WorldWideScience

Sample records for beam generated plasma

  1. Simulation of Electron-Beam Generating Plasma at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    OUYANG Liang; LI Hong; LI Benben; ZHOU Junqing; YAN Hong; SU Tie; WANG Huihui; LIUWandong

    2007-01-01

    As electron-beam generating plasma is widely applied,the software tool EGS4(Electron-Gamma Shower) was used to simulate the transmission and energy deposition of electron-beam in air.The simulation results indicated that the range of the electron-beam was inversely proportional to the gas pressure in a wide range of gas pressure,and the electron-beam of 200 keV could generate a plasma with a density 1011 cm-3 in air of latm.In addition,the energy distribution of the beam-electron and plasma density profile produced by the beam were achieved.

  2. Slow electrostatic fluctuations generated by beam-plasma interaction

    CERN Document Server

    Pommois, Karen; Pezzi, Oreste; Veltri, Pierluigi

    2016-01-01

    Eulerian simulations of the Vlasov-Poisson equations have been employed to analyze the excitation of slow electrostatic fluctuations (with phase speed close to the electron thermal speed), due to a beam-plasma interaction, and their propagation in linear and nonlinear regime. In 1968, O'Neil and Malmberg [Phys. Fluids {\\bf 11}, 1754 (1968)] dubbed these waves "beam modes". In the present paper, it is shown that, in the presence of a cold and low density electron beam, these beam modes can become unstable and then survive Landau damping unlike the Langmuir waves. When an electron beam is launched in a plasma of Maxwellian electrons and motionless protons and this initial equilibrium is perturbed by a monochromatic density disturbance, the electric field amplitude grows exponentially in time and then undergoes nonlinear saturation, associated with the kinetic effects of particle trapping and phase space vortex generation. Moreover, if the initial density perturbation is setup in the form of a low amplitude rand...

  3. A reflex electron beam discharge as a plasma source for electron beam generation

    International Nuclear Information System (INIS)

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 μs pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed

  4. Development of rf plasma generators for neutral beams

    International Nuclear Information System (INIS)

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime

  5. Population inversions in ablation plasmas generated by intense electron beams

    Science.gov (United States)

    Gilgenbach, R. M.; Kammash, T.; Brake, M. L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic field coils have been designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis has been performed using a 1 m spectrograph capable of operation from the vacuum ultraviolet through the visible. This spectrograph is coupled to a 1024 channel optical multichannel analyzer. Spectra taken during the initial 400 ns period of the e-beam pulse showed a low effective charge plasma with primarily molecular components (C2, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low charge state plasma.

  6. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  7. Ion Beam Analysis applied to laser-generated plasmas

    Science.gov (United States)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  8. Ion Beam Analysis applied to laser-generated plasmas

    International Nuclear Information System (INIS)

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed

  9. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  10. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due;

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses...

  11. Light ion beams generation in dense plasma focus

    International Nuclear Information System (INIS)

    The high energy deuterons and protons in a Mather type plasma focus device were measured by nuclear activation techniques. The radioactivity induced in graphite, aluminum and copper targets provided the deuteron intensity, energy spectra and angular dependence. High energy protons were measured by cellulose nitrate particle track detectors. The plasma focus device was operated at 30 kV for a stored energy of 18 kJ at 1.5 Torr D2 (low pressure mode), and 5 Torr D2 (high pressure mode). The yield ratio of N-13 and Al-28 showed the mean deuteron energy of 1.55 MeV under low pressure mode and of 1.44 MeV under high pressure mode. The deuteron energy spectra were measured by the stacks of 10 aluminum foils, and consisted of two components as well as the proton energy spectra measured by CN film technique. The angular spread of deuteron beam was within 30 degree under low pressure mode. Under high pressure mode, the distribution showed multi-structure, and two peaks were observed at the angle smaller than 20 degree and at 60 degree. The protons with energy more than 770 keV were directed in the angle of 10 degree. The high energy electron beam was also observed. A three-channel ruby laser holographic interferometry was used to see the spatial and temporal location of the generation of high energy ions. The ion temperature in plasma focus was estimated from D + He3 mixture gas experiment. (Kato, T.)

  12. Development of radio frequency induction plasma generators for neutral beams

    International Nuclear Information System (INIS)

    The techniques, operational aspects, and experimental results of a radio frequency induction plasma generator, with an internal rf power coupler, intended for intense neutral beam applications are described. One of the development sources suitable for 10 x 10-cm2 extraction optics was operated to a deuterium ion current density of 250 mA/cm2, uniform to 5%, over a circular extraction area 15 cm in diameter with a coupled rf power of 20 kW. Temporal fluctuation levels in the extracted ion current were measured to be typically 1% of the dc level. A second developmental source suitable for 10 x 40-cm2 grid sets was operated to 200 mA/cm2, uniform to +- 8% over a 10 x 40 cm2 area, with 40-kW coupled rf power

  13. Electron beam generated whistler emissions in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Van Compernolle, B., E-mail: bvcomper@physics.ucla.edu; Pribyl, P.; Gekelman, W. [Department of Physics, University of California, Los Angeles (United States); An, X.; Bortnik, J.; Thorne, R. M. [Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles (United States)

    2015-12-10

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  14. Electron beam generated whistler emissions in a laboratory plasma

    Science.gov (United States)

    Van Compernolle, B.; An, X.; Bortnik, J.; Thorne, R. M.; Pribyl, P.; Gekelman, W.

    2015-12-01

    Naturally occurring whistler mode emissions in the magnetosphere, are important since they are responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Recently, we reported on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced [1]. A beam of energetic electrons is launched into a cold plasma and excites both chirping whistler waves and broadband waves. Here we extend our previous analysis by comparing the properties of the broadband waves with linear theory.

  15. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    Science.gov (United States)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  16. Collimated fast electron beam generation in critical density plasma

    International Nuclear Information System (INIS)

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 1014 W/cm2, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 1014 W/cm2, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion

  17. Collimated fast electron beam generation in critical density plasma

    Energy Technology Data Exchange (ETDEWEB)

    Iwawaki, T., E-mail: iwawaki-t@eie.eng.osaka-u.ac.jp; Habara, H.; Morita, K.; Tanaka, K. A. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871 (Japan); Baton, S.; Fuchs, J.; Chen, S. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); Nakatsutsumi, M. [LULI, CNRS-Ecole Polytechnique-Université Pierre et Marie Curie-CEA, 91128 Palaiseau (France); European X-Ray Free-Electron Laser Facility (XFEL) GmbH (Germany); Rousseaux, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Filippi, F. [La SAPIENZA, University of Rome, Dip. SBAI, 00161 Rome (Italy); Nazarov, W. [School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, Scotland (United Kingdom)

    2014-11-15

    Significantly collimated fast electron beam with a divergence angle 10° (FWHM) is observed when an ultra-intense laser pulse (I = 10{sup 14 }W/cm{sup 2}, 300 fs) irradiates a uniform critical density plasma. The uniform plasma is created through the ionization of an ultra-low density (5 mg/c.c.) plastic foam by X-ray burst from the interaction of intense laser (I = 10{sup 14 }W/cm{sup 2}, 600 ps) with a thin Cu foil. 2D Particle-In-Cell (PIC) simulation well reproduces the collimated electron beam with a strong magnetic field in the region of the laser pulse propagation. To understand the physical mechanism of the collimation, we calculate energetic electron motion in the magnetic field obtained from the 2D PIC simulation. As the results, the strong magnetic field (300 MG) collimates electrons with energy over a few MeV. This collimation mechanism may attract attention in many applications such as electron acceleration, electron microscope and fast ignition of laser fusion.

  18. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    CERN Document Server

    Sydorenko, D; Chen, L; Ventzek, P L G

    2015-01-01

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high- voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. Efficient energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The short waves near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into the plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons i...

  19. Anomalous electron heating and energy balance in an ion beam generated plasma

    International Nuclear Information System (INIS)

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H2 gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy

  20. Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma

    International Nuclear Information System (INIS)

    This paper presents a theoretical model for terahertz (THz) radiation generation by two cross-focused Gaussian laser beams in a collisionless magnetoplasma. The plasma is redistributed due to the ponderomotive nonlinearity which leads to the cross focusing of the laser beams. The focusing of the copropagating laser beams increases with increasing the externally applied static magnetic field which is perpendicular to the wave propagation direction. The nonlinear current at THz frequency arises on account of nonlinear ponderomotive force as a result of beating of the two lasers. The generated THz radiation amplitude increases significantly with increasing magnetic field. The cross focusing of two laser beams enhances the THz yield. Optimization of laser-plasma parameters gives the radiated normalized THz power of the order of 10 kW

  1. Density and potential measurements in an intense ion beam-generated plasma

    International Nuclear Information System (INIS)

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented. Three refinements to existing models have been added. (1) The beam creates ions by charge exchange as well as by ionization. (2) In the ionization process most of the ions are born at rest but some of the ions are born through a molecular dissociation process which provides them with substantial energy. (3) Electrons are trapped in the potential well of the system. Their distribution will be truncated by the well and the usual Boltzmann relation for the density variation with potential will be altered slightly. Analytical expressions for these effects are obtained and included in the computer generated solution. The model and data are in good agreement only when locally determined beam current profiles are used in the solution. These profiles are broader than those determined from beam dump calorimetry

  2. Electron-beam generated copper plasma: formation and cross-field propagation

    International Nuclear Information System (INIS)

    In an evaporator, when a high-energy continuous electron beam impinges a copper target, it generates an atomic beam. It is observed that plasma is formed. The primary and the backscattered electrons from the surface of the target produce copper plasma by electron-impact ionization of the atoms. The plasma is of low temperature, weakly ionized and is present in a weak transverse magnetic field. The magnetic field is used to bend the electrons from the gun. The plasma flows in a direction that is perpendicular to the target surface and transverse to the magnetic field. The plasma expansion is weakly collisional. It decays along the flow direction due to cross-field diffusion.

  3. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  4. Argon-dominated plasma beam generated by filtered vacuum arc and its substrate etching

    International Nuclear Information System (INIS)

    A new technique to etch a substrate as a pre-treatment prior to functional film deposition was developed using a filtered vacuum arc plasma. An Ar-dominated plasma beam was generated from filtered carbon arc plasma by introducing appropriate flow rate of Ar gas in a T-shape filtered arc deposition (T-FAD) system. The radiation spectra emitted from the filtered plasma beam in front of a substrate table were measured. The substrate was etched by the Ar-dominated plasma beam. The principal results are summarized as follows. At a high flow rate of Ar gas (50 ml/min), when the bias was applied to the substrate, the plasma was attracted toward the substrate table and the substrate was well etched without film formation on the substrate. Super hard alloy (WC), bearing steel (SUJ2), and Si wafer were etched by the Ar-dominated plasma beam. The etching rate was dependent on the kind of substrate. The roughness of the substrate increased, when the etching rate was high. A pulse bias etched the substrate without roughening the substrate surface excessively.

  5. Generation of tubular beams of negative hydrogen ions by a surface plasma source

    International Nuclear Information System (INIS)

    The results of experiments on obtaining a tubular beam of hydrogen negative ions from a surface plasma source with emission ring slit of 100 mm diameter are described in the study. Conditions of burning of a high current ring discharge generating effectively hydrogen negative ions with current density up to 2.1 A/cm2 are investigated. The possibility of generation of intensive tubular beams of hydrogen negative ions by surface plasma sources is shown, the 2.4 A ion beam is obtained. The results of preliminary experiments on accelerating tubular beam up to 135 keV are described. Azymuthally uniform current density distribution of intensive tubular beams generated by discharges with a close electron drift in a surface plasma source with emission ring slit, absence of high-frequency oscillations in optimal conditions of sources operation as well as the possibility of the most complete use of generated by the discharge negative ions flow show the prospects of development of these sources for fast atom injectors

  6. Inclined slot-excited annular electron cyclotron resonance plasma source for hyperthermal neutral beam generation

    Energy Technology Data Exchange (ETDEWEB)

    You, H.-J.; Kim, D.-W.; Koo, M.; Jang, S.-O.; Jung, Y.-H.; Lee, B.-J. [National Fusion Research Institute, Daejeon (Korea, Republic of); Hong, S.-H. [Agency for Defense Development, Daejeon (Korea, Republic of)

    2011-01-15

    An inclined slot-excited antenna (ISLAN) electron cyclotron resonance (ECR) plasma source is newly designed and constructed for higher flux hyperthermal neutral beam (HNB) generation. The developed ISLAN source is modified from vertical slot-excited antenna (VSLAN) source in two aspects: one is the use of inclined slots instead of vertical slots, and the other is a cusp magnetic field configuration rather than a toroidal configuration. Such modifications allow us to have more uniform arrangement of slots and magnets, then enabling plasma generation more uniform and thinner. Moreover, ECR plasma allows higher ionization rate, enabling plasma density higher even in submillitorr pressures, therefore decreasing the collision rate and/or the reionization rate of the reflected atoms while passing through the plasma, and eventually getting higher flux of HNBs. In this paper, we report the design features and the plasma characteristics of the ISLAN source by doing plasma measurements and electromagnetic simulations. It was found that ISLAN source can be a high potential source for larger flux HNB generation; the source was found to give higher plasma densities and better uniformities than inductively coupled plasma source, particularly in low pressure ranges. Also, it is important that using ISLAN gives easier matching and better stability, i.e., ISLAN shows similar field patterns and good plasma symmetries irrespective of the variations of the mean diameter of the ring resonator and/or the presence of a limiter or a reflector, and the operating pressures.

  7. A reflex glow discharge as a plasma source for broad area electron beam generation

    International Nuclear Information System (INIS)

    The authors demonstrated an electron beam generation scheme in which two glow discharge electron guns are used in a reflex configuration to create a dense and cold plasma in a large volume. The thermal electrons from this plasma, created mainly by electron beam ionization, are subsequently accelerated in the gap between two grids by an externally applied electric field to produce a broad area electron beam. This electron beam current density and energy are independently controlled by the voltage applied to the glow discharge guns and by the electric field sustained between the grids respectively. They present a schematic representation of the electron gun used in the experimental demonstration of the concept reported here

  8. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma

    International Nuclear Information System (INIS)

    The effect of self focused hollow Gaussian laser beam (HGLB) (carrying null intensity in center) on the excitation of electron plasma wave (EPW) and second harmonic generation (SHG) has been investigated in collisionless plasma, where relativistic-ponderomotive and only relativistic nonlinearities are operative. The relativistic change of electron mass and the modification of the background electron density due to ponderomotive nonlinearity lead to self-focusing of HGLB in plasma. Paraxial ray theory has been used to derive coupled equations for the self focusing of HGLB in plasma, generation of EPW, and second harmonic. These coupled equations are solved analytically and numerically to study the laser intensity in the plasma, electric field associated with the excited EPW, and the power of SHG. Second harmonic emission is generated due to nonlinear coupling between incident HGLB and EPW satisfying the proper phase matching conditions. The results show that the effect of including the ponderomotive nonlinearity is significant on the generation of EPW and second harmonic. The electric field associated with EPW and the power of SHG are found to be highly sensitive to the order of the hollow Gaussian beam

  9. Study of second harmonic generation by high power laser beam in magneto plasma

    International Nuclear Information System (INIS)

    This paper examines the problem of nonlinear generation of second harmonic of a high power laser pulse propagating in magnetized plasma. The propagation of strong laser beam is proposed in the direction perpendicular to a relatively weak static magnetic field. The laser pulse is taken to be linearly polarized, with the orientation of its electric field that corresponds to an ordinary electromagnetic wave. Besides the standard ponderomotive nonlinearity, the appropriate wave equation also contains the nonlinearity that arises from the relativistic electron jitter velocities. During its propagation, the laser beam gets filamented on account of relativistic and pondermotive nonlinearities present in the plasma. The generated plasma wave gets coupled into the filamentary structures of the pump beam. Due to the expected presence of the beam filamentation, the work has been carried out by considering modified paraxial approximation (i.e., beyond the standard paraxial approximation of a very broad beam). It is found that the power of the plasma wave is significantly affected by the magnetic field strength in the presence of both relativistic and pondermotive nonlinearities. It is investigated that the second harmonic generation is also considerably modified by altering the strength of magnetic field. To see the effect of static magnetic field on the harmonic generation, a key parameter, i.e., the ratio of the cyclotron frequency ωc=eB0/mc over the laser frequency ω0 has been used, where c is the velocity of light, m and e are the mass and charge of the electron and B0 is the externally applied magnetic field.

  10. Spectrally resolved measurements of the terahertz beam profile generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Zalkovskij, Maksim; Strikwerda, Andrew;

    2014-01-01

    Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma .......Using a THz camera and THz bandpass filters, we measure the frequency - resolved beam profile emitted from a two - color air plasma. We observe a frequency - independent emission angle from the plasma ....

  11. Focusing of laser-generated ion beams by a plasma cylinder: similarity theory and the thick lens formula

    OpenAIRE

    Gordienko, S.; Baeva, T.; Pukhov, A.

    2005-01-01

    It is shown that plasma-based optics can be used to guide and focus highly divergent laser-generated ion beams. A hollow cylinder is considered, which initially contains a hot electron population. Plasma streaming toward the cylinder axis maintains a focusing electrostatic field due to the positive radial pressure gradient. The cylinder works as thick lens, whose parameters are obtained from similarity theory for freely expanding plasma in cylindrical geometry. Because the lens parameters are...

  12. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Naveen, E-mail: naveens222@rediffmail.com; Singh, Arvinder, E-mail: arvinder6@lycos.com [Department of Physics, National Institute of Technology Jalandhar (India); Singh, Navpreet, E-mail: navpreet.nit@gmail.com [Guru Nanak Dev University College, Kapurthala, Punjab (India)

    2015-11-15

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated.

  13. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption

    International Nuclear Information System (INIS)

    This paper presents a scheme for second harmonic generation of an intense q-Gaussian laser beam in a preformed parabolic plasma channel, where collisional nonlinearity is operative with nonlinear absorption. Due to nonuniform irradiance of intensity along the wavefront of the laser beam, nonuniform Ohmic heating of plasma electrons takes place. Due to this nonuniform heating of plasma, the laser beam gets self-focused and produces strong density gradients in the transverse direction. The generated density gradients excite an electron plasma wave at pump frequency that interacts with the pump beam to produce its second harmonics. The formulation is based on a numerical solution of the nonlinear Schrodinger wave equation in WKB approximation followed by moment theory approach. A second order nonlinear differential equation governing the propagation dynamics of the laser beam with distance of propagation has been obtained and is solved numerically by Runge Kutta fourth order technique. The effect of nonlinear absorption on self-focusing of the laser beam and conversion efficiency of its second harmonics has been investigated

  14. Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma

    International Nuclear Information System (INIS)

    An analytical study of second harmonic generation due to interaction an intense, p-polarized laser beam propagating obliquely in homogeneous underdense plasma, in the mildly relativistic regime, has been presented. The efficiency of the second harmonic radiation as well as its detuning length has been obtained and their variation with the angle of incidence is analyzed. It is shown that, for a given plasma electron density, the second harmonic efficiency increases with the angle of incidence while the detuning length decreases. The second harmonic amplitude vanishes at normal incidence of the laser beam

  15. Experimental research of different plasma cathodes for generation of high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Gunin, A. V.; Kutenkov, O. P.; Rostov, V. V. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Pegel, I. V. [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Tomsk Polytechnic University, Tomsk 634034 (Russian Federation)

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.

  16. Experimental research of different plasma cathodes for generation of high-current electron beams

    International Nuclear Information System (INIS)

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods and carbon-epoxy capillaries operating with an average current density up to 1 kA/cm2 showed insignificant erosion along 106 pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform

  17. Self focusing of laser beams and its effect in the generation of magnetic field in laser-produced plasma

    International Nuclear Information System (INIS)

    The present work deals with the generation of magnetic field in a plasma due to self focusing effects of laser beam. Spontaneously generated magnetic fields of the order of several kilogauss have been investigated and the cause for the generation of B-field has been attributed to the time dependent ponderomotive force of a self focused inhomogeneous gaussian shaped laser beam. The magnitude of the magnetic field is found to increase with self focusing effect of the laser beam. It can be shown that for high-frequency laser (viz. Nd-glass laser having the wavelength (λ) = 1.06 μm and amplitude of E-field (E00) = 3.9 x 1011 V/m), the magnitude of B-field is found to be in better agreement with the experiment. B-field varies inversely with temperature which has not been taken care in earlier reports. (author)

  18. Large area ion and plasma beam sources

    International Nuclear Information System (INIS)

    In the past a number of ion beam sources utilizing different methods for plasma excitation have been developed. Nevertheless, a widespread use in industrial applications has not happened, since the sources were often not able to fulfill specific demands like: broad homogeneous ion beams, compatibility with reactive gases, low ion energies at high ion current densities or electrical neutrality of the beam. Our contribution wants to demonstrate technical capabilities of rf ion and plasma beam sources, which can overcome the above mentioned disadvantages. The physical principles and features of respective sources are presented. We report on effective low pressure plasma excitation by electron cyclotron wave resonance (ECWR) for the generation of dense homogeneous plasmas and the rf plasma beam extraction method for the generation of broad low energy plasma beams. Some applications like direct plasma beam deposition of a-C:H and ion beam assisted deposition of Al and Cu with tailored thin film properties are discussed. (orig.)

  19. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    Science.gov (United States)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  20. On the use of intense ion beams for generating magnetized target fusion plasma

    International Nuclear Information System (INIS)

    Magnetized Target Fusion (MTF) is a concept for creating a burning D-T plasma in a potentially inexpensive system. In essence, the concept involves ion heating on time scales short compared to ion transport times plus strong inhibition of thermal electron transport with a transverse magnetic field. The magnetic field is not intended to confine the ionic component. MTF is an intrinsically pulsed concept. A straightforward analysis of MTF indicates that D-T burning conditions can be achieved in compact plasma volumes with modest initial temperatures, through the use of pulsed power technology. In terms of size, density, temperature, and time scales, MTF occupies a position in phase space that is intermediate between steady MFE schemes and ICF. In terms of cost, it is one to two orders of magnitude less expensive than these. In this paper, the authors consider a possible method for creating the initial conditions adequate for the MTF concept through the use intense ion beam injection

  1. Interference patterns in the Spacelab 2 plasma wave data - Oblique electrostatic waves generated by the electron beam

    Science.gov (United States)

    Feng, Wei; Gurnett, Donald A.; Cairns, Iver H.

    1992-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) explored the plasma environment around the shuttle. Wideband spectrograms of plasma waves were obtained from the PDP at frequencies of 0-30 kHz and at distances up to 400 m from the shuttle. Strong low-frequency (below 10 kHz) electric field noise was observed in the wideband data during two periods in which an electron beam was ejected from the shuttle. This noise shows clear evidence of interference patterns caused by the finite (3.89 m) antenna length. The low-frequency noise was the most dominant type of noise produced by the ejected electron beam. Analysis of antenna interference patterns generated by these waves permits a determination of the wavelength, the direction of propagation, and the location of the source region. The observed waves have a linear dispersion relation very similar to that of ion acoustic waves. The waves are believed to be oblique ion acoustic or high-order ion cyclotron waves generated by a current of ambient electrons returning to the shuttle in response to the ejected electron beam.

  2. Generation and pointing stabilization of multi-GeV electron beams from a laser plasma accelerator driven in a pre-formed plasma waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, A. J.; Nakamura, K.; Daniels, J.; Mao, H.-S.; Benedetti, C.; Schroeder, C. B.; Tóth, Cs.; Tilborg, J. van; Vay, J.-L.; Geddes, C. G. R.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Mittelberger, D. E.; Bulanov, S. S.; Leemans, W. P., E-mail: WPLeemans@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-05-15

    Laser pulses with peak power 0.3 PW were used to generate electron beams with energy >4 GeV within a 9 cm-long capillary discharge waveguide operated with a plasma density of ≈7×10{sup 17} cm{sup −3}. Simulations showed that the super-Gaussian near-field laser profile that is typical of high-power femtosecond laser systems reduces the efficacy of guiding in parabolic plasma channels compared with the Gaussian laser pulses that are typically simulated. In the experiments, this was mitigated by increasing the plasma density and hence the contribution of self-guiding. This allowed for the generation of multi-GeV electron beams, but these had angular fluctuation ≳2 mrad rms. Mitigation of capillary damage and more accurate alignment allowed for stable beams to be produced with energy 2.7±0.1 GeV. The pointing fluctuation was 0.6 mrad rms, which was less than the beam divergence of ≲1 mrad full-width-half-maximum.

  3. Suppression of multiple ion bunches and generation of monoenergetic ion beams in laser foil-plasma

    Institute of Scientific and Technical Information of China (English)

    Zhang Shan; Xie Bai-Song; Hong Xue-Ren; Wu Hai-Cheng; Aimierding Aimidula; Zhao Xue-Yan; Liu Ming-Ping

    2011-01-01

    In one-dimensional particle-in-cell simulations, this paper shows that the formation of multiple ion bunches is disadvantageous to the generation of monoenergetic ion beams and can be suppressed by choosing an optimum target thickness in the radiation pressure acceleration mechanism by a circularly polarised laser pulse. As the laser pulse becomes intense, the optimum target thickness obtained by a non-relativistic treatment is no longer adequate. Considering the relativistic Doppler-shifted pressure, it proposes a relativistic formulation to determine the optimum target thickness. The theoretical predictions agree with the simulation results well. The model is also valid for two-dimensional cases. The accelerated ion beams can be compelled to be more stable by choosing the optimum target thickness when they exhibit some unstable behaviours.

  4. Educating the next generation in the science and technology of plasmas, beams and accelerators

    Science.gov (United States)

    Barletta, Wiliam

    2007-11-01

    Accelerators are essential tools for discovery in fundamental physics, biology, and chemistry. Particle beam based instruments in medicine, industry and national security constitute a multi-billion dollar per year industry. More than 55,000 peer-reviewed papers having accelerator as a keyword are available on the Web. Yet only a handful of universities offer any formal training in accelerator science. Several reasons can be cited: 1) The science and technology of non-neutral plasmas cuts across traditional academic disciplines. 2) Electrical engineering departments have evolved toward micro- and nano-technology and computing science. 3) Nuclear physics departments have atrophied. 4) With few exceptions, interest at individual universities is not extensive enough to support a strong faculty line. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed an educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Governed and supported by a consortium of nine DOE laboratories and two NSF university laboratories, USPAS offers a responsive and balanced curriculum of science, engineering, and hands-on courses. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  5. Investigation of cold cathodes of plasma sources generating of hydrogen ion beams

    CERN Document Server

    Veresov, L P; Dzkuya, M I; Zhukov, Y N; Kuznetsov, G V; Tsekvava, I A

    2001-01-01

    Designs of a hollow cellular cathode (HCC) and of an inverse cylindrical multichamber magnetronic cathode (ICMMC), used as cold cathodes in duoplasmatron for hydrogen ion beam generation, are described. Their service characteristics are compared. It is ascertained that emission ability of both HCC and ICMMC is approximately the same. However, duoplasmatron with ICMMC features a three times higher gas effectiveness compared with HCC. Service life of duoplasmatron with both types of cathodes amounts to several thousand hours. On the basis of test results the choice is made in favour of ICMMC

  6. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    Science.gov (United States)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  7. Plasma lenses for focusing particle beams

    International Nuclear Information System (INIS)

    The focusing of particles by a thin plasma lens is analyzed with physical, linearized fluid and particle-in-cell computational models. For parameters similar to next-generation linear colliders, the plasma lens strength can exceed 100 MG/cm, and the luminosity can be enhanced by an order of magnitude by passing each beam through an appropriate plasma slab. The plasma electrons affect the focusing by shifting so as to (partially or completely) charge neutralize the beam. Both overdense and underdense plasma lenses are described (plasma density n0 greater or less than beam density nb). The former case applies equally well to e+ and e- beams, while the latter has distinct advantages for e- beams (including smaller aberrations and background). The effects of spherical and longitudinal aberrations, emittance, plasma boundaries, and non-linear-plasma dynamics on the final spot size are discussed

  8. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.; Walton, Scott G. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC 20375-5346 (United States)

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positive ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.

  9. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn [Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology, Academicheskaya Str. 1, 61108 Kharkov (Ukraine); Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  10. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    International Nuclear Information System (INIS)

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior

  11. Controlled generation of comb-like electron beams in plasma channels for polychromatic inverse Thomson γ-ray sources

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Lehe, R.; Lifschitz, A. F.; Shadwick, B. A.

    2016-03-01

    Propagating a relativistically intense, negatively chirped laser pulse (the bandwidth  >150 nm) in a plasma channel makes it possible to generate background-free, comb-like electron beams—sequences of synchronized bunches with a low phase-space volume and controlled energy spacing. The tail of the pulse, confined in the accelerator cavity (an electron density ‘bubble’), experiences periodic focusing, while the head, which is the most intense portion of the pulse, steadily self-guides. Oscillations of the cavity size cause periodic injection of electrons from the ambient plasma, creating an electron energy comb with the number of components, their mean energy, and energy spacing dependent on the channel radius and pulse length. These customizable electron beams enable the design of a tunable, all-optical source of pulsed, polychromatic γ-rays using the mechanism of inverse Thomson scattering, with up to  ˜10-5 conversion efficiency from the drive pulse in the electron accelerator to the γ-ray beam. Such a source may radiate  ˜107 quasi-monochromatic photons per shot into a microsteradian-scale cone. The photon energy is distributed among several distinct bands, each having sub-30% energy spread, with a highest energy of 12.5 MeV.

  12. Neutrino beam plasma instability

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2001-10-01

    We derive relativistic fluid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these fluid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino flux, but becomes stronger for weakly relativistic neutrino flux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.

  13. On the generation of cnoidal waves in ion beam-dusty plasma containing superthermal electrons and ions

    Science.gov (United States)

    El-Bedwehy, N. A.

    2016-07-01

    The reductive perturbation technique is used for investigating an ion beam-dusty plasma system consisting of two opposite polarity dusty grains, and superthermal electrons and ions in addition to ion beam. A two-dimensional Kadomtsev-Petviashvili equation is derived. The solution of this equation, employing Painlevé analysis, leads to cnoidal waves. The dependence of the structural features of these waves on the physical plasma parameters is investigated.

  14. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  15. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Iwaszczuk, Krzysztof;

    2013-01-01

    shift in the focal region, and the transition from the donut profile to a central peak is consistent with propagation of a Bessel–Gauss beam, as shown by simulations based on a recent transient photocurrent model (You et al 2012 Phys. Rev. Lett. 109 183902). We combine our measurements to the first full...

  16. Multimodular nitrogen laser for diagnostics of a plasma formed using relativistic electron beam generators

    International Nuclear Information System (INIS)

    A four-frame system for laser diagnostics of a plasma was developed and constructed. The active medium in this system was molecular nitrogen. The system was used to study explosions of thin tungsten wires in the Triton accelerator system

  17. Imaging of Plasmas using Proton Beams Generated by Ultra-Intense Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Borghesi, M,; Campbell, D.H.; Clarke, R.J.; Galimberti, M.; Gizzi, L.A.; Haines, M.G.; Mackinnon, A.J.; Schiavi, A.; Willi, O.

    2002-01-15

    Proton imaging is a diagnostic with enormous potential for the investigation of fundamental plasma physics problems which were impossible to explore up to now. By using this diagnostic, for the first time the measurement of transient electric fields in dense plasmas has been obtained, determining their evolution on a picosecond scale with micrometric spatial resolution. The data is of great relevance to Inertial Confinement Fusion both in the conventional and Fast Ignitor approach. Detailed analysis and modeling is presently undergoing.

  18. Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas

    CERN Document Server

    Palaniyappan, Sasi; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Shah, Rahul C; Fernandez, Juan C

    2015-01-01

    Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric (~TV/m) and magnetic (~10${}^{4}$ Tesla) fields to reduce the ion energy spread after the laser exits the plasma - separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency (~5%, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak ene...

  19. Decomposition of gas-phase diphenylether at 473 K by electron beam generated plasma

    CERN Document Server

    Kim, H H; Kojima, T

    2003-01-01

    Decomposition of gas-phase diphenylether (DPE) in the order of several parts per million by volume (ppmv) was studied as a model compound of dioxin using a flow-type electron-beam reactor at an elevated temperature of 473 K. The ground state oxygen ( sup 3 P) atoms played an important role in the decomposition of DPE resulting in the formation of 1,4-hydroquinone (HQ) as a major ring retaining product. The high yield of hydroquinone indicated that the breakage of ether bond (C-O) is important in the initial step of DPE decomposition. Ring cleavage products were CO and CO sub 2 , and NO sub 2 was also produced from background N sub 2 -O sub 2. The sum of the yields of HQ, CO sub 2 and CO accounts for over 90% of the removed DPE. Hydroxyl radicals (OH) were less important in the dilute DPE decomposition at a high water content, and were mostly consumed by recombination reactions to form hydrogen peroxide. The smaller the initial DPE concentrations, the higher the decomposition efficiency and the lower the yield...

  20. Non-ambipolar radio-frequency plasma electron source and systems and methods for generating electron beams

    Science.gov (United States)

    Hershkowitz, Noah; Longmier, Benjamin; Baalrud, Scott

    2009-03-03

    An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.

  1. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  2. The effect of plasma inhomogeneities on (i) radio emission generation by non-gyrotropic electron beams and (ii) particle acceleration by Langmuir waves

    Science.gov (United States)

    Tsiklauri, David

    2015-04-01

    Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [1]. Here recent progress in an alternative to the plasma emission model using Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts will be presented. In particular, (i) Fourier space drift (refraction) of non-gyrotropic electron beam-generated wave packets, caused by the density gradient [1,2], (ii) parameter space investigation of numerical runs [3], (iii) concurrent generation of whistler waves [4] and a separate problem of (iv) electron acceleration by Langmuir waves in a background magnetised plasma with an increasing density profile [5] will be discussed. In all considered cases the density inhomogeneity-induced wave refraction plays a crucial role. In the case of non-gyrotropic electron beam, the wave refraction transforms the generated wave packets from standing into freely escaping EM radiation. In the case of electron acceleration by Langmuir waves, a positive density gradient in the direction of wave propagation causes a decrease in the wavenumber, and hence a higher phase velocity vph = ω/k. The k-shifted wave is then subject to absorption by a faster electron by wave-particle interaction. The overall effect is an increased number of high energy electrons in the energy spectrum. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011); http://dx.doi.org/10.1063/1.3590928 [2] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013); http://dx.doi.org/10.1063/1.4812453 [3] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012); http://dx.doi.org/10.1063/1.4768429 [4] M. Skender, D. Tsiklauri, Phys. Plasmas 21, 042904 (2014); http://dx.doi.org/10.1063/1.4871723 [5] R. Pechhacker, D. Tsiklauri

  3. Experimental studies on beam-plasma interaction

    International Nuclear Information System (INIS)

    Beam-handling technology has reached now at such a level as to enable highly controlled experiments of beam-plasma interaction. Varieties of hypotheses and suppositions about the beam propagation and interaction in space plasma can be proved and often be corrected by examining the specific processes in laboratory plasma. The experiments performed in this way by the author are briefed: ion beam instability in unmagnetized plasma; ion beam instability perpendicular to magnetic field; and electron beam instability. (Mori, K.)

  4. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  5. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  6. Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.

    Science.gov (United States)

    Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.

    2008-11-01

    A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.

  7. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  8. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    Science.gov (United States)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  9. Evolution of the THz Beam Profile from a Two-Color Air Plasma Through a Beam Waist

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2013-01-01

    We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam.......We experimentally measure the profile of a THz beam generated by a two-color air plasma as it passes through a beam waist, and show that it can be approximated as a Bessel-Gauss beam....

  10. Pulsed electron beams in transient plasmas

    International Nuclear Information System (INIS)

    In the present work a large variety of experimental investigation is reviewed, having in common pulsed electron beams in transient plasmas. The simulation of nuclear pumping of plasma recombination lasers using pulsed electron beams led to the optimization of a coaxial discharge geometry which allowed lasing at the 585.3 nm transition in Ne I, Ne-H2 mixtures. In a detailed investigation of the cathode sheaths by superposition of two discharges, a simple and accurate method to measure the sheath width has been worked out and a new way of pulsed electron beam generation has been discovered. The electron beam (280 A peak current, 10 ns pulse duration, diameter less than 100 μm over a few centimeters length) is produced in a pseudospark-like discharge without inner diaphragms by the synergy of two discharges. Its parameters can be efficiently controlled by the preionization discharge. The exceptional radial stability of this beam along the discharge tube access opens the possibility to use the device as a pulsed high-density ion trap. The extension of this research helped to discover and to explain the (Cruise) effect, namely the capture and guiding of the electron beam by dielectric fibres. (author) 10 figs., 64 refs

  11. Plasma Heating and Burnout in Beam-Plasma Interaction

    International Nuclear Information System (INIS)

    Experiments using beam-plasma interaction to generate fully ionized plasma and enhance the temperature of the components are in progress at Oak Ridge National Laboratory. Previous experimental work demonstrated that an electron beam of 5 keV could heat plasma electrons in a magnetic mirror machine to a temperature over 100 keV. In this extension of the earlier work the electron beam is directed through higher pressure gas. Such a dense cloud of electrons is produced that neutral gas streaming inward from the walls is almost completely ionized or burned out before reaching the center of the apparatus. The most spectacular feature of the burnout transition is the sudden decrease of spectral light by a factor about 1000. Several neutral beam transmission experiments give electron densities greater than 1012 cm-3. Microwave cut-off measurements agree with this lower limit. Direct measurements of the electron plasma frequency and the ion plasma frequency give a density of 5 x 1012 cm-3. Once the neutral gas in the plasma is ionized, the electron cooling by excitation processes and the ion cooling by charge-exchange phenomena disappear; therefore, any electron and ion heating caused by the electron beam should have time to take effect. Pin-hole camera images formed by 50-keV X-rays give evidence of electron heating. Ion heating is limited by wall proximity to 20-keV deuterons in the Burnout IV device and 200-keV deuterons in the larger Burnout V device. Magnetic and electrostatic analysis give evidence for the existence of some deuterons at 20 keV in Burnout IV; similar analysis is in progress on Burnout V. In Burnout V the electron beam traverses the central 300 cm3 of the 10-liter volume between the mirrors of a 40-20-40-kG mirror machine. Injection and multiple reflection of the 45-kW electron beam occur outside the mirrors in a region of 10-5 Torr ambient pressure. The lifetime of the plasma is difficult both to measure and to predict on theoretical grounds. The

  12. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  13. Underdense plasma lenses for focusing particle beams

    International Nuclear Information System (INIS)

    Plasma lenses are of interest for providing ultra-strong focusing of particle beams in order to enhance the luminosity of a high-energy linear collider. Previous work has explored the selfpinch of e+ or e- beams as they pass through an overdense slab of passive plasma (i.e., plasma density much greater than the beam density). Here the authors examine the focusing of beams in an underdense plasma through physical and particle simulation models. In this regime the plasma dynamics becomes highly non-linear and differs for e+ and e- beams. For e- beams the plasma electrons are almost completely expelled by the beam's space charge leaving a uniform column of ion charge that provides the focusing force. Compared to the overdense lens, the underdense lens has the advantages that spherical aberrations, longitudinal aberrations, and plasma contribution to background in the detectors are all greatly reduced. 10 refs., 4 figs., 1 tab

  14. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  15. Theory for beam-plasma millimeter-wave radiation source experiments

    International Nuclear Information System (INIS)

    This paper reports on theoretical studies for millimeter-wave plasma source experiments. In the device, millimeter-wave radiation is generated in a plasma-filled waveguide driven by counter-streaming electron beams. The beams excite electron plasma waves which couple to produce radiation at twice the plasma frequency. Physics topics relevant to the high electron beam current regime are discussed

  16. Plasma beam discharge in carbon dioxide

    International Nuclear Information System (INIS)

    The paper deals with the dissociation of carbon dioxide in nonequilibrium plasma of a stationary plasma-beam discharge. Experimental results of spectroscopic and probe measurements of plasma parameters are given. Moreover, a mass-spectrometric analysis of gaseous products of the chemical reactions is presented. In addition the measurement of the deposition rate of solid products by means of a quartz oscillator is described. The results show that plasma beam discharge is an effective tool for inducing plasma-chemical reactions. (author)

  17. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  18. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  19. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  20. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  1. Generation of particle beams and X-ray pulses in ultra-relativistic laser-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pukhov, A.; Gordienko, S.; Baeva, T.; Kiselev, S.; Shorokhov, O.; Kostyukov, I.

    2005-07-01

    A similarity theory is developed for ultra-relativistic laser-plasma interactions. It is shown that the laser-plasma dynamics is similar if the dimensionless number S ne/a0nc is kept constant, where a0 = eA0/mc2 is the initial laser amplitude, ne ia the electron density, nc = ?2 0 m/4 ?e2 is the critical plasma density for the laser pulse with the carrier frequency ?0. The S?number reflects the fundamental symmetry of the laser-plasma dynamics described by the Vlasov Eq. and the Maxwell Eqs. in the ultrarelativistic regime a0 ? 1. The similarity theory allows us to derive simple scalings for the energy and the number of laser-accelerated electrons as well as for the density of the electron bunch. We are particularly interested in the so-called Bubble acceleration [1, 2]. The S?similarity is valid both for under- and overdense plasmas. In the case of overdense plasmas the S?similarity leads to the scalability of high harmonics from sharp plasma surfaces. We show that the high harmonics are phase-locked and coherent. They appear in the form of (sub-)atto second pulses of X-rays [3]. Employing concave plasma surfaces one can focus these harmonics. The coherent harmonic focusing opens a new way to the extremely high intensities reaching the vacuum breakdown limit at 1029 W/cm2. The ion acceleration in laser-plasma interactions has its own similarity group that is also discussed in the present work. (Author)

  2. EUV Generation by High Density Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. S.; Lee, H. S.; Kim, K. H.; Seo, K. S.; Rhim, K. H. [Korea Electrotechnology Research Institute (Korea)

    2000-07-01

    As a next generation lithography (NGL) technology for VLSI semiconductor fabrication, electron beam, ion beam, X-ray and extreme ultraviolet(EUV) are considered as possible candidates. Among these methods, EUV lithography(EUVL) is thought to be the most probable because it is easily realized by improving current optical lithography technology. In order to get EUV radiation which can be applied to EUVL, it is essential to generate very high density and high temperature plasma stably. The method using a pulse power laser and a high voltage pulse discharge is commonly used to accomplish such a high density and high temperature plasma. In this paper, we review the recent trends of the EUV generation technique by high density and high temperature plasma. (author). 6 refs., 4 figs.

  3. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 1018 to 1020 m-3. First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  4. Theory of a beam-driven plasma antenna

    Science.gov (United States)

    Timofeev, I. V.; Volchok, E. P.; Annenkov, V. V.

    2016-08-01

    In this paper, we propose a theory describing generation of electromagnetic waves in a thin beam-plasma system with a characteristic transverse size comparable with the radiation wavelength. In fact, a thin plasma column with a longitudinal density modulation works like a plasma antenna in which an electron beam can excite a superluminal wave of electric current. It has previously been shown that, if the period of this modulation coincides with the wavelength of the most unstable beam-driven mode, radiation at a frequency slightly below the plasma frequency is emitted transversely to the plasma column and generated in thin boundary layers. For the plasma thickness comparable with the skin-depth, generation of the terahertz radiation can reach high efficiency ( ˜10 % ) in such a scheme, but the absolute power of this radiation cannot be increased by increasing the transverse plasma size. In this paper, we study whether the power of such an antenna can be increased in the regime of oblique emission when the magnetized plasma is transparent to the radiated electromagnetic waves and the whole plasma volume may be involved in their generation.

  5. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  6. Pulsed supersonic helium beams for plasma edge diagnosis

    Science.gov (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  7. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  8. Laser beam-plasma coupling in laser solenoid plasmas

    International Nuclear Information System (INIS)

    A model has been constructed to analyze the gross beam-plasma interaction in a laser solenoid plasma. The model includes a simple solution for a slab plasma response to a given laser beam, and a solution for axial beam size variations in response to arbitrary axial plasma structure. The two solutions are combined to determine the coupled behavior. Trapping of the focused laser beam where it enters the plasma is a significant problem, but can be achieved by a minimum level of imbedded field in the plasma. If the beam is trapped, it first focuses and then defocuses near the front of the bleaching wave (front of the laser heated plasma). In order to avoid divergence of the beam near the front, it is essential to have a pre-formed favorable density profile in the plasma. Such a condition is probably achieved automatically in the early stages of plasma heating. Several techniques are discussed which can be used to avert unfavorable refractive behavior (catastrophic self-focusing and defocusing)

  9. Propagation of realistic beams in underdense plasma

    International Nuclear Information System (INIS)

    The effect of beam structure on propagation through underdense plasma is examined in two different examples. First, it is shown that the distribution of intensities within a laser beam affects how the beam deflects in the presence of transverse plasma flow. A detailed analysis of beam deflection shows that the rate scales linearly with intensity and plasma density, and inversely with plasma temperature. When the plasma flow is subsonic, the deflection rate is proportional to the ion damping decrement, and scales as M/(1 - M2)3/2, where M is the transverse flow Mach number. When the plasma flow is supersonic, the deflection rate scales as 1/[M(M2 - 1)1/2]. Next, the effect of beam structure on channel formation by very intense laser beer is studied. A diffraction-limited beam with 40 TW of input power forms a channel through 4OOpm of plasma, whereas when this beam is phase aberrated, channel formation does not occur

  10. Beam-plasma instability in charged plasma in the absence of ions

    Science.gov (United States)

    Dubinov, Alexander E.; Petrik, Alexey G.; Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-04-01

    We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.

  11. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    International Nuclear Information System (INIS)

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch

  12. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  13. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  14. Low energy, high power hydrogen neutral beam for plasma heating.

    Science.gov (United States)

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  15. Surface plasma source with saddle antenna radio frequency plasma generator.

    Science.gov (United States)

    Dudnikov, V; Johnson, R P; Murray, S; Pennisi, T; Piller, C; Santana, M; Stockli, M; Welton, R

    2012-02-01

    A prototype RF H(-) surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA∕kW. Control experiments with H(-) beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing. PMID:22380221

  16. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  17. COUNTER PROPAGATION OF ELECTRON AND CO2 LASER BEAMS IN A PLASMA CHANNEL

    International Nuclear Information System (INIS)

    A high-energy CO2 laser is channeled in a capillary discharge. Occurrence of guiding conditions at a relatively low plasma density (18 cm-3) is confirmed by MHD simulations. Divergence of relativistic electron beam changes depending on the plasma density. Counter-propagation of the electron and laser beams inside the plasma channel results in intense x-ray generation

  18. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  19. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  20. Conditional eddies, or clumps, in ion-beam-generated turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pecseli, H. L.; Trulsen, J.

    1985-01-01

    Low-frequency electrostatic fluctuations are investigated experimentally in an unmagnetized plasma. The turbulence is generated by ion-ion-beam instabilities. Real-time signals are recorded and investigated statistically on a conditional basis. The formation and propagation of structures with a r......Low-frequency electrostatic fluctuations are investigated experimentally in an unmagnetized plasma. The turbulence is generated by ion-ion-beam instabilities. Real-time signals are recorded and investigated statistically on a conditional basis. The formation and propagation of structures...

  1. Gaussian beam evolution in nonlinear inhomogeneous plasma

    Science.gov (United States)

    Berczynski, P.; Kravtsov, Yu. A.; Tikhonchuk, V.; Tikhonchuk

    2014-04-01

    The method of nonlinear complex geometrical optics (NCGO) is proposed in this paper for description of the evolution of a spatially narrow Gaussian beam (GB) in an inhomogeneous nonlinear plasma. NCGO method deals with first-order ordinary differential equations for the complex curvature of the wave front and for GB amplitude and for second-order ordinary differential equation for GB width. Thus, NCGO simplifies the description of GB diffraction and self-focusing effects as compared to the known methods of plasma physics and this way it can be assumed to be attractive and comprehensive approach in problems of plasma heating by electromagnetic waves. Moreover, we demonstrate in this paper some regularity for nonlinear inhomogeneous plasma in the framework of which central ray of a GB is not subjected to nonlinear refraction within NCGO method boundary applicability. On the contrary, the beam width, wave front curvature, and GB amplitude are modified by diffraction and self-focusing processes. General properties of the beam propagation are illustrated with results of numerical modeling for two particular cases: GB diffraction and self-focusing along curvilinear trajectory with torsion in axially symmetric plasma column and GB reflection from nonlinear inhomogeneous plasma layer. We prove in this paper that NCGO is new effective method of plasma physics, which can be applied for improvement of ray tracing techniques and plasma diagnostics.

  2. Generating stable tractor beams with dielectric metasurfaces

    Science.gov (United States)

    Pfeiffer, Carl; Grbic, Anthony

    2015-03-01

    Propagation-invariant beams that pull objects towards a light source are commonly known as tractor beams. Here, an efficient, linearly polarized tractor beam with improved stability is introduced. The beam consists of a superposition of transverse-electric and transverse-magnetic polarized Bessel beams of orders m =+1 and m =-1 . It is shown that this beam can stably pull a wide range of dielectric microparticles arbitrarily long distances, independent of ambient conditions. Next, a straightforward method of generating these high-performance beams is proposed. A Si metasurface transforms an incident linearly polarized Gaussian beam into the desired tractor beam. Full-wave simulations demonstrate that it is possible for this simple geometry to pull a polystyrene sphere a distance equal to the nondiffracting range of the Bessel beam. The simplicity of the setup and the robust performance of the proposed tractor beam significantly enhance the ability to manipulate matter with light.

  3. Simulations of electromagnetic emissions produced in a thin plasma by a continuously injected electron beam

    Science.gov (United States)

    Annenkov, V. V.; Timofeev, I. V.; Volchok, E. P.

    2016-05-01

    In this paper, electromagnetic emissions produced in a thin beam-plasma system are studied using two-dimensional particle-in-cell simulations. For the first time, the problem of emission generation in such a system is considered in a realistic formulation allowing for the continuous injection of a relativistic electron beam through a plasma boundary. Specific attention is given to the thin plasma case in which the transverse plasma size is comparable to the typical wavelength of beam-driven oscillations. Such a case is often implemented in laboratory beam-plasma experiments and has a number of peculiarities. Emission from a thin plasma does not require intermediate generation of the electromagnetic plasma eigenmodes, as in an infinite case, and is more similar to the regular antenna radiation. In this work, we determine how efficiently the fundamental and the second harmonic emissions can be generated in previously modulated and initially homogeneous plasmas.

  4. OAM beams from incomplete computer generated holograms

    CERN Document Server

    Zambale, Niña Angelica F; Hermosa, Nathaniel

    2016-01-01

    In this letter we show that optical beams with orbital angular momentum (OAM) can be generated even with incomplete computer generated holograms (CGH). These holograms are made such that random portions of it do not contain any information. We observe that although the beams produced with these holograms are less intense, these beams maintain their shape and that their topological charges are not affected. Furthermore, we show that superposition of two or more beams can be created using separate incomplete CGHs interspersed together. Our result is significant especially since most method to generate beams with OAM for various applications rely on pixelated devices or optical elements with imperfections.

  5. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  6. 2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma

    CERN Document Server

    Shukla, Chandrashekhar; Patel, Kartik

    2015-01-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...

  7. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  8. Electron beam parallel X-ray generator

    Science.gov (United States)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  9. Propagation of a nonrelativistic electron beam in a plasma in a magnetic field

    International Nuclear Information System (INIS)

    Propagation of a nonrelativistic electron beam in a plasma in a strong magnetic field has been studied using electrostatic one-dimensional particle simulation models. Electron beams of finite pulse length and of continuous injection are followed in time to study the effects of beam-plasma interaction on the beam propagation. For the case of pulsed beam propagation, it is found that the beam distribution rapidly spreads in velocity space generating a plateaulike distribution with a high energy tail extending beyond the initial beam velocity

  10. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x105cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x1013 cm-3respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x107 cm-3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 104 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  11. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  12. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  13. Beam-Generated Detector Backgrounds at CESR

    OpenAIRE

    Henderson, Stuart; Cinabro, David

    2000-01-01

    The CESR/CLEO Phase II interaction region is described. The operational experience with beam-generated detector backgrounds is reviewed. The status of our understanding of beam-generated detector backgrounds at CESR is described and comparisons of background measurements with simulation predictions are presented.

  14. Laser Plasmas : Optical guiding of laser beam in nonuniform plasma

    Indian Academy of Sciences (India)

    Tarsem Singh Gill

    2000-11-01

    A plasma channel produced by a short ionising laser pulse is axially nonuniform resulting from the self-defocusing. Through such preformed plasma channel, when a delayed pulse propagates, the phenomena of diffraction, refraction and self-phase modulation come into play. We have solved the nonlinear parabolic partial differential equation governing the propagation characteristics for an approximate analytical solution using variational approach. Results are compared with the theoretical model of Liu and Tripathi (Phys. Plasmas 1, 3100 (1994)) based on paraxial ray approximation. Particular emphasis is on both beam width and longitudinal phase delay which are crucial to many applications.

  15. Development of an x-ray Talbot-Lau moire deflectometer for fast density profile measurements of dense plasmas generated by beam-target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Dan [National Security Technol., LLC, Los Alamos, NM (United States); Berninger, M; Meidinger, A; Stutman, Dan; Valdivia, Maria Pia

    2015-05-01

    For the first time an x-ray Talbot-Lau moire deflectometer is being developed that will use a flash tube source and fast detector for dynamic density gradient measurements. In Talbot-Lau moire deflectometry, an x-ray grating makes an image of itself on a second grating (the Talbot effect) to produce a moire pattern on a detector. The test object is placed between these gratings, with variations in index of refraction changing the pattern. A third grating in front of an incoherent x-ray source produces an array of coherent sources. With a 150 kV x-ray flash tube as the source, the gratings are placed in a glancing angle setup for performance at ~60 keV. The detector is a gated CCD with a fast scintillator for x-ray conversion. This diagnostic, designed for the Dual-Axis Radiographic Hydrodynamic Test facility (DARHT) at Los Alamos National Laboratory, measures the density profile of dense plasma plumes ejected from beam-target interactions. DARHT has two high-current, pulsed, inductive linear electron accelerators with bremsstrahlung targets at the end of each beam line to create 2-D radiographic images of hydrodynamic tests. One multi-pulse accelerator has up to four beam pulses striking the same target within 2 μs. Computer simulations that model target evolution and ejected material between pulses are used to design these targets for optimal radiographic performance; the x-ray deflectometer will directly measure density gradients in the ejected plumes and provide the first experimental constraints to these models. During the first year, currently underway, the diagnostic systems are being designed. In year two, the flash tube and fast detector will be deployed at DARHT for radiographic imaging while the deflectometer is built and tested on the bench with a continuous source. Finally, in year three, the fast deflectometer will be installed on DARHT and density measurements will be performed.

  16. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  17. Monte Carlo simulation of electron beam air plasma characteristics

    Institute of Scientific and Technical Information of China (English)

    Deng Yong-Feng; Han Xian-Wei; Tan Chang

    2009-01-01

    A high-energy electron beam generator is used to generate a plasma in atmosphere. Based on a Monte Carlo toolkit named GEANT4,a model including complete physics processes is established to simulate the passage of the electron beam in air. Based on the model,the characteristics of the electron beam air plasma are calculated. The energy distribution of beam electrons (BEs) indicates that high-energy electrons almost reside in the centre region of the beam,but low-energy electrons always live in the fringe area. The energy deposition is calculated in two cases,i.e.,with and without secondary electrons (SEs). Analysis indicates that the energy deposition of Ses accounts for a large part of the total energy deposition. The results of the energy spectrum show that the electrons in the inlet layer of the low-pressure chamber (LPC) are monoenergetic,but the energy spectrum of the electrons in the outlet layer is not pure. The SEs are largely generated at the outlet of the LPC. Moreover,both the energy distribution of Bes and the magnitude of the density of SEs are closely related to the pressure of LPC. Thus,a conclusion is drawn that a low magnitude of LPC pressure is helpful for reducing the energy loss in the LPC and also useful for greatly increasing the secondary electron density in dense air.

  18. Pulsed metallic-plasma generators.

    Science.gov (United States)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  19. Propagation of electron and positron beams in long, dense plasmas

    Science.gov (United States)

    Muggli, Patric; Blue, Brent; Clayton, Chris; Decker, Franz-Joseph; Hogan, Mark; Hunag, Chengkun; Joshi, Chan; Katsouleas, Tom; Lu, Wei; Mori, Warren; O'Connell, Caollionn; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2008-04-01

    Electron beams with density larger than the plasma density can propagate through plasmas without significant emittance growth. The electron beam expels the plasma electrons from the bunch volume and propagate in a pure, uniform ion column. In contrast, positron beams attract plasma electrons that flow through the positron bunch. As a result the plasma focusing force is nonlinear, a charge halo forms around the bunch, and the bunch emittance grows. After some distance into the plasma, the bunch emittance reaches an approximately constant value, and the beam and the plasma focusing force reach a steady state. Experimental results obtained with electron and positron bunches, as well as numerical simulation results will be presented.

  20. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams

    International Nuclear Information System (INIS)

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  1. Generation of Solution Plasma for Surface Treatment

    OpenAIRE

    Akaki, Kazuhiko; Matsuda, Masanorix; Matsuda, Yoshinobu; Fujiyama, Hiroshi

    2008-01-01

    Solution plasma has been generated in ultrasonic bubbles with new-type electrodes by supplying alternative power. We found solution plasma can be generated in various solvents by applying this technique. Now we try establishing the plasma generation and its application for surface treatment

  2. High order harmonic generation from plasma mirrors

    International Nuclear Information System (INIS)

    When an intense laser beam is focused on a solid target, the target's surface is rapidly ionized and forms dense plasma that reflects the incident field. For laser intensities above few 10 to the power of 15 Wcm-2, high order harmonics of the laser frequency, associated in the time domain to a train of atto-second pulses (1 as 10-18 s), can be generated upon this reflection. In this thesis, we developed numerical tools to reveal original aspects of harmonic generation mechanisms in three different interaction regime: the coherent wake emission, the relativistic emission and the resonant absorption. In particular, we established the role of these mechanisms when the target is a very thin foil (thickness of the order of 100 nm). Then we study experimentally the spectral, spatial and coherence properties of the emitted light. We illustrate how to exploit these measurements to get information on the plasma mirror dynamics on the femtosecond and atto-second time scales. Last, we propose a technique for the single-shot complete characterization of the temporal structure of the harmonic light emission from the laser-plasma mirror interaction. (author)

  3. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 1012 cm -3 and 4x1013 cm -3. The peak velocity of the ejected plasma was 0. 8 x 105 cm sec-1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x107 cm-3. It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  4. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  5. Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma

    Science.gov (United States)

    Singh, Arvinder; Gupta, Naveen

    2015-06-01

    A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.

  6. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    Science.gov (United States)

    Skender, Marina; Tsiklauri, David

    2014-05-01

    Super-thermal electron beams travelling away from the Sun on the open magnetic field lines are widely accepted to be the source of the Type-III bursts. The earliest idea of the generation of the Type-III bursts was based on the plasma emission mechanism. A fast moving electron beam excites Langmuir waves at the local plasma frequency, ωp. The Langmuir waves are partially transformed via scattering at ωp and 2ωp, with ion sound and oppositely propagating Langmuir waves, respectively, into electromagnetic waves. As the electron beam propagates away from the Sun, through less dense coronal and interplanetary environment, the frequency of the emitted electromagnetic radiation decreases, because plasma frequency is a function of the square root of the plasma density. Type-III bursts have been subject of theoretical, observational and numerical studies. The first detailed theory of the Type-III emission invoked coherent plasma waves, generated by a stream of fast particles, which are due to Rayleigh and combination scattering at ωp and 2ωp subsequently transformed into radio waves. Stochastic growth of the density irregularities was invoked in order to produce stochastically generated clumpy Langmuir waves, where the ambient density perturbations cause the beam to fluctuate around marginal stability. Other theories on the mechanism which generates the Type-III emission include: linear mode conversion of Langmuir waves, Langmuir waves producing electromagnetic radiation as antennas and non-gyroptropic electron beam emission [1] of commensurable properties to the Type-III bursts. In Refs. [2,3] it was found that the non-gyrotropic beam excites electromagnetic radiation by the current transverse to the magnetic field, which results in (ω,k)-space drift while propagating along the 1-dimensional spatial domain throughout the decreasing plasma density profile. The role of the electron beam pitch angle and the background density gradient profile was investigated in [4

  7. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  8. Colliding ionization injection in a beam driven plasma accelerator

    CERN Document Server

    Wan, Y; Li, F; Wu, Y P; Hua, J F; Pai, C -H; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2015-01-01

    The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron bunches obtained using this technique can have extremely small slice energy spread, because each slice is mainly composed of electrons ionized at the same time. Another remarkable advantage is that the injection distance is changeable. A bunch with normalized emittance of 3.3 nm, slice energy spread of 15 keV and brightness of 7.2 A m$^{-2}$ rad$^{-2}$ is obtained with an optimal injection length which is achieved by adjusting the launch time of the drive beam or by changing the laser focal position. This makes the scheme a promising approach to generate high quality electron bunches for the fifth generation light source.

  9. Charged particle acceleration by electron beam in corrugated plasma waveguide

    International Nuclear Information System (INIS)

    A two-beam charged particle acceleration scheme in a plasma waveguide with corrugated conducting walls is considered. The guiding heavy-current relativistic electron beam is in synchronism with the first plasma wave space harmonics and the accelerated beam is synchronism with a quicker plasma wave. In this case under weak corrugation of the wall the accelerating resonance field effecting the accelerated particles notably increases the field braking the guiding beam. The process of plasma wave excitation with regard to the guiding beam space charge and the relativistic particle acceleration dynamics are investigated by numeric methods. Optimal acceleration modes are found. 19 refs.; 12 figs

  10. Plasma focusing and diagnosis of high energy particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin.

    1990-09-01

    Various novel concepts of focusing and diagnosis of high energy charged particle beams, based on the interaction between the relativistic particle beam and the plasma, are reviewed. This includes overdense thin plasma lenses, and (underdense) adiabatic plasma lens, and two beam size monitor concepts. In addition, we introduce another mechanism for measuring flat beams based on the impulse received by heavy ions in an underdense plasma. Theoretical investigations show promise of focusing and diagnosing beams down to sizes where conventional methods are not possible to provide. 21 refs.

  11. Beam-Plasma Interaction in Muon Ionization Cooling Lattices

    Science.gov (United States)

    Ellison, James; Snopok, Pavel

    2015-04-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerator experiments. There are a number of software packages available to the muon accelerator community that allow detailed simulations with many physics processes accounted for. However, there is also a list of missing physics processes that require implementation or interfacing with other codes. This list is being prioritized, and the most important processes addressed. One of the crucial physics processes specific to muon accelerators that has not yet been implemented in any current simulation code is beam-induced plasma effect in liquid, solid, and gaseous absorbers that are key elements of a cooling channel. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  12. Electron beam generation in high voltage glow discharges

    International Nuclear Information System (INIS)

    The generation of intense CW and pulsed electron beams in glow discharges in reviewed. Glow discharge electron guns operate at a pressure of the order of 1 Torr and often have an advantage in applications that require a broad area electron beam in a gaseous atmosphere, such as laser excitation and some aspects of materials processing. Aspects of electron gun design are covered. Diagnostics of the high voltage glow discharges including the electric field distribution mapped by Doppler free laser spectroscopy, and plasma density and electron temperature measurements of the electron yield of different cathode materials under glow discharge conditions are presented

  13. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  14. Vortex stabilized electron beam compressed fusion grade plasma

    International Nuclear Information System (INIS)

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  15. Vortex stabilized electron beam compressed fusion grade plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  16. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  17. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  18. Operational characteristics of the high flux plasma generator Magnum-PSI

    NARCIS (Netherlands)

    van Eck, H. J. N.; Abrams, T.; van den Berg, M. A.; Brons, S.; van Eden, G. G.; Jaworski, M. A.; Kaita, R.; van der Meiden, H. J.; Morgan, T. W.; van de Pol, M.J.; Scholten, J.; Smeets, P. H. M.; De Temmerman, G.; de Vries, P. C.; van Emmichoven, P. A. Zeijlma

    2014-01-01

    Abstract In Magnum-PSI (MAgnetized plasma Generator and \\{NUMerical\\} modeling for Plasma Surface Interactions), the high density, low temperature plasma of a wall stabilized dc cascaded arc is confined to a magnetized plasma beam by a quasi-steady state axial magnetic field up to 1.3 T. It

  19. Microwave bessel beams generation using guided modes

    KAUST Repository

    Salem, Mohamed

    2011-06-01

    A novel method is devised for Bessel beams generation in the microwave regime. The beam is decomposed in terms of a number of guided transverse electric modes of a metallic waveguide. Modal expansion coefficients are computed from the modal power orthogonality relation. Excitation is achieved by means of a number of inserted coaxial loop antennas, whose currents are calculated from the excitation coefficients of the guided modes. The efficiency of the method is evaluated and its feasibility is discussed. Obtained results can be utilized to practically realize microwave Bessel beam launchers. © 2006 IEEE.

  20. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    International Nuclear Information System (INIS)

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes

  1. Research on EBEP (Electron Beam Excited Plasma) applications; EBEP (denshi beam reiki plasma) no tekiyo gijutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, E.; Ryoji, M.; Mori, Y.; Tokai, M. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1996-04-20

    Research and development is actively conducted on machining technologies using plasma in various fields, with studies energetically pursued on etching techniques or those of forming a thin film by the use of high frequency and microwave plasma. The EBEP system jointly developed by Kawasaki Heavy Industries Ltd. and Institute of Physical and Chemical Research is a plasma source for forming a high density plasma by implanting into a plasma chamber from the outside a high-current electron beam accelerated to an energy of approximately 60 to 100eV where the collision cross-section of gas ionization is maximized. The characteristics of the system are such as (1) it enables electron energy distribution to be controlled from outside by varying acceleration voltage, (2) it excels in the controllability of ion energy and (3) it allows to form a steady high-density plasma in a nonmagnetic field. This paper presents the generating principle of EBEP, its plasma characteristics, etching technique using EBEP, thin film forming technique by EBEP-CVD method, and multipurpose apparatus for research and development. 6 refs., 7 figs., 1 tab.

  2. Investigation of plasma–surface interaction at plasma beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaev, V., E-mail: kurnaev@plasma.mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Vizgalov, I.; Gutorov, K. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I. [Institute of Atomic Energy, National Nuclear Center the Republic of Kazakhstan, Street Krasnoarmejsky, 10, 071100 Kurchatov (Kazakhstan); Klimov, N. [SRC RF TRINITI, ul. Pushkovykh, vladenie 12, Troitsk, 142190 Moscow (Russian Federation)

    2015-08-15

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m{sup 2}. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ⋅ 10{sup 22} m{sup −2} s{sup −1}. Initial tests of the KTM PBF’s capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF)

  3. Digital generation of partially coherent vortex beams.

    Science.gov (United States)

    Perez-Garcia, Benjamin; Yepiz, Adad; Hernandez-Aranda, Raul I; Forbes, Andrew; Swartzlander, Grover A

    2016-08-01

    We present an experimental technique to generate partially coherent vortex beams with an arbitrary azimuthal index using only a spatial light modulator. Our approach is based on digitally simulating the intrinsic randomness of broadband light passing through a spiral phase plate. We illustrate the versatility of the technique by generating partially coherent beams with different coherence lengths and orbital angular momentum content, without any moving optical device. Consequently, we study its cross-correlation function in a wavefront folding interferometer. The comparison with theoretical predictions yields excellent agreement. PMID:27472596

  4. Generation mechanism of whistler waves produced by electron beam injection in space

    Science.gov (United States)

    Pritchett, P. L.; Karimabadi, H.; Omidi, N.

    1989-01-01

    Electromagnetic particle simulations are used to determine the generation mechanism of the whistler waves observed in connection with the artificial injection of electron beams in the ionosphere. The production of the waves is shown to be closely connected with the beam-plasma interaction, which leads to the formation of a current structure which acts like an antenna and emits the whistler waves in a coherent manner. This process, in contrast to a mechanism involving amplification of radiation by a whistler mode plasma instability within the beam, allows the whistlers to be generated even though the beam width is less than one wavelength.

  5. Six beam spherical compression of plasma focus guns

    International Nuclear Information System (INIS)

    A preliminary experiment with a one beam plasma focus is carried out to confirm plasma formation with the lowest input energy of 0.2 kJ for six beam spherical compression of plasma focus guns. The plasma front of this cableless gun can be used for compression and for the coupling of six guns situated along three rectangular axes, providing a good plasma focus pinch instantaneously or many plasma focus pinches continuously. The whole device with the energy bank is mounted on a sphere, and the minimum requirement for the plasma chamber of this sphere is a diameter of ∼ 22 cm. (author). 4 refs, 3 figs

  6. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  7. Plasma ion sources and ion beam technology inmicrofabrications

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Lili [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  8. Catenary nanostructures as compact Bessel beam generators.

    Science.gov (United States)

    Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Jin, Jinjin; Wang, Yanqin; Gao, Ping; Luo, Xiangang

    2016-01-01

    Non-diffracting Bessel beams, including zero-order and high-order Bessel Beams which carry orbital angular momentum (OAM), enable a variety of important applications in optical micromanipulation, sub-diffraction imaging, high speed photonics/quantum communication, etc. The commonly used ways to create Bessel beams, including an axicon or a digital hologram written to a spatial light modulator (SLM), have great challenges to operate at the nanoscale. Here we theoretically design and experimentally demonstrate one kind of planar Bessel beam generators based on metasurfaces with analytical structures perforated in ultra-thin metallic screens. Continuous phase modulation between 0 to 2π is realized with a single element. In addition, due to the dispersionless phase shift stemming from spin-orbit interaction, the proposed device can work in a wide wavelength range. The results may find applications in future optical communication, nanofabrication and super-resolution imaging, etc. PMID:26843142

  9. Holographic generation of highly twisted electron beams

    CERN Document Server

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wavefront corresponding to the electron's wavefunction forms a helical structure with a number of twists given by the \\emph{angular speed}. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a \\emph{conventional} electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nano-fabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200$\\hbar$. Based on a novel technique the value of orbital angular momentum of the generated beam are measured, then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic momen...

  10. Generation of single plasma channel in air

    International Nuclear Information System (INIS)

    The conditions of generating a single plasma channel in air are studied by using picosecond and femtosecond laser pulse. A stable and single plasma channel can be generated by a picosecond laser pulse with energy of 8-12 mJ and focusing length of 15 cm. The self-generated light emission is observed to be confined in the plasma channel and propagates in the channel. When using short focal length lenses it is easy to generate a single plasma channel in air with femtosecond laser with energy less than 10 mJ. (authors)

  11. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    CERN Document Server

    Skender, Marina

    2014-01-01

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri (2011), Schmitz & Tsiklauri (2013) and Pechhacker & Tsiklauri (2012), in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study the backwards propagating wave component evident in the perpendicular components of the elecromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are...

  12. Study of a plasma produced in a neutral gas chamber by the injection of a beam generated by a coaxial gun

    International Nuclear Information System (INIS)

    The design and operation of a plasma coaxial gun is described. The penetration and characteristics of the plasma emitted by the gun propagating in a expansion chamber with helium at 40 feBar is analyzed. The diagnostics is made with a double Langmuir probe observing the time variation of the electronic density along the propagation axis. Optical spectroscopy is used to measure one of the emission lines of the plasma radiation propaganting in the medium. The space-time description of the ion distribution function in a free-force field is made by the fit of an analytical model. (L.C.)

  13. Physical principles of the surface plasma method for producing beams of negative ions

    International Nuclear Information System (INIS)

    The processes which are important for the production of intense beams of negative ions from surface plasma sources (SPS) are examined. The formation of negative ions when atomic particles interact with a surface is analyzed on the basis of both experimental results obtained when a surface was bombarded with beams and recently developed theoretical considerations of reflection, scattering, and electron exchange. The characteristic features of these processes in SPS, when a surface is bombarded with intense fluxes of plasma particles, are revealed in special experiments. The characteristics of generation and acceleration of the bombarding particles in a gas discharge SPS plasma, the characteristics of transportation of negative ions through the plasma toward the beam forming system, the role of cesium in SPS, and the characteristics of formation of the intense negative ion beams as well as the removal of parasite electrons from the beam

  14. Structured Beam Generation with a Single Metasurface

    OpenAIRE

    Yue, Fuyong; Wen, Dandan; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. Th...

  15. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    Energy Technology Data Exchange (ETDEWEB)

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  16. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  17. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    OpenAIRE

    Schroeder, Carl

    2014-01-01

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the chan...

  18. Generation of a hollow laser beam by a multimode fiber

    Institute of Scientific and Technical Information of China (English)

    Hongyu Ma; Huadong Cheng; Wenzhuo Zhang; Liang Liu; Yuzhu Wang

    2007-01-01

    A simple method to generate a hollow laser beam by multimode fiber is reported. A dark hollow laser beam is generated from a multimode fiber and the dependence of the output beam profile on the incident angle of laser beam is analyzed. The results show that this hollow laser beam can be used to trap and guide cold atoms.

  19. Obtaining of hot electron plasma in two-stage beam-plasma system

    International Nuclear Information System (INIS)

    The space region of plasma formation and heating one are separated by pressure gradient in two-stage beam-plasma system. It is shown, that the temperature of plasma electron most part can reach some hundreds electronvolt when beam of some unit kiloelectronvolt energy is injected in system. The range of basic macroscopic parameters of system (current and energy of beam, operating gas pressure, plasma column length, magnetic field strength) corresponding to electron maximum heating is determined

  20. Modified quadrupole mass analyzer RGA-100 for beam plasma research in forevacuum pressure range

    Energy Technology Data Exchange (ETDEWEB)

    Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Yushkov, Yu. G., E-mail: yuyushkov@gmail.com [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2015-12-15

    The industrial quadrupole RGA-100 residual gas analyzer was modified for the research of electron beam-generated plasma at forevacuum pressure range. The standard ionizer of the RGA-100 was replaced by three electrode extracting unit. We made the optimization of operation parameters in order to provide the maximum values of measured currents of any ion species. The modified analyzer was successfully tested with beam plasma of argon, nitrogen, oxygen, and hydrocarbons.

  1. Modelling of new generation plasma optical devices

    Directory of Open Access Journals (Sweden)

    Litovko Irina V.

    2016-06-01

    Full Text Available The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.

  2. Modeling of plasma heating with neutral beam injection in T-11 machine

    International Nuclear Information System (INIS)

    Computations of energy balance are presented for a tokamak with hot atom beam injection. Atom ionization, trapping of generated ions and energy transfer to plasma are examined. Energy loss in charge exchange is considered. Relationships are presented between the temperature and the injection power, the plasma density and other parameters. Possibilities are discussed for obtaining a collisionless ion regime

  3. Generation of atto-second pulses on relativistic mirror plasma

    International Nuclear Information System (INIS)

    When an ultra intense femtosecond laser (I > 1016 W.cm-2) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get isolated

  4. Ultrashort high quality electron beam from laser wakefield accelerator using two-step plasma density profile

    International Nuclear Information System (INIS)

    In this paper, we first use the rf linac injector mechanism to generate ultrashort high quality electron beam from laser wakefield accelerator (LWFA) with two-step plasma density profile successfully. We incorporate the physics principle in the conventional rf linac injector into the LWFA by using two-step plasma density to decrease the wavelength of the wakefield in plasma. Using this mechanism, we observe a ultrashort high quality electron beam (the rms energy spread is 1.9%, and the rms bunch length is 2 fs) in the simulation. The ultrashort intense terahertz coherent radiation (200 MW, 2 fs) can be generated with the proposed laser wakefield accelerator.

  5. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  6. Electron Beam Emission Characteristics from Plasma Focus Devices

    Science.gov (United States)

    Zhang, T.; Patran, A.; Wong, D.; Hassan, S. M.; Springham, S. V.; Tan, T. L.; Lee, P.; Lee, S.; Rawat, R. S.

    2006-01-01

    In this paper we observed the characteristics of the electron beam emission from our plasma focus machine filling neon, argon, helium and hydrogen. Rogowski coil and CCD based magnetic spectrometer were used to obtain temporal and energy distribution of electron emission. And the preliminary results of deposited FeCo thin film using electron beam from our plasma focus device were presented.

  7. Beam-driven, Plasma-based Particle Accelerators

    CERN Document Server

    Muggli, P

    2016-01-01

    We briefly give some of the characteristics of the beam-driven, plasma-based particle accelerator known as the plasma wakefield accelerator (PWFA). We also mention some of the major results that have been obtained since the birth of the concept. We focus on high-energy particle beams where possible.

  8. Multisymplectic Integration for Beam and Plasma Simulations

    Science.gov (United States)

    Webb, Stephen; RadiaSoft, LLC Team

    2015-11-01

    Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.

  9. Beam-generated upper hybrid noise in Jupiter's outer magnetosphere

    International Nuclear Information System (INIS)

    Upper hybrid waves in Jupiter's outer magnetosphere are the subject of this paper which proposes a new theoretical model for their generation. Energetic electrons are assumed to be accelerated in the high-latitude auroral zone and stream away from the planet to the outer magnetosphere. The electrons travel along magnetic field lines located at the edges of the plasma sheet through a region which has the properties of a plasma sheet boundary layer similar to the terrestrial entity. The kinematic evolution of the electron beam results in a highly collimated field-aligned distribution which excites quasi-perpendicular upper hybrid waves through a so-called beam-anisotropic heat flux instability. The instability is dominated by anomalous cyclotron harmonic resonances in a parameter regime where the gyroradius of the beam electrons is comparable to the wavelength of the wave. Propagation of the upper hybrid waves across the magnetic field into a plasma density gradient produces a spectrum of z mode waves which then undergo a linear mode conversion to ordinary mode electromagnetic radiation. The model successfully accounts for the observations of upper hybrid noise, Z mode emissions, and continuum radiation in the Jovian magnetosphere in a self-consistent coherent manner

  10. Plasma generation induced by triboelectrification

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Michelsen, Poul

    2009-01-01

    A gas discharge plasma can be induced by triboelectrification around a sliding contact. The detailed physical mechanism of triboelectrification is unknown, but an empirical classification scheme can be referred to in practice. It is reported that intense ultra-violet emission from a plasma...

  11. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  12. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    Science.gov (United States)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  13. Light emission from particle beam induced plasma - An overview

    CERN Document Server

    Ulrich, A

    2015-01-01

    Experiments to study the light emission from plasma produced by particle beams are presented. Fundamental aspects in comparison with discharge plasma formation are discussed. It is shown that the formation of excimer molecules is an important process. This paper summarizes various studies of particle beam induced light emission and presents first results of a direct comparison of light emission induced by electron- and ion beam excitation. Both high energy heavy ion beam and low energy electron beam experiments are described and an overview over applications in the form of light sources, lasers, and ionization devices is given.

  14. Study of electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    A preliminary investigation of the electron beam produced by a plasma focus device using a current charged transmission line is described. Electron beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography

  15. Second-harmonic generation with Bessel beams

    Science.gov (United States)

    Shatrovoy, Oleg

    We present the results of a numerical simulation tool for modeling the second-harmonic generation (SHG) interaction experienced by a diffracting beam. This code is used to study the simultaneous frequency and spatial profile conversion of a truncated Bessel beam that closely resembles a higher-order mode (HOM) of an optical fiber. SHG with Bessel beams has been investigated in the past and was determined have limited value because it is less efficient than SHG with a Gaussian beam in the undepleted pump regime. This thesis considers, for the first time to the best of our knowledge, whether most of the power from a Bessel-like beam could be converted into a second-harmonic beam (full depletion), as is the case with a Gaussian beam. We study this problem because using HOMs for fiber lasers and amplifiers allows reduced optical intensities, which mitigates nonlinearities, and is one possible way to increase the available output powers of fiber laser systems. The chief disadvantage of using HOM fiber amplifiers is the spatial profile of the output, but this can be transformed as part of the SHG interaction, most notably to a quasi-Gaussian profile when the phase mismatch meets the noncollinear criteria. We predict, based on numerical simulation, that noncollinear SHG (NC-SHG) can simultaneously perform highly efficient (90%) wavelength conversion from 1064 nm to 532 nm, as well as concurrent mode transformation from a truncated Bessel beam to a Gaussian-like beam (94% overlap with a Gaussian) at modest input powers (250 W, peak power or continuous-wave operation). These simulated results reveal two attractive features -- the feasibility of efficiently converting HOMs of fibers into Gaussian-like beams, and the ability to simultaneously perform frequency conversion. Combining the high powers that are possible with HOM fiber amplifiers with access to non-traditional wavelengths may offer significant advantages over the state of the art for many important applications

  16. Optical vortex beam generator at nanoscale level.

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  17. Optical vortex beam generator at nanoscale level

    Science.gov (United States)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; De Angelis, Francesco

    2016-01-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications. PMID:27404659

  18. Integrated multi vector vortex beam generator

    CERN Document Server

    Schulz, Sebastian A; Karimi, Ebrahim; Boyd, Robert W

    2013-01-01

    A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.

  19. Structured Beam Generation with a Single Metasurface

    CERN Document Server

    Yue, Fuyong; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. This method features the spin-orbit coupling and the superposition of the converted part with an additional phase pickup and the residual part without a phase change. By maintaining the equal components for the converted part and the residual part, the cylindrically polarized vortex beams carrying orbital angular momentum are experimentally demonstrated based on a single metasurface at subwavelength scale. The proposed approach provides unprecedented freedom in engineering the properties of optical waves with the high-effic...

  20. Experimental generation of amplitude squeezed vector beams

    CERN Document Server

    Chille, Vanessa; Semmler, Marion; Banzer, Peter; Aiello, Andrea; Leuchs, Gerd; Marquardt, Christoph

    2016-01-01

    We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A major advantage of this approach is that it avoids systematic losses, which are detrimental as they cause decoherence in continuous-variable quantum systems. The utilisation of a spatial light modulator (SLM) gives the flexibility to switch between arbitrary mode orders. The conversion efficiency with our setup is only limited by the efficiency of the SLM. We show the experimental generation of Laguerre-Gauss (LG) modes with radial indices up to 1 and azimuthal indices up to 3 with complex polarization structures and a quantum noise reduction up to -0.9dB$\\pm$0.1dB. The corresponding polarization structures are studied in detail by measuring the spatial distribution of the Stokes parameters.

  1. Hollow-Cathode Source Generates Plasma

    Science.gov (United States)

    Deininger, W. D.; Aston, G.; Pless, L. C.

    1989-01-01

    Device generates argon, krypton, or xenon plasma via thermionic emission and electrical discharge within hollow cathode and ejects plasma into surrounding vacuum. Goes from cold start up to full operation in less than 5 s after initial application of power. Exposed to moist air between operations without significant degradation of starting and running characteristics. Plasma generated by electrical discharge in cathode barrel sustained and aided by thermionic emission from emitter tube. Emitter tube does not depend on rare-earth oxides, making it vulnerable to contamination by exposure to atmosphere. Device modified for use as source of plasma in laboratory experiments or industrial processes.

  2. Numerical simulation of nonlinear processes in a beam-plasma system

    International Nuclear Information System (INIS)

    In the present paper we consider the efficiency of the electromagnetic radiation generation due to various nonlinear processes in the beam-plasma system. The beam and plasma parameters were chosen close to the parameters in the experiment on the GOL-3 facility (BINP SB RAS). The model of the collisionless plasma is described by system of the Vlasov-Maxwell equations with periodic boundary conditions. The parallel numerical algorithm is based on the particles-in-cell method (PIC) with mixed Euler-Lagrangian domain decomposition. Various scenarios of nonlinear evolution in the beam-plasma system under the influence of an external magnetic field in case of a low density beam were studied. The energy transfer from one unstable mode to the others modes was observed

  3. Numerical simulation of nonlinear processes in a beam-plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, A. A., E-mail: anna.an.efimova@gmail.com; Berendeev, E. A.; Vshivkov, V. A. [Institute of Computational Mathematics and Mathematical Geophysics SB RAS 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Dudnikova, G. I. [University of Maryland, College Park, MD 20742 (United States); Institute of Computational Technologies SB RAS, 6 Acad. Lavrentyev Ave., Novosibirsk 630090 (Russian Federation)

    2015-10-28

    In the present paper we consider the efficiency of the electromagnetic radiation generation due to various nonlinear processes in the beam-plasma system. The beam and plasma parameters were chosen close to the parameters in the experiment on the GOL-3 facility (BINP SB RAS). The model of the collisionless plasma is described by system of the Vlasov-Maxwell equations with periodic boundary conditions. The parallel numerical algorithm is based on the particles-in-cell method (PIC) with mixed Euler-Lagrangian domain decomposition. Various scenarios of nonlinear evolution in the beam-plasma system under the influence of an external magnetic field in case of a low density beam were studied. The energy transfer from one unstable mode to the others modes was observed.

  4. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    CERN Document Server

    Elsied, Ahmed M M; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Zhang, Jie

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.

  5. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    International Nuclear Information System (INIS)

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures

  6. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  7. Stopping Power for Strong Beam-Plasma Coupling

    Science.gov (United States)

    Gericke, Dirk O.

    2001-10-01

    The slowing down process of charged particles in plasma targets is investigated for the case of strong beam-plasma coupling. Strong beam-plasma correlations can be considered using the collision operator of the quantum Boltzmann equation. As a first step, dynamic screening is included in the first Born approximation. This approach gives good results for moderate beam-plasma coupling (Zb Γ^3/2 Bethe-formula, the standard model of the stopping power (Bethe plus Bloch corrections and Barkas terms), the Li & Petrasso formula and simulation data (MD and PIC), is given. This comparison clearly shows the advantage of the proposed model: it smoothly interpolates between the classical low velocity regime, where strong coupling effects occur, and the high velocity quantum regime, where collective modes are important. In the latter case, the experimentally proven Bethe-formula is obtained. Furthermore, it matches the simulation data for moderate as well as strong beam-plasma coupling.

  8. Intense ion beams from laser plasma : production and application

    International Nuclear Information System (INIS)

    The production of intense ion beams from plasma injectors using laser-induced plasma bundles are considered. Laser plasma bundles with quantity of ions about 10 sup 1 sup 5 - 10 sup 1 sup 6 imp sup -1 are created by interaction of laser irradiation ( q = 10 sup 9 - 10 sup 1 sup 3 W / cm sup 2, less than 'thermonuclear' intensities, lambda - 0.53 - 10.6 micro, E 0.1 - 10 J/ imp )with various solid targets in vacuum. By changing laser parameters and focusing conditions it is able to produce ions from very wide spectrum of chemical elements and of different charge. High density moving plasma gives the possibility to extract and to form in time up to 1 - 3 microsecond ion current equal 10-10 sup 3 A. Some types of such injector for radiation physics arrangements were elaborated. The main goals of the application of these equipment are the following : - acceleration of multiply charged ions in big accelerators; - ion implantation and material modification; - generation of intense pulse neutron fluxes; - vaporization of material and special layers creation. 4 refs., (author)

  9. Radio frequency induction plasma generator 80-kV test stand operation

    International Nuclear Information System (INIS)

    Beam extraction tests at energies up to 80 kV were performed using a radio frequency induction (RFI) plasma generator hydrogen ion source. A 7 x 10-cm2, long pulse accelerator was operated with a 10 x 10-cm2 axial magnetic cusp bucket and a magnetic-filter bucket. Atomic fractions (up to 85% H+), plasma production efficiencies (roughly-equal0.6 A of beam per kW rf power), and beam divergence were at least as good as with arc plasmas in similar chambers. Potential advantages of the RFI plasma sources for large-scale applications are ease of operation, reliability, and extended service life

  10. Magnetic field generation during intense laser channelling in underdense plasma

    Science.gov (United States)

    Smyth, A. G.; Sarri, G.; Vranic, M.; Amano, Y.; Doria, D.; Guillaume, E.; Habara, H.; Heathcote, R.; Hicks, G.; Najmudin, Z.; Nakamura, H.; Norreys, P. A.; Kar, S.; Silva, L. O.; Tanaka, K. A.; Vieira, J.; Borghesi, M.

    2016-06-01

    Channel formation during the propagation of a high-energy (120 J) and long duration (30 ps) laser pulse through an underdense deuterium plasma has been spatially and temporally resolved via means of a proton imaging technique, with intrinsic resolutions of a few μm and a few ps, respectively. Conclusive proof is provided that strong azimuthally symmetric magnetic fields with a strength of around 0.5 MG are created inside the channel, consistent with the generation of a collimated beam of relativistic electrons. The inferred electron beam characteristics may have implications for the cone-free fast-ignition scheme of inertial confinement fusion.

  11. Beam Matching to a Plasma Wakefield Accelerator Using a Ramped Density Profile at the Plasma Boundary

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, K.A.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Zhou, M.; /UCLA; Barnes, C.D.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; Krejcik, P.; O' Connell, C.L.; Siemann, R.; Walz, D.R.; /SLAC; Deng, S.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2006-02-17

    An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense plasma regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched [1]. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plasma source with boundary profiles useful for matching has been created for the E-164X PWFA experiments at SLAC.

  12. Experimental investigation of a 1 kA/cm2 sheet beam plasma cathode electron gun

    Science.gov (United States)

    Kumar, Niraj; Narayan Pal, Udit; Kumar Pal, Dharmendra; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ˜1 kA/cm2 from pseudospark based argon plasma for pulse length of ˜200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  13. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field.

  14. Experimental investigation of a 1 kA/cm2 sheet beam plasma cathode electron gun

    International Nuclear Information System (INIS)

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm2 from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field

  15. Experimental investigation of a 1 kA/cm² sheet beam plasma cathode electron gun.

    Science.gov (United States)

    Kumar, Niraj; Pal, Udit Narayan; Pal, Dharmendra Kumar; Prajesh, Rahul; Prakash, Ram

    2015-01-01

    In this paper, a cold cathode based sheet-beam plasma cathode electron gun is reported with achieved sheet-beam current density ∼1 kA/cm(2) from pseudospark based argon plasma for pulse length of ∼200 ns in a single shot experiment. For the qualitative assessment of the sheet-beam, an arrangement of three isolated metallic-sheets is proposed. The actual shape and size of the sheet-electron-beam are obtained through a non-conventional method by proposing a dielectric charging technique and scanning electron microscope based imaging. As distinct from the earlier developed sheet beam sources, the generated sheet-beam has been propagated more than 190 mm distance in a drift space region maintaining sheet structure without assistance of any external magnetic field. PMID:25638082

  16. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  17. Proton beam generation of oblique whistler waves

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  18. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  19. A Space-Charge-Neutralizing Plasma for Beam Drift Compression

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.K.; Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Coleman, J.E.; Gilson, E.P.; Greenway, W.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Sefkow, A.B.; Waldron, W.L.; Welch, D.R.

    2008-08-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a {approx} 10 cm long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter {approx} 5 mm along the solenoid axis when the FFS is powered with an 8T field. Measured plasma density of {ge} 1 x 10{sup 13} cm{sup -3} meets the challenge of n{sub p}/Zn{sub b} > 1, where n{sub p} and n{sub b} are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the plasma ions.

  20. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    International Nuclear Information System (INIS)

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  1. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  2. An RF excited plasma cathode electron beam gun design

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    A plasma cathode electron beam (EB) gun is presented in this work. A radio frequency (RF) excited plasma at 84 MHz was used as the electron source to produce a beam power of up to 3.2 kW at -60 kV accelerating voltage. The pressure in the plasma chamber is approximately 1 mbar. The electrons are extracted from the plasma chamber to the vacuum chamber (at 10-5 mbar) through a diaphragm with a 0.5 mm diameter nozzle. Advantages over thermionic cathode guns were demonstrated empirically. Mainten...

  3. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    Science.gov (United States)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  4. Calibrated kallikrein generation in human plasma

    DEFF Research Database (Denmark)

    Biltoft, D; Sidelmann, J J; Olsen, L F;

    2016-01-01

    generation method as a template. RESULTS: A suitable kallikrein specific fluorogenic substrate was identified (KM=0.91mM, kcat=19s(-1)), and kallikrein generation could be measured in undiluted plasma when silica was added as activator. Disturbing effects, including substrate depletion and the inner......-filter effect, however, affected the signal. These problems were corrected for by external calibration with α2-macroglobulin-kallikrein complexes. Selectivity studies of the substrate, experiments with FXII and PK depleted plasmas, and plasma with high or low complement C1-esterase inhibitor activity indicated...

  5. Objective specific beam generation for image guided robotic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Schlaefer, A.; Jungmann, O.; Schweikard, A. [Inst. for Robotics and Cognitive Systems, Univ. of Luebeck (Germany); Kilby, W. [Accuray Inc., Sunnyvale, CA (United States)

    2007-06-15

    Robotic radiosurgery enables precise dose delivery throughout the body. Planning for robotic radiosurgery comprises of finding a suitable set of beams and beam weights. The problem can be addressed by generating a large set of candidate beams, and selection of beams with nonzero weight by mathematical programming. We propose to use different randomized beam generation methods depending on the type of lesion and the clinical objective. Results for three patient cases indicate that this can improve the plan quality. (orig.)

  6. New electron beam facility for irradiated plasma facing materials testing in hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N.; Kawamura, H. [Oarai Research Establishment, Ibaraki-ken (Japan); Akiba, M. [Naka Research Establishment, Ibaraki-ken (Japan)

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  7. Refraction of $e^-$ beams due to plasma lensing at a plasma-vacuum interface -- applied to beam deflection in a Copper cell with electrical RF-breakdown plasma

    CERN Document Server

    Sahai, Aakash A

    2014-01-01

    We formulate a possible description of the deflection of a relativistic $e^-$ beam in an inhomogeneous copper plasma, encountered by the beam when propagating through a accelerating cell that has undergone a high electric-field RF-breakdown. It is well known that an inhomogeneous plasma forms and may last for up to a few micro-seconds, until recombination in an accelerating structure where a field-emission triggers melting and ionization of RF-cell wall deformity. We present a preliminary model for the beam deflection due to collective plasma response based upon the beam density, plasma density and interaction length.

  8. Observations of underdense plasma lens focusing of relativistic electron beams

    International Nuclear Information System (INIS)

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion

  9. Nonlinear stabilization of an electron beam instability in a plasma with high level of sound turbulence

    International Nuclear Information System (INIS)

    Investigated is the stabilization of an electron beam instability due to the process of nonlinear conversion of the Langmuir oscillations into ion-acoustic ones at scattering on plasma electrons. The scheme of an experimental installation is presented. Magnetic field of a mirror configuration has been developed by a system of coils. Field strength in the centre of the magnetic mirror amounts 2 kOe, strength in the mirrors being 8 kOe. The parameters of the electron beam are as follows: current of 10 A, energy of 40 keV, diameter of the beam in the magnetic mirror centre of 2.0 cm. Plasma injector of a hydride-titanium type has been placed in the region of the magnetic mirror. A hydrogen plasma jet with the mean concentration of (5-7)x1012cm-3 has been injected. Observed is the effect of beam stabilization in a turbulent plasma of a direct discharge, in a multi-flow plasma formed at the injector operation in a periodical regime, and with the highest efficiency at the oncoming injection of two plasma bunches. It is noted that, as far as the generation of a high level of sound turbulence does not exhibit any technological difficulties, the results obtained are noteworthy for the problem on beam transport in a plasma

  10. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  11. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  12. Power supply controlled for plasma torch generation

    International Nuclear Information System (INIS)

    The high density of energy furnished by thermal plasma is profited in a wide range of applications, such as those related with welding fusion, spray coating and at the present in waste destruction. The waste destruction by plasma is a very attractive process because the remaining products are formed by inert glassy grains and non-toxic gases. The main characteristics of thermal plasmas are presented in this work. Techniques based on power electronics are utilized to achieve a good performance in thermal plasma generation. This work shown the design and construction of three phase control system for electric supply of thermal plasma torch, with 250 kw of capacity, as a part of the project named 'Destruction of hazard wastes by thermal plasma' actually working in the Instituto Nacional de Investigaciones Nucleares (ININ). The characteristics of thermal plasma and its generation are treated in the first chapter. The A C controllers by thyristors applied in three phase arrays are described in the chapter II, talking into account the power transformer, rectifiers bank and aliasing coil. The chapter III is dedicated in the design of the trigger module which controls the plasma current by varying the trigger angle of the SCR's; the protection and isolating unit are also presented in this chapter. The results and conclusions are discussed in chapter IV. (Author)

  13. Wave Propagation in an Ion Beam-Plasma System

    DEFF Research Database (Denmark)

    Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens

    1979-01-01

    The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...

  14. Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; WANG Huan; ZHANG Hua; LIU Zhanjun; WU Junfeng; LI Baiwen

    2014-01-01

    A two-dimensional hybrid code is developed to model the transport of a high-current electron beam in a dense plasma target.The beam electrons are treated as particles and described by particle-in-cell simulation including collisions with the target plasma particles.The background target plasma is assumed to be a stationary fluid with temperature variations.The return current and the self-generated electric and magnetic fields are obtained by combining Ampère's law without the displacement current,the resistive Ohm's law and Faraday's law.The equations are solved in two-dimensional cylindrical geometry with rotational symmetry on a regular grid,with centered spatial differencing and first-order implicit time differencing.The algorithms implemented in the code are described,and a numerical experiment is performed for an electron beam with Maxwellian distribution ejected into a uniform deuterium-tritium plasma target.

  15. Temporal structure of double plasma frequency emission of thin beam-heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Postupaev, V. V.; Ivanov, I. A.; Arzhannikov, A. V.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation); Burdakov, A. V.; Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Avenue, 630092 Novosibirsk (Russian Federation); Sklyarov, V. F.; Gavrilenko, D. Ye.; Kandaurov, I. V.; Kurkuchekov, V. V.; Mekler, K. I.; Popov, S. S.; Rovenskikh, A. F.; Sudnikov, A. V.; Sulyaev, Yu. S.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, 630090 Novosibirsk (Russian Federation); Kasatov, A. A. [Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk (Russian Federation)

    2013-09-15

    In the work presented here dynamics of spiky microwave emission of a beam-heated plasma near the double plasma frequency in ∼100 GHz band was studied. The plasma is heated by 80 keV, ∼2 MW, sub-ms electron beam that is injected into the multiple-mirror trap GOL-3. The beam-heated plasma diameter is of the order of the emitted wavelength. Modulation of individual emission spikes in the microwave radiation is found. The radiation dynamics observed can be attributed to a small number of compact emitting zones that are periodically distorted.

  16. Faraday Cup Measurements of Ions Backstreaming into a Electron Beam Impinging on a Plasma Plume

    CERN Document Server

    Guethlein, G; McCarrick, J F; Sampayan, S E

    2000-01-01

    The next generation of radiographic machines based on induction accelerators is expected to generate multiple, small diameter x-ray spots of high intensity. Experiments to study the interaction of the electron beam with plasmas generated at the x-ray converter and at beamline septa are being performed at the Lawrence Livermore National Laboratory (LLNL) using the 6-MeV, 2-kA Experimental Test Accelerator (ETA) electron beam. The physics issues of concern can be separated into two categories. The interaction of subsequent beam pulses with the expanding plasma plume generated by earlier pulses striking the x-ray converter or a septum, and the more subtle effect involving the extraction of light ions from a plasma by the head of the beam pulse. These light ions may be due to contaminants on the surface of the beam pipe or converter, or, for subsequent pulses, in the material of the converter. The space charge depression of the beam could accelerate the light ions to velocities of several mm/ns. As the ions moved...

  17. Dense monoenergetic proton beams from chirped laser-plasma interaction

    CERN Document Server

    Galow, Benjamin J; Liseykina, Tatyana V; Harman, Zoltan; Keitel, Christoph H

    2011-01-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen plasma cell is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10^7 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1 %) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10^21 W/cm^2.

  18. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  19. Electron beam, laser beam and plasma arc welding studies

    Science.gov (United States)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  20. Absorption of focused laser beams by a nonspherical plasma

    International Nuclear Information System (INIS)

    The interaction of a high intensity axially symmetric beam with a nonspherical plasma is studied numerically. The high frequency plasma response is calculated using a linearized fluid approximation. The full three dimensional Maxwell's equations are solved in spherical coordinates. A method for selectively damping the longitudinal electric fields is included to model thermal, kinetic, or nonlinear effects near the critical density. The low frequency response of the plasma to the ponderomotive force is followed with an isothermal hydrodynamic description. The incident laser beam is circularly polarized so that the plasma remains azimuthally symmetric to first order. Detailed descriptions of several representative calculations are given. It is found that the absorption of an initially spherical plasma can be significantly increased by induced aspherical plasma density profile modifications. A simple physical explanation for the observed absorption increase is proposed. Finally, the validity of the approximations made is analyzed briefly

  1. Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams

    Science.gov (United States)

    Niknam, A. R.; Banjafar, M. R.; Jahangiri, F.; Barzegar, S.; Massudi, R.

    2016-05-01

    Terahertz (THz) radiation generation by the interaction of two co-propagating high intensity laser beams with a warm collisional inhomogeneous plasma is analytically investigated. By presenting the dielectric permittivity of plasma and taking into account the ponderomotive force, the nonlinear current at THz frequency is obtained. A secondary resonant enhancement of THz radiation is observed, in addition to that occurs at the plasma frequency, which can be tuned by plasma density and temperature. Moreover, we show that for each beat frequency, there exists an optimum temperature at which THz radiation is maximized. It is also shown that the power and efficiency of THz radiation decrease by increasing the collision frequency.

  2. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  3. Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases

    Science.gov (United States)

    Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.

    2001-10-01

    In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.

  4. The beam-plasma interaction in the symmetrically opened plasma system with contrastreaming electron flows

    International Nuclear Information System (INIS)

    The beam-plasma interaction in the symmetrically opened plasma system with the plasma penetrating in vacuum along magnetic field in presence of the contratreaming electron flow is investigated. It is found that the contrastreaming electron flow component, that is formed by secondary electron-electron emissions from the collector, effects substantially on the oscillations in the system. 20 refs.; 31 figs

  5. Collaborative Research: Instability and transport of laser beam in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harvey Arnold [New Mexico Consortium; Lushnikov, Pavel [University of New Mexico

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  6. Inverse time-of-flight spectrometer for beam plasma research

    International Nuclear Information System (INIS)

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed

  7. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    International Nuclear Information System (INIS)

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point

  8. Beam Propagation Factor and Generation of Cosh-squared-Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Kaicheng; TANG Huiqin; ZHU Zhenhe

    2001-01-01

    A new light beam termed as a cosh-squared-Gaussian beam (ChSGB) which may be one of solutions of the paraxial wave equation for propagation in complex optical systems has been introduced. Their beam propagation factor (M2-factor) is derived and schemes to generate this light beams are proposed.

  9. High current ion beam generation by nonlinear ponderomotive force of high intensity UV laser

    International Nuclear Information System (INIS)

    Using the anomaly at plasma interaction of petawatt-picosecond laser pulses with very high contrast ratio to generate plane geometry highly directed plasma blocks for laser fusion, the details of the block generation were studied. The aim was to produce plasma blocks with dielectrically generated highest possible initial thicknesses. One of the goals in laser-plasma interaction studies is to convert as much laser energy as possible into energetic particles. Most laser ion accelerations have only been done using infrared lasers. In this work, dependency of the laser energy absorption to laser wave-Length for a given laser intensity is investigated numerically. High intensity UV laser absorption by Raleigh plasma density is examined. High current ion beams generated by nonlinear ponderomotive force of intense UV laser with Hydrodynamics computation based on a genuine two-fluid code are presented. (author)

  10. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  11. GeV electron beams from a laser-plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, C.B.; Toth, Cs.; Nagler, B.; Gonsalves, A.J.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Hooker, S.M.; Leemans, W.P.

    2006-10-01

    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

  12. A reduced model for relativistic electron beam transport in solids and dense plasmas

    Science.gov (United States)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  13. Generation of antitropic electron beams by self-generated electric field. Kinetic description

    CERN Document Server

    Stepanov, N S

    2016-01-01

    This paper makes use of a one-dimensional kinetic model to investigate the nonlinear longitudinal dynamics of electron beams generated in the plasma under the influence of a self-generated electric field. It is expressed as where is a wave potential, , and charge particle distribution functions satisfy the Vlasov equation. It is proved that its correct solution is characterized by sudden change in the resonant part of the distribution function. Hence, in particular, the incorrectness of the established in the literature point of view follows that the fast, with velocities over V, and slow, with velocities under V, trapped particles are described by the same distribution function. Also for the first time it is shown that the self-generated strong electric field always produces antitropic electron beams with the velocities much larger than the value V, including the cold plasma limit. The possibility of implementing a new class of self-consistent wave structures with a nonzero average potential is shown. Maximu...

  14. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  15. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum

    Science.gov (United States)

    Chaitanya, N. Apurv; Jabir, M. V.; Banerji, J.; Samanta, G. K.

    2016-09-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  16. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital-angular-momemtum

    CERN Document Server

    Chaitanya, N Apurv; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs.

  17. Hollow Gaussian beam generation through nonlinear interaction of photons with orbital angular momentum.

    Science.gov (United States)

    Chaitanya, N Apurv; Jabir, M V; Banerji, J; Samanta, G K

    2016-01-01

    Hollow Gaussian beams (HGB) are a special class of doughnut shaped beams that do not carry orbital angular momentum (OAM). Such beams have a wide range of applications in many fields including atomic optics, bio-photonics, atmospheric science, and plasma physics. Till date, these beams have been generated using linear optical elements. Here, we show a new way of generating HGBs by three-wave mixing in a nonlinear crystal. Based on nonlinear interaction of photons having OAM and conservation of OAM in nonlinear processes, we experimentally generated ultrafast HGBs of order as high as 6 and power >180 mW at 355 nm. This generic concept can be extended to any wavelength, timescales (continuous-wave and ultrafast) and any orders. We show that the removal of azimuthal phase of vortices does not produce Gaussian beam. We also propose a new and only method to characterize the order of the HGBs. PMID:27581625

  18. PLASMA DIAGNOSTICS IN THE HEAVY ION BEAM-DENSE PLASMA INTERACTION EXPERIMENT AT ORSAY

    OpenAIRE

    Fleurier, C.; Sanba, A.; Hong, D; Mathias, J; Pellicer, J.

    1988-01-01

    We describe the plasma source used for interaction experiments between heavy ion beams (C4+ S7+) at energies of 2 Mev per nucleon and a plasma. The purpose of these experiments was to measure the ion energy loss in the plasma. The plasma diagnostics methods by emission spectroscopy, by laser interferometry and two-wavelength laser absorption are presented as well as the results.

  19. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  20. Plasma plume MHD power generator and method

    Science.gov (United States)

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  1. An electron beam-heater with a broad-area plasma cathode

    International Nuclear Information System (INIS)

    An electron-beam heater with a broad-area plasma cathode was designed for thermal treatment of large surfaces in vacuum. Using the plasma electron source of broad cross-section beams instead of a hot-cathode gun generating thin scanning beams allows simultaneous heating all the surface as well as lengthening the service life and raising the reliability of the heater. A broad-area emitting plasma surface is produced in a special electrode cavity by injection into it, through a small hole, of charged particles from a reflex discharge with cold electrodes. Such a principle of design of the plasma cathode allows to obtain an electron beam of the required current density in the pressure range of 10-2 to 1 Pa. The heater can be operated with He, Ar, air and other gases. Using a multiaperture accelerating system comprising emitting and accelerating electrodes, an electron beam up to 150 mm in diameter with an energy up to 15 keV, a current up to 0.5 A, and a nonuniformity of the cross-sectional distribution of the current density not more than +- 6% on the area of 100 cm2 could be generated. The efficiency of the heater at the accelerating voltage of 11 to 13 kV equals to about 90%. (author)

  2. A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source

    Institute of Scientific and Technical Information of China (English)

    Shuwang DUO; Meishuan LI; Yaming ZHANG

    2004-01-01

    In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic 5~30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1~10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.

  3. Robust Collimation Control of Laser-Generated Ion Beam

    CERN Document Server

    Kawata, S; Kamiyama, D; Nagashima, T; Barada, D; Gu, Y J; Li, X; Yu, Q; Kong, Q; Wang, P X

    2015-01-01

    The robustness of a structured collimation device is discussed for an intense-laser-produced ion beam. In this paper the ion beam collimation is realized by the solid structured collimation device, which produces the transverse electric field; the electric field contributes to reduce the ion beam transverse velocity and collimate the ion beam. Our 2.5 dimensional particle-in cell simulations demonstrate that the collimation device is rather robust against the changes in the laser parameters and the collimation target sizes. The intense short-pulse lasers are now available, and are used to generate an ion beam. The issues in the laser ion acceleration include an ion beam collimation, ion energy spectrum control, ion production efficiency, ion energy control, ion beam bunching, etc. The laser-produced ion beam tends to expand in the transverse and longitudinal directions during the ion beam propagation. The ion beam collimation is focused in this paper.

  4. Explosive emission cathode plasmas in intense relativistic electron beam diodes

    International Nuclear Information System (INIS)

    An experimental study of cathode plasmas in planar diodes driven by a Sandia Nereus accelerator (270 kV, 60 kA, 70 ns), with particular attention devoted to plasma uniformity and expansion velocity, has been carried out. This diode current density was varied over a factor of ten and the rate of rise of the applied field dE/dt was varied over a factor of six. Different cathode materials, coatings, and surface roughnesses were used and the effects of glow discharge cleaning and in situ heating of the cathode were examined. Framing photography, electron beam dosimetry, perveance measurements, optical interferometry, and (spatially and temporally resolved) spectroscopy were used to diagnose the plasma uniformity, electron beam uniformity, plasma front motion, electron density, plasma composition, motion of distinct species, electron temperature, and ion (and neutral) densities. Electron beam uniformity is seen to be related to cathode plasma uniformity; this uniformity is enhanced by a high value of (the microscopic) dE/dt, which is determined both by the rise time of the applied field and by the cathode surface roughness. The significance of dE/dt is believed to be related to the screening effect of emitted electrons. The motion of the plasma front is seen to be affected by two phenomena. To begin with, all species of the cathode plasma are seen to expand at the same rate. The ions are believed to be accelerated to velocities on the order of 2 to 3 cm/μs in dense cathode spot regions at the cathode surface. Plasma expansion is also influenced by electric pressure effects, which are determined by the shape of the driving power pulse. A simple cathode plasma model, which explains the similarity of plasmas in diodes with greatly differing parameters, is proposed. The relevance of these results to inductively driven diodes, repetitively pulsed diodes, and magnetically insulated transmission lines is also discussed

  5. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  6. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    International Nuclear Information System (INIS)

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼ 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage (∼ 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 1011 cm-3. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K+ ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments

  7. Staging laser plasma accelerators for increased beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  8. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    OpenAIRE

    Valery A. Tutyk; Anatoliy N. Ovcharuk; Michail I. Gasik; Dmitriy V. Maslenikov

    2013-01-01

    The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD) generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG) with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum ga...

  9. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  10. Nanomaterial Synthesis Using Plasma Generation in Liquid

    Directory of Open Access Journals (Sweden)

    Genki Saito

    2015-01-01

    Full Text Available Over the past few decades, the research field of nanomaterials (NMs has developed rapidly because of the unique electrical, optical, magnetic, and catalytic properties of these materials. Among the various methods available today for NM synthesis, techniques for plasma generation in liquid are relatively new. Various types of plasma such as arc discharge and glow discharge can be applied to produce metal, alloy, oxide, inorganic, carbonaceous, and composite NMs. Many experimental setups have been reported, in which various parameters such as the liquid, electrode material, electrode configuration, and electric power source are varied. By examining the various electrode configurations and power sources available in the literature, this review classifies all available plasma in liquid setups into four main groups: (i gas discharge between an electrode and the electrolyte surface, (ii direct discharge between two electrodes, (iii contact discharge between an electrode and the surface of surrounding electrolyte, and (iv radio frequency and microwave plasma in liquid. After discussion of the techniques, NMs of metal, alloy, oxide, silicon, carbon, and composite produced by techniques for plasma generation in liquid are presented, where the source materials, reaction media, and electrode configurations are discussed in detail.

  11. Gaussian laser beam in a magnetized plasma. 2

    International Nuclear Information System (INIS)

    Properties of a laser beam propagating perpendicular to the external magnetic field in a plasma are investigated theoretically. The beam is represented by a Helmholtz equation in almost all plasma parameter space. For the upper hybrid wave region the wave equation turns to a hyperbolic partial differential equation. It is shown that both equations can be exactly solved by using a method of separation of variables and that solutions having Gaussian profiles lateral to the propagation direction are obtained. An appreciable difference between two solutions appears in their phase factors. Owing to the asymmetry of the configuration around the axis of wave propagation the cross sections of beams take shapes of ellipse and each beam has two different focus points. (author)

  12. Efficient Generation of Truncated Bessel Beams using Cylindrical Waveguides

    Science.gov (United States)

    Ilchenko, Vladimir S.; Mohageg, Makan; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2007-01-01

    In this paper we address efficient conversion between a Gaussian beam (a truncated plane wave) and a truncated Bessel beam of agiven order, using cylindrical optical waveguides and whispering gallery mode resonators. Utilizing a generator based on waveguides combined with whispering gallery mode resonators, we have realized Bessel beams of the order of 200 with a conversion efficiency exceeding 10 %.

  13. Generation of the Stigmatic Beam with Orbital Angular Momentum

    Institute of Scientific and Technical Information of China (English)

    高春清; 魏光辉; Horst WEBER

    2001-01-01

    The stigmatic beam with orbital angular momentum is generated by transforming the Hermite-Gaussian beamof a diode-pumped Nd:YAG laser through a rotated cylindrical optical system. Behind the transformation optics,the output beam has an intensity distribution of ring shape and a twist phase. The beam transformation istheoretically calculated and the result has been confirmed in the experiments.

  14. Propagation characters of Gaussian laser beams in collisionless plasma: Effect of plasma temperature

    International Nuclear Information System (INIS)

    This paper presents an investigation of the propagation characters of Gaussian laser beam in cold collisionless plasma by considering the plasma temperature variation. The ponderomotive nonlinearity is involved and induces the nonlinear self-focusing against spatial diffraction. The second-order differential equation of dimensionless beam width parameter f(ξ) in terms of plasma temperature is established from Maxwell's equations with paraxial approximation. The initial (P0,ρ0) plane, behaviors of f(ξ) parameter, and perturbed density n/nn0n0 of different plasma temperatures are plotted and analyzed. The plasma temperature is divided into four regions, which leads to different propagation characters including oscillatory divergence, self-trapping, self-focusing, and steady divergence. The plasma density distribution modified by the electric field intensity and plasma temperature is discussed.

  15. Plasma driven neutron/gamma generator

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  16. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  17. Repetitive plasma opening switch for powerful high-voltage pulse generators

    International Nuclear Information System (INIS)

    Results are presented of experimental studies of plasma opening switches that serve to sharpen the pulses of inductive microsecond high-voltage pulse generators. It is demonstrated that repetitive plasma opening switches can be used to create super-powerful generators operating in a quasi-continuous regime. An erosion switching mechanism and the problem of magnetic insulation in repetitive switches are considered. Achieving super-high peak power in plasma switches makes it possible to develop new types of high-power generators of electron beams and X radiation. Possible implementations and the efficiency of these generators are discussed

  18. Electric-arc steam plasma generator

    Science.gov (United States)

    Anshakov, A. S.; Urbakh, E. K.; Radko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2015-01-01

    Investigation results on the arc plasmatorch for water-steam heating are presented. The construction arrangement of steam plasma generator with copper electrodes of the stepped geometry was firstly implemented. The energy characteristics of plasmatorch and erosion of electrodes reflect the features of their behavior at arc glow in the plasma-forming environment of steam. The results of numerical study of the thermal state of the composite copper-steel electrodes had a significant influence on optimization of anode water-cooling aimed at improvement of its operation life.

  19. Component composition of the SPD-100 stationary plasma engine beam

    International Nuclear Information System (INIS)

    Measurements of the particle-charge composition in a plasma jet of an SPT-100 stationary plasma thruster during its operation on xenon in the range of discharge voltages 150-750 V have been performed with an MX-7303 mass spectrometer. The measured angular distributions of singly, doubly, and triply charged xenon ions over the beam cross section and their energy spectra are presented. The changes in the beam composition due to its interaction with neutral xenon atoms during its transport to the measurement point are estimated

  20. Generation of electron beams from a laser-based advanced accelerator at Shanghai Jiao Tong University

    OpenAIRE

    Elsied, Ahmed M. M.; Hafz, Nasr A. M.; Li, Song; Mirzaie, Mohammad; Sokollik, Thomas; Jie ZHANG

    2014-01-01

    At Shanghai Jiao Tong University, we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams having a reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized...

  1. Generation and application of bessel beams in electron microscopy.

    Science.gov (United States)

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. PMID:27203186

  2. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  3. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  4. Dynamics of electron beams in the solar corona plasma with density fluctuations

    OpenAIRE

    Kontar, E. P.

    2001-01-01

    The problem of beam propagation in a plasma with small scale and low intensity inhomogeneities is investigated. It is shown that the electron beam propagates in a plasma as a beam-plasma structure and is a source of Langmuir waves. The plasma inhomogeneity changes the spatial distribution of the waves. The spatial distribution of the waves is fully determined by the distribution of plasma inhomogeneities. The possible applications to the theory of radio emission associated with electron beams...

  5. Shining a Gluon Beam Through Quark-Gluon Plasma

    CERN Document Server

    Chesler, Paul M; Rajagopal, Krishna

    2011-01-01

    We compute the energy density radiated by a quark undergoing circular motion in strongly coupled $\\mathcal N = 4$ supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of strongly coupled radiation whose angular distribution has been characterized and is very similar to that of synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of momenta $\\sim q \\gg \\pi T$ is attenuated rapidly, over a distance $\\sim q^{1/3} (\\pi T)^{-4/3}$ in a plasma with temperature $T$. As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with momenta $\\lesssim \\pi T$. Presumably these sound waves would thermalize in the plasma if they were not hit soon after their production by the next pulse of gluons from the lighthouse-like rotating quark. At larger and larger $q$, the trailing sound wave becomes less and less pro...

  6. Sustainable Power Generation by Plasma Physics

    Directory of Open Access Journals (Sweden)

    Anyaegbunam F. N. C. (Ph.D.

    2013-08-01

    Full Text Available One of the greatest challenges of developing countries today is electric power generation. The demand for Electric power is far above generation and distribution capacities. For instance, only about 4000MW of electricity is available for nearly 170 million people in Nigeria today. On the other hand, the cities are littered with municipal solid wastes in open dumps which are dangerous to health and environment. Sustainable and successful waste management should be safe, effective, environmentally friendly and economically viable.Application of plasma Physics in waste to energy can be one of the novel ways of sustainable power generation. In plasma gasifying cupola, the organic waste materials are gasified to generate a syngas and steam which can be used to generate electricity by integrated gasification combine circle. The inorganic part of the waste is vitrified to a benign residue used for construction. This paper describes the physics and technology involved, reviews the power situation in Nigeria and the benefits of implementation of this technology in waste to electric power generation. This might be an environmentally Safe and sustainable economic solution for waste management and alternative clean power generation

  7. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tinakiche, Nouara [Faculty of Sciences, Department of Physics, University of Boumeredes U.M.B.B., Boumerdes 35000 (Algeria)

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  8. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    International Nuclear Information System (INIS)

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies

  9. Simulation studies of plasma waves in the electron foreshock - The generation of downshifted oscillations

    Science.gov (United States)

    Dum, C. T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.

  10. On the generation and disruption of a picosecond runaway electron beam during the breakdown of an atmospheric-pressure gas gap

    Energy Technology Data Exchange (ETDEWEB)

    Barengolts, S. A. [Prokhorov General Physics Institute, RAS, 38 Vavilov St., 119991 Moscow (Russian Federation); Mesyats, G. A.; Tsventoukh, M. M. [Lebedev Physical Institute, RAS, 53 Leninsky Ave., 119991 Moscow (Russian Federation); Uimanov, I. V. [Institute of Electrophysics, RAS, 106 Amundsen St., 620016 Ekaterinburg (Russian Federation)

    2012-03-26

    The generation and disruption of the picosecond runaway electron beam in atmospheric pressure strongly overvolted gas gap is considered with emphasis on the runaway kinetics, the increase in emission current and plasma density, and beam instabilities. It has been shown that a few-nanosecond ten-kV prepulse gives rise to a streamer. Application of the main pulse ({approx}2 MV/ns) results in the runaway electron beam generation with the streamer electrons involved in the acceleration, and in increase of the electron emission from the cathode and the plasma density. At the high enough plasma density, fast beam instability disrupts the runaway electron beam.

  11. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  12. Characterisation of an RF excited argon plasma cathode electron beam gun

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    This work describes the experimental set up used for carrying out spectroscopic measurements in a plasma cathode electron beam (EB) gun. Advantages of plasma cathode guns over thermionic guns are described. The factors affecting electron beam power such as plasma pressure, excitation power and plasma chamber geometry are discussed. The maximum beam current extracted was 53 mA from a 0.5 mm diameter aperture in the plasma chamber. In this work, the electron source is an argon plasma excited at...

  13. Transient effects in beam-plasma interactions in a space simulation chamber stimulated by a fast pulse electron gun

    Science.gov (United States)

    Raitt, W. J.; Banks, P. M.; Denig, W. F.; Anderson, H. R.

    1982-01-01

    Interest in the interaction of electron beams with plasma generated by ionization caused by the primary electron beam was stimulated by the need to develop special vacuum tubes to operate in the kMHz frequency region. The experiments of Getty and Smullin (1963) indicated that the interaction of an energetic electron beam with its self-produced plasma resulted in the emission of wave energy over a wide range of frequencies associated with cyclotron and longitudinal plasma instabilities. This enhanced the thermal plasma density in the vicinity of the beam, and the term Beam-Plasma Discharge (BPD) was employed to described this phenomenon. The present investigation is concerned with some of the transient phenomena associated with wave emission during the beam switch-on and switch-off periods. Results are presented on the changes in electron energy spectra on a time scale of tens of milliseconds following beam switch-on. The results are discussed in terms of the beam plasma discharge phenomenon.

  14. Harmonic generation in magnetized quantum plasma

    Science.gov (United States)

    Kumar, Punit; Singh, Shiv; Singh, Abhisek Kumar

    2016-05-01

    A study of second harmonic generation by propagation of a linearly polarized electromagnetic wave through homogeneous high density quantum plasma in the presence of transverse magnetic field. The nonlinear current density and dispersion relations for the fundamental and second harmonic frequencies have been obtained using the recently developed quantum hydrodynamic (QHD) model. The effect of quantum Bohm potential, Fermi pressure and the electron spin have been taken into account. The second harmonic is found to be less dispersed than the first.

  15. Magnetic field generation by short ultraintense laser pulse in underdense plasmas

    International Nuclear Information System (INIS)

    The theory of magnetic field generation due to the interaction of short relativistic laser pulses with underdense plasmas has been developed. The magnetic field is generated due to the inverse Faraday effect occurring with a circularly polarized laser pulse. The spatial distribution of the magnetic field is investigated. It is shown that the magnetic field magnitude depends on the relationship between the laser beam radius and the plasma skin-depth. (Author)

  16. Mono-Energetic Beams from Laser Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  17. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed. Two questions that must be paid attention to arise, when designing the plasma gen-erator. Water resistance in a plasma generator should be as big as possible, and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit, voltage be-tween two electrodes in the plasma generator reaches the highest value, and arc starting and discharge also occur between electrodes in the plasma generator. When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma, a mixture of plasma and steam ejects from the generator outlet. So it is necessary that cavity between electrodes in the plasma generator should be as big as possible, time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source, but resistance of water becomes small and arc starting is not easy to occur. Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results, the plasma generator model is established and the plasma generator is manufactured.

  18. Modeling of discharges generated by electron beams in dense gases: Fountain and thunderstorm regimes

    International Nuclear Information System (INIS)

    In this paper we present an analysis of the predicted dynamics of plasmas generated in air and other gases by injecting beams of high-energy electrons. Two distinct regimes are found, differing in the way that the excess negative charge brought in by the ionizing electron beam is removed. In the first regime, called a fountain, the charge is removed by the back current of plasma electrons toward the injection foil. In the second, called a thunderstorm, a substantial cloud of negative charge accumulates, and the increased electric field near the cloud causes a streamer to strike between the cloud and a positive or grounded electrode, or between two clouds created by two different beams. A quantitative analysis, including electron beam propagation, electrodynamics, charge particle kinetics, and a simplified heat balance, is performed in a one-dimensional approximation

  19. Propagation of an ultra intense laser pulse in an under dense plasma: production of quasi monoenergetic electron beams and development of applications; Propagation d'une impulsion laser ultra-intense dans un plasma sous-dense: generation de faisceaux d'electrons quasi monoenergetiques et developpement d'applications

    Energy Technology Data Exchange (ETDEWEB)

    Glinec, Y

    2006-09-15

    This experimental study concerns the generation of electron beams with original properties. These electrons beams originate from the interaction of an ultra-intense and short laser pulse with a gas jet. Previously, these electron beams had a large divergence and a broad spectrum. A major improvement in this field was achieved when an electron beam with low divergence (10 mrad) and a peaked spectrum (170 MeV) was observed during this thesis, using a new single shot electron spectrometer. A parametric study of the interaction allowed to observe the evolution of the electron beam. Experiments have been carried out to deepen the characterization of the electron beam. The observation of transition radiation generated by the electrons at an interface shows that the electron beam interacts with the laser pulse during the acceleration. Radial oscillations of the electron beam around the laser axis, named betatron oscillations, were also observed on the electron spectra. Such a quasi-monoenergetic spectrum is essential for many applications. In order to justify the interest of this electron beam, several applications are presented: a sub-milli-metric gamma-ray radiography of dense objects, a dose profile of the electron beam comparable to present capabilities of photon sources for radiotherapy, a very short temporal profile useful for water radiolysis and the generation of a bright X-ray source with low divergence. (author)

  20. Analysis of beam plasma instability effects on incoherent scatter spectra

    Directory of Open Access Journals (Sweden)

    M. A. Diaz

    2010-12-01

    Full Text Available Naturally Enhanced Ion Acoustic Lines (NEIALs detected with Incoherent Scatter Radars (ISRs can be produced by a Langmuir decay mechanism, triggered by a bump on tail instability. A recent model of the beam-plasma instability suggests that weak-warm beams, such those associated with NEIAL events, might produce Langmuir harmonics which could be detected by a properly configured ISR. The analysis performed in this work shows that such a beam-driven wave may be simultaneously detected with NEIALs within the baseband signal of a single ISR. The analysis shows that simultaneous detection of NEIALs and the first Langmuir harmonic is more likely than simultaneous detection of NEIALs and enhanced plasma line. This detection not only would help to discriminate between current NEIAL models, but could also aid in the parameter estimation of soft precipitating electrons.

  1. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  2. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  3. Two-dimensional simulations of nonlinear beam-plasma interaction in isotropic and magnetized plasmas

    CERN Document Server

    Timofeev, I V

    2012-01-01

    Nonlinear interaction of a low density electron beam with a uniform plasma is studied using two-dimensional particle-in-cell (PIC) simulations. We focus on formation of coherent phase space structures in the case, when a wide two-dimensional wave spectrum is driven unstable, and we also study how nonlinear evolution of these structures is affected by the external magnetic field. In the case of isotropic plasma, nonlinear buildup of filamentation modes due to the combined effects of two-stream and oblique instabilities is found to exist and growth mechanisms of secondary instabilities destroying the BGK--type nonlinear wave are identified. In the weak magnetic field, the energy of beam-excited plasma waves at the nonlinear stage of beam-plasma interaction goes predominantly to the short-wavelength upper-hybrid waves propagating parallel to the magnetic field, whereas in the strong magnetic field the spectral energy is transferred to the electrostatic whistlers with oblique propagation.

  4. Hydrogen Plasma Generation with 200 MHz RF Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongtae; Park, Kwangmook; Seo, Dong Hyuk; Kim, Han-Sung; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The ion source for the system is required to be rugged with 2000 hours maintenance free operation time because it is installed in the vessel filled with SF6 gas at the pressure of 10 bar. A 200 MHz RF ion source is considered as an ion source. It is a simple construction and provides long life operation. The specifications of the ion source are 5 kV extraction voltage and 1 mA beam current referenced to the proton. RF ion source has been developed and undergone a performance test. Results of the test are presented. 200 MHz RF ion source is designated and manufactured. First of all test stand test of ion source are set up for a performance test of ion source. It includes a RF ion source, a 200-MHz RF system, beam extraction system, vacuum system, beam extraction system, and beam diagnostic system. At pressure of 1.2E-5 torr, hydrogen plasma is generated with net RF power 70 W. Pyrex tube surrounded by an inductive coil takes the role of vessel and discharge is enhanced with field of permanent magnets.

  5. Wave heating of an ion beam in a tokamak plasma

    International Nuclear Information System (INIS)

    Heating of a 26-keV trapped-ion beam by interaction with incident lower-hybrid RF power (as low as 5kW) was observed in the ATC plasma. We suggest that ion-cyclotron damping of lower hybrid waves by beam ions can account for the increase in beam energy. This process can explain the main features of the experiment: (1) preferential absorption in the perpendicular direction, (2) lack of absorption by the background plasma ions, and (3) low power requirement for absorption. Theory requires ksub(perpendicular)rhosub(i) approximately > (ω/ωsub(ci))sup(1/2). The relatively high perpendicular temperature of the beam ions (approximately 1keV), combined with one of several possibilities for RF energy at large ksub(perpendicular), allows the condition on ksub(perpendicular)rhosub(i) to be satisfied. Moreover, the large parallel energy of the beam ions plays a major role in broadening the harmonic resonances, thus making it possible for a large number of beam ions to resonate with the wave. Though the primary process is perpendicular absorption, there is also a net gain in parallel energy during a collision time due to pitch-angle scattering. The importance of this heating mechanism for large machines such as TFTR is discussed. For these machines, ions will be injected with large rhosub(i), making ion heating possible even with moderate values of ksub(perpendicular). (author)

  6. The design of a plasma generator used in ships

    Institute of Scientific and Technical Information of China (English)

    WANG XinZhang; YANG JiaXiang; LAN Bo; XU ZuoMing; GAO Ying

    2008-01-01

    The process and condition of arc starting and discharge and heat balance rela-tionship in a plasma generator that takes water as propellant are analyzed.Two questions that must be paid attention to arise,when designing the plasma gen-erator.Water resistance in a plasma generator should be as big as possible,and inductive reactance of electric source should be equal to capacity reactance of plasma generator so that resonance is generated in electric circuit,voltage be-tween two electrodes in the plasma generator reaches the highest value,and arc starting and discharge also occur between electrodes in the plasma generator.When energy that electric source supplies is greater than or equal to the energy required when water becomes plasma,a mixture of plasma and steam ejects from the generator outlet.So it is necessary that cavity between electrodes in the plasma generator should be as big as possible,time that water stays in the plasma gen-erator should be long enough so that water obtains enough energy from the electric source,but resistance of water becomes small and arc starting is not easy to occur.Through manufacturing and experimentes on four kinds of plasma generators as well as the contrast between experimental results,the plasma generator model is established and the plasma generator is manufactured.

  7. Electron acceleration by electron plasma wave excited by beating two cross-focused Cosh-Gaussian laser beams in collisionless plasma

    International Nuclear Information System (INIS)

    This paper presents a scheme for electron acceleration by excitation of an electron plasma wave (EPW) by beating two cross focused Cosh-Gaussian (ChG) laser beams in an underdense plasma where ponderomotive nonlinearity is operative. The ponderomotive nonlinearity depends not only on the intensity of first laser beam but also on that of second laser beam. Therefore, the propagation dynamics of one laser beam affects that of other and hence, cross-focusing of the two laser beams takes place. Virial theorem technique has been invoked to study the propagation dynamics of the laser beams. Due to nonuniform intensity distribution along the wavefronts of the laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, is thus nonlinearly coupled with the laser beams. The effects of ponderomotive nonlinearity and cross-focusing of the laser beams on excitation of EPW have been incorporated. The generated plasma wave produces regions of positive and negative charges and thus establishes an electric field that travels along with the plasma wave. If a charged particle is injected into the plasma at approximately the same velocity as plasma wave, it will stay in phase with the field, absorb energy from the field and accelerate steadily. It has been found that by changing the decentered parameter the peak intensity of ChG laser beam can be shifted in the transverse direction and hence, optimum acceleration of the electrons can be obtained. The plasma based electron accelerators can adieu to the era of gargantuan mega-accelerators. (author)

  8. Necklace Beam Generation in Nonlinear Colloidal Engineered Media

    CERN Document Server

    Silahli, Salih Z; Litchinitser, Natalia M

    2015-01-01

    Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, and rogue waves. However, practical realization of these phenomena in the majority of available nonlinear media still relies on high-intensity optical beams. Here, we analytically and numerically show the possibility of necklace beam generation originating from low-intensity spatial modulational instability of vortex beams in engineered soft-matter nonlinear media.

  9. Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Goumiri, I. R. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Rowley, C. W. [Princeton Univ., NJ (United States). Mechanical and Aerospace Dept.; Sabbagh, S. A. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gerhardt, S. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Boyer, M. D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Andre, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Taira, K. [Florida State Univ, Dept Mech Engn, Tallahassee, FL USA.

    2016-02-19

    A model-based feedback system is presented to control plasma rotation in a magnetically confined toroidal fusion device, to maintain plasma stability for long-pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed at controlling plasma rotation using two different types of actuation: momentum from injected neutral beams and neoclassical toroidal viscosity generated by three-dimensional applied magnetic fields. Based on the data-driven model obtained, a feedback controller is designed, and predictive simulations using the TRANSP plasma transport code show that the controller is able to attain desired plasma rotation profiles given practical constraints on the actuators and the available measurements of rotation.

  10. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  11. Transformer ratio improvement for beam based plasma accelerators

    International Nuclear Information System (INIS)

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R ≤ 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  12. Return Current Electron Beams and Their Generation of "Raman" Scattering

    Science.gov (United States)

    Simon, A.

    1998-11-01

    For some years, we(A. Simon and R. W. Short, Phys. Rev. Lett. 53), 1912 (1984). have proposed that the only reasonable explanation for many of the observations of "Raman" scattering is the presence of an electron beam in the plasma. (The beam creates a bump-on-tail instability.) Two major objections to this picture have been observation of Raman when no n_c/4 surface was present, with no likely source for the electron beam, and the necessity for the initially outward directed beam to bounce once to create the proper waves. Now new observations on LLE's OMEGA(R. Petrasso et al), this conference. and at LULI(C. Labaune et al)., Phys. Plasma 5, 234 (1998). have suggested a new origin for the electron beam. This new scenario answers the previous objections, maintains electron beams as the explanation of the older experiments, and may clear up puzzling observations that have remained unexplained. The new scenario is based on two assumptions: (1) High positive potentials develop in target plasmas during their creation. (2) A high-intensity laser beam initiates spark discharges from nearby surfaces to the target plasma. The resulting return current of electrons should be much more delta-like, is initially inwardly directed, and no longer requires the continued presence of a n_c/4 surface. Scattering of the interaction beam from the BOT waves yields the observed Raman signal. Experimental observations that support this picture will be cited. ``Pulsation'' of the scattering and broadband ``flashes'' are a natural part of this scenario. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  13. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged

  14. Sagnac Interferometer Based Generation of Controllable Cylindrical Vector Beams

    Directory of Open Access Journals (Sweden)

    Cristian Acevedo

    2016-01-01

    Full Text Available We report on a novel experimental geometry to generate cylindrical vector beams in a very robust manner. Continuous control of beams’ properties is obtained using an optically addressable spatial light modulator incorporated into a Sagnac interferometer. Forked computer-generated holograms allow introducing different topological charges while orthogonally polarized beams within the interferometer permit encoding the spatial distribution of polarization. We also demonstrate the generation of complex waveforms obtained by combining two orthogonal beams having both radial modulations and azimuthal dislocations.

  15. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  16. Second-Harmonic Generation of Bessel Beams in Lossy Media

    Institute of Scientific and Technical Information of China (English)

    丁德胜; 许坚毅; 王耀俊

    2002-01-01

    We present a further analysis for the second-harmonic generation of Bessel beams in lossy media. The emphasis is put on the effect of absorption to the radial pattern of the second-harmonic beam. It is shown that within the absorption length of the second harmonic, the Bessel second-harmonic beam approaches limited diffraction in the radial direction and behaves as in the case of lossless media.

  17. Experimental generation of ring-shaped beams with random sources

    CERN Document Server

    Reddy, Salla Gangi; Prabhakar, Shashi; Singh, R P

    2013-01-01

    We have experimentally reproduced ring shaped beams from the scattered Laguerre-Gaussian and Bessel- Gaussian beams. A rotating ground glass plate is used as a scattering medium and a plano convex lens collects the scattered light to generate ring shaped beams at the Fourier plane. The experimental results are in good agreement with the theoretical results of Mei and Korotkova (Opt. Lett. 38, 91{93 (2013)).

  18. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros. PMID:19334940

  19. Thyristor stack for pulsed inductive plasma generation.

    Science.gov (United States)

    Teske, C; Jacoby, J; Schweizer, W; Wiechula, J

    2009-03-01

    A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 micros and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/micros.

  20. Carbon dust particles in a beam-plasma discharge

    Science.gov (United States)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  1. Role of beam absorption in plasma during laser welding

    Energy Technology Data Exchange (ETDEWEB)

    SEMAK,V.V.; STEELE,R.J.; FUERSCHBACH,PHILLIP W.; DAMKROGER,BRIAN K.

    2000-05-15

    The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO{sub 2} laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

  2. Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen

    OpenAIRE

    Tao, Mengze; Hafz, Nasr A. M.; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Jie ZHANG

    2014-01-01

    We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2)) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The qua...

  3. Evaluation of two-beam spectroscopy as a plasma diagnostic

    International Nuclear Information System (INIS)

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler

  4. Ribbon electron beam formation by a forevacuum plasma electron source

    Energy Technology Data Exchange (ETDEWEB)

    Klimov, A. S., E-mail: klimov@main.tusur.ru; Burdovitsin, V. A. [Tomsk State University of Control System and Radioelectronics (Russian Federation); Grishkov, A. A. [SB RAS, Institute of High Current Electronics (Russian Federation); Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G. [Tomsk State University of Control System and Radioelectronics (Russian Federation)

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  5. Intense ion beams accelerated by relativistic laser plasmas

    Science.gov (United States)

    Roth, Markus; Cowan, Thomas E.; Gauthier, Jean-Claude J.; Allen, Matthew; Audebert, Patrick; Blazevic, Abel; Fuchs, Julien; Geissel, Matthias; Hegelich, Manuel; Karsch, S.; Meyer-ter-Vehn, Jurgen; Pukhov, Alexander; Schlegel, Theodor

    2001-12-01

    We have studied the influence of the target properties on laser-accelerated proton and ion beams generated by the LULI multi-terawatt laser. A strong dependence of the ion emission on the surface conditions, conductivity, shape and material of the thin foil targets were observed. We have performed a full characterization of the ion beam using magnetic spectrometers, Thompson parabolas, radiochromic film and nuclear activation techniques. The strong dependence of the ion beam acceleration on the conditions on the target back surface was found in agreement with theoretical predictions based on the target normal sheath acceleration (TNSA) mechanism. Proton kinetic energies up to 25 MeV have been observed.

  6. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  7. Metastable argon beam source using a surface wave sustained plasma

    International Nuclear Information System (INIS)

    A new source of metastable argon atoms in the thermal energy range is reported. The source is based on expanding a plasma sustained by electromagnetic surface waves in a quartz tube through a converging nozzle and extracting a beam from the supersonic free-expansion jet. The beam was characterized by time-of-flight measurements which yielded the absolute intensity and velocity distribution of the argon metastables. The source produced a maximum intensity of 6.2x1014 metastables per second per steradian, the highest time-averaged intensity of thermal argon metastables of any source reported to date. A simple picture of an expanding plasma in a recombination regime is used to explain the dependence of the metastable intensity on absorbed power

  8. Plasma opening switch experiments on the Particle Beam Accelerator II

    International Nuclear Information System (INIS)

    Plasma opening switch (POS) experiments have been done since 1986 on the PBFA-II ion beam accelerator to develop a rugged POS that will open rapidly (80%) into a high impedance (> 10 ohm) load. In a recent series of experiments on PBFA II, the authors have developed and tested three different switch designs that use magnetic fields to control and confine the injected plasma. All three configurations couple current efficiently to a 5-ohm electron beam diode. In this experimental series, the PBFA-II Delta Series, more extensive diagnostics were used than in previous switch experiments on PBFA II or on the Blackjack 5 accelerator at Maxwell Laboratories. Data from the experiments with these three switch designs is presented

  9. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Castracane, J.

    2001-01-04

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies.

  10. Heavy Neutral Beam Probe for Edge Plasma Analysis in Tokamaks

    International Nuclear Information System (INIS)

    The Heavy Neutral Beam Probe (HNBP) developed initially with DOE funding under the Small Business Innovation Research (SBIR) program was installed on the Tokamak de Varennes (TdeV) at the CCFM. This diagnostic was designed to perform fundamental measurements of edge plasma properties. The hardware was capable of measuring electron density and potential profiles with high spatial and temporal resolution. Fluctuation spectra for these parameters were obtained with HNBP for transport studies

  11. Effect of transverse magnetic field on generation of electron beam in gas diode

    International Nuclear Information System (INIS)

    One studied experimentally the effect of the transverse magnetic field (0.08 and 0.016 T) on the generation of an electron beam within a gas diode. At U=25 kV gas diode voltage and helium low pressure (45 Torr) the transverse magnetic field is shown to affect the beam current amplitude outside the foil and on its foil cross section distribution. Under the increased pressure values and at generation of an ultra short-time avalanche electron beam (UAEB) in helium, nitrogen and in air the transverse magnetic field is shown to affect negligibly the UAEB amplitude and duration outside the foil. At the generator voltage equal to hundreds of kilovolts a portion of the escaping electrons was found to arrive to the gas diode lateral walls including those from the discharge plasma in the vicinity of a cathode

  12. Two-color beam generation based on wakefield excitation

    Science.gov (United States)

    Bettoni, S.; Prat, E.; Reiche, S.

    2016-05-01

    Several beam manipulation methods have been studied and experimentally tested to generate two-color photon beams in free electron laser facilities to accommodate the user requests. We propose to use the interaction of the beam with an oscillating longitudinal wakefield source to obtain a suitable electron beam structure. The bunch generates two subpulses with different energies and delayed in time passing through a magnetic chicane after its longitudinal phase space has been modulated by the wakefield source. According to this approach the power of the emitted radiation is not degraded compared to the monochromatic beam, and the setup in the machine is quite simple because the bunch is manipulated only in the high energy section, where it is more rigid. We present the design applied to SwissFEL. We identified the parameters and the corresponding range of tunability of the time and energy separation among the two subbunches.

  13. Modeling and control of plasma rotation for NSTX using Neoclassical Toroidal Viscosity (NTV) and Neutral Beam Injection (NBI)

    Science.gov (United States)

    Goumiri, Imene; Rowley, Clarence; Sabbagh, Steven; Gates, David; Gerhardt, Stefan

    2014-10-01

    A model-based system to control plasma rotation in a magnetically confined toroidal fusion device is developed to maintain plasma stability for long pulse operation. This research uses experimental measurements from the National Spherical Torus Experiment (NSTX) and is aimed to control plasma rotation by using momentum from injected neutral beams and viscosity generated by three-dimensional applied magnetic fields as actuators. Based on the data driven model obtained, a feedback controller is designed to theoretically sustain the toroidal momentum of the plasma in a stable fashion and to achieve desired plasma rotation profiles. On going work includes extending this method to NSTX Upgrade which has more complete radial coverage of the neutral beams momentum sources which enable simultaneous control of plasma stored energy (Beta control).

  14. Proton beam generation of whistler waves in the earth's foreshock

    Science.gov (United States)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  15. Investigation of plasma critical surface rippling by harmonics generation in laser plasmas

    International Nuclear Information System (INIS)

    One of the important applications of high intensity short pulse lasers is the generation of high harmonics. High harmonics are generated on the steep density gradients of plasmas by ultra-short laser pulses. Electron oscillations across the gradient generated at the critical surface serve as a source of high harmonics. In the last ten years experiments were carried out using different laser parameters by various wavelengths and pulse durations. In case of the laser pulse of less than 100 fs, the harmonics were found to be generated in the specular directions. Most of the experiments carried out by ultrahigh intensities (>1019 W/cm2) used laser pulses >500 fs duration. In these cases pre-plasmas were generated by the strong pre-pulses. Diffuse propagation of harmonics was observed, probably caused by the rippling of the critical surface. In our early experiments with a pre-pulse-free KrF laser of modest, 5·1015 W/cm2 intensities of 600 fs pulse duration, the propagation of harmonics was specular. Herewith we investigate harmonics generation with tightly focused KrF pulses of intensities up to 3·1017 W/cm2. Our experiments were carried out using a hybrid KrF-dye excimer laser system (15 mJ pulse energy, 600 fs pulse duration, 248 nm wavelength). Important to note that the amplification process of the system is a direct amplification (3-off-axis-pass KrF amplifier). Thus the only source of pre-pulses is the amplified spontaneous emission (ASE) of the amplifier. The beam was focused by an F/2 off-axis parabolic mirror to a 2.5 μm spot. The maximum intensity was 3·1017 W/cm2 on the target surface, with ASE pre-pulses below 107 W/cm2 intensity. The ASE did not generate a pre-plasma. Our targets were 500 nm thick Al and B or 270 nm thick C layers evaporated on glass plates. A Jobin-Yvon toroidal holographic grating and MCP assembly provided single shot spectra in the VUV. Intense 2ω, 3ω and near-threshold 4ω generation was observed in specular direction both for p

  16. Generator of steam plasma for gasification of solid fuels

    Science.gov (United States)

    An'shakov, A. S.; Urbakh, E. K.; Rad'ko, S. I.; Urbakh, A. E.; Faleev, V. A.

    2013-12-01

    A structural design of an electric-arc steam plasma torch (plasmatron) with copper tubular electrodes has been proposed and implemented. Operational parameters are determined for the stable generation of steam plasma. Experimental data are presented on the energy characteristics of the plasma generator with the capacity up to 100 kW.

  17. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakes

    CERN Document Server

    Timofeev, I V; Volchok, E P

    2016-01-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ($\\sim 10$ MV/cm) narrowband terahertz pulses with the gigawatt power level and millijoule energy content.

  18. Numerical model of the plasma formation at electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The Department for Applied Physics, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784 Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora, 1309 Sofia (Bulgaria)

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  19. Numerical model of the plasma formation at electron beam welding

    International Nuclear Information System (INIS)

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research

  20. GeV electron beams from table-top laser-plasma accelerator using capillary waveguides

    International Nuclear Information System (INIS)

    Complete test of publication follows. Conventional particle accelerators for radiation sources, high-energy physics, and other applications are typically limited to accelerating gradients ∼ 50 MV/m to avoid material breakdown, resulting in bulky, expensive machines. A new technology for generating intense energetic electron beam and synchronized femtosecond radiation sources is plasma acceleration using high-peak power, ultrashort-pulse, high energy lasers. The physics, research status, and challenges of laser-plasma accelerators and future radiation sources based on these advanced particle accelerators will be discussed. The radiation pressure of an intense laser pulse drives a space charge wave in fully ionized plasma, producing acceleration gradients on the order of 100 GV/m and micron-wavelength accelerating structures for femtosecond beams. To drive such structures, short pulse lasers are used (40 fs, 40 TW, I = 1018-1019 W/cm2), so that the ponderomotive force resonantly drives the plasma wave (Llaser ∼ c/ωp) in cold, low-density plasmas (Tc ∼ 10 eV, nc ∼ 1018 cm-3). Structured plasmas (channels) are used to guide this drive pulse, maintaining the accelerating field beyond the laser diffraction range. Electron beams of narrow energy spread and good emittance have been produced at several facilities by extending the acceleration distance to match the dephasing length over which the particles outrun the wave. Recently, the acceleration distance has been extended again to cm-scale at LBNL, using channels in a capillary discharge, developed at University of Oxford, and resulting in energies up to 1 GeV. Challenges of applications of laser accelerators include control and reproducibility of the electron beam, scaling to higher energies, and detailed modelling to understand what optimization are available. In particular, injection of particles into the wave must be accurately controlled, and shot to shot variation must be reduced.

  1. Review of Beam-Driven Plasma Wakefield Experiments at SLAC

    CERN Document Server

    Hogan, Mark; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Emma, Paul; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Mori, Warren; Muggli, Patric; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    In the plasma wakefield accelerator, a short relativistic-electron bunch drives a large amplitude plasma wave or wake. In experiment E-164X, we use the 28.5 GeV, ultra-short (?80 femtosecond), high peak-current (?30 kiloamperes) bunch now available at the Stanford Linear Accelerator Center Final Focus Test Beam facility. The head of this bunch fieldionizes a lithium vapor and excites the wake, and the tail samples the accelerating field. The latter is accomplished by setting the plasma density to match the plasma wavelength to the bunch length. After the plasma, the bunch is dispersed in energy by an imaging magnetic-spectrometer. Preliminary analysis shows that gradients in excess of 15 GeV/m are excited over a plasma length of approximately 10 cm, leading to energy gain on the order of of 1.5 GeV, or about an order of magnitude larger than energy gains reported to date. This gradient is also three orders of magnitude larger than that in the three-kilometer long Stanford linear accelerator that produces the ...

  2. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    CERN Document Server

    Chen, Shumei; Li, Guixin; Zhang, Shuang; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate requires complicated 3D fabrication, the emerging field of metasurfaces has provided a planar and facile solution for generating vortex beams of arbitrary orbit angular momentum. Here we realize a novel type of geometric metasurface fork grating that seamlessly combine the functionality of a metasurface phase plate for vortex beam generation, and that of a linear phase gradient metasurface for controlling the wave propagation direction. The metasurface fork grating is therefore capable of simultaneously controlling both the...

  3. Generation and transport of laser accelerated ion beams

    International Nuclear Information System (INIS)

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  4. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    Science.gov (United States)

    Urrutia, J. M.; Stenzel, R. L.

    2016-05-01

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers are shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon "eigenmodes" with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.

  5. Absolute power scaling measurements of Electromagnetic radiation at 2ω /sub uh/ generated by steady state colliding electron beams

    International Nuclear Information System (INIS)

    Space physics data indicate Electromagnetic (EM) emission correlated with the existence of electron beams in solar and planetary sources. The EM power is too large to be produced by linear plasma production mechanisms, suggesting that non-linear beam processes can coherently, enhance the generation of EM radiation. Steady state counterstreaming electron beams are produced in a triple plasma device, where they collide in a filament discharge target plasma. Neutral pressure is low (5 x 10-5 Torr), with background target density, n /sub e/ less than or equal to 1010 cm-3 and electron temperature T /sub e/ less than or equal to 4 eV . Beams are grid extracted from sources and collimated with a small axial magnetic field (B /sub o/ less than or equal to 10 Gauss). Beam density is n /sub b/ less than or equal to 108 cm-3 and beam energy is E /sub b/ < 150 eV. Plasma ions with varying masses such as He+, Ar+, Xe+ are used. Diagnostics are carried out with electrostatic probes and absolutely calibrated single turn Faraday shielded loop antennae. When counterstreaming electron beams are allowed to collide in the target, steady state electrostatic and electromagnetic disturbances are observed respectively at the upper hybrid frequency and the first harmonic. The colliding beam EM radiation power is seen to be greatly enhanced over that of the single beam case

  6. A NEW METHOD OF GENERATION OF OPTIMUL SECTOR BEAMS

    Directory of Open Access Journals (Sweden)

    K. SRINIVASA NAIK

    2013-07-01

    Full Text Available Generation of narrow beams with asymmetric sidelobe structure is reported by Elliott. In this method Modified Taylor’s approach is used to find out aperture distributions over a given asymmetricity. These patterns are useful to compensate roll and pitch of the sea vessels from marine radars. When a target is moving very fast, it isdifficult to scan the narrow beams to follow the target speed as it requires more number of scans. In order to overcome such problems, Sector beams with asymmetric sidelobe structure are useful. Depending on sectorial width of the beam, the number of scans can be reduced. Such beams are not reported in the literature. In view of the above facts, intensive studies are carried out to optimize the sector beams with asymmetric sidelobe structure. The present method consists of the application of phase distribution obtained by Elliott to obtain amplitude distribution by using inverse Fourier transform. For a specified beam shape, sector beams of different widths are generated with different asymmetricity in side lobe structure. They are presented in u domain (Sin θ.

  7. Electron Production and Collective Field Generation in Intense Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Vay, J; Cohen, R; Friedman, A; Lee, E; Verboncoeur, J; Covo, M K

    2006-02-09

    Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding. With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5

  8. Study on nanosecond pulsed electron beam generation

    Science.gov (United States)

    Ponomarev, D.; Kholodnaya, G.; Remnev, G.; Kaikanov, M.; Sazonov, R.

    2014-11-01

    The paper presents the findings of an investigation on volt-ampere characteristics of the diode with explosive emission cathodes of different constructions (blade metal-dielectric (MD-cathode) and solid graphite cathodes) under the change of the anode-cathode gap in wide ranges. The investigations were carried out using the TEA-500 pulsed electron accelerator. The total current of the electron beam was measured using the Faraday cup (FC). A 0.5-mm foiled glass fiber laminate was used as an emitting edge of the cathode in the experimental study with the explosive emission blade MD-cathode. Based on the obtained results, the conclusion was made that the graphite cathode has the most effective efficiency factor.

  9. Study on nanosecond pulsed electron beam generation

    International Nuclear Information System (INIS)

    The paper presents the findings of an investigation on volt-ampere characteristics of the diode with explosive emission cathodes of different constructions (blade metal-dielectric (MD-cathode) and solid graphite cathodes) under the change of the anode-cathode gap in wide ranges. The investigations were carried out using the TEA-500 pulsed electron accelerator. The total current of the electron beam was measured using the Faraday cup (FC). A 0.5-mm foiled glass fiber laminate was used as an emitting edge of the cathode in the experimental study with the explosive emission blade MD-cathode. Based on the obtained results, the conclusion was made that the graphite cathode has the most effective efficiency factor

  10. Experiments on high-power ion beam generation in self-insulated diodes

    International Nuclear Information System (INIS)

    Experimental results are given on high-power ion beams (HPIB) generation in a vacuum spherical focusing diode with self-magnetic insulation, obtained from the nanosecond accelerator PARUS with 0.2-TW power and 60-ns pulse duration for a matched load. When the passive plasma source of the ions was used, the efficiency of the HPIB generation was measured to be as high as 20% for 700-kV diode voltage and 10-kA/cm2 beam density in the focal plane. The application of a coaxial plasma opening switch (POS) prior to the diode resulted in a factor-of-1.8 increase in the diode power in comparison with a match operation in the absence of a POS. (author)

  11. Collective acceleration of protons by the plasma waves in a counterstreaming electron beam

    International Nuclear Information System (INIS)

    A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration

  12. Study of Anti-Hydrogen and Plasma Physics 4.Observation of Antiproton Beams and Nonneutral Plasmas

    CERN Document Server

    Hori, Masaki; Fujiwara, Makoto; Kuroda, Naofumi

    2004-01-01

    Diagnostics of antiproton beams and nonneutral plasmas are described in this chapter. Parallel plate secondary electron emission detectors are used to non-destructively observe the beam position and intensity without loss. Plastic scintillation tracking detectors are useful in determining the position of annihilations of antiprotons in the trap. Three-dimensional imaging of antiprotons in a Penning trap is discussed. The unique capability of antimatter particle imaging has allowed the observation of the spatial distribution of particle loss in a trap. Radial loss is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. By observing electrostatic eigen-modes of nonneutral plasmas trapped in the Multi-ring electrode trap, the non-destructive measurement of plasma parameters is performed.

  13. Quasi-monoenergetic Electron Beams from Laser-plasma Acceleration by Ionization-induced Injection in Low- density Pure Nitrogen

    CERN Document Server

    Tao, Mengze; Li, Song; Mirzaie, Mohammad; Chen, Liming; He, Fei; Cheng, Ya; Zhang, Jie

    2014-01-01

    We report a laser wakefield acceleration of electron beams up to 130 MeV from laser-driven 4-mm long nitrogen gas jet. By using a moderate laser intensity (3.5*10^18 W.cm^(-2) ) and relatively low plasma densities (0.8*10^18 cm^(-3) to 2.7*10^18 cm^(-3)) we have achieved a stable regime for laser propagation and consequently a stable generation of electron beams. We experimentally studied the dependence of the drive laser energy on the laser-plasma channel and electron beam parameters. The quality of the generated electron beams is discussed within the framework of the ionization-induced injection mechanism.

  14. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    Institute of Scientific and Technical Information of China (English)

    邓永锋; 谭畅; 韩先伟; 谭永华

    2012-01-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  15. Modeling of energy transfer between two crossing smoothed laser beams in a plasma with flow profile

    Science.gov (United States)

    Colaitis, A.; Hüller, S.; Tikhonchuk, V. T.; Pesme, D.; Duchateau, G.; Porzio, A.

    2016-05-01

    We study the crossed beam energy transfer (CBET) between laser fields generated by optical smoothing methods. The energy transfer, as well as the angular distribution of the outgoing light fields are investigated for two incident smoothed laser beams in a plasma with a flow gradient, allowing for resonant transfer close to the sonic point. Simulations with the code HARMONY based on time-dependent paraxial light propagation are compared to simulations using a new approach based on paraxial complex geometrical optics (PCGO). Both approaches show good agreement for the average energy transfer past a short transient period, which is a promising result for the use of the PCGO method as a module within a hydrodynamics code to efficiently compute CBET in mm-scale plasma configurations. Statistical aspects related to role of laser speckles in CBET are considered via an ensemble of different phase plate realizations.

  16. Microstrip Antenna Generates Circularly Polarized Beam

    Science.gov (United States)

    Huang, J.

    1986-01-01

    Circular microstrip antenna excited with higher order transverse magnetic (TM) modes generates circularly polarized, conical radiation patterns. Found both theoretically and experimentally that peak direction of radiation pattern is varied within wide angular range by combination of mode selection and loading substrate with materials of different dielectric constants.

  17. Wave generation and particle transport in the plasma sheet and boundary layer. Semiannual report

    International Nuclear Information System (INIS)

    The one and two ion beam instability was considered as a possible explanation for the observations of broadband electrostatic noise in the plasma sheet region of the geomagnetic tail. When only hot streaming plasma sheet boundary layer ions were present, no broadband waves were excited. Cold, streaming ionospheric ions can generate electrostatic broadband waves propagating in the slow beam-acoustic mode, but the growth rates of the waves were significantly enhanced when warm boundary layer ions were presented. (Both the slow and fast beam-acoustic modes can be excited, depending on the relative ion drift.) This mode predicted that the wave intensity of the broadband noise should peak in the plasma sheet boundary layer (PSBL). Observations of less intense electrostatic waves in the lobes and plasma sheet were likely a result of the absence of warm ion beams or large ion temperatures, respectively, which resulted in smaller growth rates. The model dependence of the ion beam instability has also been studied. For cold and warm ions streaming in the same direction, researchers found wave growth peaked for wave normal angles theta = 0 deg. and wave frequencies approx. 0.1 x the electron plasma frequency. However, for anti-parallel streaming cold and warm ions, wave growth peaks near theta = 90 deg. and wave frequencies were an order of magnitude smaller

  18. Wave generation and particle transport in the plasma sheet and boundary layer

    Science.gov (United States)

    Dusenbery, P. B.

    1987-01-01

    The one and two ion beam instability was considered as a possible explanation for the observations of broadband electrostatic noise in the plasma sheet region of the geomagnetic tail. When only hot streaming plasma sheet boundary layer ions were present, no broadband waves were excited. Cold, streaming ionospheric ions can generate electrostatic broadband waves propagating in the slow beam-acoustic mode, but the growth rates of the waves were significantly enhanced when warm boundary layer ions were presented. (Both the slow and fast beam-acoustic modes can be excited, depending on the relative ion drift.) This mode predicted that the wave intensity of the broadband noise should peak in the plasma sheet boundary layer (PSBL). Observations of less intense electrostatic waves in the lobes and plasma sheet were likely a result of the absence of warm ion beams or large ion temperatures, respectively, which resulted in smaller growth rates. The model dependence of the ion beam instability has also been studied. For cold and warm ions streaming in the same direction, researchers found wave growth peaked for wave normal angles theta = 0 deg. and wave frequencies approx. 0.1 x the electron plasma frequency. However, for anti-parallel streaming cold and warm ions, wave growth peaks near theta = 90 deg. and wave frequencies were an order of magnitude smaller.

  19. Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma

    Science.gov (United States)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2016-07-01

    Two approaches to generate non-equilibrium atmospheric-pressure plasma in bubbles immersed in liquids are compared using high-fidelity 2D fluid simulations. In the first approach, corona/streamer like plasma is generated using high-voltage negative and positive pulses applied between two electrodes (pin-to-plane geometry) immersed in liquid. In the second, the plasma is generated using a remote microwave source (frequency 2.45 GHz). We find that the microwave approach requires less energy, while generating a denser, more chemically reactive and more uniform plasma within the bubble volume, as compared to the plasma generated using high-voltage pulsing.

  20. Speckles generated by skewed, short-coherence light beams

    CERN Document Server

    Brogioli, D; Croccolo, F; Ziano, R; Mantegazza, F

    2011-01-01

    When a coherent laser beam impinges on a random sample (e.g. a colloidal suspension), the scattered light exhibits characteristic speckles. If the temporal coherence of the light source is too short, then the speckles disappear, along with the possibility of performing homodyne or heterodyne scattering detection or photon correlation spectroscopy. Here we investigate the scattering of a so-called "skewed coherence beam", i.e., a short-coherence beam modified such that the field is coherent within slabs that are skewed with respect to the wave fronts. We show that such a beam generates speckles and can be used for heterodyne scattering detection, despite its short temporal coherence. When applied to quite turbid samples, the technique has the remarkable advantage of suppressing the multiple scattering contribution of the scattering signal. The phenomenon presented here represents a very effective method for measuring the coherence skewness of either a continuous wave or a pulsed beam. Another field of applicat...

  1. Heavy Neutral Beam Probe for edge plasma analysis in Tokamaks

    International Nuclear Information System (INIS)

    The contents of this report present the progress achieved to date on the Heavy Neutral Beam Probe project. This effort is an international collaboration in magnetic confinement fusion energy research sponsored by the US Department of Energy, Office of Energy Research (Confinement Systems Division) and the Centre Canadien de Fusion Magnetique (CCFM). The overall objective of the effort is to develop and apply a neutral particle beam to the study of edge plasma dynamics in discharges on the Tokamak de Varennes (TdeV) facility in Montreal, Canada. To achieve this goal, a research and development project was established to produce the necessary hardware to make such measurements and meet the scheduling requirements of the program. At present the project is in the middle of its second budget period with the instrumentation on-site at TdeV. The first half of this budget period was used to complete total system tests at InterScience, Inc., dismantle and ship the hardware to TdeV, re-assemble and install the HNBP on the tokamak. Integration of the diagnostic into the TdeV facility has progressed to the point of first beam production and measurement on the plasma. At this time, the HNBP system is undergoing final de-bugging prior to re-start of machine operation in early Fall of this year

  2. Necklace beam generation in nonlinear colloidal engineered media.

    Science.gov (United States)

    Silahli, Salih Z; Walasik, Wiktor; Litchinitser, Natalia M

    2015-12-15

    Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity. PMID:26670494

  3. Nonlinear generation of whistler waves by an ion beam

    Science.gov (United States)

    Akimoto, K.; Winske, D.

    1989-01-01

    An electromagnetic hybrid code is used to simulate a new mechanism for whistler wave generation by an ion beam. First, a field-aligned ion beam becomes unstable to the electromagnetic ion/ion right-hand resonant instability which generates large amplitude MHD-like waves. These waves then trap the ion beam and increase its effective temperature anisotropy. As a result, the growth rates of the electron/whistler instability are significantly enhanced, and whistlers start to grow above the noise level. At the same time, because of the reduced parallel drift speed of the ion beam, the frequencies of the whistlers are also downshifted. Full simulations were performed to isolate and separately investigate the electron/ion whistler instability. The results are in agreement with the assumption of fluid electrons in the hybrid simulations and with the linear theory of the instability.

  4. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    CERN Document Server

    Labaune, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J

    2013-01-01

    The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

  5. Development of Raman-shifted probe laser beam for plasma diagnosis using polaro-interferometer

    Indian Academy of Sciences (India)

    M P Kamath; A P Kulkarni; S Jain; P K Tripathi; A S Joshi; P A Naik; P D Gupta

    2010-11-01

    Optical diagnostics of laser-produced plasma requires a coherent, polarized probe beam synchronized with the pump beam. The probe beam should have energy above the background emission of plasma. Though the second harmonic probe beam satisfies most of the requirements, the plasma emission is larger at the harmonic frequencies of the pump. Hence, at high intensities we need a probe beam at non-harmonic frequencies. We have set up a Raman frequency shifted probe beam using a pressurized hydrogen cell that is pumped by the second harmonic of the Nd glass laser that operates at only one Stokes line of 673.75 nm.

  6. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  7. Propagation of a beam of hot electrons through solar wind plasma with generalized (r,q) distribution function

    Science.gov (United States)

    Khalilpour, H.

    2016-08-01

    The background plasma is assumed to have generalized (r, q) distribution for the electrons in the solar wind. The propagation of a beam of hot electrons through solar wind plasma with generalized (r,q) distribution and the generation of Langmuir waves are simulated using quasilinear equations. It is shown that spectral indices r and q affect the quasilinear dynamics of the beam and Langmuir waves. The damping of beam generated waves increases in (r,q) distributed plasma. As indices r and q increase the system shows quasilinear behavior which is more similar to the Maxwellian distribution function. The value of average velocity of the beam increases in a plasma with (r, q) distribution function and as the values of r and q increase, the average velocity of the beam decreases. It is also shown that the gas-dynamical parameters of the beam are functions of spectral indices r and q. The upper boundary of the plateau, and local velocity spread are increasing functions while the lower boundary and height of plateau are decreasing functions of r and q. The local velocity shows smooth behavior with respect to spectral indices r and q, and for all indices at given time and position has approximately same values.

  8. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  9. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums.

    Science.gov (United States)

    Dewald, E L; Hartemann, F; Michel, P; Milovich, J; Hohenberger, M; Pak, A; Landen, O L; Divol, L; Robey, H F; Hurricane, O A; Döppner, T; Albert, F; Bachmann, B; Meezan, N B; MacKinnon, A J; Callahan, D; Edwards, M J

    2016-02-19

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10× higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma. PMID:26943541

  10. Parametric instabilities in an electron beam plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Nakach, R.; Cuperman, S.; Gell, Y.; Levush, B.

    1981-08-01

    The excitation of low-frequency parametric instabilities by a finite wavelength pump in a system consisting of a warm electron plasma traversed by a warm electron beam is investigated in a fluid dissipationless model. The dispersion relation for the three-dimensional problem in a magnetized plasma with arbitrary directions for the waves is derived, and the one-dimensional case is analyzed numerically. For the one-dimensional back-scattering decay process, it is found that when the plasma-electron Debye length (lambda/sub D//sup p/) is larger than the beam-electron Debye length (lambda/sub D//sup b/), two low-frequency electrostatic instability branches with different growth rates may exist simultaneously. When lambda/sub D//sup p/approx. =lambda/sub D//sup b/, the large growth rate instability found in the analysis depends strongly on the amplitude of the pump field. For the case lambda/sub D//sup p/

  11. Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang

    2008-01-01

    We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.

  12. Geometric Metasurface Fork Gratings for Vortex Beam Generation and Manipulation

    OpenAIRE

    Chen, Shumei; Cai, Yuan; Li, Guixin; Shuang ZHANG; Cheah, Kok Wai

    2016-01-01

    In recent years, optical vortex beams possessing orbital angular momentum have caught much attention due to their potential for high capacity optical communications. This capability arises from the unbounded topological charges of orbital angular momentum (OAM) that provides infinite freedoms for encoding information. The two most common approaches for generating vortex beams are through fork diffraction gratings and spiral phase plates. While realization of conventional spiral phase plate re...

  13. Electron Beam Collimation for the Next Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  14. Generation of compensated ion beams from source with oscillating electrons

    CERN Document Server

    Borisko, V N; Yunakov, N N

    2000-01-01

    The generation of compensated ion beams from electrically unsymmetrical reflecting discharge was investigated.The spatial location of a compensation zone,the optimal values of operating gas pressures P=(0.8/1) centre dot 10 sup - sup 4 Torr and potential difference between cathodes DELTA U = 80B were determined.The way to control the current compensation degree of the extracted ion beam a several to 100% was found.

  15. Simplified Generation of High-Angular-Momentum Light Beams

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  16. Bunch beam production and microwave generation in reditrons

    International Nuclear Information System (INIS)

    The authors have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. The authors have further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW

  17. Bunch beam production and microwave generation in reditrons

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, T.J.T.; Davis, H.A.; Fulton, R.D.; Sherwood, E.G.

    1989-01-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode in the reditron and showed that the kinetic energy of the modulated electron beam was efficiently converted into transverse electromagnetic waves. Our simulations showed an efficiency of 26% and the time averaged microwave power was about 6 GW. 7 refs., 8 figs.

  18. Bunch Beam Production And Microwave Generation In Reditrons

    Science.gov (United States)

    Kwan, Thomas J. T.; Davis, Harold A.; Fulton, Robert D.; Sherwood, Eugene G.

    1989-07-01

    We have discovered in our two-dimensional particle-in-cell simulations that the oscillation of virtual cathodes in reditrons can produce a highly modulated electron beam. Full (100%) current modulation of the leakage electron beam was observed in our simulations. The modulation is at the frequency of the oscillating virtual cathode and the transverse magnetic mode generated by the reditron. We had further incorporated an inverse diode with a line impedance of 50 ohms in the reditron and showed that 28% of the kinetic energy of the modulated electron beam was converted into transverse electromagnetic waves with peak power of 1 GW.

  19. Impact of the thermal lens effect in atmospheric pressure DBD-plasma columns on coaxially guided laser beams

    Science.gov (United States)

    Hoffmeister, J.; Brückner, S.; Gerhard, C.; Wieneke, S.; Viöl, W.

    2014-12-01

    The combination of laser and low-temperature plasmas is of growing interest for micro-structuring purposes for a wide range of materials. This combination can be used for a reduction of the ablation threshold as well as an improvement of the machining quality in various laser material processing applications. The plasma involved in such combination, however, leads to a thermally generated influence on the laser beam quality. In this paper, a DBD-based argon plasma as typically used in low-temperature laser plasma hybrid arrangements was investigated by interferometric and beam profile measurements. The radial temperature profile as well as the beam propagation characteristics in terms of focal shift and effective pointing stability was determined. Due to the argon plasma, a temperature increase ΔT by up to 25 K, and thus a thermal lens was observed within the light path of the laser beam featuring an increase in refractive index Δn by maximum 2.86 × 10-5. In the given setup, the plasma-induced thermal lens caused a focal shift by up to 4 mm. Further, the lateral focus position was deviated by a maximum of about 30 µm, which is in the order of magnitude of the beam waist radius.

  20. Characterization of a channel spark discharge and the generated electron beam

    International Nuclear Information System (INIS)

    We report on an experimental study of a channel spark discharge (CSD) and the generated electron beam. The CSD was operated at a discharge voltage Ud≤30 kV and a discharge current Id≤3.5 kA. The CSD system consists of a glass tube placed between a hollow cathode and a grounded anode electrode. The parameters of the CSD operation, the potential distribution along the glass tube, and the generated beam were studied by electrical, optical, and spectroscopic diagnostics in the Ar gas pressure range of P=0.005-2 Pa. At P≥0.5 Pa, electrons with energy ∼eUd appeared prior to the start of the main CSD with a current amplitude ≤10-4Id. These high-energy electrons are responsible for the initiation of the CSD inside the glass tube. The generation of the electron beam which was composed of low-energy electrons with a current amplitude up to 3 kA occurred during a fast fall in the discharge voltage. Decreasing the Ar gas pressure below 0.1 Pa allows one to increase significantly the beam duration and the part of the high-energy electrons in the beam, and to increase the efficiency of the electron beam generation up to 75%. The high-current CSD inside the glass tube is accompanied by the formation of a plasma consisting of protons, Ar II, Ar III, C II-IV, and O II-IV ions. The plasma electron density and temperature were found to be in the ranges of 1015-1016 cm-3 and 10-15 eV, respectively

  1. Plasma-filled rippled wall rectangular backward wave oscillator driven by sheet electron beam

    Indian Academy of Sciences (India)

    A Hadap; J Mondal; K C Mittal; K P Maheshwari

    2011-03-01

    Performance of the backward wave oscillator (BWO) is greatly enhanced with the introduction of plasma. Linear theory of the dispersion relation and the growth rate have been derived and analysed numerically for plasma-filled rippled wall rectangular waveguide driven by sheet electron beam. To see the effect of plasma on the TM01 cold wave structure mode and on the generated frequency, the parameters used are: relativistic factor = 1.5 (i.e. / = 0.741), average waveguide height 0 = 1.445 cm, axial corrugation period 0 = 1.67 cm, and corrugation amplitude = 0.225 cm. The plasma density is varied from zero to 2 × 1012 cm-3. The presence of plasma tends to raise the TM01 mode cut-off frequency (14 GH at 2 × 1012 cm-3 plasma density) relative to the vacuum cut-off frequency (5 GH) which also causes a decrease in the group velocity everywhere, resulting in a flattening of the dispersion relation. With the introduction of plasma, an enhancement in absolute instability was observed.

  2. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  3. Collective Modes in Neutrino `Beam' Electron-Positron Plasma Interactions

    CERN Document Server

    Elze, H T; Opher, R

    2001-01-01

    We derive semiclassical neutrino-electron transport equations in the collisionless (Vlasov) limit from the coupled Dirac equations, incorporating the charged and neutral weak current-current as well as electromagnetic interactions. A corresponding linear response theory is derived. In particular, we calculate the response functions for a variety of beam-plasma geometries, which are of interest in a supernova scenario. We apply this to the study of plasmons and to a new class of collective {\\it pharon} resonance modes, which are characterized by $\\omega < q$. We find that the growth rates of the unstable modes correspond to a strongly temperature ($\\propto T_\

  4. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan; Zhang, Tian-Yang; Zhao, Xue-Long; Zhou, Hong-Yu [College of Optoelectric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anode gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.

  5. The sputter generation of negative ion beams

    International Nuclear Information System (INIS)

    A brief review is given of recent progress toward a quantitative understanding of negative ion formation by sputtering from surfaces covered with fractional layers of highly electropositive adsorbates. Practical models developed for estimating changes in work functions Δφ by electropositive adsorbates are described. The secondary negative ion generation process is examined through the use of composite energy/velocity dependent analytical models. These models are used to illustrate the effect of work function on the energy distributions of negative ions sputter ejected from a polycrystalline molybdenum surface covered with fractional layers of cesium. Predictions are also made of the functional dependence of the probability for negative ion formation on cesium coverage. The models predict energy distributions which are in basic disagreement with experimental observations, implying their inappropriateness for describing the sputter negative ion generation process. We have also developed a model for calculating sputter ratios based on the use of simple scaling procedures to bring Sigmund theory into close agreement with experimental observation accounting for the threshold effect. Scaling factors for projectile energies E > 1000 eV are found to be independent of energy while those for projectile energies Eth < E < 1000 eV were found to be energy dependent. In this study, the model and scaling techniques utilized to bring Sigmund theory into agreement with experiment are discussed in detail and several examples provided which illustrate the versatility, accuracy and utility of the model. In the present report, we describe the model and apply it to the case of sputtering a selected number of metals with energetic cesium ions. In particular, we present sputter ratio information for a number of Cs-projectile/metal-target combinations; the targets are bombarded at normal incidence to the surface

  6. Upconversion of whistler waves by gyrating ion beams in a plasma

    Indian Academy of Sciences (India)

    Harsha Jalori; Sunil K Singh; A K Gwal

    2004-09-01

    A gyrating ion beam, with a ring-shaped distribution in velocity, supports negative energy beam modes near the harmonics of beam gyro-frequency. An investigation of the non-linear interaction of high-frequency whistler waves with the negative energy beam cyclotron mode is made. A non-linear dispersion relation is derived for the coupled modes. It is shown that a gyrating ion-beam frequency upconverts the whistler waves separated by harmonics of beam gyro-frequency. The expression for the growth rate of whistler mode waves has been derived. In Case 1, a high-amplitude whistler wave decays into two lower frequency waves, called a low-frequency mode and a side band of frequency lower than that of pump wave. In Case 2 a high-amplitude whistler wave decays into two lower frequency daughter waves, called the low-frequency mode and whistler waves. Generation mechanism of these waves has application in space and laboratory plasmas.

  7. Beam Matching to a Plasma Wake Field Accelerator Using a Ramped Density Profile at the Plasma Boundary

    CERN Document Server

    Marsh, Kenneth; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Joshi, Chandrashekhar; Katsouleas, Thomas C; Krejcik, Patrick; Lu, Wei; Mori, Warren; Muggli, Patric; Oz, Erdem; Siemann, Robert; Walz, Dieter; Zhou, Miaomiao

    2005-01-01

    An important aspect of plasma wake field accelerators (PWFA) is stable propagation of the drive beam. In the under dense regime, the drive beam creates an ion channel which acts on the beam as a strong thick focusing lens. The ion channel causes the beam to undergo multiple betatron oscillations along the length of the plasma. There are several advantages if the beam size can be matched to a constant radius. First, simulations have shown that instabilities such as hosing are reduced when the beam is matched. Second, synchrotron radiation losses are minimized when the beam is matched. Third, an initially matched beam will propagate with no significant change in beam size in spite of large energy loss or gain. Coupling to the plasma with a matched radius can be difficult in some cases. This paper shows how an appropriate density ramp at the plasma entrance can be useful for achieving a matched beam. Additionally, the density ramp is helpful in bringing a misaligned trailing beam onto the drive beam axis. A plas...

  8. Development of compact quantum beam generation system and the application

    International Nuclear Information System (INIS)

    After the approval of the project as the 'High-Tech Research Center Project' conducted by MEXT at Waseda University, the laser driven photo-cathode RF-Gun (RF-Gun) has been developed very extensively. The system was developed to obtain the stable and high quality (i.e. very low emittance) electron beam in conjunction with the system stabilization such as RF power source and laser system for the electron emission. The high quality electron beams have been applied for the development of novel beam diagnostic system. At the same time, the beams (electron and laser) are applied for the inverse Compton scattering experiment for the generation of soft-X-ray with quasi-monochromatic energy and short time structure, and for the pump probe experiment (the pico-second pulse radiolysis) as the very compact system. (author)

  9. Propagation model for vector beams generated by metasurfaces.

    Science.gov (United States)

    Shu, Weixing; Liu, Yachao; Ke, Yougang; Ling, Xiaohui; Liu, Zhenxing; Huang, Bin; Luo, Hailu; Yin, Xiaobo

    2016-09-01

    A propagation model of vector beams generated by metasurfaces based on vector diffraction theory is established theoretically and verified experimentally. Considering the Pancharatnam-Berry phase introduced by the metasurface, analytical forms of vector beams for arbitrary incident polarization and topological charge of metasurfaces are found in the Fresnel and Fraunhofer diffraction regions, respectively. The complex amplitude of the resultant vector beam can be described in terms of a confluent hypergeometric function, with an intensity profile that manifests concentric rings in the Fresnel region and a single ring in the Fraunhofer one. Fraunhofer diffraction provides a method to create vector beams with simultaneously high purity and modal power. Further experiments verify the theoretical results. PMID:27607720

  10. Early hot electrons generation and beaming in ICF gas filled hohlraums at the National Ignition Facility

    Science.gov (United States)

    Dewald, Eduard; Michel, Pierre; Hartemann, Fred; Milovich, Jose; Hohenberger, Matthias; Divol, Laurent; Landen, Otto; Pak, Arthur; Thomas, Cliff; Doeppner, Tilo; Bachmann, Benjamin; Meezan, Nathan; MacKinnon, Andrew; Hurricane, Omar; Callahan, Debbie; Hinkel, Denise; Edwards, John

    2015-11-01

    In laser driven hohlraum capsule implosions on the National Ignition Facility, supra-thermal hot electrons generated by laser plasma instabilities can preheat the capsule. Time resolved hot electron Bremsstrahlung spectra combined with 30 keV x-ray imaging uncover for the first time the directionality of hot electrons onto a high-Z surrogate capsule located at the hohlraum center. In the most extreme case, we observed a collimated beaming of hot electrons onto the capsule poles, reaching 50x higher localized energy deposition than for isotropic electrons. A collective SRS model where all laser beams in a cone drive a common plasma wave provides a physical interpretation for the observed beaming. Imaging data are used to distinguish between this mechanism and 2ωp instability. The amount of hot electrons generated can be controlled by the laser pulse shape and hohlraum plasma conditions. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  11. Modelling the spatial shape of nondiffracting beams: Experimental generation of Frozen Waves via computer generated holograms

    CERN Document Server

    Vieira, Tárcio A; Gesualdi, Marcos R R

    2013-01-01

    In this paper we implement experimentally the spatial shape modelling of nondiffracting optical beams via computer generated holograms. The results reported here are the experimental confirmation of the so called Frozen Wave method, developed few years ago. Optical beams of this type can possess potential applications in optical tweezers, medicine, atom guiding, remote sensing, etc..

  12. Self-Focusing of Hermite-Cosh-Gaussian Laser Beams in Plasma under Density Transition

    OpenAIRE

    Manzoor Ahmad Wani; Niti Kant

    2014-01-01

    Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot...

  13. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Science.gov (United States)

    Akhter, T.; Fedele, R.; Nicola, S. De; Tanjia, F.; Jovanović, D.; Mannan, A.

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  14. Study of fast electron generation using multi beam of LFEX-class laser

    Science.gov (United States)

    Hata, M.; Sakagami, H.; Johzaki, T.; Sentoku, Y.; Nagatomo, H.

    2016-05-01

    Fast Ignition Realization Experiment project phase-I (FIREX-I) is being performed at Institute of Laser Engineering, Osaka University. In this project, the four-beam bundled high-energy Petawatt laser (LFEX) is being operated. LFEX laser provides great multi-beam irradiation flexibility, with the possibility of arrange the pulses in temporal sequence, spatially separate them in distinct spots of focus them in a single spot. In this paper, we study the two- beam interference effects on high-intensity picosecond laser-plasma interaction (LPI) by twodimensional relativistic Particle-In-Cell simulations. The interference causes surface perturbation, which enhances laser absorption and underdense plasma generation, increasing the accelerated electron number and their slope temperature. The laser-to-electron energy conversion efficiency for two-beam interference case is suitable for Fast Ignition (FI) compared to the single beam case, but the increment of fast electron divergence leads to lower energy coupling. To optimize the target design for FI, these interference effects should be taken into consideration.

  15. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V. I., E-mail: V.I.Davydenko@inp.nsk.su; Ivanov, A. A., E-mail: A.A.Ivanov@inp.nsk.su; Shul’zhenko, G. I. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  16. Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Axial magnetic field generation by intense circularly polarized laser beams in underdense plasmas has been studied with three-dimensional particle-in-cell simulations and by means of theoretical analysis. Comparisons between analytical models and simulation results have identified an inverse Faraday effect as the main mechanism of the magnetic field generation in inhomogeneous plasmas. The source of azimuthal nonlinear currents and of the axial magnetic field depends on the transverse inhomogeneities of the electron density and laser intensity. The fields reach a maximum strength of several tens of megagauss for laser pulses undergoing relativistic self-focusing and channeling in moderately relativistic regime. Ultrarelativistic laser conditions inhibit magnetic field generation by directly reducing a source term and by generating fully evacuated plasma channels.

  17. Ultra short electron beam bunches from a laser plasma cathode

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Akira [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)]. E-mail: maekawa@nuclear.jp; Tsujii, Ryosuke [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kinoshita, Kennichi [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Atsushi, Yamazaki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kobayashi, Kazuyuki [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Uesaka, Mitsuru [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Shibata, Yukio [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Kondo, Yasuhiro [Nuclear Professional School, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Ohkubo, Takeru [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma (Japan); Hosokai, Tomonao [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa (Japan); Takahashi, Toshiharu [Kyoto University Research Reactor Institute, Asahiro-nishi2, Kumatori, Sennan, Osaka (Japan)

    2007-08-15

    The fluctuation of the electron bunch duration due to energy spectrum instability in a laser plasma cathode has been examined. Previous experiments clearly proved that a laser plasma cathode can generate ultrashort electron bunches with a bunch duration of 130 fs (FWHM) and a geometrical emittance 0.07{pi} mm mrad. The effect of temporal elongation of electron bunches due to their energy spread is estimated and the results are in good agreement with previous experiments. It is also clarified that the instability of the energy spectrum not only leads to a fluctuation of the bunch shape but also to a time-of-flight jitter, affecting possible future applications of a laser plasma cathode.

  18. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  19. Cavitation and shock wave formation in dense plasmas by relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bush, I A; Pasley, J [Department of Physics, University of York, Heslington, YO10 5DD (United Kingdom); Robinson, A P L [Central Laser Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Kingham, R, E-mail: iab500@york.ac.u [Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom)

    2010-12-15

    The propagation of a high current relativistic electron beam through a dense plasma, for example, in fast-ignition inertial confinement fusion, produces strong heating and magnetic field generation. The j x B force and thermal pressure gradient that the return current creates may in fact cavitate and cause shock waves in the plasma around the electron beam. Here we investigate this effect in different regimes of plasma density and hot electron current. An analytic model has been developed that gives good estimates of the density, pressure, magnetic field and velocity obtained in the plasma. This model is compared against the results from an MHD code that includes the effects of resistive field growth, Ohmic heating and the j x B force. The strength of the cavitation is found to be dependent upon the ratio between j{sup 2} and the initial mass density. It is shown that cavitation is indeed relevant to fast-ignition, and is strong enough to launch shocks in certain circumstances.

  20. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    OpenAIRE

    Schroeder, C. B.

    2011-01-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

  1. Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model

    Science.gov (United States)

    Zhang, Ya; Li, Lian; Jiang, Wei; Yi, Lin

    2016-07-01

    A one dimensional quantum-hydrodynamic/particle-in-cell (QHD/PIC) model is used to study the interaction process of an intense proton beam (injection density of 1017 cm‑3) with a dense plasma (initial density of ~ 1021 cm‑3), with the PIC method for simulating the beam particle dynamics and the QHD model for considering the quantum effects including the quantum statistical and quantum diffraction effects. By means of the QHD theory, the wake electron density and wakefields are calculated, while the proton beam density is calculated by the PIC method and compared to hydrodynamic results to justify that the PIC method is a more suitable way to simulate the beam particle dynamics. The calculation results show that the incident continuous proton beam when propagating in the plasma generates electron perturbations as well as wakefields oscillations with negative valleys and positive peaks where the proton beams are repelled by the positive wakefields and accelerated by the negative wakefields. Moreover, the quantum correction obviously hinders the electron perturbations as well as the wakefields. Therefore, it is necessary to consider the quantum effects in the interaction of a proton beam with cold dense plasmas, such as in the metal films. supported by National Natural Science Foundation of China (Nos. 11405067, 11105057, 11275007)

  2. Generation of intense ion beams and their application to controlled fusion research

    International Nuclear Information System (INIS)

    Successful generation of pulsed multi-kA proton beams in the energy range 0.2 to 1.7 MeV using existing pulsed power technology has been achieved by three different techniques: reflex triodes, pinched electron-beam diodes and magnetically insulated diodes. Peak current densities in excess of 10 kAcm-2 have been observed on the NRL Gamble II machine and over 1.0 kAcm-2 on the Cornell Neptune machine. Peak total ion currents above 200 kA are produced by Gamble II. The potential applications of intense ion beams to magnetic confinement include (i) plasma heating and (ii) ion rings. A summary of continuous theoretical and experimental investigations on these applications is presented. (author)

  3. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  4. Physics data base for the beam plasma neutron source (BPNS)

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Casper, T.A.; Correll, D.L.; Damm, C.C.; Futch, A.H.; Molvik, A.W.

    1990-10-12

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 {times} 10{sup 18}/m{sup 2}{center dot}s) of 14-MeV neutrons is produced in a fully ionized high-density (n{sub e} {approx equal} 3 {times} 10{sup 21} m{sup {minus}3}) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system has not been demonstrated. 28 refs., 8 figs., 2 tabs.

  5. An exact solution to paraxial propagation of laser beams in longitudinal inhomogeneous plasmas

    Institute of Scientific and Technical Information of China (English)

    Zhou Bing-Ju; Huang Zheng; Liu Ming-Wei; Liu Xiao-Juan

    2007-01-01

    An exact, general solution for laser beams propagating in longitudinally inhomogeneous plasmas is obtained in the form of the diffraction integral. The Gaussian beam and the Hermite-Gaussian beam are taken for example. In the case of an increasing plasma density along the propagation distance, natural diffraction of the Gaussian beam is retarded. This retardance has a less effect on the central part of the Hermite-Gaussian beam while a considerable rise of the power in bucket (PIB) occurs in the surrounding part of the beam.

  6. Angular momentum transfer of Laguerre - Gaussian laser pulses and quasi-static magnetic field generation in plasma channels

    International Nuclear Information System (INIS)

    To generate a strong axial and azimuthal quasi-static magnetic field, we propose to study the interaction of Laguerre-Gaussian laser beams in a parabolic plasma channel. Our study shows that the higher-order modes with orbital angular momentum generate a stronger magnetic field in comparison to the lower-order modes of the laser beam. The contribution of the effective mass of photon on the orbital angular momentum and the polarization state of the beam are analyzed analytically and with 2D Particle in Cell (PIC) simulation. These effects have been put forwarded in analyzing the magnetic field generation. (author)

  7. Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques

    International Nuclear Information System (INIS)

    Experimental results are presented for the interaction of an intense laser beam in large preformed, homogeneous underdense plasmas. Parametric instabilities, including filamentation, stimulated Raman (SRS) and stimulated Brillouin scattering (SBS), have been extensively studied. In this paper comparisons are made between coherent and smoothed laser interaction beams for their effectiveness in suppressing these instabilities. Direct observations of the enhanced breakup of the coherent interaction beam due to filamentation are presented. Measurements of the transverse scale lengths of the hot spots, and the level of the intensity modulations of the filamentary structures are given. Further, direct experimental observations of SRS and SBS generated in filaments are presented. These provided conclusive evidence that this instability provides the primary mechanism for the generation of SRS and SBS under such plasma conditions. With the smoothed laser interaction beams, using random phase plates (RPP) and induced spatial incoherence (ISI), the level of filamention was significantly reduced. The backscattered fractions of SRS and SBS with respect to the irradiance of the interaction beam were measured for coherent, RPP and ISI. Reduction of typically a factor of 20 and 500 were recorded using RPP and ISI, respectively, in the backscattering levels of SRS and SBS when compared with the coherent interaction beam. The reductions are attributed primarily to the effectiveness of the beam-smoothing techniques in suppressing the filamentation instability

  8. Generation of subnanosecond electron beams in air at atmospheric pressure

    Science.gov (United States)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  9. Generation of high brightness ion beam from insulated anode PED

    International Nuclear Information System (INIS)

    Generation and focusing of a high density ion beam with high brightness from a organic center part of anode of a PED was reported previously. Mass, charge and energy distribution of this beam were analyzed. Three kind of anode were tried. Many highly ionized medium mass ions (up to C4+, O6+) accelarated to several times of voltage difference between anode and cathode were observed. In the case of all insulator anode the current carried by the medium mass ions is about half of that carried by protons. (author)

  10. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  11. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    International Nuclear Information System (INIS)

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc

  12. Rogue wave triplets in an ion-beam dusty plasma with superthermal electrons and negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shimin, E-mail: gsm861@126.com [School of Mathematics and Statistics, Xi' an Jiaotong University, Xi' an, 710049 (China); Mei, Liquan, E-mail: lqmei@mail.xjtu.edu.cn [School of Mathematics and Statistics, Xi' an Jiaotong University, Xi' an, 710049 (China); Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada); Shi, Weijuan [College of Mathematics and Information Science, Shaanxi Normal University, Xi' an, 710062 (China)

    2013-11-01

    A new dust ion-acoustic wave structure called ‘Rogue wave triplets’ is investigated in an unmagnetized plasma consisting of stationary negatively charged dust grains, charged positive and negative ions, and electrons obeying kappa distribution, which is penetrated by an ion beam. The reductive perturbation theory is used to derive the nonlinear Schrödinger equation governing the dynamics as well as the modulation of wave packets. The rogue wave triplets which are composed of three separate Peregrine breathers can be generated in the modulation instability region. It has been suggested that a laboratory experiment be performed to test the theory presented here.

  13. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    CERN Document Server

    Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  14. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  15. The linear plasma generator Magnum-PSI

    OpenAIRE

    Eck, van, M.

    2013-01-01

    Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity...

  16. QED effects and radiation generation in relativistic laser plasma

    Science.gov (United States)

    Kostyukov, I. Yu.; Nerush, E. N.; Bashmakov, V. F.

    2011-06-01

    The radiative and quantum effects in laser plasmas are discussed. The self-consistent numerical model based on particle-in-cell and Monte-Carlo methods are developed. First we analyze the spectra of Compton backscattered photons and betatron radiation in the classical and quantum regimes. Then we address an interaction between intense laser pulse and relativistic electron beam. Finally we discuss the electron-positron pair plasma production in extremely-intense laser field. It is shown that such plasma can be an efficient source of energetic gammaquanta.

  17. Plasma-Based Studies on 4th Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W; Baldis, H A; Cauble, R C; Landen, O L; Wark, J S; Ng, A; Rose, S J; Lewis, C; Riley, D; Gauthier, J-C; Audebert, P

    2000-11-28

    The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source.

  18. Coherent forward stimulated Brillouin scattering of a spatially incoherent laser beam in a plasma and its effect on beam spray

    OpenAIRE

    Grech, M.; Riazuelo, G.; Pesme, D.; S. Weber; Tikhonchuk, V. T.

    2008-01-01

    A statistical model for forward stimulated Brillouin scattering (FSBS) is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. A threshold for the average power in a speckle is found, well below the self-focusing one, above which the laser beam spatial incoherence can not prevent the coherent growth of FSBS. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit f...

  19. Concept of a Staged FEL Enabled by Fast Synchrotron Radiation Cooling of Laser-Plasma Accelerated Beam by Solenoidal Magnetic Fields in Plasma Bubble

    CERN Document Server

    Seryi, Andrei; Andreev, Alexander; Konoplev, Ivan

    2016-01-01

    A novel method for generating GigaGauss solenoidal field in laser-plasma bubble, using screw-shaped laser pulses, has been recently presented in arXiv:1604.01259 [physics.plasm-ph]. Such magnetic fields enable fast synchrotron radiation cooling of the beam emittance of laser-plasma accelerated leptons. This recent finding opens a novel approach for design of laser-plasma FELs or colliders, where the acceleration stages are interleaved with laser-plasma emittance cooling stages. In this concept paper we present an outline of how a staged plasma-acceleration FEL could look like and discuss further studies needed to investigate the feasibility of the concept in detail.

  20. Preliminary Research Results for the Generation and Diagnostics of High Power Ion Beams on FLASH II Accelerator

    Institute of Scientific and Technical Information of China (English)

    杨海亮; 邱爱慈; 孙剑锋; 何小平; 汤俊萍; 王海洋; 李洪玉; 李静雅; 任书庆; 欧阳小平; 张国光

    2004-01-01

    The preliminary experimental results of the generation and diagnostics of high power ion beams on FLASH II accelerator are reported. The high-power ion beams presently are being produced in a pinched diode. The method for enhancing the ratio of ion to electron current is to increase the electron residing time by pinching the electron flow. Furthermore, electron beam pinching can be combined with electron reflexing to achieve ion beams with even higher efficiency and intensity. The anode plasma is generated by anode foil bombarded with electronand anode foil surface flashover. In recent experiments on FLASH II accelerator, ion beams have been produced with a current of 160 kA and anen ergy of 500 keV corresponding to an ion beam peak power of about 80 GW. The ion number ard current of high power ion beams were determined by monitoring delayed radioactivity from nuclear reactions induced in a 12C target by the proton beams. The prompt γ-rays and diode bremsstrahlung X-rays were measured with a PIN semi-conductor detector and a plastic scintillator detector. The current density distribution of ion beam were measured with a biased ion collector array. The ion beams were also recorded with a CR-39 detector.

  1. A method for generating double-ring-shaped vector beams

    Science.gov (United States)

    Huan, Chen; Xiao-Hui, Ling; Zhi-Hong, Chen; Qian-Guang, Li; Hao, Lv; Hua-Qing, Yu; Xu-Nong, Yi

    2016-07-01

    We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam–Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases. Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578).

  2. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  3. Higher harmonics generation in relativistic electron beam with virtual cathode

    Science.gov (United States)

    Kurkin, S. A.; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.

    2014-09-01

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  4. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    Science.gov (United States)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    and radiation generation in plasmas. The next section includes state-of-the-art papers on laboratory accelerators driven by lasers (Nakajima et al., Shukla, Johnson et al.), microwaves (Nishida et al., Bogomolov et al.) and by particle beams (Ogata et al.). Also in this section are theoretical papers presenting new work on synchrotron like oscillations in plasma waves (Fedele) and two types of laboratory radiation sources, FEL's (Marshall et al.) and ionization fronts (Lai et al.), and Frantzeskakis et al. described the Hamiltonian analysis of a slow-wave autonomous cyclotron buncher. Section 3 contains papers on astrophysical plasmas, with the general presentations of Colgate and Krishnan. Kazanas and Krishnan address active galactic nuclei (AGNs). Thielheim discusses general acceleration mech anisms in rotating magnetized systems. Asseo discussed Langmuir solitons in pulsars and Blackman et al. treat magnetic reconnection relativistically. Su et al. analyze the possibility of plasma wave excitation and particle acceleration by neu trinos from supernovae. Dogiel et al. on cosmic ray scattering by MHD fluctuations. The papers in Section 4 treat fusion plasmas (Dendy et al. and Lashmore-Davies et al.). Section 5, space plasmas, includes papers on acceleration processes in the magnetosphere (Anagnostopoulos and Marshall et al.) and the sun (Barletta et al.). It is evident from the Workshop and the papers collected here that this is indeed a rich field of investigations and that both the natural and laboratory plasma communities can benefit from the cross-fertilization of ideas between them. We wish to thank the authors and attendees for their contributions to the success of this workshop, Dr Philip Debenham and Dr David Sutter of the U.S. D.o.E. and Dr Charles Roberson of the U.S. O.N.R. for their financial support (Grants DE-FGO3-93ER40776 and N00014-93-1-0814), and the ECC Twinning Grant SC1*-CT92-0773. We appreciate the considerable local support from Mr Glegles and

  5. The propagation and growth of whistler mode waves generated by electron beams in earth's bow shock

    Science.gov (United States)

    Tokar, R. L.; Gurnett, D. A.

    1985-01-01

    In this study, the propagation and growth of whistler mode waves generated by electron beams within earth's bow shock is investigated using a planar model for the bow shock and a model electron distribution function. Within the shock, the model electron distribution function possesses a field-aligned T greater than T beam that is directed toward the magnetosheath. Waves with frequencies between about 1 and 100 Hz with a wide range of wave normal angles are generated by the beam via Landau and anomalous cyclotron resonances. However, because the growth rate is small and because the wave packets traverse the shock quickly, these waves do not attain large amplitudes. Waves with frequencies between about 30 and 150 Hz with a wide range of wave normal angles are generated by the beam via the normal cyclotron resonance. The ray paths for most of these waves are directed toward the solar wind although some wave packets, due to plasma convection travel transverse to the shock normal. These wave packets grow to large amplitudes because they spend a long time in the growth region. The results suggest that whistler mode noise within the shock should increase in amplitude with increasing upstream theta sub Bn. The study provides an explanation for the origin of much of the whistler mode turbulence observed at the bow shock.

  6. Rapid Process to Generate Beam Envelopes for Optical System Analysis

    Science.gov (United States)

    Howard, Joseph; Seals, Lenward

    2012-01-01

    The task of evaluating obstructions in the optical throughput of an optical system requires the use of two disciplines, and hence, two models: optical models for the details of optical propagation, and mechanical models for determining the actual structure that exists in the optical system. Previous analysis methods for creating beam envelopes (or cones of light) for use in this obstruction analysis were found to be cumbersome to calculate and take significant time and resources to complete. A new process was developed that takes less time to complete beam envelope analysis, is more accurate and less dependent upon manual node tracking to create the beam envelopes, and eases the burden on the mechanical CAD (computer-aided design) designers to form the beam solids. This algorithm allows rapid generation of beam envelopes for optical system obstruction analysis. Ray trace information is taken from optical design software and used to generate CAD objects that represent the boundary of the beam envelopes for detailed analysis in mechanical CAD software. Matlab is used to call ray trace data from the optical model for all fields and entrance pupil points of interest. These are chosen to be the edge of each space, so that these rays produce the bounding volume for the beam. The x and y global coordinate data is collected on the surface planes of interest, typically an image of the field and entrance pupil internal of the optical system. This x and y coordinate data is then evaluated using a convex hull algorithm, which removes any internal points, which are unnecessary to produce the bounding volume of interest. At this point, tolerances can be applied to expand the size of either the field or aperture, depending on the allocations. Once this minimum set of coordinates on the pupil and field is obtained, a new set of rays is generated between the field plane and aperture plane (or vice-versa). These rays are then evaluated at planes between the aperture and field, at a

  7. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    Science.gov (United States)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ˜50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  8. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    International Nuclear Information System (INIS)

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%

  9. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  10. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  11. Gamma-ray generation using laser-accelerated electron beam

    Science.gov (United States)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  12. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    International Nuclear Information System (INIS)

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration

  13. Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX

    Energy Technology Data Exchange (ETDEWEB)

    Cros, B., E-mail: brigitte.cros@u-psud.fr [LPGP, CNRS and Université Paris Sud, Orsay (France); Paradkar, B.S. [LPGP, CNRS and Université Paris Sud, Orsay (France); Davoine, X. [CEA DAM DIF, Arpajon F-91297 (France); Chancé, A. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Desforges, F.G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Dobosz-Dufrénoy, S. [CEA DSM-IRAMIS-SPAM, Gif-sur-Yvette (France); Delerue, N. [LAL, CNRS and Universit Paris Sud, Orsay (France); Ju, J.; Audet, T.L.; Maynard, G. [LPGP, CNRS and Université Paris Sud, Orsay (France); Lobet, M.; Gremillet, L. [CEA DAM DIF, Arpajon F-91297 (France); Mora, P. [CPhT, CNRS and Ecole Polytechnique, Palaiseau (France); Schwindling, J.; Delferrière, O. [CEA IRFU-SACM, Gif-Sur-Yvette (France); Bruni, C.; Rimbault, C.; Vinatier, T. [LAL, CNRS and Universit Paris Sud, Orsay (France); Di Piazza, A. [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Grech, M. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Palaiseau (France); and others

    2014-03-11

    Laser plasma acceleration of electrons has progressed along with advances in laser technology. It is thus expected that the development in the near-future of multi-PW-class laser and facilities will enable a vast range of scientific opportunities for laser plasma acceleration research. On one hand, high peak powers can be used to explore the extremely high intensity regime of laser wakefield acceleration, producing for example large amounts of electrons in the GeV range or generating high energy photons. On the other hand, the available laser energy can be used in the quasi-linear regime to create accelerating fields in large volumes of plasma and study controlled acceleration in a plasma stage of externally injected relativistic particles, either electrons or positrons. In the frame of the Centre Interdisciplinaire de la Lumière EXtrême (CILEX), the Apollon-10P laser will deliver two beams at the 1 PW and 10 PW levels, in ultra-short (>15fs) pulses, to a target area dedicated to electron acceleration studies, such as the exploration of the non-linear regimes predicted theoretically, or multi-stage laser plasma acceleration.

  14. Methods of Generation and Detailed Characterization of Millimeter-Scale Plasmas Using a Gasbag Target

    Institute of Scientific and Technical Information of China (English)

    李志超; 尹强; 朱芳华; 郭亮; 袁鹏; 刘慎业; 丁永坤; 郑坚; 蒋小华; 王哲斌; 杨冬; 章欢; 李三伟; 王峰; 彭晓世

    2011-01-01

    Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion,especial in the laser overlapping regime.We report that on the Shengguang-Ⅱ laser facility,millimeter-scale plasm are successfully generated by four 0.35 μm laser beams using a gasbag target.Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail.The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created.An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations,which indicates that the electron temperature has a 600eV fiat roof in 0.7-1.3ns.Another key parameter,i.e.the electron density of the millimeter-scale plasmas,is inferred by the spectrum of the back stimulated Raman scattering of an addition 0.53 μm laser beam.The inferred electron density keeps stable at 0.1nc in early time consistent with the controlled filling pressure and splits into a higher density in late time,which is attributed to the blast wave entering in the SRS interaction region.%Gasbag targets are useful for the research of laser-plasma interactions in inertial confinement fusion, especially in the laser overlapping regime. We report that on the Shengguang-S laser facility, millimeter-scale plasmas are successfully generated by four 0.35 \\im laser beams using a gasbag target. Multiple diagnostics are applied to characterize the millimeter-scale plasmas in detail. The images from the x-ray pinhole cameras confirm that millimeter-scale plasmas are indeed created. An optical Thomson scattering system diagnoses the electron temperature of the CH filling plasmas by probing the thermal ion-acoustic fluctuations, which indicates that the electron temperature has a 600eV flat roof in 0.7-1.3ns. Another key parameter, I.e. The electron density of the millimeter-scale plasmas, is inferred by the spectrum of the back stimulated Raman

  15. Drift distance survey in direct plasma injection scheme for high current beam production

    International Nuclear Information System (INIS)

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between a laser target and beam extraction position. In direct plasma injection scheme, which uses a laser ion source and a radio frequency quadrupole linac, we can apply relatively higher electric field at beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration such as several tens of milliamperes, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C6+ beam was accelerated. We confirmed that matching condition can be improved by controlling plasma drift distance.

  16. Passive and active plasma deceleration for the compact disposal of electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A., E-mail: abonatto@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 700040-020 (Brazil); Schroeder, C. B.; Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Esarey, E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-15

    Plasma-based decelerating schemes are investigated as compact alternatives for the disposal of high-energy beams (beam dumps). Analytical solutions for the energy loss of electron beams propagating in passive and active (laser-driven) schemes are derived. These solutions, along with numerical modeling, are used to investigate the evolution of the electron distribution, including energy chirp and total beam energy. In the active beam dump scheme, a laser-driver allows a more homogeneous beam energy extraction and drastically reduces the energy chirp observed in the passive scheme. These concepts could benefit applications requiring overall compactness, such as transportable light sources, or facilities operating at high beam power.

  17. Rapid generation of light beams carrying orbital angular momentum.

    Science.gov (United States)

    Mirhosseini, Mohammad; Magaña-Loaiza, Omar S; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-12-16

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by phase-only spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding.

  18. High Coupling Efficiency Generation in Water Confined Laser Plasma Propulsion

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhi-Yuan; ZHANG Yi; ZHOU Wei-Gong; LU Xin; LI Yu-Tong; ZHANG Jie

    2007-01-01

    High coupling efficiency generation in water confined laser plasma propulsion is investigated. It is found that the coupling efficiency is enhanced over thirty times in water confined ablation compared to that of direct ablation.From calculation of the ablation pressure induced by the plasma on the target surface, it is realized that high coupling efficiency is attributed to the confinement of the water layer on the plasma expansion.

  19. Ion energy loss at maximum stopping power in a laser-generated plasma

    International Nuclear Information System (INIS)

    In the frame of this thesis, a new experimental setup for the measurement of the energy loss of carbon ions at maximum stopping power in a hot laser-generated plasma has been developed and successfully tested. In this parameter range where the projectile velocity is of the same order of magnitude as the thermal velocity of the plasma free electrons, large uncertainties of up to 50% are present in the stopping-power description. To date, no experimental data are available to perform a theory benchmarking. Testing the different stopping theories is yet essential for inertial confinement fusion and in particular for the understanding of the alpha-particle heating of the thermonuclear fuel. Here, for the first time, precise measurements were carried out in a reproducible and entirely characterized beam-plasma configuration. It involved a nearly fully-stripped ion beam probing a homogeneous fully-ionized plasma. This plasma was generated by irradiating a thin carbon foil with two high-energy laser beams and features a maximum electron temperature of 200 eV. The plasma conditions were simulated with a two-dimensional radiative hydrodynamic code, while the ion-beam charge-state distribution was predicted by means of a Monte-Carlo code describing the charge-exchange processes of projectile ions in plasma. To probe at maximum stopping power, high-frequency pulsed ion bunches were decelerated to an energy of 0.5 MeV per nucleon. The ion energy loss was determined by a time-of-flight measurement using a specifically developed chemical-vapor-deposition diamond detector that was screened against any plasma radiation. A first experimental campaign was carried out using this newly developed platform, in which a precision better than 200 keV on the energy loss was reached. This allowed, via the knowledge of the plasma and of the beam parameters, to reliably test several stopping theories, either based on perturbation theory or on a nonlinear T-Matrix formalism. A preliminary

  20. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  1. H- beam emittance measurements for the penning and the asymmetric, grooved magnetron surface-plasma sources

    International Nuclear Information System (INIS)

    Beam-intensity and emittance measurements show that the H- beam from our Penning surface-plasma source (SPS) has twice the intensity and ten times the brightness of the H- beam from an asymmetric, grooved magnetron SPS. We deduce H- ion temperatures of 5 eV for the Penning SPS and 22 eV for the asymmetric, grooved magnetron

  2. Radiative damping and electron beam dynamics in plasma-based accelerators.

    Science.gov (United States)

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  3. Radiative damping and electron beam dynamics in plasma-based accelerators

    Science.gov (United States)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  4. Strong terahertz generation by optical rectification of a super-Gaussian laser beam

    Science.gov (United States)

    Kumar, Subodh; Kishor Singh, Ram; Sharma, R. P.

    2016-06-01

    Terahertz (THz) generation by optical rectification of a laser beam having spatially super-Gaussian and temporally Gaussian intensity profile is investigated when it is propagating in a pre-formed rippled density plasma. The quasi-static ponderomotive force which is generated due to the variation in intensity of laser pulse leads to a nonlinear current density in the direction transverse to the direction of propagation which drives a radiation. The frequency of this radiation falls in the THz range if the pulse duration of the laser is chosen suitably. The density ripple provides the phase matching. The yield of generated THz has been compared when the phase matching is exact and when there is slight mismatch of phases. The variation in the intensity of the generated THz with the index of super-Gaussian pulse has also been studied.

  5. Radial Plasma Flow Switch on GIT-12 Generator

    Science.gov (United States)

    Chaikovsky, S. A.; Kokshenev, V. A.; Rousskikh, A. G.; Shishlov, A. V.; Fedunin, A. V.; Labetsky, A. Yu.; Kurmaev, N. E.; Fursov, F. I.

    2006-01-01

    The preliminary experiments were performed on wire array implosion driven by a radial plasma flow switch on the GIT-12 generator operating in a microsecond mode. Imploding gas puff z-pinch plasma was used to provide fast switching of the current to an aluminum wire array. The experimental results are presented in the paper.

  6. Investigation of thermal plasma generator of technological function

    Science.gov (United States)

    Anshakov, A. S.; Urbakh, E. K.; Cherednichenko, V. S.; Kuzmin, M. G.; Urbakh, A. E.

    2015-11-01

    Experimental results on energy characteristics of electric-arc plasma generator for heating technical nitrogen with the power of up to 500 kW are presented. The features of arc discharge glow, thermal efficiency, and service life of the electrodes were determined under the regime of melting the metallurgical raw material in the test plasma electric furnace.

  7. Experimental evidence of plasma-induced incoherence of a laser beam after propagation through an underdense plasma

    Science.gov (United States)

    Labaune, Christine; Fuchs, Julien; Depierreux, Sylvie; Baldis, Hector; Pesme, Denis; Myatt, Jason; Hüller, Stefan; Laval, Guy; Tikhonchuk, Vladimir

    2000-10-01

    Experiments with the six-beam laser facility at Laboratoire pour l'Utilisation des lasers Intenses (LULI) have demonstrated simultaneous and correlated large angular beam spreading and spectral broadening, on the red side of the spectra, of a RPP laser beam after its propagation through an underdense plasma.. At the highest intensities, the beam initial aperture is widely broadened (the F.W.H.M. aperture is increased by a factor 2) and its bandwidth increases from laser intensity and polarization smoothing will be presented. The increase of spatial and temporal incoherence of the laser beam is discussed following recent numerical simulations.

  8. Non-Thermal Plasma Ozone Generation

    OpenAIRE

    S. Pekárek

    2003-01-01

    This paper reviews ozone properties, ozone applications and the mechanism of ozone production in non-thermal plasma. An analysis is made of the influence of a reduced electric field and discharge space temperature on ozone production. The phenomenon of discharge poisoning is also explained. Finally, a modern ozone production system based on dielectric barrier electrical discharge is described.

  9. Non-Thermal Plasma Ozone Generation

    Directory of Open Access Journals (Sweden)

    S. Pekárek

    2003-01-01

    Full Text Available This paper reviews ozone properties, ozone applications and the mechanism of ozone production in non-thermal plasma. An analysis is made of the influence of a reduced electric field and discharge space temperature on ozone production. The phenomenon of discharge poisoning is also explained. Finally, a modern ozone production system based on dielectric barrier electrical discharge is described.

  10. Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    OpenAIRE

    Mirhosseini, Mohammad; Magana-Loaiza, Omar S.; Chen, Changchen; Rodenburg, Brandon; Malik, Mehul; Boyd, Robert W

    2013-01-01

    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modu...

  11. Ultra-High Intensity Magnetic Field Generation in Dense Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, Nathaniel J

    2014-01-08

    I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­energy-­density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­energy-­density plasma the ideas for steady-­state current drive developed for low-­energy-­density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­energy-­density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

  12. Electromagnetic interferences from plasmas generated in meteoroids impacts

    CERN Document Server

    Foschini, L

    1998-01-01

    It is shown that the plasma, generated during an impact of a meteoroid with an artificial satellite, can produce electromagnetic radiations below the microwave frequency range. These interferences can disturb the regular satellite operations.

  13. Confinement scaling studies of radiofrequency and neutral beam heated currentless heliotron E plasmas

    International Nuclear Information System (INIS)

    Parametric scaling studies of radiofrequency and neutral beam heated currentless Heliotron E plasmas have been performed. The parametric local electron transport analyses show that the electron energy transport in electron cyclotron heating (ECH) plasmas is nearly of the same magnitude as the neoclassically predicted transport inside the 2/3 radius, while neutral beam injection (NBI) plasmas and plasmas in the ion cyclotron range of frequencies (ICRF) are dominated by anomalous electron transport in the entire region. Scaling studies on the global energy confinement time reveal that ECH, NBI and ICRF plasmas obey approximately identical scalings that are characterized by continuous power degradation and favourable positive density dependence. The global energy confinement time is thought to be affected by the anomalous transport in the peripheral plasma regions in the same way for ECH, NBI and ICRF plasmas although the core plasma properties - such as local electron transport - seem to be different for the individual plasmas. (author). 39 refs, 11 figs

  14. Effect of radial plasma transport at the magnetic throat on axial ion beam formation

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2016-08-01

    Correlation between radial plasma transport and formation of an axial ion beam has been investigated in a helicon plasma reactor implemented with a convergent-divergent magnetic nozzle. The plasma discharge is sustained under a high magnetic field mode and a low magnetic field mode for which the electron energy probability function, the plasma density, the plasma potential, and the electron temperature are measured at the magnetic throat, and the two field modes show different radial parametric behaviors. Although an axial potential drop occurs in the plasma source for both field modes, an ion beam is only observed in the high field mode while not in the low field mode. The transport of energetic ions is characterized downstream of the plasma source using the delimited ion current and nonlocal ion current. A decay of ion beam strength is also observed in the diffusion chamber.

  15. Generation of polarization vortex beams by segmented quarter-wave plates

    Institute of Scientific and Technical Information of China (English)

    Jingtao Xin; Xiaoping Lou; Zhehai Zhou; Mingli Dong; Lianqing Zhu

    2016-01-01

    A spatially variable retardation device,an SQWP,is designed to generate polarization vortex beams.The transformation of Laguerre-Gaussian beams by the SQWP is further studied,and it is found that the SQWPs can also be used to generate helical beams and measure the topological charges of helical beams.

  16. Charge equilibrium of a laser-generated carbon-ion beam in warm dense matter

    International Nuclear Information System (INIS)

    Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter. (authors)

  17. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  18. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius.

  19. Radially polarized annular beam generated through a second-harmonic-generation process.

    Science.gov (United States)

    Sato, Shunichi; Kozawa, Yuichi

    2009-10-15

    A radially polarized beam with an annular intensity pattern was generated through a second-harmonic-generation process by focusing an azimuthally polarized Ti:sapphire pulsed laser beam to a c-cut beta-barium borate (BBO) crystal. The annular intensity pattern of the second-harmonic wave had a nearly sixfold symmetry as a result of the nonlinear susceptibility tensor of the BBO crystal. The width of the annulus was as narrow as less than 1/40th of its radius. PMID:19838261

  20. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    CERN Document Server

    Howes, Gregory G

    2016-01-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfven waves, or strong Alfven wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear...

  1. Plasma erosion switches with imploding plasma loads on the pithon generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range 10 12-10 14/cm 3 between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current risetime at the load. Associated with the sharper risetime was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  2. Plasma erosion switches with imploding plasma loads on a multiterawatt pulsed power generator

    Science.gov (United States)

    Stringfield, R.; Schneider, R.; Genuario, R. D.; Roth, I.; Childers, K.; Stallings, C.; Dakin, D.

    1981-03-01

    Plasma erosion switches have been fielded on the PITHON generator during imploding plasma experiments. Theta pinch plasma guns were used to inject carbon plasmas of densities in the range of 10 to the 12th to 10 to the 14th/cu cm between the electrodes of the vacuum power feed region, upstream from an imploding plasma load. Current monitors indicated that the erosion switches carried substantial current early in time, diverting it from the load. Late in the pulse the erosion switches opened, transferring the current to an imploding plasma with the effect of sharpening the current rise time at the load. Associated with the sharper rise time was an improvement in the quality of the plasma implosions. The results of varying the density and total number of particles in the plasma of the switches are presented with regard to the effect on the current along the vacuum feed and on the behavior of vacuum flowing electrons.

  3. Accelerating airy beams generated by ultrafast laser induced space-variant nanostructures in glass

    OpenAIRE

    Gecevičius, M.; M. Beresna; Kazansky, P. G.

    2012-01-01

    We demonstrate new technique to generate accelerating Airy beam with femtosecond laser imprinted space variant birefringence produced by self-assembled nanostructures in fused silica. The technique enables dual Airy beam generation.

  4. Effect of a transverse magnetic field on the generation of electron beams in the gas-filled diode

    Science.gov (United States)

    Baksht, E. H.; Burachenko, A. G.; Erofeev, M. V.; Kostyrya, I. D.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2008-06-01

    The effect of a transverse magnetic field (0.080 and 0.016 T) on generation of an electron beam in the gas-filled diode is experimentally investigated. It is shown that, at voltage U = 25 kV across the diode and a low helium pressure (45 Torr), the transverse magnetic field influences the beam current amplitude behind a foil and its distribution over the foil cross section. At elevated pressures and under the conditions of ultrashort avalanche electron beam formation in helium, nitrogen, and air, the transverse magnetic field (0.080 and 0.016 T) has a minor effect on the amplitude and duration of the beam behind the foil. It is established that, when the voltage of the pulse generator reaches several hundreds of kilovolts, some runaway electrons (including the electrons from the discharge plasma near the cathode) are incident on the side walls of the diode.

  5. Propagation and cross-focusing of hollow Gaussian laser beams in plasma

    International Nuclear Information System (INIS)

    This paper presents the cross focusing of two high power Hollow Gaussian laser beams (HGLB) by considering ponderomotive nonlinearity in a collisionless plasma. On account of the nonlinearity present in the plasma the two laser beams affect the dynamics of each other and cross-focusing takes place. The expressions for the laser beam intensities by using the eikonal method have been derived and the beam width parameter is calculated in the case when only ponderomotive nonlinearity is operative. The numerical appreciation of the cross focusing has been presented graphically by plotting beam-width parameter vs. dimensionless distance of propagation. Theself focusing of one laser beam is affected due to the optical inhomogeneities introduced by another copropagating HGLB in the plasma. It is observed thatthe presence of one HGLB also affects the self focusing of different order's (n) of the other HGLB.

  6. A large volume uniform plasma generator for the experiments of electromagnetic wave propagation in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Min; Li Xiaoping; Xie Kai; Liu Donglin [School of Electronical and Mechanical Engineering, Xidian University, Xi' an Shaanxi 710071 (China); Liu Yanming [School of Telecommunications Engineering, Xidian University, Xi' an Shaanxi 710071 (China)

    2013-01-15

    A large volume uniform plasma generator is proposed for the experiments of electromagnetic (EM) wave propagation in plasma, to reproduce a 'black out' phenomenon with long duration in an environment of the ordinary laboratory. The plasma generator achieves a controllable approximate uniform plasma in volume of 260 mm Multiplication-Sign 260 mm Multiplication-Sign 180 mm without the magnetic confinement. The plasma is produced by the glow discharge, and the special discharge structure is built to bring a steady approximate uniform plasma environment in the electromagnetic wave propagation path without any other barriers. In addition, the electron density and luminosity distributions of plasma under different discharge conditions were diagnosed and experimentally investigated. Both the electron density and the plasma uniformity are directly proportional to the input power and in roughly reverse proportion to the gas pressure in the chamber. Furthermore, the experiments of electromagnetic wave propagation in plasma are conducted in this plasma generator. Blackout phenomena at GPS signal are observed under this system and the measured attenuation curve is of reasonable agreement with the theoretical one, which suggests the effectiveness of the proposed method.

  7. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  8. Sustainable Power Generation by Plasma Physics

    OpenAIRE

    Anyaegbunam F. N. C. (Ph.D.)

    2013-01-01

    One of the greatest challenges of developing countries today is electric power generation. The demand for Electric power is far above generation and distribution capacities. For instance, only about 4000MW of electricity is available for nearly 170 million people in Nigeria today. On the other hand, the cities are littered with municipal solid wastes in open dumps which are dangerous to health and environment. Sustainable and successful waste management should be safe, effective, environmen...

  9. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  10. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    International Nuclear Information System (INIS)

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation

  11. Alpha particle diagnostic beam line system to generate an intense Li0 beam with an ORNL SITEX source

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory (ORNL) SITEX (Surface Ionization with Transverse Extraction) negative ion source utilizes a 100-V/20-A reflex arc discharge in a 1300-gauss magnetic field to generate Cs+ ions and H+ or D+ ions, depending on the beam required. A shaped molybdenum plate is placed directly behind the arc column. Cesium coverage on this plate is used to minimize the surface work function, which requires two-thirds of a monolayer coverage. Cesium coverage ia adjusted both by cesium flow control into the arc discharge chamber and by temperature control of the converter using gaseous-helium cooling channels in the converter plate. Normal converter operational temperatures are 3000 to 5000C H-/D- beams are generated at the biased converter surface (-150 V with respect to the anode) by Cs+ sputtering of absorbed hydrogen or deuterium and by the reflection-conversion mechanism of H+/D+ ions which strike the converter surface at 150 eV. The negative ions are accelerated through the 150-V plasma sheath at the converter surface and are focused by the converter geometry and magnetic field so as to pass through the exit aperture with minimum angular divergence. The ion optics of the SITEX accelerator has been calculated using the ORNL 3-D optics code and results in a divergence perpendicular to the slot of theta/sub perpendicular rms/ = 0.350 and parallel to the slot of theta/sub parallel rms/ = 0.180. This beam divergence should be adequate for injection into a radio frequency quadrupole (RFQ) for further acceleration

  12. Predictions for the energy loss of light ions in laser-generated plasmas at low and medium velocities.

    Science.gov (United States)

    Cayzac, W; Bagnoud, V; Basko, M M; Blažević, A; Frank, A; Gericke, D O; Hallo, L; Malka, G; Ortner, A; Tauschwitz, An; Vorberger, J; Roth, M

    2015-11-01

    The energy loss of light ions in dense plasmas is investigated with special focus on low to medium projectile energies, i.e., at velocities where the maximum of the stopping power occurs. In this region, exceptionally large theoretical uncertainties remain and no conclusive experimental data are available. We perform simulations of beam-plasma configurations well suited for an experimental test of ion energy loss in highly ionized, laser-generated carbon plasmas. The plasma parameters are extracted from two-dimensional hydrodynamic simulations, and a Monte Carlo calculation of the charge-state distribution of the projectile ion beam determines the dynamics of the ion charge state over the whole plasma profile. We show that the discrepancies in the energy loss predicted by different theoretical models are as high as 20-30%, making these theories well distinguishable in suitable experiments.

  13. Charge exchange momentum transfer due to ion beam injection in partially ionized plasmas

    International Nuclear Information System (INIS)

    Time responses of a helium plasma to helium gas puffing without and with helium beam injection in a linear plasma device are experimentally investigated. Increase in the neutral density due to gas puffing is suppressed by ion beam injection. The experimental results show that a momentum transport from the ion beam to the puffed neutral particles occurs due to the charge exchange interaction, suggesting that charge exchange momentum transport is one of the processes responsible for the spatial redistribution of neutral atoms in partially ionized plasmas. (author)

  14. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  15. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly. PMID:12689203

  16. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  17. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Liseykina, Tatyana V. [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2012-07-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. Feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  18. Dense monoenergetic proton beams from chirped laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianxing; Galow, Benjamin J.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); Department of Physics, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, Heidelberg (Germany); ExtreMe Matter Institute EMMI, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-07-01

    Interactions of linearly and radially polarized frequency-chirped laser pulses with single protons and hydrogen gas targets are studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultra-intense (10{sup 7} particles per bunch) and phase-space collimated beams of protons is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10{sup 21} W/cm{sup 2}.

  19. Optical monitoring of laser-generated plasma during laser welding

    Science.gov (United States)

    Connolly, John O.; Beirne, Gareth J.; O'Connor, Gerard M.; Glynn, Thomas J.; Conneely, Alan J.

    2000-03-01

    Process monitoring is a vital part of industrial laser applications that enables intelligent control of processes by observing acoustic, optical, thermal and other emissions. By monitoring these emission during laser processing, it is possible to ascertain characteristics that help diagnose features of the laser processed material and hence to optimize the technique. An experimental set up of observing plasmas during laser spot welding is described here. A pulsed Nd:YAG laser was used to spot-weld a variety of materials of different thickness, the plasmas generated during welding were monitored by a number of techniques, and the data obtained was used to characterize the welds. In the study photodiodes were set at different angles and observed the intensity and generation of the plasmas during the laser spot-welding process thereby giving a weld 'signature.' A portable spectrometer was used off-axis to obtain spectra of the emissions from the plasmas. Post process analysis was performed on the materials by mechanical polishing and chemical etching and observations of weld penetration depth and weld quality were correlated with the data collected on the plasmas. Different cover gases were also used during laser welding and the results of the effects of the various gases on the plasma are shown. The results indicate the relationship between laser weld generated plasma characteristics and weld features such as penetration depth. A direct correlation between the intensities of the photodiode and portable spectrometer signals was observed with weld penetration depth.

  20. On the focused beam parameters of an electron gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  1. On the focused beam parameters of an electron gun with a plasma emitter

    International Nuclear Information System (INIS)

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented

  2. Plasma characterization of the superconducting proton linear accelerator plasma generator using a 2 MHz compensated Langmuir probe.

    Science.gov (United States)

    Schmitzer, C; Kronberger, M; Lettry, J; Sanchez-Arias, J; Störi, H

    2012-02-01

    The CERN study for a superconducting proton Linac (SPL) investigates the design of a pulsed 5 GeV Linac operating at 50 Hz. As a first step towards a future SPL H(-) volume ion source, a plasma generator capable of operating at Linac4 or nominal SPL settings has been developed and operated at a dedicated test stand. The hydrogen plasma is heated by an inductively coupled RF discharge e(-) and ions are confined by a magnetic multipole cusp field similar to the currently commissioned Linac4 H(-) ion source. Time-resolved measurements of the plasma potential, temperature, and electron energy distribution function obtained by means of a RF compensated Langmuir probe along the axis of the plasma generator are presented. The influence of the main tuning parameters, such as RF power and frequency and the timing scheme is discussed with the aim to correlate them to optimum H(-) ion beam parameters measured on an ion source test stand. The effects of hydrogen injection settings which allow operation at 50 Hz repetition rate are discussed. PMID:22380224

  3. Observation of early and strong relativistic self-focusing of cosh-Gaussian laser beam in cold quantum plasma

    International Nuclear Information System (INIS)

    Relativistic self-focusing of cosh-Gaussian laser beam in the cold quantum plasma has been investigated theoretically using Wentzel-Kramers-Brillouin (WKB) and paraxial ray approximation. The comparative study between self-focusing of cosh-Gaussian laser beam in cold quantum case and classical relativistic case has been made for decentered parameter b = 0.9 and it is observed that as the beam propagates deeper inside the cold quantum plasma, the self-focusing ability of the laser beam enhances and shifted towards lower value of normalized propagation distance due to quantum contribution. The variation of beam width parameter with normalized propagation distance for various values of relative density parameter of the medium and intensity parameter has also been studied. It is observed that with the increase in the value of relative density parameter, self-focusing of laser beam becomes stronger. Observation of early and strong self-focusing for higher values of relative density parameter and intensity parameter are reported. Also, with the increase in the value of the relative density parameter of the medium and intensity parameter, self-focusing ability shifted towards lower value of normalized propagation distance due to relativistic effect. The present study might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, scribing type of applications in electronics etc. (author)

  4. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107–108 cm s−1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  5. Plasma studies and beam emittance measurements of 2.45 GHz microwave ion source at VECC

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source operating at VECC is able to produce a total beam current of ∼ 12 mA at a beam energy of 75 KeV with a microwave power of 400 W as described in. In order to optimize the performance of the ion source, we have conducted systematic studies with the variation of ion source gas flow rate, magnetic field, extraction voltage, suppressor voltage, microwave power etc. The total extracted beam current was recorded as a function of each of the earlier mentioned parameters. Moreover, we have studied the effect on extracted beam current and its transmission in the beam transport line due to dielectric and water introduction into the plasma chamber. In the best setting, we have found a total extracted beam current of 12.5 mA with a beam transmission of 70 %. Furthermore, we have also studied the extracted beam current and its transmission in the beam transport line using aluminum plasma chamber of different diameters. Finally, we have estimated the beam emittance by solenoid scan technique of a neutralized 75 KeV, 5 mA proton beam by measuring beam profile using a non-interceptive residual gas fluorescence monitor. The measured normalized rms emittance of the neutralized beam is 0.05 mm-mrad, which seems to be quite reasonable. (author)

  6. Generation of Diffuse Large Volume Plasma by an Ionization Wave from a Plasma Jet

    Science.gov (United States)

    Laroussi, Mounir; Razavi, Hamid

    2015-09-01

    Low temperature plasma jets emitted in ambient air are the product of fast ionization waves that are guided within a channel of a gas flow, such as helium. This guided ionization wave can be transmitted through a dielectric material and under some conditions can ignite a discharge behind the dielectric material. Here we present a novel way to produce large volume diffuse low pressure plasma inside a Pyrex chamber that does not have any electrodes or electrical energy directly applied to it. The diffuse plasma is ignited inside the chamber by a plasma jet located externally to the chamber and that is physically and electrically unconnected to the chamber. Instead, the plasma jet is just brought in close proximity to the external wall/surface of the chamber or to a dielectric tubing connected to the chamber. The plasma thus generated is diffuse, large volume and with physical and chemical characteristics that are different than the external plasma jet that ignited it. So by using a plasma jet we are able to ``remotely'' ignite volumetric plasma under controlled conditions. This novel method of ``remote'' generation of a low pressure, low temperature diffuse plasma can be useful for various applications including material processing and biomedicine.

  7. The Dynamical Generation of Current Sheets in Astrophysical Plasma Turbulence

    Science.gov (United States)

    Howes, Gregory G.

    2016-08-01

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we present evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.

  8. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  9. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    Science.gov (United States)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  10. Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma

    Science.gov (United States)

    Sobhani, H.; Vaziri (Khamedi), M.; Rooholamininejad, H.; Bahrampour, A. R.

    2016-07-01

    Propagation of Hypergeometric-Gaussian laser beam in a nonlinear plasma medium is investigated by considering the Source Dependent Expansion method. A subfamily of Hypergeometric-Gaussian beams with a non-negative, even and integer radial index, can be expressed as the linear superposition of finite number of Laguerre-Gaussian functions. Propagation of Hypergeometric-Gaussian beams in a nonlinear plasma medium depends on the value of radial index. The bright rings' number of these beams is changed during the propagation in plasma medium. The effect of beam vortex charge number l and initial (input) beam intensity on the self-focusing of Hypergeometric-Gaussian beams is explored. Also, by choosing the suitable initial conditions, Hypergeometric-Gaussian subfamily beams can be converted to one or more mode components that a typical of mode conversion may be occurred. The self-focusing of these winding beams can be used to control the focusing force and improve the electron bunch quality in laser plasma accelerators.

  11. Laser-driven generation of ultra-intense proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J.; Jablonski, S.; Kubkowska, M.; Parys, P.; Rosinski, M.; Wolowski, J. [EURATOM, Inst Plasma Phys and Laser Microfus, PL-00908 Warsaw (Poland); Antici, P.; Fuchs, J.; Mancic, A. [UPMC, LULI, Ecole Polytech, CNRS, CEA, F-91128 Palaiseau (France); Szydlowski, A. [Andrzej Soltan Inst Nucl Studies, Otwock (Poland)

    2010-07-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 m wavelength and intensity up to 2*10{sup 19} Wcm{sup -2} irradiated a thin (0.6-2{mu}m) plastic (PS) or Au/PS (plastic covered by 0.2{mu}m Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity 10{sup 18}Wcm{sup -2} and current density 10{sup 12}Acm{sup -2} at the source can be produced when the laser intensity-wavelength squared product I{sub L{lambda}}{sup 2} is 10{sup 19}Wcm{sup -2}m{sup 2} and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I{sub L{lambda}}{sup 2} {>=} 5*10{sup 19}Wcm{sup -2}m{sup 2} and {lambda} {<=} 0.53{mu}m, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 10{sup 20}Wcm{sup -2}. (authors)

  12. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  13. Photon-assisted Beam Probes for Low Temperature Plasmas and Installation of Neutral Beam Probe in Helimak

    Science.gov (United States)

    Garcia de Gorordo, Alvaro; Hallock, Gary A.; Kandadai, Nirmala

    2008-11-01

    The Heavy Ion Beam Probe (HIBP) diagnostic has successfully measured the electric potential in a number of major plasma devices in the fusion community. In contrast to a Langmuir probe, the HIBP measures the exact electric potential rather than the floating potential. It is also has the advantage of being a very nonperturbing diagnostic. We propose a new photon-assisted beam probe technique that would extend the HIBP type of diagnostics into the low temperature plasma regime. We expect this method to probe plasmas colder than 10 eV. The novelty of the proposed diagnostic is a VUV laser that ionizes the probing particle. Excimer lasers produce the pulsed VUV radiation needed. The lasers on the market don't have a short enough wavelength too ionize any ion directly and so we calculate the population density of excited states in a NLTE plasma. These new photo-ionization techniques can take an instantaneous one-dimensional potential measurement of a plasma and are ideal for nonmagnitized plasmas where continuous time resolution is not required. Also the status of the Neutral Beam Probe installation on the Helimak experiment will be presented.

  14. Electron beam-plasma ionizing target for the production of neutron-rich nuclides

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Ionan, A.M; Volkov, YU.M; Orlov, S.Yu; Moroz, F.V; Molkanov, P.L; Mezilev, K.A; Ivanov, V.S; Essabaa, S; Lau, C; Leroy, R; Lhersonneau, G; Villari, A.C.C; Stroe, L

    2008-01-01

    The production of neutron rich Ag, In and Sn isotopes from a UC target of high density has been investigate at the IRIS facility. An electron beam-plasma ion source has been used to ionize the species produced.

  15. Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency

    International Nuclear Information System (INIS)

    The propagation characteristics of a Gaussian laser beam in cold plasma with the electron collision frequency modulated by laser intensity are presented. The nonlinear dynamics of the ponderomotive force, which induce nonlinear self-focusing as opposed to spatial diffraction, are considered. The effective dielectric function of the Drude model and complex eikonal function are adopted in deriving coupled differential equations of the varying laser beam parameters. In the framework of ponderomotive nonlinearity, the frequency of electron collision in plasmas, which is proportional to the spatial electron density, is strongly interrelated with the laser beam propagation characteristics. Hence, the propagation properties of the laser beam and the modulated electron collision frequency distribution in plasma were studied and explained in depth. Employing this self-consistent method, the obtained simulation results approach practical conditions, which is of significance to the study of laser–plasma interactions.

  16. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    International Nuclear Information System (INIS)

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the (delta)-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  17. The Influence of Plasma Effects of Pair Beams on the Intergalactic Cascade Emission of Blazars

    Science.gov (United States)

    Menzler, Ulf; Schlickeiser, Reinhard

    2014-03-01

    The attenuation of TeV γ-rays from distant blazars by the extragalactic background light (EBL) produces relativistic electron-positron pair beams. It has been shown by Broderick et. al. (2012) and Schlickeiser et. al (2012) that a pair beam traversing the intergalactic medium is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature. While for strong blazars all free pair energy is dissipated in heating the intergalactic medium and a potential electromagnetic cascade via inverse-Compton scattering with the cosmic microwave background is suppressed, we investigate the case of weak blazars where the back reaction of generated electrostatic turbulence leads to a plateauing of the electron energy spectrum. In the ultra-relativistic Thomson limit we analytically calculate the inverse-Compton spectral energy distribution for both an unplateaued and a plateaued beam scenario, showing a peak reduction factor of Rpeak ≈ 0.345. This is consistent with the FERMI non-measurements of a GeV excess in the spectrum of EBL attenuated TeV blazars. Claims on the lower bound of the intergalactic magnetic field strengths, made by several authors neglecting plasma effects, are thus put into question.

  18. Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption

    Science.gov (United States)

    Wani, Manzoor Ahmad; Kant, Niti

    2016-09-01

    This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  19. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  20. Liquid crystal anchoring transitions on aligning substrates processed by plasma beam

    OpenAIRE

    Yaroshchuk, Oleg V.; Kiselev, Alexei D.; Kravchuk, Ruslan M.

    2007-01-01

    We observe a sequence of the anchoring transitions in nematic liquid crystals (NLC) sandwiched between the hydrophobic polyimide substrates treated with the plasma beam. There is a pronounced continuous transition from homeotropic to low tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) that takes place as the exposure dose increases. In NLC with positive dielectric anisotropy, a further increase in the exposure do...

  1. High-repetition rate relativistic electron beam generation from intense laser solid interactions

    Science.gov (United States)

    Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl

    2015-05-01

    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.

  2. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  3. Quasi-steady carbon plasma source for neutral beam injector

    International Nuclear Information System (INIS)

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration

  4. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration. PMID:24593646

  5. Dielectric constant and laser beam propagation in an underdense collisional plasma: effects of electron temperature

    International Nuclear Information System (INIS)

    Dielectric constant and laser beam propagation in an underdense collisional plasma are investigated, using the wave and dielectric function equations, for their dependence on the electron temperature. Simulation results show that, due to the influence of the ponderomotive force there is a nonlinear variation of electron temperature in an underdense collisional plasma, and this leads to a complicated and interesting nonlinear variation of dielectric constant; this nonlinear variation of dielectric constant directly affects the beam propagation and gives rise to laser beam self-focusing in some spatial-temporal regions; in particular, the beam width and the beam intensity present an oscillatory variation in the self-focusing region. The influence of several parameters on the dielectric function and beam self-focusing is discussed.

  6. Dielectric constant and laser beam propagation in an underdense collisional plasma: effects of electron temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xia Xiongping [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Qin Zhen; Xu Bin [Department of Mathematics and Information Sciences, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Cai Zebin, E-mail: xxpccp@yahoo.cn [Department of Basis, Air Force Radar Academy, Wuhan 430019 (China)

    2011-07-01

    Dielectric constant and laser beam propagation in an underdense collisional plasma are investigated, using the wave and dielectric function equations, for their dependence on the electron temperature. Simulation results show that, due to the influence of the ponderomotive force there is a nonlinear variation of electron temperature in an underdense collisional plasma, and this leads to a complicated and interesting nonlinear variation of dielectric constant; this nonlinear variation of dielectric constant directly affects the beam propagation and gives rise to laser beam self-focusing in some spatial-temporal regions; in particular, the beam width and the beam intensity present an oscillatory variation in the self-focusing region. The influence of several parameters on the dielectric function and beam self-focusing is discussed.

  7. Laser Plasmas : Effect of rippled laser beam on excitation of ion acoustic wave

    Indian Academy of Sciences (India)

    Nareshpal Singh Saini; Tarsem Singh Gill

    2000-11-01

    Growth of a radially symmetrical ripple, superimposed on a Gaussian laser beam in collisional unmagnetised plasma is investigated. From numerical computation, it is observed that self-focusing of main beam as well as ripple determine the growth dynamics of ripple with the distance of propagation. The effect of growing ripple on excitation of ion acoustic wave (IAW) has also been studied

  8. Fluid simulation of relativistic electron beam driven wakefield in a cold plasma

    International Nuclear Information System (INIS)

    Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (nb) less than or equal to half the plasma density (n0), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, if the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for lb > λp) and compression of the beam (for lb < λp), lb and λp, respectively, being the initial beam length and plasma wavelength

  9. Large-amplitude double layers in a dusty plasma with an arbitrary streaming ion beam

    Indian Academy of Sciences (India)

    Brindaban Das; Debkumar Ghosh; Prasanta Chatterjee

    2010-06-01

    Formation of large-amplitude double layers in a dusty plasma whose constituents are electrons, ions, warm dust grains and positive ion beam are studied using Sagdeev’s pseudopotential technique. Existence of double layers is investigated. It is found that both the temperature of dust particles and ion beam temperature play significant roles in determining the region of the existence of double layers.

  10. Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel

    Directory of Open Access Journals (Sweden)

    Sonu Sen

    2014-01-01

    Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.

  11. Choice of parameters for tesla transformer of pulsed power beam generator type

    International Nuclear Information System (INIS)

    The accelerating voltage pulse generators of relativistic electron beams and high-power ion beam accelerators are subdivided into two main types: Marx generators and Tesla transformer type generators.In presented paper the attempt to create the methodology of the engineering substantiation of parameters and designing the Tesla transformer type generator for pulsed power accelerators is undertaken

  12. Choice of parameters for tesla transformer of pulsed power beam generator type

    CERN Document Server

    Kolchanova, V A; Petrov, A V

    2001-01-01

    The accelerating voltage pulse generators of relativistic electron beams and high-power ion beam accelerators are subdivided into two main types: Marx generators and Tesla transformer type generators.In presented paper the attempt to create the methodology of the engineering substantiation of parameters and designing the Tesla transformer type generator for pulsed power accelerators is undertaken.

  13. Transport of evanescent electron beam in vacuum section with plasma disks

    International Nuclear Information System (INIS)

    To increase electron beam current transported in the vacuum section, it is proposed to create transversal plasma disks. Numerical checking of this idea has been made. It is shown that without the disks virtual cathode is formed, reflecting significant part of the beam electrons, whereas the section loaded with a number of disks passes the whole beam. Experimental checking of this section with the accelerator of direct operation KOVCHEG has been made, and its operational capability is confirmed

  14. Modulational Instability of Ion-Acoustic Waves in a Warm Plasma with a Relativistic Electron Beam

    Institute of Scientific and Technical Information of China (English)

    XUE Ju-Kui; LANG He

    2003-01-01

    The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting ofwarm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schrodinger equationincluding one additional term that comes from the effect of relativistic electron beam is derived. It is found that theinclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could notadmit any stationary soliton waves.

  15. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O' Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik,; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  16. Plasma effect on the phase matching of high harmonic generation

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Candong Liu; Shitong Zhao; Peng Liu

    2011-01-01

    By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.%@@ By optimizing the phase matching condition of high harmonic generation (HHG) from a supersonic neon gas jet, the enhanced HHG in the region of 60-70 eV has been selected. Three-dimensional numerical calculation shows that plasma plays a significant role in the phase matching process of HHG in a supersonic gas jet with short medium length. Due to plasma formation, the harmonic emission decays as the laser intensity reaches over 3.5 × 1014 W/cm2. The plasma induces the broadening and blue shift of the HHG spectra, which provides a method for fine-tuning the harmonic wavelength.

  17. Study of plasma formation in CW CO2 laser beam-metal surface interaction

    Science.gov (United States)

    Azharonok, V. V.; Vasilchenko, Zh V.; Golubev, Vladimir S.; Gresev, A. N.; Zabelin, Alexandre M.; Chubrik, N. I.; Shimanovich, V. D.

    1994-04-01

    An interaction of the cw CO2 laser beam and a moving metal surface has been studied. The pulsed and thermodynamical parameters of the surface plasma were investigated by optical and spectroscopical methods. The subsonic radiation wave propagation in the erosion plasma torch has been studied.

  18. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure ...

  19. Ammonia-pellet generation system for the Baseball II-T target plasma experiment

    International Nuclear Information System (INIS)

    The irradiation of a small pellet by a pulsed laser is one method of producing a startup target plasma for plasma experiments employing neutral-beam injection. A system for generating charged, uniformly sized, solid-ammonia, 150-μm-diam, spherical pellets having a charge-to-mass ratio of 10-4 C/kg is described. These pellets are electrostatically guided at a speed of 32 m/sec (over a distance of several meters) to a laser focal zone. This complete system (pellet generation and pellet guidance) has been successfully operated on a 3-m test stand where 250-μm-diam pellets were regularly irradiated by a pulsed, 30-J CO2 laser. The system is now installed on the Baseball II-T experiment; in preliminary tests, several 150-μm-diam pellets were irradiated with the pulsed 300-J CO2 laser

  20. Generation of optical vector beams using a two-mode fiber.

    Science.gov (United States)

    Viswanathan, Nirmal K; Inavalli, V V G

    2009-04-15

    We present the generation of optical vector beams using a two-mode fiber (TMF)-based beam converter. The TMF converts the input Gaussian (TEM(00)) beam into linearly polarized Hermite-Gaussian (HG(10), HG(01)) beams, a radially polarized Laguerre-Gaussian (LG(1)(0)) beam with single helical charge or coherent linear combinations of the different vector modes guided in the fiber, depending on the input beam polarization, the fiber length, and the launch condition. Polarization and two-beam interference analyses of the output beam characterize the electric field orientations of the output beam and the presence of transverse and longitudinal optical vortex in the generated HG and LG beams. PMID:19370113