 1ω case. Theoretical analysis supports the explanation of experimental results.

  9. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    Science.gov (United States)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  10. Evolution of the THz Beam Profile from a Two-Color Air Plasma Through a Beam Waist

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2013-01-01

    We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam.......We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam....

  11. Spectroscopic characterization of H 2 and D 2 helicon plasmas generated by a resonant antenna for neutral beam applications in fusion

    Science.gov (United States)

    Marini, C.; Agnello, R.; Duval, B. P.; Furno, I.; Howling, A. A.; Jacquier, R.; Karpushov, A. N.; Plyushchev, G.; Verhaegh, K.; Guittienne, Ph.; Fantz, U.; Wünderlich, D.; Béchu, S.; Simonin, A.

    2017-03-01

    A new generation of neutral beam systems will be required in future fusion reactors, such as DEMO, able to deliver high power (up to 50 MW) with high (800 keV or higher) neutral energy. Only negative ion beams may be able to attain this performance, which has encouraged a strong research focus on negative ion production from both surface and volumetric plasma sources. A novel helicon plasma source, based on the resonant birdcage network antenna configuration, is currently under study at the Swiss Plasma Centre before installation on the Cybele negative ion source at the Institute for Magnetic Fusion Research, CEA, Cadarache, France. This source is driven by up to 10 kW at 13.56 MHz, and is being tested on a linear resonant antenna ion device. Passive spectroscopic measurements of the first three Balmer lines α, β and γ and of the Fulcher-α bands were performed with an f/2 spectrometer, for both hydrogen and deuterium. Multiple viewing lines and an absolute intensity calibration were used to determine the plasma radiance profile, with a spatial resolution  emissivity profile for each emission line for cylindrical symmetry, which was experimentally confirmed. An uncertainty estimate of the inverted profiles was performed using a Monte Carlo approach. Finally, a radiofrequency-compensated Langmuir probe was inserted to measured the electron temperature and density profiles. The absolute line emissivities are interpreted using the collisional-radiative code YACORA which estimates the degree of dissociation and the distribution of the atomic and molecular species, including the negative ion density. This paper reports the results of a power scan up to 5 kW in conditions satisfying Cybele requirements for the plasma source, namely a low neutral pressure, p≤slant 0.3 Pa and magnetic field B≤slant 150 G.

  12. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  13. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  14. Generation of electron Airy beams.

    Science.gov (United States)

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  15. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  16. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  17. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  18. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  19. Pulsed supersonic helium beams for plasma edge diagnosis

    Science.gov (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  20. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  1. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  2. Theory of a beam-driven plasma antenna

    Science.gov (United States)

    Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.

    2016-08-01

    In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.

  3. Plasma-Based Ion Beam Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, H. W.

    2005-07-01

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  4. Beam-plasma instability in charged plasma in the absence of ions

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E. [National Research Nuclear University “MEPhI,” Kashirskoe Highway, 31, Moscow 115409, Russia and Sarov State Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Dukhova Str., 6, Sarov, Nizhni Novgorod Region 607186 (Russian Federation); Petrik, Alexey G. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E., E-mail: hramovae@gmail.com [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2016-04-15

    We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.

  5. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  6. Ignition of beam plasma discharge in the electron beam experiment in space

    Science.gov (United States)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  7. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  8. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Science.gov (United States)

    Golian, Y.; Aslaninejad, M.; Dorranian, D.

    2016-01-01

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  9. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  10. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  11. Fast ion beam-plasma interaction system.

    Science.gov (United States)

    Breun, R A; Ferron, J R

    1979-07-01

    A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).

  12. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  13. Plasma-beam traps and radiofrequency quadrupole beam coolers.

    Science.gov (United States)

    Maggiore, M; Cavenago, M; Comunian, M; Chirulotto, F; Galatà, A; De Lazzari, M; Porcellato, A M; Roncolato, C; Stark, S; Caruso, A; Longhitano, A; Cavaliere, F; Maero, G; Paroli, B; Pozzoli, R; Romé, M

    2014-02-01

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  14. Simulations of a beam-driven plasma antenna in the regime of plasma transparency

    Science.gov (United States)

    Timofeev, I. V.; Berendeev, E. A.; Dudnikova, G. I.

    2017-09-01

    In this paper, the theoretically predicted possibility to increase the efficiency of electromagnetic radiation generated by a thin beam-plasma system in the regime of oblique emission, when a plasma column becomes transparent to radiation near the plasma frequency, is investigated using particle-in-cell simulations. If a finite-size plasma column has a longitudinal density modulation, such a system is able to radiate electromagnetic waves as a dipole antenna. This radiation mechanism is based on the conversion of an electron beam-driven potential plasma wave on the periodic perturbation of plasma density. In this case, the frequency of radiated waves appears to be slightly lower than the plasma frequency. That is why their fields enable the penetration into the plasma only to the skin-depth. This case is realized when the period of density modulation coincides with the wavelength of the most unstable beam-driven mode, and the produced radiation escapes from the plasma in the purely transverse direction. In the recent theoretical paper [I. V. Timofeev et al. Phys. Plasmas 23, 083119 (2016)], however, it has been found that the magnetized plasma can be transparent to this radiation at certain emission angles. It means that the beam-to-radiation power conversion can be highly efficient even in a relatively thick plasma since not only boundary layers but also the whole plasma volume can be involved in the generation of electromagnetic waves. Simulations of steady-state beam injection into a pre-modulated plasma channel confirm the existence of this effect and show limits of validity for the simplified theoretical model.

  15. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

  16. Modulation of continuous electron beams in plasma wake-fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.

    1988-09-08

    In this paper we discuss the interaction of a continuous electron beam with wake-field generated plasma waves. Using a one-dimensional two fluid model, a fully nonlinear analytical description of the interaction is obtained. The phenomena of continuous beam modulation and wave period shortening are discussed. The relationship between these effects and the two-stream instability is also examined. 12 refs., 1 fig.

  17. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  18. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  19. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Scisciò, M.; Antici, P., E-mail: patrizio.antici@polytechnique.edu [INFN-RM1 and SBAI, Università di Roma “La Sapienza,” Via Scarpa 16, 00161 Roma (Italy); INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [INFN-RM1 and SBAI, Università di Roma “La Sapienza,” Via Scarpa 16, 00161 Roma (Italy); Papaphilippou, Y. [CERN, CH 1211 Geneva 23 (Switzerland)

    2016-03-07

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  20. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    CERN Document Server

    Annenkov, V V; Volchok, E P

    2015-01-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in the realistic formulation allowing for the continuous injection of a relativistic electron beam through the plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of electromagnetic plasma eigenmodes, as in the infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  1. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  2. Perturbing microwave beams by plasma density fluctuations

    Directory of Open Access Journals (Sweden)

    Köhn Alf

    2017-01-01

    Full Text Available The propagation of microwaves across a turbulent plasma density layer is investigated with full-wave simulations. To properly represent a fusion edge-plasma, drift-wave turbulence is considered based on the Hasegawa-Wakatani model. Scattering and broadening of a microwave beam whose amplitude distribution is of Gaussian shape is studied in detail as a function of certain turbulence properties. Parameters leading to the strongest deterioration of the microwave beam are identified and implications for existing experiments are given.

  3. 2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma

    CERN Document Server

    Shukla, Chandrashekhar; Patel, Kartik

    2015-01-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...

  4. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  5. Plasma Lens for Muon and Neutrino Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kahn,S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

    2008-06-23

    The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented.

  6. Consequences of photon beam excitation in an inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, E.R.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1998-12-31

    Plasma enhanced deposition and etching processes have been common in the semiconductor industry for some time. Generally the chemical systems are complex and consist of many different neutral and ionic species, only a subset of which are desired. Establishing process control is sometimes difficult, as changing most system parameters will not be selective in terms of which species they affect It may also be difficult to simultaneously optimize all process variables. In this paper, the authors present results from a numerical study of an Inductively Coupled Plasma (ICP) system which is excited by a photon beam. The Hybrid Plasma Equipment Model (HPEM), modified to include the Monte Carlo Photon Beam (MCPB) module, is the simulation tool used in the study. The MCPB models the injection and propagation of a photon beam through a plasma processing reactor using a Monte Carlo simulation. Photon absorption in the plasma is described using a variable particle weighting method. Multiple photon species are allowed, and photon absorption cross sections for photolysis and ionization are input through a parser. Source rates for charged and neutral species, which result from photon absorption, are generated by the MCPB and used by the fluid module of the HPEM. They will present the results of a parametric study of the effects of an auxiliary photon source on species densities and plasma potential for a Cl{sub 2} etching plasma.

  7. Spherical solitons in ion-beam plasma

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C.; Ibohanbi Singh, K. (Manipur Univ., Imphal (India). Dept. of Mathematics)

    1991-01-01

    By using the reductive perturbation technique, the soliton solution of an ion-acoustic wave radially ingoing in a spherically bounded plasma consisting of ions and ion-beams with multiple electron temperatures is obtained. In sequel to the earlier investigations, the solitary waves are studied as usual through the derivation of a modified Korteweg-de Vries (K-dV) equation in different plasma models arising due to the variation of the isothermality of the plasmas. The characteristics of the solitons are finally compared with those of the planar and the cylindrical solitons. (orig.).

  8. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  9. Design Study for Pulsed Proton Beam Generation

    Directory of Open Access Journals (Sweden)

    Han-Sung Kim

    2016-02-01

    Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.

  10. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  11. Monte Carlo simulation of electron beam air plasma characteristics

    Institute of Scientific and Technical Information of China (English)

    Deng Yong-Feng; Han Xian-Wei; Tan Chang

    2009-01-01

    A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.

  12. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  13. Ions beams and ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton

    Near-perfect space-charge neutralization is required for the transverse compression of high perveance ion beams for ion-beam-driven warm dense matter experiments, such as the Neutralized Drift Compression eXperiment (NDCX). Neutralization can be accomplished by introducing a plasma in the beam path, which provides free electrons that compensate the positive space charge of the ion beam. In this thesis, charge neutralization of a 40 keV, perveance-dominated Ar+ beam by a Ferroelectric Plasma Source (FEPS) is investigated. First, the parameters of the ion beam, such as divergence due to the extraction optics, charge neutralization fraction, and emittance were measured. The ion beam was propagated through the FEPS plasma, and the effects of charge neutralization were inferred from time-resolved measurements of the transverse beam profile. In addition, the dependence of FEPS plasma parameters on the configuration of the driving pulser circuit was studied to optimize pulser design. An ion accelerator was constructed that produced a 30-50 keV Ar + beam with pulse duration angle divergence of 0.87°. The measurements show that near-perfect charge neutralization with FEPS can be attained. No loss of ion beam current was detected, indicating the absence of a neutral cloud in the region of beam propagation, which would cause beam loss to charge exchange collisions. This provides evidence in favor of using FEPS in a future Heavy Ion Fusion accelerator. The FEPS discharge was investigated based on current-voltage measurements in the pulser circuit. Different values of series resistance and storage capacitance in the pulser circuit were used. The charged particle current emitted by the FEPS into vacuum was measured from the difference in forward and return currents in the driving circuit. It was found that FEPS is an emitter of negative charge, and that electron current emission begins approximately 0.5 mus after the fast-rising high voltage pulse is applied and lasts for tens

  14. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    Science.gov (United States)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  15. Focused beams of fast neutral atoms in glow discharge plasma

    Science.gov (United States)

    Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.

    2017-06-01

    Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.

  16. Positron Beam Propagation in a Meter Long Plasma Channel

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.A.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Mori, W.B.; /UCLA; Decker, F.-J.; Hogan, M.J.; Iverson, R.; O' Connell, C.; Raimondi, P.; Siemann, Robert H.; Walz, D.; /SLAC; Katsouleas, T.C.; Muggli, P.; /Southern California U.

    2008-03-17

    Recent experiments and simulations have shown that positron beams propagating in plasmas can be focused and also create wakes with large accelerating gradients. For similar parameters, the wakes driven by positron beams are somewhat smaller compared to the case of an electron beam. Simulations have shown that the wake amplitude can be increased if the positron beam is propagated in a hollow plasma channel (Ref. 1). This paper, compares experimentally, the propagation and beam dynamics of a positron beam in a meter scale homogeneous plasma, to a positron beam hollow channel plasma. The results show that positron beams in hollow channels are less prone to distortions and deflections. Hollow channels were observed to guide the positron beam onto the channel axis. Beam energy loss was also observed implying the formation of a large wake amplitude. The experiments were carried out as part of the E-162 plasma wakefield experiments at SLAC.

  17. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  18. Probabilistic model of beam-plasma interaction and electromagnetic radioemission

    Science.gov (United States)

    Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii

    2016-07-01

    In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.

  19. Mono Energetic Beams from Laser Plasma Interactions

    CERN Document Server

    Geddes, Cameron G; Esarey, Eric; Leemans, Wim; Nieter, Chet; Schröder, Carl B; Toth, Csaba; Van Tilborg, Jeroen

    2005-01-01

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100% electron energy spread. In the present experiments on the L’OASIS laser,* the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing >200pC charge above 80 MeV and with normalized emittance estimated at < 2 pi -mm-mrad were produced.** Data and simulations (VORPAL***) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was g...

  20. Propagation of ion beams through a tenuous magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chrien, E.F.; Valeo, E.J.; Kulsrud, R.M.; Oberman, C.R.

    1985-10-01

    When an ion beam is propagated through a plasma, the question of charge neutralization is critical to its propagation. We consider such a problem where the plasma is magnetized with magnetic field perpendicular to the beam. The plasma-number density and beam-number density are assumed comparable. We reduce the problem to a two-dimensional model, which we solve. The solution suggests that it should be possible to attain charge neutralization if the beam density is properly varied along itself.

  1. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    Science.gov (United States)

    Skender, Marina; Tsiklauri, David

    2014-05-01

    Super-thermal electron beams travelling away from the Sun on the open magnetic field lines are widely accepted to be the source of the Type-III bursts. The earliest idea of the generation of the Type-III bursts was based on the plasma emission mechanism. A fast moving electron beam excites Langmuir waves at the local plasma frequency, ωp. The Langmuir waves are partially transformed via scattering at ωp and 2ωp, with ion sound and oppositely propagating Langmuir waves, respectively, into electromagnetic waves. As the electron beam propagates away from the Sun, through less dense coronal and interplanetary environment, the frequency of the emitted electromagnetic radiation decreases, because plasma frequency is a function of the square root of the plasma density. Type-III bursts have been subject of theoretical, observational and numerical studies. The first detailed theory of the Type-III emission invoked coherent plasma waves, generated by a stream of fast particles, which are due to Rayleigh and combination scattering at ωp and 2ωp subsequently transformed into radio waves. Stochastic growth of the density irregularities was invoked in order to produce stochastically generated clumpy Langmuir waves, where the ambient density perturbations cause the beam to fluctuate around marginal stability. Other theories on the mechanism which generates the Type-III emission include: linear mode conversion of Langmuir waves, Langmuir waves producing electromagnetic radiation as antennas and non-gyroptropic electron beam emission [1] of commensurable properties to the Type-III bursts. In Refs. [2,3] it was found that the non-gyrotropic beam excites electromagnetic radiation by the current transverse to the magnetic field, which results in (ω,k)-space drift while propagating along the 1-dimensional spatial domain throughout the decreasing plasma density profile. The role of the electron beam pitch angle and the background density gradient profile was investigated in [4

  2. Design of the plasma chamber and beam extraction system for SC ECRIS of RAON accelerator

    Science.gov (United States)

    Kim, Y.; Choi, S.; Hong, I. S.

    2014-02-01

    The RAON accelerator is the heavy ion accelerator being built in Korea. It contains a 3rd generation SC ECRIS which uses 28 GHz/18 GHz microwave power to extract 12 puA uranium ion beams. A plasma chamber for that ECRIS is made of aluminum machined from bulk Al. That chamber contains cooling channels to remove dumped power and another access port for microwave introduction and plasma diagnostics. Beam extraction electrodes were designed considering the engineering issues and preliminary beam extraction analysis was done. That plasma chamber will be assembled with a cryostat, and beam extraction experiment will be done.

  3. Neutral Beam Injection for Plasma and Magnetic FieldDiagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton,Fred

    2007-08-01

    At the Lawrence Berkeley National Laboratory (LBNL) adiagnostic neutral beam injection system for measuring plasma parameters,flow velocity, and local magnetic field is being developed. High protonfraction and small divergence is essential for diagnostic neutral beams.In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller)elliptical beam spot at 2.5 m from the end of the extraction column isproduced. The beam will deliver up to 5 A of hydrogen beam to the targetwith a pulse width of ~;1 s, once every 1 - 2 min. The H1+ ion species ofthe hydrogen beamwill be over 90 percent. For this application, we havecompared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antennabehind a dielectric RF-window. The second one uses an internal antenna insimilar ion source geometry. The source needs to generate uniform plasmaover a large (8 cm x 5 cm) extraction area. We expect that the ion sourcewith internal antenna will be more efficient at producing the desiredplasma density but might have the issue of limited antenna lifetime,depending on the duty factor. For both approaches there is a need forextra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator materialsuch as quartz that has been observed to generate plasma with higheratomic fraction than sources with metal walls. The ion beam will beextracted and accelerated by a set of grids with slits, thus forming anarray of 6 sheet-shaped beamlets. The multiple grid extraction will beoptimized using computer simulation programs. Neutralization of the beamwill be done in neutralization chamber, which has over 70 percentneutralization efficiency.

  4. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  5. COUNTER PROPAGATION OF ELECTRON AND CO2 LASER BEAMS IN A PLASMA CHANNEL.

    Energy Technology Data Exchange (ETDEWEB)

    HIROSE,T.; POGORELSKY,I.V.; BEN ZVI,I.; YAKIMENKO,V.; KUSCHE,K.; SIDDONS,P.; KUMITA,T.; KAMIYA,Y.; ZIGLER,A.; GREENBERG,B.; ET AL

    2002-11-12

    A high-energy CO{sub 2} laser is channeled in a capillary discharge. Occurrence of guiding conditions at a relatively low plasma density (<10{sup 18} cm{sup -3}) is confirmed by MHD simulations. Divergence of relativistic electron beam changes depending on the plasma density. Counter-propagation of the electron and laser beams inside the plasma channel results in intense x-ray generation.

  6. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  7. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  8. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    Science.gov (United States)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  9. Generation of Nondiffracting Electron Bessel Beams

    Directory of Open Access Journals (Sweden)

    Vincenzo Grillo

    2014-01-01

    Full Text Available Almost 30 years ago, Durnin discovered that an optical beam with a transverse intensity profile in the form of a Bessel function of the first order is immune to the effects of diffraction. Unlike most laser beams, which spread upon propagation, the transverse distribution of these Bessel beams remains constant. Electrons also obey a wave equation (the Schrödinger equation, and therefore Bessel beams also exist for electron waves. We generate an electron Bessel beam by diffracting electrons from a nanoscale phase hologram. The hologram imposes a conical phase structure on the electron wave-packet spectrum, thus transforming it into a conical superposition of infinite plane waves, that is, a Bessel beam. We verify experimentally that these beams can propagate for 0.6 m without measurable spreading and can also reconstruct their intensity distributions after being partially obstructed by an obstacle. Finally, we show by numerical calculations that the performance of an electron microscope can be increased dramatically through use of these beams.

  10. Generate Uniform Transverse Distributed Electron Beam along a Beam Line

    CERN Document Server

    Jiao, Y

    2015-01-01

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A concrete design is presented, and numerical simulations are done to verify the proposed method.

  11. A plasma wakefield acceleration experiment using CLARA beam

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@cockcroft.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Angal-Kalinin, D.; Clarke, J. [STFC/ASTeC, Daresbury, Warrington (United Kingdom); Smith, J. [Tech-X UK Corporation, Daresbury Innovation Centre, Warrington (United Kingdom); Cormier-Michel, E. [Tech-X Corporation, Boulder, CO (United States); Jones, J.; Williams, P.H.; Mckenzie, J.W.; Militsyn, B.L. [STFC/ASTeC, Daresbury, Warrington (United Kingdom); Hanahoe, K.; Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom)

    2014-03-11

    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

  12. A plasma wakefield acceleration experiment using CLARA beam

    CERN Document Server

    Xia, G; Clarke, J; Smith, J; Cormier-Michel, E; Jones, J; Williams, P H; Mckenzie, J W; Militsyn, B L; Hanahoe, K; Mete, O; Aimidula, A; Welsch, C P

    2014-01-01

    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

  13. Collisionless relaxation in beam-plasma systems

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Ekaterina Yu. [Univ. of California, Berkeley, CA (United States)

    2001-01-01

    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  14. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  15. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  16. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  17. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  18. Vortex stabilized electron beam compressed fusion grade plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  19. Catenary nanostructures as compact Bessel beam generators.

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Jin, Jinjin; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2016-02-04

    Non-diffracting Bessel beams, including zero-order and high-order Bessel Beams which carry orbital angular momentum (OAM), enable a variety of important applications in optical micromanipulation, sub-diffraction imaging, high speed photonics/quantum communication, etc. The commonly used ways to create Bessel beams, including an axicon or a digital hologram written to a spatial light modulator (SLM), have great challenges to operate at the nanoscale. Here we theoretically design and experimentally demonstrate one kind of planar Bessel beam generators based on metasurfaces with analytical structures perforated in ultra-thin metallic screens. Continuous phase modulation between 0 to 2π is realized with a single element. In addition, due to the dispersionless phase shift stemming from spin-orbit interaction, the proposed device can work in a wide wavelength range. The results may find applications in future optical communication, nanofabrication and super-resolution imaging, etc.

  20. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  1. Slot-Antenna/Permanent-Magnet Device for Generating Plasma

    Science.gov (United States)

    Foster, John E.

    2007-01-01

    devices, there is no need for an insulating window on the antenna. Such windows are sources of contamination and gradually become ineffective as they become coated with erosion products over time. These characteristics relegate prior ECR microwave plasma-generating devices to non-ion beam, non-deposition plasma applications. In contrast, the lack of need for an insulating window in the present device makes it possible to use the device in both ion-beam (including deposition) and electron-beam applications. The device is designed so that ECR takes place above each slot and the gradient of the magnetic field at each slot is enough to prevent backflow of plasma.

  2. Beam-plasma dielectric tensor with Mathematica

    Science.gov (United States)

    Bret, A.

    2007-03-01

    We present a Mathematica notebook allowing for the symbolic calculation of the 3×3 dielectric tensor of an electron-beam plasma system in the fluid approximation. Calculation is detailed for a cold relativistic electron beam entering a cold magnetized plasma, and for arbitrarily oriented wave vectors. We show how one can elaborate on this example to account for temperatures, arbitrarily oriented magnetic field or a different kind of plasma. Program summaryTitle of program: Tensor Catalog identifier: ADYT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYT_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers: Any computer running Mathematica 4.1. Tested on DELL Dimension 5100 and IBM ThinkPad T42. Installations: ETSI Industriales, Universidad Castilla la Mancha, Ciudad Real, Spain Operating system under which the program has been tested: Windows XP Pro Programming language used: Mathematica 4.1 Memory required to execute with typical data: 7.17 Mbytes No. of bytes in distributed program, including test data, etc.: 33 439 No. of lines in distributed program, including test data, etc.: 3169 Distribution format: tar.gz Nature of the physical problem: The dielectric tensor of a relativistic beam plasma system may be quite involved to calculate symbolically when considering a magnetized plasma, kinetic pressure, collisions between species, and so on. The present Mathematica notebook performs the symbolic computation in terms of some usual dimensionless variables. Method of solution: The linearized relativistic fluid equations are directly entered and solved by Mathematica to express the first-order expression of the current. This expression is then introduced into a combination of Faraday and Ampère-Maxwell's equations to give the dielectric tensor. Some additional manipulations are needed to express the result in terms of the

  3. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  4. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  5. Waves in relativistic electron beam in low-density plasma

    Science.gov (United States)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  6. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  7. Investigation of plasma–surface interaction at plasma beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaev, V., E-mail: kurnaev@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Vizgalov, I.; Gutorov, K. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I. [Institute of Atomic Energy, National Nuclear Center the Republic of Kazakhstan, Street Krasnoarmejsky, 10, 071100 Kurchatov (Kazakhstan); Klimov, N. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, 142190 Moscow (Russian Federation)

    2015-08-15

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m{sup 2}. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ⋅ 10{sup 22} m{sup −2} s{sup −1}. Initial tests of the KTM PBF’s capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF)

  8. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    CERN Document Server

    Skender, Marina

    2014-01-01

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...

  9. Research on EBEP (Electron Beam Excited Plasma) applications; EBEP (denshi beam reiki plasma) no tekiyo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, E.; Ryoji, M.; Mori, Y.; Tokai, M. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-04-20

    Research and development is actively conducted on machining technologies using plasma in various fields, with studies energetically pursued on etching techniques or those of forming a thin film by the use of high frequency and microwave plasma. The EBEP system jointly developed by Kawasaki Heavy Industries Ltd. and Institute of Physical and Chemical Research is a plasma source for forming a high density plasma by implanting into a plasma chamber from the outside a high-current electron beam accelerated to an energy of approximately 60 to 100eV where the collision cross-section of gas ionization is maximized. The characteristics of the system are such as (1) it enables electron energy distribution to be controlled from outside by varying acceleration voltage, (2) it excels in the controllability of ion energy and (3) it allows to form a steady high-density plasma in a nonmagnetic field. This paper presents the generating principle of EBEP, its plasma characteristics, etching technique using EBEP, thin film forming technique by EBEP-CVD method, and multipurpose apparatus for research and development. 6 refs., 7 figs., 1 tab.

  10. Operational characteristics of the high flux plasma generator Magnum-PSI

    NARCIS (Netherlands)

    van Eck, H. J. N.; Abrams, T.; van den Berg, M. A.; Brons, S.; van Eden, G. G.; Jaworski, M. A.; Kaita, R.; van der Meiden, H. J.; Morgan, T. W.; van de Pol, M.J.; Scholten, J.; Smeets, P. H. M.; De Temmerman, G.; de Vries, P. C.; van Emmichoven, P. A. Zeijlma

    2014-01-01

    Abstract In Magnum-PSI (MAgnetized plasma Generator and \\{NUMerical\\} modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It

  11. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  12. Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam

    Science.gov (United States)

    Gupta, D. N.; Kulagin, V. V.; Suk, H.

    2017-10-01

    We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.

  13. Three dimensional filamentary structures of a relativistic electron beam in Fast Ignition plasmas

    CERN Document Server

    Karmakar, Anupam; Pukhov, Alexander

    2008-01-01

    The filamentary structures and associated electromagnetic fields of a relativistic electron beam have been studied by three dimensional particle-in-cell (PIC) simulations in the context of Fast Ignition fusion. The simulations explicitly include collisions in return plasma current and distinctly examine the effects of beam temperature and collisions on the growth of filamentary structures generated.

  14. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  15. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.

    2014-08-01

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  16. Efficient regime of electromagnetic emission in a plasma with counterstreaming electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V. [Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-08-15

    Efficiency of electromagnetic emission produced in a magnetized plasma with counterstreaming electron beams was investigated using both the linear kinetic theory and particle-in-cell simulations. We calculated the growth rate of the beam-plasma instability taking into account both kinetic and relativistic effects and showed that there exists a regime in which transversely propagating electromagnetic waves can be generated by the coupling of the most unstable oblique beam-driven modes. It was confirmed by numerical simulations that such a tune-up of system parameters for a specific nonlinear process can lead to a substantial increase in electromagnetic emission efficiency. It was found that electromagnetic radiation emerging from the plasma in such a regime is generated near the harmonics of the pump frequency that is determined by the typical eigenfrequency of the beam-driven modes. It was also shown that the peak emission power can reach 5% of the maximal power lost by beam electrons.

  17. Interaction of high power laser beams with plasma in ICF hohlraum using the FDTD method

    Science.gov (United States)

    Lin, Zhili

    2016-11-01

    In the indirect-drive Inertial confinement fusion (ICF) system, groups of laser beams are injected into a gold cylindrical hohlraum and plasma is stimulated with the ablation of the wall of hohlraum by the laser beams. In our work, the finite-difference time-domain (FDTD) method associated with the bilinear transform and Maclaurin series expansion approaches is utilized to examine the laser beam propagation in plasma described by the Drude model. The state-of-the-art approaches for generating the laser beams are presented and realized according to the full utilization of the TF/SF source condition. Base on the previous technologies, the quantitatively numerical analysis of the propagation characteristics of laser beams in the plasma is conducted. The obtained results are illustrated and discussed that are helpful for the parameter optimization of laser beams for an ICF system.

  18. Second-harmonic generation with Bessel beams

    Science.gov (United States)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  19. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Yushkov, Yu. G., E-mail: yuyushkov@gmail.com [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  20. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  1. Experimental generation of amplitude squeezed vector beams

    CERN Document Server

    Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-01-01

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.

  2. Integrated multi vector vortex beam generator

    CERN Document Server

    Schulz, Sebastian A; Karimi, Ebrahim; Boyd, Robert W

    2013-01-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  3. Structured Beam Generation with a Single Metasurface

    CERN Document Server

    Yue, Fuyong; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. This method features the spin-orbit coupling and the superposition of the converted part with an additional phase pickup and the residual part without a phase change. By maintaining the equal components for the converted part and the residual part, the cylindrically polarized vortex beams carrying orbital angular momentum are experimentally demonstrated based on a single metasurface at subwavelength scale. The proposed approach provides unprecedented freedom in engineering the properties of optical waves with the high-effic...

  4. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  5. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P.

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  6. Multisymplectic Integration for Beam and Plasma Simulations

    Science.gov (United States)

    Webb, Stephen; RadiaSoft, LLC Team

    2015-11-01

    Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.

  7. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  8. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  9. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  10. Generation of broadband terahertz radiation using a backward wave oscillator and pseudospark-sourced electron beam

    Energy Technology Data Exchange (ETDEWEB)

    He, W.; Zhang, L.; Bowes, D.; Yin, H.; Ronald, K.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom)

    2015-09-28

    This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 10{sup 8} A m{sup −2}, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.

  11. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  12. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  13. Multidimensional electron beam-plasma instabilities in the relativistic regime

    OpenAIRE

    BRET, ANTOINE; Gremillet, Laurent; Dieckmann, Mark Eric

    2010-01-01

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture ...

  14. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  15. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators

    Science.gov (United States)

    Martinez de la Ossa, A.; Hu, Z.; Streeter, M. J. V.; Mehrling, T. J.; Kononenko, O.; Sheeran, B.; Osterhoff, J.

    2017-09-01

    Density down-ramp (DDR) injection is a promising concept in beam-driven plasma wakefield accelerators for the generation of high-quality witness beams. We review and complement the theoretical principles of the method and employ particle-in-cell (PIC) simulations in order to determine constrains on the geometry of the density ramp and the current of the drive beam, regarding the applicability of DDR injection. Furthermore, PIC simulations are utilized to find optimized conditions for the production of high-quality beams. We find and explain the intriguing result that the injection of an increased charge by means of a steepened ramp favors the generation of beams with lower emittance. Exploiting this fact enables the production of beams with high charge (˜140 pC ), low normalized emittance (˜200 nm ) and low uncorrelated energy spread (0.3%) in sufficiently steep ramps even for drive beams with moderate peak current (˜2.5 kA ).

  16. Numerical simulation of nonlinear processes in a beam-plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, A. A., E-mail: anna.an.efimova@gmail.com; Berendeev, E. A.; Vshivkov, V. A. [Institute of Computational Mathematics and Mathematical Geophysics SB RAS 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Dudnikova, G. I. [University of Maryland, College Park, MD 20742 (United States); Institute of Computational Technologies SB RAS, 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation)

    2015-10-28

    In the present paper we consider the efficiency of the electromagnetic radiation generation due to various nonlinear processes in the beam-plasma system. The beam and plasma parameters were chosen close to the parameters in the experiment on the GOL-3 facility (BINP SB RAS). The model of the collisionless plasma is described by system of the Vlasov-Maxwell equations with periodic boundary conditions. The parallel numerical algorithm is based on the particles-in-cell method (PIC) with mixed Euler-Lagrangian domain decomposition. Various scenarios of nonlinear evolution in the beam-plasma system under the influence of an external magnetic field in case of a low density beam were studied. The energy transfer from one unstable mode to the others modes was observed.

  17. Long-lived laboratory plasmas sustained by a free-space microwave beam

    Science.gov (United States)

    Reid, Remington

    2015-11-01

    The Air Force Research Laboratory is developing a laboratory experiment to study the free-space interaction of microwave beams with low temperature, low density plasmas. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 Ghz radiation. The pressure windows are approximately 1m in diameter, allowing for minimal interaction between the beam and the chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. Plasmas generated by the beam have been observed to be stable for more than 10s. A series of optical and microwave diagnostics are being developed to measure the plasma properties, and to quantify the interaction of the plasma and the background neutral gas.

  18. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  19. Proton beam generation of oblique whistler waves

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  20. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  1. Positron acceleration by plasma wake fields driven by a hollow electron beam

    CERN Document Server

    Jain, Neeraj; Palastro, J P

    2014-01-01

    A scheme of wake field generation for positron acceleration using hollow or donut shaped electron driver beams is studied. An annular shaped, electron free region forms around a hollow driver beam creating a favorable region (longitudinal field is accelerating and transverse field is focusing and radially linear) for positron acceleration. Accelerating gradients of the order of 10 GV/m are produced by a hollow electron beam driver with FACET like parameters. The peak accelerating field increases linearly with the total charge in the beam driver while the axial size of the favorable region ($\\sim$ one plasma wavelength) remains approximately fixed. The radial size drops with the total charge but remains large enough for the placement of a witness positron beam. We simulate an efficient acceleration of a 23 GeV positron beam to 35.4 GeV with a maximum energy spread of 0.4\\% and very small emittance over a plasma length of 140 cm.

  2. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  3. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Science.gov (United States)

    Torrisi, L.; Ceccio, G.; Cutroneo, M.

    2016-05-01

    Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical-physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 1010 W/cm2 in order to generate non-equilibrium plasma in vacuum. The laser-matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  4. Analyses of the plasma generated by laser irradiation on sputtered target for determination of the thickness used for plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Kumaki, Masafumi, E-mail: masafumi.kumaki@riken.jp [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan); RIKEN, Wako, Saitama (Japan); Ikeda, Shunsuke; Sekine, Megumi; Munemoto, Naoya [RIKEN, Wako, Saitama (Japan); Department of Energy Sciences, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fuwa, Yasuhiro [RIKEN, Wako, Saitama (Japan); Department of Physics and Astronomy, Kyoto University, Uji, Kyoto (Japan); Cinquegrani, David [American Nuclear Society, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Washio, Masakazu [Cooperative Major in Nuclear Energy, Waseda University, Shinjuku, Tokyo (Japan)

    2014-02-15

    In Brookhaven National Laboratory, laser ion source has been developed to provide heavy ion beams by using plasma generation with 1064 nm Nd:YAG laser irradiation onto solid targets. The laser energy is transferred to the target material and creates a crater on the surface. However, only the partial material can be turned into plasma state and the other portion is considered to be just vaporized. Since heat propagation in the target material requires more than typical laser irradiation period, which is typically several ns, only the certain depth of the layers may contribute to form the plasma. As a result, the depth is more than 500 nm because the base material Al ions were detected. On the other hand, the result of comparing each carbon thickness case suggests that the surface carbon layer is not contributed to generate plasma.

  5. A space-charge-neutralizing plasma for beam drift compression

    Science.gov (United States)

    Roy, P. K.; Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Coleman, J. E.; Gilson, E. P.; Greenway, W.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Sefkow, A. B.; Waldron, W. L.; Welch, D. R.

    2009-07-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a ˜10-cm-long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter ˜5 mm along the solenoid axis when the FFS is powered with an 8 T field. Measured plasma density of ⩾1×10 13 cm -3 meets the challenge of np/ Znb>1, where np and nb are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the beam ions.

  6. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  7. A Novel Microwave Beam Steering Technique Using Plasma

    Science.gov (United States)

    Linardakis, Peter; Borg, Gerard G.; Harris, Jeffrey H.; Martin, Noel M.

    2002-10-01

    At frequencies above the plasma frequency, electromagnetic waves propagate through plasma with a wavelength longer than the free space wavelength. As a result, a plasma with a centrally peaked density profile can deflect rather than focus electromagnetic waves. We present a plasma device designed specifically to deflect a microwave beam as an alternative to conventional beam deflectors based on antenna arrays. A 22^rc deflection of Ka band microwave has been achieved using a laboratory plasma, with no detrimental effect on the beamwidth or side-lode level and structure. The use of a simple WKB model shows agreement and that the deflection can be increased with appropriate design. Results indicate the potential for increases in dynamic range, in power handling (for example from a gyrotron) and for the reduction of insertion losses over current beam steering systems. A ``plasma lens'' demonstrator device has also been designed to test practical performance aspects such as phase noise and to test optimization parameters.

  8. Magnetic field generation during intense laser channelling in underdense plasma

    Science.gov (United States)

    Smyth, A. G.; Sarri, G.; Vranic, M.; Amano, Y.; Doria, D.; Guillaume, E.; Habara, H.; Heathcote, R.; Hicks, G.; Najmudin, Z.; Nakamura, H.; Norreys, P. A.; Kar, S.; Silva, L. O.; Tanaka, K. A.; Vieira, J.; Borghesi, M.

    2016-06-01

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  9. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  10. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  11. Characterization of inductively coupled plasma generated by a quadruple antenna

    Science.gov (United States)

    Shafir, G.; Zolotukhin, D.; Godyak, V.; Shlapakovski, A.; Gleizer, S.; Slutsker, Ya; Gad, R.; Bernshtam, V.; Ralchenko, Yu; Krasik, Ya E.

    2017-02-01

    The results of the characterization of large-scale RF plasma for studying nonlinear interaction with a high-power (˜400 MW) short duration (˜0.8 ns) microwave (˜10 GHz) beam are presented. The plasma was generated inside a Pyrex tube 80 cm in length and 25 cm in diameter filled by either Ar or He gas at a pressure in the range 1.3-13 Pa using a 2 MHz RF generator with a matching system and a quadruple antenna. Good matching was obtained between the plasma parameters, which were determined using different methods including a movable Langmuir probe, microwave cut-off, interferometry, and optical emission spectroscopy. It was shown that, depending on the gas pressure and RF power delivered to the antenna, the plasma density and electron temperature can be controlled in the range 1 × 1010-5 × 1012 cm-3 and 1-3.5 eV, respectively. The plasma density was found to be uniform in terms of axial (˜60 cm) and radial (˜10 cm) dimensions. Further, it was also shown that the application of the quadruple antenna, with resonating capacitors inserted in its arms, decreases the capacitive coupling of the antenna and the plasma as well as the RF power loss along the antenna. These features make this plasma source suitable for microwave plasma wake field experiments.

  12. Experimental beam system studies of plasma-polymer interactions

    Science.gov (United States)

    Nest, Dustin George

    Since the invention of the integrated circuit, the semiconductor industry has relied on the shrinking of device dimensions to increase device performance and decrease manufacturing costs. However, the high degree of roughening observed during plasma etching of current generation photoresist (PR) polymers can result in poor pattern transfer and ultimately decreased device performance or failure. Plasma-surface interactions are inherently difficult to study due to the highly coupled nature of the plasma enviroment. To better understand these interactions, a beam system approach is employed where polymers are exposed to beams of ions and vacuum ultraviolet (VUV) photons. Through the use of the beam system approach, simultaneous VUV radiation, ion bombardment, and moderate substrate heating have been identified as key elements, acting synergistically, as being responsible for roughening of current generation 193 nm PR during plasma processing. Sequential exposure is not adequate for the development of surface roughness, as observed through AFM and SEM. Ion bombardment results in the formation of a graphitized near-surface region with a depth of a few nanometers, the expected ion penetration depth of 150 eV argon ions. In contrast, VUV radiation results in the loss of carbon-oxygen bonds in the bulk PR as observed through Transmission FTIR. Based on the differing penetration depth of either ions or photons, their resulting chemical modifications, and the temperature dependence of the observed roughening, a mechanism is proposed based on stress relaxation resulting in surface buckling. The surface roughness of poly(4-methyl styrene) (P4MS) and poly(alpha-methyl styrene) (PalphaMS) have also been investigated under exposure to ions and VUV photons. PaMS degrades during VUV radiation above its ceiling temperature of ˜60°C. Despite having the same chemical composition as PalphaMS, P4MS does not degrade during VUV exposure at 70°C due to its relatively high ceiling

  13. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available ? per photon, and may be found as beams expressed in several basis functions, including Laguerre-Gaussian (LGpl) beams1, Bessel-Gaussian beams3 and Airy beams4 to name but a few. LG0l are otherwise known as vortex beams and LG0l beams are routinely... are represented by ?petals? and we show that through a full modal decomposition, the ?petal? fields are a superposition of two LG0l modes. Keywords: Vortex beams, SLM, Laguerre-Gaussian beams, Porro-prism resonator, Petals. 1. INTRODUCTION It is well...

  14. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  15. Refraction of $e^-$ beams due to plasma lensing at a plasma-vacuum interface -- applied to beam deflection in a Copper cell with electrical RF-breakdown plasma

    CERN Document Server

    Sahai, Aakash A

    2014-01-01

    We formulate a possible description of the deflection of a relativistic $e^-$ beam in an inhomogeneous copper plasma, encountered by the beam when propagating through a accelerating cell that has undergone a high electric-field RF-breakdown. It is well known that an inhomogeneous plasma forms and may last for up to a few micro-seconds, until recombination in an accelerating structure where a field-emission triggers melting and ionization of RF-cell wall deformity. We present a preliminary model for the beam deflection due to collective plasma response based upon the beam density, plasma density and interaction length.

  16. Generating and analyzing non-diffracting vector vortex beams

    CSIR Research Space (South Africa)

    Li, Y

    2013-08-01

    Full Text Available We experimentally generate non-diffracting vector vortex beams by using a Spatial Light Modulator (SLM) and an azimuthal birefringent plate (q-plate). The SLM generates scalar Bessel beams and the q-plate converts them to vector vortex beams. Both...

  17. Laser-generated plasma by carbon nanoparticles embedded into polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, L., E-mail: lorenzo.torrisi@unime.it [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Ceccio, G. [Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata, Messina (Italy); Cutroneo, M. [Nuclear Physics Institute, AS CR, 25068 Rez (Czech Republic)

    2016-05-15

    Highlights: • Advanced targets are prepared using UHMWPE containing CNT at different concentrations. • The composite has different optical, mechanical, electrical and compositional properties with respect to polyethylene. • Higher ion accelerations with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • High carbon ion yields with respect to the pure polyethylene are obtained from laser generated plasmas at 10{sup 10} W/cm{sup 2} intensity. • Advanced targets were prepared to be irradiated in TNSA regime using laser at 10{sup 18} W/cm{sup 2} intensity. - Abstract: Carbon nanoparticles have been embedded into polyethylene at different concentrations by using chemical–physical processes. The synthesized material was characterized in terms of physical modifications concerning the mechanical, compositional and optical properties. Obtained flat targets have been irradiated by Nd:YAG laser at intensities of the order of 10{sup 10} W/cm{sup 2} in order to generate non-equilibrium plasma in vacuum. The laser–matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon ion beams from laser-generated plasma are presented and discussed.

  18. Chaotic synchronization in coupled spatially extended beam-plasma systems

    OpenAIRE

    Filatov, Roman A.; Hramov, Alexander E.; ALEXEY A. KORONOVSKII

    2006-01-01

    The appearance of the chaotic synchronization regimes has been discovered for the coupled spatially extended beam-plasma Pierce systems. The coupling was introduced only on the right bound of each subsystem. It has been shown that with coupling increase the spatially extended beam-plasma systems show the transition from asynchronous behavior to the phase synchronization and then to the complete synchronization regime. For the consideration of the chaotic synchronization we used the concept of...

  19. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  20. Generation of nondiffracting Bessel beam using digital micromirror device.

    Science.gov (United States)

    Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei

    2013-07-01

    We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.

  1. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  2. ECRH microwave beam broadening in the edge turbulent plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sysoeva, E. V.; Gusakov, E. Z.; Popov, A. Yu. [Ioffe Institute, St. Petersburg, Russia and RL PAT SPbSPU, St. Petersburg (Russian Federation); Silva, F. da [Institute of Plasmas and Nuclear Fusion, IST, Lisbon (Portugal); Heuraux, S. [IJL UMR-7198 CNRS-Université de Lorraine, BP70239, 54506 Vandoeuvre Cedex (France)

    2014-02-12

    The influence of turbulent plasma density fluctuations on angular and spatial beam width is treated analytically in the framework of WKB based eikonal method. Reasonable agreement of analytical and numerical treatment results is demonstrated within the domain of quasi-optical approximation validity. Significant broadening of microwave beams is predicted for future ECRH experiments at ITER.

  3. The high flux plasma generator Magnum-PSI

    Science.gov (United States)

    van Eck, H. J. N.; Kleyn, A. W.; Koppers, W. R.; Rapp, J.; Zeijlmans van Emmichoven, P. A.

    2010-11-01

    Magnum-PSI is a magnetized (3 T), high-flux (up to 10^24 H^+ ions m-2s-1) plasma generator, capable of delivering 10 MW m-2 steady-state power fluxes to a large area target. Magnum-PSI is a highly accessible laboratory experiment in which the interaction of magnetized plasma with different surfaces can be studied. This experiment will provide new insights in the complex physics and chemistry that will occur in the divertor region of the future experimental fusion reactor ITER and reactors beyond ITER. In this contribution, we will present the design and characterization of the Magnum-PSI experiment. The differentially pumped vacuum system, the superconducting magnet, the plasma source, the target plate and manipulator will be presented. Simulations and measurements of the neutral gas flow, as well as electron density and temperature measurements of the plasma beam will be presented. Furthermore, a flavor of upcoming PSI experiments will be given.

  4. Generation of radiation by intense plasma and electromagnetic undulators

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  5. Efficient generation of high beam-quality attosecond pulse with polarization-gating Bessel-Gauss beam from highly-ionized media.

    Science.gov (United States)

    Li, Yang; Zhang, Qingbin; Hong, Weiyi; Wang, Shaoyi; Wang, Zhe; Lu, Peixiang

    2012-07-02

    Single attosecond pulse generation with polarization gating Bessel-Gauss beam in relatively strongly-ionized media is investigated. The results show that Bessel-Gauss beam has the ability to suppress the spatial plasma dispersion effects caused by high density of free electrons, thus the laser field can maintain its spatial profile through highly-ionized medium. This indicates the use of Bessel-Gauss beam has advantages over Gaussian beam in high harmonic generation under high ionization conditions. In our scheme, significant improvement of spatiotemporal properties of harmonics is achieved and an isolated attosecond pulse with high beam quality is filtered out using polarization gating.

  6. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  7. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  8. Dense monoenergetic proton beams from chirped laser-plasma interaction

    CERN Document Server

    Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H

    2011-01-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.

  9. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  10. An amplitude modulated radio frequency plasma generator

    Science.gov (United States)

    Lei, Fan; Li, Xiaoping; Liu, Yanming; Liu, Donglin; Yang, Min; Xie, Kai; Yao, Bo

    2017-04-01

    A glow discharge plasma generator and diagnostic system has been developed to study the effects of rapidly variable plasmas on electromagnetic wave propagation, mimicking the plasma sheath conditions encountered in space vehicle reentry. The plasma chamber is 400 mm in diameter and 240 mm in length, with a 300-mm-diameter unobstructed clear aperture. Electron densities produced are in the mid 1010 electrons/cm3. An 800 W radio frequency (RF) generator is capacitively coupled through an RF matcher to an internally cooled stainless steel electrode to form the plasma. The RF power is amplitude modulated by a waveform generator that operates at different frequencies. The resulting plasma contains electron density modulations caused by the varying power levels. A 10 GHz microwave horn antenna pair situated on opposite sides of the chamber serves as the source and detector of probe radiation. The microwave power feed to the source horn is split and one portion is sent directly to a high-speed recording oscilloscope. On mixing this with the signal from the pickup horn antenna, the plasma-induced phase shift between the two signals gives the path-integrated electron density with its complete time dependent variation. Care is taken to avoid microwave reflections and extensive shielding is in place to minimize electronic pickup. Data clearly show the low frequency modulation of the electron density as well as higher harmonics and plasma fluctuations.

  11. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  12. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  13. Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma

    Science.gov (United States)

    Kyrkos, S.; Kalman, G.; Rosenberg, M.

    2008-11-01

    In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).

  14. Challenges in plasma and laser wakefield accelerated beams diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Cianchi, A., E-mail: alessandro.cianchi@roma2.infn.it [University of Rome Tor Vergata and INFN, V. della Ricerca Scientifica 1, 00133 Rome (Italy); Anania, M.P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G. [INFN-LNF - Via E. Fermi 40, 00044 Frascati (RM) (Italy); Marchetti, B. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Mostacci, A. [University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome (Italy); Pompili, R. [INFN-LNF - Via E. Fermi 40, 00044 Frascati (RM) (Italy); Ronsivalle, C. [ENEA C.R. Frascati, Via E. Fermi,45 00044 Frascati (RM) (Italy); Rossi, A.R.; Serafini, L. [INFN-Mi, Via Celoria, 16 20133 Milano (Italy)

    2013-08-21

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  15. Challenges in plasma and laser wakefield accelerated beams diagnostic

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G.; Marchetti, B.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.

    2013-08-01

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  16. Inverse time-of-flight spectrometer for beam plasma research

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  17. High-current ion beam from a moving plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.; Ponomarenko, A.G.

    1979-05-01

    High-current ion beams in the 10--20-keV range are extracted from a moving plasma. Current densities up to 2.5 A/cm/sup 2/ are obtained at the plasma boundary, which is almost an order of magnitude larger than the Bohm current. Total currents of over 100 A are obtained from the plasma. Simple geometric focusing gives current densities approx.200 A/cm/sup 2/ at the focus.

  18. A theory of two-beam acceleration of charged particles in a plasma waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Ostrovsky, A.O. [Kharkov Inst. of Physics and Technology (Ukraine)

    1993-11-01

    The progress made in recent years in the field of high-current relativistic electron beam (REB) generation has aroused a considerable interest in studying REB potentialities for charged particle acceleration with a high acceleration rate T = 100MeV/m. It was proposed, in particular, to employ high-current REB in two-beam acceleration schemes (TBA). In these schemes high current REB (driving beam) excites intense electromagnetic waves in the electrodynamic structure which, in their turn, accelerate particles of the other beam (driven beam). The TBA schemes can be divided into two groups. The first group includes the schemes, where the two beams (driving and driven) propagate in different electrodynamic structures coupled with each other through the waveguides which ensure the microwave power transmission to accelerate driven beam particles. The second group includes the TBA schemes, where the driving and driven beams propagate in one electrodynamic structure. The main aim of this work is to demonstrate by theory the possibility of realizing effectively the TBA scheme in the plasma waveguide. The physical model of the TBA scheme under study is formulated. A set of equations describing the excitation of RF fields by a high-current REB and the acceleration of driven beam electrons is also derived. Results are presented on the the linear theory of plasma wave amplification by the driving beam. The range of system parameters, at which the plasma-beam instability develops, is defined. Results of numerical simulation of the TBA scheme under study are also presented. The same section gives the description of the dynamics of accelerated particle bunching in the high-current REB-excited field. Estimates are given for the accelerating field intensities in the plasma and electron acceleration rates.

  19. Spontaneous excitation of waves by an intense ion beam on the Large Plasma Device

    Science.gov (United States)

    Tripathi, Shreekrishna; van Compernolle, Bart; Gekelman, Walter; Pribyl, Patrick; Heidbrink, William

    2016-10-01

    A hydrogen ion beam (15 keV, 10 A) has been injected into a large magnetized plasma (n 1010 -1013 cm-3, Te = 5.0 - 15.0 eV, B = 0.6 - 1.8 kG, He+ and H+ ions, 19 m long, 0.6 m diameter) for performing fast-ion studies on the Large Plasma Device (LAPD). The beam forms a helical orbit (pitch-angle 7° -55°), propagates with an Alfvénic speed (beam-speed/Alfvén-speed = 0.2 - 3.0), and significantly enhances the electron temperature and density when injected during the plasma afterglow. We report results on spontaneous generation of Alfvén waves and electrostatic waves in the lower-hybrid range of frequencies by the beam. Roles of normal and anomalous Doppler-shifted ion-cyclotron resonances in destabilizing the Alfvén waves were examined by measuring the phase-speed of waves and relevant parameters of the plasma using a variety of diagnostic tools (retarding-field energy analyzer, three-axis magnetic-loop, Dipole, and Langmuir probes). Conditions for the maximum growth of these waves were determined by varying the parameters of the beam and ambient plasma and examining the mode-structures in the fluctuation-spectra. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  20. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital-angular-momemtum

    CERN Document Server

    Chaitanya, N Apurv; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  1. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    Science.gov (United States)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  2. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  3. Compact beam transport system for free-electron lasers driven by a laser plasma accelerator

    Science.gov (United States)

    Liu, Tao; Zhang, Tong; Wang, Dong; Huang, Zhirong

    2017-02-01

    Utilizing laser-driven plasma accelerators (LPAs) as a high-quality electron beam source is a promising approach to significantly downsize the x-ray free-electron laser (XFEL) facility. A multi-GeV LPA beam can be generated in several-centimeter acceleration distance, with a high peak current and a low transverse emittance, which will considerably benefit a compact FEL design. However, the large initial angular divergence and energy spread make it challenging to transport the beam and realize FEL radiation. In this paper, a novel design of beam transport system is proposed to maintain the superior features of the LPA beam and a transverse gradient undulator (TGU) is also adopted as an effective energy spread compensator to generate high-brilliance FEL radiation. Theoretical analysis and numerical simulations are presented based on a demonstration experiment with an electron energy of 380 MeV and a radiation wavelength of 30 nm.

  4. A reduced model for relativistic electron beam transport in solids and dense plasmas

    Science.gov (United States)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  5. Generation of antitropic electron beams by self-generated electric field. Kinetic description

    CERN Document Server

    Stepanov, N S

    2016-01-01

    This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of electron beams generated in the plasma under the influence of a self-generated electric field. It is expressed as where is a wave potential, , and charge particle distribution functions satisfy the Vlasov equation. It is proved that its correct solution is characterized by sudden change in the resonant part of the distribution function. Hence, in particular, the incorrectness of the established in the literature point of view follows that the fast, with velocities over V, and slow, with velocities under V, trapped particles are described by the same distribution function. Also for the first time it is shown that the self-generated strong electric field always produces antitropic electron beams with the velocities much larger than the value V, including the cold plasma limit. The possibility of implementing a new class of self-consistent wave structures with a nonzero average potential is shown. Maximu...

  6. Ion Beams in the Plasma Sheet Boundary Layer

    Science.gov (United States)

    Birn, J.; Hesse, M.; Runov, A.; Zhou, X.

    2015-12-01

    We explore characteristics of energetic particles in the plasma sheet boundary layer associated with dipolarization events, based on simulations and observations. The simulations use the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. They are complemented by self-consistent fully electrodynamic particle-in-cell (PIC) simulations. The test particle simulations confirm that crescent shaped earthward flowing ion velocity distributions with strong perpendicular anisotropy can be generated as a consequence of near tail reconnection, associated with earthward flows and propagating magnetic field dipolarization fronts. Both PIC and test particle simulations show that the ion distribution in the outflow region close to the reconnection site also consist of a beam superposed on an undisturbed population; this beam, however, does not show strong perpendicular anisotropy. This suggests that the crescent shape is created by quasi-adiabatic deformation from ion motion along the magnetic field toward higher field strength. The simulation results compare favorably with ``Time History of Events and Macroscale Interactions during Substorms" (THEMIS) observations.

  7. Efficient Generation of Truncated Bessel Beams using Cylindrical Waveguides

    Science.gov (United States)

    Ilchenko, Vladimir S.; Mohageg, Makan; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2007-01-01

    In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.

  8. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  9. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  10. Design method of coaxial reflex hollow beam generator

    Science.gov (United States)

    Wang, Jiake; Xu, Jia; Fu, Yuegang; He, Wenjun; Zhu, Qifan

    2016-10-01

    In view of the light energy loss in central obscuration of coaxial reflex optical system, the design method of a kind of hollow beam generator is introduced. First of all, according to the geometrical parameter and obscuration ratio of front-end coaxial reflex optical system, calculate the required physical dimension of hollow beam, and get the beam expanding rate of the hollow beam generator according to the parameters of the light source. Choose the better enlargement ratio of initial expanding system using the relational expression of beam expanding rate and beam expanding rate of initial system; the traditional design method of the reflex optical system is used to design the initial optical system, and then the position of rotation axis of the hollow beam generator can be obtained through the rotation axis translation formula. Intercept the initial system bus bar using the rotation axis after the translation, and rotate the bus bar around the rotation axis for 360°, so that two working faces of the hollow beam generator can be got. The hollow beam generator designed by this method can get the hollow beam that matches the front-end coaxial reflex optical system, improving the energy utilization ratio of beam and effectively reducing the back scattering of transmission system.

  11. Overdense plasma generation in a compact ion source

    Science.gov (United States)

    Castro, G.; Mascali, D.; Gammino, S.; Torrisi, G.; Romano, F. P.; Celona, L.; Altana, C.; Caliri, C.; Gambino, N.; Lanaia, D.; Miracoli, R.; Neri, L.; Sorbello, G.

    2017-05-01

    Electron cyclotron resonance ion sources (ECRIS) are widely used plasma based machines for the production of intense ion beams in science and industry. The performance of modern devices is limited by the presence of the density cut-off, above which electromagnetic (EM) waves sustaining the plasma are reflected. We hereby discuss the systematic data analysis of electrostatic wave generation in an ECR prototype operating at 3.75 GHz-0.1 THz. In particular, electron Bernstein waves (EBW) have been excited. EBW have already been generated in large-scale plasma devices for thermonuclear fusion purposes. In ion sources where L c ˜ λ RF (L c being the plasma chamber size and λ RF the pumping wave wavelength) the EM field assumes a modal behaviour; thus both plasma and EM field self-organize so that no optical-like wave launching is possible (i.e. the cavity effect dominates on the optical path). The collected data, however, supported by 3D full-wave simulations, actually demonstrate that a Budden-type X-B conversion scenario can be established above some critical RF power thresholds, operating in an off-ECR regime. The generation and absorption of the EBW has been demonstrated by the presence of three peculiar signatures: along with the establishment of an overdense plasma, generation of supra-thermal electrons and modification (non-linear broadening) of the EM spectrum measured within the plasma have been observed. At the threshold establishing such a heating regime, the collected data provide evidence for a fast rotation of the electron fluid.

  12. A non-equilibrium plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Martin, J.F. [ERC, Incorporated, Tullahoma, TN (United States)

    1993-12-31

    This paper summarizes research ideas, results and activities on a DOE MHD SBIR entitled: {open_quote}A Light Metal Fueled Nonequilibrium Plasma Generator (NPG){close_quotes}. The NPG is a concept for a device that has the capability of producing a nonequilibrium plasma from metal combustion. The results of preliminary studies on the NPG concept are given. These studies address fundamentals of the NPG including operating concepts of the NPG concept, results of studies on the quality of the plasma that it can produce, and theoretical evaluations of the nonequilibrium ionization process in an MHD disk generator driven by an NPG. A discussion of potential applications for the NPG is given. These applications encompass pulse MHD power, commercial MHD power and disk MHD generator research.

  13. Resonant excitation of waves by a spiraling ion beam on the large plasma device

    Science.gov (United States)

    Tripathi, Shreekrishna

    2015-11-01

    The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  14. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  15. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  16. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Groen, P. W. C.; van Beveren, V.; Broekema, A.; Busch, P. J.; Genuit, J. W.; Kaas, G.; Poelman, A. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2013-01-01

    The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of se

  17. Modeling and experiments on differential pumping in linear plasma generators operating at high gas flows

    NARCIS (Netherlands)

    van Eck, H. J. N.; Koppers, W. R.; van Rooij, G. J.; W. J. Goedheer,; Engeln, R.; D.C. Schram,; Cardozo, N. J. L.; Kleyn, A. W.

    2009-01-01

    The direct simulation Monte Carlo (DSMC) method was used to investigate the efficiency of differential pumping in linear plasma generators operating at high gas flows. Skimmers are used to separate the neutrals from the plasma beam, which is guided from the source to the target by a strong axial mag

  18. Software architecture for control and data acquisition of linear plasma generator Magnum-PSI

    NARCIS (Netherlands)

    Groen, P. W. C.; van Beveren, V.; Broekema, A.; Busch, P. J.; Genuit, J. W.; Kaas, G.; Poelman, A. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2013-01-01

    The FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research has completed the construction phase of Magnum-PSI, a magnetized, steady-state, large area, high-flux linear plasma beam generator to study plasma surface interactions under ITER divertor conditions. Magnum-PSI consists of

  19. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  20. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  1. Investigations of sacrificial and plasma mirrors on the HELEN laser CPA beam

    Science.gov (United States)

    Andrew, James E.; Comley, Andrew J.

    2007-01-01

    The performance of sacrificial and plasma mirrors has been investigated on the HELEN laser chirped pulse amplification [CPA] beam line. Sacrificial mirrors are initially highly reflective surfaces that degrade during the course of a pulsed laser experiment. They are being considered for protecting the off axis parabolic surfaces used to focus CPA lasers from plasma physics target generated debris and shrapnel. Plasma mirrors are initially low reflectivity surfaces that transmit low intensity beams but produce a reflecting plasma surface during the course of the laser pulse. They are being investigated to prevent prepulse effects in plasma physics experiments and increase the contrast ratio of the incident laser beam.The sacrificial mirrors were operated at 45 degrees angle of incidence and an average input beam diameter of ~14 mm with intensities in the range 8 TW/cm2 to 44 TW/cm2. Dielectric protected silver and gold coatings as well as dielectric multi layers were studied as the mirror surfaces for directing all of the short pulse [500fs] laser beams onto tantalum foil targets of 10 microns thickness. Proton emissions from the foils monitored by radiochromic film were used to evaluate the beam irradiance achieved from the mirror surfaces. Glass witness plates were used to evaluate debris and shrapnel emissions from the mirror surfaces, the diagnostics and the target foils. The plasma mirrors were operated in a similar configuration but with beam diameters of ~8mm and irradiances of 57 TW/cm2 to 235 TW/cm2. Uncoated and sol gel anti-reflection coated fused silica were used as the high intensity mirror surfaces. The influence of surface coating on laser damage morphology will be described as well as post shot inspection of debris distributions.

  2. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  3. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; /Southern California U.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang,; /UCLA; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O' Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  4. Runaway electron beam generation and mitigation during disruptions at JET-ILW

    Science.gov (United States)

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Boboc, A.; Brezinsek, S.; Coffey, I.; Decker, J.; Drewelow, P.; Devaux, S.; de Vries, P. C.; Fil, A.; Gerasimov, S.; Giacomelli, L.; Jachmich, S.; Khilkevitch, E. M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Lupelli, I.; Lomas, P. J.; Manzanares, A.; De Aguilera, A. Martin; Matthews, G. F.; Mlynář, J.; Nardon, E.; Nilsson, E.; Perez von Thun, C.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A. E.; Sips, G.; Sozzi, C.; contributors, JET

    2015-09-01

    Disruptions are a major operational concern for next generation tokamaks, including ITER. They may generate excessive heat loads on plasma facing components, large electromagnetic forces in the machine structures and several MA of multi-MeV runaway electrons. A more complete understanding of the runaway generation processes and methods to suppress them is necessary to ensure safe and reliable operation of future tokamaks. Runaway electrons were studied at JET-ILW showing that their generation dependencies (accelerating electric field, avalanche critical field, toroidal field, MHD fluctuations) are in agreement with current theories. In addition, vertical stability plays a key role in long runaway beam formation. Energies up to 20 MeV are observed. Mitigation of an incoming runaway electron beam triggered by massive argon injection was found to be feasible provided that the injection takes place early enough in the disruption process. However, suppressing an already accelerated runaway electron beam in the MA range was found to be difficult even with injections of more than 2 kPa.m3 high-Z gases such as krypton or xenon. This may be due to the presence of a cold background plasma weakly coupled to the runaway electron beam which prevents neutrals from penetrating in the electron beam core. Following unsuccessful mitigation attempts, runaway electron impacts on beryllium plasma-facing components were observed, showing localized melting with toroidal asymmetries.

  5. Delay time for the onset of beam plasma discharge

    Science.gov (United States)

    Parish, J. L.; Denig, W. F.; Raitt, W. J.

    1987-01-01

    The interaction of a nonrelativistic electron beam with a neutral gas in a large chamber is considered, and the time interval before ignition of beam plasma discharge (BPD) is studied. A new theoretical expression for the time delay before BPD ignition is found as a function of the critical current necessary for BPD to be established. There are two parameters in the theoretical expression, and both are derived from two different experiments. These parameters are used to write the time evolution equation for plasma density as a function of time.

  6. Plasma chemistry in electron-beam sustained discharges

    Science.gov (United States)

    Turner, Miles

    2016-09-01

    There are many emerging applications that exploit the exotic chemical characteristics of plasmas. Some of these applications, if deployed on an industrial scale, involve processing much larger volumes of gas than seems reasonable using any atmospheric pressure plasma source in wide use today. We note that an electron-beam sustained discharge permits the creation of a atmospheric pressure plasma with reasonable uniformity, large volme, and widely controllable electron temperature. Robust and durable electron beam sources now exist that would facilitate such applications. In this paper we discuss the general advantages of this approach, and we present a modelling study concerned with the production of NO in mixtures of N2 and O2, looking towards plasma aided manufacturing of fertilizers.

  7. Efficient ion beam extraction from a flowing plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, M.; John, P.K.

    1979-10-01

    A moving plasma with directed flow velocities v larger than the ion acoustic speed c/sub s/ is used as a source of high-current ion beams in the 10--20-keV range of energies. Current densities up to 3 A/cm/sup 2/ are obtained at the plasma boundary which is an order of magnitude larger than the limiting value of Bohm current in a stationary plasma. The observed current densities were proportional to v, unlike the Bohm current densities which are proportional to ion acoustic speed. Total ion currents up to approx.100 A were extracted from the plasma through a two electrode extraction system. Simple geometric shaping of the electrodes enabled an 8-cm-diam beam to be focused to approx.7 mm.

  8. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  9. Electromagnetic-wave excitation in a large laboratory beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1981-01-01

    The mechanism by which unstable electrostatic waves of a beam-plasma system are converted into observed electromagnetic waves is of current interest in space physics and in tokamak fusion research. The process involved in the conversion of electrostatic to electromagnetic waves at the critical layer is well understood. However, the radiation from uniform plasmas cannot be explained on the basis of this process. In connection with certain difficulties, it has not yet been possible to establish the involved emission processes by means of experimental observations. In the considered investigation these difficulties are overcome by employing a large laboratory plasma in a parameter range suitable for detailed diagnostics. A finite-diameter electron beam is injected into a uniform quiescent afterglow plasma of dimensions large compared with electromagnetic wavelengths. The considered generation mechanism concerning the electromagnetic waves is conclusively confirmed by observing the temporal evolution of an instability

  10. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    Energy Technology Data Exchange (ETDEWEB)

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  11. Plasma heating with multi-MeV neutral atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D/sup 0/ formed from D/sup -/. The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV.

  12. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    Science.gov (United States)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  13. Instabilities in Beam-Plasma Waves in a Model of the Beam-Driven FRC

    Science.gov (United States)

    Nicks, Bradley Scott; Necas, Ales; Tajima, Toshi; Tri Alpha Energy Team

    2016-10-01

    Using a semi-analytic solver, the kinetic properties of plasma waves are analyzed in various regimes in the presence of a beam. This analysis is done to model the strong beam-driven Field-Reversed Configuration (FRC) plasma kinetic instabilities in the neighborhood of the ion cyclotron frequency. As the frequency is relatively high, and wavelength small, the plasma is taken to be local and thus homogeneous, comprised of bulk ions, electrons, and beam ions, with a uniform background magnetic field. The beam ions are given an azimuthal drift velocity with respect to the magnetic field, but otherwise have various Maxwellian velocity distributions. First, the magnetic field is varied to create regimes of low and high β, and the mode structures are compared. The low- β case (corresponding to the scrape-off layer and near the separatrix) features primarily the beam-driven ion Bernstein instability. The high- β case (the core of FRC) is primarily electromagnetic and features the AIC instability when temperature anisotropy is included. The most unstable modes are incited by near-perpendicular beam injection with respect to the magnetic field. Finally, the results of the semi-analytic solver are compared with those from the EPOCH PIC code to evaluate the influence of nonlinear effects. This theoretical modeling was used in conjunction with EPOCH to investigate the beam driven instabilities in Tri Alpha Energy's C-2U experiment.

  14. Radio-frequency ion source generating beams with an increased proton content

    Science.gov (United States)

    Ivanov, A. A.; Podyminogin, A. A.; Shikhovtsev, I. V.

    2007-01-01

    The results of experiments with an rf ion source generating a beam with an improved mass composition are reported. The proton content in the beam is increased by raising the rf power density in the discharge under the antenna and installing a magnetic filter near the plasma grid. Additional steps are taken to prevent the earlier observed degradation of the beam composition because of aluminum reduction on the inner surface of the ceramic discharge chamber and water release. Specifically, the chamber is lined with pyrolytic boron nitride sheets.

  15. Nanomaterial Synthesis Using Plasma Generation in Liquid

    Directory of Open Access Journals (Sweden)

    Genki Saito

    2015-01-01

    Full Text Available Over the past few decades, the research field of nanomaterials (NMs has developed rapidly because of the unique electrical, optical, magnetic, and catalytic properties of these materials. Among the various methods available today for NM synthesis, techniques for plasma generation in liquid are relatively new. Various types of plasma such as arc discharge and glow discharge can be applied to produce metal, alloy, oxide, inorganic, carbonaceous, and composite NMs. Many experimental setups have been reported, in which various parameters such as the liquid, electrode material, electrode configuration, and electric power source are varied. By examining the various electrode configurations and power sources available in the literature, this review classifies all available plasma in liquid setups into four main groups: (i gas discharge between an electrode and the electrolyte surface, (ii direct discharge between two electrodes, (iii contact discharge between an electrode and the surface of surrounding electrolyte, and (iv radio frequency and microwave plasma in liquid. After discussion of the techniques, NMs of metal, alloy, oxide, silicon, carbon, and composite produced by techniques for plasma generation in liquid are presented, where the source materials, reaction media, and electrode configurations are discussed in detail.

  16. Plasma driven neutron/gamma generator

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  17. Generation of pulsed ion beams by an inductive storage pulsed power generator

    Science.gov (United States)

    Katsuki, Sunao; Akiyama, Hidenori; Maeda, Sadao

    1990-10-01

    A pulsed power generator by an inductive energy storage system is extremely compact and light in comparison with a conventional pulsed power generator, which consists of a Marx bank and a water pulse forming line. A compact and light pulse power generator is applied to the generation of pulsed ion beams. A thin copper fuse is used an an opening switch, which is necessary in the inductive storage pulsed power generator. A magnetically insulated diode is used for the generation of ion beams. The pulsed ion beams are successfully generated by the inductive storage pulsed power generator for the first time.

  18. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    Science.gov (United States)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  19. Nonequilibrium plasma generator (NPG) project - experimental program

    Energy Technology Data Exchange (ETDEWEB)

    Lineberry, J.T.; Wu, Y.C.L.; Lin, B.C. [and others

    1995-12-31

    This paper summarizes research conducted under a DOE MHD SBIR entitled: {open_quotes}A Light Metal Fueled Non-equilibrium Plasma Generator (NPG){close_quotes}. It is a summary paper presenting the idea of the NPG and activities of the NPG SBIR research program along with experimental results from NPG Proof-of-Principle tests. The NPG is an innovative concept for a combustion device that can produce a nonequilibrium plasma. This device bums powdered metal fuel, and it can be used to drive an MHD disk generator pulse power unit or a similar nonequilibrium MHD device or system. The NPG research program was concluded over the past two years under sponsorship of a DOE Phase II SBIR grant. This program focused on addressing fundamental and practical aspects of the NPG concept and its system design. The research included investigation of the physics of the NPG concept through theoretical and experimental studies on the quality of the plasma that it can produce, theoretical evaluations of the nonequilibrium ionization processes in an MHD disk generator driven by an NPG, and experimental validation of the NPG concept in Proof-of-Principle tests. At the conclusion of this research it was determined that the NPG is indeed a viable concept. Results from combustion tests using powdered aluminum fuel reveal that the NPG can produce an extremely hot argon plasma clean enough to support nonequilibrium ionization in an MHD device.

  20. Cross-section analysis of the Magnum-PSI plasma beam using a 2D multi-probe system

    Science.gov (United States)

    Costin, C.; Anita, V.; Ghiorghiu, F.; Popa, G.; De Temmerman, G.; van den Berg, M. A.; Scholten, J.; Brons, S.

    2015-02-01

    The linear plasma generator Magnum-PSI was designed for the study of plasma-surface interactions under relevant conditions of fusion devices. A key factor for such studies is the knowledge of a set of parameters that characterize the plasma interacting with the solid surface. This paper reports on the electrical diagnosis of the plasma beam in Magnum-PSI using a multi-probe system consisting of 64 probes arranged in a 2D square matrix. Cross-section distributions of floating potential and ion current intensity were registered for a hydrogen plasma beam under various discharge currents (80-175 A) and magnetic field strengths (0.47-1.41 T in the middle of the coils). Probe measurements revealed a high level of flexibility of plasma beam parameters with respect to the operating conditions.

  1. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged

  2. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  3. Properties of plasmas generated in microdischarges

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Serrano, E; Hagelaar, G; Callegari, Th; Boeuf, J P; Pitchford, L C [Centre de Physique des Plasmas et Applications de Toulouse (CPAT) Universite Paul Sabatier, Toulouse III, and CNRS UMR 5002 118 route de Narbonne, 31062 Toulouse (France)

    2006-12-15

    We present in this paper a discussion of the properties of plasmas generated in microhollow cathode geometries and in microcathode sustained discharge geometries. The results presented here are derived from models. This work is part of a joint modelling/experimental programme whose objective is the evaluation of the potential of the high-pressure, non-thermal plasmas created in microdischarges (e.g. discharges in small, 100s of micrometre sized geometries) for the production of large quantities of radical species, and in particular oxygen singlet delta (metastable) molecules, O{sub 2}({sup 1}{delta})

  4. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tinakiche, Nouara [Faculty of Sciences, Department of Physics, University of Boumeredes U.M.B.B., Boumerdes 35000 (Algeria)

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  5. Chirp mitigation of plasma-accelerated beams using a modulated plasma density

    CERN Document Server

    Brinkmann, R; Dornmair, I; Assmann, R; Behrens, C; Floettmann, K; Grebenyuk, J; Gross, M; Jalas, S; Kirchen, M; Mehrling, T; de la Ossa, A Martinez; Osterhoff, J; Schmidt, B; Wacker, V; Maier, A R

    2016-01-01

    Plasma-based accelerators offer the possibility to drive future compact light sources and high-energy physics applications. Achieving good beam quality, especially a small beam energy spread, is still one of the major challenges. For stable transport, the beam is located in the focusing region of the wakefield which covers only the slope of the accelerating field. This, however, imprints a longitudinal energy correlation (chirp) along the bunch. Here, we propose an alternating focusing scheme in the plasma to mitigate the development of this chirp and thus maintain a small energy spread.

  6. Ground-Based Tests of Spacecraft Polymeric Materials under OXY-GEN Plasma-Beam

    Science.gov (United States)

    Chernik, Vladimir; Novikov, Lev; Gaidar, Anna

    2016-07-01

    Spacecraft LEO mission is accompanied by destruction of polymeric material surface under influence of atomic oxygen flow. Sources of molecular, plasma and ion beams are used for the accelerated ground-based tests of spacecraft materials. In the work application of oxygen plasma accelerator of a duoplasmatron type is described. Plasma particles have been accelerated up to average speed of 13-16 km/s. Influence of such beam on materials leads to more intensive destruction of polymers than in LEO. This fact allows to execute tests in the accelerated time scale by a method of an effective fluence. Special measures were given to decrease a concentration of both gaseous and electrode material impurities in the oxygen beam. In the work the results of simulative tests of spacecraft materials and experiments on LEO are considered. Comparison of plasma beam simulation with LEO data has shown conformity for structures of a number of polymeric materials. The relative erosion yields (normalized with respect to polyimide) of the tested materials are shown practically equal to those in LEO. The obtained results give grounds for using the plasma-generation mode with ion energies of 20-30 eV to accelerated testing of spacecraft materials for long -term LEO missions.

  7. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Okuda, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Hanada, M.; Kojima, A. [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 319-0913 (Japan)

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  8. Plasma Cathode for E-Beam Lasers

    Science.gov (United States)

    1975-08-01

    JMJIIJUillWWpi^WiffW^HipaHIP’Pi1’’’ "a" ii.lllVi;lM’iiWMlMBfj!|l|>WiiU|’lUW"L’l’w«|M>l|Wy™.^J"^^y-ff^w», iitM ^^^ The 4 cm x 40 cm plasma cathode e-gun, which is

  9. Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas

    Science.gov (United States)

    Thurgood, Jonathan O.; Tsiklauri, David

    2016-12-01

    Previous theoretical considerations of electron beam relaxation in inhomogeneous plasmas have indicated that the effects of the irregular solar wind may account for the poor agreement of homogeneous modelling with the observations. Quasi-linear theory and Hamiltonian models based on Zakharov's equations have indicated that when the level of density fluctuations is above a given threshold, density irregularities act to de-resonate the beam-plasma interaction, restricting Langmuir wave growth on the expense of beam energy. This work presents the first fully kinetic particle-in-cell (PIC) simulations of beam relaxation under the influence of density irregularities. We aim to independently determine the influence of background inhomogeneity on the beam-plasma system, and to test theoretical predictions and alternative models using a fully kinetic treatment. We carry out one-dimensional (1-D) PIC simulations of a bump-on-tail unstable electron beam in the presence of increasing levels of background inhomogeneity using the fully electromagnetic, relativistic EPOCH PIC code. We find that in the case of homogeneous background plasma density, Langmuir wave packets are generated at the resonant condition and then quasi-linear relaxation leads to a dynamic increase of wavenumbers generated. No electron acceleration is seen - unlike in the inhomogeneous experiments, all of which produce high-energy electrons. For the inhomogeneous experiments we also observe the generation of backwards-propagating Langmuir waves, which is shown directly to be due to the refraction of the packets off the density gradients. In the case of higher-amplitude density fluctuations, similar features to the weaker cases are found, but also packets can also deviate from the expected dispersion curve in -space due to nonlinearity. Our fully kinetic PIC simulations broadly confirm the findings of quasi-linear theory and the Hamiltonian model based on Zakharov's equations. Strong density fluctuations

  10. Analysis of beam plasma instability effects on incoherent scatter spectra

    Directory of Open Access Journals (Sweden)

    M. A. Diaz

    2010-12-01

    Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.

  11. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  12. Experimental generation of ring-shaped beams with random sources

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Singh, R P

    2013-01-01

    We have experimentally reproduced ring shaped beams from the scattered Laguerre-Gaussian and Bessel- Gaussian beams. A rotating ground glass plate is used as a scattering medium and a plano convex lens collects the scattered light to generate ring shaped beams at the Fourier plane. The experimental results are in good agreement with the theoretical results of Mei and Korotkova (Opt. Lett. 38, 91{93 (2013)).

  13. Generation of a Dark Hollow Beam inside a Cavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; LU Xuan-Hui; CHEN Xu-Min; HE Sai-Ling

    2004-01-01

    @@ A new method is introduced to generate a hollow beam inside a cavity. Using a matrix eigenvalue method, the laser resonator with optical diffraction elements is theoretically analysed and simulated. The hollow beam can be obtained theoretically by controlling the parameters of the diffraction functions. After designed the diffraction components in the cavity, a hollow beam of good quality is realized experimentally using a YAG solid state laser.

  14. Second-Harmonic Generation of Bessel Beams in Lossy Media

    Institute of Scientific and Technical Information of China (English)

    丁德胜; 许坚毅; 王耀俊

    2002-01-01

    We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.

  15. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  16. Pre-formed plasma channels for ion beam fusion

    Science.gov (United States)

    Peterson, R. R.; Olson, C. L.

    1997-04-01

    The transport of driver ions to the target in an IFE power plant is an important consideration in IFE target chamber design. Pre-formed laser-guided plasma discharge channels have been considered for light ions because they reduce the beam microdivergence constraints, allow long transport lengths, and require a target chamber fill gas that can help protect the target chamber from the target explosion. Here, pre-formed plasma discharge channels are considered for heavy ion transport. The channel formation parameters are similar to those for light ions. The allowable ion power per channel is limited by the onset of plasma instabilities and energy loss due to a reverse emf from the rapid channel expansion driven by the ion beam.

  17. On-chip generation and control of the vortex beam

    CERN Document Server

    Liu, Aiping; Ren, Xifeng; Wang, Qin; Guo, Guang-Can

    2015-01-01

    A new method to generate and control the amplitude and phase distributions of a optical vortex beam is proposed. By introducing a holographic grating on top of the dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides are studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens a new avenue towards the integrated OAM devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  18. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  19. Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas

    CERN Document Server

    Timofeev, I V

    2012-01-01

    Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.

  20. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    Science.gov (United States)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  1. Quantum effects in beam-plasma instabilities

    CERN Document Server

    Bret, A

    2015-01-01

    Among the numerous works on quantum effects that have been published in recent years, streaming instabilities in plasma have also been revisited. Both the fluid quantum and the kinetic Wigner-Maxwell models have been used to explore quantum effects on the Weibel, Filamentation and Two-Stream instabilities. While quantum effects usually tend to reduce the instabilities, they can also spur new unstable branches. A number of theoretical results will be reviewed together with the implications to one physical setting, namely the electron driven fast ignition scenario.

  2. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  3. Self-effect in expanding electron beam plasma

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M

    1999-05-07

    An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

  4. Generating and measuring nondiffracting vector Bessel beams

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2013-09-01

    Full Text Available modulator and an azimuthally varying birefringent plate, known as a q-plate. We extend our control of both the geometric and dynamic phases to perform a polarization and modal decomposition on the vector field. We study both single-charged Bessel beams...

  5. Ion Source for Neutral beam injection meant for plasma and magnetic field diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Gough, Richard A.; Kwan, Joe W.; Levinton, Fred

    2007-06-01

    At the Lawrence Berkeley National Laboratory (LBNL) a diagnostic neutral beam injection system for measuring plasma parameters, flow velocity, and local magnetic field is being developed. The systems is designed to have a 90 % proton fraction and small divergence with beam current at 5-6 A and a pulse length of {approx}1 s occurring once every 1-2 min. The ion source needs to generate uniform plasma over a large (8 cm x 5 cm) extraction area. For this application, we have compared RF driven multicusp ion sources operating with either an external or an internal antenna in similar ion source geometry. The ion beam will be made of an array of six sheet-shaped beamlets. The design is optimized using computer simulation programs.

  6. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  7. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  8. The use of cold plasma generators in medicine

    National Research Council Canada - National Science Library

    Kolomiiets R.O; Nikitchuk T.M; Hrek O.V

    2017-01-01

    Cold plasma treatment of wounds is a modern area of therapeutic medicine. We describe the physical mechanisms of cold plasma, the principles of therapeutic effects and design of two common types of cold plasma generators for medical use...

  9. Advanced beam dynamics and diagnostics concepts for laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Dornmair, Irene

    2017-05-15

    Laser-Plasma Accelerators (LPAs) combine a multitude of unique features, which makes them very attractive as drivers for next generation brilliant light sources including compact X-ray free-electron lasers. They provide high accelerating gradients, thereby drastically shrinking the accelerator size, while at the same time the produced electron bunches are intrinsically as short as a few femtoseconds and carry high peak currents. LPA are subject of very active research, yet, the field currently faces the challenge of improving the beam quality, and achieving stable and well-controlled injection and acceleration. This thesis tackles this issue from three different sides. A novellongitudinal phase space diagnostics is proposed that employs the strong fields present in plasma wakefields to streak ultrashort electron bunches. This allows for a temporal resolution down to the attosecond range, enabling direct determination to the current profile and the slice energy spread, both crucial quantities for the performance of free-electron lasers. Furthermore, adiabatic matching sections at the plasma-vacuum boundary are investigated. These can drastically reduce the beam divergence and thereby relax the constraints on the subsequent beam optics. For externally injected beams, the matching sections could even provide the key technology that permits emittance conservation by increasing the matched beam size to a level achievable with currently available magnetic optics. Finally, a new method is studied that allows to modify the wakefield shape. To this end, the plasma density is periodically modulated. One possible application can be to remove the linearly correlated energy spread, or chirp, from the accelerated bunch, which is suspected of being responsible for the main part of the often large energy spread of plasma accelerated beams.

  10. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed. Two questions that must be paid attention to arise, when designing the plasma gen-erator. Water resistance in a plasma generator should be as big as possible, and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit, voltage be-tween two electrodes in the plasma generator reaches the highest value, and arc starting and discharge also occur between electrodes in the plasma generator. When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma, a mixture of plasma and steam ejects from the generator outlet. So it is necessary that cavity between electrodes in the plasma generator should be as big as possible, time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source, but resistance of water becomes small and arc starting is not easy to occur. Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results, the plasma generator model is established and the plasma generator is manufactured.

  11. Generation and application of bessel beams in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Harris, Jérémie [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada); Gazzadi, Gian Carlo [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Balboni, Roberto [CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna (Italy); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Dennis, Mark R. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W.; Karimi, Ebrahim [Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2016-07-15

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. - Highlights: • Bessel beams with different convergence, topological charge, visible fringes are demonstrated. • The relation between the Fresnel hologram and the probe shape is explained by detailed calculations and experiments. • Among the holograms here presented the highest relative efficiency is 37%, the best result ever reached for blazed holograms.

  12. Two-color beam generation based on wakefield excitation

    Science.gov (United States)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  13. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even in the pres......Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...... in the presence of strong bend perturbations. This opens the door to exploiting nonlinear fiber optics to manipulate such beams. This fiber also possesses the intriguingly counterintuitive property of being polarization maintaining despite being strictly cylindrically symmetric, a prospect hitherto considered...... infeasible with optical fibers. (C) 2009 Optical Society of America....

  14. Ribbon electron beam formation by a forevacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A. S., E-mail: klimov@main.tusur.ru; Burdovitsin, V. A. [Tomsk State University of Control System and Radioelectronics (Russian Federation); Grishkov, A. A. [SB RAS, Institute of High Current Electronics (Russian Federation); Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G. [Tomsk State University of Control System and Radioelectronics (Russian Federation)

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  15. Carbon dust particles in a beam-plasma discharge

    Science.gov (United States)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  16. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  17. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  18. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  19. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    WANG XinZhang; YANG JiaXiang; LAN Bo; XU ZuoMing; GAO Ying

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed.Two questions that must be paid attention to arise,when designing the plasma gen-erator.Water resistance in a plasma generator should be as big as possible,and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit,voltage be-tween two electrodes in the plasma generator reaches the highest value,and arc starting and discharge also occur between electrodes in the plasma generator.When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma,a mixture of plasma and steam ejects from the generator outlet.So it is necessary that cavity between electrodes in the plasma generator should be as big as possible,time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source,but resistance of water becomes small and arc starting is not easy to occur.Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results,the plasma generator model is established and the plasma generator is manufactured.

  20. Ge laser-generated plasma for ion implantation

    Science.gov (United States)

    Giuffrida, L.; Torrisi, L.; Czarnecka, A.; Wołowski, J.; Quarta, Ge; Calcagnile, L.; Lorusso, A.; Nassisi, V.

    Laser-generated plasma obtained by Ge ablation in vacuum was investigated with the aim to implant energetic Ge ions in light substrates (C, Si, SiO2). Different intensities of laser sources were employed for these experiments: Nd:Yag of Catania-LNS; Nd:Yag of Warsaw-IPPL; excimer laser of Lecce-INFN; iodine laser of Prague-PALS. Different experimental setups were used to generate multiple ion stream emissions, multiple ion energetic distributions, high implantation doses, thin film deposition and post-acceleration effects. `On line' measurements of ion energy were obtained with ion collectors and ion energy analyzer in time-of-flight configuration. `Off line' measurement of Ge implants were obtained with 2.25 MeV helium beam in Rutherford backscattering spectrometry. Results indicated that ion implants show typical deep profiles only for substrates placed along the normal to the target surface at which the ion energy is maximum.

  1. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A., E-mail: schmidt36@llnl.gov; Ellsworth, J., E-mail: schmidt36@llnl.gov; Falabella, S., E-mail: schmidt36@llnl.gov; Link, A., E-mail: schmidt36@llnl.gov; McLean, H., E-mail: schmidt36@llnl.gov; Rusnak, B., E-mail: schmidt36@llnl.gov; Sears, J., E-mail: schmidt36@llnl.gov; Tang, V., E-mail: schmidt36@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Welch, D. [Voss Scientific, LLC, 418 Washington St SE, Albuquerque NM 87108 (United States)

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  2. Particle beam generator using a radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, D.G.

    1991-12-31

    The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

  3. Evaluation of two-beam spectroscopy as a plasma diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  4. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    CERN Document Server

    Chen, Shumei; Li, Guixin; Zhang, Shuang; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Here we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex beam generation, and that of a linear phase gradient metasurface for controlling the wave propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the...

  5. PIC simulations of the production of high-quality electron beams via laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)], E-mail: carlo.benedetti@bo.infn.it; Londrillo, P. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Petrillo, V.; Serafini, L. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Sgattoni, A. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy); Tomassini, P. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Turchetti, G. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)

    2009-09-01

    We present some numerical studies and parameter scans performed with the electromagnetic, relativistic, fully self-consistent Particle-In-Cell (PIC) code ALaDyn (Acceleration by LAser and DYNamics of charged particles), concerning the generation of a low emittance, high charge and low momentum spread electron bunch from laser-plasma interaction in the Laser WakeField Acceleration (LWFA) regime, in view of achieving beam brightness of interest for FEL applications.

  6. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  7. Plasma effects on fast pair beams. III. Oblique electrostatic growth rates for perpendicular Maxwellian pair beams

    Energy Technology Data Exchange (ETDEWEB)

    Supsar, Markus; Schlickeiser, Reinhard, E-mail: markus.supsar@tp4.rub.de, E-mail: rsch@tp4.rub.de [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2014-03-10

    The distant universe is opaque to γ radiation from blazars due to gamma-gamma attenuation with extragalactic background light. This process produces electron-positron pair beams that interact with the intergalactic medium and are unstable to linear instabilities, particularly the electrostatic and Weibel instabilities. The electrostatic instability grows faster and so determines the dissipation of the free energy of the beam. Here, we generalize the calculation of the electrostatic growth rate to a beam plasma system with a Maxwellian perpendicular momentum spread and allow for oblique propagation directions. We show that the growth rate for the oblique electrostatic mode has a maximum value that is even higher than for a cold beam or for one with a constant perpendicular momentum spread.

  8. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  9. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  10. Generation and application of bessel beams in electron microscopy.

    Science.gov (United States)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    Energy Technology Data Exchange (ETDEWEB)

    Weikum, M.K., E-mail: maria.weikum@desy.de [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Li, F.Y. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Assmann, R.W. [Deutsches Elektronensynchrotron (DESY), Bdg. 30b, Notkestr. 85, 22607 Hamburg (Germany); Sheng, Z.M. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Jaroszynski, D. [Department of Physics, University of Strathclyde, G4 0NG Glasgow (United Kingdom)

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented. - Highlights: • LWFA with an upramp density profile can trap and accelerate sub-fs electron beams. • A reduction of the necessary threshold laser intensity by a factor 4 is presented. • Electron properties are tuned by varying initial laser and plasma parameters. • Simulations predict electron bunch lengths below 200 attoseconds with pC charge. • Strong bunch evolution effects and a large energy spread still need to be improved.

  12. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  13. Optimisation of arbitrary light beam generation with spatial light modulators

    Science.gov (United States)

    Radwell, Neal; Offer, Rachel F.; Selyem, Adam; Franke-Arnold, Sonja

    2017-09-01

    Phase only spatial light modulators (SLMs) have become the tool of choice for shaped light generation, allowing the creation of arbitrary amplitude and phase patterns. These patterns are generated using digital holograms and are useful for a wide range of applications as well as for fundamental research. There have been many proposed methods for optimal generation of the digital holograms, all of which perform well under ideal conditions. Here we test a range of these methods under specific experimental constraints, by varying grating period, filter size, hologram resolution, number of phase levels, phase throw and phase nonlinearity. We model beam generation accuracy and efficiency and show that our results are not limited to the specific beam shapes, but should hold for general beam shaping. Our aim is to demonstrate how to optimise and improve the performance of phase-only SLMs for experimentally relevant implementations.

  14. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    Science.gov (United States)

    Urrutia, J. M.; Stenzel, R. L.

    2016-05-01

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers are shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon "eigenmodes" with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.

  15. Speckles generated by skewed, short-coherence light beams

    CERN Document Server

    Brogioli, D; Croccolo, F; Ziano, R; Mantegazza, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called "skewed coherence beam", i.e., a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. When applied to quite turbid samples, the technique has the remarkable advantage of suppressing the multiple scattering contribution of the scattering signal. The phenomenon presented here represents a very effective method for measuring the coherence skewness of either a continuous wave or a pulsed beam. Another field of applicat...

  16. Plasmas and atom beam activation of the surface of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Santos, C; Yubero, F; Cotrino, J; Barranco, A; Gonzalez-Elipe, A R [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda Americo Vespucio 49, E-41092 Sevilla (Spain)], E-mail: arge@icmse.csic.es

    2008-11-21

    Wetting properties of polyethylene terephthalate (PET) and low-density polyethylene polymers have been investigated after treatment with a microwave (MW) plasma discharge at low pressure and a dielectric barrier discharge at atmospheric pressure. Experiments have also been carried out in situ with an atom source installed in an x-ray photoemission spectrometer (XPS). The water contact angle measured on both polymers experienced a significant decrease after activation, but a progressive recovery up to different values after ageing. Standard chemical analysis by XPS showed that the plasma and oxygen beam treatments produced an increase in the concentration of -C(O){sub x} functional groups at the outermost surface layers of the treated polymers. Besides, the oxygen distribution between the topmost surface layer and the bulk has been obtained by non-destructive XPS peak shape analysis. Atomic force microscopy analysis of the surface topography showed that, except for PET treated with the MW plasma and the atom beam, the surface roughness increased after the plasma treatments. Wetting angle variations, oxygen content and distribution, surface roughness and evolution of these properties with time are comparatively discussed by taking into account the basic processes that each type of activation procedure induces in the outmost surface layers of the treated polymers.

  17. Nonlinear generation of whistler waves by an ion beam

    Science.gov (United States)

    Akimoto, K.; Winske, D.

    1989-01-01

    An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.

  18. Gaussian entanglement generation from coherence using beam-splitters

    Science.gov (United States)

    Wang, Zhong-Xiao; Wang, Shuhao; Ma, Teng; Wang, Tie-Jun; Wang, Chuan

    2016-01-01

    The generation and quantification of quantum entanglement is crucial for quantum information processing. Here we study the transition of Gaussian correlation under the effect of linear optical beam-splitters. We find the single-mode Gaussian coherence acts as the resource in generating Gaussian entanglement for two squeezed states as the input states. With the help of consecutive beam-splitters, single-mode coherence and quantum entanglement can be converted to each other. Our results reveal that by using finite number of beam-splitters, it is possible to extract all the entanglement from the single-mode coherence even if the entanglement is wiped out before each beam-splitter. PMID:27892537

  19. Plasma Panel Sensors for Particle and Beam Detection

    CERN Document Server

    Friedman, Peter S; Beene, James R; Benhammou, Yan; Bentefour, E H; Chapman, J W; Etzion, Erez; Ferretti, Claudio; Guttman, Nir; Levin, Daniel S; Ben-Moshe, Meny; Silver, Yiftah; Varner, Robert L; Weaverdyck, Curtis; Zhou, Bing

    2012-01-01

    The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests.

  20. Diagnostic studies of ion beam formation in inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jenee L. [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This dissertation describes a variety of studies focused on the plasma and the ion beam in inductively coupled plasma mass spectrometry (ICP-MS). The ability to use ICP-MS for measurements of trace elements in samples requires the analytes to be efficiently ionized. Updated ionization efficiency tables are discussed for ionization temperatures of 6500 K and 7000 K with an electron density of 1 x 1015 cm-3. These values are reflective of the current operating parameters of ICP-MS instruments. Calculations are also discussed for doubly charged (M2+) ion formation, neutral metal oxide (MO) ionization, and metal oxide (MO+) ion dissociation for similar plasma temperature values. Ionization efficiency results for neutral MO molecules in the ICP have not been reported previously.

  1. Generation and propagation of high-brightness electron beams from a magnetically crowbarred injector

    Science.gov (United States)

    Humphries, S., Jr.; Len, L. K.; Allen, C. B.

    1987-05-01

    Tests of a 300-keV electrostatic electron beam injector with a magnetic crowbar switch are described. The saturable ferrite core switch allows generation of a constant voltage, 80-ns pulse directly from a Marx generator. Inductive isolation in the switch permits direct access to the high-voltage electrode for thermionic or active plasma cathode experiments. The pulse modulator can drive a 1.5-kA load. A high brightness 290-A beam from a felt plasma-emission cathode was extracted and propagated in vacuum. Because of the reliability of the magnetic crowbar switch, more than 500 shots were accumulated on the cathode at over 1 kA/sq cm with no degradation of the output. The output beam had a normalized brightness of 2.6 x 10 to the 8th A/(m rad) sq. A solenoidal lens was used to match the space-charge-dominated beam into a 1-m-long periodic focusing system with 25 reversing solenoidal coils. A beam current of 150 A was successfully transported through the 1.7-cm radius tube.

  2. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  3. Generation of compensated ion beams from source with oscillating electrons

    CERN Document Server

    Borisko, V N; Yunakov, N N

    2000-01-01

    The generation of compensated ion beams from electrically unsymmetrical reflecting discharge was investigated.The spatial location of a compensation zone,the optimal values of operating gas pressures P=(0.8/1) centre dot 10 sup - sup 4 Torr and potential difference between cathodes DELTA U = 80B were determined.The way to control the current compensation degree of the extracted ion beam a several to 100% was found.

  4. Power consumption analysis DBD plasma ozone generator

    Science.gov (United States)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  5. Simplified Generation of High-Angular-Momentum Light Beams

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  6. Two Dimensional LIF Measurements and Potential Structure of Ion Beam Formation in an Argon Helicon Plasma

    Science.gov (United States)

    Aguirre, Evan; Scime, Earl; Good, Timothy

    2016-10-01

    We report 2-dimensional, spatially resolved observations of ion beam formation in an expanding helicon plasma. Previous studies found that a current free double layer (CFDL) spontaneously arises at low pressure, below 1 mT. We use Laser Induced Fluorescence (LIF), a non-perturbative diagnostic to measure the ion velocity distribution functions (IVDFs) of argon ions both parallel and perpendicular to the background magnetic field. We report ion beam formation as a function of the expansion chamber magnetic field (0-108 G). The ion beam appears peaked in the center of the expansion chamber and decays over a few centimeters radially. We also report the potential structure of the plasma obtained with a planar Langmuir probe. To obtain meaningful Langmuir probe measurements, averages of tens of current-voltage are needed to reduce the effects of large electrostatic fluctuations that arise in plasmas that generate ion beams. We report the dependence of density, electron temperature, and floating potential on radial and axial position in the expansion plume. NSF Award PHYS-1360278.

  7. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e [Univ. of Chicago, IL (United States)

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 ± 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  8. Debye-scale solitary structures measured in a beam-plasma laboratory experiment

    Directory of Open Access Journals (Sweden)

    B. Lefebvre

    2011-01-01

    Full Text Available Solitary electrostatic pulses have been observed in numerous places of the magnetosphere such as the vicinity of reconnection current sheets, shocks or auroral current systems, and are often thought to be generated by energetic electron beams. We present results of a series of experiments conducted at the UCLA large plasma device (LAPD where a suprathermal electron beam was injected parallel to a static magnetic field. Micro-probes with tips smaller than a Debye length enabled the detection of solitary pulses with positive electric potential and half-widths 4–25 Debye lengths (λDe, over a set of experiments with various beam energies, plasma densities and magnetic field strengths. The shape, scales and amplitudes of the structures are similar to those observed in space, and consistent with electron holes. The dependance of these properties on the experimental parameters is shown. The velocities of the solitary structures (1–3 background electron thermal velocities are found to be much lower than the beam velocities, suggesting an excitation mechanism driven by parallel currents associated to the electron beam.

  9. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakes

    CERN Document Server

    Timofeev, I V; Volchok, E P

    2016-01-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ($\\sim 10$ MV/cm) narrowband terahertz pulses with the gigawatt power level and millijoule energy content.

  10. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  11. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  12. Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.

  13. Development of Raman-shifted probe laser beam for plasma diagnosis using polaro-interferometer

    Indian Academy of Sciences (India)

    M P Kamath; A P Kulkarni; S Jain; P K Tripathi; A S Joshi; P A Naik; P D Gupta

    2010-11-01

    Optical diagnostics of laser-produced plasma requires a coherent, polarized probe beam synchronized with the pump beam. The probe beam should have energy above the background emission of plasma. Though the second harmonic probe beam satisfies most of the requirements, the plasma emission is larger at the harmonic frequencies of the pump. Hence, at high intensities we need a probe beam at non-harmonic frequencies. We have set up a Raman frequency shifted probe beam using a pressurized hydrogen cell that is pumped by the second harmonic of the Nd glass laser that operates at only one Stokes line of 673.75 nm.

  14. Cascade emission in electron beam ion trap plasma

    CERN Document Server

    Jonauskas, Valda; Kyniene, Ausra; Kucas, Sigitas

    2013-01-01

    We present investigation of the influence of cascade emission to the formation of spectra from plasma created by electron beam ion trap (EBIT) in electron trapping mode. It has been shown that cascade emission can play an important role in the formation of spectra from the EBIT plasma. Process of the cascade emission takes place when ion having cycloidal orbit leaves electron beam where coronal approximation is applicable. Thus both processes - excitation from ground or metastable levels and cascade emission - take part in the population of levels. Demonstration is based on the investigation of $W^{13+}$ spectra. The present investigation helps to resolve long-standing discrepancies; in particular, the present structure of $W^{13+}$ spectra is in good agreement with measurements on electron beam ion trap. Lines in the experimental spectra are identified as $4f^{13} 5s 5p \\rightarrow 4f^{13} 5s^{2}$ and $4f^{12} 5s 5p^{2} \\rightarrow 4f^{12} 5s^{2} 5p$ transitions from Dirac-Fock-Slater calculations.

  15. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  16. Generation and dynamics of optical beams with polarization singularities

    CERN Document Server

    Cardano, Filippo; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-01-01

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as \\qo{lemon}, \\qo{star}, and \\qo{vortex}. Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  17. Generation and dynamics of optical beams with polarization singularities.

    Science.gov (United States)

    Cardano, Filippo; Karimi, Ebrahim; Marrucci, Lorenzo; de Lisio, Corrado; Santamato, Enrico

    2013-04-08

    We present a convenient method to generate vector beams of light having polarization singularities on their axis, via partial spin-to-orbital angular momentum conversion in a suitably patterned liquid crystal cell. The resulting polarization patterns exhibit a C-point on the beam axis and an L-line loop around it, and may have different geometrical structures such as "lemon", "star", and "spiral". Our generation method allows us to control the radius of L-line loop around the central C-point. Moreover, we investigate the free-air propagation of these fields across a Rayleigh range.

  18. Energy distributions of electrons in electron beam produced nitrogen plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Suhre, D.R.

    1976-01-01

    A theory was developed which predicts the equilibrium electron energy distributions resulting from the injection of an electron beam into molecular nitrogen. The results were highly non-Maxwellian with a depletion region existing near 2.5 eV. Using these distributions, fractional power transfers to various excitation processes were calculated. The theory was verified experimentally by using Langmuir probes to measure the electron energy distributions produced by a beam generated by a cold cathode discharge in low pressure nitrogen. The distributions were measured in absolute units and compared directly with theory. All of the major features of the theory were found to be present in the measurements.

  19. Parametric instabilities in an electron beam plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.

    1981-08-01

    The excitation of low-frequency parametric instabilities by a finite wavelength pump in a system consisting of a warm electron plasma traversed by a warm electron beam is investigated in a fluid dissipationless model. The dispersion relation for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves is derived, and the one-dimensional case is analyzed numerically. For the one-dimensional back-scattering decay process, it is found that when the plasma-electron Debye length (lambda/sub D//sup p/) is larger than the beam-electron Debye length (lambda/sub D//sup b/), two low-frequency electrostatic instability branches with different growth rates may exist simultaneously. When lambda/sub D//sup p/approx. =lambda/sub D//sup b/, the large growth rate instability found in the analysis depends strongly on the amplitude of the pump field. For the case lambda/sub D//sup p/

  20. Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang

    2008-01-01

    We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.

  1. Long-range attraction of an ultrarelativistic electron beam by a column of neutral plasma

    Science.gov (United States)

    Adli, E.; Lindstrøm, C. A.; Allen, J.; Clarke, C. I.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Litos, M. D.; O'Shea, B.; Yakimenko, V.; An, W.; Clayton, C. E.; Marsh, K. A.; Mori, W. B.; Joshi, C.; Vafaei-Najafabadi, N.; Corde, S.; Lu, W.

    2016-10-01

    We report on the experimental observation of the attraction of a beam of ultrarelativistic electrons towards a column of neutral plasma. In experiments performed at the FACET test facility at SLAC we observe that an electron beam moving parallel to a neutral plasma column, at an initial distance of many plasma column radii, is attracted into the column. Once the beam enters the plasma it drives a plasma wake similar to that of an electron beam entering the plasma column head-on. A simple analytical model is developed in order to capture the essential physics of the attractive force. The attraction is further studied by 3D particle-in-cell numerical simulations. The results are an important step towards better understanding of particle beam-plasma interactions in general and plasma wakefield accelerator technology in particular.

  2. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  3. On-chip generation and control of the vortex beam

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Aiping; Wang, Qin [College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210000, China and Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003 (China); Zou, Chang-Ling, E-mail: clzou321@ustc.edu.cn [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Electric Engineering, Yale University, New Haven, Connecticut 06511 (United States); Ren, Xifeng, E-mail: renxf@ustc.edu.cn; Guo, Guang-Can [Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, Anhui 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-05-02

    A method to generate and control the amplitude and phase distributions of an optical vortex beam is proposed. By introducing a holographic grating on the top of a dielectric waveguide, the free space vortex beam and the in-plane guiding wave can be converted to each other. This microscale holographic grating is very robust against the variation of geometry parameters. The designed vortex beam generator can produce the target beam with a fidelity up to 0.93, and the working bandwidth is about 175 nm with the fidelity larger than 0.80. In addition, a multiple generator composed of two holographic gratings on two parallel waveguides is studied, which can perform an effective and flexible modulation on the vortex beam by controlling the phase of the input light. Our work opens an available avenue towards the integrated orbital angular momentum devices with multiple degrees of optical freedom, which can be used for optical tweezers, micronano imaging, information processing, and so on.

  4. Modelling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via computer generated holograms

    CERN Document Server

    Vieira, Tárcio A; Gesualdi, Marcos R R

    2013-01-01

    In this paper we implement experimentally the spatial shape modelling of nondiffracting optical beams via computer generated holograms. The results reported here are the experimental confirmation of the so called Frozen Wave method, developed few years ago. Optical beams of this type can possess potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc..

  5. Upconversion of whistler waves by gyrating ion beams in a plasma

    Indian Academy of Sciences (India)

    Harsha Jalori; Sunil K Singh; A K Gwal

    2004-09-01

    A gyrating ion beam, with a ring-shaped distribution in velocity, supports negative energy beam modes near the harmonics of beam gyro-frequency. An investigation of the non-linear interaction of high-frequency whistler waves with the negative energy beam cyclotron mode is made. A non-linear dispersion relation is derived for the coupled modes. It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a side band of frequency lower than that of pump wave. In Case 2 a high-amplitude whistler wave decays into two lower frequency daughter waves, called the low-frequency mode and whistler waves. Generation mechanism of these waves has application in space and laboratory plasmas.

  6. Recent results from studies of electron beam phenomena in space plasmas

    Science.gov (United States)

    Neubert, Torsten; Banks, Peter M.

    1992-01-01

    The paper examines selected results from experiments, performed in 1980s, involving the ejection of beams of electrons from spacecraft. Special attention is given to the basic processes associated with the spacecraft charging, passive current collection, beam-atmosphere interactions, beam-plasma interactions, and neutral gas emission. Consideration is also given to future experiments on active electron beam ejections in space.

  7. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam

    Indian Academy of Sciences (India)

    A Hadap; J Mondal; K C Mittal; K P Maheshwari

    2011-03-01

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.

  8. Generating superpositions of higher–order Bessel beams [Journal article

    CSIR Research Space (South Africa)

    Vasilyeu, R

    2009-12-01

    Full Text Available The authors report the first experimental generation of the superposition of higher-order Bessel beams, by means of a spatial light modulator (SLM) and a ring slit aperture. They present illuminating a ring slit aperture with light which has...

  9. Beam Matching to a Plasma Wake Field Accelerator Using a Ramped Density Profile at the Plasma Boundary

    CERN Document Server

    Marsh, Kenneth; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Krejcik, Patrick; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2005-01-01

    An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plas...

  10. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  11. Plasma cell treatment device Plasma-on-Chip: Monitoring plasma-generated reactive species in microwells

    Science.gov (United States)

    Oh, Jun-Seok; Kojima, Shinya; Sasaki, Minoru; Hatta, Akimitsu; Kumagai, Shinya

    2017-01-01

    We have developed a plasma cell treatment device called Plasma-on-Chip that enables the real-time monitoring of a single cell culture during plasma treatment. The device consists of three parts: 1) microwells for cell culture, 2) a microplasma device for generating reactive oxygen and nitrogen species (RONS) for use in cell treatment, and 3) through-holes (microchannels) that connect each microwell with the microplasma region for RONS delivery. Here, we analysed the delivery of the RONS to the liquid culture medium stored in the microwells. We developed a simple experimental set-up using a microdevice and applied in situ ultraviolet absorption spectroscopy with high sensitivity for detecting RONS in liquid. The plasma-generated RONS were delivered into the liquid culture medium via the through-holes fabricated into the microdevice. The RONS concentrations were on the order of 10–100 μM depending on the size of the through-holes. In contrast, we found that the amount of dissolved oxygen was almost constant. To investigate the process of RONS generation, we numerically analysed the gas flow in the through-holes. We suggest that the circulating gas flow in the through-holes promotes the interaction between the plasma (ionised gas) and the liquid, resulting in enhanced RONS concentrations. PMID:28176800

  12. A thin column of dense plasma for space-charge neutralization of intense ion beams

    Science.gov (United States)

    Roy, P. K.; Seidl, P. A.; Anders, A.; Barnard, J. J.; Bieniosek, F. M.; Friedman, A.; Gilson, E. P.; Greenway, W.; Sefkow, A. B.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Waldron, W. L.; Welch, D. R.

    2008-11-01

    Typical ion driven warm dense matter experiment requires a plasma density of 10^14/cm^3 to meet the challenge of np>nb, where np, and nb are the number densities of plasma and beam, respectively. Plasma electrons neutralize the space charge of an ion beam to allow a small spot of about 1-mm radius. In order to provide np>nb for initial warm, dense matter experiments, four cathodic arc plasma sources have been fabricated, and the aluminum plasma is focused in a focusing solenoid (8T field). A plasma probe with 37 collectors was developed to measure the radial plasma profile inside the solenoid. Results show that the plasma forms a thin column of diameter ˜7mm along the solenoid axis. The magnetic mirror effect, plasma condensation, and the deformation of the magnetic field due to eddy currents are under investigation. Data on plasma parameters and ion beam neutralization will be presented.

  13. Electron beam charge diagnostics for laser plasma accelerators

    Directory of Open Access Journals (Sweden)

    K. Nakamura

    2011-06-01

    Full Text Available A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs. First, a scintillating screen (Lanex was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160  pC/mm^{2} and 0.4  pC/(ps  mm^{2}, respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  14. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  15. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  16. An exact solution to paraxial propagation of laser beams in longitudinal inhomogeneous plasmas

    Institute of Scientific and Technical Information of China (English)

    Zhou Bing-Ju; Huang Zheng; Liu Ming-Wei; Liu Xiao-Juan

    2007-01-01

    An exact, general solution for laser beams propagating in longitudinally inhomogeneous plasmas is obtained in the form of the diffraction integral. The Gaussian beam and the Hermite-Gaussian beam are taken for example. In the case of an increasing plasma density along the propagation distance, natural diffraction of the Gaussian beam is retarded. This retardance has a less effect on the central part of the Hermite-Gaussian beam while a considerable rise of the power in bucket (PIB) occurs in the surrounding part of the beam.

  17. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  18. Energy spread of ion beams generated in multicusp ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Sarstedt, M.; Herz, P.; Kunkel, W.B. [and others

    1995-04-01

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 {mu}m patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations.

  19. Modeling nitrogen plasmas produced by intense electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.; Hinshelwood, D. D. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Mosher, D.; Ottinger, P. F. [Independent contractors for NRL through Engility, Inc., Alexandria, Virginia 22314 (United States)

    2016-05-15

    A new gas–chemistry model is presented to treat the breakdown of a nitrogen gas with pressures on the order of 1 Torr from intense electron beams with current densities on the order of 10 kA/cm{sup 2} and pulse durations on the order of 100 ns. For these parameter regimes, the gas transitions from a weakly ionized molecular state to a strongly ionized atomic state on the time scale of the beam pulse. The model is coupled to a 0D–circuit model using the rigid–beam approximation that can be driven by specifying the time and spatial profiles of the beam pulse. Simulation results are in good agreement with experimental measurements of the line–integrated electron density from experiments done using the Gamble II generator at the Naval Research Laboratory. It is found that the species are mostly in the ground and metastable states during the atomic phase, but that ionization proceeds predominantly through thermal ionization of optically allowed states with excitation energies close to the ionization limit.

  20. High-power laser delocalization in plasmas leading to long-range beam merging

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsutsumi, M.; Marques, J.R.; Antici, P.; Bourgeois, N.; Romagnani, L.; Audebert, P.; Fuchs, J. [UPMC, CEA, CNRS, LULI, Ecole Polytech, F-91128 Palaiseau (France); Nakatsutsumi, M.; Kodama, R. [Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871 (Japan); Antici, P. [Univ Roma La Sapienza, Dipartimento SBAI, I-00161 Rome (Italy); Feugeas, J.L.; Nicolai, P. [Univ Bordeaux 1, CNRS, CEA, Ctr Lasers Intenses and Applicat, F-33405 Talence (France); Lin, T. [Fox Chase Canc Ctr, Philadelphia, PA 19111 (United States)

    2010-07-01

    Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma. (authors)

  1. Ultra short electron beam bunches from a laser plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Akira [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)]. E-mail: maekawa@nuclear.jp; Tsujii, Ryosuke [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kinoshita, Kennichi [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Atsushi, Yamazaki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kobayashi, Kazuyuki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Uesaka, Mitsuru [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Shibata, Yukio [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kondo, Yasuhiro [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Ohkubo, Takeru [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma (Japan); Hosokai, Tomonao [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa (Japan); Takahashi, Toshiharu [Kyoto University Research Reactor Institute, Asahiro-nishi2, Kumatori, Sennan, Osaka (Japan)

    2007-08-15

    The fluctuation of the electron bunch duration due to energy spectrum instability in a laser plasma cathode has been examined. Previous experiments clearly proved that a laser plasma cathode can generate ultrashort electron bunches with a bunch duration of 130 fs (FWHM) and a geometrical emittance 0.07{pi} mm mrad. The effect of temporal elongation of electron bunches due to their energy spread is estimated and the results are in good agreement with previous experiments. It is also clarified that the instability of the energy spectrum not only leads to a fluctuation of the bunch shape but also to a time-of-flight jitter, affecting possible future applications of a laser plasma cathode.

  2. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    Science.gov (United States)

    Yang, Hailiang; Qiu, Aici; Sun, Jianfeng; He, Xiaoping; Tang, Junping; Wang, Haiyang; Li, Hongyu; Li, Jingya; Ren, Shuqing; Ouyang, Xiaoping; Zhang, Guoguang

    2004-12-01

    The preliminary experimental results of the generation and diagnostics of high-power ion beams of FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electron and anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and an energy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number and current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung x-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  3. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    Institute of Scientific and Technical Information of China (English)

    杨海亮; 邱爱慈; 孙剑锋; 何小平; 汤俊萍; 王海洋; 李洪玉; 李静雅; 任书庆; 欧阳小平; 张国光

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electronand anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and anen ergy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number ard current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  4. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  5. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Hai'ou; QIAN; Yingping; WANG; Guilan; ZHENG; Qiguang

    2006-01-01

    As a new direct metal prototyping technology,the hybrid plasma and laser deposition manufacturing (PLDM) is proposed in this paper. In order to figure out the characteristics of plasma arc beam and mould in the PLDM process of high temperature alloy, the high speed CCD camera is used to obtain the picture around the plasma arc. Afterwards the sketch of picture is clearly obtained. And the effect of laser parameter, such as average power, pulse width, pulse repetition frequency and the angle between laser beam and plasma arc beam on the plasma arc appearance, is studied experimentally. The results show that the modality of plasma arc beam is markedly influenced by laser beam. And the improvements of shape precision and surface state of the layer deposited by PLDM are confirmed.

  6. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  7. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  8. Plasma generated during underwater pulsed laser processing

    Science.gov (United States)

    Hoffman, Jacek; Chrzanowska, Justyna; Moscicki, Tomasz; Radziejewska, Joanna; Stobinski, Leszek; Szymanski, Zygmunt

    2017-09-01

    The plasma induced during underwater pulsed laser ablation of graphite is studied both experimentally and theoretically. The results of the experiment show that the maximum plasma temperature of 25000 K is reached 20 ns from the beginning of the laser pulse and decreases to 6500 K after 1000 ns. The observed OH absorption band shows that the plasma plume is surrounded by the thin layer of dissociated water vapour at a temperature around 5500 K. The hydrodynamic model applied shows similar maximum plasma temperature at delay times between 14 ns and 30 ns. The calculations show also that already at 14th ns, the plasma electron density reaches 0.97·1027 m-3, which is the critical density for 1064 nm radiation. At the same time the plasma pressure is 2 GPa, which is consisted with earlier measurements of the peak pressure exerted on a target in similar conditions.

  9. Study of the laser-plasma acceleration of ion beams with enhanced quality: The effects of nanostructured targets

    Science.gov (United States)

    Fazeli, Reza

    2017-06-01

    Production of high-quality ion beams by intense laser-plasma interactions represents a rapidly evolving field of interest. In this paper, a nanostructured target is proposed to generate laser-driven quasi-monoenergetic ion beams with considerably reduced energy spread and enhanced peak energy. Linearly polarized, 40-fs laser pulses of intensity 8.5 × 1020 W cm-2 were considered to irradiate simple carbon foil and nanostructured targets. The proposed target consists of a thin layer of relatively high-Z atom (Ti) with a depression on its back surface which is filled by a nanosize disc of a low-Z atom (C). Reliable and reproducible results of multi-parametric Particle-in-Cell simulations show that by using a composed nanostructured target with optimum physical properties, a quasi-monoenergetic ion beam can be generated with a narrow band energy spectrum peaking at energies higher than 20 MeV. In addition, the forward-accelerated beam of low-Z carbon ions exhibits a considerably reduced transverse emittance in comparison with the ion beam obtained in the condition of a simple foil. The proposed nanostructured target can efficiently contribute to the generation of high-quality ion beams which are critical in newly growing applications and physics of laser-plasma accelerators.

  10. Effect of finite beam width on current separation in beam plasma system: Particle-in-Cell simulations

    CERN Document Server

    Shukla, Chandrasekhar; Patel, Kartik

    2015-01-01

    The electron beam propagation in a plasma medium is susceptible to several instabilities. In the relativistic regime typically the weibel instability leading to the current separation dominates. The linear instability analysis is carried out for a system wherein the transverse extent of the beam is infinite. Even in simulations, infinite transverse extent of the beam has been chosen. In real situations, however, beam width will always be finite. keeping this in view the role of finite beam width on the evolution of the beam plasma system has been studied here using Particle - in - Cell simulations. It is observed that the current separation between the forward and return shielding current for a beam with finite beam occurs at the scale length of the beam width itself. Consequently the magnetic field structures that form have maximum power at the scale length of the beam width. This behaviour is distinct from what happens with a beam with having an infinite extent represented by simulations in a periodic box, ...

  11. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  12. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Antici, P. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Bacci, A.; Chiadroni, E.; Ferrario, M.; Rossi, A. R. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati (Italy); Benedetti, C. [University of Bologna and INFN - Bologna (Italy); Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L. [SAPIENZA, University of Rome, Dip. SBAI, Via A. Scarpa 14, 00161 Rome (Italy); INFN - Sezione di Roma, c/o Dipartimento di Fisica - SAPIENZA, University of Rome, P.le Aldo Moro, 2 - 00185 Rome (Italy); Serafini, L. [INFN-Milan and Department of Physics, University of Milan, Via Celoria 16, 20133 Milan (Italy)

    2012-08-15

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  13. Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems

    Science.gov (United States)

    Antici, P.; Bacci, A.; Benedetti, C.; Chiadroni, E.; Ferrario, M.; Rossi, A. R.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Serafini, L.

    2012-08-01

    Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

  14. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ˜50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  15. Rapid generation of light beams carrying orbital angular momentum.

    Science.gov (United States)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-12-16

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by phase-only spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding.

  16. Generating monoenergetic proton beam by using circularly polarlzed laser

    Institute of Scientific and Technical Information of China (English)

    LIU Bi-Cheng; YAN Xue-Qing; LIN Chen; Lu Yuan-Rong; GUO Zhi-Yu; FANG Jia-Xun; SHENG Zheng-Ming; LI Yu-Tong; CHEN Jia-Er

    2009-01-01

    The interaction of ultrashort intense circularly polarized laser with ultra thin overdense foil is studied by particle-in-cell simulation and analytic model.It is found that with the balance between pondermotive force and electrostatic force,highly quasi-monoenergetic proton beam can be generated by Phase Stable Acceleration(PSA)process.As in conventional accelerators,ion will be accelerated and bunched up in the longitudinal direction at the same time.

  17. Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device

    Science.gov (United States)

    Wei, Zian; Ma, Jinxiu; Li, Yuanrui; Sun, Yan; Jiang, Zhengqi

    2016-11-01

    Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hot-cathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio supported by National Natural Science Foundation of China (Nos. 11575183, 11175177)

  18. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    CERN Document Server

    Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  19. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  20. Operational characteristics of the high flux plasma generator Magnum-PSI

    Energy Technology Data Exchange (ETDEWEB)

    Eck, H.J.N. van, E-mail: h.j.n.vaneck@differ.nl [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Abrams, T. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Berg, M.A. van den; Brons, S.; Eden, G.G. van [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Meiden, H.J. van der; Morgan, T.W.; Pol, M.J. van de; Scholten, J.; Smeets, P.H.M.; De Temmerman, G.; Vries, P.C. de; Zeijlmans van Emmichoven, P.A. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-10-15

    Highlights: •We have described the design and capabilities of the plasma experiment Magnum-PSI. •The plasma conditions are well suited for PSI studies in support of ITER. •Quasi steady state heat fluxes over 10 MW m{sup −2} have been achieved. •Transient heat and particle loads can be generated to simulate ELM instabilities. •Lithium coating can be applied to the surfaces of samples under vacuum. -- Abstract: In Magnum-PSI (MAgnetized plasma Generator and NUMerical modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It aims at conditions that enable fundamental studies of plasma–surface interactions in the regime relevant for fusion reactors such as ITER: 10{sup 23}–10{sup 25} m{sup −2} s{sup −1} hydrogen plasma flux densities at 1–5 eV. To study the effects of transient heat loads on a plasma-facing surface, a high power pulsed magnetized arc discharge has been developed. Additionally, the target surface can be transiently heated with a pulsed laser system during plasma exposure. In this contribution, the current status, capabilities and performance of Magnum-PSI are presented.

  1. Generation of polarization vortex beams by segmented quarter-wave plates

    Institute of Scientific and Technical Information of China (English)

    Jingtao Xin; Xiaoping Lou; Zhehai Zhou; Mingli Dong; Lianqing Zhu

    2016-01-01

    A spatially variable retardation device,an SQWP,is designed to generate polarization vortex beams.The transformation of Laguerre-Gaussian beams by the SQWP is further studied,and it is found that the SQWPs can also be used to generate helical beams and measure the topological charges of helical beams.

  2. Plasma-water systems studied with optical diagnostics including sum-frequency generation spectroscopy

    Science.gov (United States)

    Ito, Tsuyohito

    2016-09-01

    Recently, various applications of plasma-water systems have been reported, such as materials synthesis, agricultural applications, and medical treatments. As one of basic studies of such systems, we are investigating water surface structure influenced by a plasma via vibrational sum-frequency generation spectroscopy. Vibrational sum-frequency generation spectroscopy is known to be an interfacially active diagnostic technique, as such process occurs in noncentrosymmetric medium. Visible and wavenumber-tunable infrared beams are simultaneously irradiated to the interface. The interfacial water has ice-like ( 3200 cm-1), liquid-like ( 3400 cm-1), and free OH (3700 cm-1) structures (assignment of the ice-like structure still remains contentious), and the intensity of the signal becomes stronger when the tunable infrared beam resonates with a vibration of the structures. The results indicate that with generating air dielectric barrier discharges for supplying reactive species to the water surface, all investigated signals originating from the above-mentioned three structures decrease. Furthermore, the signal strengths are recovered after terminating the plasma generation. We currently believe that the surface density of the reactive species should be high when they are found at the water surface. Details on the experimental results of the sum-frequency generation spectroscopy, as well as other spectroscopic results of plasma-water systems, will be presented at the conference.

  3. High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator.

    Science.gov (United States)

    Zhao, T Z; Behm, K; Dong, C F; Davoine, X; Kalmykov, S Y; Petrov, V; Chvykov, V; Cummings, P; Hou, B; Maksimchuk, A; Nees, J A; Yanovsky, V; Thomas, A G R; Krushelnick, K

    2016-08-26

    Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

  4. Strong terahertz generation by optical rectification of a super-Gaussian laser beam

    Science.gov (United States)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.

    2016-06-01

    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  5. Concept of a Staged FEL Enabled by Fast Synchrotron Radiation Cooling of Laser-Plasma Accelerated Beam by Solenoidal Magnetic Fields in Plasma Bubble

    CERN Document Server

    Seryi, Andrei; Andreev, Alexander; Konoplev, Ivan

    2016-01-01

    A novel method for generating GigaGauss solenoidal field in laser-plasma bubble, using screw-shaped laser pulses, has been recently presented in arXiv:1604.01259 [physics.plasm-ph]. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper we present an outline of how a staged plasma-acceleration FEL could look like and discuss further studies needed to investigate the feasibility of the concept in detail.

  6. Prompt loss of beam ions in KSTAR plasmas

    Science.gov (United States)

    Kim, Jun Young; Rhee, T.; Kim, Junghee; Yoon, S. W.; Park, B. H.; Isobe, M.; Ogawa, K.; Ko, W.-H.

    2016-10-01

    For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI) heating in Korea Superconducting Tokamak Advanced Research (KSTAR) device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD) position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  7. Prompt loss of beam ions in KSTAR plasmas

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2016-10-01

    Full Text Available For a toroidal plasma facility to realize fusion energy, researching the transport of fast ions is important not only due to its close relation to the heating and current drive efficiencies but also to determine the heat load on the plasma-facing components. We present a theoretical analysis and orbit simulation for the origin of lost fast-ions during neutral beam injection (NBI heating in Korea Superconducting Tokamak Advanced Research (KSTAR device. We adopted a two-dimensional phase diagram of the toroidal momentum and magnetic moment and describe detectable momentums at the fast-ion loss detector (FILD position as a quadratic line. This simple method was used to model birth ions deposited by NBI and drawn as points in the momentum phase space. A Lorentz orbit code was used to calculate the fast-ion orbits and present the prompt loss characteristics of the KSTAR NBI. The scrape-off layer deposition of fast ions produces a significant prompt loss, and the model and experimental results closely agreed on the pitch-angle range of the NBI prompt loss. Our approach can provide wall load information from the fast ion loss.

  8. Radiative damping and electron beam dynamics in plasma-based accelerators.

    Science.gov (United States)

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  9. Radiative damping and electron beam dynamics in plasma-based accelerators

    Science.gov (United States)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  10. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  11. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Science.gov (United States)

    Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L.; Maynard, G.; Lobet, M.; Gremillet, L.; Mora, P.; Schwindling, J.; Delferrière, O.; Bruni, C.; Rimbault, C.; Vinatier, T.; Di Piazza, A.; Grech, M.; Riconda, C.; Marquès, J. R.; Beck, A.; Specka, A.; Martin, Ph.; Monot, P.; Normand, D.; Mathieu, F.; Audebert, P.; Amiranoff, F.

    2014-03-01

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (> 15 fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  12. A Second Generation Radioactive Nuclear Beam Facility at CERN

    CERN Document Server

    Äystö, J; Lindroos, M; Ravn, H L; Van Duppen, P

    2000-01-01

    The proposed Superconducting Proton Linac (SPL) at CERN would be an ideal driver for a proton-driven second-generation Radioactive Nuclear Beam facility. We propose to investigate the feasibility of constructing such a facility at CERN close to the present PS Booster ISOLDE facility. The existing ISOLDE facility would be fed with a 10 micro-amps proton beam from SPL, providing the physics community with a low-intensity experimental area. A second, new facility would be built with target stations deep underground, permitting proton beam intensities of more than 100 micro-amps. The secondary beams can be post-accelerated to 20-100 MeV/u and there will be a storage ring complex and large segmented detectors in the experimental area. Also, benefits from a muon-ion collider or from merging the ions and muons should be investigated. Since the antiproton decelerator would be nearby, the opportunities for antiprotonic radioactive atom studies should be pursued as well.

  13. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  14. Generator of chemically active low-temperature plasma

    Science.gov (United States)

    Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Demirov, N. A.; Spector, N. O.

    2016-11-01

    A new generator of high enthalpy (H 0 > 40 kJ/g), chemically active nitrogen and air plasmas was designed and constructed. Main feature of the generator is an expanding channel of an output electrode; the generator belongs to the class of DC plasma torches with thermionic cathode with an efficiency of 80%. The generator ensures the formation of a slightly divergent plasma jet (2α = 12°) with a diameter of D = 10-12 mm, an electric arc maximum power of 20-50 kW, plasma forming gas flow rate 1.0-2.0 g/s, and the average plasma temperature at an outlet of 8000-11000 K.

  15. Exact kinetic theory for the instability of an electron beam in a hot magnetized plasma

    CERN Document Server

    Timofeev, I V

    2013-01-01

    Efficiency of collective beam-plasma interaction strongly depends on the growth rates of dominant instabilities excited in the system. Nevertheless, exact calculations of the full unstable spectrum in the framework of relativistic kinetic theory for arbitrary magnetic fields and particle distributions were unknown until now. In this paper we give an example of such a calculation answering the question whether the finite thermal spreads of plasma electrons are able to suppress the fastest growing modes in the beam-plasma system. It is shown that nonrelativistic temperatures of Maxwellian plasmas can stabilize only the oblique instabilities of relativistic beam. On the contrary, non-Maxwellian tails typically found in laboratory beam-plasma experiments are able to substantially reduce the growth rate of the dominant longitudinal modes affecting the efficiency of turbulent plasma heating.

  16. Exact kinetic theory for the instability of an electron beam in a hot magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, I. V.; Annenkov, V. V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia Novosibirsk State University, Novosibirsk (Russian Federation)

    2013-09-15

    Efficiency of collective beam-plasma interaction strongly depends on the growth rates of dominant instabilities excited in the system. Nevertheless, exact calculations of the full unstable spectrum in the framework of relativistic kinetic theory for arbitrary magnetic fields and particle distributions were unknown until now. In this paper, we give an example of such a calculation answering the question whether the finite thermal spreads of plasma electrons are able to suppress the fastest growing modes in the beam-plasma system. It is shown that nonrelativistic temperatures of Maxwellian plasmas can stabilize only the oblique instabilities of relativistic beam. On the contrary, non-Maxwellian tails typically found in laboratory beam-plasma experiments are able to substantially reduce the growth rate of the dominant longitudinal modes affecting the efficiency of turbulent plasma heating.

  17. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius.

  18. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  19. A 7 T Pulsed Magnetic Field Generator for Magnetized Laser Plasma Experiments

    Science.gov (United States)

    Hu, Guangyue; Liang, Yihan; Song, Falun; Yuan, Peng; Wang, Yulin; Zhao, Bin; Zheng, Jian

    2015-02-01

    A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (~230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.

  20. High-current long-duration uniform electron beam generation in a diode with multicapillary carbon-epoxy cathode

    Energy Technology Data Exchange (ETDEWEB)

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2013-09-28

    The results of reproducibly generating an electron beam with a current density of up to 5 kA/cm{sup 2}, without the cathode-anode gap being shorted by the plasma formed inside the cathode carbon-epoxy capillaries, in a ∼350 kV, ∼600 ns diode, with and without an external guiding magnetic field, are presented. The cathode sustained hundreds of pulses without degradation of its emission properties. Time- and space-resolved emissions of the plasma and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity.

  1. High-current long-duration uniform electron beam generation in a diode with multicapillary carbon-epoxy cathode

    Science.gov (United States)

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E.

    2013-09-01

    The results of reproducibly generating an electron beam with a current density of up to 5 kA/cm2, without the cathode-anode gap being shorted by the plasma formed inside the cathode carbon-epoxy capillaries, in a ˜350 kV, ˜600 ns diode, with and without an external guiding magnetic field, are presented. The cathode sustained hundreds of pulses without degradation of its emission properties. Time- and space-resolved emissions of the plasma and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity.

  2. Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target

    Institute of Scientific and Technical Information of China (English)

    李志超; 尹强; 朱芳华; 郭亮; 袁鹏; 刘慎业; 丁永坤; 郑坚; 蒋小华; 王哲斌; 杨冬; 章欢; 李三伟; 王峰; 彭晓世

    2011-01-01

    Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion,especial in the laser overlapping regime.We report that on the Shengguang-Ⅱ laser facility,millimeter-scale plasm are successfully generated by four 0.35 μm laser beams using a gasbag target.Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail.The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created.An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations,which indicates that the electron temperature has a 600eV fiat roof in 0.7-1.3ns.Another key parameter,i.e.the electron density of the millimeter-scale plasmas,is inferred by the spectrum of the back stimulated Raman scattering of an addition 0.53 μm laser beam.The inferred electron density keeps stable at 0.1nc in early time consistent with the controlled filling pressure and splits into a higher density in late time,which is attributed to the blast wave entering in the SRS interaction region.%Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion, especially in the laser overlapping regime. We report that on the Shengguang-S laser facility, millimeter-scale plasmas are successfully generated by four 0.35 \\im laser beams using a gasbag target. Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail. The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created. An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations, which indicates that the electron temperature has a 600eV flat roof in 0.7-1.3ns. Another key parameter, I.e. The electron density of the millimeter-scale plasmas, is inferred by the spectrum of the back stimulated Raman

  3. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    Science.gov (United States)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  4. Obtaining the high-current low-energy electron beams in the systems with a plasma emitter

    CERN Document Server

    Devyatkov, V N; Shchanin, P M

    2001-01-01

    Using gas filled diodes with arc and glow-discharge base plasma emitters one investigated into generation and transfer of high-current electron beams. Using a diode with arc discharge base plasma emitter at 15 kV accelerating voltage one obtained a space charge compensated with up to 1 kA current compressed by proper magnetic field from 8 cm diameter up to 1 cm and transported at over 20 cm distance with 70% efficiency. Using a diode with a glow-discharge one obtained a 80 A current and up to 100 A/cm current density beam. In a weak axial magnetic field with B=0.015 T induction such a beam is transported at 30 cm distance

  5. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  6. Generation of 20 kA electron beam from a laser wakefield accelerator

    Science.gov (United States)

    Li, Y. F.; Li, D. Z.; Huang, K.; Tao, M. Z.; Li, M. H.; Zhao, J. R.; Ma, Y.; Guo, X.; Wang, J. G.; Chen, M.; Hafz, N.; Zhang, J.; Chen, L. M.

    2017-02-01

    We present the experimentally generated electron bunch from laser-wakefield acceleration (LWFA) with a charge of 620 pC and a maximum energy up to 0.6 GeV by irradiating 80 TW laser pulses at a 3 mm Helium gas jet. The charge of injected electrons is much larger than the normal scaling laws of LWFA in bubble regime. We also got a quasi-monoenergetic electron beam with energy peaked at 249 MeV and a charge of 68 pC with the similar laser conditions but lower plasma density. As confirmed by 2D particle-in-cell simulations, the boosted bunch charge is due to the continuous injection caused by the self-steepening and self-compression of a laser pulse. During the nonlinear evolution of the laser pulse, the bubble structure broadens and stretches, leading to a longer dephasing length and larger beam charge.

  7. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  8. Modeling and Simulation for Nanoparticle Plasma Jet Diagnostic Probe for Runaway Electron Beam-Plasma Interaction

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2016-10-01

    The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.

  9. High density plasma production in a multicusp plasma generator with RF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1992-10-01

    A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm{sup 2} and a hydrogen plasma of a density of 6.0 x 10{sup 11} cm{sup -3} was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).

  10. High density plasma production in a multicusp plasma generator with RF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Hanada, Masaya; Okumura, Yoshikazu; Tanaka, Masanobu (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment)

    1992-10-01

    A high density plasma was produced by radio-frequency in a multicusp plasma generator. The generator is a cylindrical chamber of 200 mm in inner diameter and 270 mm in length with 1-3 turn copper tube antenna. By injecting a 2 MHz, 20 kW RF into the multicusp plasma generator, hydrogen plasma of an ion saturation current density of 120 mA/cm[sup 2] and a hydrogen plasma of a density of 6.0 x 10[sup 11] cm[sup -3] was produced at a pressure of 0.6 Pa in the generator. The ion saturation current density was uniform over the central area of 100 mm in diameter. Coating the antenna with an insulator, we proved that the efficiency of the plasma production was improved. (author).

  11. Quasi-monoenergetic electron beams from a few-terawatt laser driven plasma acceleration using a nitrogen gas jet

    Science.gov (United States)

    Rao, B. S.; Moorti, A.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2017-06-01

    An experimental investigation on the laser plasma acceleration of electrons has been carried out using 3 TW, 45 fs duration titanium sapphire laser pulse interaction with a nitrogen gas jet at an intensity of 2 × 1018 W cm-2. We have observed the stable generation of a well collimated electron beam with divergence and pointing variation ˜10 mrad from nitrogen gas jet plasma at an optimum plasma density around 3 × 1019 cm-3. The energy spectrum of the electron beam was quasi-monoenergetic with an average peak energy and a charge around 25 MeV and 30 pC respectively. The results will be useful for better understanding and control of ionization injection and the laser wakefield acceleration (LWFA) of electrons in high-Z gases and also towards the development of practical LWFA for various applications including injectors for high energy accelerators.

  12. Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas

    CERN Document Server

    Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan

    2011-01-01

    A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.

  13. Suppression of runaway current generation by supersonic molecular beam injection during disruptions on J-TEXT

    Science.gov (United States)

    Huang, D. W.; Chen, Z. Y.; Tong, R. H.; Yan, W.; Wang, S. Y.; Wei, Y. N.; Ma, T. K.; Dai, A. J.; Wang, X. L.; Jiang, Z. H.; Yang, Z. J.; Zhuang, G.; Pan, Y.; J-TEXT Team

    2017-08-01

    The suppression of disruption-generated runaway electrons (REs) by supersonic molecular beam injection (SMBI) has been investigated on the J-TEXT tokamak. Experimental results demonstrate that the hydrogen injected by SMBI during plasma current flattop phase can provoke magnetic perturbations, which increase RE losses rapidly. The effective radial diffusion coefficient of REs due to SMBI is estimated as D r ≈ 16 m2 s-1. Based on this benefit, the SMBI has been used to explore the suppression of disruption-generated REs. In J-TEXT, RE current is created with rapid argon injection by a massive gas injection valve. It is found that hydrogen SMBI before disruption efficiently suppresses the generation of RE current.

  14. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J. [Princeton Univ., NJ (United States)

    2014-01-08

    The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereas the efficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  15. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  16. Simulation studies of the ion beam transport system in a compact electrostatic accelerator-based D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2014-01-01

    Full Text Available The study of an ion beam transport mechanism contributes to the production of a good quality ion beam with a higher current and better beam emittance. The simulation of an ion beam provides the basis for optimizing the extraction system and the acceleration gap for the ion source. In order to extract an ion beam from an ion source, a carefully designed electrode system for the required beam energy must be used. In our case, a self-extracted penning ion source is used for ion generation, extraction and acceleration with a single accelerating gap for the production of neutrons. The characteristics of the ion beam extracted from this ion source were investigated using computer code SIMION 8.0. The ion trajectories from different locations of the plasma region were investigated. The simulation process provided a good platform for a study on optimizing the extraction and focusing system of the ion beam transported to the required target position without any losses and provided an estimation of beam emittance.

  17. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    Science.gov (United States)

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  18. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  19. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  20. EBT2 Dosimetry of X-rays produced by the electron beam from PFMA-3, a Plasma Focus for medical applications

    CERN Document Server

    Ceccolini, Elisa; Mostacci, Domiziano; Sumini, Marco; Tartari, Agostino

    2011-01-01

    The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for IORT (IntraOperative Radiation Therapy) applications. A Plasma Focus device is being developed to this aim, to be utilized as an X-ray source. The electron beam is driven to impinge on 50 {\\mu}m brass foil, where conversion X-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the X-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

  1. Manipulation of laser-generated energetic proton spectra in near critical density plasma

    Science.gov (United States)

    Palmer, Charlotte A. J.; Dover, Nicholas P.; Pogorelsky, Igor; Streeter, Matthew J. V.; Najmudin, Zulfikar

    2015-01-01

    We present simulations that demonstrate the production of quasi-monoenergetic proton bunches from the interaction of a CO2 laser pulse train with a near-critical density hydrogen plasma. The multi-pulse structure of the laser leads to a steepening of the plasma density gradient, which the simulations show is necessary for the formation of narrow-energy spread proton bunches. Laser interactions with a long, front surface, scale-length (>> c/ωp ) plasma, with linear density gradient, were observed to generate proton beams with a higher maximum energy, but a much broader spectrum compared to step-like density profiles. In the step-like cases, a peak in the proton energy spectra was formed and seen to scale linearly with the ratio of laser intensity to plasma density.

  2. Laser-driven generation of ultra-intense proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S.; Kubkowska, M.; Parys, P.; Rosinski, M.; Wolowski, J. [EURATOM, Inst Plasma Phys and Laser Microfus, PL-00908 Warsaw (Poland); Antici, P.; Fuchs, J.; Mancic, A. [UPMC, LULI, Ecole Polytech, CNRS, CEA, F-91128 Palaiseau (France); Szydlowski, A. [Andrzej Soltan Inst Nucl Studies, Otwock (Poland)

    2010-07-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 m wavelength and intensity up to 2*10{sup 19} Wcm{sup -2} irradiated a thin (0.6-2{mu}m) plastic (PS) or Au/PS (plastic covered by 0.2{mu}m Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity 10{sup 18}Wcm{sup -2} and current density 10{sup 12}Acm{sup -2} at the source can be produced when the laser intensity-wavelength squared product I{sub L{lambda}}{sup 2} is 10{sup 19}Wcm{sup -2}m{sup 2} and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I{sub L{lambda}}{sup 2} {>=} 5*10{sup 19}Wcm{sup -2}m{sup 2} and {lambda} {<=} 0.53{mu}m, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 10{sup 20}Wcm{sup -2}. (authors)

  3. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  4. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    Science.gov (United States)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL Z target via bremsstrahlung into low-divergence (Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  5. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  6. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  7. Characterizing a multi-MeV e-beam induced plasma through visible spectroscopy and imaging

    Science.gov (United States)

    D'Almeida, Thierry; Ribiere, Maxime; Maisonny, Rémi; Ritter, Sandra; Plouhinec, Damien; Auriel, Gérard

    2016-10-01

    High energy electrons interaction and propagation mechanisms in solid targets have a broad range of applications in high energy density physics. The latter include fast ignition for inertial fusion research, production of ultra-high mechanical stress levels, plasma interactions with e-beam particles in electron diodes, radiative hydrodynamic models...This paper presents the results from recent experiments conducted on the multi-MeV generator ASTERIX operated at CEA-Gramat. This high flux density electron beam was launched from an aluminum cathode onto an aluminum-tantalum target for voltage and current of 2.4 MeV and 55 kA, respectively. A set of optical diagnostics were fielded in all of the experiments, including a UV-visible spectrometers and a fast imaging. The imaging data obtained during the experiment allowed for the ablated species velocity to be determined. based on spectroscopic analysis, the light emission was attributed to aluminum and tantalum excited atoms and ions. The analysis of this time-integrated spectrum based on radiative transfer model clearly unveiled two distinct regions of the plasma over its expansion: a hot core surrounded by a cold vapor. A quantitative analysis of these results is presented.

  8. Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma

    Science.gov (United States)

    Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.

    2016-07-01

    Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.

  9. Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source

    Energy Technology Data Exchange (ETDEWEB)

    Burdovitsin, V A; Klimov, A S; Medovnik, A V; Oks, E M, E-mail: burdov@fet.tusur.r [Tomsk State University of Control Systems and Radioelectronics, 634050, 40 Lenin Ave., Tomsk (Russian Federation)

    2010-10-15

    In the irradiation of an insulated target by an electron beam produced by a plasma-cathode electron beam source operating in the fore-vacuum pressure range (5-15 Pa), the target potential is much lower than the electron beam energy, offering the possibility of direct electron treatment of insulating materials. It is found that in the electron beam irradiation of a non-conducting target in a moderately high pressure range, the electron charge on the target surface is neutralized mainly by ions from a volume discharge established between the negatively charged target surface and the grounded walls of the vacuum chamber. This allows the possibility of direct electron beam treatment (heating, melting, welding) of ceramics and other non-conducting and semiconductor materials.

  10. Plasma erosion switches with imploding plasma loads on the pithon generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range 10 12-10 14/cm 3 between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current risetime at the load. Associated with the sharper risetime was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  11. Plasma erosion switches with imploding plasma loads on a multiterawatt pulsed power generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range of 10 to the 12th to 10 to the 14th/cu cm between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current rise time at the load. Associated with the sharper rise time was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  12. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  13. Initial Tests of a Plasma Beam Combiner at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T. D.; Wilks, S. C.; London, R. A.; Berger, R. L.; Michel, P. A.; Divol, L.; Dunlop, W. H.; MacGowan, B. J.; Fournier, K. B.; Blue, B. E.; NIF Team

    2016-10-01

    The seeded forward SBS process that is known to effectively amplify beams in ignition targets has recently been used to design and test a target to combine the power and energy of many beams of the NIF facility into a single beam by intersecting them in an ionized gas. The demand for high-power beams for a variety of applications at NIF makes a demonstration of this process attractive. We will describe experiments using a gas-filled balloon heated by 10 quads of beams, and pumped by additional frequency-tuned quads to amplify a single beam. The beam energy is indicated by gated x-ray images of both the spots produced by the transmitted pump and probe beams and the spot produced by a non-interacting quad of beams when they terminate on a foil. The first experiment produced a high brightness seed beam with significant reductions in brightness of the pumping beams, consistent with their depletion by energy transfer to the seed. Additional experiments studying spot brightness with varying pump power to determine total delivered seed beam energy and power will be discussed as available. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    Science.gov (United States)

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  15. VUV SOURCE FROM PULSED-LASER GENERATED PLASMA

    OpenAIRE

    Laporte, P.; Damany, N.; Damany, H.

    1987-01-01

    We describe a pulsed vacuum ultraviolet (VUV) source consisting of a plasma created by focusing a NdYAG laser beam into rare gases under moderate pressure, and we report on spectral and time properties of that source. Main features are : continuum emission in a large spectral range, with only few lines superimposed, good time characteristics of the pulses, stability, cleanliness, and relatively high repetition rate (20 Hz).

  16. Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption

    Science.gov (United States)

    Wani, Manzoor Ahmad; Kant, Niti

    2016-09-01

    This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  17. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Milani, M. R., E-mail: mrj.milani@gmail.com [Plasma Physics Research School, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Farahbod, A. H. [Plasma Physics Research School, Tehran (Iran, Islamic Republic of)

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  18. Thermal effects in the dissipative instability of the electron beam-plasma systems

    Energy Technology Data Exchange (ETDEWEB)

    Shokri, B. [Physics Department and Laser-plasma Research Institute of Shahid Beheshti University, Tehran (Iran, Islamic Republic of) and Research Institute of Astronomy and Astrophysics of Maragha, PO Box 55134-44, Maragha (Iran, Islamic Republic of) and Institute for Studies in Theoretical Physics and Mathematics, PO Box 19395-1795, Tehran (Iran, Islamic Republic of)]. E-mail: b-shokri@cc.sbu.ac.ir; Khorashadizadeh, S.M. [Physics Department of Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department of Birjand University, Birjand (Iran, Islamic Republic of)

    2006-04-10

    The effects of the thermal motion of the charged particles in the dissipative instability of the under and over-limiting currents of a relativistic electron beam in a fully magnetized beam-plasma waveguide is investigated. It is shown that by increasing the temperature of the plasma electrons, the resonant frequency of the waveguide slightly increases and the growth rates of the instability development decreases. In addition, an increase of the temperature of the plasma electron can change the dissipative hydrodynamic instability to the collisionless kinetic instability. Furthermore, the dissipative instability of the overlimiting electron beam is shown to be more sensitive with respect to the electron plasma temperature compared to the underlimiting electron beam case.

  19. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  20. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  1. High-repetition rate relativistic electron beam generation from intense laser solid interactions

    Science.gov (United States)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl

    2015-05-01

    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.

  2. Helico-conical beams for generating optical twisters

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Daria, Vincent Ricardo Mancao

    2010-01-01

    at the focus even as the topological charge is increased. Such beams can be applied to fundamental studies of light and atoms such as in quantum entanglement of the DAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles. OPTICAL TWISTERS An optical vortex or light beam...... interference takes place. Here, we describe a diffracting beam with a spiral profile on both the amplitUde and phase of the beam. The spiral beam is a special case of a general set of Helico-Conical beams described in our previous work [1,21. This family of beams is initially characterized with an apodized...

  3. Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure

    Science.gov (United States)

    Xiaoyan, BAI; Chen, CHEN; Hong, LI; Wandong, LIU

    2017-03-01

    The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensity was presented. By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current, the plasma evolution was studied. A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current. Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA, the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure. And then three kinds of kinetic models were developed and the simulated results given by the kinetic model, without the consideration of the excited atoms, mostly approached to the experimental results. This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity, which can greatly simplify the kinetic model. In the end, the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity, which was in good accordance with the experimental results. Supported by National Natural Science Foundations of China (No. 11375187) and the Foundation of State key Laboratory of China (No. SKLIPR1510).

  4. Carbon Multicharged Ion Generation from Laser Plasma

    Science.gov (United States)

    Balki, Oguzhan; Elsayed-Ali, Hani E.

    2014-10-01

    Multicharged ions (MCI) have potential uses in different areas such as microelectronics and medical physics. Carbon MCI therapy for cancer treatment is considered due to its localized energy delivery to hard-to-reach tumors at a minimal damage to surrounding tissues. We use a Q-switched Nd:YAG laser with 40 ns pulse width operated at 1064 nm to ablate a graphite target in ultrahigh vacuum. A time-of-flight energy analyzer followed by a Faraday cup is used to characterize the carbon MCI extracted from the laser plasma. The MCI charge state and energy distribution are obtained. With increase in the laser fluence, the ion charge states and ion energy are increased. Carbon MCI up to C+6 are observed along with carbon clusters. When an acceleration voltage is applied between the carbon target and a grounded mesh, ion extraction is observed to increase with the applied voltage. National Science Foundation.

  5. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    Science.gov (United States)

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed.

  6. High-current electron beam generation in a diode with a multicapillary dielectric cathode

    Science.gov (United States)

    Gleizer, J. Z.; Hadas, Y.; Gurovich, V. Tz.; Felsteiner, J.; Krasik, Ya. E.

    2008-02-01

    Results of high-current electron beam generation in an ˜200kV, ˜250ns diode with a multicapillary dielectric cathode (MCDC) assisted by either velvet-type or ferroelectric plasma sources (FPSs) are presented. Multicapillary cathodes made of cordierite, glass, and quartz glass samples were studied. It was found that the source of electrons is the plasma ejected from capillaries. The plasma parameters inside capillary channels and in the vicinity of the cathode surface were determined during the accelerating pulse using visible range spectroscopy. It was shown that glass multicapillary cathodes are characterized by less surface erosion than the cordierite cathodes. Also, it was found that multicapillary cathodes assisted by a FPS showed longer lifetime and better vacuum compatibility than multicapillary cathodes assisted by a velvet-type igniter. Finally, it was found that quartz glass MCDC assisted by FPS is characterized by almost simultaneous formation of the plasma in a cross-sectional area of the dielectric sample with respect to the beginning of the accelerating pulse. The latter is explained by intense UV radiation which synchronized formation of parallel discharges due to induced secondary electron emission.

  7. On the generation of magnetic field enhanced microwave plasma line

    Science.gov (United States)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  8. Efficient generation of isolated attosecond pulses with high beam-quality by two-color Bessel-Gauss beams

    CERN Document Server

    Wang, Zhe; Zhang, Qingbin; Wang, Shaoyi; Lu, Peixiang

    2011-01-01

    The generation of isolated attosecond pulses with high efficiency and high beam quality is essential for attosec- ond spectroscopy. We numerically investigate the supercontinuum generation in a neutral rare-gas medium driven by a two-color Bessel-Gauss beam. The results show that an efficient smooth supercontinuum in the plateau is obtained after propagation, and the spatial profile of the generated attosecond pulse is Gaussian-like with the divergence angle of 0.1 degree in the far field. This bright source with high beam quality is beneficial for detecting and controlling the microscopic processes on attosecond time scale.

  9. Secondary particle tracks generated by ion beam irradiation

    Science.gov (United States)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  10. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O' Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik,; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  11. Large-amplitude double layers in a dusty plasma with an arbitrary streaming ion beam

    Indian Academy of Sciences (India)

    Brindaban Das; Debkumar Ghosh; Prasanta Chatterjee

    2010-06-01

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev’s pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature play significant roles in determining the region of the existence of double layers.

  12. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  13. Note on quantitatively correct simulations of the kinetic beam-plasma instability

    CERN Document Server

    Lotov, K V; Mesyats, E A; Snytnikov, A V; Vshivkov, V A

    2014-01-01

    A large number of model particles is shown necessary for quantitatively correct simulations of the kinetic beam-plasma instability with the clouds-in-cells method. The required number of particles scales inversely with the expected growth rate, as in the kinetic regime only a narrow interval of beam velocities is resonant with the wave.

  14. Note on quantitatively correct simulations of the kinetic beam-plasma instability

    Energy Technology Data Exchange (ETDEWEB)

    Lotov, K. V.; Timofeev, I. V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Mesyats, E. A.; Snytnikov, A. V.; Vshivkov, V. A. [Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-15

    A large number of model particles are shown necessary for quantitatively correct simulations of the kinetic beam-plasma instability with the clouds-in-cells method. The required number of particles scales inversely with the expected growth rate, as only a narrow interval of beam velocities is resonant with the wave in the kinetic regime.

  15. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals.

    Science.gov (United States)

    Shemer, Keren; Voloch-Bloch, Noa; Shapira, Asia; Libster, Ana; Juwiler, Irit; Arie, Ady

    2013-12-15

    We experimentally demonstrate that the orbital angular momentum (OAM) of a second harmonic (SH) beam, generated within twisted nonlinear photonic crystals, depends both on the OAM of the input pump beam and on the quasi-angular momentum of the crystal. In addition, when the pump's radial index is zero, the radial index of the SH beam is equal to that of the nonlinear crystal. Furthermore, by mixing two noncollinear pump beams in this crystal, we generate, in addition to the SH beams, a new "virtual beam" having multiple values of OAM that are determined by the nonlinear process.

  16. Extraction of high-intensity ion beams from a laser plasma by a pulsed spherical diode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Oguri

    2005-06-01

    Full Text Available High-current Cu^{+} ion beams were extracted from a laser-produced plasma using a pulsed high-voltage multiaperture diode driven by an induction cavity. The amplitude and the duration of the extraction voltage were 130 kV and 450 ns, respectively. During the extraction, explosive beam divergence due to the strong space-charge force was suppressed by the focusing action of the gap between concentric hemispheres. Modulation of the extracted beam flux due to the plasma prefill in the gap has been eliminated by using a biased control grid put on the anode holes. By means of this extraction scheme we obtained a rectangular beam pulse with a rise time as short as ≈100  ns. The beam current behind the cathode was limited to ≈0.1   A, owing to space-charge effects, as well as to poor geometrical transmission through the cathode sphere. From the measurement of the extracted beam current density distribution along the beam axis and the beam profile measurement, we found a beam waist slightly downstream of the spherical center of the diode structure. The measured beam behavior was consistent with numerical results obtained via a 3D particle code. No serious degradation of the beam emittance was observed for the grid-controlled extraction scheme.

  17. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  18. A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction

    CERN Document Server

    Ratcliffe, Heather; Rozenan, Mohammed B Che; Nakariakov, Valery

    2014-01-01

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit the results agree well, but increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. This may be important in, for example, the theory of solar radio bursts, where the spectrum of Langmuir waves is critical. Additionally we establish...

  19. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    Directory of Open Access Journals (Sweden)

    Sonu Sen

    2014-01-01

    Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.

  20. Study of parameters of a facility generating compressive plasma flows

    Science.gov (United States)

    Leyvi, A. Ya

    2017-05-01

    The prosperity of plasma technologies stimulates making of a facility generating compressive plasma flows at the South Ural State University. The facility is a compact-geometry magnetoplasma compressor with the following parameters: stored energy up to 15 kJ, voltage of a bank from 3 to 5 kV; nitrogen, air, and other gases can serve as its operating gas. The investigation of parameters of the facility showed the following parameters of compressive plasma flows: impulse duration of up to 120 μs, discharge current of 50-120 kA, speed of plasma flow of 15-30 km/s. By contrast to the available facilities, the parameters of the developed facility can be adjusted in a wide range of voltage from 2 kV to 10 kV, its design permits generating CPF in horizontal and vertical positions.

  1. The generation of arbitrary vector beams using a division of a wavefront-based setup

    Science.gov (United States)

    Kalita, Ranjan; Gaffar, Md; Boruah, Bosanta R.

    2016-07-01

    In this paper, we introduce an arbitrary vector-beam-forming scheme using a simple arrangement involving only one liquid crystal spatial light modulator. An arbitrary vector beam can be obtained by overlapping two orthogonally polarized beams. In most of the existing vector-beam-forming schemes the two orthogonally polarized beams are essentially copies of a single incident wavefront. However, in the proposed scheme the two orthogonally polarized beams correspond to two separated parts of a single incident wavefront. Taking a cue from the two-beam interference phenomenon, the present scheme can be referred to as a division of a wavefront-based scheme. The proposed setup offers certain important advantages and is more suitable for the generation of higher average-power vector beams. We demonstrate the working of the vector-beam-forming scheme by generating various vector beams such as radially polarized, azimuthally polarized, and Bessel-Gauss beams and also a boat-shaped beam in the focal volume of a low-numerical-aperture focusing lens. The boat-shaped beam comprises a dark center surrounded by intense light from all but one direction. The beam is realized at the focus of an azimuthally polarized beam in the presence of a moderate amount of coma in the beam. The experimental results obtained using the proposed setup are verified by comparing them with the theoretical results.

  2. Self-focusing of coaxial electromagnetic beams in a plasma with electron temperature dependent electron-ion recombination coefficient

    Science.gov (United States)

    Misra, Shikha; Sodha, M. S.; Mishra, S. K.

    2017-02-01

    An analytical formulation, describing the propagation of multiple coaxial Gaussian electromagnetic (em) beams in a self-formed plasma channel with dominant collisional nonlinearity has been developed; the generation/recombination of high energy plasma particles has been considered as an additional source of plasma non-linearity in addition to Ohmic heating. Well versed paraxial approach in the vicinity of the intensity maximum has been adopted to solve the wave equation and examine the non-linear propagation of em beams while the dielectric function in the presence of the em field is determined from the balance of partial pressure gradient of electron/ion gas with the space charge field and energy balance of plasma particles. On the basis of the analysis the influence of this novel non-linearity on the propagation features like electron temperature, dielectric function and critical curves are derived numerically and graphically presented. The inclusion of this novel nonlinearity results in reduced focusing effect. The three regime characteristic features viz. oscillatory focusing/defocusing and steady divergence of beam propagation have also been worked out.

  3. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  4. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  5. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    Science.gov (United States)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  6. Efficient generation of Hermite-Gauss and Ince-Gauss beams through kinoform phase elements.

    Science.gov (United States)

    Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel; Sánchez-de-la-Llave, David; Arrizón, Victor

    2015-10-01

    We discuss the generation of Hermite-Gauss and Ince-Gauss beams employing phase elements whose transmittances coincide with the phase modulations of such beams. A scaled version of the desired field appears, distorted by marginal optical noise, at the element's Fourier domain. The motivation to perform this study is that, in the context of the proposed approach, the desired beams are generated with the maximum possible efficiency. A disadvantage of the method is the distortion of the desired beams by the influence of several nondesired beam modes generated by the phase elements. We evaluate such distortion employing the root mean square deviation as a figure of merit.

  7. Propagation of a laser beam in a plasma

    Science.gov (United States)

    Chapman, J. M.; Kevorkian, J.; Steinhauer, L. C.; Vagners, J.

    1975-01-01

    This paper shows that for a nonabsorbing medium with a prescribed index of refraction, the effects of beam stability, line focusing, and beam distortion can be predicted from simple ray optics. When the paraxial approximation is used, diffraction effects are examined for Gaussian, Lorentzian, and square beams. Most importantly, it is shown that for a Gaussian beam, diffraction effects can be included simply by adding imaginary solutions to the paraxial ray equations. Also presented are several procedures to extend the paraxial approximation so that the solution will have a domain of validity of greater extent.

  8. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    Science.gov (United States)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  9. Generation of auroral kilometric radiation in inhomogeneous magnetospheric plasma

    Science.gov (United States)

    Burinskaya, T. M.; Shevelev, M. M.

    2017-01-01

    The generation of auroral kilometric radiation in a narrow 3D plasma cavity, in which a weakly relativistic electron flow is propagated along the magnetic field against a low-density cold background plasma, is studied. The time dynamics of the propagation and intensification of waves are analyzed using geometric optics equations. The waves have different wave vector components and start from the cavity center at an altitude of about the Earth's radius at plasma parameters typical for the auroral zone at this altitude. It is shown that the global inhomogeneity of the Earth's magnetic field is of key importance in shaping the auroral kilometric radiation spectra.

  10. Collective Thomson scattering system for determination of ion properties in a high flux plasma beam

    NARCIS (Netherlands)

    van der Meiden, H. J.; Vernimmen, J. W. M.; Bystrov, K.; Jesko, K.; Kantor, M. Y.; De Temmerman, G.; Morgan, T. W.

    2016-01-01

    A collective Thomson scattering system has been developed for measuring ion temperature, plasma velocity and impurity concentration in the high density magnetized Magnum-PSI plasma beam, allowing for measurements at low temperature (<5 eV) and high electron density >4 × 1020 m−3, while

  11. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  12. Weibel and Two-Stream Instabilities for Intense Charged Particle Beam Propagation through Neutralizing Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ronald C. Davidson; Igor Kaganovich; Edward A. Startsev

    2004-04-09

    Properties of the multi-species electromagnetic Weibel and electrostatic two-stream instabilities are investigated for an intense ion beam propagating through background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters.

  13. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure ...

  14. Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range.

    Science.gov (United States)

    Wei, Xuli; Liu, Changming; Niu, Liting; Zhang, Zhongqi; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2015-12-20

    We present the generation of arbitrary order Bessel beams at 0.3 THz through the implementation of suitably designed axicons based on 3D printing technology. The helical axicons, which possess thickness gradients in both radial and azimuthal directions, can convert the incident Gaussian beam into a high-order Bessel beam with spiral phase structure. The evolution of the generated Bessel beams are characterized experimentally with a three-dimensional field scanner. Moreover, the topological charges carried by the high-order Bessel beams are determined by the fork-like interferograms. This 3D-printing-based Bessel beam generation technique is useful not only for THz imaging systems with zero-order Bessel beams but also for future orbital-angular-momentum-based THz free-space communication with higher-order Bessel beams.

  15. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    Science.gov (United States)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  16. Generation of low-temperature air plasma for food processing

    Science.gov (United States)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  17. Atomic layer etching of silicon dioxide using alternating C4F8 and energetic Ar+ plasma beams

    Science.gov (United States)

    Kaler, Sanbir S.; Lou, Qiaowei; Donnelly, Vincent M.; Economou, Demetre J.

    2017-06-01

    Atomic layer etching (ALE) of SiO2 was studied by alternating exposure of a 5 nm-thick SiO2 film on Si substrate to (1) a plasma beam emanating from a c-C4F8 inductively coupled plasma (ICP), to grow a fluorocarbon (FC) film composed mainly of CF2, and (2) an energetic (130 eV) Ar+ ion beam extracted from a separate Ar ICP. In situ x-ray photoelectron spectroscopy was used to analyze the chemical composition of the near-surface region, and to quantify the thickness of the FC and SiO2 films. A very thin (3-6 Å), near self-limiting thickness CF2-rich FC film was found to deposit on the SiO2 surface with exposure to continuous or pulsed power C4F8 plasma beams, under conditions that generated a large relative flux of CF2. Following this, a FC film of similar composition grew at ~10 times slower rate. Exposure of the thin film to the Ar+ beam led to removal of 1.9 Å SiO2. An estimated yield of 1.3 SiO2 molecules-per-Ar+ was found for a single ALE step. The rate of 1.9 Å/cycle persisted over multiple ALE cycles, but a carbon-rich residual film did build up. This film can be removed by a brief exposure to an O2-containing plasma beam.

  18. A new criterion to describe crossed-beam energy transfer in laser-plasma interactions

    Science.gov (United States)

    Trines, R.; Schmitz, H.; Alves, E. P.; Fiuza, F.; Vieira, J.; Silva, L. O.; Bingham, R.

    2016-10-01

    Crossed-beam energy transfer (CBET) between laser beams in underdense plasma is ubiquitous in both direct-drive and indirect-drive inertial confinement fusion. To understand the impact of this process on the final shape of the laser beams involved, as well as their imprint on either hohlraum walls or target surface, a detailed spatial and temporal description of the crossing beams is needed. We have developed an analytical model and derived new criteria describing both the spatial structure and temporal evolution of the beams after crossing. Numerical simulations have been carried out justifying the analytical model and confirming the criteria. The impact of our results on present and future multi-beam experiments in laser fusion and high-energy-density physics, in particular the ``bursty'' nature of beams predicted to occur in NIF experiments, will be discussed.

  19. Amplification of Weibel instability in the relativistic beam-plasma interactions due to ion streaming

    Science.gov (United States)

    Ardaneh, Kazem; Cai, DongSheng; Nishikawa, Ken-Ichi

    2014-11-01

    On the basis of a three-dimensional relativistic electromagnetic particle-in-cell (PIC) code, we have analyzed the Weibel instability driven by a relativistic electron-ion beam propagating into an unmagnetized ambient electron-ion plasma. The analysis is focused on the ion contribution in the instability, considering the earliest evolution in shock formation. Simulation results demonstrate that the Weibel instability is responsible for generating and amplifying the small-scale, fluctuating, and dominantly transversal magnetic fields. These magnetic fields deflect particles behind the beam front both perpendicular and parallel to the beam propagation direction. Initially, the incoming electrons respond to field fluctuations growing as the result of the Weibel instability. Therefore, the electron current filaments are generated and the total magnetic energy grows linearly due to the mutual attraction between the filaments, and downstream advection of the magnetic field perturbations. When the magnetic fields become strong enough to deflect the much heavier ions, the ions begin to get involved in the instability. Subsequently, the linear growth of total magnetic energy decreases because of opposite electron-ion currents and topological change in the structure of magnetic fields. The ion current filaments are then merged and magnetic field energy grows more slowly at the expense of the energy stored in ion stream. It has been clearly illustrated that the ion current filaments extend through a larger scale in the longitudinal direction, while extension of the electron filaments is limited. Hence, the ions form current filaments that are the sources of deeply penetrating magnetic fields. The results also reveal that the Weibel instability is further amplified due to the ions streaming, but on a longer time scale. Our simulation predictions are in valid agreement with those reported in the literature.

  20. Photorefractive and computational holography in the experimental generation of Airy beams

    CERN Document Server

    Suarez, Rafael A B; Yepes, Indira S V; Gesualdi, Marcos R R

    2015-01-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and are practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented in a spatial light modulators. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi_{12}TiO_{20} crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally as in accordance with the predicted theory; and present excellent prospects for applications in optical trapping and optical comm...

  1. Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.

    Science.gov (United States)

    Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan

    2016-08-20

    We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.

  2. Photorefractive and computational holography in the experimental generation of Airy beams

    Science.gov (United States)

    Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.

    2016-05-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.

  3. Interstellar Turbulent Magnetic Field Generation by Plasma Instabilities

    CERN Document Server

    Tautz, R C

    2013-01-01

    The maximum magnetic field strength generated by Weibel-type plasma instabilities is estimated for typical conditions in the interstellar medium. The relevant kinetic dispersion relations are evaluated by conducting a parameter study both for Maxwellian and for suprathermal particle distributions showing that micro Gauss magnetic fields can be generated. It is shown that, depending on the streaming velocity and the plasma temperatures, either the longitudinal or a transverse instability will be dominant. In the presence of an ambient magnetic field, the filamentation instability is typically suppressed while the two-stream and the classic Weibel instability are retained.

  4. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    OpenAIRE

    Sonu Sen; Meenu Asthana Varshney; Dinesh Varshney

    2014-01-01

    In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have num...

  5. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  6. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    Science.gov (United States)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  7. Electron-acoustic solitary waves in a beam plasma with electron trapping and nonextensivity effects

    Science.gov (United States)

    Ali Shan, S.; Aman-ur-Rehman, Mushtaq, A.

    2016-09-01

    A theoretical investigation is carried out for understanding the properties of electron-acoustic solitary waves (EASWs) in a beam plasma whose constituents are a cold beam electron fluid, hot nonextensive electrons obeying a vortex-like distribution with nonextensive factor q, and stationary ions. An energy integral (Schamel KdV) equation is derived by employing pseudo-potential (reductive perturbation) approach. The presence of nonextensive q-distributed hot trapped electrons and cold electron beam has been shown to influence the soliton structure quite significantly. The nonlinear dispersion relation is derived to analyze the dependency of the electron acoustic solitary wave quantities. From the analysis of our results, it is shown that the present plasma model supports the compressive EASWs. As the real plasma situations are observed with plasma species having a relative flow, so our present analysis should be useful for understanding the electrostatic solitary structures observed in the dayside auroral zone and other regions of the magnetosphere.

  8. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  9. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  10. Implementation and Optimization of a Plasma Beam Combiner at NIF

    Science.gov (United States)

    Kirkwood, R. K.; Turnbull, D. P.; London, R. A.; Wilks, S. C.; Michel, P. A.; Dunlop, W. H.; Moody, J. D.; MacGowan, B. J.; Fournier, K. B.

    2015-11-01

    The seeded SBS process that is known to effectively amplify beams in ignition targets has recently been used to design a target to combine the power and energy of many beams of the NIF facility into a single beam by intersecting them in a gas. The demand for high-power beams for a variety of applications at NIF makes a demonstration of this process attractive. We will describe the plan for empirically optimizing a combiner that uses a gas-filled balloon heated by 10 quads of beams, and pumped by 5 additional frequency-tuned quads to amplify a single beam or quad. The final empirical optimization of beam wavelengths will be determined by using up to three colors in each shot. Performance and platform compatibility will also be optimized by considering designs with a CH gas fill that can be fielded at room temperature as well as a He gas fill to minimize absorption in the combiner. The logic, diagnostic configuration, and backscatter risk mitigation from two shots presently planned for NIF will also be described. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Plasma effect on the phase matching of high harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Candong Liu; Shitong Zhao; Peng Liu

    2011-01-01

    By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.

  12. Generation of non-classical optical fields by a beam splitter with second-order nonlinearity

    CERN Document Server

    Prakash, Hari

    2016-01-01

    We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.

  13. Instability versus equilibrium propagation of a laser beam in plasma.

    Science.gov (United States)

    Lushnikov, Pavel M; Rose, Harvey A

    2004-06-25

    We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam that controls the transition between statistical equilibrium and nonequilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtained, which provides an essential correction to a geometric optic approximation for beam propagation.

  14. A Hybrid Mode and a Classification of Beam Plasma Instabilities

    Science.gov (United States)

    2014-09-26

    classification scheme, based on the beam energy and beam density. This classification identifies the domains for the hybrid mode, the Weibel mode,13 and...the classical two stream instabilities. In that section, we also furnish a simple derivation of the Weibel mode for a relativist..c electron beam...w p which is non-zero. This mode has been called a Weibel mode,1 3𔃻 4 and is predominant in Domain III in the classification shown in Fig. 4. (B2

  15. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  16. Generation and application of pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A W [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); He, W [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Ronald, K [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Phelps, A D R [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Pitchford, L C [CAPT, Universite Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse (France)

    2007-04-07

    A pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. A PS-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. In our experiments, a 22 kV, 50 A HCP beam of brightness 10{sup 9-10} A m{sup -2} rad{sup -2} followed by a 200 V, 200 A CP beam of brightness 10{sup 11-12} A m{sup -2} rad{sup -2} were measured. Experiments have been conducted with the application of a HCP beam in a Cherenkov interaction with no input seed wave and with post-acceleration of the CP beam. In this paper, a new Cherenkov interaction experiment with an input seed wave from a 20 kW, 35 GHz pulsed magnetron has been designed using the same PS HCP beam. Simulation results of the interaction will be presented and further PS electron beam applications will be discussed.

  17. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    Science.gov (United States)

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-01

    Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.

  18. Non-ideal axicon-generated Bessel beam application for intra-volume glass modification.

    Science.gov (United States)

    Dudutis, Juozas; GeČys, Paulius; RaČiukaitis, Gediminas

    2016-12-12

    The extended focal depth of Bessel beams is a very attracting property for glass cutting applications. However, Bessel beam generation with a non-ideal conical lens induces beam pattern distortions. We present our novel results on bulk modifications of soda-lime glass using a non-ideal axicon-generated Bessel beam. Modelling of the Bessel beam pattern and experimental measurements indicated ellipticity of the central core diameter. That resulted in the formation of cracks in a transverse direction inside the bulk of glass. Furthermore, we demonstrate the possibility to control the transverse crack propagation direction, which is crucial in the case of glass cutting applications.

  19. Vortex beam generation based on a fiber array combining and propagation through a turbulent atmosphere

    Science.gov (United States)

    Aksenov, V. P.; Dudorov, V. V.; Kolosov, V. V.

    2016-09-01

    We suggest a technique for generation of optical vortex beams with a variable orbital angular momentum based on a fiber laser array. The technique uses the phase control of each single subbeam. Requirements for the number of subbeams and the spatial arrangement for the vortex beam generation are determined. The propagation dynamics of a vortex beam synthesized is compared with that of a continuous Laguerre-Gaussian beam in free space and in a turbulent atmosphere. Spectral properties of a beam synthesized, which is represented as a superposition of different azimuth modes, are determined during its free-space propagation. It is shown that energy and statistical parameters coincide for synthesized and continuous vortex beams when propagating through a turbulent medium. Probability density functions of the beam intensity fluctuations are well approximated to a gamma distribution in the cases where the scintillation index is lower than unity independently of the beam type and observation point position relative to the propagation axis.

  20. Generation of nano roughness on fibrous materials by atmospheric plasma

    Science.gov (United States)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.