WorldWideScience

Sample records for beam fusion research

  1. Achievements and challenges in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1978-01-01

    Recent developments in particle beam fusion research, as well as critical issues which remain to be solved are summarized. Until now primary emphasis has been on driver development, but as sources have increased in energy output and intensity and diagnostic techniques have improved, implosion studies have been initiated

  2. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  3. Pulsed power particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    1979-01-01

    Although substantial progress has been made in the last few years in developing the technology of intense particle beam drivers, there are still several unanswered questions which will determine their ultimate feasibility as fusion ignition systems. The questions of efficiency, cost, and single pulse scalability appear to have been answered affirmatively but repetitive pulse technology is still in its infancy. The allowable relatively low pellet gains and high available beam energies should greatly ease questions of pellet implosion physics. Insofar as beam-target coupling is concerned, ion deposition is thought to be understood and our measurements of enhanced electron deposition agree with theory. With the development of plasma discharges for intense beam transport and concentration it appears that light ion beams will be the preferred approach for reactors

  4. Fusion at counterstreaming ion beams - ion optic fusion (IOF)

    International Nuclear Information System (INIS)

    Gryzinski, M.

    1981-01-01

    The results of investigation are briefly reviewed in the field of ion optic fusion performed at the Institute of Nuclear Research in Swierk. The ion optic fusion concept is based on the possibility of obtaining fusion energy at highly ordered motion of ions in counterstreaming ion beams. For this purpose TW ion beams must be produced and focused. To produce dense and charge-neutralized ion beams the selective conductivity and ballistic focusing ideas were formulated and used in a series of RPI devices with low-pressure cylindrical discharge between grid-type electrodes. 100 kA, 30 keV deuteron beams were successfully produced and focused into the volume of 1 cm 3 , yielding 10 9 neutrons per 200 ns shot on a heavy ice target. Cylindrically convergent ion beams with magnetic anti-defocusing were proposed in order to reach a positive energy gain at reasonable energy level. (J.U.)

  5. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    1980-10-01

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  6. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  7. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, Roger.

    1986-01-01

    The nearly endless variety of interesting and challenging problems makes physics research enjoyable. Most of us would choose to be physicists even if physics had no practical applications. However, physics does have practical applications. This workshop deals with one of those applications, namely ion beam fusion. Not all interesting and challenging atomic physics questions are important for ion beam fusion. This paper suggests some questions that may be important for ion beam fusion. It also suggests some criteria for determining if a question is only interesting, or both interesting and important. Importance is time dependent and, because of some restrictions on the flow of information, also country dependent. In the early days of ion beam fusion, it was important to determine if ion beam fusion made sense. Approximate answers and bounds on various parameters were required. Accurate, detailed answers were not needed. Because of the efforts of many people attending this workshop, we now know that ion beam fusion does make some sense. We must still determine if ion beam fusion truly makes good sense. If it does make good sense, we must determine how to make it work. Accurate detailed answers are becoming increasingly important. (author)

  8. Engineering aspects of particle beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  9. Engineering aspects of particle-beam fusion systems

    International Nuclear Information System (INIS)

    Cook, D.L.

    1982-01-01

    The Department of Energy is supporting research directed toward demonstration of DT fuel ignition in an Inertial Confinement Fusion (ICF) capsule. As part of the ICF effort, two major Particle Beam Fusion Accelerators (PBFA I and II) are being developed at Sandia National Laboratories with the objective of providing energetic light ion beams of sufficient power density for target implosion. Supporting light ion beam research is being performed at the Naval Research Laboratory and at Cornell University. If the answers to several key physics and engineering questions are favorable, pulsed power accelerators will be able to provide an efficient and inexpensive approach to high target gain and eventual power production applications

  10. Intense pulsed ion beams for fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.

    1980-04-01

    The subject of this review paper is the field of intense pulsed ion beam generation and the potential application of the beams to fusion research. Considerable progress has been made over the past six years. The ion injectors discussed utilize the introduction of electrons into vacuum acceleration gaps in conjunction with high voltage pulsed power technology to achieve high output current. Power levels from injectors exceeding 1000 MW/cm 2 have been obtained for pulse lengths on the order of 10 -7 sec. The first part of the paper treats the physics and technology of intense ion beams. The second part is devoted to applications of intense ion beams in fusion research. A number of potential uses in magnetic confinement systems have been proposed

  11. Accelerator and fusion research division

    International Nuclear Information System (INIS)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations

  12. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-01-01

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  13. Sandia's recent results in particle beam fusion research

    International Nuclear Information System (INIS)

    Yonas, G.

    Sandia's latest achievements in the particle beam fusion program are enumerated and pulse power accelerators offering a route to an experimental reactor ignition system are discussed. Four interdependent elements of the program are investigated: 1) power concentration and dielectric breakdown, 2) beam focusing and transport, 3) beam target interaction, and 4) implosion hydrodynamics. Results of the spherical target irradiation experiment on the 1 TW Proto I accelerator and the successful neutron production experiment using the 0.25 TW electron beam from the Rehyd generator are reported. Beam propagation in plasma discharge channels and magnetically insulated vacuum transmission lines have been tested as alternative ways of the power transport. The first-time operation of the Proto II accelerator at 6 TW level is the first step in scaling of intense particle accelerators to higher power levels. (J.U.)

  14. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  15. Fusion research in Hungary

    International Nuclear Information System (INIS)

    Zoletnik, S.

    2004-01-01

    Hungarian fusion research started in the 1970s, when the idea of installing a small tokamak experiment emerged. In return to computer equipment a soviet tokamak was indeed sent to Hungary and started to operate as MT-1 at the Central Research Institute for Physics (KFKI) in 1979. Major research topics included diagnostic development, edge plasma studies and investigation of disruptions. Following a major upgrade in 1992 (new vacuum vessel, active position control and PC network based data acquisition system) the MT-1M tokamak was used for the study of transport processes with trace impurity injection, micropellet ablation studies, X-ray tomography and laser blow-off diagnostic development. Although funding ceased in the middle of the 90's the group was held alive by collaborations with EU fusion labs: FZ -Juelich, IPP-Garching and CRPP-EPFL Lausanne. In 1998 the machine was dismantled due to reorganization of the Hungarian Academy of Sciences. New horizons opened to fusion research from 1999, when Hungary joined EURATOM and a fusion Association was formed. Since then fusion physics studies are done in collaboration with major EU fusion laboratories, Hungarian researchers also play an active role in JET diagnostics upgrade and ITER design. Major topics are pellet ablation studies, plasma turbulence diagnosis using Beam Emission Spectroscopy and other techniques, tomography and plasma diagnostics using various neutral beams. In fusion relevant technology R and D Hungary has less records. Before joining EURATOM some materials irradiation studies were done at the Budapest Research Reactor at KFKI-AEKI. The present day fusion technology programme focuses still on irradiation studies, nuclear material database and electromagnetic testing techniques. Increasing the fusion technology research activities is a difficult task, as the competition in Hungarian industry is very strong and the interest of organizations in long-term investments into R and D is rather weak and

  16. High-power pulsed light ion beams for applications in fusion- and matter research

    International Nuclear Information System (INIS)

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  17. Electron beam fusion (a bibliography with abstracts). Report for 1964-Aug 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-10-01

    The bibliography cites research on using electron beams to initiate fusion as an alternative to laser fusion. Theoretical and experimental research concerned with the generation and dynamics of relativistic electron beams and their interaction with high atomic number materials is included

  18. Preliminary results from MBE-4: A four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.; Warwick, P.b.A.I.

    1986-01-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  19. Preliminary results from MBE-4: a four beam induction linac for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.; Smith, L.; Warwick, A.I.

    1986-05-01

    Preliminary results are presented from a scaled experimental multiple beam induction linac. This experiment is part of a program of accelerator research for heavy ion fusion. It is shown that multiple beams can be accelerated without significant mutual interaction. Measurements of the longitudinal dynamics of a current-amplifying induction linac are presented and compared to calculations. Coupling of transverse and longitudinal dynamics is discussed

  20. Ion beam inertial fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1995-01-01

    About twenty years ago, A. W. Maschke of Brookhaven National Laboratory and R. L. Martin of Argonne National Laboratory recognized that the accelerators that have been developed for high energy and nuclear physics are, in many ways, ideally suited to the requirements of inertial fusion power production. These accelerators are reliable, they have a long operating life, and they can be efficient. Maschke and Martin noted that they can focus ion beams to small focal spots over distances of many meters and that they can readily operate at the high pulse repetition rates needed for commercial power production. Fusion, however, does impose some important new constraints that are not important for high energy or nuclear physics applications. The most challenging new constraint from a scientific standpoint is the requirement that the accelerator deliver more than 10 14 W of beam power to a small quantity (less than 100 mg) of matter. The most challenging constraint from an engineering standpoint is accelerator cost. Maschke showed theoretically that accelerators could produce adequate work. Heavy-ion fusion is widely recognized to be a promising approach to inertial fusion power production. It provides an excellent opportunity to apply methods and technology developed for basic science to an important societal need. The pulsed-power community has developed a complementary, parallel approach to ion beam fusion known as light-ion fusion. The talk will discuss both heavy-ion and light-ion fusion. It will explain target physics requirements and show how they lead to constraints on the usual accelerator parameters such as kinetic energy, current, and emittance. The talk will discuss experiments that are presently underway, specifically experiments on high-current ion sources and injectors, pulsed-power machines recirculating induction accelerators, and transverse beam combining. The talk will give a brief description of a proposed new accelerator called Elise

  1. Inertial Fusion Driven By Intense Heavy-Ion Beams

    International Nuclear Information System (INIS)

    Sharp, W.M.; Friedman, A.; Grote, D.P.; Barnard, J.J.; Cohen, R.H.; Dorf, M.A.; Lund, S.M.; Perkins, L.J.; Terry, M.R.; Logan, B.G.; Bieniosek, F.M.; Faltens, A.; Henestroza, E.; Jung, J.Y.; Kwan, J.W.; Lee, E.P.; Lidia, S.M.; Ni, P.A.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Takakuwa, J.H.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Gilson, E.P.; Kaganovich, I.D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R.A.; Koniges, A.E.

    2011-01-01

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  2. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay, J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik, A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  3. Overview of US heavy ion fusion research

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy. (author)

  4. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  5. Progress in light ion beam fusion research on PBFA II

    International Nuclear Information System (INIS)

    Cook, D.L.; Allshouse, G.O.; Bailey, J.

    1986-01-01

    PBFA II is a 100 TW pulsed power accelerator constructed at Sandia National Laboratories for use in the Light Ion Fusion Program. The objective of PBFA II is to accelerate and focus upon an inertial confinement fusion (ICF) target a lithium beam with sufficient energy, power, and power density to perform ignition scaling experiments. The technologies used in PBFA II include: (1) primary energy storage and compression with 6 MV, low-inductance Marx generators, (2) pulse forming in water-insulated, water-dielectric lines with self-closing water switches, (4) voltage addition in vacuum using self-magnetically-insulated biconic transmission lines, (5) inductive energy storage and pulse compression using a fast-opening plasma erosion switch, (6) beam formation using a magnetically-insulated ion diode, and (7) space-charge and current-neutralized beam propagation to the target in a gas-filled cell. The first multimodule shot was on December 11, 1985. The plans for PBFA II include development and demonstration of the pulse-shaping techniques which are necessary for high-gain target compressions. Following a modification of the accelerator which will probably include an ''extraction'' ion diode, a 4- to 5-meter plasma channel for beam bunching during propagation, and a target chamber located beneath the accelerator, temporally-shaped ion beam pulses will be available for pulse-shaped target experiments. (author)

  6. US Heavy Ion Beam Research for Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Callahan D.A.; Kireeff Covo, M.; Celata, C.M.; Cohen, R.H.; Coleman, J.E.; Debonnel, C.S.; Grote, D.P.; Efthimiom, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Henestroza, E.; Kaganovich, I.D.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.L.; Penn, G.E.; Qin, H.; Roy, P.K.; Rose, D.V.; Sefkow, A.; Seidl, P.A.; Sharp, W.M.; Startsev, E.A.; Tabak, M.; Thoma, C.; Vay, J-L; Wadron, W.L.; Wurtele, J.S.; Welch, D.R.; Westenskow, G.A.; Yu, S.S.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  7. Sandia's recent results in particle beam research

    International Nuclear Information System (INIS)

    Yonas, G.

    1977-01-01

    Recent results in the Sandia particle beam fusion research program are briefly discussed. Ignition of pellet fusion targets by both electron and ion beams are under study. Power concentration, dielectric breakdown, diode optimization, and beam-target interaction experiments are briefly described. Magnetic insulation considerations are discussed. Efforts to utilize higher impedance diode sources and reduce minimum power pulse widths are described. Analyses indicate that particle beam ignition systems might yield pellet gains greater than 10 in hybrid and approximately 100 in pure fusion reactors. A bibliography of 23 references is included

  8. Progress of laser fusion research

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1988-01-01

    The history of the research on nuclear fusion utilizing laser is described. It started in USSR in 1968, but the full scale start of laser implosion nuclear fusion was in 1972. In Osaka University, nuclear fusion neutrons were detected with a solid deuterium target and the phenomenon of parametric abnormal absorption in laser plasma was found in 1971. The new type target for implosion nuclear fusion ''Canon ball'' was devised in 1975. The phenomenon of the abnormal transmission of laser beam through a thin metal film in a multiple film target was found in 1976, and named ''Osaka effect''. Also the development of lasers has been advanced, and in 1983, a largest glass laser in the world, Gekko 12, with 12 beams, 30 kJ output, 55 TW, was completed. The new target LHART was devised, which enabled the generation of 10 trillion D-T reaction neutrons. Due to the development of high power laser technology, the realization of the new design of fuel pellets, the evaluation of the data by computer simulation, and the realization of new plasma diagnostic method, the research on laser nuclear fusion has developed rapidly, and the attainment of break-even is expected in 1990s. The features of inertial nuclear fusion are enumerated. (Kako, I.)

  9. Heavy-Ion Fusion Accelerator Research, 1991

    International Nuclear Information System (INIS)

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators

  10. Accelerator and Fusion Research Division: summary of activities, 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation

  11. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  12. Electron beam fusion (a bibliography with abstracts). Report for 1964--Oct 1975

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1975-10-01

    The bibliography cites research on using electron beams to initiate fusion. Theoretical and experimental research concerned with the generation and dynamics of relativistic electron beams and their interaction with high atomic number materials is included

  13. Accelerator and fusion research division. 1992 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This report contains brief discussions on research topics in the following area: Heavy-Ion Fusion Accelerator Research; Magnetic Fusion Energy; Advanced Light Source; Center for Beam Physics; Superconducting Magnets; and Bevalac Operations.

  14. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  15. Neutral beam systems for the magnetic fusion program

    International Nuclear Information System (INIS)

    Beal, J.W.; Staten, H.S.

    1977-01-01

    The attainment of economic, safe fusion power has been described as the most sophisticated scientific problem ever attacked by mankind. The presently established goal of the magnetic fusion program is to develop and demonstrate pure fusion central electric power stations for commercial applications. Neutral beam heating systems are a basic component of the tokamak and mirror experimental fusion plasma confinement devices. The requirements placed upon neutral beam heating systems are reviewed. The neutral beam systems in use or being developed are presented. Finally, the needs of the future are discussed

  16. Sandia's Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1979-01-01

    Sandia's Particle Beam Fusion Program is investigating pulsed electron and light ion beam accelerators, with the goal of demonstrating the practical application of such drivers as igniters in inertial confinement fusion (ICF) reactors. Recent developments in the program are described. Traditionally, two requirements of ICF reactor operation have been the most difficult to satisfy in conceptual designs. Adequate standoff of critical components from damaging pellet emissions must be assured, and the shot repetition rate must be consistent with the desired reactor power level at reasonable pellet gains. Progress in power compression, beam focusing and transport, first-wall protection schemes, and net-energy-gain target design shows how these requirements can be met

  17. Fusion reaction using low energy neutron-excess nucleus beam

    International Nuclear Information System (INIS)

    Fukuda, Tomokazu

    1994-01-01

    The present state and the plan of the experiment of measuring the fusion reaction near barriers by using neutron-excess nucleus beam, which has been advanced at RIKEN are reported. One of the purposes of this experiment is the feasibility investigation of the fusion reaction by using neutron-excess nuclei, which is indispensable for synthesizing superheavy elements. It is intended to systematically explore some enhancing mechanism in the neutron-excess nuclei which are unfavorable in beam intensity. This research can become the good means to prove the dynamic behavior of the neutrons on the surfaces of nuclei in reaction. The fusion reaction of 27 Al + Au was measured by using the stable nucleus beam of 27 Al, and the results are shown. In order to know the low energy fusion reaction of 11 Li and 11 Be which are typical halo nuclei, the identification by characteristic α ray of composite nuclei is carried out in 7,9,11 Li + 209 Bi and 9,10,11 Be + 208 Pb. A new detector having high performance, New MUSIC, is being developed. As the experiment by using this detector, the efficient measurement of the fusion reaction by using heavy neutron-excess nuclei up to Ni is considered. An example of 8 Li + α → 11 B + n reaction for celestial body physics is mentioned. (K.I.)

  18. U.S. Heavy Ion Beam Research for High Energy Density Physics Applications and Fusion

    International Nuclear Information System (INIS)

    Davidson, R.C.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.

    2005-01-01

    Key scientific results from recent experiments, modeling tools, and heavy ion accelerator research are summarized that explore ways to investigate the properties of high energy density matter in heavy-ion-driven targets, in particular, strongly-coupled plasmas at 0.01 to 0.1 times solid density for studies of warm dense matter, which is a frontier area in high energy density physics. Pursuit of these near-term objectives has resulted in many innovations that will ultimately benefit heavy ion inertial fusion energy. These include: neutralized ion beam compression and focusing, which hold the promise of greatly improving the stage between the accelerator and the target chamber in a fusion power plant; and the Pulse Line Ion Accelerator (PLIA), which may lead to compact, low-cost modular linac drivers

  19. Civilian applications of particle-beam-initiated inertial confinement fusion technology

    International Nuclear Information System (INIS)

    Varnado, S.G.; Mitchiner, J.L.

    1977-05-01

    Electrical power generation by controlled fusion may provide a partial solution to the world's long-term energy supply problem. Achievement of a fusion reaction requires the confinement of an extremely hot plasma for a time long enough to allow fuel burnup. Inertial confinement of the plasma may be possible through the use of tightly focused, relativistic electron or ion beams to compress a fuel pellet. The Sandia Particle Beam Fusion program is developing the particle-beam accelerators necessary to achieve fuel ignition. In this report we review the status of the particle-beam fusion technology development program and identify several potential civilian applications for this technology. We describe program objectives, discuss the specific accelerators presently under development, and briefly review the results of beam-focusing and target-irradiation experiments. Then we identify and discuss applications for the beam technology and for the fusion neutrons. The applications are grouped into near-term, intermediate-term, and long-term categories. Near-term applications for the beam technology include electron-beam (e-beam) pumping of gas lasers and several commercial applications. Intermediate-term applications (pellet gain less than 50) include hybrid reactors for electrical power production and fissile fuel breeding, pure fusion reactors for electrical power production, and medical therapy using ion accelerators. In the long term, complex, high-gain pellets may be used in pure fusion reactors

  20. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described.

  1. Automatic calibration and signal switching system for the particle beam fusion research data acquisition facility

    International Nuclear Information System (INIS)

    Boyer, W.B.

    1979-09-01

    This report describes both the hardware and software components of an automatic calibration and signal system (Autocal) for the data acquisition system for the Sandia particle beam fusion research accelerators Hydra, Proto I, and Proto II. The Autocal hardware consists of off-the-shelf commercial equipment. The various hardware components, special modifications and overall system configuration are described. Special software has been developed to support the Autocal hardware. Software operation and maintenance are described

  2. Heavy-ion fusion accelerator research, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development

  3. Fusion reactor development using high power particle beams

    International Nuclear Information System (INIS)

    Ohara, Y.

    1990-01-01

    The present paper outlines major applications of the ion source/accelerator to fusion research and also addresses the present status and future plans for accelerator development. Applications of ion sources/accelerators for fusion research are discussed first, focusing on plasma heating, plasma current drive, plasma current profile control, and plasma diagnostics. The present status and future plan of ion sources/accelerators development are then described focusing on the features of existing and future tokamak equipment. Positive-ion-based NBI systems of 100 keV class have contributed to obtaining high temperature plasmas whose parameters are close to the fusion break-even condition. For the next tokamak fusion devices, a MeV class high power neutral beam injector, which will be used to obtain a steady state burning plasma, is considered to become the primary heating and current drive system. Development of such a system is a key to realize nuclear fusion reactor. It will be entirely indebted to the development of a MeV class high current negative deuterium ion source/accelerator. (N.K.)

  4. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Hooper, B.

    1977-01-01

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (10 14 particles/cm 3 ) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  5. Fusion by 1990: the Sandia ion beam program can do it

    International Nuclear Information System (INIS)

    Stevens, C.B.

    1985-01-01

    Recent experimental results at Sandia National Laboratories demonstrate that light ion beam accelerator devices can deliver considerably more than the power necessary for achieving high-gain fusion energy - millions of joules at power densities of 10,000 trillion watts/cm 2 . This means that commercial fusion energy with an inertial-confinement fusion device can be realized by the 1990s, despite the general curtailment of the US fusion research budget over the past eight years. Dr. J. Pace VanDevender, pulsed power sciences director at Sandia, and Professor Ravindra N. Sudan, director of the Cornell University Laboratory of Plasma Studies, discussed the experimental and theoretical advances underlying this happy prognosis at the April 17-19 conference at the Rochester University for Laser Energetics. Sudan showed that experiments with high-current ion beam pulses over the past decade have demonstrated that such pulses, instead of diffusing, tend to self-focus nonlinearly to higher power densities. Second, weak magnetic fields do not interact and change the trajectory of such high-current beam pulses. At the Rochester meeting, VanDevender reviewed experiments on Sandia's Proto I device in which 1.5 trillion watts per square centimeter were delivered to a target in May 1984. This spring, Sandia's Particle Beam Fusion Accelerator I, PBFA I, delivered an 8-trillion watt pulse onto a spot 4.0 to 4.5 millimeters in diameter. This demonstrated that the Sandia light ion beam focusing process maintains itself as the current is increased. 3 figures

  6. American research programs on controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    At a time when the site of the European JET project has been decided, this study proposes to highlight the American effort in this field over the last five years. The Federal Civil Research and Development budget assigned to Energy has been multiplied by 6.3 and inside this budget the portion allocated to fusion has been multiplied by a factor of 6, in value. Two avenues have been explored; magnetic confinement and inertial confinement but one reaction only has been considered, namely D + T fusion. In magnetic confinement, the first operational reactor is being contemplated for around the year 2012. Three technologies have been explored in inertial confinement: by laser beams, electron beams and ion beams [fr

  7. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  8. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  9. High-energy fusion: A quest for a simple, small and environmentally acceptable colliding-beam fusion power source

    International Nuclear Information System (INIS)

    Maglich, B.

    1978-01-01

    Fusion goals should be lowered for a speedier research and development of a less ambitious but a workable 'low-gain fusion power amplifier', based on proven technologies and concepts. The aim of the Migma Program of Controlled Fusion is a small (10-15 liters) fusion power source based on colliding beams instead of plasma or laser heating. Its scientific and technological 'philosophy' is radically different from that of the governmental fusion programs of the USA and USSR. Migmacell uses radiation-free fuels, ('advanced fuels'), rather than tritium. Economic projections show that such a smaller power cell can be econonomically competitive in spite of its low power gain, because it can be mass produced. Power stations could be made either large or small and the power transmission and distribution pattern in the nation would change. An interspersion of energy resources would result. Minifusion opens the possibility to smaller countries (and medium size institutions of large countries), for participation in fusion research; this resource of research talent is presently excluded from fusion by the high cost of the mainline governmental research (over $ 200 million for one experimental fusion device, as compared to $ 1 million for migmacell). The time-scale for obtaining experimental results is reduced from decades to years. Experimental accomplishments to date and the further research needed, are presented. (orig.) [de

  10. Heavy-ion fusion accelerator research in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Godlove, T.D.; Herrmannsfeldt, W.B.; Keefe, D.

    1985-01-01

    In October 1983, a Heavy-Ion Fusion Accelerator Research programme (HIFAR) was established under the Office of Energy Research of the United States Department of Energy. The programme goal over the next several years is to establish a data base in accelerator physics and technology that can allow the potential of heavy ion fusion to be accurately assessed. Three new developments have taken place in the HIFAR programme. First, a decision has been made to concentrate the experimental programme on the development of multiple-beam induction linacs. Second, new beam transport experiments over a large number of quadrupole elements show that stable beam propagation occurs for significantly higher beam currents than had been believed possible a few years ago. Third, design calculations now show that a test accelerator of modest size and cost can come within a factor of three of testing almost all of the physics and technical issues appropriate to a power plant driver. (author)

  11. Illumination non-uniformity of spirally wobbling beam in heavy ion fusion

    International Nuclear Information System (INIS)

    Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A.I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized. (paper)

  12. Intense light-ion beams provide a robust, common-driver path toward ignition, gain, and commercial fusion energy

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Cook, D.L.

    1993-01-01

    Intense light-ion beams are being developed for investigations of inertial confinement fusion (ICF). This effort has concentrated on developing the Particle Beam Fusion Accelerator II (PBFA II) at Sandia as a driver for ICF target experiments, on design concepts for a high-yield, high-gain Laboratory Microfusion Facility (LMF), and on a comprehensive system study of a light-ion beam-driven commercial fusion reactor (LIBRA). Reports are given on the status of design concepts and research in these areas. (author)

  13. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  14. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  15. Heavy ion beam propagation through a gas-filled chamber for inertial confinement fusion

    International Nuclear Information System (INIS)

    Barboza, N.O.

    1996-10-01

    The work presented here evaluates the dynamics of a beam of heavy ions propagating through a chamber filled with gas. The motivation for this research stems from the possibility of using heavy ion beams as a driver in inertial confinement fusion reactors for the purpose of generating electricity. Such a study is important in determining the constraints on the beam which limit its focus to the small radius necessary for the ignition of thermonuclear microexplosions which are the source of fusion energy. Nuclear fusion is the process of combining light nuclei to form heavier ones. One possible fusion reaction combines two isotopes of hydrogen, deuterium and tritium, to form an alpha particle and a neutron, with an accompanying release of ∼17.6 MeV of energy. Generating electricity from fusion requires that we create such reactions in an efficient and controlled fashion, and harness the resulting energy. In the inertial confinement fusion (ICF) approach to energy production, a small spherical target, a few millimeters in radius, of deuterium and tritium fuel is compressed so that the density and temperature of the fuel are high enough, ∼200 g/cm 3 and ∼20 keV, that a substantial number of fusion reactions occur; the pellet microexplosion typically releases ∼350 MJ of energy in optimized power plant scenarios

  16. Research on spherically converging ion-beam fusion neutron source for the fundamental research of atomic energy. JAERI's nuclear research promotion program, H10-050. Contract research

    International Nuclear Information System (INIS)

    Yoshikawa, Kiyoshi; Inoue, Nobuyuki; Yamazaki, Tetsuo

    2002-03-01

    Potential well formation due to space charge associated with spherically converging ion beams plays a key and essential role in the beam-beam colliding fusion, which is the major mechanism of the Inertial Electrostatic Confinement Fusion (IECF) devices. Many theoretical results so far predicted strongly localized potential well formation, and actually for the past 30 years, many experiments were dedicated to clarify this mechanism, but neither could provide definitive evidence. In this study, we succeeded for the first time in the world in observing the double-well potential profile by use of the laser-induced fluorescence method that makes use of Stark effects, which put a period to the controverse for 30 years on the existence of the double-well potential profile. Furthermore, aiming at demonstrating a numerical prediction of a strongly nonlinear dependence of the fusion reaction rate on the discharge current on negligence of the charge exchange processes, triple-grid auxiliary system was introduced in order to reduce the operating gas pressure, with a successful result of reducing the pressure down to 1/5 of the conventional one required for glow discharge with single-grid system. Also, we measured accelerated atoms' kinetic energies through Doppler shift spectroscopy, and found the maximum energy increases proportionally to the applied voltage, which implies an enhancement of the fusion reaction cross-section with an increasing applied voltage in the near future. (author)

  17. Inertial confinement fusion with light ion beams

    International Nuclear Information System (INIS)

    VanDevender, J.P.; Cook, D.L.

    1986-01-01

    The Particle Beam Fusion Accelerator II (PBFA II) is presently under construction and is the only existing facility with the potential of igniting thermonuclear fuel in the laboratory. The accelerator will generate up to 5 megamperes of lithium ions at 30 million electron volts and will focus them onto an inertial confinement fusion (ICF) target after beam production and focusing have been optimized. Since its inception, the light ion approach to ICF has been considered the one that combines low cost, high risk, and high payoff. The beams are of such high density that their self-generated electric and magnetic fields were thought to prohibit high focal intensities. Recent advances in beam production and focusing demonstrate that these self-forces can be controlled to the degree required for ignition, break-even, and high gain experiments. ICF has been pursued primarily for its potential military applications. However, the high efficiency and cost-effectiveness of the light ion approach enhance its potential for commercial energy application as well

  18. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  19. Ion beam irradiation of ceramics at fusion relevant conditions

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1991-01-01

    Ceramic materials are required at a variety of locations in proposed fusion reactors where significant ionizing and displacive fields may be present. Energetic ion beams are a useful tool for probing the effects of irradiation on the structure and electrical properties of ceramics over a wide range of experimental conditions. The advantages and disadvantages of using ion beams to provide information on anticipated ceramic radiation effects in a fusion reactor environment are discussed. In this paper particular emphasis is placed on microstructural changes and how the high helium generation rates associated with DT fusion neutrons affect cavity swelling

  20. Research progress in intense ion beam production for inertial confinement fusion at Cornell University

    International Nuclear Information System (INIS)

    Bluhm, H.; Greenly, J.B.; Hammer, D.A.

    1983-01-01

    Recent results obtained in the generation of intense pulsed light ion beams and their application to inertial confinement fusion are described. Studies of time-integrated and time-dependent beam divergence using a magnetically insulated ion diode with a ''flashboard'' anode at 11 W diode power show a directionality which is apparently due to electron dynamics in the diode. Nevertheless, ion beams having divergence angle as small as 0.5 0 have been produced at >10 8 W.cm - 2 . In another experiment with a similar diode, the anode plasma formation time varied with the detailed anode configuration, the diode voltage and the insulating magnetic field, with the longer times obtained at lower voltage and higher insulating magnetic field strength. The anode plasma density was determined to be in the 10 15 cm - 3 density range and to move away from the anode at approx.2 cm.μs - 1 in another similar experiment. Preliminary experiments performed on a 10 12 W accelerator show reasonable power coupling to a magnetically insulated ion diode, with >10 9 W.cm - 2 beams at approx.1.5 MV being generated. Computer simulations suggest that if such a beam can be focused into a plasma channel, most of its energy can be delivered to a pellet one to two metres away. In experiments on the applied Bsub(theta) diode, microwave radiation, ion production efficiency, and ion beam fluctuations all reach a maximum when the insulating magnetic field is about 1.4 times the critical field for magnetic insulation. Finally, relatively pure beams of heavy ions have been produced by making the anode with hydrocarbon-free dielectric material which contains the desired species together with other ions having substantially higher ionization potential. The sum of these results suggests that flashboard anodes operated at the few-MV level can be used to produce beams with properties suitable for inertial confinement fusion experiments on sufficiently powerful pulsed power generators. (author)

  1. Inertial fusion with heavy ion beams

    International Nuclear Information System (INIS)

    Bock, R.; Hofmann, I.; Arnold, R.

    1984-01-01

    The underlying principle of inertial confinement is the irradiation of a small pellet filled with DT-fuel by laser or particle beams in order to compress the fuel and ignite it. As 'drivers' for this process large laser installations and light-ion devices have been built since then and the results obtained during the past few years have increased our confidence, that the ignition conditions might be reached. Further conditions, however, have to be fulfilled for operating a power plant. In particular, the driver needs to have enough efficiency to be economical, and for a continuous energy production a high repetition rate and availability is required. It is less than ten years since it was realized that heavy ion beams might be a promising candidate for achieving inertial confinement fusion (ICF). Due to the evolution of high-energy and heavy-ion physics during the past 25 years, accelerators have attained a high technical and technological standard and an excellent operational reliability. Nevertheless, the heavy ion driver for a fusion power plant requires beam specifications exceeding those of existing accelerators considerably. (Auth.)

  2. Conceptual design of light ion beam inertia nuclear fusion reactors

    International Nuclear Information System (INIS)

    1983-07-01

    Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)

  3. Accelerator & Fusion Research Division: 1993 Summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  4. Pulsed power accelerators for particle beam fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; Barr, G.W.; VanDevender, J.P.; White, R.A.; Johnson, D.L.

    1980-01-01

    Sandia National Laboratories is completing the construction phase of the Particle Beam Fusion Accelerator-I (PBFA-I). Testing of the 36 module, 30 TW, 1 MJ output accelerator is in the initial stages. The 4 MJ, PBFA Marx generator has provided 3.6 MA into water-copper sulfate load resistors with a spread from first to last Marx firing between 15 to 25 ns and an output power of 5.7 TW. This accelerator is a modular, lower voltage, pulsed power device that is capable of scaling to power levels exceeding 100 TW. The elements of the PBFA technology and their integration into an accelerator system for particle beam fusion will be discussed

  5. Overview of Heavy Ion Fusion Accelerator Research in the U. S.

    Science.gov (United States)

    Friedman, Alex

    2002-12-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.

  6. Overview of heavy ion fusion accelerator research in the U.S

    International Nuclear Information System (INIS)

    Friedman, Alex

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  7. Overview of Heavy Ion Fusion Accelerator Research in the U.S

    International Nuclear Information System (INIS)

    Friedman, A

    2002-01-01

    This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory; the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed

  8. Induction-accelerator heavy-ion fusion: Status and beam physics issues

    International Nuclear Information System (INIS)

    Friedman, A.

    1996-01-01

    Inertial confinement fusion driven by beams of heavy ions is an attractive route to controlled fusion. In the U.S., induction accelerators are being developed as open-quotes driversclose quotes for this process. This paper is divided into two main sections. In the first section, the concept of induction-accelerator driven heavy-ion fusion is briefly reviewed, and the U.S. program of experiments and theoretical investigations is described. In the second, a open-quotes taxonomyclose quotes of space-charge-dominated beam physics issues is presented, accompanied by a brief discussion of each area

  9. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  10. Novel neutralized-beam intense neutron source for fusion technology development

    International Nuclear Information System (INIS)

    Osher, J.E.; Perkins, L.J.

    1983-01-01

    We describe a neutralized-beam intense neutron source (NBINS) as a relevant application of fusion technology for the type of high-current ion sources and neutral beamlines now being developed for heating and fueling of magnetic-fusion-energy confinement systems. This near-term application would support parallel development of highly reliable steady-state higher-voltage neutral D 0 and T 0 beams and provide a relatively inexpensive source of fusion neutrons for materials testing at up to reactor-like wall conditions. Beam-target examples described incude a 50-A mixed D-T total (ions plus neutrals) space-charge-neutralized beam at 120 keV incident on a liquid Li drive-in target, or a 50-A T 0 + T + space-charge-neutralized beam incident on either a LiD or gas D 2 target with calculated 14-MeV neutron yields of 2 x 10 15 /s, 7 x 10 15 /s, or 1.6 x 10 16 /s, respectively. The severe local heat loading on the target surface is expected to limit the allowed beam focus and minimum target size to greater than or equal to 25 cm 2

  11. Focusing lenses for the 20-beam fusion laser, SHIVA

    International Nuclear Information System (INIS)

    O'Neal, W.C.

    1976-01-01

    The focus lens design for the 20-beam SHIVA laser fusion facility involves considerations of uniform and normal pellet illumination. The resulting requirements dictate tailored beam intensity profiles and vacuum-loaded thin lenses

  12. Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion

    International Nuclear Information System (INIS)

    Miller, D.A.C.

    1994-12-01

    The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted

  13. The heavy ion fusion research program in West Germany

    International Nuclear Information System (INIS)

    Bock, R.

    1984-01-01

    The study on the feasibility of heavy ion beam for inertial confinement fusion was started four years ago, setting the main goal to identify and investigate the key issues of heavy ion fusion concept. The fund for this program has been provided by the Federal Ministry of Research and Technology. In this paper, the outline of the present research is shown, and some recent achievement is summarized. Moreover, the idea about the goal and the new direction of the future program are discussed. In the present program, two activities are distinguished, that is, the expermental and theoretical studies on accelerators, target physics and atomic physics, and the conceptual design study for a heavy ion-driven power plant. A RF linac with storage rings was chosen as the driver concept. In the accelerator research, ion source studies, RFQ development and beam transport measurement have been considered. Two beam transport experiments were carried out. In the conceptual design study, the HIBALL driver concept, the reactor chamber having the first wall protection using Pb-Li eutectic and so on have been studied. An accelerator facility of modest size has been suggested for basic accelerator physics studies. (Kako, I.)

  14. Accelerator ampersand Fusion Research Division: 1993 Summary of activities

    International Nuclear Information System (INIS)

    Chew, J.

    1994-04-01

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book

  15. Accelerator and Fusion Research Division annual report, fiscal year 1980, October 1979-September 1980

    International Nuclear Information System (INIS)

    1981-03-01

    Research during October 1979 to September 1980 is summarized. Areas covered include: accelerator operations; positron-electron project; stochastic beam cooling; high-field superconducting magnets; accelerator theory; neutral beam sources; and heavy ion fusion

  16. Recent US advances in ion-beam-driven high energy density physics and heavy ion fusion

    International Nuclear Information System (INIS)

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Coleman, J.; Greenway, W.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Molvik, A.W.; Lund, S.M.; Meier, W.R.; Sharp, W.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Kaganovich, I.D.; Qin, H.; Sefkow, A.B.; Startsev, E.A.; Welch, D.; Olson, C.

    2007-01-01

    During the past two years, significant experimental and theoretical progress has been made in the US heavy ion fusion science program in longitudinal beam compression, ion-beam-driven warm dense matter, beam acceleration, high brightness beam transport, and advanced theory and numerical simulations. Innovations in longitudinal compression of intense ion beams by >50X propagating through background plasma enable initial beam target experiments in warm dense matter to begin within the next two years. We are assessing how these new techniques might apply to heavy ion fusion drivers for inertial fusion energy

  17. Studies on the feasibility of heavy ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1985-08-01

    This Annual Report summarizes experimental and theoretical investigations carried out in the framework of a feasibility study of inertial confinement fusion by heavy ion beams, funded by the Federal Ministry for Research and Technology. After the completion of the conceptual design study HIBALL with an upgraded version, the investigations concentrated in 1984 mainly on problems of accelerator and target physics. In the area of accelerator physics the main interest was in the production and acceleration of high intensity heavy ion beams of high phase space density and in beam dynamics theory, in the area of target physics on beam-target interaction, radiation hydrodynamics, instabilities and the equation of state of highly compressed hot matter. (orig./AH)

  18. Nuclear fusion ion beam source composed of optimum channel wall

    International Nuclear Information System (INIS)

    Furukaw, T.

    2007-01-01

    Full text of publication follows: Numerical and experimental researches of the hall-type beam accelerator was conducted by highlighting both neutral species and material of acceleration channel wall. The hall-type beam accelerator is expected as ion beam source for nuclear fusion since it could product ion beam density over 10 3 times as high as that of electrostatic accelerator, which is used regularly as beam heating device, because it is proven that the beam heating method could accelerate ion to high energy beam by electric field and heat plasma to ultra high temperature of 100 million degrees or more. At high-voltage mode of DC regime that is normal operational condition, however, the various plasma MHD (magneto-hydrodynamic) instabilities are generated. In particular, the large-amplitude and low-frequency plasma MHD instability in the tens of kHz among them has been a serious problem that should be solved to improve the operational stability and the system durability. So, we propose a hall-type beam accelerator with new design concepts; both acquisition of simultaneous solution for reducing the plasma MHD instability and the accelerator core overheating and optimum combination of the acceleration channel wall material. The technologies for this concept are as follows: 1) To increase neutral species velocity-inlet in acceleration channel by preheating propellant through circularly propellant conduit line inside accelerator system could bring about the lower amplitude of the instability. 2) Through this method, the accelerator system is cooled, and the higher thrust and specific-impulse is produced with hardly changing thrust efficiency at the same time. 3) To select BN (Boron- Nitride) and Al 2 O 3 as wall material of ionization- and acceleration-zone in acceleration channel respectively having different secondary-electron emission-coefficient could achieve the higher-efficiency and -durability. The hall-type beam accelerator designed using these technologies

  19. Economics of fusion research

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-10-15

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics.

  20. Economics of fusion research

    International Nuclear Information System (INIS)

    1977-01-01

    This report provides the results of a study of methods of economic analysis applied to the evaluation of fusion research. The study recognizes that a hierarchy of economic analyses of research programs exists: standard benefit-cost analysis, expected value of R and D information, and expected utility analysis. It is shown that standard benefit-cost analysis, as commonly applied to research programs, is inadequate for the evaluation of a high technology research effort such as fusion research. A methodology for performing an expected value analysis is developed and demonstrated and an overview of an approach to perform an expected utility analysis of fusion research is presented. In addition, a potential benefit of fusion research, not previously identified, is discussed and rough estimates of its magnitude are presented. This benefit deals with the effect of a fusion research program on optimal fossil fuel consumption patterns. The results of this study indicate that it is both appropriate and possible to perform an expected value analysis of fusion research in order to assess the economics of a fusion research program. The results indicate further that the major area of benefits of fusion research is likely due to the impact of a fusion research program on optimal fossil fuel consumption patterns and it is recommended that this benefit be included in future assessments of fusion research economics

  1. Status of light ion inertial fusion research at NRL

    International Nuclear Information System (INIS)

    Cooperstein, G.; Barker, R.J.; Colombant, D.G.; Goldstein, S.A.; Meger, R.A.; Mosher, D.; Neri, J.M.; Ottinger, P.F.

    1984-01-01

    This chapter reports on the use of high-brightness proton beams, extracted from axial pinch-reflex diodes mounted on the Naval Research Laboratory (NRL) Gamble II generator, to study light ion inertial fusion. Topics covered include the modular approach, ion beam brightness studies, light-ion beam transport, final focusing, the single diode approach, the inductive storage approach, an energy loss experiment, and future plans. Analysis of a modular inertial confinement fusion (ICF) system using axial pinch-reflex diodes shows that an operational window for transport of light-ion species exists. A proof-of-principle experiment for the required final focusing cell was conducted on Gamble II. Preliminary experiments using vacuum inductive storage and plasma opening switches have demonstrated factorof-three pulse compressions, with corresponding power and voltage multiplications for pulse durations of interest to PBFA II. The stopping power of deuterons in hot plasmas was measured in other experiments. It is demonstrated that about 40% enhancement in stopping power over that in cold targets when the deuteron beam is focused on the target to about .25 MA/cm 2 . Includes 6 diagrams

  2. Progress toward fusion with particle beams

    International Nuclear Information System (INIS)

    Kuswa, G.W.; Bieg, K.W.; Burns, E.J.T.

    1979-01-01

    This report discusses ion beam diodes which use insulating magnetic fields produced by coil systems. The development of ion diodes to produce light ion beams for fusion pellet ignition is briefly reviewed. The major goals for the light ion effort, which include the development of an ion diode to provide several TW/cm 2 , are discussed. The necessity to design ion sources which provide a prompt and uniform plasma layer when the diode voltage uses, in order to minimize electron loss and anode damage, is noted. Results of a number of materials and configurations tested for ion sources are reported. Numerical calculations are performed to investigate diode behavior. Future work on diodes with extracted beams is mentioned

  3. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  4. Induction linac drivers for commercial heavy-ion beam fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-11-01

    This paper discusses induction linac drivers necessary to accelerate heavy ions at inertial fusion targets. Topics discussed are: driver configurations, the current-amplifying induction linac, high current beam behavior and emittance growth, new considerations for driver design, the heavy ion fusion systems study, and future studies. 13 refs., 6 figs., 1 tab

  5. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  6. Investigation of electron-beam charging for inertial-confinement-fusion targets. Charged Particle Research Laboratory report No. 3-82

    International Nuclear Information System (INIS)

    Kim, K.; Elsayed-Ali, H.E.

    1982-04-01

    Techniques for charging inertial confinement fusion targets using electron beam are investigated. A brief review of the various possible charging techniques is presented, along with a discussion of the advantages and disadvantages of each. The reasons for selecting the electron beam charging and a physical picture of the charging mechanism are described. Experimental results are presented and compared with the theoretical predictions

  7. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  8. Electron beam welding using fusion and cold wire fill

    International Nuclear Information System (INIS)

    Kuncz, F.F.

    1977-01-01

    A straight-fusion (self-filler) welding technique generally poses no problem for electron beam welding. However, where control of penetration is a critical item and burn-through cannot be tolerated, this technique may not be satisfactory. To assure against beam-spike burn-through on a 1/4-inch deep weld joint, a low-power root-fusion pass, supplemented by numerous filler passes, was selected. However, this technique proved to have numerous problems. Voiding and porosity showed frequently in the first applications of this cold-wire filler process. Taper-out cratering, bead-edge undercutting, and spatter were also problems. These imperfections, however, were overcome. Employment of a circle generator provided the necessary heating of the joint walls to eliminate voids. The moving beam spot also provided a stirring action, lessening porosity. Taper-out cratering was eliminated by adjusting the timing of the current cutoff and wire-feed cutoff. Undercutting, bead height, and spatter were controlled by beam defocus

  9. Multiple-beam laser–plasma interactions in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Myatt, J. F., E-mail: jmya@lle.rochester.edu; Zhang, J.; Maximov, A. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States); Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627-0171 (United States); Hinkel, D. E.; Michel, P.; Moody, J. D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  10. Maryland controlled fusion research program. Volume I

    International Nuclear Information System (INIS)

    1985-01-01

    This renewal proposal describes the University of Maryland research program on Magnetic Fusion Energy for a three-year period beginning January 1, 1986. This program consists of five tasks: (I) Plasma Theory; (II) Electron Cyclotron Emission Diagnostics for Mirror Machines; (III) Electron Cyclotron Emission Diagnostics on TFTR; (IV) Atomic Physics; and (V) Magnetic Field Measurement by Ion Beams. The four separate tasks of continuing research (Tasks I to IV) and the new experimental task (Task V) are described in detail. The task descriptions contain estimated budgets for CY 86, 87, and 88

  11. Post-doctoral research work developed at the National Institute for Fusion Science - Japan

    International Nuclear Information System (INIS)

    Ueda, M.

    1992-05-01

    This is a research report report on the work developed at the National Institute for Fusion Science - Japan, involving study of Beam Emission Spectroscopy. It describes the use of a fast neutral lithium beam (8 KeV) to measure the density profile in a Compact Helical Device. (A.C.A.S.)

  12. Accelerator and Fusion Research Division annual report, October 1981-September 1982. Fiscal year 1982

    International Nuclear Information System (INIS)

    Johnson, R.K.; Bouret, C.

    1983-05-01

    This report covers the activities of LBL's Accelerator and Fusion Research Division (AFRD) during 1982. In nuclear physics, the Uranium Beams Improvement Project was concluded early in the year, and experimentation to exploit the new capabilities began in earnest. Technical improvement of the Bevalac during the year centered on a heavy-ion radiofrequency quadrupole (RFQ) as part of the local injector upgrade, and we collaborated in studies of high-energy heavy-ion collision facilities. The Division continued its collaboration with Fermilab to design a beam-cooling system for the Tevatron I proton-antiprotron collider and to engineer the needed cooling components for the antiproton. The high-field magnet program set yet another record for field strength in an accelerator-type dipole magnet (9.2 T at 1.8 K). The Division developed the design for the Advanced Light Source (ALS), a 1.3-GeV electron storage ring designed explicitly (with low beam emittance and 12 long straight sections) to generate high-brilliance synchrotron light from insertion devices. The Division's Magnetic Fusion Energy group continued to support major experiments at the Princeton Plasma Physics Laboratory, the Lawrence Livermore National Laboratory (LLNL), and General Atomic Co. by developing positive-ion-based neutral-beam injectors. Progress was made toward converting our major source-test facility into a long-pulse national facility, the Neutral Beam Engineering Test Facility, which was completed on schedule and within budget in 1983. Heavy Ion Fusion research focused on planning, theoretical studies, and beam-transport experiments leading toward a High Temperature Experiment - a major test of this promising backup approach to fusion energy

  13. Electron beam fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    R The behavior of the DT filled gold shells when irradiated by a variety of pulse shapes was studied. In these pulses the power (and beam current) was varied, but the voltage was kept constant at 1 MeV. In general the performance of the target, for a given peak power, was not significantly affected by the pulse shape. Pulses with rise times of up to half the implosion time do not significantly degrade the target performance. The use of the ''optimal pulse'' of laser fusion with a fixed peak power does not appear to improve the performance of these targets. The main function of the ''optimal pulse'' is to produce a large rho r of the target during the thermonuclear burn. In e-beam targets a total rho r of 5--10 g/cm 2 can be obtained without pulse shaping; the problem here is one of achieving high enough temperatures to ignite the DT. (U.S.)

  14. Modified betatron for ion beam fusion

    International Nuclear Information System (INIS)

    Rostoker, N.; Fisher, A.

    1986-01-01

    An intense neutralized ion beam can be injected and trapped in magnetic mirror or tokamak geometry. The details of the process involve beam polarization so that the beam crosses the fringing fields without deflection and draining the polarization when the beam reaches the plasma. Equilibrium requires that a large betatron field be added in tokamak geometry. In mirror geometry a toroidal field must be added by means of a current along the mirror axis. In either case, the geometry becomes that of the modified betatron which has been studied experimentally and theoretically in recent years. We consider beams of d and t ions with a mean energy of 500 kev and a temperature of about 50 kev. The plasma may be a proton plasma with cold ions. It is only necessary for beam trapping or to carry currents. The ion energy for slowing down is initially 500 kev and thermonuclear reactions depend only on the beam temperature of 50 kev which changes very slowly. This new configuration for magnetic confinement fusion leads to an energy gain of 10--20 for d-t reactions whereas previous studies of beam target interaction predicted a maximum energy gain of 3--4. The high beam energy available with pulsed ion diode technology is also essential for advanced fuels. 16 refs., 3 figs

  15. Fusion research at ORNL

    International Nuclear Information System (INIS)

    1982-03-01

    The ORNL Fusion Program includes the experimental and theoretical study of two different classes of magnetic confinement schemes - systems with helical magnetic fields, such as the tokamak and stellarator, and the ELMO Bumpy Torus (EBT) class of toroidally linked mirror systems; the development of technologies, including superconducting magnets, neutral atomic beam and radio frequency (rf) heating systems, fueling systems, materials, and diagnostics; the development of databases for atomic physics and radiation effects; the assessment of the environmental impact of magnetic fusion; and the design of advanced demonstration fusion devices. The program involves wide collaboration, both within ORNL and with other institutions. The elements of this program are shown. This document illustrates the program's scope; and aims by reviewing recent progress

  16. Studies on the feasibility of heavy ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1983-05-01

    This Annual Report summarizes the scientific results of work carried out in 1982 in the framework of a feasibility study for inertial confinement fusion with heavy ion beams funded by the German Ministry of Research and Technology. The principal aim of this basic research program is the investigation of key problems and the identification of critical issues of the heavy ion ICF concept in the fields of accelerator research, atomic physics, target physics, and reactor design. The research is carried out by about ten working groups at various research centers and universities. One of the highlights in 1982 was a symposium held end of March at GSI which focussed on a critical analysis of the HIBALL accelerator concept. Whereas technical issues and hardware parameters were found feasible the beam dynamics in the storage rings turned out to be beyond the so far believed stability limits. As a consequence a revised accelerator scenario based on a lower charge state and a higher linac current has been investigated during the last year. First considerations were made on an experimental facility necessary for the study of high-intensity beam dynamics and of beam target interaction. Experimental studies of this kind will be of increasing importance for the future of the project. (orig.) [de

  17. Welding for fusion grade neutral beam components - requirements, challenges, experiences and learnings

    International Nuclear Information System (INIS)

    Joshi, Jaydeep; Patel, Hitesh; Yadav, Ashish; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2016-01-01

    Negative ion based Neutral Beam Injectors (NBI) are the integral part of large size fusion devices where Neutral Beams of Hydrogen/Deuterium atoms are injected into the fusion reactor to heat the plasma, drive a plasma current, provide fuel to the plasma and also help to diagnose the plasma through spectroscopic measurements. The presentation shares the experiences of handling, some of special welding activities applicable for fusion prototypes developments, experiments, methodology developed for the inspection/tests, criteria considered with the appropriate justifications. This also shares the view point of authors code should further be supplement and incorporate the fusion specific applications considering future needs. In addition, explorations to meet our future needs of welding with specific attention to indigenous developments have been described

  18. Pathways to Energy from Inertial Fusion. An Integrated Approach. Report of a Coordinated Research Project 2006-2010

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has continuously demonstrated its commitment to supporting the development of safe and environmentally clean nuclear fusion energy. Statistics show that at the current rate of energy consumption, fusion energy would remain an inexhaustible energy source for humankind for millions of years. Furthermore, some of the existing and foreseen risks - such as nuclear waste disposal and rising greenhouse gas emissions from the use of fossil fuels - can also be reduced. In the quest for fusion energy, two main lines of research and development are currently being pursued worldwide, namely the inertial and the magnetic confinement fusion concepts. For both approaches, the IAEA has conducted coordinated research activities focusing on specific physics and technological issues relevant the establishment of the knowledge base and foundation for the design and construction of fusion power plants. This report describes the recent research and technological developments and challenges in inertial fusion energy within the framework of such a coordinated research effort. The coordinated research project on Pathways to Energy from Inertial Fusion: An Integrated Approach was initiated in 2006 and concluded in 2010. The project involved experts and institutions from 16 Member States, addressing issues relevant to advancing inertial fusion energy research and development in its practical applications. The key topics addressed include: (i) high repetition rate, low cost, high efficiency ignition drivers; (ii) beam-matter/beam-plasma interaction related to inertial fusion target physics; (iii) target fusion chamber coupling and interface; and (iv) integrated inertial fusion power plant design. Participants in this coordinated research project have contributed 17 detailed research and technology progress reports of work performed at national and international levels. This report compiles all these reports while highlighting the various achievements.

  19. Muon catalyzed fusion - fission reactor driven by a recirculating beam

    International Nuclear Information System (INIS)

    Eliezer, S.; Tajima, T.; Rosenbluth, M.N.

    1986-01-01

    The recent experimentally inferred value of multiplicity of fusion of deuterium and tritium catalyzed by muons has rekindled interest in its application to reactors. Since the main energy expended is in pion (and consequent muon) productions, we try to minimize the pion loss by magnetically confining pions where they are created. Although it appears at this moment not possible to achieve energy gain by pure fusion, it is possible to gain energy by combining catalyzed fusion with fission blankets. We present two new ideas that improve the muon fusion reactor concept. The first idea is to combine the target, the converter of pions into muons, and the synthesizer into one (the synergetic concept). This is accomplished by injecting a tritium or deuterium beam of 1 GeV/nucleon into DT fuel contained in a magnetic mirror. The confined pions slow down and decay into muons, which are confined in the fuel causing little muon loss. The necessary quantity of tritium to keep the reactor viable has been derived. The second idea is that the beam passing through the target is collected for reuse and recirculated, while the strongly interacted portion of the beam is directed to electronuclear blankets. The present concepts are based on known technologies and on known physical processes and data. 29 refs., 6 figs., 4 tabs

  20. Conference on Norwegian fusion research

    International Nuclear Information System (INIS)

    The question of instituting a systematic research programme in Norway on aspects of thermonuclear and plasma physics has been raised. The conference here reported was intended to provide basic information on the status of fusion research internationally and to discuss a possible Norwegian programme. The main contributions covered the present status of fusion research, international cooperation, fusion research in small countries and minor laboratories, fusion research in Denmark and Sweden, and a proposed fusion experiment in Bergen. (JIW)

  1. Developing models for simulation of pinched-beam dynamics in heavy ion fusion. Revision 1

    International Nuclear Information System (INIS)

    Boyd, J.K.; Mark, J.W.K.; Sharp, W.M.; Yu, S.S.

    1984-01-01

    For heavy-ion fusion energy applications, Mark and Yu have derived hydrodynamic models for numerical simulation of energetic pinched-beams including self-pinches and external-current pinches. These pinched-beams are applicable to beam propagation in fusion chambers and to the US High Temperature Experiment. The closure of the Mark-Yu model is obtained with adiabatic assumptions mathematically analogous to those of Chew, Goldberger, and Low for MHD. Features of this hydrodynamic beam model are compared with a kinetic treatment

  2. Experimental results of a sheet-beam, high power, FEL amplifier with application to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Destler, W.W.; Granatstein, V.L. [Univ. of Maryland, College Park, MD (United States)] [and others

    1995-12-31

    The experimental study of sheet-beam FELs as candidate millimeter-wave sources for heating magnetic fusion plasmas has achieved a major milestone. In a proof-of-principle, pulsed experiment, saturated FEL amplifier operation was achieved with 250 kW of output power at 86 GHz. Input microwave power was 1 kW, beam voltage was 450 kV and beam current was 17 A. The planar wiggler had a peak value of 3.8 kG, a period of 0.96 cm and was 71 cm long. The linear gain of 30 dB, saturated gain of 24 dB and saturated efficiency of 3% all are in good agreement with theoretical prediction. Follow-on work would include development of a thermionic sheet-beam electron-gun compatible with CW FEL operation, adding a section of tapered wiggler to increase the output power to levels in excess of 1 megawatt, and increasing the FEL frequency.

  3. NSPEC - A neutron spectrum code for beam-heated fusion plasmas

    International Nuclear Information System (INIS)

    Scheffel, J.

    1983-06-01

    A 3-dimensional computer code is described, which computes neutron spectra due to beam heating of fusion plasmas. Three types of interactions are considered; thermonuclear of plasma-plasma, beam-plasma and beam-beam interactions. Beam deposition is modelled by the NFREYA code. The applied steady state beam distribution as a function of pitch angle and velocity contains the effects of energy diffusion, friction, angular scattering, charge exchange, electric field and source pitch angle distribution. The neutron spectra, generated by Monte-Carlo methods, are computed with respect to given lines of sight. This enables the code to be used for neutron diagnostics. (author)

  4. Issues and opportunities: beam simulations for heavy ion fusion

    International Nuclear Information System (INIS)

    Friedman, A

    1999-01-01

    UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high- current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to

  5. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F B; Hone, M A; Jarvis, O N; Loughlin, M J; Sadler, G [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J M; Bond, D S; Watkins, N [UKAEA Harwell Lab. (United Kingdom). Energy Technology Div.; Howarth, P J.A. [Birmingham Univ. (United Kingdom)

    1994-07-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs.

  6. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G.

    1994-01-01

    The effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beams ions, is examined with measurements of the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes. In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. The local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is shown to be only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. 1 ref., 6 figs

  7. Frontiers in fusion research

    CERN Document Server

    Kikuchi, Mitsuru

    2011-01-01

    Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, *

  8. Fusion research activities in China

    International Nuclear Information System (INIS)

    Deng Xiwen

    1998-01-01

    The fusion program in China has been executed in most areas of magnetic confinement fusion for more than 30 years. Basing on the situation of the power supply requirements of China, the fusion program is becoming an important and vital component of the nuclear power program in China. This paper reviews the status of fusion research and next step plans in China. The motivation and goal of the Chinese fusion program is explained. Research and development on tokamak physics and engineering in the southwestern institute of physics (SWIP) and the institute of plasma physics of Academic Sinica (ASIPP) are introduced. A fusion breeder program and a pure fusion reactor design program have been supported by the state science and technology commission (SSTC) and the China national nuclear corporation (CNNC), respectively. Some features and progress of fusion reactor R and D activities are reviewed. Non fusion applications of plasma science are an important part of China fusion research; a brief introduction about this area is given. Finally, an introductional collaboration network on fusion research activities in China is reported. (orig.)

  9. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1--September 30, 1988

    International Nuclear Information System (INIS)

    1988-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; final bunching, transport, and accurate focusing on a small target

  10. Fusion research principles

    CERN Document Server

    Dolan, Thomas James

    2013-01-01

    Fusion Research, Volume I: Principles provides a general description of the methods and problems of fusion research. The book contains three main parts: Principles, Experiments, and Technology. The Principles part describes the conditions necessary for a fusion reaction, as well as the fundamentals of plasma confinement, heating, and diagnostics. The Experiments part details about forty plasma confinement schemes and experiments. The last part explores various engineering problems associated with reactor design, vacuum and magnet systems, materials, plasma purity, fueling, blankets, neutronics

  11. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  12. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  13. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1990--September 30, 1990

    International Nuclear Information System (INIS)

    1990-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, induction acceleration, is being studied at the Lawrence Berkeley Laboratory and at the Lawrence Livermore National Laboratory. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies to cut costs. Key elements to be addressed include: (1) beam quality limits set by transverse and longitudinal beam physics; (2) development of induction accelerating modules, and multiple-beam hardware, at affordable costs; (3) acceleration of multiple beams with current amplification without significant dilution of the optical quality of the beams; (4) final bunching, transport, and accurate focusing on a small target

  14. Beam position and total current monitor for heavy ion fusion beams

    International Nuclear Information System (INIS)

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 μs. For accurate beam transport, the center of charge must be located to within ± 100 μm. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information

  15. Study of ion beam-initiated inertial-confinement fusion. Final report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Chang, D.; Phelps, D.

    1982-02-01

    For the past four years, Occidental Research Corporation has been conducting a fusion program which is based on a reactor concept in which geometrically focused and time compressed beams of cold light ions and neutralizing cold electrons from large area sources are ballistically propagated over several meters through a near vacuum to implode a pellet target. The approach combines the cost advantage of efficient moderate voltage pulsed power technology with the simplicity-advantage of unguided ballistic propagation. In addition, the compactness, efficiency, focusability and energy range of the system makes the approach of great interest for supplementary heating of magnetically confined fusion plasmas. Theoretical analyses have been made of beam-target interaction, beam progagation and source accelerator design. A one-dimensional implosion and nuclear burn code indicates that significant yields can be obtained from simple targets with moderately energetic light ions. Experimentally the short-term objective is to demonstrate that the required degree of space-time focusing can be achieved on a 200-500 keV electron neutralized ion (or plasma) beam from a simple prototype 100 sq cm low temperature zeolite source

  16. Intense ion beam research for inertial confinement fusion. Final technical report, 1 October 1981-31 October 1985

    International Nuclear Information System (INIS)

    Hammer, D.A.; Kusse, B.R.; Sudan, R.N.

    1986-01-01

    Theoretical and experimental research has been performed on the application of intense light ion beams to inertial confinement fusion. The following achievements are documented. A 1 TW accelerator (a module of the PBFA 1 device at Sandia National Laboratories, Albuquerque), has been installed at Cornell and it has been used to develop high power magnetically insulated ion diodes. Ion beams at 0.3 TW level have been produced. The use of spectroscopic techniques to diagnose conditions in detail with in magnetically insulated diodes was proposed, and preliminary experiments have been successfully performed. These have revealed the anode plasma density, transverse velocities of ions within the diode (from Doppler broadening of ion emission lines) and the electric field profile in the accelerating gap (from the Stark shifted line profile of especially selected emission lines). Theoretical studies on the effects of lack of symmetry in the electron drift direction on the leakage electron current in a magnetically insulated diode show that even very small perturbations can cause a substantial enhancement of the leakage current. Experiments involving electron flow in a magnetically insulated diode have shown cathode sheath losses to occur in local burst as well as in a smooth manner

  17. Bringing fusion electric power closer

    International Nuclear Information System (INIS)

    Kintner, E.

    1977-01-01

    A review of the controlled fusion research program is given. The tokamak research program is described. Beam injection heating, control systems, and the safety of fusion reactors are topics that are also discussed

  18. International fusion research

    International Nuclear Information System (INIS)

    Pease, R.S.

    1983-01-01

    Nuclear energy of the light elements deuterium and lithium can be released if the 100 MK degree temperature required for deuterium-tritium thermonuclear fusion reactions can be achieved together with sufficient thermal insulation for a net energy yield. Progress of world-wide research shows good prospect for these physical conditions being achieved by the use of magnetic field confinement and of rapidly developing heating methods. Tokamak systems, alternative magnetic systems and inertial confinement progress are described. International co-operation features a number of bilateral agreements between countries: the Euratom collaboration which includes the Joint European Torus, a joint undertaking of eleven Western European nations of Euratom, established to build and operate a major confinement experiment; the development of co-operative projects within the OECD/IEA framework; the INTOR workshop, a world-wide study under IAEA auspices of the next major step in fusion research which might be built co-operatively; and assessments of the potential of nuclear fusion by the IAEA and the International Fusion Research Council. The INTOR (International Tokamak Reactor) studies have outlined a major plant of the tokamak type to study the engineering and technology of fusion reactor systems, which might be constructed on a world-wide basis to tackle and share the investment risks of the developments which lie ahead. This paper summarizes the recent progress of research on controlled nuclear fusion, featuring those areas where international co-operation has played an important part, and describes the various arrangements by which this international co-operation is facilitated. (author)

  19. Accelerator and Fusion Research Division: 1984 summary of activities

    International Nuclear Information System (INIS)

    1985-05-01

    During fiscal 1984, major programmatic activities in AFRD continued in each of five areas: accelerator operations, highlighted by the work of nuclear science users, who produced clear evidence for the formation of compressed nuclear matter during heavy-ion collisions; high-energy physics, increasingly dominated by our participation in the design of the Superconducting Super Collider; heavy-ion fusion accelerator research, which focused on the design of a four-beam experiment as a first step toward assessing the promise of heavy-ion inertial-confinement fusion; and research at the Center for X-Ray Optics, which completed its first year of broadly based activities aimed at the exploitation of x-ray and ultraviolet radiation. At the same time, exploratory studies were under way, aimed at investigating major new programs for the division. During the past year, for example, we took a preliminary look at how we could use the Bevatron as an injector for a pair of colliding-beam rings that might provide the first glimpse of a hitherto unobserved state of matter called the quark-gluon plasma. Together with Livermore scientists, we also conducted pioneering high-gain free-electron laser (FEL) experiments and proposed a new FEL-based scheme (called the two-beam accelerator) for accelerating electrons to very high energies. And we began work on the design of the Coherent XUV Facility (CXF), an advanced electron storage ring for the production of intense coherent radiation from either undulators or free-electron lasers

  20. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target

  1. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, October 1, 1987--March 31, 1988

    International Nuclear Information System (INIS)

    1988-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification -- both new features in a linac -- without significant dilution of the optical quality of beams; and final bunching, transport, and accurate focusing on a small target

  2. The technology benefits of inertial confinement fusion research

    International Nuclear Information System (INIS)

    Powell, H.T.

    1999-01-01

    The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10 6 J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10 -6 m) with picosecond (10 -12 s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. The experience of inertial fusion research and development of spinning off technologies has not been unique to any one laboratory or country but has been similar in main research centers in the US, Europe, and Japan. Strengthening and broadening the inertial fusion effort to focus on creating a new source of electrical power (inertial fusion energy [IFE]) that is economically competitive and environmentally benign will yield rich rewards in technology spin-offs. The additional challenges presented by IFE are to make drivers affordable, efficient, and long-lived while operating at a repetition rate of a few Hertz; to make fusion targets that perform consistently at high-fusion yield; and to create target chambers that can repetitively handle greater than 100-MJ yields while producing minimal radioactive by

  3. Focused proton beams propagating in reactor of fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Niu, K [Teikyo Heisei Univ., Uruido, Ichihara, Chiba (Japan)

    1997-12-31

    One of the difficult tasks of light ion beam fusion is to propagate the beam in the reactor cavity and to focus the beam on the target. The light ion beam has a certain local divergence angle because there are several causes for divergence at the diode. The electrostatic force induced at the leading edge causes beam divergence during propagation. To confine the beam within a small radius during propagation, the magnetic field must be employed. Here the electron beam is proposed to be launched simultaneously with the launching of the proton beam. If the electron beam has the excess current, the beam induces a magnetic field in the negative azimuthal direction, which confines the ion beam within a small radius by the electrostatic field as well as the electron beam by the Lorentz force. The metal guide around the beam path helps the beam confinement and reduces the total amount of magnetic field energy induced by the electron current. (author). 2 figs., 15 refs.

  4. Repetition rates in heavy ion beam driven fusion reactors

    Science.gov (United States)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  5. Repetition rates in heavy ion beam driven fusion reactors

    International Nuclear Information System (INIS)

    Peterson, R.R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10 -4 torr (3 x 10 12 cm -3 ) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors

  6. Microstructural evolution of fusion zone in laser beam welds of pure titanium

    International Nuclear Information System (INIS)

    Liu, H.; Nakata, K.; Zhang, J.X.; Yamamoto, N.; Liao, J.

    2012-01-01

    Microstructural evolution of fusion zone in laser beam welds of pure titanium was studied by means of electron backscattering diffraction. The microstructural evolution is strongly affected by the β → α transformation mechanism dependent on the cooling rate during phase transformation. The long-range diffusional transformation mainly occurs in the fusion zone at the low cooling rate, and the massive transformation dominantly takes place at the high cooling rate. For this reason, the grain morphologies probably change from the granular-like to columnar-like grains with the cooling rate increasing. - Highlights: ► Microstructures of fusion zone in laser beam welds of pure titanium are studied. ► Increasing cooling rate changes grain morphology from granular to columnar one. ► Final microstructures depend on the β→α transformation mechanisms.

  7. Japanese fusion research

    International Nuclear Information System (INIS)

    Uchida, T.

    1987-01-01

    The Japan experience during thirty years in nuclear fusion research is reported, after attending the 1st Geneva Conference in 1955, Osaka University, immedeately began linear pinch study using capacitor bank discharge. Subsequently to his trial several groups were organized to ward fusion R and D at universities in Tokyo, Nagoya, Kyoto, Sendai and son on. Based upon the recommendation of Japan Science Council, Institut of Plasma Physics (IPP) was established at Nagoya University in 1961 When the 1st International Conference on Plasma Physics and Controlled Nuclear Fusion Research was held in Saltzburg. The gloomy Bohm barrier had stood in front of many of experiments at that time. (author) [pt

  8. Neutral-beam-injected tokamak fusion reactors: a review

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1976-08-01

    The theories of energetic-ion velocity distributions, stability, injection, and orbits were summarized. The many-faceted role of the energetic ions in plasma heating, fueling, and current maintenance, as well as in the direct enhancement of fusion power multiplication and power density, is discussed in detail for three reactor types. The relevant implications of recent experimental results on several beam-injected tokamaks are examined. The behavior of energetic ions is found to be in accordance with classical theory, large total ion energy densities are readily achieved, and plasma equilibrium and stability are maintained. The status of neutral-beam injectors and of conceptual design studies of beam-driven reactors are briefly reviewed. The principal plasma-engineering problems are those associated directly with achieving quasi-stationary operation

  9. Accelerator aspects of heavy ion induced inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, D

    1983-01-01

    Besides the possibilities of the magnetic fusion those of inertial fusion have increasingly found interest. Bundled photon and corpuscular beams shall be symetrically focussed from the outside on a pellet with the fusion fuel being compressed far beyond the density of the ordinary solids. Laser, light ion and heavy ion beams can be used as driver beams. The GSI took over the project leadership for a five years' research programme with formulated questions on heavy ion fusion. The project is promoted by the BMFT. During the international symposium the opportunity of intensive discussions on research work in this field in different countries was made use of.

  10. Electron and ion beam transport to fusion targets

    International Nuclear Information System (INIS)

    Freeman, J.R.; Baker, L.; Miller, P.A.; Mix, L.P.; Olsen, J.N.; Poukey, J.W.; Wright, T.P.

    1979-01-01

    ICF reactors have been proposed which incorporate a gas-filled chamber to reduce x-ray and debris loading of the first wall. Focused beams of either electrons or ions must be transported efficiently for 2-4 m to a centrally located fusion target. Laser-initiated current-carrying plasma discharge channels provide the guiding magnetic field and the charge- and current-neutralizing medium required for beam propagation. Computational studies of plasma channel formation in air using a 1-D MHD model with multigroup radiation diffusion have provided a good comparison with the expansions velocity and time dependent refractivity profile determined by holographic interferometry. Trajectory calculations have identified a beam expansion mechanism which combines with the usual ohmic dissipation to reduce somewhat the transported beam fluence for electrons. Additional trajectory calculations have been performed for both electrons and light ions to predict the limits on the particle current density which can be delivered to a central target by overlapping the many independently-generated beams. Critical features of the use of plasma channels for transport and overlap of charged particle beams are being tested experimentally with up to twelve electron beams from the Proto II accelerator

  11. Progress in heavy ion driven inertial fusion energy: From scaled experiments to the integrated research experiment

    International Nuclear Information System (INIS)

    Barnard, J.J.; Ahle, L.E.; Baca, D.; Bangerter, R.O.; Bieniosek, F.M.; Celata, C.M.; Chacon-Golcher, E.; Davidson, R.C.; Faltens, A.; Friedman, A.; Franks, R.M.; Grote, D.P.; Haber, I.; Henestroza, E.; Hoon, M.J.L. de; Kaganovich, I.; Karpenko, V.P.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Logan, B.G.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; Olson, C.; Prost, L.R.; Qin, H.; Rose, D.; Sabbi, G.-L.; Sangster, T.C.; Seidl, P.A.; Sharp, W.M.; Shuman, D.; Vay, J.-L.; Waldron, W.L.; Welch, D.; Yu, S.S.

    2001-01-01

    The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (∼100's Amperes/beam) and ion energies (∼1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an

  12. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    of materials under development for Generation IV concepts. International collaboration among MTRs and specialized facilities has been identified as integral to progress in fusion development as well as enhancing reactor utilization. This publication specifies which areas of research remain in the qualification of structural materials and components, and has detailed the characteristics of many research reactors and devices that can accomplish an important portion of these necessary studies. This publication is the outcome of two recent IAEA sponsored meetings under its programme to enhance the utilization and collaboration of research reactor and material test facilities: - Consultancy meeting on Role of Research Reactors in Materials Research for Nuclear Fusion Technology, 13-15 December 2010, IAEA, Vienna; - Technical meeting on Materials under High Energy and High Intensity Neutron Fluxes for Nuclear Fusion Technology, 27-29 June 2011, IAEA, Vienna. These meetings brought together representatives from MTRs, spallation neutron sources, multiple beam irradiation facilities, material scientists as well as fusion community representatives to discuss the current state of fusion research and to plot necessary studies and modes of research collaboration

  13. Particle beam fusion. Progress report, April 1978-December 1978

    International Nuclear Information System (INIS)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements

  14. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    Carnelli, P.F.F.; Almaraz-Calderon, S.; Rehm, K.E.; Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C.L.; Lai, J.; Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C.; Paul, M.; Ugalde, C.

    2015-01-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15 C+ 12 C fusion reactions at energies around the Coulomb barrier

  15. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  16. Pulsed power ion accelerators for inertially confined fusion

    International Nuclear Information System (INIS)

    Olson, C.L.

    1976-01-01

    Current research is described on pulsed power ion accelerators for inertial fusion, i.e., ion diodes and collective accelerators. Particle beam energy and power requirements for fusion, and basic deposition characteristics of charged particle beams are discussed. Ion diodes and collective accelerators for fusion are compared with existing conventional accelerators

  17. 50 years of fusion research

    Science.gov (United States)

    Meade, Dale

    2010-01-01

    Fusion energy research began in the early 1950s as scientists worked to harness the awesome power of the atom for peaceful purposes. There was early optimism for a quick solution for fusion energy as there had been for fission. However, this was soon tempered by reality as the difficulty of producing and confining fusion fuel at temperatures of 100 million °C in the laboratory was appreciated. Fusion research has followed two main paths—inertial confinement fusion and magnetic confinement fusion. Over the past 50 years, there has been remarkable progress with both approaches, and now each has a solid technical foundation that has led to the construction of major facilities that are aimed at demonstrating fusion energy producing plasmas.

  18. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  19. Ion movie camera for particle-beam-fusion experiments

    International Nuclear Information System (INIS)

    Stygar, W.A.; Mix, L.P.; Leeper, R.J.; Maenchen, J.; Wenger, D.F.; Mattson, C.R.; Muron, D.J.

    1992-01-01

    A camera with a 3 ns time resolution and a continuous (>100 ns) record length has been developed to image a 10 12 --10 13 W/cm 2 ion beam for inertial-confinement-fusion experiments. A thin gold Rutherford-scattering foil placed in the path of the beam scatters ions into the camera. The foil is in a near-optimized scattering geometry and reduces the beam intensity∼seven orders of magnitude. The scattered ions are pinhole imaged onto a 2D array of 39 p-i-n diode detectors; outputs are recorded on LeCroy 6880 transient-waveform digitizers. The waveforms are analyzed and combined to produce a 39-pixel movie which can be displayed on an image processor to provide time-resolved horizontal- and vertical-focusing information

  20. The heavy ion fusion program in the USA

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.; Meier, W.R.; Logan, B.G.

    2001-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade. (author)

  1. Fusion power and its prospects

    International Nuclear Information System (INIS)

    Kammash, T.

    1981-01-01

    Recent progress in research towards the development of fusion power is reviewed. In the magnetic approach, the impressive advances made in Tokamak research in the past few years have bolstered the confidence that experimental Tokamak devices currently under construction will demonstrate the break-even condition or scientific feasibility of fusion power. Exciting and innovative ideas in mirror magnetic confinement are expected to culminate in high-Q devices which will make open-ended confinement a serious contender for fusion reactors. In the inertial confinement approach, conflicting pellet temperature requirements have placed severe constraints on useful laser intensities and wavelengths for laser-driven fusion. Relativistic electron beam fusion must solve critical focusing and pellet coupling problems, and the newly proposed heavy ion beam fusion, though feasible and attractive in principle, requires very high energy particles for which the accelerator technology may not be available for some time to come

  2. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas

    International Nuclear Information System (INIS)

    Marchuk, O.; Biel, W.; Schlummer, T.; Ralchenko, Yu.; Schultz, D. R.

    2013-01-01

    Injection of high energy atoms into a confined plasma volume is an established diagnostic technique in fusion research. This method strongly depends on the quality of atomic data for charge-exchange recombination spectroscopy (CXRS), motional Stark effect (MSE) and beam-emission spectroscopy (BES). We present some examples of atomic data for CXRS and review the current status of collisional data for parabolic states of hydrogen atoms that are used for accurate MSE modeling. It is shown that the collisional data require knowledge of the excitation density matrix including the off-diagonal matrix elements. The new datasets for transitions between parabolic states are used in an extended collisional-radiative model. The ratios between the σ- and π-components and the beam-emission rate coefficients are calculated in a quasi-steady state approximation. Good agreement with the experimental data from JET is found which points out to strong deviations from the statistical distribution for magnetic sublevels

  3. Muon-catalyzed fusion: A new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  4. Muon-catalyzed fusion: a new direction in fusion research

    International Nuclear Information System (INIS)

    Jones, S.E.

    1986-01-01

    In four years of intensive research, muon-catalyzed fusion has been raised from the level of a scientific curiosity to a potential means of achieving clean fusion energy. This novel approach to fusion is based on the fact that a sub-atomic particle known as a ''muon'' can induce numerous energy-releasing fusion reactions without the need for high temperatures or plasmas. Thus, the muon serves as a catalyst to facilitate production for fusion energy. The success of the research effort stems from the recent discovery of resonances in the reaction cycle which make the muon-induced fusion process extremely efficient. Prior estimates were pessimistic in that only one fusion per muon was expected. In that case energy balance would be impossible since energy must be invested to generate the muons. However, recent work has gone approximately half-way to energy balance and further improvements are being worked on. There has been little time to assess the full implications of these discoveries. However, various ways to use muon-catalyzed fusion for electrical power production are now being explored

  5. Fusion research program in Korea

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1996-01-01

    Fusion research in Korea is still premature, but it is a fast growing program. Groups in several universities and research institutes were working either in small experiments or in theoretical areas. Recently, couple of institutes who have small fusion-related experiments, proposed medium-size tokamak programs to jump into fusion research at the level of international recognition. Last year, Korean government finally approved to construct 'Superconducting Tokamak' as a national fusion program, and industries such as Korea Electric Power Corp. (KEPCO) and Samsung joined to support this program. Korea Basic Science Institute (KBSI) has organized national project teams including universities, research institutes and companies. National project teams are performing design works since this March. (author)

  6. Identifying heavy-ion-beam fusion design and system features with high economic leverage

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1985-01-01

    We have conducted parametric economic studies for heavy-ion-beam fusion electric power plants. We examined the effects on the cost of electricity of several design parameters: maximum achievable chamber pulse rate, driver cost, target gain, and electric conversion efficiency, and net electric power. We found with reasonable assumptions on driver cost, target gain, and electric conversion efficiency, a 2 to 3 GWe heavy-ion-beam fusion power plant, with a chamber pulse rate of 5 to 10 Hz, can be competitive with nuclear and coal power plants

  7. A 3-year plan for beam science in the heavy-ion fusion virtual national laboratory

    International Nuclear Information System (INIS)

    Logan, B. Grant

    2001-01-01

    In December 1998, LBNL Director Charles Shank and LLNL Director Bruce Tarter signed a Memorandum of Agreement to create the Heavy-Ion Fusion Virtual National Laboratory (HIF-VNL) with the purpose of improving the efficiency and productivity of heavy ion research through coordination of the two laboratories' efforts under one technical director. In 1999, PPPL Director Robert Goldston signed the VNL MOA for PPPL's heavy-ion fusion group to join the VNL. LBNL and LLNL each contribute about 45% of the $10.6 M/yr trilab VNL effort, and PPPL contributes currently about 10% of the VNL effort. The three labs carry out collaborative experiments, theory and simulations of a variety of intense beam scientific issues described below. The tri-lab HIF VNL program is part of the DOE Office of Fusion Energy Sciences (OFES) fusion program. A short description of the four major tasks areas of HIF-VNL research is given in the next section. The task areas are: High Current Experiment, Final Focus/Chamber Transport, Source/Injector/Low Energy Beam Transport (LEBT), and Theory/Simulation. As a result of the internal review, more detailed reviews of the designs, costs and schedules for some of the tasks have been completed, which will provide more precision in the scheduled completion dates of tasks. The process for the ongoing engineering reviews and governance for the future management of tasks is described in section 3. A description of the major milestones and scientific deliverables for flat guidance budgets are given in section 4. Section 5 describes needs for enabling technology development for future experiments that require incremental funding

  8. Effects of sawtooth crashes on beam ions and fusion product tritons in JET

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Hone, M.A.; Jarvis, O.N.; Loughlin, M.J.; Sadler, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Adams, J.M.; Bond, D.S.; Watkins, N. [AEA Technology, Harwell (United Kingdom); Howarth, P.J.A. [Birmingham Univ. (United Kingdom)

    1994-12-31

    The objective of this study is to examine the effect of a sawtooth crash on the radial distribution of the slowing down fusion product tritons and on beam ions. The JET neutron emission profile monitor was used to measure the 2.5 MeV and 14 MeV neutron emission line-integrals before and after sawtooth crashes in the Joint European Torus (JET). In deuterium discharges, the 14 MeV neutron production was wholly attributable to burnup of the 1 MeV fusion product tritons from d-d fusion. It has been known for many years that the global emission of 14 MeV neutrons is not affected by sawtooth crashes. Examination of the data obtained with the profile monitor shows that the local emissivity of 14 MeV neutrons, and hence of the profile of thermalizing tritons, is only weakly affected by crashes in the discharges studied. This is in contradiction with the apparent behaviour of injected beam ions as deduced from a study of the considerable changes in local emissivity of the 2.5 MeV neutrons. Nevertheless, the behaviour of the fusion product tritons is consistent with the scaling of the beam injected deuterium. (author) 1 ref., 6 figs.

  9. Fusion research at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.

    1990-01-01

    The historical roots of fusion research at Imperial College can be traced back to 1946 with the pioneering work of G.P. Thomson. At present research in fusion is carried out in several research groups with interdisciplinary work managed by the Centre for Fusion Studies. The principal research activity will be centred on a newly funded 5 TW pulsed power facility allowing an experimental and theoretical study of radiation collapse and fusion conditions in the dense Z-pinch. Laser-plasma studies relevant to inertial confinement are carried out using the Rutherford-Appleton Laboratory's Central Laser Facility and the new ultra-short pulse (300 fs) laser facility at Imperial College. There is a significant collaboration on the Joint European Torus and the Next European Torus together with a continuation of a long association with Culham Laboratory. Several European collaborations funded by the Comission of the European Communities and other world-wide collaborations form an integral part of this university programme, which is by far the largest in the UK. After a sketch of the historical development of fusion activities, the current and future programme of fusion research at Imperial College is presented in each of the three broad areas: the Z-pinch, laser-driven inertial confinement fusion and tokamak and other conventional magnetic confinement schemes. A summary of the funding and collaborations is outlined. (author)

  10. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    DEFF Research Database (Denmark)

    Schneider, M.; Johnson, T.; Dumont, R.

    2016-01-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail...... enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast...

  11. Teaching and research in fusion plasmas and technology at the University of Illinois

    International Nuclear Information System (INIS)

    Miley, G.H.; Southworth, F.H.

    1975-01-01

    Teaching in fusion at the University of Illinois is an integrated part of the nuclear engineering curriculum. Through the use of two key courses, ''Introduction to Fusion'' and ''Fusion Systems,'' basic preparation for those wishing to specialize in fusion is provided. These courses are primarily directed to plasma aspects of fusion, but materials and other engineering aspects have been integrated into the curriculum through a broadened coverage in such existing courses as nuclear materials, shielding, and reactor physics. Research is primarily focused at the PhD level, although some MS studies are in progress. While current theses involve a wide variety of topics, one major area being pursued is the study of advanced fuel (non-deuterium-tritium) reactors based on two-component fusion and other concepts. This effort consists of a series of loosely knit subtasks related to such problems as cyclotron emission and direct energy conversion. Also, various research involving charge-exchange losses during neutral-beam injection, vacuum-wall sputtering, and related topics has developed as a direct outgrowth of the PROMETHEUS project, which involved the conceptual design of a power-consuming mirror-type reactor for materials and engineering tests

  12. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  13. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  14. Heavy ion inertial fusion: interface between target gain, accelerator phase space and reactor beam transport revisited

    International Nuclear Information System (INIS)

    Barletta, W.A.; Fawley, W.M.; Judd, D.L.; Mark, J.W.K.; Yu, S.S.

    1984-01-01

    Recently revised estimates of target gain have added additional optimistic inputs to the interface between targets, accelerators and fusion chamber beam transport. But it remains valid that neutralization of the beams in the fusion chamber is useful if ion charge state Z > 1 or if > 1 kA per beamlet is to be propagated. Some engineering and economic considerations favor higher currents

  15. Recent fusion research in the National Institute for Fusion Science

    International Nuclear Information System (INIS)

    Komori, Akio; Sakakibara, Satoru; Sagara, Akio; Horiuchi, Ritoku; Yamada, Hiroshi; Takeiri, Yasuhiko

    2011-01-01

    The National Institute for Fusion Science (NIFS), which was established in 1989, promotes academic approaches toward the exploration of fusion science for steady-state helical reactor and realizes the establishment of a comprehensive understanding of toroidal plasmas as an inter-university research organization and a key center of worldwide fusion research. The Large Helical Device (LHD) Project, the Numerical Simulation Science Project, and the Fusion Engineering Project are organized for early realization of net current free fusion reactor, and their recent activities are described in this paper. The LHD has been producing high-performance plasmas comparable to those of large tokamaks, and several new findings with regard to plasma physics have been obtained. The numerical simulation science project contributes understanding and systemization of the physical mechanisms of plasma confinement in fusion plasmas and explores complexity science of a plasma for realization of the numerical test reactor. In the fusion engineering project, the design of the helical fusion reactor has progressed based on the development of superconducting coils, the blanket, fusion materials and tritium handling. (author)

  16. Plasma physics and controlled nuclear fusion research 1988. V.3

    International Nuclear Information System (INIS)

    1989-01-01

    Volume 3 of the proceedings of the twelfth international conference on plasma physics and controlled nuclear fusion, held in Nice, France, 12-19 October, 1988, contains papers presented on inertial fusion. Direct and indirect laser implosion experiments, programs of laser construction, computer modelling of implosions and resulting plasmas, and light ion beam fusion experiments are discussed. Refs, figs and tabs

  17. A Scaled Beam-Combining Experiment for Heavy Ion Inertial Fusion

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.; Henestroza, E.; MacLaren, S.; Peters, C.; Seidl, P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to enharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built and preliminary results are presented. Four sources each produce up to 4.8 mA Cs+ beams at 160 keV. Focusing upstream of the merge consists of four quadruples and a final combined-function element (quadruple ampersand dipole). All lattice elements of the prototype are electrostatic. Due to the small distance between beams near the merge (-3-4 mm), the electrodes here are a cage of small rods, each at different voltage

  18. International fusion research council

    International Nuclear Information System (INIS)

    Belozerov, A.N.

    1977-01-01

    A brief history of the International Fusion Research Council (IFRC) is given and the minutes of the 1976 meeting in Garching are summarized. At the Garching meeting, the IFRC evaluated the quality of papers presented at recent IAEA conferences on plasma physics and controlled thermonuclear research, and made recommendations on the organization and timing of future meetings on nuclear fusion

  19. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  20. Longitudinal beam compression for heavy-ion inertial fusion

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Brandon, S.T.

    1991-01-01

    A scheme is described for compressing a heavy-ion beam longitudinally in such a way that the compressed pulse has uniform line-charge density and longitudinal momentum. Attaining these conditions will be important in the final focusing of a beam on a small fuel capsule in an inertial confinement fusion reactor. The longitudinal dynamics can be approximately described by a one-dimensional (1-D) fluid model for charged particles. Recognizing the similarity between the 1-D charged particle equations of motion and the 1-D equations for ideal-gas flow permits us to calculate the evolution of the line-charge density and velocity profile using self-similar solutions and the method of characteristics, developed for unsteady supersonic gas dynamics, for different regions along the beam. Simple physical arguments show that although the longitudinal and transverse temperatures vary along the beam following the adiabatic laws, no substantial longitudinal and transverse emittance growth is to be expected. Particle-in-cell simulations confirm all the physical arguments. The compressed beam has negligible longitudinal momentum spread and can therefore avoid chromatic aberrations in final focus. (author) 24 refs., 5 figs., 1 tab

  1. Heavy ion fusion accelerator research (HIFAR) year-end report, April 1, 1987-September 30, 1987

    International Nuclear Information System (INIS)

    1987-12-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to access the suitabilty of heavy ion accelerators as iginiters for Inertial Confinement Fusion (ICF). A specific accerelator techonolgy, the induction linac, has been studied at the Lawerence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the vadidation of new accelerator strategies, to cut costs. The papers in this report that address these goals are: MBE-4 mechanical progress, alignment of MBE-4, a compact energy analyzer for MBE-4, Cs + injector modeling with the EGUN code, an improved emittance scanning system for HIFAR, 2-MV injector, carbon arc source development, beam combining in ILSE, emittance growth due to transverse beam combining in ILSE - particle simulation results, achromatic beam combiner for ILSE, additional elements for beam merging, quadrupole magnet design for ILSE, and waveforms and longitudinal beam-parameters for ILSE

  2. Nuclear Fusion Fuel Cycle Research Perspectives

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Koo, Daeseo; Park, Jongcheol; Kim, Yeanjin; Yun, Sei-Hun

    2015-01-01

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, we at the Korea Atomic Energy Research Institute (KAERI) and our National Fusion Research Institute (NFRI) colleagues are investigating nuclear fusion fuel cycle hardware including a nuclear fusion fuel Storage and Delivery System (SDS). To have a better knowledge of the nuclear fusion fuel cycle, we present our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). To have better knowledge of the nuclear fusion fuel cycle, we presented our research efforts not only on SDS but also on the Fuel Supply System (FS), Tokamak Exhaust Processing System (TEP), Isotope Separation System (ISS), and Detritiation System (DS). Our efforts to enhance the tritium confinement will be continued for the development of cleaner nuclear fusion power plants

  3. Acceleration systems for heavy-ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Judd, D.L.; Keefe, D.

    1977-01-01

    Heavy-ion beam pulse parameters needed to achieve useful electric power generation through inertial confinement fusion have been set forth. For successful ignition of a high-gain D-T target a few magajoules of energy per pulse, delivered at a peak power of several hundred terawatts, are needed; it must be deposited with an energy density of 20 to 30 magajoules per gram of the target material on which it impinges. Additional requirements must be met if this form of fusion is to be used for practical power generation; for example, the igniter system for a 1 GWe power plant should have a repetition rate in the neighborhood of 1 to 10 Hz, an overall electrical conversion efficiency from mains to beam of greater than 10%, and high availability. At present under discussion are the needs for a Heavy-Ion Demonstration Experiment (HIDE); an example set of parameters is given for comparison with those for a power plant

  4. Panel discussion: Progress and plans for magnetic fusion: Summary of comments on recent progress in fusion research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Sheffield, J.

    1989-01-01

    Progress in fusion research is marked not so much by a few giant steps as by a continual number of small steps, which yield a steady advance toward the goal of producing a fusion reactor. During the past year, there have been two such steps in the Oak Ridge National Laboratory (ORNL) program: the experimental demonstration of access to the second stable region of beta in the Advanced Toroidal Facility (ATF); and the acceleration of a frozen hydrogen pellet by an intense electron beam. This paper discusses these steps

  5. Anomalous deceleration of light ion beam in plasm of inertial confinement fusion

    International Nuclear Information System (INIS)

    Abe, Takashi; Niu, Keishiro

    1981-01-01

    The ion beam propagation in inertial confinement fusion by light ion beam is analysed. The anomalous deceleration of the beam ion occurs, when the beam including the electron interacts with the background plasma with a comparable number density. This deceleration is caused by the two stream instability between the beam and the background plasma electrons and then becomes maximum when each density is equivalent. The anomalous deceleration rate of the beam ion is computed by using the quasilinear theory. It is shown that the anomalous deceleration which the beam ion (10 17 cm - 3 ) accepts from the background plasma (10 18 cm - 3 ) is equivalent to the classical one from the background plasma with solid density (10 21 cm - 3 ). (author)

  6. West European magnetic confinement fusion research

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Hogan, J.T.; Porkolab, M.; Thomassen, K.I.

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995

  7. Status of inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1987-04-01

    The technology advancement to high-power beams has also given birth to new technologies. That class of Free Electron Lasers that employs rf linacs, synchrotrons, and storage rings - although the use the tools of High Energy Physics (HEP) - was developed well behind the kinetic energy frontier. The induction linac, however, is something of an exception; it was born directly from the needs of the magnetic fusion program, and was not motivated by a high-energy physics application. The heavy-ion approach to inertial fusion starts with picking from the rich menu of accelerator technologies those that have, ab initio, the essential ingredients needed for a power plant driver: multigap acceleration - which leads to reliability/lifetime; electrical efficiency; repetition rate; and beams that can be reliably focused over a suitably long distance. The report describes the programs underway in Heavy Ion Fusion Accelerator Research as well as listing expected advances in driver, target, and beam quality areas in the inertial fusion power program

  8. The Heavy Ion Fusion Program in the U.S.A

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.D.; Logan, B.G.; Meier, W.R.

    2000-01-01

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade

  9. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  10. Accelerator research on MBE-4, an experimental multi-beam induction linac

    International Nuclear Information System (INIS)

    Meuth, H.; Fessenden, T.J.; Keefe, D.; Warwick, A.I.

    1988-06-01

    The multiple beam accelerator MBE-4 is a device for research toward a heavy ion driver for inertial confinement fusion, based on the induction linac concept. Its main goal is proof of the principle of current amplification by acceleration and controlled self-similar beam pulse compression. Into the 16-m long device four beams, each with an initial current of 10 mA are injected from a Marx-driven diode at 200 keV. The current amplification is up to nine-fold, with a final beam energy of about 800 keV in the middle of the bunch. Now that all the apparatus' accelerator sections have been completed, installed and aligned, and its unaccelerated transport properties have been studied, our experimental research has reached the crucial phase of implementing appropriate accelerator schedules that approximate self-similar current-pulse compression. These schedules are established through a close interplay of computations using a one-dimensional simulation code and a manual empirical tuning procedure. In a first approach, with a rather vigorous schedule that uses most of the accelerator modules to their voltage limits, we have determined the limits of our capability for controlled pulse compression, mainly due to waveform shaping of the driving pulse-forming networks. We shall report on these results. In the future, we will also aim for gentler schedules that would model more closely an inertial confinement fusion scenario. 8 refs., 11 figs., 1 tab

  11. Research Needs for Magnetic Fusion Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hutch

    2009-07-01

    Nuclear fusion — the process that powers the sun — offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITER fusion collaboration, which involves seven parties representing half the world’s population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW’s task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.)

  12. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  13. Electron-beam-fusion progress report, 1975

    International Nuclear Information System (INIS)

    1976-06-01

    Summaries of research work are given on electron sources, insulation problems, and power supplies. Some theoretical work is reported on fusion target design, self-consistent deposition and hydrodynamic calculations, analysis of x-ray pinhole data, diode code calculations, magnetically insulated diodes and transmission lines, ion sheath motion in plasma-filled diodes, relativistic distribution functions, macroscopic properties, and kinetic theory, heavy ion pulsed fusion, and collective ion acceleration. Some experimental work on targets, diode physics, and diagnostic developments is given

  14. Early Career. Harnessing nanotechnology for fusion plasma-material interface research in an in-situ particle-surface interaction facility

    Energy Technology Data Exchange (ETDEWEB)

    Allain, Jean Paul [Univ. of Illinois, Champaign, IL (United States)

    2014-08-08

    This project consisted of fundamental and applied research of advanced in-situ particle-beam interactions with surfaces/interfaces to discover novel materials able to tolerate intense conditions at the plasma-material interface (PMI) in future fusion burning plasma devices. The project established a novel facility that is capable of not only characterizing new fusion nanomaterials but, more importantly probing and manipulating materials at the nanoscale while performing subsequent single-effect in-situ testing of their performance under simulated environments in fusion PMI.

  15. Heavy-ion fusion driver research at Berkeley and Livermore

    International Nuclear Information System (INIS)

    Seidl, P.; Bangerter, R.; Celata, C.M.

    1996-08-01

    The Department of Energy is restructuring the U.S. fusion program to place a greater emphasis on science. As a result, we will not build the ILSE or Elise heavy ion fusion (HIF) facilities described in 1992 and 1994 conferences. Instead we are performing smaller experiments to address important scientific questions. Accelerator technology for HIF is similar to that for other applications such as high energy physics and nuclear physics. The beam physics, however, differs from the physics encountered in most accelerators, where the pressure arising from the beam temperature (emittance) is the dominant factor determining beam size and focusing system design. In HIF, space charge is the dominant feature, leading us into a parameter regime where.the beam plasma frequency becomes comparable to the betatron frequency. Our experiments address the physics of non-neutral plasmas in this novel regime. Because the beam plasma frequency is low, Particle-in-cell (PIC) simulations provide a good description of most of our experiments. Accelerators for HIF consist of several subsystems: ion sources, injectors, matching sections, combiners, acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss experiments in injection, combining, and bending

  16. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; Clements, K.G.; Lashmore-Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-06-01

    Ion cyclotron emission (ICE) has been observed from neutral beam-heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer mid-plane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution which is anisotropic and sharply peaked. Fusion product-driven ICE in both TFTR and JET can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed:for fusion products in the outer midplane edge of TFTR, υ birth A ; for alpha-particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha-particles which are present in the outer mid-plane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product-driven ICE in JET persists for longer than fusion product-driven ICE in TFTR. (Author)

  17. A high charge state heavy ion beam source for heavy ion fusion

    International Nuclear Information System (INIS)

    Eylon, S.; Henestroza, E.

    1996-01-01

    A high current, low emittance, high charge state heavy ion beam source is being developed. This is designed to deliver a heavy ion fusion (HIF) driver accelerator scale beam. Using a high charge state beam in a driver accelerator for HIF may increase the acceleration efficiency, leading to a reduction in the driver accelerator size and cost. The proposed source system, which consists of a gas beam electron stripper followed by a high charge state beam separator, can be added to existing single charge state, low emittance, high brightness ion sources and injectors. We shall report on the source physics design using 3D beam simulations and experimental feasibility study results using a neutral gas stripper and a beam separator at the exit of the LBL 2 MV injector. (orig.)

  18. Heavy ion fusion

    International Nuclear Information System (INIS)

    Hofmann, Ingo

    1993-01-01

    With controlled thermonuclear fusion holding out the possibility of a prolific and clean new source of energy, the goal remains elusive after many years of continual effort. While the conventional Tokamak route with magnetic confinement continues to hit the headlines, other alternatives are now becoming competitive. One possible solution is to confine the thermonuclear fuel pellet by high power beams. Current research and perspectives for future work in such inertial confinement was the subject of the 'Prospects for Heavy Ion Fusion' European Research Conference held in Aghia Pelaghia, Crete, last year. Its main focus was on the potential of heavy ion accelerators as well as recent advances in target physics with high power lasers and light ion beams. Carlo Rubbia declared that high energy accelerators, with their high efficiency, are the most promising approach to economical fusion energy production. However the need for cost saving in the driver accelerator requires new ideas in target design tailored to the particularities of heavy ion beams, which need to be pushed to the limits of high current and phase space density at the same time

  19. Charged--particle beam implosion of fusion targets

    International Nuclear Information System (INIS)

    Clauser, M.J.; Sweeney, M.A.

    1975-01-01

    This paper discusses the calculated behavior of fusion targets consisting of solid shells filled with DT gas, irradiated by high power electron or ion beams. The current required for breakeven with gold shells is 500 to 1000 MA, independent of target radius and nearly independent of beam voltage in the 1 / 2 to 1 MeV range. Above 1 MeV the breakeven current increases because of the increased bremsstrahlung production by the beam electrons. By using a diamond ablator and a gold pusher, the breakeven current is reduced to 220 MA. The ion current required for breakeven (about 10 MA of protons) is independent of proton voltage above 10 MeV with gold shell targets. Below 10 MeV the range of the proton becomes too short for efficient coupling, and the required current increases, but the power does not. Various aspects of the symmetry and stability of the implosion are discussed. One finds that the relatively long deposition lengths of electrons result in relatively small growths of the Rayleigh--Taylor instability during the acceleration of the pusher, resulting in a relatively stable implosion

  20. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    International Nuclear Information System (INIS)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiation damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem

  1. Fusion research at Culham site

    International Nuclear Information System (INIS)

    Tolonen, P.; Toppila, T.

    1998-01-01

    One of the many targets on the Finnish Nuclear Society (ATS) excursion to England was the Culham fusion research site. The site has divided into two parts. One of them is UKAEA Fusion with small scale fusion reactors and 200 employees. UKAEA has 3 fusion reactors at Culham site. One of is the START (Small Tight Aspect Ratio Tokamak) which was operational since 1991 but is today already out of operation. UKAEA has been operating a JET-like tokamak fusion reactor COMPASS-D since 1989. The latest of three reactors is MAST (Mega Amp Spherical Tokamak), which is still under construction. The first plasma will take place in the end of 1998. Another part of Culham site is JET (Joint European Torus), an all-European fusion undertaking with 350 employees. 150 of them are from various European countries and the rest 200 are employed by UKAEA. JET is the biggest fusion reactor ever and it represents the latest step in world wide fusion programme. In October 1997 JET achieved a world record in fusion power and energy. JET produced 16,1 MW power for 1 s and totally 21,7 MJ energy. This is the closest attempt to achieve break-even conditions. The next step in world wide fusion programme will be international ITER-reactor. This undertaking has some financial problems, since United States has taken distance to magnetic fusion research and moved closer to inertial fusion with funding of US Department of Defence. The planned reactor, however, is physically twice as big as JET. The step after this phase will be DEMO, which is purposed to produce fusion energy. According to our hosts in Culham this phase is 40 years ahead. (author)

  2. Telescope-based cavity for negative ion beam neutralization in future fusion reactors.

    Science.gov (United States)

    Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid

    2018-03-01

    In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5  m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.

  3. Transport of intense particle beams with application to heavy ion fusion

    International Nuclear Information System (INIS)

    Buchanan, H.L.; Chambers, F.W.; Lee, E.P.; Yu, S.S.; Briggs, R.J.; Rosenbluth, M.N.

    1979-01-01

    An attractive feature of the high energy (> GeV) heavy ion beam approach to inertial fusion, as compared with other particle beam systems, is the relative simplicity involved in the transport and focusing of energy on the target inside a reactor chamber. While this focusing could be done in vacuum by conventional methods with multiple beams, there are significant advantages in reactor design if one can operate at gas pressures around one torr. In this paper we summarize the results of our studies of heavy ion beam transport in gases. With good enough charge and current neutralization, one could get a ballistically-converging beam envelope down to a few millimeters over a 10 meter path inside the chamber. Problems of beam filamentation place important restrictions on this approach. We also discuss transport in a self-focused mode, where a relatively stable pressure window is predicted similar to the observed window for electron beam transport

  4. Heavy-ion accelerator research for inertial fusion

    International Nuclear Information System (INIS)

    1987-08-01

    Thermonuclear fusion offers a most attractive long-term solution to the problem of future energy supplies: The fuel is virtually inexhaustible and the fusion reaction is notably free of long-lived radioactive by-products. Also, because the fuel is in the form of a plasma, there is no solid fuel core that could melt down. The DOE supports two major fusion research programs to exploit these virtues, one based on magnetic confinement and a second on inertial confinement. One part of the program aimed at inertial fusion is known as Heavy Ion Fusion Accelerator Research, or HIFAR. In this booklet, the aim is to place this effort in the context of fusion research generally, to review the brief history of heavy-ion fusion, and to describe the current status of the HIFAR program

  5. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  6. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Friedman, A.

    1991-01-01

    This report describes the research status in the following areas of research in the field of heavy ion inertial fusion: (1) RF accelerators, storage rings, and synchrotrons; (2) induction linacs; (3) recirculation induction accelerator approach; (4) a new accelerator concept, the ''Mirrortron''; (5) general issues of transport, including beam merging, production of short, fat quadrupoles with nearly linear focusing, calculations of beam behaviour in image fields; 3-D electrostatic codes on drift compression with misalignments and transport around bends; (6) injectors, ion sources and RFQs, a.o., on the development of a 27 MHz RFQ to be used for the low energy portion of a new injector for all ions up to Uranium, and the development of a 2 MV carbon ion injector to provide 16 C + beams of 0.5 A each for ILSE; (7) beam transport from accelerator to target, reporting, a.o., the feasibility to suppress third-order aberrations; while Particle-in-Cell simulations on the propagation of a non-neutral ion beam in a low density gas identified photo-ionization by thermal X-rays from the target as an important source of defocusing; (9) heavy ion target studies; (10) reviewing experience with laser drivers; (11) ion cluster stopping and muon catalyzed fusion; (12) heavy ion systems, including the option of a fusion-fission burner. 1 tab

  7. The prospect for fusion energy with light ions

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.; Adams, R.G.; Bailey, J.E.

    1998-01-01

    Intense ion beams may be the best option for an Inertial Fusion Energy (IFE) driver. While light ions may be the long-term pulsed power approach to IFE, the current economic climate is such that there is no urgency in developing fusion energy sources. Research on light ion beams at Sandia will be suspended at the end of this fiscal year in favor of z-pinches studying ICF target physics, high yield fusion, and stewardship issues. The authors document the status of light ion research and the understanding of the feasibility of scaling light ions to IFE

  8. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  9. Progress in heavy ion fusion research

    International Nuclear Information System (INIS)

    Celata, C.M.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Logan, G.; Prost, L.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Lund, S.M.; Molvik, A.; Sharp, W.M.; Westenskow, G.

    2003-01-01

    The U.S. Heavy Ion Fusion program has recently commissioned several new experiments. In the High Current Experiment [P. A. Seidl et al., Laser Part. Beams 20, 435 (2003)], a single low-energy beam with driver-scale charge-per-unit-length and space-charge potential is being used to study the limits to transportable current posed by nonlinear fields and secondary atoms, ions, and electrons. The Neutralized Transport Experiment similarly employs a low-energy beam with driver-scale perveance to study final focus of high perveance beams and neutralization for transport in the target chamber. Other scaled experiments--the University of Maryland Electron Ring [P. G. O'Shea et al., accepted for publication in Laser Part. Beams] and the Paul Trap Simulator Experiment [R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000)]--will provide fundamental physics results on processes with longer scale lengths. An experiment to test a new injector concept is also in the design stage. This paper will describe the goals and status of these experiments, as well as progress in theory and simulation. A proposed future proof-of-principle experiment, the Integrated Beam Experiment, will also be described

  10. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    International Nuclear Information System (INIS)

    Park, Hyeon, K.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks

  11. Systems approach for condition management design: JET neutral beam system-A fusion case study

    Energy Technology Data Exchange (ETDEWEB)

    Khella, M., E-mail: M.Khella@lboro.ac.uk [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Pearson, J. [Systems Engineering Innovation Centre (SEIC) - BAE Systems, Loughborough University, Holywell Park, Leicestershire LE11 3TU (United Kingdom); Dixon, R. [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Ciric, D.; Day, I.; King, R.; Milnes, J.; Stafford-Allen, R. [EURATOM/CCFE Fusion Association, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom)

    2011-10-15

    The maturation of any new technology can be coarsely divided into three stages of a development lifecycle: (1) fundamental research, (2) experimental rig development and testing through to (3) commercialization. With the enhancement of machines like JET, the building of ITER and the initiation of DEMO design activities, the fusion community is moving from stages 1 and 2 towards stage 3. One of the consequences of this transition will be a shift in emphasis from scientific achievement to maximizing machine reliability and availability. The fusion community should therefore be preparing itself for this shift by examining all methods and tools utilized in established engineering sectors that might help to improve these fundamental performance parameters. To this end, the Culham Centre for Fusion Energy (CCFE) has proactively engaged with UK industry to examine whether the development of condition management (CM) systems could help improve such performance parameters. This paper describes an initial CM design case study on the JET neutral beam system. The primary output of this study was the development of a CM design methodology that captures existing experience in fault detection, and classification as well as new methods for fault diagnosis. A summary of the methods used and the potential benefits of data fusion are presented here.

  12. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  13. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J.; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2005-01-01

    Significant experimental and theoretical progress has been made in the US heavy-ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high-energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy-ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high-energy density conditions as well as for inertial fusion energy

  14. New approaches to the economic evaluation of fusion research

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Lietzke, K.R.

    1978-01-01

    The economic evaluation of fusion research to date has focussed on the benefits of essentially unlimited energy for future generations. In this paper it is shown that energy research in general, and fusion research in particular, also provides benefits in the short term, benefitting us today as well as future generations. Short-term benefits are the result of two distinct aspects of fusion research. First, fusion research provides information for decision making on both the continuing fusion research efforts and on other energy research programs. Second, fusion research provides an expectation of a future energy source thereby promoting accelerated consumption of existing fossil fuels today. Both short-term benefits can be quantitatively evaluated and both are quite substantial. Together, these short-term benefits form the primary economic rationale for fusion research

  15. Nuclear fusion research at Tokamak Energy Ltd

    International Nuclear Information System (INIS)

    Windridge, Melanie J.; Gryaznevich, Mikhail; Kingham, David

    2017-01-01

    Tokamak Energy's approach is close to the mainstream of nuclear fusion, and chooses a spherical tokamak, which is an economically developed form of Tokamak reactor design, as research subjects together with a high-temperature superconducting magnet. In the theoretical prediction, it is said that spherical tokamak can make tokamak reactor's scale compact compared with ITER or DEMO. The dependence of fusion energy multiplication factor on reactor size is small. According to model studies, it has been found that the center coil can be protected from heat and radiation damage even if the neutron shielding is optimized to 35 cm instead of 1 m. As a small tokamak with a high-temperature superconducting magnet, ST25 HTS, it demonstrated in 2015 continuous operation for more than 24 hours as a world record. Currently, this company is constructing a slightly larger ST40 type, and it is scheduled to start operation in 2017. ST40 is designed to demonstrate that it can realize a high magnetic field with a compact size and aims at attaining 8-10 keV (reaching the nuclear fusion reaction temperature at about 100 million degrees). This company will verify the startup and heating technology by the coalescence of spherical tokamak expected to have plasma current of 2 MA, and will also use 2 MW of neutral particle beam heating. In parallel with ST40, it is promoting a development program for high-temperature superconducting magnet. (A.O.)

  16. Colliding beam fusion reactor space propulsion system

    International Nuclear Information System (INIS)

    Wessel, Frank J.; Binderbauer, Michl W.; Rostoker, Norman; Rahman, Hafiz Ur; O'Toole, Joseph

    2000-01-01

    We describe a space propulsion system based on the Colliding Beam Fusion Reactor (CBFR). The CBFR is a high-beta, field-reversed, magnetic configuration with ion energies in the range of hundreds of keV. Repetitively-pulsed ion beams sustain the plasma distribution and provide current drive. The confinement physics is based on the Vlasov-Maxwell equation, including a Fokker Planck collision operator and all sources and sinks for energy and particle flow. The mean azimuthal velocities and temperatures of the fuel ion species are equal and the plasma current is unneutralized by the electrons. The resulting distribution functions are thermal in a moving frame of reference. The ion gyro-orbit radius is comparable to the dimensions of the confinement system, hence classical transport of the particles and energy is expected and the device is scaleable. We have analyzed the design over a range of 10 6 -10 9 Watts of output power (0.15-150 Newtons thrust) with a specific impulse of, I sp ∼10 6 sec. A 50 MW propulsion system might involve the following parameters: 4-meters diameterx10-meters length, magnetic field ∼7 Tesla, ion beam current ∼10 A, and fuels of either D-He 3 ,P-B 11 ,P-Li 6 ,D-Li 6 , etc

  17. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  18. Electron-beam fusion welding of beryllium

    International Nuclear Information System (INIS)

    Campbell, R.P.; Dixon, R.D.; Liby, A.L.

    1978-01-01

    Ingot-sheet beryllium (Be) having three different chemistries and three different thicknesses was fusion-welded by the electron-beam process. Several different preheats were used to obtain 100% penetration and crack-free welds. Cracking susceptability was found to be related to aluminum (Al) content; the higher Al-content material was most susceptable. However, adequate preheat allowed full penetration and crack-free welds to be made in all materials tested. The effect of a post-weld heat treatment on the mechanical properties of these compositions was also determined. The heat treatment produced no significant effect on the ultimate tensile strength. However, the yield strength was decreased and the ductility was increased. These changes are attributed to the formation of AlFeBe 4 and FeBe 11

  19. Studies on the feasibility of heavy-ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    1982-04-01

    This annual report summarizes the scientific results of work carried out in 1981 in the framework of a feasibility study for inertial confinement fusion (ICF) with heavy ion beams. This program, established in autumn 1979 and funded by the German Ministry for Science and Technology, is devoted in a first period until 1984 to the study of fundamental aspects of the field. Its principal aims are the investigation of key problems and the identification of critical issues of the heavy ion ICF concept in the fields of accelerator research, pellet physics, atomic physics, and reactor design. The research is carried out by about ten working groups at various German research centers and universities. In addition, together with a group of the University of Wisconsin a conceptual design study for a reactor plant (HIBALL) has been started in 1980 and was continued 1981. (orig.) [de

  20. The National Ignition Facility (NIF): A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, Edward I.

    2008-01-01

    Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over 30 years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high-repetition-rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high-repetition-rate Nd-glass laser for fusion energy driver development. Mercury

  1. The national ignition facility (NIF) : A path to fusion energy

    International Nuclear Information System (INIS)

    Moses, E. I.

    2007-01-01

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 μm light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2ω ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light

  2. Future directions in fusion research

    International Nuclear Information System (INIS)

    Clarke, J.F.

    1987-01-01

    The author discusses his analysis to quantify the priority of fusion R and D in the United States. The conclusion is that this priority has been essentially constant for 35 years with only two exceptions. He identifies four basic problems that must be solved. These problems are: to improve the scientific understanding of confinement concepts if we are going to have an energy source that can be utilized some day; to understand the physics of burning plasmas; to develop the materials for fusion use to realize the environmental potential of fusion; and to develop fusion nuclear technology. A response to these problems is given, based on the author's argument for international collaboration in fusion research

  3. Development and verification of remote research environment based on 'Fusion research grid'

    International Nuclear Information System (INIS)

    Iba, Katsuyuki; Ozeki, Takahisa; Totsuka, Toshiyuki; Suzuki, Yoshio; Oshima, Takayuki; Sakata, Shinya; Sato, Minoru; Suzuki, Mitsuhiro; Hamamatsu, Kiyotaka; Kiyono, Kimihiro

    2008-01-01

    'Fusion research grid' is a concept that unites scientists and let them collaborate effectively against their difference in time zone and location in a nuclear fusion research. Fundamental technologies of 'Fusion research grid' have been developed at JAEA in the VizGrid project under the e-Japan project at the Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are conscious of needs to create new systems that assist researchers with their research activities because remote collaborations have been increasing in international projects. Therefore we have developed prototype remote research environments for experiments, diagnostics, analyses and communications based on 'Fusion research grid'. All users can access these environments from anywhere because 'Fusion research grid' does not require a closed network like Super SINET to maintain security. The prototype systems were verified in experiments at JT-60U and their availability was confirmed

  4. New trends in fusion research

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to sustained burn using additional heating and a control of plasma-wall interaction and energy and particle exhaust. These lectures address recent advances in plasma science and technology that are relevant to the development of fusion energy. Mention will be made of the inertial confinement line of research, but...

  5. Status report on fusion research

    International Nuclear Information System (INIS)

    Burkhart, Werner

    2005-01-01

    At the beginning of the twenty-first century mankind is faced with the serious problem of meeting the energy demands of a rapidly industrializing population around the globe. This, against the backdrop of fast diminishing fossil fuel resources (which have been the main source of energy of the last century) and the increasing realization that the use of fossil fuels has started to adversely affect our environment, has greatly intensified the quest for alternative energy sources. In this quest, fusion has the potential to play a very important role and we are today at the threshold of realizing net energy production from controlled fusion experiments. Fusion is, today, one of the most promising of all alternative energy sources because of the vast reserves of fuel, potentially lasting several thousands of years and the possibility of a relatively 'clean' form of energy, as required for use in concentrated urban industrial settings, with minimal long term environmental implications. The last decade and a half has seen unprecedented advances in controlled fusion experiments with the discovery of new regimes of operations in experiments, production of 16 MW of fusion power and operations close to and above the so-called 'break-even' conditions. A great deal of research has also been carried out in analysing various socio-economic aspects of fusion energy. This paper briefly reviews the various aspects and achievements of fusion research all over the world during this period

  6. Overview of U.S. heavy ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, G.; Bieniosek, F.; Celata, C.; Henestroza, E.; Kwan, J; Lee, E.P.; Leitner, M.; Prost, L.; Roy, P.; Seidl, P.A.; Eylon, S.; Vay, J.-L.; Waldron, W.; Yu, S.; Barnard, J.; Callahan, D.; Cohen, R.; Friedman, A.; Grote, D.; Kireeff Covo, M.; Meier, W.R.; Molvik, A.; Lund, S.; Davidson, R.; Efthimion, P.; Gilson, E.; Grisham, L.; Kaganovich, I.; Qin, H.; Startsev, E.; Rose, D.; Welch, D.; Olson, C.; Kishek, R.; O'Shea, P.; Haber, I.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy

  7. Large-scale cryopumping for controlled fusion

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1977-01-01

    Vacuum pumping by freezing out or otherwise immobilizing the pumped gas is an old concept. In several plasma physics experiments for controlled fusion research, cryopumping has been used to provide clean, ultrahigh vacua. Present day fusion research devices, which rely almost universally upon neutral beams for heating, are high gas throughput systems, the pumping of which is best accomplished by cryopumping in the high mass-flow, moderate-to-high vacuum regime. Cryopumping systems have been developed for neutral beam injection systems on several fusion experiments (HVTS, TFTR) and are being developed for the overall pumping of a large, high-throughput mirror containment experiment (MFTF). In operation, these large cryopumps will require periodic defrosting, some schemes for which are discussed, along with other operational considerations. The development of cryopumps for fusion reactors is begun with the TFTR and MFTF systems. Likely paths for necessary further development for power-producing reactors are also discussed

  8. Large-scale cryopumping for controlled fusion

    Energy Technology Data Exchange (ETDEWEB)

    Pittenger, L.C.

    1977-07-25

    Vacuum pumping by freezing out or otherwise immobilizing the pumped gas is an old concept. In several plasma physics experiments for controlled fusion research, cryopumping has been used to provide clean, ultrahigh vacua. Present day fusion research devices, which rely almost universally upon neutral beams for heating, are high gas throughput systems, the pumping of which is best accomplished by cryopumping in the high mass-flow, moderate-to-high vacuum regime. Cryopumping systems have been developed for neutral beam injection systems on several fusion experiments (HVTS, TFTR) and are being developed for the overall pumping of a large, high-throughput mirror containment experiment (MFTF). In operation, these large cryopumps will require periodic defrosting, some schemes for which are discussed, along with other operational considerations. The development of cryopumps for fusion reactors is begun with the TFTR and MFTF systems. Likely paths for necessary further development for power-producing reactors are also discussed.

  9. Fusion plasma research and education in Japan

    International Nuclear Information System (INIS)

    Inoue, N.

    1995-01-01

    Japanese fusion plasma research and education is reviewed by focusing on the activities promoted by the Ministry of Education, Science, Culture, and Sports (MOE). University fusion research is pursued by the academic interest and student education. A hierarchical structure of budget and manpower arrangement is observed. The small research groups of universities play the role of recruiting young students into the fusion and plasma society. After graduating the master course, most students are engaged by industries

  10. Inertial fusion research: Annual technical report, 1985

    International Nuclear Information System (INIS)

    Larsen, J.T.; Terry, N.C.

    1986-03-01

    This report describes the inertial confinement fusion (ICF) research activities undertaken at KMS Fusion (KMSF) during 1985. It is organized into three main technical sections; the first covers fusion experiments and theoretical physics, the second is devoted to progress in materials development and target fabrication, and the third describes laser technology research. These three individual sections have been cataloged separately

  11. Modeling Drift Compression in an Integrated Beam Experiment for Heavy-Ion-Fusion

    Science.gov (United States)

    Sharp, W. M.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Celata, C. M.; Yu, S. S.

    2003-10-01

    The Integrated Beam Experiment (IBX) is an induction accelerator being designed to further develop the science base for heavy-ion fusion. The experiment is being developed jointly by Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Princeton Plasma Physics Laboratory. One conceptual approach would first accelerate a 0.5-1 A beam of singly charged potassium ions to 5 MeV, impose a head-to-tail velocity tilt to compress the beam longitudinally, and finally focus the beam radiallly using a series of quadrupole lenses. The lengthwise compression is a critical step because the radial size must be controlled as the current increases, and the beam emittance must be kept minimal. The work reported here first uses the moment-based model HERMES to design the drift-compression beam line and to assess the sensitivity of the final beam profile to beam and lattice errors. The particle-in-cell code WARP is then used to validate the physics design, study the phase-space evolution, and quantify the emittance growth.

  12. Finnish Fusion Research Programme Yearbook 1993-1994

    International Nuclear Information System (INIS)

    Karttunen, S.; Paettikangas, T.

    1995-05-01

    Finnish Fusion Research Programme (FFUSION) is one of the national energy research programmes funded by the Ministry of Trade and Industry and from 1995 by TEKES. National organization for fusion research is necessary for efficient and successful participation in international fusion programmes. FFUSION programme serves well for this purpose and it made possible to establish relations and the dialogue with the European Fusion Programme. The process led to the Finnish Association Euratom-TEKES in early 1995. The first period of the FFUSION programme (1993-1994) was preparation for the association to the Community Programme. The strategy was to emphasize fusion technology parallel with the basic fusion and plasma physics and to activate the related Finnish industry to collaborate and participate in the FFUSION programme and later in the European Fusion Programme. The key element in the strategy is the focusing our fairly small R and D effort to a few topics, which increases possibilities to be competitive in Europe. The physics programme in FFUSION deals mainly with theoretical and computational studies of radio-frequency heating in tokamak plasmas. Technology programme started with prestudies in 1993 and it concentrates into two areas: fusion reactor materials and remote handling systems. (8 figs., 3 tabs.)

  13. Evaluation of laser-driven ion energies for fusion fast-ignition research

    Science.gov (United States)

    Tosaki, S.; Yogo, A.; Koga, K.; Okamoto, K.; Shokita, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Nakai, M.; Shiraga, H.; Azechi, H.; Nishimura, H.

    2017-10-01

    We investigate laser-driven ion acceleration using kJ-class picosecond (ps) laser pulses as a fundamental study for ion-assisted fusion fast ignition, using a newly developed Thomson-parabola ion spectrometer (TPIS). The TPIS has a space- and weight-saving design, considering its use in an laser-irradiation chamber in which 12 beams of fuel implosion laser are incident, and, at the same time, demonstrates sufficient performance with its detectable range and resolution of the ion energy required for fast-ignition research. As a fundamental study on laser-ion acceleration using a ps pulse laser, we show proton acceleration up to 40 MeV at 1 × 10^{19} W cm^{-2}. The energy conversion efficiency from the incident laser into protons higher than 6 MeV is 4.6%, which encourages the realization of fusion fast ignition by laser-driven ions.

  14. First wall costs of an ion-beam fusion reactor

    International Nuclear Information System (INIS)

    Hovingh, J.

    1977-08-01

    This paper parametrically investigates the effects of microexplosion energy on the first wall costs of a 4000 MW/sub t/ ion-beam initiated, inertially confined fusion reactor for several first wall materials. The thermodynamic models and the results for microexplosion energies between 400 and 4000 MJ are presented. A solid stainless steel or a composite isotropic graphite over stainless steel first wall can operate for a year at a cost of 0.6 mills per kWh gross electric power output

  15. Nuclear fusion research in Australia

    International Nuclear Information System (INIS)

    Cheetham, A.D.

    1997-01-01

    In this paper the recently formed National Plasma Fusion Research Facility centred around the H-1NF Heliac, located at the Australian National University, the Institute of Advanced Studies is described in the context of the international Stellarator program and the national collaboration with the Australian Fusion Research Group. The objectives of the facility and the planned physics research program over the next five years are discussed and some recent results will be presented. The facility will support investigations in the following research areas: finite pressure equilibrium and stability, transport in high temperature plasmas, plasma heating and formation, instabilities and turbulence, edge plasma physics and advanced diagnostic development

  16. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  17. 1983 Annual technical report on inertial fusion research

    International Nuclear Information System (INIS)

    Solomon, D.E.; Monsler, M.J.; Terry, N.C.

    1984-03-01

    An overview of the laser fusion program at KMS Fusion is presented. A two-beam laser (1053 nm and 527 nm) system is used for the implosion physics. Stimulated Raman scattering is used to examine the implosion region for high-energy electrons. Holographic and fringe analysis techniques are also used in the diagnostics of the plasma. Computational techniques based on two-plasmon decay are shock-fitting techniques in Lagrangian hydrocodes are also described. Glass shell technology for laser targets is given. The design of the Chemically Pumped Iodine Laser (CPIL) is also presented. 86 refs., 46 figs., 2 tabs

  18. The recent progress of laser fusion research and future scope

    International Nuclear Information System (INIS)

    Yamanaka, C.

    1986-01-01

    The plasma compression of spherical fuel pellets is performed by irradiation laser beams on the surface of targets. The short wavelength laser or Xray is effective to get high coupling of laser and plasmas without preheating. The implosion uniformity is essentially important to attain the high compression. As for the direct implosion, the multibeam irradiation is necessary to keep a good uniformity of illumination. Extremely high aspect ratio targets are successfully imploded withy neutron yield 10/sup 12/ or more. The shock wave multiplexing is introduced by tailored laser pulses synchronizing with the compression stagnation. Implosion instability seems to be prevented by this scheme. Energy recovering by nuclear fusion is about 10/sup -3/ of the incident laser beam. The indirect implosion using the Cannonball target is very effective to keep the high absorption and the implosion uniformity. However the suprathermal electrons are increased especially at the region of the beam inlet holes. The larger cavity irradiated by the shorter wavelength laser indicates the better results. The Xray conversion by laser is intensively studied using metal targets. Magnetically Insulated Inetially Confined Fusion (MICF) is tested by using CO/sub 2/ lasers. The basic structure of the MICF target is a double shell structure. The irradiation of laser beams through holes of the outer shell produces a toroidal magnetic field due to the current loop produced by the ejected hot electrons. Self organized magnetic field is expected to confine the plasma energy. Plasmas are preserved by the inertial confinement scheme. The experimental results are very interesting to design a hybrid fusion device

  19. Using computer graphics to analyze the placement of neutral-beam injectors for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Horvath, J.A.

    1977-01-01

    To optimize the neutral-beam current incident on the fusion plasma and limit the heat load on exposed surfaces of the Mirror Fusion Test Facility magnet coils, impingement of the neutral beams on the magnet structure must be minimized. Also, placement of the neutral-beam injectors must comply with specifications for neutral-current heating of the plasma and should allow maximum flexibility to accommodate alternative beam aiming patterns without significant hardware replacement or experiment down-time. Injector placements and aimings are analyzed by means of the Structural Analysis Movie Post Processor (SAMPP), a general-purpose graphics code for the display of three-dimensional finite-element models. SAMPP is used to visually assemble, disassemble, or cut away sections of the complex three-dimensional apparatus, which is represented by an assemblage of 8-node solid finite elements. The resulting picture is used to detect and quantify interactions between the structure and the neutral-particle beams

  20. Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma

    International Nuclear Information System (INIS)

    Labaune, C.; Baccou, C.; Loisel, G.; Yahia, V.; Depierreux, S.; Goyon, C.; Rafelski, J.

    2013-01-01

    The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments. (authors)

  1. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  2. The development of laser fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Mima, Kunioki [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-11-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from `implosion physics` to `ignition and high gain`, namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called `Fast Ignition`. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  3. The development of laser fusion research

    International Nuclear Information System (INIS)

    Mima, Kunioki

    1998-01-01

    Laser fusion research started soon after the invention of laser. In 1972, the research was declassified and nuclear fusion by laser inplosion was proposed by J. Nuckolls. Since then, 26 years has passed and laser implosion experiments demonstrated 1000 times solid density compression. By the demonstration of 1000 times solid density, the mission of the laser fusion research shifted from 'implosion physics' to 'ignition and high gain', namely demonstration of fusion output of 100 times input laser energy. By the recent developments of laser technology, ultra intense laser became available and opened up a new ignition scheme which is called 'Fast Ignition'. The technology for the diode pumped solid state laser (DPSSL) is developed toward a laser driver for reactor. U.S. and France are constructing MJ lasers for demonstrating ignition and burn and Osaka University is investigating the fast ignition and the equivalent plasma of confinement (EPOC) toward high gain. (author)

  4. The growth of European fusion research

    International Nuclear Information System (INIS)

    Palumbo, D.

    1988-01-01

    The Euratom initial research programme with fusion as a modest element was constituted in 1958. Progress in fusion research mainly in the USA, USSR and UK was reported at the Geneva Conference held in September 1958. A network of national laboratories cooperating in fusion research was constituted under Association Contracts rather than founding a single Euratom laboratory. Emergence of the Tokamak became evident in 1968, and in 1969 a team from Culham travelled to Moscow to measure the electron plasma temperature and confirmed the previous Russian results. Collaboration between Culham and the European Fusion programme developed before the entrance of the UK into the European Community. The JET design team began its work in 1973. The site selected was at Culham and construction of JET commenced in 1978. Subsequent international discussions including the USA and USSR resulted in detailed design studies for a large device known as the INTOR Tokamak which will probably lead to further international cooperation. (U.K.)

  5. An accelerated beam-plasma neutron/proton source and early application of a fusion plasma

    International Nuclear Information System (INIS)

    Ohnishi, M.; Yoshikawa, K.; Yamamoto, Y.; Hoshino, C.; Masuda, K.; Miley, G.; Jurczyk, B.; Stubbers, R.; Gu, Y.

    1999-01-01

    We measured the number of the neutrons and protons produced by D-D reactions in an accelerated beam-plasma fusion and curried out the numerical simulations. The linear dependence of the neutron yield on a discharge current indicates that the fusion reactions occur between the background gas and the fast particles. i.e. charge exchanged neutrals and accelerated ions. The neutron yield divided by (fusion cross section x ion current x neutral gas pressure) still possesses the dependence of the 1.2 power of discharge voltage. which shows the fusion reactions are affected by the electrostatic potential built-up in the center. The measured proton birth profiles suggest the existence of a double potential well, which is supported by the numerical simulations. (author)

  6. Bringing together fusion research

    International Nuclear Information System (INIS)

    Leiser, M.

    1982-01-01

    The increasing involvement of the IAEA in fusion, together with the growing efforts devoted to this area, are described. The author puts forward the idea that one of the most important aspects of this involvement is in providing a world-wide forum for scientists. The functions of the IFRC (International Fusion Research Council) as an advisory group are outlined, and the role played by IFRC in the definition and objectives of INTOR (International Tokamak Reactor) are briefly described

  7. Thermonuclear fusion

    International Nuclear Information System (INIS)

    Weisse, J.

    2000-01-01

    This document takes stock of the two ways of thermonuclear fusion research explored today: magnetic confinement fusion and inertial confinement fusion. The basic physical principles are recalled first: fundamental nuclear reactions, high temperatures, elementary properties of plasmas, ignition criterion, magnetic confinement (charged particle in a uniform magnetic field, confinement and Tokamak principle, heating of magnetized plasmas (ohmic, neutral particles, high frequency waves, other heating means), results obtained so far (scale laws and extrapolation of performances, tritium experiments, ITER project), inertial fusion (hot spot ignition, instabilities, results (Centurion-Halite program, laser experiments). The second part presents the fusion reactor and its associated technologies: principle (tritium production, heat source, neutron protection, tritium generation, materials), magnetic fusion (superconducting magnets, divertor (role, principle, realization), inertial fusion (energy vector, laser adaptation, particle beams, reaction chamber, stresses, chamber concepts (dry and wet walls, liquid walls), targets (fabrication, injection and pointing)). The third chapter concerns the socio-economic aspects of thermonuclear fusion: safety (normal operation and accidents, wastes), costs (costs structure and elementary comparison, ecological impact and external costs). (J.S.)

  8. LLL magnetic fusion research: the first 25 years

    International Nuclear Information System (INIS)

    Post, R.F.

    1978-01-01

    From its inception, the Laboratory has supported research directed at tapping controlled fusion. Our magnetic fusion energy program--now one of the major elements of the national fusion energy research effort--dates back to the Laboratory's founding in 1952. This article reviews the program's beginnings, progress, and present status in terms of its ultimate goal: to demonstrate a practical and economical means of generating power from controlled fusion reactions

  9. Nuclear Fusion Research Understanding Plasma-Surface Interactions

    CERN Document Server

    Clark, Robert E.H

    2005-01-01

    It became clear in the early days of fusion research that the effects of the containment vessel (erosion of "impurities") degrade the overall fusion plasma performance. Progress in controlled nuclear fusion research over the last decade has led to magnetically confined plasmas that, in turn, are sufficiently powerful to damage the vessel structures over its lifetime. This book reviews current understanding and concepts to deal with this remaining critical design issue for fusion reactors. It reviews both progress and open questions, largely in terms of available and sought-after plasma-surface interaction data and atomic/molecular data related to these "plasma edge" issues.

  10. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  11. Magnetic fusion research in developing countries

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1990-01-01

    This article is a presentation prepared by the Third World Academy of Sciences on magnetic fusion research activity in the developing countries and its connection with the IAEA's own fusion programme. 6 figs, 1 tab

  12. Stellarator fusion neutronics research in Australia

    International Nuclear Information System (INIS)

    Zimin, S.; Cross, R.C.

    1997-01-01

    The new status of the H-INF Heliac Stellaralor as a National Facility and the signed international Implementing Agreement on 'Collaboration in the Development of the Stellarator Concept' represents a significant encouragement for further fusion research in Australia. In this report the future of fusion research in Australia is discussed with special attention being paid to the importance of Stellarator power plant studies and in particular stellarator fusion neutronics. The main differences between tokamak and stellarator neutronics analyses are identified, namely the neutron wall loading, geometrical modelling and total heating in in-vessel reactor components including toroidal field (TF) coils. Due to the more complicated nature of stellarator neutronics analyses, simplified approaches to fusion neutronics already developed for tokamaks are expected to be even more important and widely used for designing a Conceptual Stellarator Power Plant

  13. Accelerator and Fusion Research Division 1989 summary of activities

    International Nuclear Information System (INIS)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations

  14. Inertial confinement fusion research and development studies. Final report, October 1979-August 1980

    International Nuclear Information System (INIS)

    Bullis, R.; Finkelman, M.; Leng, J.; Luzzi, T.; Ojalvo, I.; Powell, E.; Sedgley, D.

    1980-08-01

    These Inertial Confinement Fusion (ICF) research and development studies were selected for structural, thermal, and vacuum pumping analyses in support of the High Yield Lithium Injection Fusion Energy (HYLIFE) concept development. An additional task provided an outlined program plan for an ICF Engineering Test Facility, using the HYLIFE concept as a model, although the plan is generally applicable to other ICF concepts. The HYLIFE is one promising type of ICF concept which features a falling array of liquid lithium jets. These jets surround the fusion reaction to protect the first structural wall (FSW) of the vacuum chamber by absorbing the fusion energy, and to act as the tritium breeder. The fusion energy source is a deuterium-tritium pellet injected into the chamber every second and driven by laser or heavy ion beams. The studies performed by Grumman have considered the capabilities of specific HYLIFE features to meet life requirements and the requirement to recover to preshot conditions prior to each subsequent shot. The components under investigation were the FSW which restrains the outward motion of the liquid lithium, the nozzle plate which forms the falling jet array, the graphite shield which is in direct top view of the fusion pellet, and the vacuum pumping system. The FSW studies included structural analysis, and definition of an experimental program to validate computer codes describing lithium motion and the resulting impact on the wall

  15. Accelerator and Fusion Research Division 1989 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  16. First dedicated in-beam X-ray measurement in heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Berner, C. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); RIKEN, Research Group for Superheavy Elements (Japan); Henning, W. [Argonne National Laboratory, Physics Division (United States); RIKEN, Research Group for Superheavy Elements (Japan); Muecher, D.; Gernhaeuser, R.; Hellgartner, S.; Maier, L. [Technische Universitaet Muenchen, Lehrstuhl E12 (Germany); Morita, K.; Morimoto, K.; Kaji, D.; Wakabayashi, Y.; Baba, H. [RIKEN, Research Group for Superheavy Elements (Japan); Lutter, R. [Ludwig-Maximilians-Universitaet, Muenchen (Germany)

    2016-07-01

    We report on an experiment aiming at in-beam X-ray spectroscopy of heavy and superheavy elements (SHE). The goal is to establish K-X-ray spectroscopy as a sensitive tool to identify SHE produced in fusion reactions. SHE, formed after cold or hot fusion, are usually identified via the alpha-decay products, which have to be connected to well-known elements. However, various theories predict spontaneous fission as the dominant decay mode for the daughter nuclides. Additionally, half-lives of these elements are expected to increase to values impeding the identification of SHE solely by their decay. The in-beam identification of the characteristic X-rays would precisely allow to identify the charge number of the produced SHE. Experiments were performed at the RIKEN Nishina Centre for Accelerator based Science by using the gas-filled magnet separator GARIS for superheavy element detection. A high-purity, low-energy planar germanium LEGe-detector was adapted to the GARIS system at the target place for the first time in order to measure the element-characteristic, prompt X-ray emission.

  17. Utilization of a Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research. Report of a Coordinated Research Project 2011–2016

    International Nuclear Information System (INIS)

    2016-12-01

    The IAEA actively promotes the development of controlled fusion as a source of energy. Through its coordinated research activities, the IAEA helps Member States to exchange and establish scientific and technical knowledge required for the design, construction and operation of a fusion reactor. Due to their compactness, flexibility and low operation costs, small fusion devices are a great resource for supporting and accelerating the development of mainstream fusion research on large fusion devices such as the International Thermonuclear Experimental Reactor. They play an important role in investigating the physics of controlled fusion, developing innovative technologies and diagnostics, testing new materials, training highly qualified personnel for larger fusion facilities, and supporting educational programmes for young scientists. This publication reports on the research work accomplished within the framework of the Coordinated Research Project (CRP) on Utilization of the Network of Small Magnetic Confinement Fusion Devices for Mainstream Fusion Research, organized and conducted by the IAEA in 2011–2016. The CRP has contributed to the coordination of a network of research institutions, thereby enhancing international collaboration through scientific visits, joint experiments and the exchange of information and equipment. A total of 16 institutions and 14 devices from 13 Member States participated in this CRP (Belgium, Bulgaria, Canada, China, Costa Rica, the Czech Republic, the Islamic Republic of Iran, Kazakhstan, Pakistan, Portugal, the Russian Federation, Ukraine and the United Kingdom).

  18. FFUSION research programme 1993-1998. Final report of the Finnish fusion research programme

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S.; Heikkinen, J.; Korhonen, R. [VTT Energy, Espoo (Finland)] [and others

    1998-12-31

    This report summarizes the results of the Fusion Energy Research Programme, FFUSION, during the period 1993-1998. After the planning phase the programme started in 1994, and later in March 1995 the FFUSION Programme was integrated into the EU Fusion Programme and the Association Euratom-Tekes was established. Research areas in the FFUSION Programme are (1) fusion physics and plasma engineering, (2) fusion reactor materials and (3) remote handling systems. In all research areas industry is involved. Recently, a project on environmental aspects of fusion and other future energy systems started as a part of the socio-economic research (SERF) in the Euratom Fusion Programme. A crucial component of the FFUSION programme is the close collaboration between VTT Research Institutes, universities and Finnish industry. This collaboration has guaranteed dynamic and versatile research teams, which are large enough to tackle challenging research and development projects. Regarding industrial fusion R and D activities, the major step was the membership of Imatran Voima Oy in the EFET Consortium (European Fusion Engineering and Technology), which further strengthened the position of industry in the engineering design activities of ITER. The number of FFUSION research projects was 66. In addition, there were 32 industrial R and D projects. The total cost of the FFUSION Programme in 1993-1998 amounted to FIM 54 million in research at VTT and universities and an additional FIM 21 million for R and D in Finnish industry. The main part of the funding was provided by Tekes, 36%. Since 1995, yearly Euratom funding has exceeded 25%. The FFUSION research teams have played an active role in the European Programme, receiving excellent recognition from the European partners. Theoretical and computational fusion physics has been at a high scientific level and the group collaborates with the leading experimental laboratories in Europe. Fusion technology is focused on reactor materials, joining

  19. FFUSION research programme 1993-1998. Final report of the Finnish fusion research programme

    International Nuclear Information System (INIS)

    Karttunen, S.; Heikkinen, J.; Korhonen, R.

    1998-01-01

    This report summarizes the results of the Fusion Energy Research Programme, FFUSION, during the period 1993-1998. After the planning phase the programme started in 1994, and later in March 1995 the FFUSION Programme was integrated into the EU Fusion Programme and the Association Euratom-Tekes was established. Research areas in the FFUSION Programme are (1) fusion physics and plasma engineering, (2) fusion reactor materials and (3) remote handling systems. In all research areas industry is involved. Recently, a project on environmental aspects of fusion and other future energy systems started as a part of the socio-economic research (SERF) in the Euratom Fusion Programme. A crucial component of the FFUSION programme is the close collaboration between VTT Research Institutes, universities and Finnish industry. This collaboration has guaranteed dynamic and versatile research teams, which are large enough to tackle challenging research and development projects. Regarding industrial fusion R and D activities, the major step was the membership of Imatran Voima Oy in the EFET Consortium (European Fusion Engineering and Technology), which further strengthened the position of industry in the engineering design activities of ITER. The number of FFUSION research projects was 66. In addition, there were 32 industrial R and D projects. The total cost of the FFUSION Programme in 1993-1998 amounted to FIM 54 million in research at VTT and universities and an additional FIM 21 million for R and D in Finnish industry. The main part of the funding was provided by Tekes, 36%. Since 1995, yearly Euratom funding has exceeded 25%. The FFUSION research teams have played an active role in the European Programme, receiving excellent recognition from the European partners. Theoretical and computational fusion physics has been at a high scientific level and the group collaborates with the leading experimental laboratories in Europe. Fusion technology is focused on reactor materials, joining

  20. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  1. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Restoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1993-01-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  2. Magnetic fusion with high energy self-colliding ion beams

    International Nuclear Information System (INIS)

    Rostoker, N.; Wessel, F.; Maglich, B.; Fisher, A.

    1992-06-01

    Field-reversed configurations of energetic large orbit ions with neutralizing electrons have been proposed as the basis of a fusion reactor. Vlasov equilibria consisting of a ring or an annulus have been investigated. A stability analysis has been carried out for a long thin layer of energetic ions in a low density background plasma. There is a growing body of experimental evidence from tokamaks that energetic ions slow down and diffuse in accordance with classical theory in the presence of large non-thermal fluctuations and anomalous transport of low energy (10 keV) ions. Provided that major instabilities are under control, it seems likely that the design of a reactor featuring energetic self-colliding ion beams can be based on classical theory. In this case a confinement system that is much better than a tokamak is possible. Several methods are described for creating field reversed configurations with intense neutralized ion beams

  3. Ion beam pellet fusion as a CTR neutron test source

    International Nuclear Information System (INIS)

    Arnold, R.; Martin, R.

    1975-07-01

    Pellet fusion, driven by nanosecond pulses containing α particles with 200 MeV energy, is being developed as a neutron source. A prototype system is in the conceptual design stage. During the coming year, engineering design of required accelerator components, storage rings, and pellet configurations, as well as experiments on energy deposition mechanisms, should be accomplished. Successful construction and tests of prototype rings, followed by two years of full scale system construction, would give a source producing a useful flux of fusion neutrons for materials testing. The system as currently envisioned would employ 100 small superconducting high field storage rings (15 cm radius, 140 kG field) which would be synchronously filled with circulating 1 nsec pulses from a 200 MeV linear accelerator over a period of 3 x 10 -4 sec. These ion pulses would all be simultaneously extracted, forming a total current of 10 kA, and focussed from all directions on a deuterium and tritium (DT) pellet with 0.17 mm radium, surrounded by a heavier (metal) coating to increase confinement time and aid compression efficiency. The overall repetition rate, limited principally by physical transport of the pellets, could reach 100/sec. Spacing between pellet and focussing elements would be about 1 m. The predominant engineering problems are the fast extraction mechanism and beam transport devices for the storage rings. Additional theoretical and experimental studies are required on the crucial energy deposition and transport mechanisms in pellets with ion beam heating before firm estimates can be given. Preliminary estimates suggest fusion neutron yields of at least 10 14 /sec and possibly 10 16 /sec are possible, with optimal pellet dynamics, but without the necessity for any large advances in the state-of-the-art in accelerator and storage ring design. (auth)

  4. Effect of focusing field error during final beam bunching in heavy-ion-beam driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Kikuchi, T.; Kawata, S.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-01-01

    Emittance growth due to the transverse focusing field error is investigated during the final beam bunching in the energy driver system of heavy ion inertial fusion. The beam bunch is longitudinally compressed during the transport with the field error in the continuous focusing (CF) or the alternating gradient (AG) field lattices. Numerical calculation results show the only 2% difference of the emittance growth between the cases with and without field error in the CF lattice. In the case of the AG lattice model with the field error of 10%, the emittance growth of 2.4 times is estimated, and the major difference between the CF and AG models is indicated from the numerical simulations. (author)

  5. Nonuniformity mitigation of beam illumination in heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D

    2014-01-01

    In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)

  6. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1992-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long-pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle energy distributions in large, dense, ignited tokamaks such as ITER

  7. Intense ion beam research at Los Alamos

    International Nuclear Information System (INIS)

    Rej, D.J.; Bartsch, R.R.; Davis, H.A.; Faehl, R.J.; Gautier, D.C.; Greenly, J.B.; Henins, I.; Linton, T.W.; Muenchausen, R.E.; Waganaar, W.J.

    1993-01-01

    Two new interdisciplinary programs are underway at Los Alamos involving the physics and technology of intense light ion beams. In contrast to high-power ICF applications, the LANL effort concentrates on the development of relatively low-voltage (50 to 800 kV) and long pulsewidth (0.1 to 1 μs) beams. The first program involves the 1.2 MV, 300-kJ Anaconda generator which has been fitted with an extraction ion diode. Long pulsewidth ion beams have been accelerated, propagated, and extracted for a variety of magnetic field conditions. The primary application of this beam is the synthesis of novel materials. Initial experiments on the congruent evaporative deposition of metallic and ceramic thin films are reported. The second program involves the development of a 120-keV, 50-kA, 1-μs proton beam for the magnetic fusion program as an ion source for an intense diagnostic neutral beam. Ultra-bright, pulsed neutral beams will be required to successfully measure ion temperatures and thermalized alpha particle distributions in large, dense, ignited tokamaks such as ITER

  8. Accelerator Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    Berkner, Klaus H.

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  9. Accelerator & Fusion Research Division 1991 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations.

  10. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  11. A proposed method for accurate 3D analysis of cochlear implant migration using fusion of cone beam CT

    Directory of Open Access Journals (Sweden)

    Guido eDees

    2016-01-01

    Full Text Available IntroductionThe goal of this investigation was to compare fusion of sequential cone beam CT volumes to the gold standard (fiducial registration in order to be able to analyze clinical CI migration with high accuracy in three dimensions. Materials and MethodsPaired time-lapsed cone beam CT volumes were performed on five human cadaver temporal bones and one human subject. These volumes were fused using 3D Slicer 4 and BRAINSFit software. Using a gold standard fiducial technique, the accuracy, robustness and performance time of the fusion process were assessed.Results This proposed fusion protocol achieves a sub voxel mean Euclidean distance of 0.05 millimeter in human cadaver temporal bones and 0.16 millimeter when applied to the described in vivo human synthetic data set in over 95% of all fusions. Performance times are less than two minutes.ConclusionHere a new and validated method based on existing techniques is described which could be used to accurately quantify migration of cochlear implant electrodes.

  12. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Grisham, Larry R.

    2002-01-01

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10 -5 torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing

  13. Some implications for mirror research of the coupling between fusion economics and fusion physics

    International Nuclear Information System (INIS)

    Post, R.F.

    1980-01-01

    The thesis is made that physics understanding and innovation represent two of the most important ingredients of any program to develop fusion power. In this context the coupling between these and the econmics of yet-to-be realized fusion power plants is explored. The coupling is two-way: realistic evaluations of the economic (and environmental) requirements for fusion power systems can influence the physics objectives of present-day fusion research programs; physics understanding and innovative ideas can favorably impact the future economics of fusion power systems. Of equal importance is the role that physics/innovation can have on the time scale for the first practical demonstration of fusion power. Given the growing worldwide need for long-term solutions to the problem of energy it is claimed to be crucial that fusion research be carried out on a broad base and in a spirit that both facilitates the growth of physics understanding and fosters innovation. Developing this theme, some examples of mirror-based fusion system concepts are given that illustrate the coupling here described

  14. Longitudinal dynamics and stability in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Callahan, D.A.; Grote, D.P.

    1996-01-01

    Successful transport of induction-driven beams for heavy-ion fusion requires careful control of the longitudinal space charge. The usual control technique is the periodic application of time-varying longitudinal electric fields, called 'ears', that on the average, balance the space-charge field. this technique is illustrated using a fluid/envelope code CIRCE, and the sensitivity of the method to errors in these ear fields is illustrated. The possibility that periodic ear fields also excite the longitudinal instability is examined

  15. Progress of laser nuclear fusion research

    International Nuclear Information System (INIS)

    Shiraga, Hiroyuki

    2017-01-01

    This paper describes the principle and features of nuclear fusion using laser, as well as its basic concepts such as high-temperature / high-density implosion system and fast ignition of fuel. At present, researches aiming at nuclear fusion ignition have been developing. As the current state of researches, this paper reviews the situations of FIREX (Fast Ignition Realization Experiment) project of Japan focusing on direct irradiation implosion and fast ignition system, as well as NIF (National Ignition Facility) project of the U.S. aiming at ignition combustion based on indirect irradiation implosion and central ignition system. In collaboration with the National Institute for Fusion Science, Osaka University started FIREX-1 project in 2003. It built a heating laser LFEX of 10 kJ/1 to 10ps, and started an implosion/heating integration experiment in 2009. Currently, it is developing experiment to achieve heating to 5 keV. At NIF, the self-heating of central sparks via energy of α particles generated in the nuclear fusion reaction has been realized. This paper also overviews R and D issues surrounding the lasers for reactors for use in laser nuclear fusion power generators. (A.O.)

  16. Overview of US heavy-ion fusion progress and plans

    International Nuclear Information System (INIS)

    Logan, B.G.

    2004-01-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

  17. Design and testing of the 2 MV heavy ion injector for the Fusion Energy Research Program

    International Nuclear Information System (INIS)

    Abraham, W.; Benjegerdes, R.; Reginato, L.; Stoker, J.; Hipple, R.; Peters, C.; Pruyn, J.; Vanecek, D.; Yu, S.

    1995-04-01

    The Fusion Energy Research Group at the Lawrence Berkeley Laboratory has constructed and tested a pulsed 2 MV injector that produces a driver size beam of potassium ions. This paper describes the engineering aspects of this development which were generated in a closely coupled effort with the physics staff. Details of the ion source and beam transport physics are covered in another paper at this conference. This paper discusses the design details of the pulse generator, the ion source, the extractor, the diode column, and the electrostatic quadrupole column. Included will be the test results and operating experience of the complete injector

  18. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    International Nuclear Information System (INIS)

    Munoz, A.; Monge, M.A.; Pareja, R.; Hernandez, M.T.; Jimenez-Rey, D.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, M.; Ibarra, A.

    2011-01-01

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  19. The materials production and processing facility at the Spanish National Centre for fusion technologies (TechnoFusion)

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A., E-mail: rpp@fis.uc3m.es [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, UC3M, Avda de la Universidad 30, 28911 Leganes, Madrid (Spain); Hernandez, M.T. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Jimenez-Rey, D. [CMAM, UAM, C/Faraday 3, 28049, Madrid (Spain); Roman, R.; Gonzalez, M.; Garcia-Cortes, I. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain); Perlado, M. [IFN, ETSII, UPM, C/Jose Gutierrez Abascal, 2, 28006 Madrid (Spain); Ibarra, A. [LNF-CIEMAT, Avda, Complutense, 22, 28040 Madrid (Spain)

    2011-10-15

    In response to the urgent request from the EU Fusion Program, a new facility (TechnoFusion) for research and development of fusion materials has been planned with support from the Regional Government of Madrid and the Ministry of Science and Innovation of Spain. TechnoFusion, the National Centre for Fusion Technologies, aims screening different technologies relevant for ITER and DEMO environments while promoting the contribution of international companies and research groups into the Fusion Programme. For this purpose, the centre will be provided with a large number of unique facilities for the manufacture, testing (a triple-beam multi-ion irradiation, a plasma-wall interaction device, a remote handling for under ionizing radiation testing) and analysis of critical fusion materials. Particularly, the objectives, semi-industrial scale capabilities and present status of the TechnoFusion Materials Production and Processing (MPP) facility are presented. Previous studies revealed that the MPP facility will be a very promising infrastructure for the development of new materials and prototypes demanded by the fusion technology and therefore some of them will be here briefly summarized.

  20. Fusion Canada issue 13

    International Nuclear Information System (INIS)

    1991-01-01

    A short bulletin from the National Fusion Program. Included in this issue is a report on Canada's plans to participate in the Engineering Design Activities (EDA), bilateral meetings with Canada and the U.S., committee meeting with Canada-Europe, an update at Tokamak de Varennes on Plasma Biasing experiments and boronized graphite tests, fusion materials research at the University of Toronto using a dual beam accelerator and a review of the CFFTP and the CCFM. 2 figs

  1. Inertial thermonuclear fusion by laser

    International Nuclear Information System (INIS)

    Watteau, J.P.

    1993-12-01

    The principles of deuterium tritium (DT) magnetic or inertial thermonuclear fusion are given. Even if results would be better with heavy ions beams, most of the results on fusion are obtained with laser beams. Technical and theoretical aspects of the laser fusion are presented with an extrapolation to the future fusion reactor. (A.B.). 34 refs., 17 figs

  2. Status and development plan of nuclear fusion research in the US

    International Nuclear Information System (INIS)

    Kang Weihong

    2012-01-01

    This paper presents the background of nuclear fusion research and current status of major devices with accomplishments in the US, as well as the national fusion plans and budgets for fusion energy development by the US government. As a fusion power in the world, the US has made significant contributions to the development of international fusion research. The strategy of fusion research developments and the accomplishments may exert a subtle influence on international fusion development situation. Withdrawing from the ITER partnership for 2 times, the US rejoined it subsequently. This paper gives a brief introduction of changes in the US fusion research policy, summarizes the implementation of ITER procurement packages undertaken by the US, and the overview of the US inertial confinement fusion re- search. The US future energy development plan is the development of magnetic confinement fusion approach in parallel with inertial confinement fusion approach. (author)

  3. Laser fusion: an assessment of pellet injection, tracking and beam pointing

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1978-01-01

    A conceptual design is presented for a target injection and final optical system which can be integrated with a lithium waterfall laser fusion reactor and operate repetitively within the presented tolerances. A high f-number focusing system using coated metal optics at 30 to 60 meters distance is suggested. An intermediate section of the differentially pumped beam tube contains flowing xenon which effectively shields the optics from debris and x rays, allowing the mirrors to operate at least a year without optical degradation. Pellets are injected with a repeating gas gun positioned horizontally just above the laser beam. No pellet trajectory correction is desired or required. Simple tracking of the target using a low power laser illuminator, a position sensing photodetector, and a trajectory prediction scheme are assumed. Two-degree of freedom x-y beam steering is preferred, without focus capability. Both the tracker and the adaptive mirror are placed in the laser building, well away from the fixed final optical mirror which faces the microexplosion

  4. IAEA and IEA roles in international fusion energy research

    International Nuclear Information System (INIS)

    Dolan, T.; Nakamura, K.

    2000-01-01

    The article describes the IAEA's and the IEA's complementary roles in facilitating international fusion research cooperation. These roles represent highly desirable contributions to fusion research through pooling of limited human and financial resources. The two Agencies both coordinate research and organize technical meeting, but in different ways. They each have unique strengths and different modes of operation. In order to deal with potential overlaps and serve the fusion research community optimally, they are coordinating their activities

  5. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  6. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  7. Particle-induced thermonuclear fusion

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1980-01-01

    A nuclear fusion process for igniting a nuclear fusion pellet in a manner similar to that proposed for laser beams uses, an array of pulsed high energy combined particle beams, focused to bombard the pellet for isentropically compressing it to a Fermi-degenerate state by thermal blow-off and balanced beam momentum transfer. (author)

  8. Sustaining neutral beam power supply system for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Eckard, R.D.; Wilson, J.H.; Van Ness, H.W.

    1980-01-01

    In late August 1978, a fixed price procurement contract for $25,000,000 was awarded to Aydin Energy Division, Palo Alto, California, for the design, manufacture, installation and acceptance testing of the Lawrence Livermore National Laboratory Mirror Fusion Test Facility (MFTF) Sustaining Neutral Beam Power Supply System (SNBPSS). This system of 24 power supply sets will provide the conditioned power for the 24 neutral beam source modules. Each set will provide the accel potential the arc power, the filament power, and the suppressor power for its associated neutral beam source module. The design and development of the SNBPSS has progressed through the final design phase and is now in production. Testing of the major sub-assembly power supply is proceeding at Aydin and the final acceptance testing of the first two power supplies at LLNL is expected to be completed this year

  9. Fusion energy research for ITER and beyond

    International Nuclear Information System (INIS)

    Romanelli, Francesco; Laxaaback, Martin

    2011-01-01

    The achievement in the last two decades of controlled fusion in the laboratory environment is opening the way to the realization of fusion as a source of sustainable, safe and environmentally responsible energy. The next step towards this goal is the construction of the International Thermonuclear Experimental Reactor (ITER), which aims to demonstrate net fusion energy production on the reactor scale. This paper reviews the current status of magnetic confinement fusion research in view of the ITER project and provides an overview of the main remaining challenges on the way towards the realization of commercial fusion energy production in the second half of this century. (orig.)

  10. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  11. Controlled thermonuclear fusion: research on magnetic fusion

    International Nuclear Information System (INIS)

    Paris, P.J.

    1988-12-01

    Recent progress in thermonuclear fusion research indicates that the scientists' schedule for the demonstration of the scientific feasibility will be kept and that break-even will be attained in the course of the next decade. To see the implementation of ignition, however, the generation of future experiments must be awaited. These projects are currently under study. With technological research going on in parallel, they should at the same time contribute to the design of a reactor. Fusion reactors will be quite different from the fission nuclear reactors we know, and the waste of the plants will also be of a different nature. It is still too early to define the precise design of a fusion reactor. On the basis of a toric machine concept like that of the tokamak, we can, however, envisage that the problems with which we are confronted will be solved one after the other. As we have just seen, these will be the objectives of the future experimental installations where ignition will be possible and where the flux of fast neutrons will be so strong that they will allow the study of low-activation materials which will be used in the structure of the reactor. But this is also a task in which from now onwards numerous laboratories in Europe and in the world participate. The works are in fact punctiform, and often the mutual incidences can only be determined by an approach simulated by numerical codes. (author) 19 figs., 6 tabs., 8 refs

  12. Beam Simulations for IRE and Driver-Status and Strategy

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.; Lee, E.P.; Sonnendrucker, E.

    2000-01-01

    The methods and codes employed in the U.S. Heavy Ion Fusion program to simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are presented in overview. A new family of models incorporating accelerating module impedance, multi-beam, and self-magnetic effects is described, and initial WARP3d particle simulations of beams using these models are presented. Finally, plans for streamlining the machine-design simulation sequence, and for simulating beam dynamics from the source to the target in a consistent and comprehensive manner, are described

  13. HIBALL - a conceptual heavy ion beam driven fusion reactor study. Vol. 1

    International Nuclear Information System (INIS)

    Badger, B.; El-Guebaly, L.; Engelstad, R.; Hassanein, A.; Klein, A.; Kulcinski, G.; Larsen, E.; Lee, K.; Lovell, E.; Moses, G.

    1981-12-01

    A preliminary concept for a heavy-ion beam driven inertial confinement fusion power plant is presented. The high repetition rate of the RF accelerator driver is utilized to serve four reactor chambers alternatingly. In the chambers a novel first-wall protection scheme is used. At a target gain of 83 the total net electrical output is 3.8 GW. The recirculating power fraction is below 15%. The main goal of the comprehensive HIBALL study (which is continuing) is to demonstrate the compatibility of the design of the driver, the target and the reactor chambers. Though preliminary, the present dessign is essentially self-consistent. Tentative cost estimates are given. The costs compare well with those found in similar studies on other types of fusion reactors. (orig.) [de

  14. PBFA [Particle Beam Fusion Accelerator] II: The pulsed power characterization phase

    International Nuclear Information System (INIS)

    Martin, T.H.; Turman, B.N.; Goldstein, S.A.

    1987-01-01

    The Particle Beam Fusion Accelerator II, PBFA II, is now the largest pulsed power device in operation. This paper summarizes its first year and a half of operation for the Department of Energy (DOE) Inertial Confinement Fusion (ICF) program. Thirty-six separate modules provide 72 output pulses that combine to form a 100 TW output pulse at the accelerator center. PBFA II was successfully test fired for the first time on December 11, 1985. This test completed the construction phase (Phase 1) within the expected schedule and budget. The accelerator checkout phase then started (Phase 2). The first priority during checkout was to bring the Phase 1 subsystems into full operation. The accelerator was first tested to determine overall system performance. Next, subsystems that were not performing adequately were modified. The accelerator is now being used for ion diode studies. 32 refs

  15. Beam plasma 14 MeV neutron source for fusion materials development

    International Nuclear Information System (INIS)

    Ravenscroft, D.; Bulmer, D.; Coensgen, F.; Doggett, J.; Molvik, A.; Souza, P.; Summers, L.; Williamson, V.

    1991-09-01

    The conceptual engineering design and expected performance for a 14 MeV DT neutron source is detailed. The source would provide an intense neutron flux for accelerated testing of fusion reactor materials. The 150-keV neutral beams inject energetic deuterium atoms, that ionize, are trapped, then react with a warm (200 eV), dense tritium target plasma. This produces a neutron source strength of 3.6 x 10 17 n/sec for a neutron power density at the plasma edge of 5--10 MW/m 2 . This is several times the ∼2 MW/m 2 anticipated at the first wall of fusion reactors. This high flux provides accelerated end-of-life tests of 1- to 2-year duration, thus making materials development possible. The modular design of the source and the facilities are described

  16. Spin-off produced by the fusion research and development

    International Nuclear Information System (INIS)

    Koizumi, Koichi; Konishi, T.; Tsuji, Hiroshi

    2001-03-01

    Nuclear fusion devices are constructed by the integration of many frontier technologies and fusion science based on a wide area of science such as physics, electromagnetics, thermodynamics, mechanics, electrical engineering, electronics, material engineering, heat transfer and heat flow, thermal engineering, neutronics, cryogenics, chemical engineering, control engineering, instrumentation engineering, vacuum engineering. For this, the research and development of elementary technology for fusion devices contributes to advance the technology level of each basic field. In addition, the mutual stimulus among various research fields contributes to increase the potential level of whole 'science and technology'. The spin-offs produced by the fusion technology development give much contribution not only to the general industrial technologies such as semiconductor technology, precision machining of large component, but also contribute to the progress of the accelerator technology, application technology of superconductivity, instrumentation and diagnostics, plasma application technology, heat-resistant and heavy radiation-resistant material technology, vacuum technology, and computer simulation technology. The spin-off produced by the fusion technology development expedite the development of frontier technology of other field and give much contribution to the progress of basic science on physics, space science, material science, medical science, communication, and environment. This report describes the current status of the spin-off effects of fusion research and development by focusing on the contribution of technology development for International Thermonuclear Experimental Reactor (ITER) to industrial technology. The possibilities of future application in the future are also included in this report from the view point of researchers working for nuclear fusion development. Although the nuclear fusion research has a characteristic to integrate the frontier technologies of

  17. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  18. Fusion technology programme

    International Nuclear Information System (INIS)

    Finken, D.

    1985-10-01

    KfK is involved in the European Fusion Programme predominantly in the NET and Fusion Technology part. The following fields of activity are covered: Studies for NET, alternative confinement concepts, and needs and issues of integral testing. Research on structural materials. Development of superconducting magnets. Gyrotron development (part of the Physics Programme). Nuclear technology (breeding materials, blanket design, tritium technology, safety and environmental aspects of fusion, remote maintenance). Reported here are status and results of work under contracts with the CEC within the NET and Technology Programme. The aim of the major part of this R and D work is the support of NET, some areas (e.g. materials, safety and environmental impact, blanket design) have a wider scope and address problems of a demonstration reactor. In the current working period, several new proposals have been elaborated to be implemented into the 85/89 Euratom Fusion Programme. New KfK contributions relate to materials research (dual beam and fast reactor irradiations, ferritic steels), to blanket engineering (MHD-effects) and to safety studies (e.g. magnet safety). (orig./GG)

  19. Inertial fusion program. Progress report, July 1-December 31, 1978

    International Nuclear Information System (INIS)

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO 2 laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO 2 lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization

  20. Plasma Physics and Controlled Nuclear Fusion Research 1971. Vol. III. Proceedings of the Fourth International Conference on Plasma Physics and Controlled Nuclear Fusion Research

    International Nuclear Information System (INIS)

    1971-01-01

    The ultimate goal of controlled nuclear fusion research is to make a new energy source available to mankind, a source that will be virtually unlimited and that gives promise of being environmentally cleaner than the sources currently exploited. This goal has stimulated research in plasma physics over the past two decades, leading to significant advances in the understanding of matter in its most common state as well as to progress in the confinement and heating of plasma. An indication of this progress is that in several countries considerable effort is being devoted to design studies of fusion reactors and to the technological problems that will be encountered in realizing these reactors. This range of research, from plasma physics to fusion reactor engineering, is shown in the present three-volume publication of the Proceedings of the Fourth Conference on Plasma Physics and Controlled Nuclear Fusion Research. The Conference was sponsored by the International Atomic Energy Agency and was held in Madison, Wisconsin, USA from 17 to 23 June 1971. The enthusiastic co-operation of the University of Wisconsin and of the United States Atomic Energy Commission in the organization of the Conference is gratefully acknowledged. The Conference was attended by over 500 scientists from 24 countries and 3 international organizations, and 143 papers were presented. These papers are published here in the original language; English translations of the Russian papers will be published in a Special Supplement to the journal Nuclear Fusion. The series of conferences on Plasma Physics and Controlled Nuclear Fusion Research has become a major international forum for the presentation and discussion of results in this important and challenging field. In addition to sponsoring these conferences, the International Atomic Energy Agency supports controlled nuclear fusion research by publishing the journal Nuclear Fusion, and has recently established an International Fusion Research Council

  1. Nuclear fusion

    International Nuclear Information System (INIS)

    Al-zaelic, M.M.

    2013-01-01

    Nuclear fusion can be relied on to solve the global energy crisis if the process of limiting the heat produced by the fusion reaction (Plasma) is successful. Currently scientists are progressively working on this aspect whereas there are two methods to limit the heat produced by fusion reaction, the two methods are auto-restriction using laser beam and magnetic restriction through the use of magnetic fields and research is carried out to improve these two methods. It is expected that at the end of this century the nuclear fusion energy will play a vital role in overcoming the global energy crisis and for these reasons, acquiring energy through the use of nuclear fusion reactors is one of the most urge nt demands of all mankind at this time. The conclusion given is that the source of fuel for energy production is readily available and inexpensive ( hydrogen atoms) and whole process is free of risks and hazards, especially to general health and the environment . Nuclear fusion importance lies in the fact that energy produced by the process is estimated to be about four to five times the energy produced by nuclear fission. (author)

  2. Accelerator ampersand Fusion Research Division 1991 summary of activities

    International Nuclear Information System (INIS)

    1991-12-01

    This report discusses research projects in the following areas: Heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; superconducting magnets; and bevalac operations

  3. Institute for Fusion Research and Large Helical Device program

    International Nuclear Information System (INIS)

    Iiyoshi, Atsuo

    1989-01-01

    In the research on nuclear fusion, the final objective is to materialize nuclear fusion reactors, and for the purpose, it is necessary to cause nuclear combustion by making the plasma of higher than 100 million deg and confine it for a certain time. So far in various universities, the researches on diversified fusion processes have been advanced, but in February, 1986, the Science Council issued the report 'Nuclear fusion research in universities hereafter'. As the next large scale device, an external conductor system helical device was decided, and it is desirable to found the organization for joint utilization by national universities to promote the project. The researches on the other processes are continued by utilizing the existing facilitie. The reason of selecting a helical device is the data base of the researches carried out so far can be utilized sufficiently, it is sufficiently novel even after 10 years from now, and many researchers can be collected. The place of the research is Toki City, Gifu Prefecture, where the Institute of Plasma Physics, Nagoya University, is to be moved. The basic concept of the superconducting helical device project, the trend of nuclear fusion development in the world, the physical research using a helical system and so on are reported. (Kako, I.)

  4. Plasma physics and controlled fusion research during half a century

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas.

  5. Plasma physics and controlled fusion research during half a century

    International Nuclear Information System (INIS)

    Lehnert, Bo

    2001-06-01

    A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. Temperatures above the limit for ignition of self-sustained fusion reactions, i.e. at more than hundred million degrees, have been reached in large experiments and under conditions where the fusion power generation is comparable to the power losses. An energy producing fusion reactor could in principle be realized already today, but it would not become technically and economically efficient when being based on the present state of art. Future international research has therefore to be conducted along broad lines, with necessary ingredients of basic investigations and new ideas

  6. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  7. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  8. Accelerator and Fusion Research Division: Summary of activities, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately

  9. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  10. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  11. Performance of a 200-J KrF laser amplifier for laser fusion research

    International Nuclear Information System (INIS)

    Owadano, Y.; Okuda, I.; Tanimoto, M.; Kasai, T.; Matsumoto, Y.; Yaoita, A.; Nemoto, F.; Komeiji, S.; Yano, M.

    1986-01-01

    An e-beam-pumped KrF laser has been developed as a middle-stage amplifier of a 1-kJ system for laser fusion research. The laser consists of one Marx generator (1MV, 11kJ), two PFLs (4.6 Ω, 100ns) with laser triggered output switches, two e-beam diodes (10 X 60 cm/sup 2/), and a laser cell (20- X 20- X 60-cm/sup 3/ active volume). Two e-beams are injected into the cell through carbon-sprayed Kapton anode and pressure foils. Up to now, a 120-J (70-ns) laser pulse has been generated with a 90% output coupling flat-flat resonator at 80% voltage operation. Overall efficiency is 1.5% in this case. A series of experiments has been performed with the laser to measure gain characteristics of a Kr-rich mixture, which is predicted to be more efficient than a normal Ar mixture in a high-laser-intensity region (>10 MW cm/sup -2/). An injection-locked oscillator mode was used to obtain a well-defined high-intensity laser beam, and a saturated intracavity intensity was measured

  12. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the TH Amphitheatre New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to ignition or to su...

  13. Academic Training: New Trends in Fusion Research

    CERN Multimedia

    Françoise Benz

    2004-01-01

    11, 12 and 13 October 2004-2005 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 11 October from 11.00 to 12.00 hrs, 12 and 13 October from 10.00 to 12.00 hrs - 11 and 12 October in the Main Auditorium, bldg. 500, 13 October in the Theory Conference Room, bldg. 4 New Trends in Fusion Research A. FASOLI / EPFL, Lausanne, CH The efforts of the international fusion community aim at demonstrating the scientific feasibility of thermonuclear fusion energy power plants. Understanding the behavior of burning plasmas, i.e. plasmas with strong self-heating, represents a primary scientific challenge for fusion research and a new science frontier. Although integrated studies will only be possible, in new, dedicated experimental facilities, such as the International Tokamak Experimental Reactor (ITER), present devices can address specific issues in regimes relevant to burning plasmas. Among these are an improvement of plasma performance via a reduction of the energy and particle transport, an optimization of the path to i...

  14. Report of the heavy-ion fusion task group

    International Nuclear Information System (INIS)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years

  15. X-Pinch Plasma Generation Testing for Neutron Source Development and Nuclear Fusion

    Directory of Open Access Journals (Sweden)

    Hossam A.Gabbar

    2018-04-01

    Full Text Available Nuclear fusion is a sought-out technology in which two light elements are fused together to create a heavier element and releases energy. Two primary nuclear fusion technologies are being researched today: magnetic and inertial confinement. However, a new type of nuclear fusion technology is currently being research: multi-pinch plasma beams. At the University of Ontario Institute of Technology, there is research on multi-pinch plasma beam technology as an alternative to nuclear fusion. The objective is to intersect two plasma arcs at the center of the chamber. This is a precursor of nuclear fusion using multi-pinch. The innovation portion of the students’ work is the miniaturization of this concept using high energy electrical DC pulses. The experiment achieved the temperature of 2300 K at the intersection. In comparison to the simulation data, the temperature from the simulation is 7000 K at the intersection. Additionally, energy harvesting devices, both photovoltaics and a thermoelectric generator, were placed in the chamber to observe the viable energy extraction.

  16. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1995-01-01

    This document deals with heavy-ion induction accelerators developed as fusion drivers for Inertial Confinement Fusion power. It presents the results of research aimed at developing drivers having reduced cost and size as well as the Elise accelerator being built at Lawrence Berkeley Laboratory. An experimental program at Lawrence Livermore National Laboratory concerning recirculating induction accelerators is also presented. Eventually, the document provides some information on other elements of the U.S. Heavy-Ion Fusion (HIF) research program: the experimental study of beam merging, a magnetic quadrupole development program and a study of plasma lenses. (TEC). 28 refs., 6 figs

  17. Progress of research and development of nuclear fusion and development of large nuclear fusion device technology

    International Nuclear Information System (INIS)

    1994-01-01

    In the last several years, the results of tokamak experiments were conspicuous, and the progress of plasma confinement performance, transport mechanism, divertors and impurities, helium transport and exhaust, electric current drive, magnetic field ripple effect and high speed particle transport and DT experiment are reported. The other confinement methods than tokamak, the related theories and reactor technology are described. The conceptual design of ITER was carried out by the cooperation of Japan, USA, EC and the former USSR. The projects of developing nuclear fusion in various countries, the design and the required research and development of ITER, the reconstruction and the required research and development of JT-60, JET and TFTR, the design and the required research and development of large helical device, the state of research and development of laser nuclear fusion and inversion magnetic field pinch nuclear fusion, the activities and roles of industrial circles in large nuclear fusion device technology, and the long term perspective of the technical development of nuclear fusion are described. (K.I.)

  18. Identifying heavy-ion-beam fusion design and system features with high economic leverage

    International Nuclear Information System (INIS)

    Meier, W.R.; Hogan, W.J.

    1985-01-01

    In this article the authors consider a heavy-ion-beam (HIB) fusion power plant that consists of a driver, a target factory, and one or more power units. A power unit is defined as all the buildings and equipment needed to generate electric power, provided the target and beams are delivered to the reaction chamber. Because the maximum achievable pulse rate in a single chamber is limited, more than one reaction chamber may be required to achieve the desired output of a single power unit. They distinguish between multiple power units and multiple reaction chambers so that they can examine separately the effects of increasing the number of reaction chambers at a constant net power and of increasing the power level by driving more power units with a single driver. The authors conducted studies to investigate the effects on the cost of electricity (COE) of variations in several design parameters. In particular, they examined the effects of maximum achievable chamber pulse rate, driver cost, target gain, electric conversion efficiency, and net electric power. They found that with a combination of improvements over their base case, HIB fusion can be economically competitive with present and future power sources

  19. Superconducting magnet and conductor research activities in the US fusion program

    International Nuclear Information System (INIS)

    Michael, P.C.; Schultz, J.H.; Antaya, T.A.; Ballinger, R.; Chiesa, L.; Feng, J.; Gung, C.-Y.; Harris, D.; Kim, J.-H.; Lee, P.; Martovetsky, N.; Minervini, J.V.; Radovinsky, A.; Salvetti, M.; Takayasu, M.; Titus, P.

    2006-01-01

    Fusion research in the United States is sponsored by the Department of Energy's Office of Fusion Energy Sciences (OFES). The OFES sponsors a wide range of programs to advance fusion science, fusion technology, and basic plasma science. Most experimental devices in the US fusion program are constructed using conventional technologies; however, a small portion of the fusion research program is directed towards large scale commercial power generation, which typically relies on superconductor technology to facilitate steady-state operation with high fusion power gain, Q. The superconductor portion of the US fusion research program is limited to a small number of laboratories including the Plasma Science and Fusion Center at MIT, Lawrence Livermore National Laboratory (LLNL), and the Applied Superconductivity Center at University of Wisconsin, Madison. Although Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (LBNL) are primarily sponsored by the US's High Energy Physics program, both have made significant contributions to advance the superconductor technology needed for the US fusion program. This paper summarizes recent superconductor activities in the US fusion program

  20. Trends of plasma physics and nuclear fusion research life cycle and research effort curve

    International Nuclear Information System (INIS)

    Ohe, Takeru; Kanada, Yasumasa; Momota, Hiromu; Ichikawa, Y.H.

    1979-05-01

    This paper presents a quantitative analysis of research trends in the fields of plasma physics and nuclear fusion. This analysis is based on information retrieval from available data bases such as INSPEC tapes. The results indicate that plasma physics research is now in the maturation phase of its life cycle, and that nuclear fusion research is in its growth phase. This paper indicates that there is a correlation between the number of accumulated papers in the fields of plasma physics and nuclear fusion and the experimentally attained values of the plasma ignition parameter ntT. Using this correlation ''research effort curve'', we forecast that the scientific feasibility of controlled fusion using magnetic confinement systems will be proved around 1983. (author)

  1. The JET project and the European fusion research programme

    International Nuclear Information System (INIS)

    Wuester, H.-O.

    1984-01-01

    The paper concerns the Joint European Torus (JET) project and the European Fusion Research Programme. Fusion as an energy source and commercial fusion power are briefly discussed. The main features of the JET apparatus and the tokamak magnetic field configuration are given. Also described are the specific aims of JET, and the proposed future fusion reactor programme. (U.K.)

  2. Intelligible seminar on fusion reactors. (12) Next step toward the realization of fusion reactors. Future vision of fusion energy research and development

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Kurihara, Kenichi; Tobita, Kenji

    2006-01-01

    In the last session of this seminar the progress of research and development for the realization of fusion reactors and future vision of fusion energy research and development are summarized. The some problems to be solved when the commercial fusion reactors would be realized, (1) production of deuterium as the fuel, (2) why need the thermonuclear reactors, (3) environmental problems, and (4) ITER project, are described. (H. Mase)

  3. Particle beam fusion progress report for 1989

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm 2 on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall

  4. SABRE (Sandia Accelerator and Beam Research Experiment): A test bed for the light ion fusion program

    International Nuclear Information System (INIS)

    Cuneo, M.E.; Hanson, D.L.; McKay, P.F.; Maenchen, J.E.; Tisone, G.C.; Adams, R.G.; Nash, T.; Bernard, M.; Boney, C.; Chavez, J.R.; Fowler, W.F.; Ruscetti, J.; Stearns, W.F.; Noack, D.; Wenger, D.F.

    1992-01-01

    Extraction applied-B ion diode experiments are underway on the recently completed SABRE positive polarity linear induction accelerator (6 MV, 220 kA). The authors are performing these experiments in direct support of the light ion fusion program on PBFAII at Sandia. SABRE provides a test bed with a higher shot rate and improved diagnostic access for ion source development and ion beam divergence control experiments. These experiments will also address the coupling of an ion diode to the turbulent, wide spectrum feed electrons which occur on these inductive adders in positive polarity. This work continues previous work on the HELIA accelerator. The diode is a uniformly magnetically insulated, extraction ion diode, with a 5-cm mean anode surface radius. The uniform insulation field profiles are generated by four individual 60 kJ capacitor banks. Field-exclusion profiles are also anticipated. They have developed a wide array of electrical, ion beam, and plasma diagnostics to accomplish their objectives. MITL (magnetically insulated transmission line) and diode voltages are being measured with a magnetic spectrometer, a range-filtered-scintillator (RFS) fiber optic/PMT system, and a range-filtered CR-39 nuclear track film based system. Beam energy can be determined by these diagnostics as well as a filtered Faraday cup array. MITL and ion currents are being measured with an array of Rogowski coils, common-mode rejection and single turn Bs, and resistive shunts. The ion source experiments will investigate thin-film lithium ion sources, particularly the active LEVIS (Laser EVaporation Ion Source) and the passive LiF source. LEVIS uses two pulsed lasers to evaporate and then ionize lithium from a lithium bearing thin-film on the anode. A ruby laser (20 ns, 12 J) for evaporation, and a dye laser for resonant lithium ionization have been developed. The performance of LEVIS with an array of active and passive surface cleaning techniques will be studied

  5. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  6. Heavy Ion Fusion Accelerator Research (HIFAR)

    International Nuclear Information System (INIS)

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C s + sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac

  7. Socio-Economic research on fusion SERF 3(2001-2003) External Costs of Fusion

    International Nuclear Information System (INIS)

    Lechon, Y.; Saez, R.; Cabal, H.

    2003-01-01

    Based on SEAFP project (Raeder et al, 1995) findings a preliminary assessment of environmental external costs associated to fusion power was performed under the framework of the first phase of the SERF (Socioeconomic Research on Fusion) project (Saez et al, 1999). This study showed very low external costs of fusion power compared with other traditional and new energy generating technologies. In order to update the assessment of externalities of fusion power, SERF2 project a new plant was included and an analysis of the key variables influencing the external cost was carried out. In the new phase of the SERF project, SERF3, three new additional plant models have been introduced with the aim of assessing the possibilities of silicon carbide to be used as structural material for fusion power plants. Furthermore, comparison of fusion external costs with those of other generation technologies in the state of technology development expected for 2050 has been also performed. (Author)

  8. EURATOM/UKAEA Association fusion research. 1998/99 progress report

    International Nuclear Information System (INIS)

    1999-11-01

    experiments in March 1998, has also been of benefit to ITER by providing data in a new region of parameter space to help test models of tokamak performance. Data from START has also been used to improve our understanding of the promising spherical tokamak concept as part of the European fusion strategy on concept improvements. Data analysis has revealed regimes of improved confinement and world-record values of β in discharges with Ohmic heating alone. The new spherical tokamak at Culham, MAST, with twice the linear dimensions of START (and almost an order of magnitude higher plasma current), was completed with the production of the first toroidal plasma in December 1998 as part of the commissioning programme. MAST is due to begin physics experiments with powerful neutral beam heating in autumn 1999, following resolution of a problem with the central solenoid used to induce the plasma current. It will provide additional data to the tokamak database to (a) provide increased confidence in models used to predict the performance of ITER and (b) explore spherical tokamak physics in conditions closer to those of a burning plasma device. Our strong programme of fusion power studies provides key input on ITER safety studies, as well as examining the longer term safety, environmental and economic aspects of fusion power plant designs. We have continued to play leading roles in European safety and environmental assessments of fusion power, and contributed to the European programme of research into socio-economic aspects of fusion. Development work on computer codes and data related to the modelling of neutron activation has ensured that the European Activation System, managed by the EURATOM/UKAEA Association, remains the world leader. Influential input to safety studies of ITER included ongoing reviews of the relevance of these to the demonstration of the safety and environmental potential of fusion power. Expertise in materials and manufacturing techniques relevant for developing

  9. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  10. Fusion programme 1976-1980

    International Nuclear Information System (INIS)

    Bock, R.; Wollenberger, H.; Kaufmann, M.; Wolf, G.H.; Heinz, W.

    1981-01-01

    In 1980, the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, the fifth large-scale research institution to join the agreement for co-operation in the fusion-centered plasmaphysics and fusion reactor technology made between the HMI, the IPP, the KFA and the KfK in 1974. Under the project responsibility of the GSI the BMFT have investigated whether the inertial confinement with heavy ion beams can be used as an alternative pathway to the fusion reactor in the Federal Republic of Germany. As in the past years, the co-operation with universities has been maintained, where especially basic research in plasma physics has been promoted in projects financed by the centers on the one hand, and by means of the main point 'fusion-centered plasma physics' set up by the Deutsche Forschungsgemeinschaft on the other hand. The topics of these activities are listed. The summary given in this brief report singles out only a few important results of the work on magnetic plasma confinement, fusion technology and inertial confinement. This information is to be completed and depend by studying the scientific reports or individual publications of the centers. The addresses where to request these reports are listed. (orig.) [de

  11. Conceptual design of the beam source for the DEMO Neutral Beam Injectors

    Science.gov (United States)

    Sonato, P.; Agostinetti, P.; Fantz, U.; Franke, T.; Furno, I.; Simonin, A.; Tran, M. Q.

    2016-12-01

    DEMO (DEMOnstration Fusion Power Plant) is a proposed nuclear fusion power plant that is intended to follow the ITER experimental reactor. The main goal of DEMO will be to demonstrate the possibility to produce electric energy from the fusion reaction. The injection of high energy neutral beams is one of the main tools to heat the plasma up to fusion conditions. A conceptual design of the Neutral Beam Injector (NBI) for the DEMO fusion reactor, is currently being developed by Consorzio RFX in collaboration with other European research institutes. High efficiency and low recirculating power, which are fundamental requirements for the success of DEMO, have been taken into special consideration for the DEMO NBI. Moreover, particular attention has been paid to the issues related to reliability, availability, maintainability and inspectability. A conceptual design of the beam source for the DEMO NBI is here presented featuring 20 sub-sources (two adjacent columns of 10 sub-sources each), following a modular design concept, with each sub-source featuring its radio frequency driver, capable of increasing the reliability and availability of the DEMO NBI. Copper grids with increasing size of the apertures have been adopted in the accelerator, with three main layouts of the apertures (circular apertures, slotted apertures and frame-like apertures for each sub-source). This design, permitting to significantly decrease the stripping losses in the accelerator without spoiling the beam optics, has been investigated with a self-consistent model able to study at the same time the magnetic field, the electrostatic field and the trajectory of the negative ions. Moreover, the status on the R&D carried out in Europe on the ion sources is presented.

  12. Characteristics of a high-power RF source of negative hydrogen ions for neutral beam injection into controlled fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, G. F.; Belchenko, Yu. I.; Gusev, I. A.; Ivanov, A. A.; Kondakov, A. A.; Sanin, A. L.; Sotnikov, O. Z., E-mail: O.Z.Sotnikov@inp.nsk.su; Shikhovtsev, I. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2017-01-15

    An injector of hydrogen atoms with an energy of 0.5–1 MeV and equivalent current of up to 1.5 A for purposes of controlled fusion research is currently under design at the Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences. Within this project, a multiple-aperture RF surface-plasma source of negative hydrogen ions is designed. The source design and results of experiments on the generation of a negative ion beam with a current of >1 A in the long-pulse mode are presented.

  13. Inertial fusion program. Progress report, July 1-December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, R.B.

    1980-11-01

    Progress at Los Alamos Scientific Laboratory (LASL) in the development of high-energy short-pulse CO/sub 2/ laser systems for fusion research is reported. Improvements to LASL's two-beam system, Gemini, are outlined and experimental results are discussed. Our eight-beam system, Helios, was fired successfully on target for the first time, and became the world's most powerful gas laser for laser fusion studies. Work on Antares, our 100- to 200-TW target irradiation system, is summarized, indicating that design work and building construction are 70 and 48% complete, respectively. A baseline design for automatic centering of laser beams onto the various relay mirrors and the optical design of the Antares front end are discussed. The results of various fusion reactor studies are summarized, as well as investigations of synthetic-fuel production through application of fusion energy to hydrogen production by thermochemical water splitting. Studies on increased efficiency of energy extraction in CO/sub 2/ lasers and on lifetimes of cryogenic pellets in a reactor environment are summarized, as well as the results of studies on pellet injection, tracking, and beam synchronization.

  14. Plasma physics and controlled nuclear fusion research

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: During the last decade, growing efforts have been devoted to studying the possible forms an electricity-producing thermonuclear reactor might take and the various technical problems that will have to be overcome. Previous IAEA Conferences took place in Salzburg (1961), Culham (1965), Novosibirsk (1968), Madison (1971), Tokyo (1974), Berchtesgaden (1976) and Innsbruck (1978) The exchange of information that has characterized this series of meetings is an important example of international co-operation and has contributed substantially to progress in controlled fusion research. The results of experiments in major research establishments, as well as the growing scientific insights in the field of plasma physics, give hope that the realization of nuclear fusion will be made possible on a larger scale and beyond the laboratory stage by the end of this century. The increase of the duration of existing tokamak discharges requires solution of the impurity control problem. First results from the new big machines equipped with the poloidal divertor recently came into operation. PDX (USA) and ASDEX (F.R. of Germany) show that various divertor configurations can be established and maintained and that the divertors function in the predicted manner. The reduction of high-Z impurities on these machines by a factor 10 was achieved. As a result of extensive research on radio-frequency (RF) plasma heating on tokamaks: PLT (USA), TFR (France), JFT-2 (Japan), the efficiency of this attractive method of plasma heating comparable to neutral beam heating was demonstrated. It was shown that the density of the input power of about 5-10 kW/cm 2 is achievable and this limit is high enough for application to reactor-like machines. One of the inspiring results reported at the conference was the achievement of value (the ratio of plasma pressure to magnetic field pressure) of ∼ 3% on tokamaks T-11 (USSR) and ISX-B (USA). It is important to note that this value exceeds the

  15. Direct-driven target implosion in heavy ion fusion

    International Nuclear Information System (INIS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination. (paper)

  16. Trends of researches for fusion engineering research facility (FERF)

    International Nuclear Information System (INIS)

    Ozawa, Yasutomo; Enoto, Takeaki

    1975-01-01

    The role of a fusion neutron radiation test facility in the development of a scientific feasibility experimental reactor or demonstration fusion power reactor plant would be analogous to the role of the materials testing and experimental reactors in the development of fission power reactor. While the material testing fission reactor has been developed after successful operation of fission reactors, in the case of fusion reactor development it is desirable to realize the fusion engineering research facility (FERF) in-phase to the development of SFX and/or demonstration fusion power reactor plants. Here so called FERF in near future is the Controlled Thermonuclear Reactor which provides the high-intensity and high-energy neutron and plasma source whether the net power output is produced or not. From the point of direct attainment to SFX, we would like to emphasize that FEFE is the royal road leading to the goal of successful achievement of CTR program and could be useful for the experiment on impurity effects caused by neutron and plasma irradiations onto the wall material for SFX. Further, we rather suppose that hybrid FERF-fission assembly could be fairly and easily realizable in near future. (auth.)

  17. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  18. Summaries of special research project on nuclear fusion 1980

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1981-09-01

    This is a report of the research project entitled ''Nuclear fusion'', supported by the grant in aid for fusion research from the Ministry of Education in the fiscal year 1980. The research project was started in April, 1980, and comprises the following seventeen subjects of nuclear fusion research. 1) Heavy irradiation effects, 2) plasma-wall interaction, 3) neutronics, 4) welding engineering, 5) science and technology of tritium, 6) biological effects of tritium, 7) diagnostics of high temperature plasma, 8) new lasers, 9) fundamentals of plasma heating, 10) high efficiency energy conversion, 11) theory and computer simulation, 12) superconducting materials, 13) fundamental phenomena of superconductivity, 14) magnet technology, 15) heat transfer and structural engineering, 16) system design, and 17) resources and assessment of fusion energy. 43 summaries concerning reactor materials and plasma-wall interaction, 29 summaries concerning the science, technology and biological effects of tritium, 41 summaries concerning the fundamentals of reactor plasma control, 15 summaries concerning the technology of superconducting magnets, and 14 summaries concerning the design of fusion reactors and its evaluation are collected in this report, and their results and progress can be known. (Kako, I.)

  19. Automated double-cone-beam CT fusion technique. Enhanced evaluation of glue distribution in cases of spinal dural arteriovenous fistula (SDAVF) embolisation

    International Nuclear Information System (INIS)

    Farago, Giuseppe; Caldiera, V.; Antozzi, C.; Bellino, A.; Innocenti, A.; Ciceri, E.

    2017-01-01

    Spinal dural arteriovenous fistulas (SDAVFs) are acquired diseases that represent the majority of all arteriovenous spinal shunts, leading to progressive and disabling myelopathy. Treatment is focused on accurately disconnecting the fistula point. We present our experience with the double-cone-beam CT fusion technique successfully applied to evaluate treatment results in a series of SDAVFs. Between November 2011 and December 2015 we performed double-DynaCT acquisition (pre- and post-embolisation) in 12 cases of SDAVF. A successful DynaCT fusion technique was only achieved in the group of patients with pre- and post-treatment images acquired at the same time as the treatment session, under general anaesthesia (4/12). DynaCT performed on different days proved to be inadequate for the automated fusion technique because of changes in the body position (8/12). A pre-treatment flat-panel cone-beam CT with contrast, at the time of diagnostic angiography, can be very helpful to detect the correct level of the fistula and the relationship between the fistula and the surrounding structures. In case of the endovascular approach, additional post-treatment native acquisition merged with the pre-treatment acquisition (double-cone-beam CT fusion technique) permits to immediately evaluate the distribution of the glue cast and to confirm the success of the procedure. (orig.)

  20. Automated double-cone-beam CT fusion technique. Enhanced evaluation of glue distribution in cases of spinal dural arteriovenous fistula (SDAVF) embolisation

    Energy Technology Data Exchange (ETDEWEB)

    Farago, Giuseppe [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Interventional Neuroradiology, Milan (Italy); Caldiera, V. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Antozzi, C.; Bellino, A. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Neuroimmunology and Neuromuscular Diseases, Milan (Italy); Innocenti, A. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Neuro-Oncology, Milan (Italy); Ciceri, E. [Foundation Neurological Institute ' ' C. Besta' ' , Department of Interventional Neuroradiology, Milan (Italy); Azienda Ospedaliera Universitaria Integrata Borgo Trento, Department of Neuroradiology, Verona (Italy)

    2017-05-15

    Spinal dural arteriovenous fistulas (SDAVFs) are acquired diseases that represent the majority of all arteriovenous spinal shunts, leading to progressive and disabling myelopathy. Treatment is focused on accurately disconnecting the fistula point. We present our experience with the double-cone-beam CT fusion technique successfully applied to evaluate treatment results in a series of SDAVFs. Between November 2011 and December 2015 we performed double-DynaCT acquisition (pre- and post-embolisation) in 12 cases of SDAVF. A successful DynaCT fusion technique was only achieved in the group of patients with pre- and post-treatment images acquired at the same time as the treatment session, under general anaesthesia (4/12). DynaCT performed on different days proved to be inadequate for the automated fusion technique because of changes in the body position (8/12). A pre-treatment flat-panel cone-beam CT with contrast, at the time of diagnostic angiography, can be very helpful to detect the correct level of the fistula and the relationship between the fistula and the surrounding structures. In case of the endovascular approach, additional post-treatment native acquisition merged with the pre-treatment acquisition (double-cone-beam CT fusion technique) permits to immediately evaluate the distribution of the glue cast and to confirm the success of the procedure. (orig.)

  1. Fusion plasma physics research on the H-1 national facility

    International Nuclear Information System (INIS)

    Harris, J.

    1998-01-01

    Full text: Australia has a highly leveraged fusion plasma research program centred on the H-1 National Facility device at the ANU. H-1 is a heliac, a novel helical axis stellarator that was experimentally pioneered in Australia, but has a close correlation with the worldwide research program on toroidal confinement of fusion grade plasma. Experiments are conducted on H-1 by university researchers from the Australian Fusion Research Group (comprising groups from the ANU, the Universities of Sydney, Western Sydney, Canberra, New England, and Central Queensland University) under the aegis of AINSE; the scientists also collaborate with fusion researchers from Japan and the US. Recent experiments on H-1 have focused on improved confinement modes that can be accessed at very low powers in H-1, but allow the study of fundamental physics effects seen on much larger machines at higher powers. H-1 is now being upgraded in magnetic field and heating power, and will be able to confine hotter plasmas beginning in 1999, offering greatly enhanced research opportunities for Australian plasma scientists and engineers, with substantial spillover of ideas from fusion research into other areas of applied physics and engineering

  2. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Alex, E-mail: af@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); The Virtual National Laboratory for Heavy Ion Fusion Science (United States)

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy.

  3. Differential acceleration in the final beam lines of a Heavy Ion Fusion driver

    International Nuclear Information System (INIS)

    Friedman, Alex

    2014-01-01

    A long-standing challenge in the design of a Heavy Ion Fusion power plant is that the ion beams entering the target chamber, which number of order a hundred, all need to be routed from one or two multi-beam accelerators through a set of transport lines. The beams are divided into groups, each of which has a unique arrival time and may have a unique kinetic energy. It is also necessary to arrange for each beam to enter the target chamber from a prescribed location on the periphery of that chamber. Furthermore, it has generally been assumed that additional constraints must be obeyed: that the path lengths of the beams in a group must be equal, and that any delay of “main-pulse” beams relative to “foot-pulse” beams must be provided by the insertion of large delay-arcs in the main beam transport lines. Here we introduce the notion of applying “differential acceleration” to individual beams or sets of beams at strategic stages of the transport lines. That is, by accelerating some beams “sooner” and others “later,” it is possible to simplify the beam line configuration in a number of cases. For example, the time delay between the foot and main pulses can be generated without resorting to large arcs in the main-pulse beam lines. It is also possible to use differential acceleration to effect the simultaneous arrival on target of a set of beams (e.g., for the foot-pulse) without requiring that their path lengths be precisely equal. We illustrate the technique for two model configurations, one corresponding to a typical indirect-drive scenario requiring distinct foot and main energies, and the other to an ion-driven fast-ignition scenario wherein the foot and main beams share a common energy

  4. Accelerators for Fusion Materials Testing

    Science.gov (United States)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  5. Research in the US on heavy ion drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Celata, C.; Faltens, A.; Fessenden, T.J.

    1986-10-01

    The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallel) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr

  6. Cold fusion research

    International Nuclear Information System (INIS)

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy

  7. Fusion research and technology records in INIS database

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1998-01-01

    This article is a summary of a survey study ''''A survey on publications in Fusion Research and Technology. Science and Technology Indicators in Fusion R and T'''' by the same author on Fusion R and T records in the International Nuclear Information System (INIS) bibliographic database. In that study, for the first time, all scientometric and bibliometric information contained in a bibliographic database, using INIS records, is analyzed and quantified, specific to a selected field of science and technology. A variety of new science and technology indicators which can be used for evaluating research and development activities is also presented in that study that study

  8. Response to FESAC survey, non-fusion connections to Fusion Energy Sciences. Applications of the FES-supported beam and plasma simulation code, Warp

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grote, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vay, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-29

    The Fusion Energy Sciences Advisory Committee’s subcommittee on non-fusion applications (FESAC NFA) is conducting a survey to obtain information from the fusion community about non-fusion work that has resulted from their DOE-funded fusion research. The subcommittee has requested that members of the community describe recent developments connected to the activities of the DOE Office of Fusion Energy Sciences. Two questions in particular were posed by the subcommittee. This document contains the authors’ responses to those questions.

  9. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guszejnov, D.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Pusztai, I. [Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Refy, D.; Zoletnik, S. [MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Lampert, M. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of)

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  10. Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

  11. Safety training and safe operating procedures written for PBFA [Particle Beam Fusion Accelerator] II and applicable to other pulsed power facilities

    International Nuclear Information System (INIS)

    Donovan, G.L.; Goldstein, S.A.

    1986-12-01

    To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards

  12. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  13. Research on Kalman-filter based multisensor data fusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc.Various multisensor data fusion methods have been extensively investigated by researchers,of which Klaman filtering is one of the most important.Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown.states of a dynamic system,which has found widespread application in many areas.The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods.then a new method of state fusion is proposed.Finally the simulation results demonstrate the effectiveness of the introduced method.

  14. Focus on nuclear fusion research

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Mlynář, Jan

    2011-01-01

    Roč. 61, - (2011), s. 62-63 ISSN 0375-8842 Institutional research plan: CEZ:AV0Z20430508 Keywords : ITER * COMPASS * fusion energy * tokamak * EURATOM Subject RIV: BL - Plasma and Gas Discharge Physics http://www.ipp.cas.cz/Tokamak/clanky/energetika_COMPASS.pdf

  15. Trends in fusion reactor safety research

    International Nuclear Information System (INIS)

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs

  16. The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics

    International Nuclear Information System (INIS)

    Lee, E.P.; Briggs, R.J.

    1997-09-01

    Solenoidal magnets have been used as the beam transport system in all the high current electron induction accelerators that have been built in the past several decades. They have also been considered for the front end transport system for heavy ion accelerators for Inertial Fusion Energy (IFE) drivers, but this option has received very little attention in recent years. The analysis reported here was stimulated mainly by the recent effort to define an affordable open-quotes Integrated Research Experimentclose quotes (IRE) that can meet the near term needs of the IFE program. The 1996 FESAC IFE review panel agreed that an integrated experiment is needed to fully resolve IFE heavy ion driver science and technology issues; specifically, open-quotes the basic beam dynamics issues in the accelerator, the final focusing and transport issues in a reactor-relevant beam parameter regime, and the target heating phenomenologyclose quotes. The development of concepts that can meet these technical objectives and still stay within the severe cost constraints all new fusion proposals will encounter is a formidable challenge. Solenoidal transport has a very favorable scaling as the particle mass is decreased (the main reason why it is preferred for electrons in the region below 50 MeV). This was recognized in a recent conceptual study of high intensity induction linac-based proton accelerators for Accelerator Driven Transmutation Technologies, where solenoidal transport was chosen for the front end. Reducing the ion mass is an obvious scaling to exploit in an IRE design, since the output beam voltage will necessarily be much lower than that of a full scale driver, so solenoids should certainly be considered as one option for this experiment as well

  17. Progress in fusion technology in the U.S. magnetic fusion program

    International Nuclear Information System (INIS)

    Dowling, R.J.; Beard, D.S.; Haas, G.M.; Stone, P.M.; George, T.V.

    1987-01-01

    In this paper the authors discuss the major technological achievements that have taken place during the past few years in the U.S. magnetic fusion program which have contributed to the global efforts. The goal has been to establish the scientific and technological base required for fusion energy. To reach this goal the fusion RandD program is focused on four key technical issues: determine the optimum configuration of magnetic confinement systems; determine the properties of burning plasmas; develop materials for fusion systems; and establish the nuclear technology of fusion systems. The objective of the fusion technology efforts has been to develop advanced technologies and provide the necessary support for research of these four issues. This support is provided in a variety of areas such as: high vacuum technology, large magnetic field generation by superconducting and copper coils, high voltage and high current power supplies, electromagnetic wave and particle beam heating systems, plasma fueling, tritium breeding and handling, remote maintenance, energy recovery. The U.S. Fusion Technology Program provides major support or has the primary responsibility in each of the four key technical issues of fusion, as described in the Magnetic Fusion Program Plan of February 1985. This paper has summarized the Technology Program in terms of its activities and progress since the Proceedings of the SOFT Conference in 1984

  18. Power matching for pellet fusion

    International Nuclear Information System (INIS)

    Martin, R.L.; Arnold, R.C.

    1976-01-01

    The number of beams required for optimum power transfer from a given power source to the surface of a pellet is derived. The result is valid for linear optical systems, hence, for pellet fusion by laser or high energy ion beams. The optimum number of beams turns out to be inconceivably large for any practical system. Practical pellet fusion by lasers or high energy heavy ion beams must thus compromise physical principles in favor of reduced cost and optical complexity

  19. Radiological safety design considerations for fusion research experiments

    International Nuclear Information System (INIS)

    Crase, K.W.; Singh, M.S.

    1979-01-01

    A wide variety of fusion research experiments are in the planning or construction stages. Two such experiments, the Nova Laser Fusion Facility and the Mirror Fusion Test Facility (MFTF), are currently under construction at Lawrence Livermore Laboratory. Although the plasma chamber vault for MFTF and the Nova target room will have thick concrete walls and roofs, the radiation safety problems are made complex by the numerous requirements for shield wall penetrations. This paper addresses radiation safety considerations for the MFTF and Nova experiments, and the need for integrated safety considerations and safety technology development during the planning stages of fusion experiments

  20. Interaction of heavy ions beams with hot and dense plasmas. Application to inertial fusion

    International Nuclear Information System (INIS)

    Maynard, Gilles

    1987-01-01

    The subject of this work is the variation with time, on one of the energy and charge state of an heavy ion beam which through a plasma, and on another side, of a target used in ion inertial confinement fusion. We take in account projectile excitation, and higher order corrections to the Born stopping power formula are calculated. Comparison with experimental results in gas and solid are good. In hot plasma case, non-equilibrium charge states are described. We present an hydrodynamic simulation code of one dimension and three temperatures. We show that the shortening of the heavy ions beams with temperature reinforces the radiative transfer importance. (author) [fr

  1. Development of Laser Based Plasma Diagnostics for Fusion Research on NSTX-U

    Science.gov (United States)

    Barchfeld, Robert Adam

    plasma diagnostics. Plasma diagnostics collect data from fusion reactors in a number of different ways. Among these are far infrared (FIR) laser based systems. By probing a fusion plasma with FIR lasers, many properties can be measured, such as density and density fluctuations. This dissertation discusses the theory and design of two laser based diagnostic instruments: 1) the Far Infrared Tangential Interferometer and Polarimeter (FIReTIP) systems, and 2) the High-ktheta Scattering System. Both of these systems have been designed and fabricated at UC Davis for use on the National Spherical Torus Experiment - Upgrade (NSTX-U), located at Princeton Plasma Physics Laboratory (PPPL). These systems will aid PPPL scientists in fusion research. The FIReTIP system uses 119 ?m methanol lasers to pass through the plasma core to measure a chord averaged plasma density through interferometry. It can also measure the toroidal magnetic field strength by the way of polarimetery. The High-ktheta Scattering System uses a 693 GHz formic acid laser to measure electron scale turbulence. Through collective Thomson scattering, as the probe beam passes through the plasma, collective electron motion will scatter power to a receiver with the angle determined by the turbulence wavenumber. This diagnostic will measure ktheta from 7 to 40 cm-1 with a 4-channel receiver array. The High-ktheta Scattering system was designed to facilitate research on electron temperature gradient (ETG) modes, which are believed to be a major contributor to anomalous transport on NSTX-U. The design and testing of these plasma diagnostics are described in detail. There are a broad range of components detailed including: optically pumped gas FIR lasers, overmoded low loss waveguide, launching and receiving optical designs, quasi-optical mixers, electronics, and monitoring and control systems. Additionally, details are provided for laser maintenance, alignment techniques, and the fundamentals of nano-CNC-machining.

  2. Comparative assessment of world research efforts on magnetic confinement fusion

    International Nuclear Information System (INIS)

    McKenney, B.L.; McGrain, M.; Rutherford, P.H.

    1990-02-01

    This report presents a comparative assessment of the world's four major research efforts on magnetic confinement fusion, including a comparison of the capabilities in the Soviet Union, the European Community (Western Europe), Japan, and the United States. A comparative evaluation is provided in six areas: tokamak confinement; alternate confinement approaches; plasma technology and engineering; and fusion computations. The panel members are involved actively in fusion-related research, and have extensive experience in previous assessments and reviews of the world's four major fusion programs. Although the world's four major fusion efforts are roughly comparable in overall capabilities, two conclusions of this report are inescapable. First, the Soviet fusion effort is presently the weakest of the four programs in most areas of the assessment. Second, if present trends continue, the United States, once unambiguously the world leader in fusion research, will soon lose its position of leadership to the West European and Japanese fusion programs. Indeed, before the middle 1990s, the upgraded large-tokamak facilities, JT-60U (Japan) and JET (Western Europe), are likely to explore plasma conditions and operating regimes well beyond the capabilities of the TFTR tokamak (United States). In addition, if present trends continue in the areas of fusion nuclear technology and materials, and plasma technology and materials, and plasma technology development, the capabilities of Japan and Western Europe in these areas (both with regard to test facilities and fusion-specific industrial capabilities) will surpass those of the United States by a substantial margin before the middle 1990s

  3. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  4. Japanese program of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Hasiguti, R.R.

    1982-01-01

    The Japanese program of materials research for fusion reactors is described based on the report to the Nuclear Fusion Council, the project research program of the Ministry of Education, Science and Culture, and other official documents. The alloy development for the first wall and its radiation damage are the main topics discussed in this paper. Materials viewpoints for the Japanese Tokamak facilities and the problems of irradiation facilities are also discussed. (orig.)

  5. Plasma physics and nuclear fusion research

    CERN Document Server

    Gill, Richard D

    1981-01-01

    Plasma Physics and Nuclear Fusion Research covers the theoretical and experimental aspects of plasma physics and nuclear fusion. The book starts by providing an overview and survey of plasma physics; the theory of the electrodynamics of deformable media and magnetohydrodynamics; and the particle orbit theory. The text also describes the plasma waves; the kinetic theory; the transport theory; and the MHD stability theory. Advanced theories such as microinstabilities, plasma turbulence, anomalous transport theory, and nonlinear laser plasma interaction theory are also considered. The book furthe

  6. Annual report of Naka Fusion Research Establishment from April 1, 1994 to March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Takashi; Naito, Osamu; Ogiwara, Norio; Saigusa, Mikio; Seki, Masahiro; Murasawa, Michihiko; Uehara, Yusuke [eds.; Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-11-01

    Research and development activities at Naka Fusion Research Establishment, JAERI, are reported for the period from April 1, 1994 to March 31, 1995. The main objectives of the JT-60 experiments are: confinement improvement, impurity control and divertor studies, steady-state studies, and energetic particle physics. JFT-2M experiments progressed in the momentum transport study by applying an external helical field and toroidal momentum input with NBI, and also, the boundary plasma study through the introduction of an electric field in the scrape-off layer (SOL) by the divertor biasing. Progress in the DIII-D experiments was obtained in the studies of divertor radiation, advanced tokamak and VH-mode plasma. As for the fusion technology research, activities are focused on the Research and Development (R and D) for ITER EDA: superconducting magnets, neutral beam heating, radio frequency heating, plasma facing components, reactor structure, remote maintenance, shielding blanket, tritium processing, tritium safety and fusion safety. Based on the Outline Design approved in March 1994 by the ITER Council a sensitivity study was conducted by the new director and JCT in close collaboration with four Home Teams in order to determine the optimum way to achieve a reduction in the cost of ITER while minimizing the impacts regarding its performance margins. Japanese Home Team carried out a part of the ITER design based on task agreements, mainly in the field of vacuum vessel, first wall and blanket, initial assembly, etc. The DREAM tokamak reactor concept was improved focusing on the reactor internals and safety. (J.P.N.).

  7. Annual report of Naka Fusion Research Establishment from April 1, 1994 to March 31, 1995

    International Nuclear Information System (INIS)

    Nagashima, Takashi; Naito, Osamu; Ogiwara, Norio; Saigusa, Mikio; Seki, Masahiro; Murasawa, Michihiko; Uehara, Yusuke

    1995-11-01

    Research and development activities at Naka Fusion Research Establishment, JAERI, are reported for the period from April 1, 1994 to March 31, 1995. The main objectives of the JT-60 experiments are: confinement improvement, impurity control and divertor studies, steady-state studies, and energetic particle physics. JFT-2M experiments progressed in the momentum transport study by applying an external helical field and toroidal momentum input with NBI, and also, the boundary plasma study through the introduction of an electric field in the scrape-off layer (SOL) by the divertor biasing. Progress in the DIII-D experiments was obtained in the studies of divertor radiation, advanced tokamak and VH-mode plasma. As for the fusion technology research, activities are focused on the Research and Development (R and D) for ITER EDA: superconducting magnets, neutral beam heating, radio frequency heating, plasma facing components, reactor structure, remote maintenance, shielding blanket, tritium processing, tritium safety and fusion safety. Based on the Outline Design approved in March 1994 by the ITER Council a sensitivity study was conducted by the new director and JCT in close collaboration with four Home Teams in order to determine the optimum way to achieve a reduction in the cost of ITER while minimizing the impacts regarding its performance margins. Japanese Home Team carried out a part of the ITER design based on task agreements, mainly in the field of vacuum vessel, first wall and blanket, initial assembly, etc. The DREAM tokamak reactor concept was improved focusing on the reactor internals and safety. (J.P.N.)

  8. ITER implementation and fusion energy research in China

    International Nuclear Information System (INIS)

    Zhao, Jing; Feng, Zhaoliang; Yang, Changchun

    2015-01-01

    ITER Project is jointly implemented by China, EU, India, Japan, Korea, Russian Federation and USA, under the coordination of Center Team of ITER International Fusion Energy Organization (IO-CT). Chinese fusion research related institutes and industrial enterprises are fully involved in the implementation of China contribution to the project under the leadership of ITER China Domestic Agency (CN-DA), together with IO-CT. The progresses of Procurement Packages (PA) allocated to China and the technical issues, especially on key technology development and schedule, QA/QC issues, are highlighted in this report. The specific enterprises carrying out different PAs are identified in order to make the increasing international manufactures and producers to ITER PAs know each other well for the successful implementation of ITER project. The participation of China to the management of IO-CT is also included, mainly from the governmental aspect and staff recruited from China. On the other hand, the domestic fusion researches, including upgrade of EAST, HL-2A Tokamaks in China, TBM program, the next step design activities for fusion energy power plant, namely, CFETR and training in this area, are also introduced for global cooperation for international fusion community. (author)

  9. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-01-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion-source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at. (Auth.)

  10. Heavy ion inertial fusion

    International Nuclear Information System (INIS)

    Keefe, D.; Sessler, A.M.

    1980-07-01

    Inertial fusion has not yet been as well explored as magnetic fusion but can offer certain advantages as an alternative source of electric energy for the future. Present experiments use high-power beams from lasers and light-ion diodes to compress the deuterium-tritium (D-T) pellets but these will probably be unsuitable for a power plant. A more promising method is to use intense heavy-ion beams from accelerator systems similar to those used for nuclear and high-energy physics; the present paper addresses itself to this alternative. As will be demonstrated the very high beam power needed poses new design questions, from the ion source through the accelerating system, the beam transport system, to the final focus. These problems will require extensive study, both theoretically and experimentally, over the next several years before an optimum design for an inertial fusion driver can be arrived at

  11. Inertial Fusion Program. Progress report, July 1-December 31, 1979

    International Nuclear Information System (INIS)

    Skoberne, F.

    1981-10-01

    Progress in the development of high-energy short-pulse CO 2 laser systems for fusion research is reported. Improvements in the Los Alamos National Laboratory eight-beam Helios system are described. These improvements increased the reliability of the laser and permitted the firing of 290 shots, most of which delivered energies of approximately 8 kJ to the target. Modifications to Gemini are outlined, including the installation of a new target-insertion mechanism. The redirection of the Antares program is discussed in detail, which will achieve a total energy of approximatey 40 kJ with two beams. This redirection will bring Antares on-line almost two years earlier than was possible with the full six-beam system, although at a lower energy. Experiments with isentropically imploded Sirius-B targets are discussed, and x-ray radiation-loss data from gold microballoons are presented, which show that these results are essentially identical with those obtained at glass-laser wavelengths. Significant progress in characterizing laser fusion targets is reported. New processes for fabricating glass miroballoon x-ray diagnostic targets, the application of high-quality metallic coatings, and the deposition of thick plastic coatings are described. Results in the development of x-ray diagnostics are reported, and research in the Los Alamos heavy-ion fusion program is summarized. Results of investigations of phase-conjugation research of gaseous saturable absorbers and of the use of alkali-halide crystals in a new class of saturable absorbers are summarized. New containment-vessel concepts for Inertial Confinement Fusion reactors are discussed, and results of a scoping study of four fusion-fission hybrid concepts are presented

  12. Fusion reactor design: On the road to commercialization

    International Nuclear Information System (INIS)

    Kulcinski, G.L.

    1984-01-01

    The worldwide effort in fusion is now approximately 2 billion dollars per year and over 12 billion dollars has been invested since 1951 in developing this energy source for the 21st century. A vital component of the past efforts in fusion research has been the conceptual design activities performed by scientists and engineers around the world. Almost 80 such major designs of Tokamak, Mirror, Laser and Ion Beam Reactors have been published and this article discusses how recent conceptual designs have afftected our perception of future fusion reactor performance. (orig.) [de

  13. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  14. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    International Nuclear Information System (INIS)

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described

  15. Hybrid indirect-drive/direct-drive target for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Lindsay John

    2018-02-27

    A hybrid indirect-drive/direct drive for inertial confinement fusion utilizing laser beams from a first direction and laser beams from a second direction including a central fusion fuel component; a first portion of a shell surrounding said central fusion fuel component, said first portion of a shell having a first thickness; a second portion of a shell surrounding said fusion fuel component, said second portion of a shell having a second thickness that is greater than said thickness of said first portion of a shell; and a hohlraum containing at least a portion of said fusion fuel component and at least a portion of said first portion of a shell; wherein said hohlraum is in a position relative to said first laser beam and to receive said first laser beam and produce X-rays that are directed to said first portion of a shell and said fusion fuel component; and wherein said fusion fuel component and said second portion of a shell are in a position relative to said second laser beam such that said second portion of a shell and said fusion fuel component receive said second laser beam.

  16. Progress in pulsed power fusion

    Energy Technology Data Exchange (ETDEWEB)

    Quintenz, J P; Adams, R G; Bailey, J E [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs.

  17. Progress in pulsed power fusion

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Adams, R.G.; Bailey, J.E.

    1996-01-01

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs

  18. Public acceptance of fusion energy and scientific feasibility of a fusion reactor. Spin-off effects of fusion research and development

    International Nuclear Information System (INIS)

    Morino, Nobuyuki; Ogawa, Yuichi

    1998-01-01

    It is observed that new and sophisticated technologies developed through research and development in relation to magnetic confinement fusion have been transferred to other industrial and scientific fields with remarkable spin-off effects. Approximately 10 years ago, the Japan Atomic Industrial Forum (JAIF) has investigated technical transfer and spin-off effects of fusion technologies developed in Japan. The essence of the results of this investigation as well as high technologies developed in the last decade, some of which are in the early stage of technical spin-off, are described. It is additionally explained that independent technical development conducted by our country as well as by engineers themselves is important in achieving effective spin-off. An outline of scientific spin-off effects is also described, including utilization technologies of fusion reactions besides those for energy production purposes, the progress of scientific understanding in the course of fusion research, and scientific information transfer and communication with other fields. (author)

  19. Laser-fusion research progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-08-01

    Three prototypical laser systems; iodine, and HF, are being developed. The iodine laser program is designed to delineate possible problem areas in the development of higher-power iodine lasers and to improve its efficiency to where net energy gain is possible using complex targets or hybrid, fusion-fission reactors. To provide data for the oxygen laser, studies are under way on excited-state production efficiencies, electron-beam device development, and low-pressure gain phenomena. In the HF-laser program, technology is being developed applicable to high-power, high-gain laser systems

  20. LIBRA - a light ion beam fusion conceptual reactor design

    International Nuclear Information System (INIS)

    Badger, B.; Moses, G.A.; Engelstad, R.L.; Kulcinski, G.L.; Lovell, E.; MacFarlane, J.; Peterson, R.R.; Sawan, M.E.; Sviatovslavsky, I.N.; Wittenberg, L.J.; Cook, D.L.; Olson, R.E.; Stinnett, R.W.; Ehrhardt, J.; Kessler, G.; Stein, E.

    1990-08-01

    The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbind tubes with Li 17 Pb 83 flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is 'self-pumped' by the target explosion generated overpressure into a surge tank partially filled with Li 17 Pb 83 that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequently without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of a 331 MWe LIBRA design is estimated to be 2843 Dollar/kWe while a 1200 MWe LIBRA design will cost approximately 1300 Dollar/kWe. (orig.) [de

  1. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  2. Simulation for evaluation of the multi-ion-irradiation Laboratory of TechnoFusion facility and its relevance for fusion applications

    International Nuclear Information System (INIS)

    Jimenez-Rey, D.; Mota, F.; Vila, R.; Ibarra, A.; Ortiz, Christophe J.; Martinez-Albertos, J.L.; Roman, R.; Gonzalez, M.; Garcia-Cortes, I.; Perlado, J.M.

    2011-01-01

    Thermonuclear fusion requires the development of several research facilities, in addition to ITER, needed to advance the technologies for future fusion reactors. TechnoFusion will focus in some of the priority areas identified by international fusion programmes. Specifically, the TechnoFusion Area of Irradiation of Materials aims at surrogating experimentally the effects of neutron irradiation on materials using a combination of ion beams. This paper justifies this approach using computer simulations to validate the multi-ion-irradiation Laboratory. The planned irradiation facility will investigate the effects of high energetic radiations on reactor-relevant materials. In a second stage, it will also be used to analyze the performance of such materials and evaluate newly designed materials. The multi-ion-irradiation Laboratory, both triple irradiation and high-energy proton irradiation, can provide valid experimental techniques to reproduce the effect of neutron damage in fusion environment.

  3. Present status of inertial confinement fusion in Japan

    International Nuclear Information System (INIS)

    Yamanaka, Chiyoe

    1984-01-01

    The Japanese inertial fusion program has made important progress towards implosion fusion process and the technical development required for realizing the breakeven of inertial fusion energy. The key issues for the ICF research are the development of a high power driver, the pertinent pellet design for implosion by a super computer code, and the diagnostics of implosion process with high space and time resolution. The Institute of Laser Engineering (ILE), Osaka University, is the central laboratory for ICF research in Japan. The ILE Osaka has advanced the Kongo Project aiming at the breakeven of inertial fusion since 1980, and as the first phase, the Gekko 12 Nd glass laser of 20 kJ having 12 beams was constructed. The ILE has also the Lekko 8 CO 2 laser and the Reiden 4 light ion beam machine. In the second phase, a 100 kJ class driver will be provided. At the ILE, rare gas halide lasers such as KrF and ArF have been investigated. Laser plasma coupling, the scaling law for implosion pressure, the invention of a new type target ''Cannonball'', and the development of computer codes are described. Also the activities in universities, government laboratories and industrial companies are reported. (Kako, I.)

  4. Progress in heavy-ion drivers for inertial fusion

    International Nuclear Information System (INIS)

    Friedman, A.; Bangerter, R.O.; Herrmannsfeldt, W.B.

    1994-01-01

    Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described

  5. Generation of intense ion beams and their application to controlled fusion research

    International Nuclear Information System (INIS)

    Dreike, P.; Ferch, R.L.; Friedman, A.

    1977-01-01

    Successful generation of pulsed multi-kA proton beams in the energy range 0.2 to 1.7 MeV using existing pulsed power technology has been achieved by three different techniques: reflex triodes, pinched electron-beam diodes and magnetically insulated diodes. Peak current densities in excess of 10 kAcm -2 have been observed on the NRL Gamble II machine and over 1.0 kAcm -2 on the Cornell Neptune machine. Peak total ion currents above 200 kA are produced by Gamble II. The potential applications of intense ion beams to magnetic confinement include (i) plasma heating and (ii) ion rings. A summary of continuous theoretical and experimental investigations on these applications is presented. (author)

  6. Progress toward fusion with light ions

    International Nuclear Information System (INIS)

    1980-01-01

    New results in target design, beam generation and transport, and pulse power technology have led to a program shift stressing light ion-driven inertial confinement fusion. According to present estimates, a gain ten fusion pellet will require at least one megajoule and approx. 100 TW power input. Progress in ion sources has resulted in beam power density of approx. 1 TW/cm 2 , a factor of ten increase over the last year, and cylindrical implosion experiments have been performed. Other experiments have demonstrated the ability to transport ion and electron beams with high efficiency and have confirmed numerical predictions on the properties of beam transport channels converging at a target. These developments together with improvements in pulse power technology allow us to project that the 72 beam, 100 TW Particle Beam Fusion Accelerator, PBFA-II will attain target output energy equal to stored energy in the accelerator

  7. The European Fusion Energy Research Programme towards the realization of a fusion demonstration reactor

    International Nuclear Information System (INIS)

    Gasparotto, M.; Laesser, R.

    2006-01-01

    Since its inception, the European Fusion Programme has been orientated towards the establishment of the knowledge base needed for the definition of a reactor to be used for power production. Its ultimate goal is then to demonstrate the scientific and the technological feasibility of fusion power while incorporating the assessment of the safety, environmental, social and economic features of this type of energy source. At present, the JET device, the largest tokamak in the world, and the other medium-sized experimental machines are contributing essentially to the basic scientific phase of this development path. Their successful operation greatly contributed to support the design basis of ITER, the next step in fusion, which will aim to demonstrate the scientific and technical feasibility of fusion power production by achieving extended D-T burning plasma operation. Following ITER, the conception and construction of the DEMO device is planned. DEMO will be a demonstration power plant which will be the first fusion device to generate a significant amount of electrical power from fusion. This paper describes the status of fusion research and the European strategy for achievement of the ultimate goal of construction of a prototype reactor. (author)

  8. HIBALL-II - an improved conceptual heavy ion beam driven fusion reactor study

    International Nuclear Information System (INIS)

    Badger, B.; Corradini, M.; El-Guebaly, L.; Engelstad, R.; Henderson, D.; Klein, A.; Kulcinski, G.; Larsen, E.; Lovell, E.; Moses, G.; Peterson, R.; Pong, L.; Sawan, M.; Sviatoslavsky, I.; Symon, K.; Vogelsang, W.; White, A.; Wittenberg, L.; Beckert, K.; Bock, R.; Boehne, D.; Hofmann, I.; Keller, R.; Mueller, R.; Bozsik, I.; Jahnke, A.; Brezina, J.; Nestle, H.; Wendel, W.; Wollnik, H.; Lessmann, E.; Froehlich, R.; Goel, B.; Hoebel, W.; Kessler, G.; Moellendorff, U. von; Moritz, N.; Plute, K.; Schretzmann, K.; Sze, D.

    1985-07-01

    An improved design of the HIBALL inertial-confinement fusion power station is presented. The new RF-linac based heavy ion driver has improved concepts for beam stacking, bunching and final focusing. The new target design takes into account radiation transport effects in a coarse approximation. The system of four reactors with a net total output of 3.8 GW electric is essentially the same as described earlier, however, progress in the analysis has enhanced its credibility and self-consistency. Considerations of environmental and safety aspects and cost estimates are given. (orig.) [de

  9. Ion Beam Propulsion Study

    Science.gov (United States)

    2008-01-01

    The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.

  10. Overview of US heavy-ion fusion commercial electric power systems assessment project. Revision

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Pendergrass, J.H.; Saylor, W.W.

    1986-01-01

    The US heavy-ion fusion (HIF) research program is oriented toward development of multiple-beam induction linacs. Over the last two years an assessment has been performed of the potential of HIF as a competitive commercial electric power source. This assessment involved several technology performance and cost issues (e.g., final beam transport system, target manufacturing, beam stability in reactor cavity environments, and reactor cavity clearing), as well as overall power plant systems integration and tradeoff studies. Results from parametric analyses using a systems code developed in the project show cost of electricity (COE) values comparable with COEs from other magnetic fusion and inertial confinement fusion (ICF) plant studies; viz, 50-60 mills/kWh (1985 dollars) for 1-GWe plants. Also, significant COE insensitivity to major accelerator, target, and reactor parameters was demonstrated

  11. Solenoidal fusion system

    International Nuclear Information System (INIS)

    Linlor, W.I.

    1980-01-01

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  12. Be Bold : An Alternative Plan for Fusion Research

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-15

    Government sponsored magnetic fusion energy research in the USA has been on downward trajectory since the early 1990’s. The present path is unsustainable. Indeed, our research community and national research facilities are withering from old-age and lack of investment. The present product (tokamak-centric production of electricity) does not yet work, will not be economic, and is clearly not valued or needed by our society. Even if a prototype existed at any cost, DT-based fusion energy would come too late to significantly impact the reduction of CO2 emissions in this century. This white paper outlines what “being bold” could mean with respect to the invention and application of nuclear fusion technologies, and how the USA could once again set a visionary example for the world. I present the discussion in two parts, reflecting on the NAS panel two-part assignment of a plan “with” and “without” ITER.

  13. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  14. Status of fusion technology

    International Nuclear Information System (INIS)

    Mohan, Ashok

    1978-01-01

    The current status of fusion technology is surveyed. Limited reserves of fossil fuel and dangers of proliferation from nuclear reactors have brought into focus the need to develop an optional energy source. Fusion is being looked upon as an optional energy source which is free from environmental hazards unlike fossil fuels and nuclear reactors. Investments in R and D of fusion energy have increased rapidly in USA, Japan, USSR and European countries. Out of the various fusion fuels known, a mixture of D and T is widely chosen. The main problem in fusion technology is the confinement of plasma for a time sufficient to start the fusion reaction. This can be done magnetically or inertially. The three approaches to magnetic confinement are : (1) tokamak, (2) mirror and (3) pinch. Inertial confinement makes use of lasers or electron beams or ion beams. Both the methods of confinement i.e. magnetic and inertial have problems which are identified and their nature is discussed. (M.G.B.)

  15. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    2004-01-01

    This 26th report by the Swiss Federal Office for Education and Science presents a review of work done in Swiss institutes in 2003 as part of international research into thermonuclear fusion. A broad outline of the project and of its significance within the wider field of thermonuclear fusion research is given. This is followed by a review of the significant events in the world of fusion research, with emphasis placed on ITER and on the EURATOM fusion programme. A further chapter summarises events in Switzerland in 2003 and the report closes with a list of contacts for more information. Three annexes provide information on the current situation in fusion research, as well as scientific and technical highlights of the work performed in 2003 at the Plasma Physics Research Centre CRPP at the Federal Institute of Technology EPFL in Lausanne, Switzerland. Annex 3 reports on results obtained at the Physics Institute of the University of Basle. The annexes are for the benefit of the technically and scientifically versed reader, and brief summaries of them are given in the main body of the report

  16. How much laser power can propagate through fusion plasma?

    International Nuclear Information System (INIS)

    Lushnikov, Pavel M; Rose, Harvey A

    2006-01-01

    Propagation of intense laser beams is crucial for inertial confinement fusion, which requires precise beam control to achieve the compression and heating necessary to ignite the fusion reaction. The National Ignition Facility (NIF), where fusion will be attempted, is now under construction. Control of intense beam propagation may be ruined by laser beam self-focusing. We have identified the maximum laser beam power that can propagate through fusion plasma without significant self-focusing and have found excellent agreement with recent experimental data. This maximum is determined by the collective forward stimulated Brillouin scattering instability which suggests a way to increase the maximum power by appropriate choice of plasma composition with implication for NIF designs. Our theory also leads to the prediction of anti-correlation between beam spray and backscatter and therefore raises the possibility of indirect control of backscatter through manipulation of plasma ionization state or acoustic damping. We find a simple expression for laser intensity at onset of enhanced beam angular divergence (beam spray)

  17. The Role of the JET Project in Global Fusion Research

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1983-01-01

    The aim of nuclear fusion research is to make fusion energy available as a new energy source. Fusion processes occur naturally in the sun, where hydrogen nuclei release energy by combining to form helium. A fusion reactor on earth will require even higher temperatures than in the interior...... of the sun, and it will be based on deuterium and tritium reactions. JET (Joint European Torus) is a major fusion experiment now under construction near Abingdon in the UK It is aimed at producing conditions approximating those necessary in a fusion reactor. The results expected from JET should permit...... a realistic evaluation of the prospects for fusion power and serve as a basis for the design of the next major fusion experiment....

  18. [Research progress of multi-model medical image fusion and recognition].

    Science.gov (United States)

    Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian

    2013-10-01

    Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.

  19. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-01-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an RF linac/storage ring combination as an intertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL

  20. Developments in accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Keefe, D.

    1985-05-01

    The long term goal of Heavy Ion Fusion (HIF) is the development of an accelerator with the large beam power, large beam stored-energy, and high brightness needed to implode small deuterium-tritium capsules for fusion power. While studies of an rf linac/storage ring combination as an inertial fusion driver continue in Japan and Europe, the US program in recent times has concentrated on the study of the suitability of linear induction acceleration of ions for this purpose. Novel features required include use of multiple beams, beam current amplification in the linac, and manipulation of long beam bunches with a large velocity difference between head and tail. Recent experiments with an intense bright beam of cesium ions have established that much higher currents can be transported in a long quadrupole system than was believed possible a few years ago. A proof-of-principle ion induction linac to demonstrate beam current amplification with multiple beams is at present being fabricated at LBL. 28 refs., 4 figs

  1. Joint ICFRM-14 (14. international conference on fusion reactor materials) and IAEA satellite meeting on cross-cutting issues of structural materials for fusion and fission applications. PowerPoint presentations

    International Nuclear Information System (INIS)

    2009-01-01

    The Conference was devoted to the challenges in the development of new materials for advanced fission, fusion and hybrid reactors. The topics discussed include fuels and materials research under the high neutron fluence; post-irradiation examination; development of radiation resistant structural materials utilizing fission research reactors; core materials development for the advanced fuel cycle initiative; qualification of structural materials for fission and fusion reactor systems; application of charged particle accelerators for radiation resistance investigations of fission and fusion structural materials; microstructure evolution in structural materials under irradiation; ion beams and ion accelerators

  2. Elements of power plant design for inertial fusion energy. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-06-01

    There are two major approaches in fusion energy research: magnetic fusion energy (MFE) and inertial fusion energy (IFE). The basic physics of IFE (compression and ignition of small fuel pellets containing deuterium and tritium) is being increasingly understood. Based on recent advances by individual countries, IFE has reached a stage at which benefits could be obtained from a coordinated approach in the form of an IAEA Coordinated Research Project (CRP) on Elements of Power Plant Design for Inertial Fusion Energy. This CRP helped Member States to promote the development of plasma/fusion technology transfer and to emphasize safety and environmental advantages of fusion energy. The CRP was focused on interface issues including those related to, - the driver/target interface (e.g. focusing and beam uniformity required by the target), - the driver/chamber interface (e.g. final optics and magnets protection and shielding), - and the target/chamber interface (e.g. target survival during injection, target positioning and tracking in the chamber). The final report includes an assessment of the state of the art of the technologies required for an IFE power plant (drivers, chambers, targets) and systems integration as presented and evaluated by members of the CRP. Additional contributions by cost free invited experts to the final RCM are included. The overall objective of this CRP was to foster the inertial fusion energy development by improving international cooperation. The variety of contributions compiled in this TECDOC reflects, that the goal of stimulating the exchange of knowledge was well achieved. Further the CRP led to the creation of a network, which not only exchanged their scientific results, but also developed healthy professional relations and strong mutual interest in the work of the group members

  3. Review of fission-fusion pellet designs and inertial confinement system studies at EIR

    Energy Technology Data Exchange (ETDEWEB)

    Seifriz, W [Eidgenoessisches Inst. fuer Reaktorforschung, Wuerenlingen (Switzerland)

    1978-01-01

    The article summarizes the work done so far at the Swiss Federal Institute for Reactor Research (EIR) in the field of the inertial confinement fusion technique. The following subjects are reviewed: a) fission fusion pellet designs using fissionable triggers, b) uranium tampered pellets, c) tampered pellets recycling unwanted actinide wastes from fission reactors in beam-driven micro-explosion reactors, and d) symbiotic fusion/fission reactor studies.

  4. Progress in the pulsed power Inertial Confinement Fusion program

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Matzen, M.K.; Mehlhorn, T.A.

    1996-01-01

    Pulsed power accelerators are being used in Inertial Confinement Fusion (ICF) research. In order to achieve our goal of a fusion yield in the range of 200 - 1000 MJ from radiation-driven fusion capsules, it is generally believed that ∼10 MJ of driver energy must be deposited within the ICF target in order to deposit ∼1 MJ of radiation energy in the fusion capsule. Pulsed power represents an efficient technology for producing both these energies and these radiation environments in the required short pulses (few tens of ns). Two possible approaches are being developed to utilize pulsed power accelerators in this effort: intense beams of light ions and z- pinches. This paper describes recent progress in both approaches. Over the past several years, experiments have successfully answered many questions critical to ion target design. Increasing the ion beam power and intensity are our next objectives. Last year, the Particle Beam Fusion Accelerator H (PBFA II) was modified to generate ion beams in a geometry that will be required for high yield applications. This 2048 modification has resulted in the production of the highest power ion beam to be accelerated from an extraction ion diode. We are also evaluating fast magnetically-driven implosions (z-pinches) as platforms for ICF ablator physics and EOS experiments. Z-pinch implosions driven by the 20 TW Saturn accelerator have efficiently produced high x- ray power (> 75 TW) and energy (> 400 kJ). Containing these x-ray sources within a hohlraum produces a unique large volume (> 6000 mm 3 ), long lived (>20 ns) radiation environment. In addition to studying fundamental ICF capsule physics, there are several concepts for driving ICF capsules with these x-ray sources. Progress in increasing the x-ray power on the Saturn accelerator and promise of further increases on the higher power PBFA II accelerator will be described

  5. Annual progress report 1993. Work in controlled thermonuclear fusion research performed in the fusion research unit under the contract of association between Euratom and Risoe National Laboratory

    International Nuclear Information System (INIS)

    1994-09-01

    The programme of the Research Unit of the Fusion Association Euratom-Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of pellet injectors for fusion experiments, and (c) development of diagnostics for fusion plasmas. The activities in technology cover radiation damage of fusion reactor materials. A summary of the activities in 1993 is presented. (au) (4 tabs., 21 ills., 64 refs.)

  6. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    International Nuclear Information System (INIS)

    Mori, Yoshitaka; Sekine, Takashi; Komeda, Osamu

    2014-01-01

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  7. Electron stripping cross sections for light impurity ions in colliding with atomic hydrogens relevant to fusion research

    International Nuclear Information System (INIS)

    Tawara, H.

    1992-04-01

    Electron stripping (ionization) cross sections for impurity (carbon) ions with various charge states in collisions with atomic hydrogens have been surveyed. It has been found that these data are relatively limited both in collision energy and charge state and, in particular those necessary for high energy neutral beam injection (NBI) heating in fusion plasma research are scarce. Some relevant cross sections for carbon ions, C q+ (q = 0-5) have been estimated, based upon the existing data, empirical behavior and electron impact ionization data. (author)

  8. International research co-operation in the field of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Conscience, J.-F.

    2003-01-01

    This final report for the Swiss Federal Office of Education and Science presents a review of activities carried out in 2002 within the framework of the International Experimental Thermonuclear Reactor (ITER) project that involves contributions from Canada, Japan, the Russian Federation and the European Union. Further agreements on the development of a fusion reactor with other countries, including Switzerland, the USA and China, are mentioned. The first chapter describes the current state of research on electricity production using nuclear fusion and discusses feasibility, safety, environmental, fuel supply and economic aspects. A second chapter reviews global efforts in the fusion area, including ITER and EURATOM projects and the activities running under the European Fusion Development Agreement EFDA and the JET Implementing Agreement. Finally, a third chapter deals with fusion research activities in Switzerland and the contributions made to international research by Swiss universities and institutes

  9. Methods of economic analysis applied to fusion research. Fifth annual report

    International Nuclear Information System (INIS)

    1981-01-01

    In this and previous efforts, ECON has provided economic assessment of a fusion research program. This phase of study has focused on the future markets for fusion energy and the economics of fusion in those markets. These tasks were performed: (1) fusion market growth, (2) inflation vs. capital investment decisions, and (3) economics of cogeneration

  10. The fusion-FEM: 0,75 MW of mm-wave power

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H. [FOM Inst. voor Plasmafysica ' Rijnhuizen' , Nieuwegein (Netherlands); Bratman, V.L.; Denisov, G.G.; Savilov, A.V. [Inst. of Applied Physics, Nizhny Novgorod (Russian Federation); Caplan, M. [Lawrence Livermore National Lab., CA (United States); Varfolomeev, A.A. [Russian Research Center ' Kurchatov Inst.' , Moscow (Russian Federation)

    1998-07-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12{mu}s, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  11. The fusion-FEM: 0,75 MW of mm-wave power

    International Nuclear Information System (INIS)

    Smeets, P.H.M.; Bongers, W.A.; Brons, S.; Geer, C.A.J. van der; Lingier, K.L.; Manintveld, P.; Plomp, J.; Pluygers, J.; Poelman, A.J.; Sterk, A.B.; Verhoeven, A.G.A.; Urbanus, W.H.; Bratman, V.L.; Denisov, G.G.; Savilov, A.V.; Caplan, M.; Varfolomeev, A.A.

    1998-01-01

    The free-electron maser for fusion applications (Fusion-FEM) is the prototype for a high power, rapid tunable mm-wave source. The basic parameters such as frequency range (130 - 260 GHz) and output power (1 MW) are dedicated to Electron Cyclotron Resonance applications on future plasma fusion research devices, such as ITER. In October 1996 the electron beam was successfully accelerated and transported through the undulator and the mm-wave cavity. Loss currents are below 0.05 %. In October 1997 first lasing was achieved. The mm-wave output power has been measured at various frequencies and for various electron beam currents and energies. The highest output power reached so far is 730 kW at 205 GHz, for an electron beam of 7.2 A and 1.77 MeV. Both output power and start-up time correspond well with simulation results. The output beam has a Gaussian mode content of more than 99.8 % for all operating frequencies. So far, the pulse length was limited to 12μs, because the electron beam recovery system was not yet installed. This system, an electron decelerator and a 3-stage depressed collector, is presently under construction. It serves to recover the charge and energy of the spend electron beam. In this paper we will address some aspects of the design of the collector. (author)

  12. Overview of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Muroga, T.; Gasparotto, M.; Zinkle, S.J.

    2002-01-01

    Materials research for fusion reactors is overviewed from Japanese, EU and US perspectives. Emphasis is placed on programs and strategies for developing blanket structural materials, and recent highlights in research and development for reduced activation ferritic martensitic steels, vanadium alloys and SiC/SiC composites, and in mechanistic experimental and modeling studies. The common critical issue for the candidate materials is the effect of irradiation with helium production. For the qualification of materials up to the full lifetime of a DEMO and Power Plant reactors, an intense neutron source with relevant fusion neutron spectra is crucial. Elaborate use of the presently available irradiation devices will facilitate efficient and sound materials development within the required time scale

  13. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  14. Heavy-Ion Fusion Accelerator Research, 1992

    International Nuclear Information System (INIS)

    1993-06-01

    The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena

  15. Outline of research project on nuclear fusion, 1985

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1985-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, and develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interactions 2) science and engineering of tritium, and influence on living things, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal year 1984 of each research are outlined. (J.P.N.)

  16. Outline of research project on nuclear fusion, 1984

    International Nuclear Information System (INIS)

    Uchida, Taijiro

    1984-08-01

    When the advance of nuclear fusion research during 10 years hereafter is predicted, the next project should start the research toward nuclear burning, adopt the diversified ways, a nd develop the research in wide related fields. The central subject such as the containment of plasma is studies with large experimental facilities, but in the related fields, the research subsidies must be utilized positively. The organization to perform the research compries 6 groups, 1) reactor materials and plasma-wall interaction, 2) science and engineering of tritium and influence on living things, 3) fundamentals of core control, 4) development of superconducting magnets, 5) fusion blanket engineering, and 6) design and assessment of thermonuclear reactors. The distribution and management of the scientific research subsidy are explained. All of the subjects of planned and publicly invited research a listed, and the researchers concerned, the amount of subsidy, the objective and the plan of execution in fiscal 1983 of each research are outlined. (J.P.N.)

  17. Current state of nuclear fusion research

    International Nuclear Information System (INIS)

    Naraghi, M.

    1985-01-01

    During the past quarter century, plasma physics and nuclear fusion research have gone through impressive development. Tokamak, is realized to be the number one candidate for nuclear fusion reactor. Two large experiments, one called Joint European Torus (JET) at Culham, England, and the other JT-60 project in Japan have been completed and have reported preliminary results. In JET an average electron density of 4x10 13 pcls/ cm 3 , ion temperatures of 3Kev and energy confinement of 0.8 sec have been achieved. However, the Zeff has been even equal to 10 which unfortunately is a source of plasma energy loss. JT-60 has not offered any appreciable results yet, however, the objectives and initial tests promise long pulse duration, with very high ion and plasma densities. Both experiments have promised to achieve conditions approaching those needed in a fusion reactor. Other important experiments will be discussed and the role of third world countries will be emphasized. (Author)

  18. Belgian research on fusion beryllium waste

    International Nuclear Information System (INIS)

    Druyts, F.; Mallants, D.; Sillen, X.; Iseghem, P. Van

    2004-01-01

    Future fusion power plants will generate important quantities of neutron irradiated beryllium. Although recycling is the preferred management option for this waste, this may not be technically feasible for all of the beryllium, because of its radiological characteristics. Therefore, at SCK·CEN, we initiated a research programme aimed at studying aspects of the disposal of fusion beryllium, including waste characterisation, waste acceptance criteria, conditioning methods, and performance assessment. One of the main issues to be resolved is the development of fusion-specific waste acceptance criteria for surface or deep geological disposal, in particular with regard to the tritium content. In case disposal is the only solution, critical nuclides can be immobilised by conditioning the waste. As a first approach to immobilising beryllium waste, we investigated the vitrification of beryllium. Corrosion tests were performed on both metallic and vitrified beryllium to provide source data for performance assessment. Finally, a first step in performance assessment was undertaken. (author)

  19. Research on an Agricultural Knowledge Fusion Method for Big Data

    Directory of Open Access Journals (Sweden)

    Nengfu Xie

    2015-05-01

    Full Text Available The object of our research is to develop an ontology-based agricultural knowledge fusion method that can be used as a comprehensive basis on which to solve agricultural information inconsistencies, analyze data, and discover new knowledge. A recent survey has provided a detailed comparison of various fusion methods used with Deep Web data (Li, 2013. In this paper, we propose an effective agricultural ontology-based knowledge fusion method by leveraging recent advances in data fusion, such as the semantic web and big data technologies, that will enhance the identification and fusion of new and existing data sets to make big data analytics more possible. We provide a detailed fusion method that includes agricultural ontology building, fusion rule construction, an evaluation module, etc. Empirical results show that this knowledge fusion method is useful for knowledge discovery.

  20. Annual report of the Fusion Research and Development Center for the period of April 1, 1979 to March 31, 1980

    International Nuclear Information System (INIS)

    1981-03-01

    Research and development activities of the Fusion Research and Development Center (Division of Thermonuclear Fusion Research and Division of Large Tokamak Development) from April 1979 to March 1980 are described. In Plasma physics research two experiments both related to radio-frequency power injection into tokamak plasmas are to be noted. One is the demonstration of current drive by lower hybrid waves in JFT-2 and the other high efficiency ICRF heating at two-ion hybrid resonance in JFT-2a/DIVA. A multi-MW neutral beam injection system was installed and tested at JFT-2 with heating experiments expected to start shortly. JFT-2a/DIVA was shutdown to make space for the injector. A new ingredient in this area is the initiation of dee plasma experiments in Doublet III at San Diego, USA by JAERI team under US-Japan cooperation agreement. Progress was rapid achieving all experimental objective planned for this period. Construction of JT-60 is in progress as planned. A Mukoyama site where JT-60 and other new facilities will be located was procured in October 1979, which was followed by the construction starts of JT-60 buildings. The completion of JT-60 is expected in fall 1984. The progressive brief summaries are presented in following topics; development of neutral beam and radiofrequency heating system for JT-60, installation of the cluster testing facility with NbTi field coils, and design of tritium handling facility. (J.P.N.)

  1. Polarization beam smoothing for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rothenberg, Joshua E.

    2000-01-01

    For both direct and indirect drive approaches to inertial confinement fusion (ICF) it is imperative to obtain the best possible drive beam uniformity. The approach chosen for the National Ignition Facility uses a random-phase plate to generate a speckle pattern with a precisely controlled envelope on target. A number of temporal smoothing techniques can then be employed to utilize bandwidth to rapidly change the speckle pattern, and thus average out the small-scale speckle structure. One technique which generally can supplement other smoothing methods is polarization smoothing (PS): the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently, and the rms nonuniformity can be reduced by a factor of (√2). A number of PS schemes are described and compared on the basis of the aggregate rms and the spatial spectrum of the focused illumination distribution. The (√2) rms nonuniformity reduction of PS is present on an instantaneous basis and is, therefore, of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. When combining PS and temporal methods, such as smoothing by spectral dispersion (SSD), PS can reduce the rms of the temporally smoothed illumination by an additional factor of (√2). However, it has generally been thought that in order to achieve this reduction of (√2), the increased divergence of the beam from PS must exceed the divergence of SSD. It is also shown here that, over the time scales of interest to direct or indirect drive ICF, under some conditions PS can reduce the smoothed illumination rms by nearly (√2) even when the PS divergence is much smaller than that of SSD. (c) 2000 American Institute of Physics

  2. Survey of atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Lorenz, A.; Phillips, J.; Schmidt, J.J.; Lemley, J.R.

    1976-01-01

    Atomic and molecular data needs in five areas of plasma research and fusion technology are considered: Injection Systems (plasma heating by neutral particle beam injection and particle cluster beam injection); Plasma-Surface Interaction (sputtering, absorption, adsorption, reflection, evaporation, surface electron emission, interactions of atomic hydrogen isotopes, synchrotron radiation); Plasma Impurities and Cooling (electron impact ionization and excitation, recombination processes, charge exchange, reflection of H from wall surfaces); Plasma Diagnostics (atomic structure and transition probabilities, X-ray wave-length shift for highly ionized metals, electron capture collisions with H + and D + , heavy-ion collision ionization probe, photon scattering, emission spectroscopy); Laser-fusion Compression (microexplosion physics, diagnostics, microtarget design, laser systems requirements, laser development, reactor design needs)

  3. Control of colliding ion beams

    International Nuclear Information System (INIS)

    Salisbury, W.W.

    1985-01-01

    This invention relates to a method and system for enhancing the power-producing capability of a nuclear fusion reactor, and more specifically to methods and structure for enhancing the ion density in a directed particle fusion reactor. In accordance with the invention, oppositely directed ion beams constrained to helical paths pass through an annular reaction zone. The object is to produce fusion reactions due to collisions between the ion beams. The reaction zone is an annulus as between an inner-cylindrical electrode and an outer-cylindrical coaxial electrode. The beams are enhanced in ion density at spaced points along the paths by providing spline structures protruding from the walls of the electrodes into the reaction zone. This structure causes variations in the electric field along the paths followed by the ion beams. Such fields cause the beams to be successively more and less concentrated as the beams traverse the reaction zone. Points of high concentration are the points at which fusion-producing collisions are most likely to take place

  4. Scaling laws for inertial confinement fusion

    International Nuclear Information System (INIS)

    Brueckner, K.A.

    1978-01-01

    The fusion yield due to a spherically expanding burning front in a compressed fuel pellet is obtained. The pellet gain and beam energy for a laser system and an ion or electron beam driven system are compared. The results suggest an interesting possibility for heavy-ion fusion with driver parameters far below those usually considered

  5. Annual report of the Naka Fusion Research Establishment for the period of April 1, 1985 to March 31, 1986

    International Nuclear Information System (INIS)

    1987-02-01

    Research and development activities of the Naka Fusion Research Establishment for the period of April 1985 to March 1986 are described. The JT-60 tokamak machine was completed in April 1985 after a seven-year construction period, and the first plasma operation was achieved on April 8, 1985. Initial experiments with Joule-heated plasmas were performed for three months from April to June 1985 and confirmed tokamak discharges of sufficient plasma current and density as required for additional heating in the divertor configuration. In JFT-2M experiments on beam and ICRF heated plasmas, H-mode discharges with good confinement characteristics were achieved in open divertor configurations. The Doublet III device had been modified into D-III D with a large deeshaped cross-section. The first plasma was obtained in February 1986. The development of a numerical tokamak code TRITON-II was continued. Plasma-surface interaction studies and vacuum technology development were continued. In the study of plasma heating technology, programmable control of the neutral beam energy was demonstrated in a proto-type injector unit. Negative hydrogen ion beams of 25 keV, 0.1 A were extracted by using multiaperture extraction grid. Research was also carried out on improvements of RF coupling system with emphasis on RF breakdown phenomena in a pill box type ceramic window. In the development of superconducting magnets, generation of a 12T magnetic field was demonstrated by the Test Module Coils. The fabrication of the Demonstration Poloidal Coil was started. Preliminary tritium tests on JAERI's proto-type Pd-diffuser and ceramic electrolysis cell had been successfully carried out in the TSTA at LANL. The design study of the Fusion Experimental Reactor was continued. A wide range of scoping studies was also made to evaluate cost/benefits effects. INTOR design studies were concentrated on tokamak innovations. (J.P.N.)

  6. Power beaming research at NASA

    Science.gov (United States)

    Rather, John D. G.

    1992-01-01

    NASA's current research activities to evaluate laser power beaming systems are summarized with regard to their applications of greatest interest. Key technical certainties and uncertainties pertaining to laser power beaming systems appropriate for space applications are quantified. A path of development is presented that includes maturation of key technology components for reliable laser and millimeter wave power beaming systems during the 1990s.

  7. Estimated nuclear effects in the neutral beam injectors of a large fusion reactor

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.; Alsmiller, R.G. Jr.

    1980-12-01

    Estimates are given for the nuclear heat loads on the cryopanels, radiation damage (energy deposition rate) in ion gun insulators, and dose equivalent rates from induced activity in the components for the Engineering Test Facility (ETF) neutral beam injectors. The estimates have been obtained by scaling similar results, obtained by careful neutronics analysis for the Tokamak Fusion Test Reactor (TFTR). The approximate nature of the scaling procedure introduces considerable uncertainty in the results, but they are, hopefully, correct to within an order of magnitude and may be substantially more accurate

  8. A new analysis procedure to extract fusion excitation function with large beam energy dispersions: application to the 6Li+120Sn and 7Li+119Sn

    Directory of Open Access Journals (Sweden)

    Di Pietro Alessia

    2017-01-01

    Full Text Available In the present paper it is described an analysis procedure suited for experiments where cross-sections strongly varying with energy are measured using beams having large energy dispersion. These cross-sections are typically the sub-barrier fusion excitation function of reactions induced by radioactive beams. The large beam energy dispersion, typical of these experiments, can lead to ambiguities in the association of the effective beam energy to the reaction product yields and consequently to an error in the determination of the excitation function. As a test case, the approach is applied to the experiments 6Li+120Sn and 7Li+119Sn measured in the energy range 14 MeV ≤ Ec.m. ≤28 MeV. The complete fusion cross sections are deduced from activation measurements using the stacked target technique. The results of these experiments, that employ the two weakly-bound stable Li isotopes, show that the complete fusion cross sections above the barrier are suppressed of about 70% and 85% with respect to the Universal Fusion Function, used as a standard reference, in the 6Li and 7Li induced reactions respectively. Moreover, the excitation functions of the two systems at energies below the barrier, do not show significant differences, despite the two systems have different n-transfer Qvalue.

  9. Use of Neutron Beams for Materials Research Relevant to the Nuclear Energy Sector

    International Nuclear Information System (INIS)

    2015-10-01

    Nuclear technologies such as fission and fusion reactors, including associated waste storage and disposal, rely on the availability of not only nuclear fuels but also advanced structural materials. In 2010–2013, the IAEA organized and implemented the Coordinated Research Project (CRP) on Development, Characterization and Testing of Materials of Relevance to Nuclear Energy Sector Using Neutron Beams. A total of 19 institutions from 18 Member States (Argentina, Australia, Brazil, China, Czech Republic, France, Germany, Hungary, Indonesia, Italy, Japan, Netherlands, Republic of Korea, Romania, Russian Federation (two institutions), South Africa, Switzerland and United States of America) cooperated with the main objective to address the use of various neutron beam techniques for characterization, testing and qualification of materials and components produced or under development for applications in the nuclear energy sector. This CRP aimed to bring stakeholders and end users of research reactors and accelerator based neutron sources together for the enhanced use of available facilities and development of new infrastructures for applied materials research. Work envisioned under this CRP was related to the optimization and validation of neutron beam techniques, including facility and instrument modifications/optimizations as well as improved data acquisition, processing and analysis systems. Particular emphasis was placed on variable environments during material characterization and testing as required by some applications such as intensive irradiation load, high temperature and high pressure conditions, and the presence of strong magnetic fields. Targeted neutron beam techniques were neutron diffraction, small angle neutron scattering and digital neutron radiography/tomography. This publication is a compilation of the main results and findings of the CRP, and the CD-ROM accompanying this publication contains 19 reports with additional relevant technical details

  10. Soviet exoatmospheric neutral particle beam research

    International Nuclear Information System (INIS)

    Leiss, J.E.; Abrams, R.H.; Ehlers, K.W.; Farrell, J.A.; Gillespie, G.H.; Jameson, R.A.; Keefe, D.; Parker, R.K.

    1988-02-01

    This technical assessment was performed by a panel of eight U.S. scientists and engineers who are familiar with Soviet research through their own research experience, their knowledge of the published scientific literature and conference proceedings, and personal contacts with Soviet scientists and other foreign colleagues. Most of the technical components of a neutral particle beam generating system including the ion source, the accelerator, the accelerator radio frequency power supply, the beam conditioning and aiming system, and the beam neutralizer system are addressed. It does not address a number of other areas important to an exoatmospheric neutral beam system

  11. Vacuum engineering for fusion research and fusion reactors

    International Nuclear Information System (INIS)

    Pittenger, L.C.

    1976-01-01

    The following topics are described: (1) surface pumping by cryogenic condensation, (2) operation of large condensing cryopumps, (3) pumping for large fusion experiments, and (4) vacuum technology for fusion reactors

  12. Intensity limits for propagation of 0.527 μm laser beams through large-scale-length plasmas for inertial confinement fusion

    International Nuclear Information System (INIS)

    Niemann, C.; Divol, L.; Froula, D.H.; Gregori, G.; Jones, O.; Kirkwood, R.K.; MacKinnon, A.J.; Meezan, N.B.; Moody, J.D.; Sorce, C.; Suter, L.J.; Glenzer, S.H.; Bahr, R.; Seka, W.

    2005-01-01

    We have established the intensity limits for propagation of a frequency-doubled (2ω, 527 nm) high intensity interaction beam through an underdense large-scale-length plasma. We observe good beam transmission at laser intensities at or below 2x10 14 W/cm 2 and a strong reduction at intensities up to 10 15 W/cm 2 due to the onset of parametric scattering instabilities. We show that temporal beam smoothing by spectral dispersion allows a factor of 2 higher intensities while keeping the beam spray constant, which establishes frequency-doubled light as an option for ignition and burn in inertial confinement fusion experiments

  13. Development of Radiation Fusion Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Lee, Ju Woon; Park, Sang Hyun

    2010-04-15

    {center_dot} Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E-beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready-to-eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. {center_dot} Development of modulators against degenerative aging using radiation fusion technology - Confirmation of similarity of radiation-induced aging and normal aging by comparative analysis study - Selection of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling - Validation of biomarkers and models using substances {center_dot} Development of biochips and kits using RI detection technology for life science - Establishment of kinase-substrate interaction analysis using RI detection technique (More than 30 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non-specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing

  14. Development of Radiation Fusion Biotechnology

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Lee, Ju Woon; Park, Sang Hyun

    2010-04-01

    · Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation - To develop fundamental technology using high dose irradiation, effects of high dose irradiation on food components, combined effects of irradiation with food engineering, irradiation condition to destroy radiation resistant foodborne bacteria were studied. - To develop E-beam irradiation technology, irradiation conditions for E-beam and domination effects of E-beam irradiation were determined. The physical marker for E-beam irradiated foods or not was developed. - To develop purposed foods to extreme environmental, ready-to-eat foods and low toxic animal feeds were developed. Through the fundamental researches, the legislation for new irradiated foods and application of E-beam was introduced. · Development of modulators against degenerative aging using radiation fusion technology - Confirmation of similarity of radiation-induced aging and normal aging by comparative analysis study - Selection of degenerative aging biomarkers related to immune/hematopoiesis, oxidative damage, molecular signaling, lipid metabolism - Establishment of optimal radiation application conditions for aging modeling - Validation of biomarkers and models using substances · Development of biochips and kits using RI detection technology for life science - Establishment of kinase-substrate interaction analysis using RI detection technique (More than 30 times detection sensitivity compared to conventional fluorescence detection techniques). - The RI detection technique reduces the overall experiment time, as the use of blocking agent can be avoided, offer minimum non-specific binding, and facilitates a rapid data analysis with a simplify the process of chip manufacturing

  15. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  16. Review of fusion research program: historical summary and program projections

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.S.

    1976-09-01

    This report provides a brief review of the history and current status of fusion research in the United States. It also describes the Federally funded program aimed at the development of fusion reactors for electric power generation.

  17. New heavy-ion-fusion accelerator research program

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1983-05-01

    This paper will briefly summarize the concepts of Heavy Ion Fusion (HIF), especially those aspects that are important to its potential for generating electrical power. It will also note highlights of the various HIF programs throughout the world. Especially significant is that the US Department of Energy (DOE) plans a program, beginning in 1984, aimed at determining the feasibility of using heavy ion accelerators as drivers for Inertial Confinement Fusion (ICF). The new program concentrates on the aspects of accelerator design that are important to ICF, and for this reason is called HIF Accelerator Research

  18. Research and application of pulsed-power technology

    International Nuclear Information System (INIS)

    Yonas, G.

    1980-01-01

    Pulsed-power technology relating to that branch which was stimulated by military applications in the 1960's is addressed. A history of the development and characteristics of some devices producing intense electron and ion beams which resulted in Sandia's particle beam fusion program is presented. These include Hermes II, Aurora, Hydra, and Proto II. Research on inertial confinement fusion ignition is described, and the most critical issue in ICF today still is the demonstration of ignition and efficient burnup of a small amount of thermonuclear fuel. Progress on the Sandia particle beam fusion accelerator (PBFA I and II) is reported, but already plans are underway to further upgrade the device and if these modifications are carried out in 1983, fusion ignition concepts may be tested by 1985. Fusion could possibly provide an inexhaustible supply of energy in the next century

  19. Accelerator and Fusion Research Division: 1987 summary of activities

    International Nuclear Information System (INIS)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics

  20. Accelerator and Fusion Research Division: 1987 summary of activities

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    An overview of the design and the initial studies for the Advanced Light Source is given. The research efforts for the Center for X-Ray Optics include x-ray imaging, multilayer mirror technology, x-ray sources and detectors, spectroscopy and scattering, and synchrotron radiation projects. The Accelerator Operations highlights include the research by users in nuclear physics, biology and medicine. The upgrade of the Bevalac is also discussed. The High Energy Physics Technology review includes the development of superconducting magnets and superconducting cables. A review of the Heavy-Ion Fusion Accelerator Research is also presented. The Magnetic Fusion Energy research included the development of ion sources, accelerators for negative ions, diagnostics, and theoretical plasma physics. (WRF)

  1. Annual report of Naka Fusion Research Establishment. From April 1,2000 to March 31, 2001

    International Nuclear Information System (INIS)

    Kuriyama, Masaaki; Kizu, Kaname; Kusakawa, Fumio; Matsumoto, Hiroshi; Sakamoto, Keishi; Sengoku, Seio

    2001-11-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 2000 to March 31, 2001. The activities in the Naka Fusion Research Establishment are outstanding at high performance plasma researches in JT-60 and JFT-2M, and development in ITER EDA including technological R and Ds. The JT-60 project aims at contributing to the physics R and D for ITER and establishing the physics basis for a steady state tokamak fusion reactor like SSTR. For the achievement of those objectives, both physical and engineering researches have been done. The JT-60 have continued to be productive in many areas covering performance improvements of high β p ELMy H-mode regime and reversed shear plasma, non-inductive current drive, physics study relevant to improved modes, stabilization of MHD modes, feedback control, disruption study, understandings on energetic particles, and scrape off layer and divertor studies with increased pumping capability. On JFT-2M, advanced and basic research of tokamak plasma is being promoted, including application of the low activation ferritic steel, with the flexibility of a medium-sized device. The pre-testing on compatibility of ferritic steel plates (FPs), covering ∼20% of the inside wall of the vacuum vessel, with plasma was performed, demonstrating no adverse effects on plasmas. Boronization was introduced for the first time in JFT-2M after installation of inside FPs. High-β N discharges (β N up to ∼2.8) were obtained with inside FPs and boronization. Formation of negative electric field at the H-mode transition during ECH was clarified by the heavy ion beam probe (HIBP). The MSE polarimeter system, which is capable of simultaneous measurement of a radial electric field, has been newly developed. In RF experiments, fast wave electric field profile was directly measured for the first time using the beat wave and HIBP. The principal objective of theoretical and

  2. Energy by nuclear fusion

    International Nuclear Information System (INIS)

    Buende, R.; Daenner, W.; Herold, H.; Raeder, J.

    1976-12-01

    This report reviews the state of knowledge in a number of fields of fusion research up to autumn 1976. Section 1 gives a very brief presentation of the elementary fusion reactions, the energies delivered by them and the most basic energy balances leading to Lawson-type diagrams. Section 2 outlines the reserves and cost of lithium and deuterium, gives estimates of the total energy available from DT fusion and comments on production technology, availlability and handling of the fuels. In section 3 a survey is given of the different concepts of magnetic confinement (stellarators, tokamaks, toroidal pinches, mirror machines, two-component plasmas), of confinement by walls, gas blankets and imploding liners and, finally, of the concepts of interial confinement (laser fusion, beam fusion). The reactors designed or outlined on the basis of the tokamak, high-β, mirror, and laser fusion concepts are presented in section 4, which is followed in section 5 by a discussion of the key problems of fusion power plants. The present-day knowledge of the cost structure of fusion power plants and the sensitivity of this structure with respect to the physical and technical assumptions made is analysed in section 6. Section 7 and 8 treat the aspects of safety and environment. The problems discussed include the hazard potentials of different designs (radiological, toxicological, and with respect to stored energies), release of radioactivity, possible kinds of malfunctioning, and the environmental impact of waste heat, radiation and radioactive waste (orig.) [de

  3. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  4. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber

    International Nuclear Information System (INIS)

    Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.

    2002-01-01

    In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self

  5. Cryopump behavior in the presence of beam or nuclear radiation

    International Nuclear Information System (INIS)

    Law, P.K.

    1977-12-01

    Cryocondensation pumping has been proposed to be the method of gas removal for neutral-beam refueled fusion reactors. A cryocondensation pumping unit has been constructed to test design concepts and compatibility with conditions under actual beam operation and nuclear radiation environment. Various operating parameters for this test pumping unit have been measured, including pumping speeds for various gases and beam desorption effects. An experiment has been planned at the Berkeley Research Reactor to measure the desorption effects of high energy neutrons and gamma radiation. A foil activation method has been devised to accurately assess the energy spectrum of this neutron source, which is expected to be comparable to that of the Tokamak Fusion Test Reactor

  6. Annual report of Naka Fusion Research Establishment from April 1, 2003 to March 31, 2004

    International Nuclear Information System (INIS)

    Hoshino, Katsumichi; Umeda, Naotaka; Tsuji, Hiroshi; Yoshida, Hidetoshi; Nagami, Masayuki

    2004-11-01

    This annual report provides an overview of research and development (R and D) activities at Naka Fusion Research Establishment, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities, during the period from 1 April, 2003 to 31 March, 2004. The activities in the Naka Fusion Research Establishment are highlighted by researches in JT-60 and JFT-2M, theoretical and analytical plasma researches, research and development of fusion reactor technologies towards ITER and fusion power demonstration plants, and activities in support of ITER design and construction. (J.P.N.)

  7. Portuguese research program on nuclear fusion

    International Nuclear Information System (INIS)

    Varandas, C.A.F.; Cabral, J.A.C.; Manso, M.E.

    1994-01-01

    The Portuguese research program on nuclear fusion is presented. The experimental activity associated with the tokamak ISTTOK as well as the work carried out in the frame of international collaboration are summarized. The main technological features of ISTTOK are described along with studies on microwave reflectometry. Future plans are briefly described

  8. Design and construction of superconducting quadrupole magnets for ion beam fusion

    International Nuclear Information System (INIS)

    Wang, S.T.; Ludwig, H.; Turner, L.R.

    1978-01-01

    A high gradient superconducting quadrupole has been designed and developed as the heavy ion beam focussing element in the low velocity portions of an rf linac for the Argonne Ion Beam Fusion Reactor. The quadrupole magnets will require an extremely short magnet coil length (approximately 20 cm to 30 cm) and extremely high central gradients (approximately 100 T/m to 200 T/m). The useful warm bore will be about 4 to 6 cm and the integral gradient homogeneity should be constant to +-5% over the useful warm bore. Special techniques have been developed which are especially suitable for multilayer coil winding and coil assembly with high average current density over the coil cross section. A 5-layer quadrupole with 9 cm winding bore has been built and tested to the full performance of about 100 T/m with little training. The achieved average current density is 22,000 A/cm 2 at a peak field in conductor of about 5.0 T. An 8-layer quadrupole is under construction for a design gradient of 140 T/m over 9 cm winding bore. The peak field will be about 7.2 T

  9. LIBRA - a light ion beam inertial confinement fusion reactor conceptual design

    International Nuclear Information System (INIS)

    Moses, G.A.; Kulcinski, G.L.; Bruggink, D.

    1989-01-01

    The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4 MJ shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbide tubes with Li 17 Pb 83 flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is a right circular cylinder, 8.7 meters in diameter. The target chamber is 'self-pumped' by the target explosion generated overpressure into a surge tank partially filled with liquid that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequency without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of LIBRA is estimated to be $2200/kWe. (author)

  10. Role of supercomputers in magnetic fusion and energy research programs

    International Nuclear Information System (INIS)

    Killeen, J.

    1985-06-01

    The importance of computer modeling in magnetic fusion (MFE) and energy research (ER) programs is discussed. The need for the most advanced supercomputers is described, and the role of the National Magnetic Fusion Energy Computer Center in meeting these needs is explained

  11. Atomic and plasma-material interaction data for fusion. Vol. 13

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2007-01-01

    Plasmas generated in fusion energy research cover a wide range of conditions involving electron temperature, electron density and plasma constituents, as well as electric and magnetic fields. Performing diagnostics on such plasmas is a complex problem requiring many different types of atomic and molecular (A+M) data. The typical plasmas in fusion research naturally divide into a core region and an edge/divertor region, and the physical conditions differ significantly between these two regions. There is a need to use soft X-ray spectroscopy as well as optical spectroscopy for diagnostics in the core region. This requires information on the emission properties of the plasma under the core conditions. Information about several different processes for atomic species relevant to the plasma is needed in this process. Some data can be measured directly in experimental devices such as the electron beam ion trap (EBIT). This type of measurement would prove very useful in furthering databases for plasma diagnostics of core regions. Heating beams are used to raise the core temperature and doped beams are used for diagnostic purposes. Thus, beam spectroscopy is an important consideration in the core region. Radiation from impurities in the edge region is very important in understanding the formation of advanced discharge regimes (transport barriers). Temperatures are significantly lower in the edge/ divertor region and there is a relatively high population of neutral species. Molecules will also form in this region, requiring extensive data on a variety of molecular processes for diagnostic procedures. Processes such as charge exchange will also be important for diagnostic purposes in the edge - data needed for diagnostics include radiative as well as collision processes. Collision processes include both electron and heavy particle collisions. The importance of generating new data for support of diagnostics in fusion plasmas led to a strong recommendation at the 12th meeting

  12. Progress in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics

    International Nuclear Information System (INIS)

    McCrory, R.L.

    2002-01-01

    Significant theoretical and experimental progress towards the validation of direct-drive inertial confinement fusion (ICF) has been recently made at the Laboratory for Laser Energetics (LLE). Direct-drive ICF offers the potential for high-gain implosions and is a leading candidate for an inertial fusion energy power plant. LLE's base-line direct-drive ignition design for NIF is an 'all-DT' design that has a 1-D gain of ∼45. Recent calculations show that targets composed of foam shells, wicked with DT, can potentially achieve 1-D gains of ∼100. LLE experiments are conducted on the OMEGA 60-beam, 30-kJ, UV laser system. Beam smoothing of OMEGA includes 1-THz, 2-D SSD and polarization smoothing. Cryogenic D2 and plastic shell (warm) spherical targets and a comprehensive suite of x-ray, nuclear, charged particle and optical diagnostics are used in these experiments. Future experiments will use cryogenic DT targets. (author)

  13. Heavy ion induction linacs for fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Ho, D.D.M.

    1991-01-01

    In 1976 Denis Keefe proposed the heavy ion induction linac as a driver for inertial confinement fusion (ICF) power plants. Subsequent research has established that heavy ion fusion (HIF) is potentially an attractive energy source and has identified the issues that must be resolved to make HIF a reality. The principal accelerator issues are achieving adequately low transverse and longitudinal emittance and acceptable cost. Results from the single and multiple beam experiments at LBL on transverse emittance are encouraging. A predicted high current longitudinal instability that can affect longitudinal emittance is currently being studied. This paper presents an overview of economics and ICF target requirements and their relationship to accelerator design. It also presents a summary of the status of heavy ion induction linac research. It concludes with a discussion of research plans, including plans for the proposed Induction Linac Systems Experiments (ILSE)

  14. Centroid and Envelope Eynamics of Charged Particle Beams in an Oscillating Wobbler and External Focusing Lattice for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Logan, B. Grant

    2011-01-01

    Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called 'wobblers'. Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized.

  15. Charged particle fusion targets

    International Nuclear Information System (INIS)

    Bangerter, R.O.; Meeker, D.J.

    1977-01-01

    The power, voltage, energy and other requirements of electron and ion beam fusion targets are reviewed. Single shell, multiple shell and magnetically insulated target designs are discussed. Questions of stability are also considered. In particular, it is shown that ion beam targets are stabilized by an energy spread in the ion beam

  16. International power supply policy and the globalisation of research: the example of fusion research

    International Nuclear Information System (INIS)

    Bechmann, G.; Gloede, F.; Lessmann, E.

    2001-01-01

    At the present state of our information, we can affirm that fusion research, as far as the necessary financial expenditures and their political justification are concerned, is a matter of politically controversial debate. In the political arenas, projects like controlled nuclear fusion are discussed primarily with regard to the controllability of complex technical systems and the sustainability of our future supply of electric power. The attempt to discuss this problem will have to consider: (i) on the one hand, already established concepts of sustainability; (ii) and on the other, the - according to the present state of our knowledge - foreseeable characteristics of a system of power generation and supply based on fusion reactors. Not only do the goals of global technology projects have to be embedded in patterns of universally accepted legitimisation (sustainability), but the organisation of research and development is also changing into networks acting globally. In this sense, globalisation means not only the worldwide linking of financial markets and the permanent availability of information and communication networks, but above all the creation of global organisations of research and innovation processes. The globalisation of research and development of technology has several dimensions: (i) the recognition and treatment of global problems; (ii) the transformation and evolution of new forms of organisation and cooperation in a global community of researchers; (iii) the constitution of Global Change Research. Fusion is playing a 'pathfinder role' for these processes and is at the same time itself an expression of the globalisation of the production of technology

  17. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  18. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  19. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.

    1977-01-01

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  20. Physics Regimes in the Fusion Ignition Research Experiment (FIRE)

    International Nuclear Information System (INIS)

    D.M. Meade; S.C.Jardin; C.E. Kessel; M.A. Ulrickson; J.H. Schultz; P.H. Rutherford; J.A. Schmidt; J.C. Wesley; K.M. Young; N.A.Uckan; R.J. Thome; P. Heitzenroeder; B.E. Nelson; and C.C.Baker

    2001-01-01

    Burning plasma science is recognized widely as the next frontier in fusion research. The Fusion Ignition Research Experiment (FIRE) is a design study of a next-step burning plasma experiment with the goal of developing a concept for an experimental facility to explore and understand the strong nonlinear coupling among confinement, magnetohydrodynamic (MHD) self-heating, stability, edge physics, and wave-particle interactions that is fundamental to fusion plasma behavior. This will require plasmas dominated by alpha heating (Q greater than or equal to 5) that are sustained for a duration comparable to characteristic plasma timescales (greater than or equal to 10) tau(subscript ''E''), approximately 4 tau(subscript ''He''), approximately 2 tau(subscript ''skin''). The work reported here has been undertaken with the objective of finding the minimum size (cost) device to achieve these physics goals

  1. Negative Halogen Ions for Fusion Applications

    International Nuclear Information System (INIS)

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85-90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams

  2. Implications of the second law for future directions in controlled fusion research

    International Nuclear Information System (INIS)

    Roth, J.R.; Miley, G.H.

    1980-01-01

    Many existing energy related technologies have developed under the influence of social, economic, or state of the art constraints, and they cannot be viewed as optimum systems according to the second law of thermodynamics. Controlled fusion research presents an opportunity to optimize a nascent technology with respect to second law considerations in order to develop a practical energy source. In its present state of development, fusion research offers several independent approaches that may result in a net power producing fusion reactor. This paper discusses how second law considerations might be used to narrow the range of choices that must be made among various fusion fuel cycles. From a second law point of view, the most desirable fusion reactors are those for which the energy of charged particles can be converted directly into d.c. electrical power, while still allowing the energy that could be recovered by an efficient high-temperature 'blanket' to be transported largely by radiation. Fusion research in all major industrialized countries is developing the deuterium-tritium (D-T) fuel cycle for first-generation fusion power plants. It will be shown that other fuel cycles have significant advantages over the D-T fuel cycle according to second law principles. (author)

  3. Annual report of the Fusion Research Center for the period of April 1, 1983 to March 31, 1984

    International Nuclear Information System (INIS)

    1985-03-01

    Research and development activities of the Fusion Research Center (Department of Thermonuclear Fusion Research and Department of Large Tokamak Development) from April 1983 to March 1984 are described. Installation and commissioning of the new tokamak JFT-2M had been completed. The 2nd ICRF heating experiment and LH current drive experiment were started. In the field of plasma theory, the scaling law of the critical beta in a tokamak was obtained and the ICRF heating was analyzed in detail. The first phase of the cooperation of Doublet III will be finished in Sept. 1984. The JT-60 program progressed as scheduled. Installation of the tokamak machine, initiated in Feb. 1983, will be finished in Sept. 1984. The tests of power supply and control system on site and the fabrication of the neutral beam injectors in factory proceeded successfully. Performance tests of prototype injector unit for JT-60 NBI progressed as scheduled. A new advanced source plasma generator was developed to provide a high proton ratio exceeding 90%. Klystrons for JT-60 LH heating achieved the output power of 1 MW for 10 sec. Performance tests of titanium evaporators for JT-60 were completed. The Japanese coil for IEA Large Coil Task was installed in a test facility at ORNL and the partial cool-down was carried out. Construction of the Tritium Process Laboratory was completed. Design studies of the Fusion Experimental Reactor (FER) and INTOR proceeded. (author)

  4. Advanced laser fusion target fabrication research and development proposal

    International Nuclear Information System (INIS)

    Stupin, D.M.; Fries, R.J.

    1979-05-01

    A research and development program is described that will enable the fabrication of 10 6 targets/day for a laser fusion prototype power reactor in 2007. We give personnel and cost estimates for a generalized laser fusion target that requires the development of several new technologies. The total cost of the program between 1979 and 2007 is $362 million in today's dollars

  5. Present status of fusion researches in USA, 4

    International Nuclear Information System (INIS)

    Yoshikawa, Shoichi; Okabayashi, Michio

    1983-01-01

    25 years have elapsed since nuclear fusion was published at the second Geneva conference in 1958. During this period, the Plasma Physics Laboratory of Princeton University has achieved the central role in the research on toroidal system nuclear fusion devices. Also the experiment of the large tokamak TFTR started from December, 1982, recorded the longest containment time of 200 ms as the initial data, and toroidal devices look to approach one step close to the scientific verification experiment (Q = 1) of reactors. In the PPPL, in order to perfect the basis required for the realization of nuclear fusion reactors, the experimental and theoretical developments have been carried out. Plasma containment experiment has been advanced successively from stellarater through internal conductor type to tokamak, and in plasma heating, ion cyclotron heating, fast neutral particle injection heating and low region hybrid heating were successfully carried out. As the experimental apparatuses, that for poloidal divertor experiment, Princeton large torus, tokamak fusion test reactor (TFTR) and S-1 spheromak are described. From the theories developed recently, bean type tokamak, heliac-stellarator and nuclear fusion reaction utilizing μ-mesons and nuclear spin are explained. (Kako, I.)

  6. Overview of FAR-TECH's magnetic fusion energy research

    Science.gov (United States)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  7. Accelerator and Fusion Research Division. Annual report, October 1977--September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Research is reported for the combined groups consisting of the Accelerator Division and the Magnetic Fusion Energy Group. Major topics reported include accelerator operations, magnetic fusion energy, and advanced accelerator development. (GHT)

  8. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-01-01

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers

  9. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  10. Energy from inertial fusion

    International Nuclear Information System (INIS)

    1995-03-01

    This book contains 22 articles on inertial fusion energy (IFE) research and development written in the framework of an international collaboration of authors under the guidance of an advisory group on inertial fusion energy set up in 1991 to advise the IAEA. It describes the actual scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It also identifies ways in which international co-operation in ICF could be stimulated. The book is intended for a large audience and provides an introduction to inertial fusion energy and an overview of the various technologies needed for IFE power plants to be developed. It contains chapters on (i) the fundamentals of IFE; (ii) inertial confinement target physics; (iii) IFE power plant design principles (requirements for power plant drivers, solid state laser drivers, gas laser drivers, heavy ion drivers, and light ion drivers, target fabrication and positioning, reaction chamber systems, power generation and conditioning and radiation control, materials management and target materials recovery), (iv) special design issues (radiation damage in structural materials, induced radioactivity, laser driver- reaction chamber interfaces, ion beam driver-reaction chamber interfaces), (v) inertial fusion energy development strategy, (vi) safety and environmental impact, (vii) economics and other figures of merit; (viii) other uses of inertial fusion (both those involving and not involving implosions); and (ix) international activities. Refs, figs and tabs

  11. International bulletin on atomic and molecular data for fusion. No. 47

    International Nuclear Information System (INIS)

    Botero, J.

    1993-12-01

    This bulletin, published by the IAEA, provides atomic and molecular data references relevant to fusion research and technology. In part I the indexation of the papers is provided separately for (i) structure and spectra, (ii) atomic and molecular collisions, and (iii) surface interactions. Part II contains the bibliographic data for the above-listed topics and for high-energy laser and beam-matter interaction of atomic particles with fields. Also included are sections on atomic and molecular data needs for fusion research and on news about ALADDIN (A Labelled Atomic Data INterface) and evaluated data bases

  12. Annual report of Naka Fusion Research Establishment. From April 1,2000 to March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Masaaki; Kizu, Kaname; Kusakawa, Fumio; Matsumoto, Hiroshi; Sakamoto, Keishi; Sengoku, Seio (eds.) [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-11-01

    This report provides an overview of research and development activities at Naka Fusion Research Establishment, JAERI, during the period from April 1, 2000 to March 31, 2001. The activities in the Naka Fusion Research Establishment are outstanding at high performance plasma researches in JT-60 and JFT-2M, and development in ITER EDA including technological R and Ds. The JT-60 project aims at contributing to the physics R and D for ITER and establishing the physics basis for a steady state tokamak fusion reactor like SSTR. For the achievement of those objectives, both physical and engineering researches have been done. The JT-60 have continued to be productive in many areas covering performance improvements of high {beta}{sub p} ELMy H-mode regime and reversed shear plasma, non-inductive current drive, physics study relevant to improved modes, stabilization of MHD modes, feedback control, disruption study, understandings on energetic particles, and scrape off layer and divertor studies with increased pumping capability. On JFT-2M, advanced and basic research of tokamak plasma is being promoted, including application of the low activation ferritic steel, with the flexibility of a medium-sized device. The pre-testing on compatibility of ferritic steel plates (FPs), covering {approx}20% of the inside wall of the vacuum vessel, with plasma was performed, demonstrating no adverse effects on plasmas. Boronization was introduced for the first time in JFT-2M after installation of inside FPs. High-{beta}{sub N} discharges ({beta}{sub N} up to {approx}2.8) were obtained with inside FPs and boronization. Formation of negative electric field at the H-mode transition during ECH was clarified by the heavy ion beam probe (HIBP). The MSE polarimeter system, which is capable of simultaneous measurement of a radial electric field, has been newly developed. In RF experiments, fast wave electric field profile was directly measured for the first time using the beat wave and HIBP. The

  13. Parametric Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Prost, Lionel Robert

    2007-01-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2 (micro)C/m) over long pulse durations (4 (micro)s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K + ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (∼80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics

  14. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  15. Fusion dynamics in 40Ca induced reactions

    International Nuclear Information System (INIS)

    Prasad, E.; Hinde, D.J.; Williams, E.

    2017-01-01

    Synthesis of superheavy elements (SHEs) and investigation of their properties are among the most challenging research topics in modern science. A non-compound nuclear process called quasi fission is partly responsible for the very low production cross sections of SHEs. The formation and survival probabilities of the compound nucleus (CN) strongly depend on the competition between fusion and quasi fission. A clear understanding of these processes and their dynamics is required to make reliable predictions of the best reactions to synthesise new SHEs. All elements beyond Nh are produced using hot fusion reactions and beams of 48 Ca were used in most of these experiments. In this context a series of fission measurements have been carried out at the Australian National University (ANU) using 40;48 Ca beams on various targets ranging from 142 Nd to 249 Cf. Some of the 40 Ca reactions will be discussed in this symposium

  16. Survey of fusion reactor technology

    International Nuclear Information System (INIS)

    Chung, M.K.; Kang, H.D.; Oh, Y.K.; Lee, K.W.; In, S.Y.; Kim, Y.C.

    1983-01-01

    The present object of the fusion research is to accomplish the scientific break even by the year of 1986. In view of current progress in the field of Fusion reactor development, we decided to carry out the conceptual design of Tokamak-type fusion reactor during the year of 82-86 in order to acquire the principles of the fusion devices, find the engineering problems and establish the basic capabilities to develop the key techniques with originality. In this year the methods for calculating the locations of the poloidal coils and distribution of the magnetic field, which is one of the most essential and complicated task in the fusion reactor design works, were established. Study on the optimization of the design method of toroidal field coil was also done. Through this work, we established the logic for the design of the toroidal field coil in tokamak and utilize this technique to the design of small compact tokamak. Apart from the development work as to the design technology of tokamak, accelerating column and high voltage power supply (200 KVDC, 100 mA) for intense D-T neutron generator were constructed and now beam transport systems are under construction. This device will be used to develop the materials and the components for the tokamak fusion reactor. (Author)

  17. Fusion power: massive research program aims at formidable problems, almost limitless potential

    International Nuclear Information System (INIS)

    Dingee, D.A.

    1979-01-01

    This article surveys extensively fusion development under the following topics: US research directions; inertial confinement fusion; foreign fusion efforts; fusion issues; fusion applications; and arguments for fusion development. Dr. Dingee points out that, despite persuasive arguments for development, fusion has as yet attracted no substantial constituency; and that winning greater support for fusion may thus require a considerable technical breakthrough (namely, proof of scientific feasibility or achievement of energy breakeven) - or a new focus on an energy source such as hybrids, which offer a nearer-term payoff than pure fusion. Dr. Dingee says the next major facility for magnetic confinement research (to be built in late 1980s) has not yet been selected, but will probably be an engineering test facility; there are similar plans for inertial confinement. Whichever type is chosen, the first experimental power reactor is scheduled for the first few years of the 2000's, this to be followed by commercial demonstration of fusion power in the 2010 to 2020 time frame. He points out, finally, that the complex technical and institutional issues are being considered in a climate in which the benefits of nuclear energy itself are being questioned; and that there is little doubt that future development is tied to overall decisions the nation will make regarding the value of nuclear energy

  18. Nuclear-fusion research. To bring the sun on the earh

    International Nuclear Information System (INIS)

    Zohm, Hartmut

    2009-01-01

    The course treats first the foundations of nuclear fusion. In the second part the concepts for the realization of nuclear fusion in the laboratory are described. Finally in the last part a survey on the present status of the research as well an outlook on future work is given

  19. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  20. Realistic modeling of chamber transport for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.; Grote, D.P.; Callahan, D.A.; Tabak, M.; Henestroza, E.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.

    2003-01-01

    Transport of intense heavy-ion beams to an inertial-fusion target after final focus is simulated here using a realistic computer model. It is found that passing the beam through a rarefied plasma layer before it enters the fusion chamber can largely neutralize the beam space charge and lead to a usable focal spot for a range of ion species and input conditions

  1. FFUSION yearbook 1997. Annual report of the Finnish fusion research unit. Association EURATOM-TEKES

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, S; Paettikangas, T [eds.; VTT Energy, Espoo (Finland)

    1998-02-01

    Finnish fusion programme (FFUSION) is one of the eleven national energy research programmes funded by the Technological Development Centre of Finland (TEKES). The FFUSION programme was fully integrated into European Fusion Programme just after Finland joined the European Union. The contract of Association Euratom and Tekes was signed in 1995 and extends to the end of 1999. Finland became a member of JET Joint Undertaking in 1996, other contracts with Euratom include NET agreement and the Staff Mobility Agreement. FFUSION programme with participating research institutes and universities forms the Fusion Research Unit of the Association Euratom-Tekes. This annual report summarises the research activities of the Finnish Research Unit in 1997. The programme consists of two parts: Physics and Technology. The research areas of the physics are: Fusion plasma engineering, and Radio-frequency heating and Plasma diagnostics. The technology is focused into three areas: Fusion reactor materials (first wall components and joining techniques), Remote handling and viewing systems, and Superconductors

  2. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  3. Induction accelerator development for heavy ion fusion

    International Nuclear Information System (INIS)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator

  4. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    Qian Jiapu

    1994-10-01

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li 2 O, γ-LiAlO 2 ) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  5. High-energy heavy-ion beams as igniters for commercial-scale intertial-fusion power plants

    International Nuclear Information System (INIS)

    Judd, D.L.

    1977-01-01

    Commercial-scale inertial-fusion power can be generated by producing a steady succession of thermonuclear microexplosions of small pellet targets whose ignition requires supplying a few magajoules in a few nanoseconds, a goal well beyond the present single-shot capabilities of high-power pulsed laser and electron-beam systems which also lack the needed repetition-rate capability of order one per second. However, existing high-energy accelerator technology with straightforward engineering extrapolations, applied to pulsed beams of heavy ions in low charge states, can meet all requirements. The relevant accelerator capabilities are discussed; three widely differing types of accelerators show promise. Needed developmental work is mostly on lower-energy components and can be conducted at relatively low cost. Some of the work started at several accelerator laboratories on this new approach within the past year are described, and possible goals of an early demonstration construction project are indicated

  6. Nuclear fusion research and plasma application technologies in SWIP (Southwestern Institute of Physics)

    International Nuclear Information System (INIS)

    Deng, X.W.

    1990-01-01

    A brief introduction of nuclear fusion research and plasma application technologies in SWIP is reported in this paper. The SWIP focuses its fusion efforts mainly on Tokamak with mirror as the supplemental experiments and fusion reactor conceptual design as preparation for future application of fusion energy. SWIP is making great efforts on fusion technology spin-off to make contribution towards national economic construction. (Author)

  7. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  8. Technology choices for the Integrated Beam Experiment (IBX)

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2002-10-31

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete ''source-to-target'' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current ({approx}1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing. This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets.

  9. EBFA: pulsed power for fusion

    International Nuclear Information System (INIS)

    Martin, T.H.; VanDevender, J.P.; Barr, G.W.; Johnson, D.L.

    1979-01-01

    This paper will describe the EBFA I accelerator under construction for inertial confinement fusion studies with particle beams and will update previous publications concerning particle beam fusion accelerators. Previous information included Proto I, a triggered oil insulated 1 TW accelerator; Proto II, a water insulated 10 TW accelerator; and EBFA I, a 30 TW, 1 MJ accelerator. Some modifications to the original design have occurred. A new pulse-forming-line concept has been developed which increases the flexibility of the accelerator. The major problem of vacuum interface flashover has been solved by the use of long, magnetically-insulated, transmission lines. The first production module of EBFA I has been received, assembled, and is now undergoing extensive testing. The technology is extendable to at least a factor of ten above the projected EBFA capabilities of 30 TW and 1 MJ output. Progress on facilities associated with the Sandia Particle Beam fusion program is reported

  10. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  11. Accelerator and Fusion Research Division annual report, October 1980-September 1981. Fiscal year, 1981

    International Nuclear Information System (INIS)

    Johnson, R.K.; Thomson, H.A.

    1982-04-01

    Major accomplishments during fiscal year 1981 are presented. During the Laboratory's 50th anniversary celebrations, AFRD and the Nuclear Science Division formally dedicated the new (third) SuperHILAC injector that adds ions as heavy as uranium to the ion repertoire at LBL's national accelerator facilities. The Bevalac's new multiparticle detectors (the Heavy Ion Spectrometer System and the GSI-LBL Plastic Ball/Plastic Wall) were completed in time to take data before the mid-year shutdown to install the new vacuum liner, which passed a milestone in-place test with flying colors in September. The Bevalac biomedical program continued patient treatment with neon beams aimed at establishing a complete data base for a dedicated biomedical accelerator, the design of which NCI funded during the year. Our program to develop alternative Isabelle superconducting dipole magnets, which DOE initiated in FY80, proved the worth of a new magnet construction technique and set a world record - 7.6 Tesla at 1.8 K - with a model magnet in our upgraded test facility. Final test results at LBL were obtained by the Magnetic Fusion Energy Group on the powerful neutral beam injectors developed for Princeton's TFTR. The devices exceeded the original design requirements, thereby completing the six-year, multi-million-dollar NBSTF effort. The group also demonstrated the feasibility of efficient negative-ion-based neutral beam plasma heating for the future by generating 1 A of negative ions at 34 kV for 7 seconds using a newly developed source. Collaborations with other research centers continued, including: (1) the design of LBL/Exxon-dedicated beam lines for the Stanford Synchrotron Radiation Laboratory; (2) beam cooling tests at Fermilab and the design of a beam cooling system for a proton-antiproton facility there; and (3) the development of a high-current betatron for possible application to a free electron laser

  12. Light ion driven inertial fusion reactor concepts

    International Nuclear Information System (INIS)

    Cook, D.L.; Sweeney, M.A.; Buttram, M.T.; Prestwich, K.R.; Moses, G.A.; peterson, R.R.; Lovell, E.G.; Englestad, R.L.

    1980-01-01

    The possibility of designing fusion reactor systems using intense beams of light ions has been investigated. concepts for beam production, transport, and focusing on target have been analyzed in light of more conservative target performance estimates. Analyses of the major criteria which govern the design of the beam-target-cavity tried indicate the feasibility of designing power systems at the few hundred megawatt (electric) level. This paper discusses light ion fusion reactor (LIFR) concepts and presents an assessment of the design limitations through quantitative examples

  13. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  14. Fusion performance analysis of plasmas with reversed magnetic shear in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Ruskov, E.; Bell, M.; Budny, R.V.; McCune, D.C.; Medley, S.S.; Nazikian, R.; Synakowski, E.J.; Goeler, S. von; White, R.B.; Zweben, S.J.

    1999-01-01

    A case for substantial loss of fast ions degrading the performance of tokamak fusion test reactor plasmas [Phys. Plasmas 2, 2176 (1995)] with reversed magnetic shear (RS) is presented. The principal evidence is obtained from an experiment with short (40 - 70 ms) tritium beam pulses injected into deuterium beam heated RS plasmas [Phys. Rev. Lett. 82, 924 (1999)]. Modeling of this experiment indicates that up to 40% beam power is lost on a time scale much shorter than the beam - ion slowing down time. Critical parameters which connect modeling and experiment are: The total 14 MeV neutron emission, its radial profile, and the transverse stored energy. The fusion performance of some plasmas with internal transport barriers is further deteriorated by impurity accumulation in the plasma core. copyright 1999 American Institute of Physics

  15. Accelerators for heavy ion fusion

    International Nuclear Information System (INIS)

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985

  16. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  17. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1989--September 30, 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This report contains the following topics on heavy ion fusion: MBE-4 drifting beam quadrupole operating range; transverse emittance growth in MBE-4; an improved ion source for MBE-4; drifting beam studies on MBE-4; 2-MV injector; improvements in lifetime of the C + source; injector control system; Maxwell spark gap test update; ILSE cosine 2θ quadrupole magnet development; electrostatic quadrupole prototype development activity; induction accelerator cell development; effect of a spread in beamlet currents on longitudinal stability; and heavy ion linac driver analysis

  18. Methods of economic analysis applied to fusion research. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    In this and previous efforts ECON has provided economic assessment of a fusion research program. This phase of study focused on two tasks, the first concerned with the economics of fusion in an economy that relies heavily upon synthetic fuels, and the second concerned with the overall economic effects of pursuing soft energy technologies instead of hard technologies. This report is organized in two parts, the first entitled An Economic Analysis of Coproduction of Fusion-Electric Energy and Other Products, and the second entitled Arguments Associated with the Choice of Potential Energy Futures

  19. Fusion research in the European Community

    International Nuclear Information System (INIS)

    Wolf, G.H.

    1988-01-01

    Centering around the European joint project Joint European Torus (JET), in the framework of which hot fusion plasmas are already brought close to thermonuclear ignition, the individual research centres in Europe have taken over different special tasks. In Germany research concentrates above all on the development of super-conductive magnets, the stage of plasma-physical fundamentals or the investigation of the interaction between the plasma boundary layer and the material of the vessel wall. On this basis the development stage following JET, the Next European Torus (NET), is planned, with its main aim being the production and maintenance of a thermonuclear burning plasma, i.e. a plasma which maintains its active state from the gain of energy of its own fusion reactions. In the framework of a contractually agreed cooperation between the European Community, Japan, the USSR and the USA, the establishment of an international study group (with seat in Garching) was decided upon, which is to develop the concept of an 'International Thermonuclear Experimental Reactor (ITER)' jointly supported by these countries. The results of the studies presented show that the differences in the design data of ITER and NET are negligible. (orig./DG) [de

  20. Research programme on controlled thermonuclear fusion - Synthesis report 2008

    International Nuclear Information System (INIS)

    Werthmueller, A.

    2009-06-01

    Switzerland is associated to the International Thermonuclear Experimental Reactor (ITER) project carried out in the framework of the European Atomic Energy Community (EURATOM). The current stage includes on-site civil engineering works. The Variable Configuration Tokamak (TCV) of the 'Centre de Recherches en Physique des Plasmas' (CRPP) of the EPFL will remain an important recognized research facility until the start of the ITER operation foreseen in 2018. At the European level, the whole fusion research is coordinated and partly financed by the Joint Undertaking Fusion for Energy (JU F4E). The large flexibility of the TCV design and operation modus allow the creation and control of plasmas of various shapes, what is a very useful option to verify the results of numerical simulations. Besides, the hyper-frequency power density injected into the plasma is the highest ever recorded in the world. Research topics studied with the TCV include the stationary regimes in the tokamaks; a plasma current of more than 70 kA could be maintained, what represents an improvement by a factor of 3 to 4 of the confinement quality. For the first time in the world a configuration of the 'snowflake' type could be created and the power density on the wall of the vacuum chamber could be reduced accordingly. Numerical models allowed the analysis of turbulence and heat transport, of the magneto-hydrodynamic stability of the tokamaks and stellarators as well as the optimization of the magnetic confinement. Results concerning the so-called 'saw teeth' instability were experimentally confirmed on the Joint European Torus (JET). Theoretical researches were carried out on the fluctuations, turbulence and transport phenomena in the magnetized toric plasmas. At the Paul Scherrer Institute (PSI) the effect of the fast neutrons emitted by the fusion reactions on the walls of the fusion reactors was investigated. Irradiation simulations were carried out by means of the Swiss Spallation Neutron Source

  1. Research into thermonuclear fusion

    International Nuclear Information System (INIS)

    Schumacher, U.

    1989-01-01

    The experimental and theoretical studies carried out in close international cooperation in the field of thermonuclear fusion by magnetic plasma confinement have achieved such progress towards higher plasma temperatures and densities, longer confinement times and, thus, increased fusion product, that emphasis now begins to be shifted from problems of physics to those of technology as a next major step is being prepared towards a large international project (ITER) to achieve thermonuclear burning. The generation and maintenance of a burning fusion plasma in an experimental physics phase will be followed by a phase of technical materials studies at high fluxes of fusion neutrons. These goals have been pursued since 1983 by an international study group at Garching working on the design of a Next European Torus (NET). Since May 1988, an international study group comprising ten experts each from the USSR, USA, Japan, and the European Community has begun to work on a design draft of ITER (International Thermonuclear Experimental Reactor) in Garching under the auspices of IAEA. (orig.) [de

  2. Induction Accelerator Technology Choices for the Integrated Beam Experiment (IBX)

    International Nuclear Information System (INIS)

    Leitner, M.A.; Celata, C.M.; Lee, E.P.; Logan, B.G.; Sabbi, G.; Waldron, W.L.; Barnard, J.J.

    2003-01-01

    Over the next three years the research program of the Heavy Ion Fusion Virtual National Laboratory (HIF-VNL), a collaboration among LBNL, LLNL, and PPPL, is focused on separate scientific experiments in the injection, transport and focusing of intense heavy ion beams at currents from 100 mA to 1 A. As a next major step in the HIF-VNL program, we aim for a complete 'source-to-target' experiment, the Integrated Beam Experiment (IBX). By combining the experience gained in the current separate beam experiments IBX would allow the integrated scientific study of the evolution of a single heavy ion beam at high current (∼1 A) through all sections of a possible heavy ion fusion accelerator: the injection, acceleration, compression, and beam focusing.This paper describes the main parameters and technology choices of the planned IBX experiment. IBX will accelerate singly charged potassium or argon ion beams up to 10 MeV final energy and a longitudinal beam compression ratio of 10, resulting in a beam current at target of more than 10 Amperes. Different accelerator cell design options are described in detail: Induction cores incorporating either room temperature pulsed focusing-magnets or superconducting magnets

  3. Fusion Canada issue 29

    International Nuclear Information System (INIS)

    1995-10-01

    A short bulletin from the National Fusion Program highlighting in this issue Canada-Europe Accords: 5 year R and D collaboration for the International Thermonuclear Experimental Reactor (ITER) AECL is designated to arrange and implement the Memorandum of Understanding (MOU) and the ITER Engineering Design Activities (EDA) while EUROTAM is responsible for operating Europe's Fusion R and D programs plus MOU and EDA. The MOU includes tokamaks, plasma physics, fusion technology, fusion fuels and other approaches to fusion energy (as alternatives to tokamaks). STOR-M Tokamak was restarted at the University of Saskatchewan following upgrades to the plasma chamber to accommodate the Compact Toroid (CT) injector. The CT injector has a flexible attachment thus allowing for injection angle adjustments. Real-time video images of a single plasma discharge on TdeV showing that as the plasma density increases, in a linear ramp divertor, the plasma contact with the horizontal plate decreases while contact increases with the oblique plate. Damage-resistant diffractive optical elements (DOE) have been developed for Inertial Confinement Fusion (ICF) research by Gentac Inc. and the National Optics Institute, laser beam homogeniser and laser harmonic separator DOE can also be made using the same technology. Studies using TdeV indicate that a divertor will be able to pump helium from the tokamak with a detached-plasma divertor but helium extraction performance must first be improved, presently the deuterium:helium retention radio-indicates that in order to pump enough helium through a fusion reactor, too much deuterium-tritium fuel would be pumped out. 2 fig

  4. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide

  5. LiWall Fusion - The New Concept of Magnetic Fusion

    International Nuclear Information System (INIS)

    Zakharov, L.E.

    2011-01-01

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  6. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  7. Laser drivers for inertial confinement fusion

    International Nuclear Information System (INIS)

    Holzrichter, J.F.

    1983-01-01

    Inertial Confinement Fusion (ICF) is the technology that we are developing to access the vast stored energy potential of deuterium fuel located in the world's water supply. This form of fusion is accomplished by compressing and heating small volumes of D-T fuel to very high temperatures (greater than 100M 0 C) and to very high densities (greater than 1000 times the normal liquid density). Under these fuel conditions, a thermonuclear reaction can occur, leading to a net energy release compared to the energy used to heat the fuel initially. To accomplish the condition where fusion reactions begin, effective drivers are required. These are lasers or particle beam accelerators which can provide greater than 10 14 W/cm 2 over millimeter scale targets with an appropriately programmed intensity vs time. At present, we are using research lasers to obtain an understanding of the physics and engineering of fuel compression

  8. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    International Nuclear Information System (INIS)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-01-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  9. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Amy [Univ. of Wisconsin, Madison, WI (United States); Callis, Richard [General Atomics, San Diego, CA (United States); Efthimion, Philip [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Foster, John [Univ. of Michigan, Ann Arbor, MI (United States); Keane, Christopher [Washington State Univ., Pullman, WA (United States); Onsager, Terry [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); O' Shea, Patrick [Univ. of Maryland, College Park, MD (United States)

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  10. [Fusion research/tokamak]. Final report, 1 May 1988 - 30 April 1994

    International Nuclear Information System (INIS)

    1994-01-01

    The objectives of the Fusion Research Center Program are: (1) to advance /the transport studies of tokamaks, including the development and maintenance of the Magnetic Fusion Energy Database, and (2) to provide theoretical interpretation, modeling and equilibrium and stability studies for the text-upgrade tokamak. Work is described on five basic categories: (1) magnetic fusion energy database; (2) computational support and numerical modeling; (3) support for TEXT-upgrade and diagnostics; (4) transport studies; and (5) Alfven waves

  11. An exploration for a feasible fusion energy research strategy in Korea

    International Nuclear Information System (INIS)

    Kim, Sung Kyu; Park, Jong Kyun; Yang, Maeng Ho

    2005-01-01

    Recently, the fierce competition between European Union (EU) and Japan to host the International Thermo-nuclear Experimental Reactor (ITER) has aroused in Korea renewed interests in fusion research and its pros-pect for commercial fusion power generation. Korea has committed itself in 2003 to the construction and operation of ITER which spans three decades. This 30-years-long commitment to ITER surely is longer than any other scientific and/or technological venture that has ever been taken up after its birth in 1948. ITER poses both as a great opportunity for Korea, allegedly but not convincingly enough, and as a potential 'black hole' sucking in all resources for future energy researches, to the domestic technical communities and industries. However, ITER and fusion research is not just a technico-industrial issue but may as well be a politico-security issue, like many other apparent technology issues such as recent participation in the Galileo project. In this article, the authors will explore this situation with an emphasis on domestic and foreign constraints and propose a realistic and verifiable strategy to address these issues and to develop fusion energy in Korea

  12. Computing for magnetic fusion energy research: An updated vision

    International Nuclear Information System (INIS)

    Henline, P.; Giarrusso, J.; Davis, S.; Casper, T.

    1993-01-01

    This Fusion Computing Council perspective is written to present the primary of the fusion computing community at the time of publication of the report necessarily as a summary of the information contained in the individual sections. These concerns reflect FCC discussions during final review of contributions from the various working groups and portray our latest information. This report itself should be considered as dynamic, requiring periodic updating in an attempt to track rapid evolution of the computer industry relevant to requirements for magnetic fusion research. The most significant common concern among the Fusion Computing Council working groups is networking capability. All groups see an increasing need for network services due to the use of workstations, distributed computing environments, increased use of graphic services, X-window usage, remote experimental collaborations, remote data access for specific projects and other collaborations. Other areas of concern include support for workstations, enhanced infrastructure to support collaborations, the User Service Centers, NERSC and future massively parallel computers, and FCC sponsored workshops

  13. EU socio-economic research on fusion: Findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2003-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrating, through technical economic programming models and global multi-regional energy environmental scenarios, that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. Making the public aware of such benefits through field experiences will be part of the program. (author)

  14. EU socio-economic research on fusion: findings and program

    International Nuclear Information System (INIS)

    Tosato, G.C.

    2002-01-01

    In 1997 the European Commission launched a Socio-Economic Research program to study under which conditions future fusion power plants may become competitive, compatible with the energy supply system and acceptable for the public. The program is developed by independent experts making use of well established international methodologies. It has been shown, among others, that: 1) local communities are ready to support the construction of an experimental fusion facility, if appropriate communication and awareness campaigns are carried out; 2) since the externalities are much lower than for competitors, fusion power plants may become the major producer of base load electricity at the end of the century in Europe, if climate changes have to be mitigated, if the construction of new nuclear fission power plants continues to be constrained and if nuclear fusion power plants become commercially available in 2050. Cooperating with major international organizations, the program for next year aims to demonstrate that the potential global benefits of fusion power plants in the second half of the century largely outdo the RD and D costs borne in the first half to make it available. (author)

  15. Fusion research in the UK 1945-1960

    International Nuclear Information System (INIS)

    Hendry, J.; Lawson, J.D.

    1993-01-01

    Two workers, involved in the research programmes themselves, document the developments in fusion research in the United Kingdom from 1945 until 1960. Started as part of the official history of the United Kingdom Atomic Energy Authority, the text is drawn from work by various teams of scientists at laboratories around the United Kingdom. This previewing of the research programmes lead to an inevitable evaluation of their worth, an assessment of their political implications and speculation on whether certain changes might have advanced scientific progress more readily. (U.K.)

  16. ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT. ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY

    International Nuclear Information System (INIS)

    PROJECT STAFF

    2001-01-01

    OAK A271 ADVANCED FUSION TECHNOLOGY RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE US DEPARTMENT OF ENERGY. The General Atomics (GA) Advanced Fusion Technology Program seeks to advance the knowledge base needed for next-generation fusion experiments, and ultimately for an economical and environmentally attractive fusion energy source. To achieve this objective, they carry out fusion systems design studies to evaluate the technologies needed for next-step experiments and power plants, and they conduct research to develop basic and applied knowledge about these technologies. GA's Advanced Fusion Technology program derives from, and draws on, the physics and engineering expertise built up by many years of experience in designing, building, and operating plasma physics experiments. The technology development activities take full advantage of the GA DIII-D program, the DIII-D facility and the Inertial Confinement Fusion (ICF) program and the ICF Target Fabrication facility

  17. Fusion Reactor Safety Research Program annual report, FY-79

    International Nuclear Information System (INIS)

    Crocker, J.G.; Cohen, S.

    1980-08-01

    The objective of the program is the development, coordination, and execution of activities related to magnetic fusion devices and reactors that will: (a) identify and evaluate potential hazards, (b) assess and disclose potential environmental impacts, and (c) develop design standards and criteria that eliminate, mitigate, or reduce those hazards and impacts. The program will provide a sound basis for licensing fusion reactors. Included in this report are portions of four reports from two outside contractors, discussions of the several areas in which EG and G Idaho is conducting research activities, a discussion of proposed program plan development, mention of special tasks, a review of fusion technology program coordination by EG and G with other laboratories, and a brief view of proposed FY-80 activities

  18. Methods of economic analysis applied to fusion research. Fourth annual report

    International Nuclear Information System (INIS)

    Hazelrigg, G.A. Jr.

    1980-01-01

    The current study reported here has involved three separate tasks. The first task deals with the development of expected utility analysis techniques for economic evaluation of fusion research. A decision analytic model is developed for the incorporation of market uncertainties, as well as technological uncertainties in an economic evaluation of long-range energy research. The model is applied to the case of fusion research. The second task deals with the potential effects of long-range energy RD and D on fossil fuel prices. ECON's previous fossil fuel price model is extended to incorporate a dynamic demand function. The dynamic demand function supports price fluctuations such as those observed in the marketplace. The third task examines alternative uses of fusion technologies, specifically superconducting technologies and first wall materials to determine the potential for alternative, nonfusion use of these technologies. In both cases, numerous alternative uses are found

  19. Heavy-ion-fusion-science: summary of US progress

    International Nuclear Information System (INIS)

    Yu, S.S.; Logan, B.G.; Barnard, J.J.; Bieniosek, F.M.; Briggs, R.J.; Cohen, R.H.; Coleman, J.E.; Davidson, R.C.; Friedman, A.; Gilson, E.P.; Grisham, L.R.; Grote, D.P.; Henestroza, E.; Kaganovich, I.D.; Covo, M. Kireeff; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Lund, S.M.; Molvik, A.W.; Olson, C.L.; Qin, H.; Roy, P.K.; Sefkow, A.; Seidl, P.A.; Startsev, E.A.; Vay, J-L.; Waldron, W.L.; Welch, D.R.

    2007-01-01

    Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the US programme on heavy-ion-fusion-science and high energy density physics: 'How can heavy-ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions?' New results in transverse and longitudinal beam compression, high-brightness transport and beam acceleration will be reported. Central to this campaign is final beam compression. With a neutralizing plasma, we demonstrated transverse beam compression by an areal factor of over 100 and longitudinal compression by a factor of > 50. We also report on the first demonstration of simultaneous transverse and longitudinal beam compression in plasma. High beam brightness is key to high intensity on target, and detailed experimental and theoretical studies on the effect of secondary electrons on beam brightness degradation are reported. A new accelerator concept for near-term low-cost target heating experiments was invented, and the predicted beam dynamics validated experimentally. We show how these scientific campaigns have created new opportunities for interesting target experiments in the warm dense matter regime. Finally, we summarize progress towards heavy-ion fusion, including the demonstration of a compact driver-size high-brightness ion injector. For all components of our high intensity campaign, the new results have been obtained via tightly coupled efforts in experiments, simulations and theory

  20. Survey of tritium wastes and effluents in near-term fusion-research facilities

    International Nuclear Information System (INIS)

    Bickford, W.E.; Dingee, D.A.; Willingham, C.E.

    1981-08-01

    The use of tritium control technology in near-term research facilities has been studied for both the magnetic and inertial confinement fusion programs. This study focused on routine generation of tritium wastes and effluents, with little referene to accidents or facility decommissioning. This report serves as an independent review of the effectiveness of planned control technology and radiological hazards associated with operation. The facilities examined for the magnetic fusion program included Fusion Materials Irradiation Testing Facility (FMIT), Tritium Systems Test Assembly (TSTA), and Tokamak Fusion Test Reactor (TFTR) in the magnetic fusion program, while NOVA and Antares facilities were examined for the inertial confinement program