WorldWideScience

Sample records for beam freeform fabrication

  1. Characterization of 2219 Aluminum Produced by Electron Beam Freeform Fabrication

    Science.gov (United States)

    Taminger, Karen M. B.; Hafley, Robert A.

    2002-01-01

    Researchers at NASA Langley Research Center are developing a new electron beam freeform fabrication (EB F(sup 3)) technique to fabricate metal parts. This process introduces metal wire into a molten pool created by a focused electron beam. Potential aerospace applications for this technology include ground-based fabrication of airframe structures and on-orbit construction and repair of space components and structures. Processing windows for reliably producing high quality 2219 aluminum parts using the EB F(sup 3) technique are being defined. The effects of translation speed, wire feed rate, and beam power on the resulting microstructures and mechanical properties are explored. Tensile properties (ultimate tensile strength, yield strength, and elongation) show little effect over the range of processing conditions tested. Basic processing-microstructure-property correlations are drawn for the EB F(sup 3) process.

  2. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    Science.gov (United States)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  3. Combined Compression and Shear Structural Evaluation of Stiffened Panels Fabricated Using Electron Beam Freeform Fabrication

    OpenAIRE

    Nelson, Erik Walter

    2008-01-01

    Unitized aircraft structures have the potential to be more efficient than current aircraft structures. The Electron Beam Freeform Fabrication (EBF3) process can be used to manufacture unitized aircraft structures. The structural efficiency of blade stiffened panels made with EBF3 was compared to panels made by integrally machining from thick plate. The panels were tested under two load cases in a combined compression-shear load test fixture. One load case tested the panels' responses to a...

  4. Effect of Orientation on Tensile Properties of Inconel 718 Block Fabricated with Electron Beam Freeform Fabrication (EBF3)

    Science.gov (United States)

    Bird, R. Keith; Atherton, Todd S.

    2010-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation

  5. Electron Beam Freeform Fabrication: A Fabrication Process that Revolutionizes Aircraft Structural Designs and Spacecraft Supportability

    Science.gov (United States)

    Taminger, Karen M.

    2008-01-01

    The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.

  6. Monitoring Electron Beam Freeform Fabrication by Active Machine Vision Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Additive manufacturing is a modern fabrication process by which three dimensional components are built up layer-by-layer. Each layer corresponds to a cross-section...

  7. Evolution and Control of 2219 Aluminum Microstructural Features through Electron Beam Freeform Fabrication

    Science.gov (United States)

    Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.

    2006-01-01

    Electron beam freeform fabrication (EBF3) is a new layer-additive process that has been developed for near-net shape fabrication of complex structures. EBF3 uses an electron beam to create a molten pool on the surface of a substrate. Wire is fed into the molten pool and the part translated with respect to the beam to build up a 3-dimensional structure one layer at a time. Unlike many other freeform fabrication processes, the energy coupling of the electron beam is extremely well suited to processing of aluminum alloys. The layer-additive nature of the EBF3 process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.

  8. Thermal imaging for assessment of electron-beam freeform fabrication (EBF3) additive manufacturing deposits

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy; Martin, Richard E.

    2013-05-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA's electron beam freeform fabrication (EBF3) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF3 technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF3 system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality deposit, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for deposit assessment metrics.

  9. Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures

    Science.gov (United States)

    Gonzales, Devon; Liu, Stephen; Domack, Marcia; Hafley, Robert

    2016-01-01

    Electron Beam Freeform Fabrication (EBF3) is an additive manufacturing technique, developed at NASA Langley Research Center, capable of fabricating large scale aerospace parts. Advantages of using EBF3 as opposed to conventional manufacturing methods include, decreased design-to-product time, decreased wasted material, and the ability to adapt controls to produce geometrically complex parts with properties comparable to wrought products. However, to fully exploit the potential of the EBF3 process development of materials tailored for the process is required. Powder cored tubular wire (PCTW) technology was used to modify Ti-6Al-4V and Al 6061 feedstock to enhance alloy content, refine grain size, and create a metal matrix composite in the as-solidified structures, respectively.

  10. Electron Beam Freeform Fabrication (EBF3) for Cost Effective Near-Net Shape Manufacturing

    Science.gov (United States)

    Taminger, Karen M.; Hafley, Robert A.

    2006-01-01

    Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cubic centimeters per hour (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.

  11. Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing

    Science.gov (United States)

    Taminger, Karen M.; Hafley, Robert A.

    2006-01-01

    Manufacturing of structural metal parts directly from computer aided design (CAD) data has been investigated by numerous researchers over the past decade. Researchers at NASA Langley Research Center are developing a new solid freeform fabrication process, electron beam freeform fabrication (EBF3), as a rapid metal deposition process that works efficiently with a variety of weldable alloys. EBF3 deposits of 2219 aluminium and Ti-6Al-4V have exhibited a range of grain morphologies depending upon the deposition parameters. These materials have exhibited excellent tensile properties comparable to typical handbook data for wrought plate product after post-processing heat treatments. The EBF3 process is capable of bulk metal deposition at deposition rates in excess of 2500 cm3/hr (150 in3/hr) or finer detail at lower deposition rates, depending upon the desired application. This process offers the potential for rapidly adding structural details to simpler cast or forged structures rather than the conventional approach of machining large volumes of chips to produce a monolithic metallic structure. Selective addition of metal onto simpler blanks of material can have a significant effect on lead time reduction and lower material and machining costs.

  12. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  13. In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-01-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  14. In-process thermal imaging of the electron beam freeform fabrication process

    Science.gov (United States)

    Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.

    2016-05-01

    Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.

  15. Propulsion Design with Freeform Fabrication Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propulsion Design with Freeform Fabrication (PDFF) will develop and implement a novel design methodology that leverages the rapidly evolving Solid Freeform...

  16. Closed-Loop Process Control for Electron Beam Freeform Fabrication and Deposition Processes

    Science.gov (United States)

    Taminger, Karen M. (Inventor); Hafley, Robert A. (Inventor); Martin, Richard E. (Inventor); Hofmeister, William H. (Inventor)

    2013-01-01

    A closed-loop control method for an electron beam freeform fabrication (EBF(sup 3)) process includes detecting a feature of interest during the process using a sensor(s), continuously evaluating the feature of interest to determine, in real time, a change occurring therein, and automatically modifying control parameters to control the EBF(sup 3) process. An apparatus provides closed-loop control method of the process, and includes an electron gun for generating an electron beam, a wire feeder for feeding a wire toward a substrate, wherein the wire is melted and progressively deposited in layers onto the substrate, a sensor(s), and a host machine. The sensor(s) measure the feature of interest during the process, and the host machine continuously evaluates the feature of interest to determine, in real time, a change occurring therein. The host machine automatically modifies control parameters to the EBF(sup 3) apparatus to control the EBF(sup 3) process in a closed-loop manner.

  17. Tensile Properties and Microstructure of Inconel 718 Fabricated with Electron Beam Freeform Fabrication (EBF(sup 3))

    Science.gov (United States)

    Bird, R. Keith; Hibberd, Joshua

    2009-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.

  18. Characterization of Electron Beam Free-Form Fabricated 2219 Aluminum and 316 Stainless Steel

    Science.gov (United States)

    Ekrami, Yasamin; Forth, Scott C.; Waid, Michael C.

    2011-01-01

    Researchers at NASA Langley Research Center have developed an additive manufacturing technology for ground and future space based applications. The electron beam free form fabrication (EBF3) is a rapid metal fabrication process that utilizes an electron beam gun in a vacuum environment to replicate a CAD drawing of a part. The electron beam gun creates a molten pool on a metal substrate, and translates with respect to the substrate to deposit metal in designated regions through a layer additive process. Prior to demonstration and certification of a final EBF3 part for space flight, it is imperative to conduct a series of materials validation and verification tests on the ground in order to evaluate mechanical and microstructural properties of the EBF3 manufactured parts. Part geometries of EBF3 2219 aluminum and 316 stainless steel specimens were metallographically inspected, and tested for strength, fatigue crack growth, and fracture toughness. Upon comparing the results to conventionally welded material, 2219 aluminum in the as fabricated condition demonstrated a 30% and 16% decrease in fracture toughness and ductility, respectively. The strength properties of the 316 stainless steel material in the as deposited condition were comparable to annealed stainless steel alloys. Future fatigue crack growth tests will integrate various stress ranges and maximum to minimum stress ratios needed to fully characterize EBF3 manufactured specimens.

  19. Solid freeform fabrication of biomaterials

    Science.gov (United States)

    Chu, Tien-Min Gabriel

    1999-12-01

    The biological performance of porous Hydroxyapatite (HA) is closely related to the pore architecture in the implants. The study on the effect of architecture to the biological performance of porous HA requires new manufacturing methods that can fabricate implants with controlled pores channels. In this thesis, four highly loaded HA and alumina suspensions were formulated and three different processes involving Solid Freeform Fabrication (SFF) were developed. An aqueous HA suspension in acrylamides was first formulated and the UV-curing properties were evaluated. With a medical grade HA powder, two non-aqueous HA suspensions were formulated: a 40 vol.% HA suspension in Hexanediol Diacrylate (HDDA) and a 40 vol.% HA suspension in 1:1 mix of Propoxylated Neopentyl Glycol Diacrylate (PNPGDA) and Isobomyl Acrylate (EBA). A 50 vol.% Alumina suspension in PNPGDA/IBA was also formulated. The effect of dispersant to the viscosity of the suspensions was characterized. In the Stereolithography (SL) method, the curing parameters of HA/HDDA and HA/PNPGDA/IBA were determined. Prototype HA implants with 1,700 mum internal channels were built directly on an SL Apparatus (SLA). The designed internal channel patterns were preserved after sintering. In the Ink-jet printing method, the high temperature flow behaviors of the suspensions were characterized. The effects of solids loading to the viscosity of the suspensions were modeled with Krieger-Dougherty equation. Leveling theory developed in paint industry was employed to analyze the self-leveling capability of the suspensions. In the indirect SL method, the thermal curing behavior of HA and alumina suspensions were characterized. The total cure time was measured and the curing kinetics was modeled. Negative molds for the implants were designed and built on SLA with epoxy resin. HA/PNPGDA/IBA was cast into the mold and cured in an oven. The binders and the epoxy mold were pyrolyzed and the green bodies sintered. Internal channels

  20. Elevated temperature characterization of electron beam freeform fabricated Ti–6Al–4V and dispersion strengthened Ti–8Al–1Er

    International Nuclear Information System (INIS)

    Highlights: ► Electron beam freeform fabrication process. ► Ti–6Al–4V and rare-earth dispersion Ti alloy. ► Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. ► Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti–8Al–1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti–8Al–1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti–6Al–4V and Ti–8Al–1Er were measured and compared to those of laser beam additive manufactured Ti–8Al–1Er and wrought Ti–6Al–4V. Elevated temperature tensile properties were measured between 93° and 538 °C. Creep tests were performed between 425° and 455 °C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti–8Al–1Er are comparable to those of Ti–6Al–4V in percentage of room temperature strength retained at temperature. Based on a Larson–Miller analysis of the creep test

  1. Elevated temperature characterization of electron beam freeform fabricated Ti-6Al-4V and dispersion strengthened Ti-8Al-1Er

    Energy Technology Data Exchange (ETDEWEB)

    Bush, R.W., E-mail: ralph.bush@usafa.edu [Department of Engineering Mechanics, 2354 Fairchild Dr., U.S. Air Force Academy, USAF Academy, CO 80840 (United States); Brice, C.A. [Lockheed Martin Aeronautics Co., Fort Worth, TX (United States)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Electron beam freeform fabrication process. Black-Right-Pointing-Pointer Ti-6Al-4V and rare-earth dispersion Ti alloy. Black-Right-Pointing-Pointer Tensile, creep, and oxidation properties comparable to alloys made with conventional fabrication methods. Black-Right-Pointing-Pointer Fabrication process allows use of rare-earth dispersion Ti alloy. - Abstract: Electron beam freeform fabrication is an additive manufacturing process that can be used to build fully dense, structural metallic parts directly from a three-dimensional computer model. This technique can replace conventional fabrication methods, such as forging or machining from plate, and enable significant cost, time, and tool savings. Additionally, this method enables the fabrication of alloys with novel compositions that are not well suited to production via ingot metallurgy processes. Ti-8Al-1Er is an experimental dispersion strengthened titanium alloy composition that requires rapid cooling to achieve optimal properties and thus is not amenable to ingot metallurgy production methods. Oxide dispersion strengthened alloys, such as Ti-8Al-1Er are known to have excellent thermal stability and improved high temperature properties. In this work, the room temperature tensile, elevated temperature tensile, creep properties and oxidation resistance of electron beam additive manufactured Ti-6Al-4V and Ti-8Al-1Er were measured and compared to those of laser beam additive manufactured Ti-8Al-1Er and wrought Ti-6Al-4V. Elevated temperature tensile properties were measured between 93 Degree-Sign and 538 Degree-Sign C. Creep tests were performed between 425 Degree-Sign and 455 Degree-Sign C at stresses between 345 and 483 MPa. It was found that the elevated temperature properties of the electron beam additive manufactured products are comparable to those of wrought forms. The elevated temperature strengths of Ti-8Al-1Er are comparable to those of Ti-6Al-4V in percentage of room

  2. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  3. Freeform optical design of an XY-zoom beam expander

    Science.gov (United States)

    Duerr, Fabian; Thienpont, Hugo

    2016-04-01

    Laser sources have become indispensable for industrial materials processing applications. These applications are accompanied with a variety of different demands and requirements on the delivered laser irradiance distributions. With a high spatial uniformity, top-hat beams provide benefits for applications like surface heat treatment or welding, in which it is desirable to uniformly illuminate a target surface. Some applications might not only favor a specific beam irradiance distribution but can benefit additionally from time-varying distributions. In this work, we present the analytic design of an XY-zoom beam expander based on movable freeform optics that allows to simultaneously vary the magnification in x- and y-direction, respectively. This optical functionality is not new; what is new is the idea that axially moving freeform lenses are used to achieve such an optical functionality by optimally exploiting the additional degrees of freedom that freeform surfaces offer. The developed analytic solution is fully described by very few initial parameters and does allow an increasingly accurate calculation of four freeform lenses described by high order XY Taylor polynomial surfaces. Moreover, this solution approach can be adapted to cope with additional optical surfaces and/or lens groups to further enhance the overall optical performance. In comparison with (existing) combinations of rotated cylindrically symmetric zoom beam expanders, such a freeform system consists of less optical elements and provides a much more compact solution, yet achieving excellent overall optical performance throughout the full range of zoom positions.

  4. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    Science.gov (United States)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2013-12-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  5. Development of a CW NCRF Photoinjector using Solid Freeform Fabrication (SFF)

    International Nuclear Information System (INIS)

    A key issue for high average power, normal conducting radio frequency (NCRF), photoinjectors is efficient structure cooling. To that end, RadiaBeam has been developing the use of Solid Freeform Fabrication (SFF) for the production of NCRF photoinjectors. In this paper we describe the preliminary design, developed in collaboration with JLab, of a high gradient, very high duty cycle, photoinjector combining the cooling efficiency only possible through the use of SFF, and the RF efficiency of a re-entrant gun design. Simulations of the RF and thermal-stress performance are presented, as well as material testing of SFF components.

  6. Freeform beam shaping for high-power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  7. Solid freeform fabrication of piezoelectric actuators by a micro-casting method

    NARCIS (Netherlands)

    Bos, B.; Gorter, H.; Dortmans, L.J.M.G.

    2004-01-01

    In recent years, there has been much interest in the manufacturing of piezoceramic actuators by Solid Freeform Fabrication (SFF) methods, following developments in polymer and metal shaping. With these methods, actuator shapes can be realized that are impossible or very difficult to obtain by tradit

  8. Highlights of the ASPE 2004 Winter Topical Meeting on Free-Form Optics: Design, Fabrication, Metrology, Assembly

    Science.gov (United States)

    Ohl, Raymond G.; Dow, Thomas A.; Sohn, alex

    2004-01-01

    We present highlights from the American Society for Precision Engineering's 2004 winter topical meeting entitled Free-Form Optics: Design, Fabrication, Metrology, Assembly. We emphasize those papers that are most relevant to astronomical optics. Optical surfaces that transcend the bounds of rotational symmetry have been implemented in novel optical systems with fantastic results since the release of Polaroid's first instant camera. Despite these successes, free-form optics have found only a few niche applications and have yet to enter the mainstream. The purpose of this meeting is to identify the state of the art of free-form optics design, fabrication, metrology and assembly and to identify the technical and logistical challenges that inhibit their widespread use. Issues that will be addressed include: What are free-form optics? How can optical systems be made better with free-form optics? How can designers use free-form optics? How can free-form optics be fabricated? How can they be measured? How are free-form optical systems assembled? Control of multi-axis systems.

  9. Freeform fabrication of polymer-matrix composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, S.G.; Spletzer, B.L.; Guess, T.L.

    1997-05-01

    The authors have developed, prototyped, and demonstrated the feasibility of a novel robotic technique for rapid fabrication of composite structures. Its chief innovation is that, unlike all other available fabrication methods, it does not require a mold. Instead, the structure is built patch by patch, using a rapidly reconfigurable forming surface, and a robot to position the evolving part. Both of these components are programmable, so only the control software needs to be changed to produce a new shape. Hence it should be possible to automatically program the system to produce a shape directly from an electronic model of it. It is therefore likely that the method will enable faster and less expensive fabrication of composites.

  10. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering.

    Science.gov (United States)

    Mondrinos, Mark J; Dembzynski, Robert; Lu, Lin; Byrapogu, Venkata K C; Wootton, David M; Lelkes, Peter I; Zhou, Jack

    2006-09-01

    Drop on demand printing (DDP) is a solid freeform fabrication (SFF) technique capable of generating microscale physical features required for tissue engineering scaffolds. Here, we report results toward the development of a reproducible manufacturing process for tissue engineering scaffolds based on injectable porogens fabricated by DDP. Thermoplastic porogens were designed using Pro/Engineer and fabricated with a commercially available DDP machine. Scaffolds composed of either pure polycaprolactone (PCL) or homogeneous composites of PCL and calcium phosphate (CaP, 10% or 20% w/w) were subsequently fabricated by injection molding of molten polymer-ceramic composites, followed by porogen dissolution with ethanol. Scaffold pore sizes, as small as 200 microm, were attainable using the indirect (porogen-based) method. Scaffold structure and porosity were analyzed by scanning electron microscopy (SEM) and microcomputed tomography, respectively. We characterized the compressive strength of 90:10 and 80:20 PCL-CaP composite materials (19.5+/-1.4 and 24.8+/-1.3 Mpa, respectively) according to ASTM standards, as well as pure PCL scaffolds (2.77+/-0.26 MPa) fabricated using our process. Human embryonic palatal mesenchymal (HEPM) cells attached and proliferated on all scaffolds, as evidenced by fluorescent nuclear staining with Hoechst 33258 and the Alamar Blue assay, with increased proliferation observed on 80:20 PCL-CaP scaffolds. SEM revealed multilayer assembly of HEPM cells on 80:20 PCL-CaP composite, but not pure PCL, scaffolds. In summary, we have developed an SFF-based injection molding process for the fabrication of PCL and PCL-CaP scaffolds that display in vitro cytocompatibility and suitable mechanical properties for hard tissue repair. PMID:16678255

  11. Design of free-form reflector for vehicle LED low-beam headlamp

    Science.gov (United States)

    Tsai, Chung-Yu

    2016-08-01

    A method is proposed for the design of a vehicle low-beam headlamp system comprising a reflector and an LED light source. In the proposed approach, the profile of the reflector is designed using a free-form (FF) surface construction method such that each incident ray is directed in such a way as to form a user-specified light pattern on the measuring plane. The light ray paths within the headlamp system are analyzed using an exact analytical model and a skew-ray tracing approach. The validity of the proposed FF design method is demonstrated by means of ZEMAX simulations. It is shown that the light pattern formed on the measuring plane is in good agreement with the target pattern specified by ECE R112. The FF design method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis tasks in optical systems design.

  12. Fabrication, characterization, and biocompatibility of single-walled carbon nanotube-reinforced alginate composite scaffolds manufactured using freeform fabrication technique.

    Science.gov (United States)

    Yildirim, Eda D; Yin, Xi; Nair, Kalyani; Sun, Wei

    2008-11-01

    Composite polymeric scaffolds from alginate and single-walled carbon nanotube (SWCNT) were produced using a freeform fabrication technique. The scaffolds were characterized for their structural, mechanical, and biological properties by scanning electron microscopy, Raman spectroscopy, tensile testing, and cell-scaffold interaction study. Three-dimensional hybrid alginate/SWCNT tissue scaffolds were fabricated in a multinozzle biopolymer deposition system, which makes possible to disperse and align SWCNTs in the alginate matrix. The structure of the resultant scaffolds was significantly altered due to SWCNT reinforcement, which was confirmed by Raman spectroscopy. Microtensile testing presented a reinforcement effect of SWCNT to the mechanical strength of the alginate struts. Ogden constitutive modeling was utilized to predict the stress-strain relationship of the alginate scaffold, which compared well with the experimental data. Cellular study by rat heart endothelial cell showed that the SWCNT incorporated in the alginate structure improved cell adhesion and proliferation. Our study suggests that hybrid alginate/SWCNT scaffolds are a promising biomaterial for tissue engineering applications. PMID:18506813

  13. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo [Department of Mechanical Engineering, POSTECH (Korea, Republic of); Kim, Jong Young, E-mail: dwcho@postech.ac.kr [Department of Mechanical Engineering, Andong National University (Korea, Republic of)

    2011-09-15

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  14. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication.

    Science.gov (United States)

    Lee, Wonhye; Debasitis, Jason Cushing; Lee, Vivian Kim; Lee, Jong-Hwan; Fischer, Krisztina; Edminster, Karl; Park, Je-Kyun; Yoo, Seung-Schik

    2009-03-01

    We present a method to create multi-layered engineered tissue composites consisting of human skin fibroblasts and keratinocytes which mimic skin layers. Three-dimensional (3D) freeform fabrication (FF) technique, based on direct cell dispensing, was implemented using a robotic platform that prints collagen hydrogel precursor, fibroblasts and keratinocytes. A printed layer of cell-containing collagen was crosslinked by coating the layer with nebulized aqueous sodium bicarbonate. The process was repeated in layer-by-layer fashion on a planar tissue culture dish, resulting in two distinct cell layers of inner fibroblasts and outer keratinocytes. In order to demonstrate the ability to print and culture multi-layered cell-hydrogel composites on a non-planar surface for potential applications including skin wound repair, the technique was tested on a poly(dimethylsiloxane) (PDMS) mold with 3D surface contours as a target substrate. Highly viable proliferation of each cell layer was observed on both planar and non-planar surfaces. Our results suggest that organotypic skin tissue culture is feasible using on-demand cell printing technique with future potential application in creating skin grafts tailored for wound shape or artificial tissue assay for disease modeling and drug testing. PMID:19108884

  15. Solid Free-Form Fabrication of Continuous Fiber Reinforced Composites for Propulsion Application

    Science.gov (United States)

    Vaidyanathan, R.; Walish, J.; Fox, M.; Rigali, M.; Sutaria, M.; Gillespie, John W., Jr.; Yarlagadda, Shridhar; Effinger, Mike; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    temperature applications. Typical volume fractions of the two phases are 80 to 95% for the cell phase and 5 to 20% for the interpenetrating cell boundary phase. ACR is currently developing an innovative solid freeform form fabrication (SFF) approach to produce Hf and Zr based ceramic composite components reinforced with continuous carbon fiber tows for critical structural components such as tubes and blisks. The process is simple, robust and will be widely applicable to a number of material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The current process is being developed in collaboration with UD-CCM. The paper will detail the freeform fabrication process to create low-cost ceramic fiber reinforced composites for high-temperature applications. The results of mechanical properties and microstructural characterization will be presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts for propulsion applications at an order of magnitude lower cost than current CVI and PIP processes.

  16. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...

  17. Finite Element Models for Electron Beam Freeform Fabrication Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of...

  18. Free-form processing of near-net shapes using directed light fabrication

    International Nuclear Information System (INIS)

    Directed light fabrication (DLF) is a rapid fabrication process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, near-net shape, three-dimensional metal components from a computer generated solid model. Computer controls dictate the metal deposition pathways, and no preforms or molds are required to generate complex sample geometries with accurate and precise tolerances. The DLF technique offers unique advantages over conventional thermomechanical processes or thermal spray processes in that many labor and equipment intensive steps can be avoided to produce components with fully dense microstructures. Moreover, owing to the flexibility in power distributions of lasers, a variety of materials have been processed, ranging from aluminum alloys to tungsten, and including intermetallics such as Mo5Si3. Since DLF processing offers unique capabilities and advantages for the rapid fabrication of complex metal components, an examination of the microstructural development has been performed in order to define and optimize the processed materials. Solidification studies of DLF processing have demonstrated that a continuous liquid/solid interface is maintained while achieving high constant cooling rates that can be varied between 10 to 105 K s-1 and solidification growth rates ranging up to the 10-2 m s-1

  19. Interactive Modeling of Architectural Freeform Structures - Combining Geometry with Fabrication and Statics

    KAUST Repository

    Jiang, Caigui

    2014-09-01

    This paper builds on recent progress in computing with geometric constraints, which is particularly relevant to architectural geometry. Not only do various kinds of meshes with additional properties (like planar faces, or with equilibrium forces in their edges) become available for interactive geometric modeling, but so do other arrangements of geometric primitives, like honeycomb structures. The latter constitute an important class of geometric objects, with relations to “Lobel” meshes, and to freeform polyhedral patterns. Such patterns are particularly interesting and pose research problems which go beyond what is known for meshes, e.g. with regard to their computing, their flexibility, and the assessment of their fairness.

  20. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming

    Directory of Open Access Journals (Sweden)

    Mohammad Vaezi

    2016-05-01

    Full Text Available Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA composite with a unique configuration in which the bioactive phase (i.e., HA distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  1. Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet-assisted three-dimensional printing

    International Nuclear Information System (INIS)

    Ultraviolet-assisted three-dimensional (3D) printing (UV-3DP) was used to manufacture photopolymer-based microdevices with 3D self-supported and freeform features. The UV-3DP technique consists of the robotized deposition of extruded filaments, which are rapidly photopolymerized under UV illumination during the deposition process. This paper systematically studies the processing parameters of the UV-3DP technique using two photo-curable polymers and their associated nanocomposite materials. The main processing parameters including materials' rheological behavior, deposition speed and extrusion pressure, and UV illumination conditions were thoroughly investigated. A processing map was then defined in order to help choosing the proper parameters for the UV-3DP of microstructures with various geometries. Compared to self-supported features, the accurate fabrication of 3D freeform structures was found to take place in a narrower processing region since a higher rigidity of the extruded filament was required for structural stability. Finally, various 3D self-supported and freeform microstructures with high potential in micro electromechanical systems, micro-systems and organic electronics were fabricated to show the capability of the technique. (paper)

  2. Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking.

    Science.gov (United States)

    Irvine, Scott A; Agrawal, Animesh; Lee, Bae Hoon; Chua, Hui Yee; Low, Kok Yao; Lau, Boon Chong; Machluf, Marcelle; Venkatraman, Subbu

    2015-02-01

    Considerable interest has arisen in precision fabrication of cell bearing scaffolds and structures by free form fabrication. Gelatin is an ideal material for creating cell entrapping constructs, yet its application in free form fabrication remains challenging. We demonstrate the use of gelatin, crosslinked with microbial transglutaminase (mTgase), as a material to print cell bearing hydrogels for both 2-dimensional (2-D) precision patterns and 3-dimensional (3-D) constructs. The precision patterning was attained with 3 % gelatin and 2 % high molecular weight poly (ethylene oxide) (PEO) whereas 3-D constructs were obtained using a 5 % gelatin solution. These hydrogels, referred to as "bioinks" supported entrapped cell growth, allowing cell spreading and proliferation for both HEK293 cells and Human Umbilical Vein Endothelial Cells (HUVECs). These bioinks were shown to be dispensable by robotic precision, forming patterns and constructs that were insoluble and of suitable stiffness to endure post gelation handling. The two bioinks were further characterized for fabrication parameters and mechanical properties. PMID:25653062

  3. Nanopillar Fabrication with Focused Ion Beam Cutting

    NARCIS (Netherlands)

    Kuzmin, Oleksii V.; Pei, Yutao T.; De Hosson, Jeff T. M.

    2014-01-01

    A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90 degrees to the long axis of the pillar that enables milling of the pillar sideways avoidin

  4. Free-form Light Actuators — Fabrication and Control of Actuation in Microscopic Scale

    Science.gov (United States)

    Zeng, Hao; Wasylczyk, Piotr; Parmeggiani, Camilla; Martella, Daniele; Wiersma, Diederik Sybolt

    2016-01-01

    Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. PMID:27285398

  5. Freeform fabrication of tissue-simulating phantoms by combining three-dimensional printing and casting

    Science.gov (United States)

    Shen, Shuwei; Zhao, Zuhua; Wang, Haili; Han, Yilin; Dong, Erbao; Liu, Bin; Liu, Wendong; Cromeens, Barrett; Adler, Brent; Besner, Gail; Ray, William; Hoehne, Brad; Xu, Ronald

    2016-03-01

    Appropriate surgical planning is important for improved clinical outcome and minimal complications in many surgical operations, such as a conjoined twin separation surgery. We combine 3D printing with casting and assembling to produce a solid phantom of high fidelity to help surgeons for better preparation of the conjoined twin separation surgery. 3D computer models of individual organs were reconstructed based on CT scanned data of the conjoined twins. The models were sliced, processed, and converted to an appropriate format for Fused Deposition Modeling (FDM). The skeletons of the phantom were printed directly by FDM using Acrylonitrile-Butadiene-Styrene (ABS) material, while internal soft organs were fabricated by casting silicon materials of different compositions in FDM printed molds. The skeleton and the internal organs were then assembled with appropriate fixtures to maintain their relative positional accuracies. The assembly was placed in a FMD printed shell mold of the patient body for further casting. For clear differentiation of different internal organs, CT contrast agents of different compositions were added in the silicon cast materials. The produced phantom was scanned by CT again and compared with that of the original computer models of the conjoined twins in order to verify the structural and positional fidelity. Our preliminary experiments showed that combining 3D printing with casting is an effective way to produce solid phantoms of high fidelity for the improved surgical planning in many clinical applications.

  6. Free-form Light Actuators - Fabrication and Control of Actuation in Microscopic Scale.

    Science.gov (United States)

    Zeng, Hao; Wasylczyk, Piotr; Parmeggiani, Camilla; Martella, Daniele; Wiersma, Diederik Sybolt

    2016-01-01

    Liquid crystalline elastomers (LCEs) are smart materials capable of reversible shape-change in response to external stimuli, and have attracted researchers' attention in many fields. Most of the studies focused on macroscopic LCE structures (films, fibers) and their miniaturization is still in its infancy. Recently developed lithography techniques, e.g., mask exposure and replica molding, only allow for creating 2D structures on LCE thin films. Direct laser writing (DLW) opens access to truly 3D fabrication in the microscopic scale. However, controlling the actuation topology and dynamics at the same length scale remains a challenge. In this paper we report on a method to control the liquid crystal (LC) molecular alignment in the LCE microstructures of arbitrary three-dimensional shape. This was made possible by a combination of direct laser writing for both the LCE structures as well as for micrograting patterns inducing local LC alignment. Several types of grating patterns were used to introduce different LC alignments, which can be subsequently patterned into the LCE structures. This protocol allows one to obtain LCE microstructures with engineered alignments able to perform multiple opto-mechanical actuation, thus being capable of multiple functionalities. Applications can be foreseen in the fields of tunable photonics, micro-robotics, lab-on-chip technology and others. PMID:27285398

  7. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-25

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, so-called panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects.

  8. Paneling architectural freeform surfaces

    KAUST Repository

    Eigensatz, Michael

    2010-07-26

    The emergence of large-scale freeform shapes in architecture poses big challenges to the fabrication of such structures. A key problem is the approximation of the design surface by a union of patches, socalled panels, that can be manufactured with a selected technology at reasonable cost, while meeting the design intent and achieving the desired aesthetic quality of panel layout and surface smoothness. The production of curved panels is mostly based on molds. Since the cost of mold fabrication often dominates the panel cost, there is strong incentive to use the same mold for multiple panels. We cast the major practical requirements for architectural surface paneling, including mold reuse, into a global optimization framework that interleaves discrete and continuous optimization steps to minimize production cost while meeting user-specified quality constraints. The search space for optimization is mainly generated through controlled deviation from the design surface and tolerances on positional and normal continuity between neighboring panels. A novel 6-dimensional metric space allows us to quickly compute approximate inter-panel distances, which dramatically improves the performance of the optimization and enables the handling of complex arrangements with thousands of panels. The practical relevance of our system is demonstrated by paneling solutions for real, cutting-edge architectural freeform design projects. © 2010 ACM.

  9. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering.

    Science.gov (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo

    2012-07-01

    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction.

  10. Thermal Imaging for Assessment of Electron-Beam Free Form Fabrication (EBF(sup 3)) Additive Manufacturing Welds

    Science.gov (United States)

    Zalameda, Joseph N.; Burke, Eric R.; Hafley, Robert A.; Taminger, Karen M.; Domack, Christopher S.; Brewer, Amy R.; Martin, Richard E.

    2013-01-01

    Additive manufacturing is a rapidly growing field where 3-dimensional parts can be produced layer by layer. NASA s electron beam free-form fabrication (EBF(sup 3)) technology is being evaluated to manufacture metallic parts in a space environment. The benefits of EBF(sup 3) technology are weight savings to support space missions, rapid prototyping in a zero gravity environment, and improved vehicle readiness. The EBF(sup 3) system is composed of 3 main components: electron beam gun, multi-axis position system, and metallic wire feeder. The electron beam is used to melt the wire and the multi-axis positioning system is used to build the part layer by layer. To insure a quality weld, a near infrared (NIR) camera is used to image the melt pool and solidification areas. This paper describes the calibration and application of a NIR camera for temperature measurement. In addition, image processing techniques are presented for weld assessment metrics.

  11. Geometric Rationalization for Freeform Architecture

    KAUST Repository

    jiang, caigui

    2016-06-20

    The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without

  12. Harmonic beam splitter design and fabrication

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Ma(马小凤); Yingjian Wang(王英剑); Zhengxiu Fan(范正修); Jianda Shao(邵建达)

    2004-01-01

    Two problems of half-wave hole and high ripples in the transmittance region for a harmonic beam splitter had been pointed out and analyzed. Based on the application of a half-wavelength control and a new admittance matching methods, a harmonic beam splitter was designed and fabricated. The former method eliminated the half-wave hole fundamentally, and the latter smoothed high ripples in the transmittance region effectively. The matching stack consisted of a symmetrically periodic structure and provided a complete matching at the desired wavelength, i.e., both conditions for the equivalent admittance and phase thickness were fulfilled. Furthermore, both the theoretical and the tested curves had been given, and a good agreement between them was obtained.

  13. New strategies and developments in transparent free-form design: From facetted to nearly smooth envelopes

    KAUST Repository

    Baldassini, Niccolo

    2009-09-01

    Free-form geometries in architecture pose new challenges to designers and engineers. Form, structure and fabrication processes are closely linked, which makes the realization of complex architectural free-form structures even harder. Free-form transparent design today is mainly based on triangularly facetted forms or quadrilateral meshes supported by a structure composed of rectilinear bars, with strong shape restrictions. After a brief review of the history, we report on some very recent progress in this area. Beginning with a presentation of improved methods for triangle mesh design, we also discuss experiences in coupling triangular glass panels with continuous curved structures, seeking an optimised structural behaviour and simplified connections. Furthermore, we present how the results of research on planar quadrilateral (PQ) meshes lead the way to optimized beam layouts and the breakdown of free-form shapes using planar quadrilateral panels. PQ meshes are rooted in discrete differential geometry, an active area of mathematical research. Using recent projects as examples, we discuss how transparent free-form envelopes with a smooth visual appearance are achievable if the structure is designed to adhere to the limits of current glazing technology and the surfaces are reasonably simple (e.g. rotational, overall developable, or of a small scale). In section 6 we show how the latter restriction can be relaxed: the theoretical and computational methodology for PQ meshes can easily be extended to create nearly smooth approximations of free-form surfaces by single-curved panels. This has a strong impact on glass panelling design, since it avoids expensive double-curvature glass and exploits cold-bending technology. We elaborate on how this discretisation technique goes hand in hand with the technology for construction of the structure, glazing system and structural joints. Our approach has been tested in three case studies, each one validating a particular aspect of

  14. Free-form illumination optics

    Science.gov (United States)

    Mohedano, Rubén; Chaves, Julio; Hernández, Maikel

    2016-04-01

    In many illumination problems, the beam pattern needed and/or some geometrical constraints lead to very asymmetric design conditions. These asymmetries have been solved in the past by means of arrangements of rotationally symmetric or linear lamps aimed in different directions whose patterns overlap to provide the asymmetric prescriptions or by splitting one single lamp into several sections, each one providing a part of the pattern. The development of new design methods yielding smooth continuous free-form optical surfaces to solve these challenging design problems, combined with the proper CAD modeling tools plus the development of multiple axes diamond turn machines, give birth to a new generation of optics. These are able to offer the performance and other advanced features, such as efficiency, compactness, or aesthetical advantages, and can be manufactured at low cost by injection molding. This paper presents two examples of devices with free-form optical surfaces, a camera flash, and a car headlamp.

  15. Use of Woven Fabrics for Strengthening of Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Parthraj R. Puranik

    2014-03-01

    Full Text Available Worldwide, a great deal of research is currently being conducted concerning the use of fiber reinforced plastic wraps, laminates and sheets in the repair and strengthening of reinforced concrete (RC members. Fibre-reinforced polymer (FRP application is a very effective way to repair and strengthen structures that have become structurally weak over their life span. But the use of woven fabrics for strengthening RC members has not been much investigated. Woven fabrics though cannot provide compressive strength, but have a great potential to provide bending or tensile strength to RC beams. In the present investigation, three different woven fabrics were used to strengthen RC beams. The aim is to study the effectiveness of woven fabric in strengthening of RC beams and the effect of number of fabric layers on load carrying capacity of RC beams.

  16. 3D Printing, Additive Manufacturing, and Solid Freeform Fabrication: The Technologies of the Past, Present and Future

    Science.gov (United States)

    Beaman, Joseph

    2015-03-01

    Starting in the late 1980's, several new technologies were created that have the potential to revolutionize manufacturing. These technologies are, for the most part, additive processes that build up parts layer by layer. In addition, the processes that are being touted for hard-core manufacturing are primarily laser or e-beam based processes. This presentation gives a brief history of Additive Manufacturing and gives an assessment for these technologies. These technologies initially grew out of a commercial need for rapid prototyping. This market has a different requirement for process and quality control than traditional manufacturing. The relatively poor process control of the existing commercial Additive Manufacturing equipment is a vestige of this history. This presentation discusses this history and improvements in quality over time. The emphasis will be on Additive Manufacturing processes that are being considered for direct manufacturing, which is a different market than the 3D Printing ``Makerbot'' market. Topics discussed include past and present machine sensors, materials, and operational methods that were used in the past and those that are used today to create manufactured parts. Finally, a discussion of new methods and future directions of AM is presented.

  17. Freeform Honeycomb Structures

    KAUST Repository

    Jiang, Caigui

    2014-07-01

    Motivated by requirements of freeform architecture, and inspired by the geometry of hexagonal combs in beehives, this paper addresses torsion-free structures aligned with hexagonal meshes. Since repetitive geometry is a very important contribution to the reduction of production costs, we study in detail “honeycomb structures”, which are defined as torsion-free structures where the walls of cells meet at 120 degrees. Interestingly, the Gauss-Bonnet theorem is useful in deriving information on the global distribution of node axes in such honeycombs. This paper discusses the computation and modeling of honeycomb structures as well as applications, e.g. for shading systems, or for quad meshing. We consider this paper as a contribution to the wider topic of freeform patterns, polyhedral or otherwise. Such patterns require new approaches on the technical level, e.g. in the treatment of smoothness, but they also extend our view of what constitutes aesthetic freeform geometry.

  18. Fabrication of plasmonic nanostructures with electron beam induced deposition

    NARCIS (Netherlands)

    Acar, H.

    2013-01-01

    The work described in this thesis was shaped by the goal---coming up new approaches to fabricate plasmonic materials with electron beam induced deposition (EBID). One-step, bottom-up and direct-write are typical adjectives that are used to indicate the advantageous properties of this technique. Thes

  19. Metrological multispherical freeform artifact

    Science.gov (United States)

    Blobel, Gernot; Wiegmann, Axel; Siepmann, Jens; Schulz, Michael

    2016-07-01

    Precisely known artifacts are required to characterize the accuracy of asphere and freeform measuring instruments. To this end the best knowledge of the surface characteristics in conjunction with a low measurement uncertainty are necessary. Because this is a challenging task for typical freeform surfaces used in optical systems, the concept of "metrological" artifacts is introduced. We have developed a multispherical freeform artifact for performance tests of tactile touch probe and contact-free optical measuring systems. The measurement accuracy of the complete form and the deviation from calibrated spherical sections can thus be determined. The radius calibration of multiple spherical sections is performed with an extended radius measuring procedure by interferometry. Evaluated surface forms of different measuring methods and the radii determined can be compared to each other. In this study, a multispherical freeform specimen made of copper, with two differing radii, has been measured by two optical measuring methods, a full field measuring tilted-wave interferometer and a high accuracy cylinder coordinate measuring machine with an optical probe. The surface form measurements are evaluated and compared, and the radii determined are compared to the results of a radius measurement bench.

  20. Implementing ISO standard-compliant freeform component drawings

    Science.gov (United States)

    Youngworth, Richard N.; Kiontke, Sven R.; Aikens, David M.

    2016-07-01

    Successful fabrication of aspheres requires all parts of the process chain including design, production, and measurements. Aspheres now are well-established and accepted as an equal optical element, when done properly. Research and industry have now started to focus efforts to develop the next element that propels the field forward in capability, namely the optical freeform surface. An essential factor enabling wide use of freeforms is communicating requirements. This paper discusses form description and tolerancing additions to ISO 10110 to accommodate freeform surfaces. Information stating how ISO 10110 and related standards documents such as ISO 14999-4 are being continually developed to meet the requirements for specifying freeform surfaces is also provided. This paper further provides an example monolithic freeform element using the recently updated relevant parts of ISO 10110. The first manufacturing of this component has been successful, and this paper shows the role the ISO standard has played in success. Definitions for toleranced parameters, such as surface registration (centration) and form deviation (irregularity, slope, Zernike, PV, and PVr), are also indicated. The monolithic example also shows how to use the defined data and definitions for metrology and data handling. Metrology results for the freeform surface are given.

  1. Solid gold nanostructures fabricated by electron beam deposition

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Rasmussen, A.M.;

    2003-01-01

    by a certain range of gold/carbon ratios. Above a certain threshold of ESEM chamber water vapor pressure and a certain threshold of electron beam current, the deposited tips contained a solid polycrystalline gold core. The deposition technique was used to fabricate free-standing nanowires and to solder free...... and bridges. Transmission electron microscopy was used to study how the composition of these structures was affected when the background gas in the ESEM chamber and the electron beam parameters were varied. The nanostructures were layered composites of up to three different materials each characterized...

  2. Fabrication of graphitic nanowire structure by electron beam lithography

    Science.gov (United States)

    Takai, Kazuyuki; Enoki, Toshiaki

    2007-12-01

    The graphitic nanowire structure was fabricated by local graphitization induced by direct electron-beam irradiation or the annealing treatment of wire-shaped nano-sized pattern, where glassy carbon film was used as the precursor materials. The direct irradiation of the 50 keV electron beam hardly causes the local graphitization of the sample, while the annealing of nanowire-patterned glassy carbon with 50 nm width successfully gives graphitic nanowire structure. The electrical conductivity of the fabricated nanowire structure shows metallic temperature dependence. However, the graphitic domain size of the wire was found to be very small (ca. 5 nm) by using Raman spectroscopy and the magnetoresistance. Higher temperature annealing is expected to improve the crystallinity of the graphitic nanowire.

  3. Nanostructure fabrication using electron beam irradiation of organometallic compounds

    CERN Document Server

    Bedson, T R

    2001-01-01

    Nanoelectronics- the quest to fabricate quantum devices- is the motivation for this thesis. The place of nanolithography is discussed amongst conventional microfabrication methods, together with the materials currently employed in lithography. The experimental methods, equipment and new resist materials (films of nanoparticles) are then explored in the work described. A summary of the results obtained by the research is presented, followed by the detailed results in the form of a series of published and submitted papers. A systematic study of the response of ferrocene adsorbed onto graphite at 160K to low energy electron beams, that results in varying behaviour depending on the energy of irradiation, is first described. Following are studies of the characteristics of passivated gold nanoclusters when used as a monolayer negative tone resist in direct electron beam writing. Fabrication of lines with widths as narrow as 26 nm has been achieved. Measurements of the linewidth as a function of electron dose allow ...

  4. Induced base transistor fabricated by molecular beam epitaxy

    Science.gov (United States)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  5. Metasurface Freeform Nanophotonics

    CERN Document Server

    Zhan, Alan; Dodson, Christopher M; Majumdar, Arka

    2016-01-01

    Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their weight and size. Unfortunately, these asymmetric forms are often difficult to manufacture at the nanoscale with current technologies. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a low contrast dielectric metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 {\\mu}m along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length rang...

  6. Preliminary study for preparing zirconia ceramic dental implants by freeform fabrication%自由成形制备氧化锆全瓷牙种植体的初步研究

    Institute of Scientific and Technical Information of China (English)

    高戈; 夏海斌; 李小倩; 张祥林

    2011-01-01

    Objective To explore the process of preparing all-ceramic dental implant by freeform fabrication,and study the influence of sintering temperature on main performance of zirconia ceramic. Methods The high solid content(55 vol %) slurry of zirconia ceramic was used to prepare dental implant by freeform fabrication. The sintered samples were performed at 1 100°C,1 200 °C, 1 300 X and 1 400 X for 2-hour by pressureless sintering method with furnace cooling. Then the degree of densification, flexural strength, morphology and phase composition were tested. Results The maximum shrinkage of sample was 16.83 %, bulk density was 98.36 %, the flexural strength of sample sintered at 1 300 X was 480 Mpa, and diffraction peak of monoclinic zirconia was detected in sample sintered at 1 400 °C by X-ray diffraction, which caused the decrease of flexural strength. Conclusion It is demonstrated that the freeform fabrication has broad prospects in dental restoration manufacturing, the sample sintering at 1 300 °C has the best overall performance, and 1 300 X is the best sintering temperature.%目的 探索陶瓷自由成形制备全瓷牙种植体的工艺,并研究烧结温度对氧化锆陶瓷主要性能的影响.方法 采用固相含量为55 vol%的氧化锆陶瓷浆料,通过自由成形的方法制备试样,并用无压烧结方法在1 100℃、1 200℃、1 300℃和1400℃下烧结试样,保温2h,随炉冷却.对烧结试样的致密化程度、抗弯强度、微观形貌及相组成进行测试.结果 试样最大收缩率为16.83%,致密度可达98.36%;1 300℃试样3点抗弯强度达到480 MPa;1 400℃试样X射线衍射检测出单斜相氧化锆的衍射峰,抗弯强度有所下降.结论 陶瓷自由成形技术在牙科修复体制造领域具有广阔的发展前景,1 300℃烧结温度下试样综合性能最优,为最佳烧结温度.

  7. Three-dimensional printing of freeform helical microstructures: a review

    Science.gov (United States)

    Farahani, R. D.; Chizari, K.; Therriault, D.

    2014-08-01

    Three-dimensional (3D) printing is a fabrication method that enables creation of structures from digital models. Among the different structures fabricated by 3D printing methods, helical microstructures attracted the attention of the researchers due to their potential in different fields such as MEMS, lab-on-a-chip systems, microelectronics and telecommunications. Here we review different types of 3D printing methods capable of fabricating 3D freeform helical microstructures. The techniques including two more common microfabrication methods (i.e., focused ion beam chemical vapour deposition and microstereolithography) and also five methods based on computer-controlled robotic direct deposition of ink filament (i.e., fused deposition modeling, meniscus-confined electrodeposition, conformal printing on a rotating mandrel, UV-assisted and solvent-cast 3D printings) and their advantages and disadvantages regarding their utilization for the fabrication of helical microstructures are discussed. Focused ion beam chemical vapour deposition and microstereolithography techniques enable the fabrication of very precise shapes with a resolution down to ~100 nm. However, these techniques may have material constraints (e.g., low viscosity) and/or may need special process conditions (e.g., vacuum chamber) and expensive equipment. The five other techniques based on robotic extrusion of materials through a nozzle are relatively cost-effective, however show lower resolution and less precise features. The popular fused deposition modeling method offers a wide variety of printable materials but the helical microstructures manufactured featured a less precise geometry compared to the other printing methods discussed in this review. The UV-assisted and the solvent-cast 3D printing methods both demonstrated high performance for the printing of 3D freeform structures such as the helix shape. However, the compatible materials used in these methods were limited to UV-curable polymers and

  8. Freeform reflectors for architectural lighting.

    Science.gov (United States)

    Zhu, Ruidong; Hong, Qi; Zhang, Hongxia; Wu, Shin-Tson

    2015-12-14

    We propose an improved method to design freeform reflectors for architectural lighting: one for accent lighting and another for large area wall washing. The designed freeform reflectors effectively distribute light fluxes over the target surfaces, and generate appropriate illumination patterns for comfortable visual environments, which provides greater flexibility for lighting designs, allows many challenging designs, and improves energy-efficiency simultaneously.

  9. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    Directory of Open Access Journals (Sweden)

    McKinlay J.

    2012-10-01

    Full Text Available To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal and 75 um (vertical.

  10. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures

    CERN Document Server

    Kuchmizhak, Aleksandr; Vitrik, Oleg; Kulchin, Yuri; Milichko, Valentin; Makarov, Sergey; Kudryashov, Sergey

    2015-01-01

    Simple high-performance two-stage hybrid technique was developed for fabrication of different plasmonic nanostructures, including nanorods, nanorings, as well as more complex structures on glass substrates. In this technique a thin noble metal film on a dielectric substrate is irradiated by a tightly focused single nanosecond laser pulse and then the modified region is slowly polished by an accelerated argon ion (Ar+) beam. As a result, each nanosecond laser pulse locally modifies the initial metal film through initiation of fast melting and subsequent hydrodynamic processes, while the following Ar+-ion polishing removes the rest of the film, revealing the hidden topography features and fabricating separate plasmonic structures on the glass substrate. We demonstrate that the shape and lateral size of the resulting functional plasmonic nanostructures depends on the laser pulse energy and metal film thickness, while subsequent Ar+-ion polishing enables to vary height of the resulting nanostructures. The plasmon...

  11. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...... crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid...

  12. Investigations on freeform measurements

    DEFF Research Database (Denmark)

    Savio, Enrico; Costacurta, A.; De Chiffre, Leonardo

    This report is made as a part of the project Easytrac, an EU project under the programme: Competitive and Sustainable Growth: Contract No: G6RD-CT-2000-00188, coordinated by UNIMETRIK S.A. (Spain). The project is concerned with low uncertainty calibrations on coordinate measuring machines. The Ce...... Centre for Geometrical Metrology (CGM) at the Technical University of Denmark takes care of free form measurements, in collaboration with DIMEG, University of Padova, Italy. The present report describes some preliminary investigations on freeform measurements....

  13. Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes.

    Science.gov (United States)

    Shim, Jin-Hyung; Kim, Arthur Joon; Park, Ju Young; Yi, Namwoo; Kang, Inhye; Park, Jaesung; Rhie, Jong-Won; Cho, Dong-Woo

    2013-04-01

    Highly biocompatible polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA)/collagen scaffolds in which the PCL/PLGA collagen solution was selectively dispensed into every other space between the struts were fabricated using solid freeform fabrication (SFF) technology, as we described previously. The objective of this study was to evaluate and compare the PCL/PLGA/collagen scaffolds (group 3) with PCL/PLGA-only scaffolds (group 1) and PCL/PLGA scaffolds with collagen by the dip-coating method (group 2) using human adipose-derived stem cells (hASCs) and rat primary hepatocytes. The selectively dispensed collagen formed a three-dimensional (3D) network of nanofibers in group 3, as observed by scanning electron microscopy. The compressive strength and modulus of group 3 were approximately 140 and 510 times higher, respectively, than those of a sponge-type collagen scaffold whose weak mechanical properties were regarded as a critical drawback. Proliferation and osteogenic differentiation of hASCs were promoted significantly in group 3 compared to groups 1 and 2. In addition, we found that the viability and albumin secretion ability of rat primary hepatocytes were highly retained for 10 days in group 3 but not group 1. Interestingly, hepatocyte aggregation, which enhances hepatic function through cell-cell interactions, was observed particularly in group 3. In conclusion, group 3, in which the collagen was selectively dispensed in the 3D space of the porous PCL/PLGA framework, will be a promising 3D scaffold for culturing various cell types. PMID:23430333

  14. Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams

    OpenAIRE

    Shahdin, Amir; Mezeix, Laurent; Bouvet, Christophe; Morlier, Joseph; Gourinat, Yves

    2009-01-01

    The aim of this paper is the fabrication and mechanical testing of entangled sandwich beam specimens and the comparison of their results with standard sandwich specimens with honeycomb and foam as core materials. The entangled sandwich specimens have glass fiber cores and glass woven fabric as skin materials. The tested glass fiber entangled sandwich beams possess low compressive and shear modulus as compared to honeycomb and foam sandwich beams of the same specifications. Although the entang...

  15. FAME: Freeform Active Mirrors Experiment

    Science.gov (United States)

    Hugot, Emmanuel; Agocs, Tibor; Challita, Zalpha; Jasko, Attila; Kroes, Gabby; Banyai, Evelin; Miller, Chris; Taylor, William; Schnetler, Hermine; Venema, Lars

    2014-07-01

    This paper discusses the development of a demonstrator freeform active mirror for future astronomical instruments both on Earth and in space. It consists of a system overview and progress in various areas of technology in the building blocks of the mirror: an extreme freeform thin face sheet, an active array, design tools and the metrology and control of the system. The demonstrator aims to investigate the applicability of the technique in high end astronomical systems, also for space and cryogenically.

  16. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    OpenAIRE

    Maasa Nakano; Soshu Kirihara

    2013-01-01

    Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra viole...

  17. Nanostructured component fabrication by electron beam-physical vapor deposition

    Science.gov (United States)

    Singh, Jogender; Wolfe, Douglas E.

    2005-08-01

    Fabrication of cost-effective, nano-grained net-shaped components has brought considerable interest to Department of Defense, National Aeronautics and Space Administration, and Department of Energy. The objective of this paper is to demonstrate the versatility of electron beam-physical vapor deposition (EB-PVD) technology in engineering new nanostructured materials with controlled microstructure and microchemistry in the form of coatings and net-shaped components for many applications including the space, turbine, optical, biomedical, and auto industries. Coatings are often applied on components to extent their performance and life under severe environmental conditions including thermal, corrosion, wear, and oxidation. Performance and properties of the coatings depend upon their composition, microstructure, and deposition condition. Simultaneous co-evaporation of multiple ingots of different compositions in the high energy EB-PVD chamber has brought considerable interest in the architecture of functional graded coatings, nano-laminated coatings, and design of new structural materials that could not be produced economically by conventional methods. In addition, high evaporation and condensate rates allowed fabricating precision net-shaped components with nanograined microstructure for various applications. Using EB-PVD, nano-grained rhenium (Re) coatings and net-shaped components with tailored microstructure and properties were fabricated in the form of tubes, plates, and Re-coated spherical graphite cores. This paper will also present the results of various metallic and ceramic coatings including chromium, titanium carbide (TiC), titanium diboride (TiB2), hafnium nitride (HfN), titanium-boron-carbonitride (TiBCN), and partially yttria stabilized zirconia (YSZ) TBC coatings deposited by EB-PVD for various applications.

  18. Fabrication of Superconducting Mo/Cu Bilayers Using Ion-Beam-Assisted e-Beam Evaporation

    Science.gov (United States)

    Jaeckel, Felix T.; Kripps, Kari L.; Morgan, Kelsey M.; Zhang, Shuo; McCammon, Dan

    2016-08-01

    Superconducting/normal metal bilayers with tunable transition temperature are a critical ingredient to the fabrication of high-performance transition edge sensors. Popular material choices include Mo/Au and Mo/Cu, which exhibit good environmental stability and provide low resistivity films to achieve adequate thermal conductivity. The deposition of high-quality Mo films requires sufficient adatom mobility, which can be provided by energetic ions in sputter deposition or by heating the substrate in an e-beam evaporation process. The bilayer T_c depends sensitively on the exact deposition conditions of the Mo layer and the superconducting/normal metal interface. Because the individual contributions (strain, crystalline structure, contamination) are difficult to disentangle and control, reproducibility remains a challenge. Recently, we have demonstrated that low-energy ion-beam-assisted e-beam evaporation offers an alternative route to reliably produce high-quality Mo films without the use of substrate heating. The energy and momentum delivered by the ion beam provides an additional control knob to tune film properties such as resistivity and stress. In this report we describe modifications made to the commercial end-Hall ion source to avoid iron contamination allowing us to produce superconducting Mo films. We show that the ion beam is effective at enhancing the bilayer interface transparency and that bilayers can be further tuned towards reduced T_c and higher conductivity by vacuum annealing.

  19. Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Maasa Nakano

    2013-04-01

    Full Text Available Micrometer order magnetophotonic crystals with periodic arranged metallic glass and oxide glass composite materials were fabricated by stereolithographic method to reflect electromagnetic waves in terahertz frequency ranges through Bragg diffraction. In the fabrication process, the photo sensitive acrylic resin paste mixed with micrometer sized metallic glass of Fe72B14.4Si9.6Nb4 and oxide glass of B2O3·Bi2O3 particles was spread on a metal substrate, and cross sectional images of ultra violet ray were exposed. Through the layer by layer stacking, micro lattice structures with a diamond type periodic arrangement were successfully formed. The composite structures could be obtained through the dewaxing and sintering process with the lower temperature under the transition point of metallic glass. Transmission spectra of the terahertz waves through the magnetophotonic crystals were measured by using a terahertz time domain spectroscopy.

  20. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  1. The Osteogenesis of Bone Marrow Stem Cells on mPEG-PCL-mPEG/Hydroxyapatite Composite Scaffold via Solid Freeform Fabrication

    Directory of Open Access Journals (Sweden)

    Han-Tsung Liao

    2014-01-01

    Full Text Available The study described a novel bone tissue scaffold fabricated by computer-aided, air pressure-aided deposition system to control the macro- and microstructure precisely. The porcine bone marrow stem cells (PBMSCs seeded on either mPEG-PCL-mPEG (PCL or mPEG-PCL-mPEG/hydroxyapatite (PCL/HA composite scaffold were cultured under osteogenic medium to test the ability of osteogenesis in vitro. The experimental outcomes indicated that both scaffolds possessed adequate pore size, porosity, and hydrophilicity for the attachment and proliferation of PBMSCs and the PBMSCs expressed upregulated genes of osteogensis and angiogenesis in similar manner on both scaffolds. The major differences between these two types of the scaffolds were the addition of HA leading to higher hardness of PCL/HA scaffold, cell proliferation, and VEGF gene expression in PCL/HA scaffold. However, the in vivo bone forming efficacy between PBMSCs seeded PCL and PCL/HA scaffold was different from the in vitro results. The outcome indicated that the PCL/HA scaffold which had bone-mimetic environment due to the addition of HA resulted in better bone regeneration and mechanical strength than those of PCL scaffold. Therefore, providing a bone-mimetic scaffold is another crucial factor for bone tissue engineering in addition to the biocompatibility, 3D architecture with high porosity, and interpored connection.

  2. Micro-beam and pulsed laser beam techniques for the micro-fabrication of diamond surface and bulk structures

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Bellini, M. [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Bosia, F. [Physics Department and “Nanostructured Interfaces and Surfaces” Inter-departmental Centre, University of Torino, via P. Giuria 1, 10125 Torino (Italy); INFN Sezione di Torino, via P. Giuria 1, 10125 Torino (Italy); Calusi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Corsi, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Czelusniak, C. [Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); and others

    2015-04-01

    Micro-fabrication in diamond is applicable in a wide set of emerging technologies, exploiting the exceptional characteristics of diamond for application in bio-physics, photonics and radiation detection. Micro ion-beam irradiation and pulsed laser irradiation are complementary techniques, which permit the implementation of complex geometries, by modification and functionalization of surface and/or bulk material, modifying the optical, electrical and mechanical characteristics of the material. In this article we summarize the work done in Florence (Italy), concerning ion beam and pulsed laser beam micro-fabrication in diamond.

  3. Advanced free-form micro tooling

    DEFF Research Database (Denmark)

    Tosello, Guido; Gavillet, J.

    2011-01-01

    nanometre features can affect physical and optical properties of the surface [Liu03][Por99]. Since sub-μm feature details with ultra-low tolerances have to be manufactured, these structures are usually fabricated using clean room technologies or direct ultra precision machining procedures. Methods such as e......The present deliverable contains the report of the work and results achieved within the framework of WP 2.2 in Tasks 2.2.4 “Advanced free-form micro tooling” in experimental research done regarding practical applications of methods of applying nano structures to tooling solutions. As part of Task 2...... of using chemical batch processes. The capability of different surface treatment methods of creating micro and nano structured adaptable mould inserts for subsequent polymer replication by injection moulding is investigated....

  4. Freeform optics for photovoltaic concentration

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos

    2012-01-01

    Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.

  5. Large area mold fabrication for the nanoimprint lithography using electron beam lithography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The mold fabrication is a critical issue for the development of nanoimprint lithography as an effective low-cost and mass production process.This paper describes the fabrication process developed to fabricate the large area nanoimprint molds on the silicon wafers.The optimization of e-beam exposure dose and pattern design is presented.The overlayer process is developed to improve the field stitching accuracy of e-beam exposure,and around 10 nm field stitching accuracy is obtained.By means of the optimization of the e-beam exposure dose,pattern design and overlayer process,large area nanoimprint molds having dense line structures with around 10 nm field stitching accuracy have been fabricated.The fabricated mold was used to imprint commercial imprinting resist.

  6. Fabrication of Submicron Beams with Galvanic Etch Stop for Si in TMAH

    Directory of Open Access Journals (Sweden)

    Yuelin Wang

    2009-04-01

    Full Text Available A novel method has been developed to fabricate submicron beams with galvanic etch stop for Si in TMAH. The different Au:Si area ratios before and after the release of the beams are used to trigger the galvanic etch stop to fabricate submicron single crystal Si beams in standard Si wafers. Before the beams are released from the substrate, the Au electrodes are connected to the substrate electrically. The Au:Si area ratios are much smaller than the threshold value. TMAH etches the Si wafers. After the beams are fully released, they are mechanically supported by the Au wires, which also serve as the galvanic etch stop cathodes. The Au:Si area ratios are much larger than the threshold value. The beams are protected by galvanic etch stop. The thicknesses of the beams are determined by shallow dry etching before TMAH etching. A 530 nm thick beam was fabricated in standard (111 wafers. Experiments showed that the beam thicknesses did not change with over etching, even if the SiO2 layers on the surface of the beams were stripped.

  7. Free-form architectural envelopes: Digital processes opportunities of industrial production at a reasonable price

    Directory of Open Access Journals (Sweden)

    E. Castaneda

    2015-06-01

    Full Text Available Free-form architecture is one of the major challenges for architects, engineers, and the building industry. This is due to the inherent difficulty of manufacturing double curvature facades at reasonable prices and quality. This paper discusses the possibilities of manufacturing free-form facade panels for architectural envelopes supported by recent advances in CAD/CAM systems and digital processes. These methods allow for no-mould processes, thus reducing the final price. Examples of actual constructions will be presented to prove the viability of computer numerically controlled (CNC fabrication technologies. Scientific literature will be reviewed. Promising fabrication methods (additive, subtractive, forming to accomplish this proposal will be discussed. This research will provide valuable information regarding the feasibility of manufacturing free-form panels for architectural envelopes at lower prices.  

  8. Prediction of Flexural Capacity of RC Beams Strengthened in Flexure with FRP Fabric and Cementitious Matrix

    Directory of Open Access Journals (Sweden)

    Kyusan Jung

    2015-01-01

    Full Text Available This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC beams strengthened in flexure with fabric reinforced cementitious matrix (FRCM. In order to assess the efficiency of the FRCM-strengthening method, six beams were strengthened in flexure with FRCM composite having different amounts and layers of FRP fabric and were tested under four-point loading. From test results, it was confirmed that the slippage between the FRP fabric and matrix occurs at a high strain level, and all of the FRCM-strengthened beams failed by the debonding of the FRCM. Additionally, a new bond strength model for FRCM considering the slippage between fabric and matrix was proposed, using a test database to predict the strengthening performance of the FRCM composite. The prediction of the proposed bond strength model agreed well with the debonding loads of the test database.

  9. Use of Woven Fabrics for Strengthening of Reinforced Concrete Beams

    OpenAIRE

    Parthraj R. Puranik; Deval A. Vasavada

    2014-01-01

    Worldwide, a great deal of research is currently being conducted concerning the use of fiber reinforced plastic wraps, laminates and sheets in the repair and strengthening of reinforced concrete (RC) members. Fibre-reinforced polymer (FRP) application is a very effective way to repair and strengthen structures that have become structurally weak over their life span. But the use of woven fabrics for strengthening RC members has not been much investigated. Woven fabrics though cannot provide co...

  10. Theoretical and experimental investigation of design for multioptical-axis freeform progressive addition lenses

    Science.gov (United States)

    Xiang, HuaZhong; Chen, JiaBi; Zhu, TianFen; Wei, YeFei; Fu, DongXiang

    2015-11-01

    A freeform progressive addition lens (PAL) provides a good solution to correct presbyopia and prevent juvenile myopia by distributing pupils' optical powers of distance zone, near zone, and intermediate zone and is more widely adopted in the present optometric study. However, there is still a lack of a single-optical-axis system for the design of a PAL. This paper focuses on the research for an approach for designing a freeform PAL. A multioptical-axis system based on real viewing conditions using the eyes is employed for the representation of the freeform surface. We filled small pupils in the intermediate zone as a progressive corridor and the distance- and near-vision portions were defined as the standard spherical surfaces delimited by quadratic curves. Three freeform PALs with a spherical surface as the front side and a freeform surface as the backside were designed. We demonstrate the fabrication and measurement technologies for the PAL surface using computer numerical control machine tools from Schneider Smart and a Visionix VM-2000 Lens Power Mapper. Surface power and astigmatic values were obtained. Preliminary results showed that the approach for the design and fabrication is helpful to advance the design procedure optimization and mass production of PALs in optometry.

  11. Fabrication of Rubrene Thin Film Transistor on Polystyrene Irradiated by Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Joon; Park, Jiwon; Cho, Sung Oh [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Hyeok Moo [LG Chem Research Park Battery Tech Center, Daejeon (Korea, Republic of); Lee, Junghwi; Cho, Sung Oh [Hanbat National Univ., Daejeon (Korea, Republic of)

    2014-05-15

    We present an unprecedented method to fabricate high-crystalline rubrene TFTs by combining of the abrupt heating technique and the polystyrene buffer layer irradiated by electron beam. For this PS buffer layer, we irradiated electron beam of optimized fluences. By electron beam irradiation, the hydrocarbon chains of PS were cross-linked without any initiators or agents, and chain segmental motions of PS were appeared at the irradiated area. Subsequently, abrupt heating of samples changed the crystalline phase of rubrene from as-deposited amorphous to orthorhombic phase only at irradiated samples without giving any damage to semiconductor. In summary, we have presented an unconventional approach to fabricate crystalline rubrene active layers and high quality rubrene thin film transistors. By using electron beam irradiation of PS and subsequent crystallization induced by abrupt heating, orthorhombic phase rubrene with high crystalline quality was fabricated successfully. We believe that this unprecedented technique using crosslinking of dielectric layer can be applied to not only PS but also many polymeric materials which can be cross-linked by electron beam. Furthermore, we could expect that by patterning of electron beam, in other words selective irradiation of electron beam, patterned rubrene with high resolution can be realized by adopting direct electron beam lithography techniques.

  12. Freeform grinding and polishing with PROSurf

    Science.gov (United States)

    Wolfs, Franciscus; Fess, Edward; DeFisher, Scott; Torres, Josh; Ross, James

    2015-10-01

    Recently, the desire to use freeform optics has been increasing, including shapes such as torics and anamorphic aspheres. Freeform optics can be used to expand capabilities of optical systems. They can compensate for limitations in rotationally symmetric optics. These same traits that give freeform optics the ability to improve optical systems also makes them more challenging to manufacture. This holds true for grinding, polishing, and metrology. As freeform optics become more prevalent in the industry, tolerances will become more stringent, requiring deterministic manufacturing processes. To generate freeforms, it is crucial to have control over all aspects of the process. Controlling the surface definition is important for achieving a better surface finish during processing. Metrology will be required to adjust tool paths at various stages in manufacturing. During grinding, metrology will be used to adjust tool positions relative to the nominal tool path to compensate for repeatable machine and tooling error. For polishing, metrology will be used to deterministically adjust dwell relative to the amount of the error in different surface locations, allowing for convergence towards the desired surface at a uniform rate. OptiPro has developed PROSurf, a CAM software package for creating freeform tool paths and applying metrology-based corrections. The software can be used for both grinding and polishing freeform optics. The software has flexibility to allow for different methods of modelling the surface: mathematical equations, solid models, and point clouds. The software is designed to make it easier to manufacture and polish complex freeform optics.

  13. One Gaudí beam and fabric formed shells

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2009-01-01

    At the recent Structural Membranes conference in Stuttgart, Ronnie Araya presented a paper on the current research at CAST. This summer Ronnie and his crew have produced a number of shell structures in a sort of composite formwork created by tensioned sheets of fabrics and padded frc. The methods...

  14. Fabrication of Multi-Harmonic Buncher for Pulsed Proton Beam Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. S.; Kwon, H. J.; Cho, Y. S. [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-05-15

    Fast neutrons with a broad spectrum can be generated by irradiating the proton beams on target materials. To measure the neutron energy by time of flight (TOF) method, the short pulse width of the proton beam is preferred because the neutron energy uncertainty is proportional to the pulse width. In addition, the pulse repetition rate should be low enough to extend the lower limit of the available neutron energy. Pulsed proton beam generation system is designed based on an electrostatic deflector and slit system as shown in Fig. 1. In a simple deflector with slit system, most of the proton beam is blocked by slit, especially when the beam pulse width is short. The ideal field pattern inside the buncher cavity is saw-tooth wave. To make the field pattern similar to the saw-tooth waveform, we adopted a multi-harmonic buncher (MHB). The design for the multi-harmonic buncher including 3D electromagnetic calculation has been performed. Based on the design, a multi-harmonic buncher cavity was fabricated. It consists of two resonators, two drift tubes and a vacuum chamber. The resonator is a quarter-wave coaxial resonator type. The drift tube is connected to the resonator by using a coaxial vacuum feedthrough. Design summary and detailed fabrication method of the multi-harmonic buncher is presented in this paper. A multi-harmonic buncher for a proton beam chopper system to generate a short pulse neutron beam was designed, fabricated and assembled.

  15. Low phonon energy Nd:LaF3 channel waveguide lasers fabricated by molecular beam epitaxy

    OpenAIRE

    Bhutta, T.; Chardon, A.M.; Shepherd, D. P.; Daran, E.; Serrano, C.; Munoz-Yague, A.

    2001-01-01

    We report the first fabrication and laser operation of channel waveguides based on LaF3 planar thin films grown by molecular beam epitaxy. To our knowledge, this is the lowest phonon energy dielectric material to have shown guided-wave laser operation to date. A full characterization, in terms of spectroscopy, laser results, and propagation losses, is given for the planar thin films upon which the channel waveguides are based. Two channel-fabrication methods are then described, the first invo...

  16. Design and fabrication of electrostatic microcolumn in multiple electron-beam lithography

    Science.gov (United States)

    Du, Zhidong; Wen, Ye; Traverso, Luis; Datta, Anurup; Chen, Chen; Xu, Xianfan; Pan, Liang

    2016-03-01

    Microcolumns are widely used for parallel electron-beam lithography because of their compactness and the ability to achieve high spatial resolution. A design of an electrostatic microcolumn for our recent nanoscale photoemission sources is presented. We proposed a compact column structure (as short as several microns in length) for the ease of microcolumn fabrication and lithography operation. We numerically studied the influence of several design parameters on the optical performance such as microcolumn diameter, electrode thickness, beam current, working voltages, and working distance. We also examined the effect of fringing field between adjacent microcolumns during parallel lithography operations. The microcolumns were also fabricated to show the possibility.

  17. Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo.

    Science.gov (United States)

    Scheiding, Sebastian; Yi, Allen Y; Gebhardt, Andreas; Li, Lei; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas

    2011-11-21

    We report what is to our knowledge the first approach to diamond turn microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo. In recent years ultraprecision machining has been employed to manufacture accurate optical components with 3D structure for beam shaping, imaging and nonimaging applications. As a result, geometries that are difficult or impossible to manufacture using lithographic techniques might be fabricated using small diamond tools with well defined cutting edges. These 3D structures show no rotational symmetry, but rather high frequency asymmetric features thus can be treated as freeform geometries. To transfer the 3D surface data with the high frequency freeform features into a numerical control code for machining, the commonly piecewise differentiable surfaces are represented as a cloud of individual points. Based on this numeric data, the tool radius correction is calculated to account for the cutting-edge geometry. Discontinuities of the cutting tool locations due to abrupt slope changes on the substrate surface are bridged using cubic spline interpolation.When superimposed with the trajectory of the rotationally symmetric substrate the complete microoptical geometry in 3D space is established. Details of the fabrication process and performance evaluation are described. PMID:22109418

  18. Fabrication of microchannels in fused silica using femtosecond Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Yashunin, D. A., E-mail: yashuninda@yandex.ru [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation); Malkov, Yu. A. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Mochalov, L. A.; Stepanov, A. N. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950 (Russian Federation); Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation)

    2015-09-07

    Extended birefringent waveguiding microchannels up to 15 mm long were created inside fused silica by single-pulse irradiation with femtosecond Bessel beams. The birefringent refractive index change of 2–4 × 10{sup −4} is attributed to residual mechanical stress. The microchannels were chemically etched in KOH solution to produce 15 mm long microcapillaries with smooth walls and a high aspect ratio of 1:250. Bessel beams provide higher speed of material processing compared to conventional multipulse femtosecond laser micromachining techniques and permit simple control of the optical axis direction of the birefringent waveguides, which is important for practical applications [Corrielli et al., “Rotated waveplates in integrated waveguide optics,” Nat. Commun. 5, 4249 (2014)].

  19. Diffraction effects in freeform optics

    Science.gov (United States)

    Ricketts, Melissa N.; Winston, Roland; Oliker, Vladimir

    2015-08-01

    Freeform optics is a relatively new field; it uses the methods necessary to describe surfaces lacking symmetry, and/or surfaces that create non-symmetrical irradiance distributions. The Supporting Quadrics Method (SQM) developed by Oliker is a superb for generating any desired irradiance distribution. The SQM uses an envelope of quadrics to create prescribed irradiance distributions. These optical systems are tested in ray trace software, where diffraction effects are not taken into account. It is important to understand the diffraction effects present in an optic, when moving from the ray trace stage to the prototype stage. Here we study the diffraction effects of Supporting Quadrics Method.

  20. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  1. Effects of gamma and electron beam irradiation on the properties of calendered cord fabrics

    International Nuclear Information System (INIS)

    The effects of gamma and e-beam irradiation on mechanical and structural properties of nylon 66 (Ny 66), nylon 6 (Ny 6) and poly(ethylene terephthalate) (PET) fabrics used in tyres were investigated. The untreated (greige), treated cords and calendered fabrics were irradiated at different doses. It is found that the effects of high energy irradiation on greige, treated cords and calendered fabrics are similar. No protective effect of compounds used in calendering was observed against radiation-induced oxidative degradation. The deterioration effect of gamma irradiation on mechanical properties is much higher than that of e-beam irradiation for all types of samples. Limiting viscosity numbers of both gamma and e-beam irradiated nylon 6 and nylon 66 cords were found to decrease with increasing dose. It is concluded that PET calendered fabric has higher resistance to ionizing radiation. Ny 6 and Ny 66 calendered fabrics are more sensitive even at low doses. Therefore, the effects of high energy irradiation on tyre cords have to be taken into consideration during tyre design reinforced with particularly Ny fabrics if pre-vulcanization with high energy radiation is to be applied.

  2. Freeform high-speed large-amplitude deformable Piezo Mirrors

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2013-01-01

    We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100\\mu m and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored "topological" displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.

  3. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam

    Science.gov (United States)

    Her, Eun Kyu; Chung, Hee-Suk; Moon, Myoung-Woon; Oh, Kyu Hwan

    2009-07-01

    Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga+ ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0° to 85°, which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

  4. Medical linear accelerator mounted mini-beam collimator: design, fabrication and dosimetric characterization

    International Nuclear Information System (INIS)

    The goal of this work was to design, build and experimentally characterize a linear accelerator mounted mini-beam collimator for use at a nominal 6 MV beam energy. Monte Carlo simulation was used in the design and dosimetric characterization of a compact mini-beam collimator assembly mounted to a medical linear accelerator. After fabrication, experimental mini-beam dose profiles and central axis relative output were measured and the results used to validate the simulation data. The simulation data was then used to establish traceability back to an established dosimetric code of practice. The Monte Carlo simulation work revealed that changes in collimator blade width have a greater influence on the valley-to-peak dose ratio than do changes in blade height. There was good agreement between the modeled and measured profile data, with the exception of small differences on either side of the central peak dose. These differences were found to be systematic across all depths and result from limitations associated with the collimator fabrication. Experimental mini-beam relative output and simulation data agreed to better than  ±2.0%, which is well within the level of uncertainty required for dosimetric traceability of non-standard field geometries. A mini-beam collimator has now been designed, built and experimentally characterized for use with a commercial linear accelerator operated at a nominal 6 MV beam energy. (paper)

  5. Fabrication and characterization of suspended beam structures for SiO2 photonic MEMS

    NARCIS (Netherlands)

    Peters, T.J.; Tichem, M.

    2015-01-01

    This paper proposes a microfabrication process for the reliable release of SiO2 beam structures. These structures are intended to be utilized in SiO2 photonic MEMS. A major fabrication challenge is the release of thick (>10 μm) SiO2 structures with high yield. A single mask process is developed base

  6. Electron beam fabrication and characterization of high- resolution magnetic force microscopy tips

    NARCIS (Netherlands)

    Rührig, M.; Porthun, S.; Lodder, J.C.; McVitie, S.; Heyderman, L.J.; Johnston, A.B.; Chapman, J.N.

    1996-01-01

    The stray field, magnetic microstructure, and switching behavior of high‐resolution electron beam fabricated thin film tips for magnetic force microscopy (MFM) are investigated with different imaging modes in a transmission electron microscope (TEM). As the tiny smooth carbon needles covered with a

  7. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  8. Cluster ion beam assisted fabrication of metallic nanostructures for plasmonic applications

    Science.gov (United States)

    Saleem, Iram; Tilakaratne, Buddhi P.; Li, Yang; Bao, Jiming; Wijesundera, Dharshana N.; Chu, Wei-Kan

    2016-08-01

    We report a high-throughput, single-step method for fabricating rippled plasmonic nanostructure arrays via self-assembly induced by oblique angle cluster ion beam irradiation of metal surfaces. This approach does not require lithographic or chemical processes and has the prominent advantage of possible large surface area coverage and applicability to different starting materials. The polarization dependent plasmonic property of the gold nano-ripple is due to their one dimension structure. The localized plasmon resonance frequency of synthesized nano-ripple arrays is tunable by changing nano-ripple dimensions that can be engineered by changing the cluster ion beam irradiation parameters. In this specific case presented, using 30 keV Ar-gas cluster ion beam, we fabricate gold nano-ripple arrays that show localized plasmon resonance in the visible range through near IR range, tunable by varying cluster ion irradiation fluence.

  9. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography

    International Nuclear Information System (INIS)

    This paper presents a new method for the generation of cross-scale laser interference patterns and the fabrication of moth-eye structures on silicon. In the method, moth-eye structures were produced on a surface of silicon wafer using direct six-beam laser interference lithography to improve the antireflection performance of the material surface. The periodic dot arrays of the moth-eye structures were formed due to the ablation of the irradiance distribution of interference patterns on the wafer surface. The shape, size, and distribution of the moth-eye structures can be adjusted by controlling the wavelength, incidence angles, and exposure doses in a direct six-beam laser interference lithography setup. The theoretical and experimental results have shown that direct six-beam laser interference lithography can provide a way to fabricate cross-scale moth-eye structures for antireflection applications.

  10. Freeform mirror based optical systems for FAME

    Science.gov (United States)

    Agócs, Tibor; Kroes, Gabby; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Jaskó, Attila

    2014-07-01

    In this paper we present the design of freeform mirror based optical systems that have the potential to be used in future astronomical instrumentation in the era of extremely large ground based telescopes. Firstly we describe the optical requirements followed by a summary of the optimization methodology used to design the freeform surface. The intention is to create optical architectures, which not only have the numerous advantages of freeform based systems (increased optical performance and/or reduction of mass and volume), but also can be manufactured and tested with today's manufacturing techniques and technologies. The team plans to build a demonstrator based on one of the optical design examples presented in this paper. The demonstrator will be built and tested as part of the OPTICON FP7 Freeform Active Mirror Experiment (FAME) project. A hydroforming technique developed as part of the previous OPTICON FP7 project will be used to produce an accurate, compact and stable freeform mirror. The manufacturing issues normally experienced in the production of freeform mirrors are solved through the hydroforming of thin polished substrates, which then will be supported with an active array structure. The active array will be used to compensate for residual manufacturing errors, thermo-elastic deformation and gravity-induced errors.

  11. Experience on Fabrication and Assembly of the First CLIC Two-Beam Module Prototype

    CERN Document Server

    Gudkov, D; Riddone, G; Rossi, F; Lebet, S

    2013-01-01

    The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies and methods for manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison o...

  12. Investigation on gradient material fabrication with electron beam melting based on scanning track control

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new electron beam control system was developed in a general vacuum electron beam machine by assembling with industrial control computer, programmable logic control (PLC), deflection coil, data acquisition card, power amplifier, etc. In this control system, scanning track and energy distribution of electron beam could be edited off-line, real-time adjusted and controlled on-line. Ti-Mo gradient material (GM) with high temperature resistant was fabricated using the technology of electron beam melting. The melting processes include three steps, such as preheating, melting, and homogenizing. The results show that the GM prepared by melting technology has fine appearance, and it has good integrated interface with the Ti alloy. Mo and Ti elements are gradually distributed in the interface of the gradient material. The microstructure close to the Ti alloy base metal is α+β basket-waver grain, and the microstructure close to the GM is a single phase of β solid solution.

  13. Study on Optical Property and Fabrication of Silicon-based Free-form Micro-lens Array%硅基自由曲面光学微透镜阵列制作及光学性能研究

    Institute of Scientific and Technical Information of China (English)

    孙艳军; 冷雁冰; 陈哲; 董连和

    2012-01-01

    According to the feature of the free-form without constant analytic expression, the varying-dose exposure lithography method for free-form micro-optical element is presented, according to photochemica theory of photosensitive material and the relation between exposure energy and exposure time. In this paper ,the distribution law of light amplitude and relationship between exposure energy and exposure time is analyzed on basis theory of optical propagation. The mathematical model of light distribution law is built and simulated by using computer program.The results indicate that light energy distribute in accordance with specific law, and the exposure depth increase with exposure time. Meanwhile, we finished the experiment of exposure developed by laser direct system , Futurrex62A photoresist, 412nn He-Ge laser device, 5%oNaOH developer solution. The experimental data coincide with simulation result well in comparative analysis%针对自由曲面无固定解析式的特点,根据感光材料的光化学作用原理,以及曝光能量与曝光深度的制约关系,提出采用变剂量曝光的光刻方法制作自由曲面光学微器件.从光传播理论出发,分析了曝光过程光刻胶中光能量分布规律和曝光深度随曝光能量的变化关系,建立了光分布规律的数学模型,并应用计算机软件对模型进行仿真.结果表明:光能量在胶膜内呈规律性分布,在能量一定的情况下曝光深度随时间规律性增加,并逐渐达到饱和.同时,应用长春理工大学BOL500型复合坐标激光直写系统,选用美国Futurrex62A光刻胶、波长412 nm He-Ge气体激光器、5%NaOH显影液进行曝光及显影实验,所得实验数据与仿真结果吻合.

  14. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    Science.gov (United States)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  15. Fabrication of Beam-rotating Actuator for Multiple-beam Disk Drive

    Science.gov (United States)

    Kim, Boung Jun; Kim, Soo Hyun; Kwak, Yoon Keun

    2002-05-01

    Current trends in computer and communication industries are towards increasingly higher resolution images and video processing techniques. However, such sophisticated processing tasks require massive storage systems such as a compact disk read only memory (CD-ROM) and digital versatile disc (DVD). Current demands in the development of such systems are higher data density storage media and an improved data transfer rate. The latter is discussed in this paper. A multiple-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam-rotating actuator is necessary for positioning the multiple-beam onto more than one track. Ray tracing was also employed for the real system setup. The beam-rotating actuator is made up of piezoelectric material, a high-stiffness wire hinge and a dove prism. The actuator has an approximately 1 kHz resonance frequency and a suitable operational range. The dynamic equation for the actuator is derived for the control of the real system.

  16. Ion and electron beam assisted fabrication of nanostructures integrated in microfluidic chips

    International Nuclear Information System (INIS)

    In present work we have designed and fabricated microfluidic chips (MFC) with integrated nets of nanochannels and whisker nanostructures in microchannels for investigation of biological samples in their native environment. We have designed a number of MFC topologies: (a) hydrodynamic traps with nanoscale channels which link microchannels; (b) a structure with regular vertical nanorod (nanowhisker) array, which could be used as a sensitive element. These topologies were created by means of ion and electron beam assisted techniques. These MFCs allow to investigate biological objects by means of high resolution microscopy. Fabricated MFCs were investigated with emulator of biological objects in different buffer solutions.

  17. Ring beam shaping optics fabricated with ultra-precision cutting for YAG laser processing

    Science.gov (United States)

    Kuwano, Ryoichi; Koga, Toshihiko; Tokunaga, Tsuyoshi; Wakayama, Toshitaka; Otani, Yukitoshi; Fujii, Nobuyuki

    2012-03-01

    In this study, a method for generating ring intensity distribution at a refraction-type lens with an aspheric element was proposed, and the beam shaping optical element was finished using only ultra-precision cutting. The shape of the optical element and its irradiance pattern were determined from numerical calculation based on its geometrical and physical optics. An ultra-precision lathe was employed to fabricate beam shaping optical elements, and acrylic resin was used as the material. The transmittance of an optical element (a rotationally symmetrical body) with an aspheric surface fabricated using a single-crystal diamond tool was over 98%, and its surface roughness was 9.6 nm Ra. The method enabled the formation of a circular melting zone on a piece of stainless steel with a thickness of 300 μm through pulse YAG laser ( λ 1:06 μm) processing such that the average radius was 610 μm and the width was 100-200 μm. Circular processing using a ring beam shaping optical element can be realized by single-pulse beam irradiation without beam scanning.

  18. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  19. Challenges of fabricating plasmonic and photonic structures with Neon ion beam milling

    DEFF Research Database (Denmark)

    Leißner, Till; Fiutowski, Jacek; Bozhevolnyi, Sergey I.;

    properties. We are currently studying the capabilities of focussed Helium and Neon ion beam milling for the fabricating of plasmonic and photonic devices. We found that Neon ion beam milling enables us to prepare plasmonic structures, such as trenches (see Fig. 1) and V-grooves without doping and alloying...... effects specific to Galium FIB. Neon FIB milling is superior to Helium FIB milling in terms of the processing speed and smaller levels of implanted ions. From our perspective it is the most promising technique for the fabrication of individual plasmonic devices with a few nanometers precision. The main...... presentation we show the current progress in Neon FIB milling of plasmonic structures. We compare different materials, in particular poly- and mono-crystalline gold as well as thin films of Titanium Nitride, which are commonly used for plasmonic applications....

  20. Fabrication of an oil-water separation copper filter using laser beam machining

    Science.gov (United States)

    Ha, Kyoung Ho; Chu, Chong Nam

    2016-04-01

    In this study, oil and water are successfully separated using a copper filter that is fabricated using only laser beam machining. Even though copper is hydrophilic and recast copper material, which inevitably results during laser beam machining, is super-hydrophilic, the filter can prevent the water from penetrating and allow oil to flow based on surface tension of the liquids at the hole exit. For practical uses of the filter, both the pressure differences at which the filter is able to retain its ability to separate and the oil penetration rate of the filter are revealed. The fabrication process is simple and time-saving, and the filter has high durability because of lack of surface coating or surface chemical modification.

  1. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Intermetallic, γ-TiAl, equiaxed, small-grain (∼2 μm) structures with lamellar γ/α2-Ti3Al colonies with average spacing of 0.6 μm have been fabricated by additive manufacturing using electron beam melting (EBM) of precursor, atomized powder. The residual microindentation (Vickers) hardness (HV) averaged 4.1 GPa, corresponding to a nominal yield strength of ∼1.4 GPa (∼HV/3), and a specific yield strength of 0.37 GPa cm3 g-1 (for a density of 3.76 g cm-3), in contrast to 0.27 GPa cm3 g-1 for EBM-fabricated Ti-6Al-4V components. These results demonstrate the potential to fabricate near net shape and complex titanium aluminide products directly using EBM technology in important aerospace and automotive applications.

  2. Open-cellular copper structures fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Highlights: → Relative stiffness versus relative density measurements for reticulated mesh and stochastic open cellular copper were shown to follow the Gibson-Ashby foam model. → Microstructures for the mesh struts and foam ligaments illustrated a propensity of copper oxide precipitates which provided structural hardness and strength. → These components, fabricated by electron beam melting, exhibit interesting prospects for specialized, complex heat-transfer devices. - Abstract: Cu reticulated mesh and stochastic open cellular foams were fabricated by additive manufacturing using electron beam melting. Fabricated densities ranged from 0.73 g/cm3 to 6.67 g/cm3. The precursor Cu powder contained Cu2O precipitates and the fabricated components contained arrays of Cu2O precipitates and interconnected dislocation microstructures having average spacings of ∼2 μm, which provide hardness values ∼75% above commercial Cu products. Plots of stiffness (Young's modulus) versus density and relative stiffness versus relative density were in very close agreement with the Gibson-Ashby model for open cellular foams. These open cellular structure components exhibit considerable potential for novel, complex, multi-functional electrical and thermal management systems, especially complex, monolithic heat exchange devices.

  3. Fabrication and optimization of a fiber-optic radiation sensor for proton beam dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Jang, K.W.; Yoo, W.J.; Seo, J.K.; Heo, J.Y.; Moon, J.; Park, J.-Y. [School of Biomedical Engineering, College of Biomedical and Health Science, Research Institute of Biomedical Engineering, Konkuk University, Chungju 380-701 (Korea, Republic of); Hwang, E.J.; Shin, D.; Park, S.-Y. [Proton Therapy Center, National Cancer Center, Goyang 410-769 (Korea, Republic of); Cho, H.-S. [Basic Atomic Energy Research Institute and Department of Radiological Science, Yonsei University, Wonju 220-710 (Korea, Republic of); Lee, B., E-mail: bslee@kku.ac.kr [School of Biomedical Engineering, College of Biomedical and Health Science, Research Institute of Biomedical Engineering, Konkuk University, Chungju 380-701 (Korea, Republic of)

    2011-10-01

    In this study, we fabricated a fiber-optic radiation sensor for proton therapy dosimetry and measured the output and the peak-to-plateau ratio of scintillation light with various kinds of organic scintillators in order to select an organic scintillator appropriate for measuring the dose of a proton beam. For the optimization of an organic scintillator, the linearity between the light output and the stopping power of a proton beam was evaluated for two different diameters of the scintillator, and the angular dependency and standard deviation of the light pulses were investigated for four different scintillator lengths. We also evaluated the linearity between the light output and the dose rate and monitor units of a proton generator, respectively. The relative depth-dose curve of the proton beam was obtained and corrected using Birk's theory.

  4. Functional webs for freeform architecture

    KAUST Repository

    Deng, Bailin

    2011-08-01

    Rationalization and construction-aware design dominate the issue of realizability of freeform architecture. The former means the decomposition of an intended shape into parts which are sufficiently simple and efficient to manufacture; the latter refers to a design procedure which already incorporates rationalization. Recent contributions to this topic have been concerned mostly with small-scale parts, for instance with planar faces of meshes. The present paper deals with another important aspect, namely long-range parts and supporting structures. It turns out that from the pure geometry viewpoint this means studying families of curves which cover surfaces in certain well-defined ways. Depending on the application one has in mind, different combinatorial arrangements of curves are required. We here restrict ourselves to so-called hexagonal webs which correspond to a triangular or tri-hex decomposition of a surface. The individual curve may have certain special properties, like being planar, being a geodesic, or being part of a circle. Each of these properties is motivated by manufacturability considerations and imposes constraints on the shape of the surface. We investigate the available degrees of freedom, show numerical methods of optimization, and demonstrate the effectivity of our approach and the variability of construction solutions derived from webs by means of actual architectural designs.

  5. Design and fabrication of a large rectangular magnetic cusp plasma source for high intensity neutral beam injectors

    International Nuclear Information System (INIS)

    The design and fabrication techniques for a large, rectangular magnetic bucket plasma source are described. This source is compatible with the accelerator structures for the TFTR and DIII neutral-beam systems

  6. Advanced optic fabrication using ultrafast laser radiation

    Science.gov (United States)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  7. Design and analysis of a reconfigurable discrete pin tooling system for molding of three-dimensional free-form objects

    OpenAIRE

    KOÇ, Bahattin; Koc, Bahattin; Thangaswamy, Sridhar

    2010-01-01

    This paper presents the design and analysis of a new reconfigurable tooling for the fabrication of three-dimensional (3D) free-form objects. The proposed reconfigurable tooling system comprises a set of matrices of a closely stacked discrete elements (i.e., pins) arranged to form a cavity in which a free-form object can be molded. By reconfiguring the pins, a single tool can be used in the place of multiple tools to produce different parts with the involvement of much lesser time and cost. Th...

  8. Fabrication of the beam splitters for soft X-ray laser application

    Institute of Scientific and Technical Information of China (English)

    WANG Zhanshan; CUI Mingqi; WU Yonggang; TANG Weixing; QIN Shuji; CHEN Lingyan; XU Xiangdong; HONG Yilin; FU Shaojun; ZHU Jie

    2003-01-01

    The soft X-ray interferometry is completed by the Mach-Zehnder interferometer using a soft X-ray laser, and it is also an important method to measure the electron densities of a laser-produced plasma near the critical surface. It is apparently demonstrated in this paper that the incident angle of each optical element in the soft X-ray Mach- Zehnder interferometer should be near normal incidence based on the polarized characteristics of the soft X-ray multilayers, and the product of reflectivity and transmission of the beam splitter should be taken as a standard of design according to the structure of the soft X-ray Mach-Zehnder interferometer. The beam splitters used in the soft X-ray interferometry at 13.9 nm are fabricated using the ion beam sputtering. The figure error of the beam splitter has reached the nanometer magnitude, in which the product of reflectivity and transmission of the beam splitter is more than 1.6%.

  9. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    Science.gov (United States)

    Patterson, N.; Adams, D. P.; Hodges, V. C.; Vasile, M. J.; Michael, J. R.; Kotula, P. G.

    2008-06-01

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  10. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    International Nuclear Information System (INIS)

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations

  11. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    Science.gov (United States)

    Kononenko, T. V.; Zavedeev, E. V.

    2016-03-01

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air - diamond interface. The calculation results are confirmed by experimental data on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process.

  12. Diffraction efficiency of plasmonic gratings fabricated by electron beam lithography using a silver halide film

    Science.gov (United States)

    Sudheer, Porwal, S.; Bhartiya, S.; Rao, B. T.; Tiwari, P.; Srivastava, Himanshu; Sharma, T. K.; Rai, V. N.; Srivastava, A. K.; Naik, P. A.

    2016-07-01

    The silver nanoparticle surface relief gratings of ˜10 μm period are fabricated using electron beam lithography on the silver halide film substrate. Morphological characterization of the gratings shows that the period, the shape, and the relief depth in the gratings are mainly dependent on the number of lines per frame, the spot size, and the accelerating voltage of electron beam raster in the SEM. Optical absorption of the silver nanoparticle gratings provides a broad localized surface plasmon resonance peak in the visible region, whereas the intensity of the peaks depends on the number density of silver nanoparticles in the gratings. The maximum efficiency of ˜7.2% for first order diffraction is observed for the grating fabricated at 15 keV. The efficiency is peaking at 560 nm with ˜380 nm bandwidth. The measured profiles of the diffraction efficiency for the gratings are found in close agreement with the Raman-Nath diffraction theory. This technique provides a simple and efficient method for the fabrication of plasmonic nanoparticle grating structures with high diffraction efficiency having broad wavelength tuning.

  13. Fabrication of optical channel waveguides in crystals and glasses using macro- and micro ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Rajta, I.; Nagy, G.U.L. [MTA Atomki, Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen (Hungary); Zolnai, Z. [Research Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Havranek, V. [Nuclear Physics Institute AV CR, Řež near Prague 250 68 (Czech Republic); Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); “Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); Veres, M. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S.; Nunzi-Conti, G. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, FI (Italy); Righini, G.C. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy)

    2014-07-15

    Active and passive optical waveguides are fundamental elements in modern telecommunications systems. A great number of optical crystals and glasses were identified and are used as good optoelectronic materials. However, fabrication of waveguides in some of those materials remains still a challenging task due to their susceptibility to mechanical or chemical damages during processing. Researches were initiated on ion beam fabrication of optical waveguides in tellurite glasses. Channel waveguides were written in Er:TeO{sub 2}–WO{sub 3} glass through a special silicon mask using 1.5 MeV N{sup +} irradiation. This method was improved by increasing N{sup +} energy to 3.5 MeV to achieve confinement at the 1550 nm wavelength, too. An alternative method, direct writing of the channel waveguides in the tellurite glass using focussed beams of 6–11 MeV C{sup 3+} and C{sup 5+} and 5 MeV N{sup 3+}, has also been developed. Channel waveguides were fabricated in undoped eulytine-(Bi{sub 4}Ge{sub 3}O{sub 12}) and sillenite type (Bi{sub 12}GeO{sub 20}) bismuth germanate crystals using both a special silicon mask and a thick SU8 photoresist mask and 3.5 MeV N{sup +} irradiation. The waveguides were studied by phase contrast and interference microscopy and micro Raman spectroscopy. Guiding properties were checked by the end fire method.

  14. Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing

    Science.gov (United States)

    Kennedy, J.; Leveneur, J.; Williams, G. V. M.; Mitchell, D. R. G.; Markwitz, A.

    2011-03-01

    Magnetic nanoclusters have novel applications as magnetic sensors, spintronic and biomedical devices, as well as applications in more traditional materials such as high-density magnetic storage media and high performance permanent magnets. We describe a new synthesis protocol which combines the advantages of ion implantation and electron beam annealing (EBA) to produce surface iron nanoclusters. We compare the structure, composition and magnetic properties of iron nanoclusters fabricated by low dose 15 keV Fe implantation into SiO2 followed by 1000 °C EBA or furnace annealing. Atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) images together with superconducting quantum interference device (SQUID) magnetometry measurements show that only EBA leads to the rapid formation of surface crystalline Fe spherical nanoclusters, showing magnetic moments per Fe atom comparable to that of bulk bcc Fe and superparamagnetic properties. We propose a fabrication mechanism which includes e-beam enhanced desorption of SiO2. This method has potential for fabricating nanoscale magnetic sensors integrated in microelectronic devices.

  15. Three-dimensional diffractive micro- and nano-optical elements fabricated by electron-beam lithography

    Science.gov (United States)

    Divliansky, Ivan B.; Johnson, Eric G.

    2007-02-01

    The broad development of the micro- and nano-technologies in the past few years increased the need of techniques capable of fabricating sub-micron structures with arbitrary surface profiles. Out of the several fabrication approaches (HEBS lithography, laser writing, etc.) the electron beam writing stands out as the one capable of the highest resolution, superior alignment accuracy and very small surface roughness. These characteristics make the technique greatly applicable in the fields of photonics and micro-opto-electro-mechanical-systems (MOEMS). Here we describe the specificity of fabricating 3D diffractive micro- and nano-optical elements using Leica EBPG 5000+ electron beam system. Parameters like speed of writing, dose accumulation, pattern writing specifics, etc. affect greatly the electronbeam resist properties and the desired 3D profile. We present data that can be used to better understand the different dependencies and therefore achieve better profile and surface roughness management. The results can be useful in future developments in the areas of integrated photonic circuits and MOEMS.

  16. Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II

    International Nuclear Information System (INIS)

    A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to ∼1300 C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27-inch OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July. The Neutralized Drift Compression eXperiment (NDCX-II) is for the study of high energy density physics and inertial fusion energy research utilizing a lithium ion (Li+) beam with a current of 93 mA and a pulse length of 500 ns (compressed to 1 ns at the target). The injector is one of the most complicated sections of the NDCX-II accelerator demanding significant design and fabrication resources. It needs to accommodate a relatively large ion source (10.9 cm), a high heat load (3-4 kW) and specific beam optics developed from the physics model. Some specific design challenges are noted in this paper.

  17. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    International Nuclear Information System (INIS)

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography

  18. Nanoelectromechanical device fabrications by 3-D nanotechnology using focused-ion beams

    Directory of Open Access Journals (Sweden)

    Reo Kometani and Sunao Ishihara

    2009-01-01

    Full Text Available Nanoelectromechanical devices, which can be used as nanotools in nanofactories, were fabricated by focused ion beam chemical vapor deposition (FIB-CVD. The devices are made of diamond-like carbon (DLC, deposited on a Si substrate using gasified phenanthrene (C14H10 as a carbon source. The Young modulus and density of the deposited DLC were measured as 190 GPa and 3.8 g cm−3, respectively. The work function was smaller for DLC (2.9 eV than for W (4.7 eV and Fe (5.2 eV deposited by FIB-CVD. A nanomanipulator was manufactured by FIB-CVD and used for actual manipulations. A glass capillary based local field emitter was developed and produced as a tool for spot deposition, and its electron field emission was confirmed. FIB-CVD is proven as an efficient fabrication technology of novel nanoelectromechanical devices.

  19. Ralicon anodes for image photon counting fabricated by electron beam lithography

    International Nuclear Information System (INIS)

    The Anger wedge and strip anode event location system developed for microchannel plate image photon detectors at the Space Sciences Laboratory of the University of California, Berkeley, has been extended in the present work by the use of electron beam lithography (EBL). This method of fabrication can be used to produce optical patterns for the subsequent manufacture of anodes by conventional photo-etching methods and has also enabled anodes to be produced directly by EBL microfabrication techniques. Computer-aided design methods have been used to develop several types of RALICON (Readout Anodes of Lithographic Construction) for use in photon counting microchannel plate imaging detectors. These anodes are suitable for linear, two dimensional or radial position measurements and they incorporate novel design features made possible by the EBL fabrication technique which significantly extend their application relative to published wedge-strip anode designs. (author)

  20. Design and Fabrication of the Beam Position Monitor for the PEFP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeokjung; Kim, Hansung; Seol, Kyungtae; Ryu, Jinyeong; Jang, Jiho; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-08-15

    The beam position monitor (BPM) is an essential component for the PEFP 100-MeV linac's commissioning. A prototype stripline-type linac BPM was designed for this purpose. The electrode aperture is 20 mm in diameter, and the electrode is 25 mm long, so it can be installed between Drift Tube Linac (DTL)101 and DTL102, which is the shortest distance. One end of the electrode is connected to the Sub Miniature Type A (SMA) feed through for signal measurement, and the other end is terminated as a short. The signal amplitude of the fundamental component was calculated and compared with that of the second harmonic component. The designed BPM was fabricated and a low-power RF test was conducted. In this paper, the design, fabrication and low power test of the BPM for the PEFP linac are presented.

  1. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.

  2. Strain-engineered manufacturing of freeform carbon nanotube microstructures

    Science.gov (United States)

    de Volder, M.; Park, S.; Tawfick, S.; Hart, A. J.

    2014-07-01

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  3. Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors

    Science.gov (United States)

    Stanishevsky, A.; Nagaraj, B.; Melngailis, J.; Ramesh, R.; Khriachtchev, L.; McDaniel, E.

    2002-09-01

    We studied the effect of ion damage on the properties of 50 keV Ga+ focused ion beam fabricated lead-zirconate-titanate capacitors as a function of the ion dose. We observed significant modification in the chemical composition of the damaged layer due to loss of lead and oxygen, and gallium impurity accumulation. The 5-10 nm thick damaged layer becomes dielectric after annealing and does not recover its ferroelectric properties. This dielectric layer substantially reduces the actual volume of the ferroelectric material in sub-100 nm structures, and can affect their performance.

  4. Single Cell Element of Chalcogenide Random Access Memory Fabricated with the Focused Ion Beam Method

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; SONG Zhi-Tang; FENG Song-Lin; CHEN Bomy

    2004-01-01

    A single cell element of chalcogenide random access memory was fabricated by using the focused ion beam method. The contact size between the Ge2Sb2 Te5 phase change film and the top electrode film is about 600nm (diameter) and the contact area is calculated to be 0.28pm2. The thickness of the phase change film is 83nm.The current-voltage characteristics of the cell element are studied using the home-made current-voltage tester in our laboratory. The minimum threshold current of about 0.6mA is obtained.

  5. Nanoelectromechanical device fabrications by 3-D nanotechnology using focused-ion beams

    OpenAIRE

    Reo Kometani and Sunao Ishihara

    2009-01-01

    Nanoelectromechanical devices, which can be used as nanotools in nanofactories, were fabricated by focused ion beam chemical vapor deposition (FIB-CVD). The devices are made of diamond-like carbon (DLC), deposited on a Si substrate using gasified phenanthrene (C14H10) as a carbon source. The Young modulus and density of the deposited DLC were measured as 190 GPa and 3.8 g cm−3, respectively. The work function was smaller for DLC (2.9 eV) than for W (4.7 eV) and Fe (5.2 eV) deposited by FIB-CV...

  6. Poly (methyl methacrylate) Composites with Size-Selected Silver Nanoparticles Fabricated using Cluster Beam Technique

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Juluri, Raghavendra Rao; Chirumamilla, Manohar;

    2016-01-01

    An embedment of metal nanoparticles of well-defined sizes in thin polymer films is of significant interest for a number of practical applications, in particular, for preparing materials with tunable plasmonic properties. In this article, we present a fabrication route for metal–polymer composites...... based on cluster beam technique allowing the formation of monocrystalline size-selected silver nanoparticles with a ±5–7% precision of diameter and controllable embedment into poly (methyl methacrylate). It is shown that the soft-landed silver clusters preserve almost spherical shape with a slight...

  7. Dispersive ground plane core-shell type optical monopole antennas fabricated with electron beam induced deposition.

    Science.gov (United States)

    Acar, Hakkı; Coenen, Toon; Polman, Albert; Kuipers, Laurens Kobus

    2012-09-25

    We present the bottom-up fabrication of dispersive silica core, gold cladding ground plane optical nanoantennas. The structures are made by a combination of electron-beam induced deposition of silica and sputtering of gold. The antenna lengths range from 300 to 2100 nm with size aspect ratios as large as 20. The angular emission patterns of the nanoantennas are measured with angle-resolved cathodoluminescence spectroscopy and compared with finite-element methods. Good overall correspondence between the the measured and calculated trends is observed. The dispersive nature of these plasmonic monopole antennas makes their radiation profile highly tunable. PMID:22889269

  8. Towards Free-Form Kinetic Structures

    DEFF Research Database (Denmark)

    Parigi, Dario; Kirkegaard, Poul Henning

    2012-01-01

    of pin-slot paths starting from the local displacements of element [2] [3]. In the design of kinetic structures, in particular when complex three dimensional and non regular configurations are involved, the functionality is frequently related to a global displacement capability of the assembly rather...... for the generation of free-form kinetic structures....

  9. Freeform optics applications in photovoltaic concentration

    OpenAIRE

    Miñano Dominguez, Juan Carlos; Benitez Gimenez, Pablo; Zamora Herranz, Pablo; Mendes Lopes, Joao; Buljan, Marina; Santamaria Galdon, Maria Asuncion

    2012-01-01

    Freeform surfaces are the key of the state-of-the-art nonimaging optics to solve the challenges in concentration photovoltaics. Different families (FK, XR, FRXI) will be presented, based on the SMS 3D design method and Köhler homogenization.

  10. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  11. High speed e-beam lithography for gold nanoarray fabrication and use in nanotechnology

    Directory of Open Access Journals (Sweden)

    Jorge Trasobares

    2014-10-01

    Full Text Available E-beam lithography has been used for reliable and versatile fabrication of sub-15 nm single-crystal gold nanoarrays and led to convincing applications in nanotechnology. However, so far this technique was either too slow for centimeter to wafer-scale writing or fast enough with the so-called dot on the fly (DOTF technique but not optimized for sub-15 nm dots dimension. This prevents use of this technology for some applications and characterization techniques. Here, we show that the DOTF technique can be used without degradation in dots dimension. In addition, we propose two other techniques. The first one is an advanced conventional technique that goes five times faster than the conventional one. The second one relies on sequences defined before writing which enable versatility in e-beam patterns compared to the DOTF technique with same writing speed. By comparing the four different techniques, we evidence the limiting parameters for the writing speed. Wafer-scale fabrication of such arrays with 50 nm pitch allowed XPS analysis of a ferrocenylalkyl thiol self-assembled monolayer coated gold nanoarray.

  12. Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth

    Energy Technology Data Exchange (ETDEWEB)

    Kaizu, Toshiyuki; Okada, Yoshitaka [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Tamura, Yosuke; Igarashi, Makoto; Hu, Weiguo; Tsukamoto, Rikako [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamashita, Ichiro [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Samukawa, Seiji [Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-09-10

    We have fabricated GaAs nanodisk (ND) structures by using a combination of neutral beam etching process and atomic hydrogen-assisted molecular beam epitaxy regrowth. We have observed clear photoluminescence (PL) emissions from GaAs NDs. The peak energy showed a blueshift due to the quantum confinement in three spatial dimensions, and it agreed with the theoretically estimated transition energy. The PL results also showed that the cap-layer disks act as radiative recombination centers. We have confirmed that the PL emission originates from the GaAs NDs, and our approach is effective for the fabrication of high quality ND structures.

  13. Focused Ion Beam Fabrication of Silicon-On Field-Effect Transistors.

    Science.gov (United States)

    Mattiussi, Greg Andrew

    N-channel metal-oxide-semiconductor field-effect transistors (MOSFET's) have been fabricated on silicon -on-insulator (SOI) substrates using a Focused Ion Beam (FIB) to pattern the gate and to dope the source and drains. Lightly -doped source (LDS) structures were implemented with the FIB to increase the drain-to-source voltage at which single transistor latch-up occurred. FIB exposure of two electron-beam resists was investigated for lithography of the transistor gate and the device mesas. Vertical resist profiles were achieved for linewidths down to 0.2 μm in width in the case of the negative-tone SAL-601 resist from Shipley Co. Openings in resist as narrow as 0.35 μm were made using the positive-tone P28 resist from OCG Microelectronic Materials. Optimal doses, pre- and post-exposure processing conditions were determined for both resists. Transistors with LDS structures showed higher latching voltages than those without. The magnitude of the increase in latching voltage due to the LDS was a function of body doping level, SOI thickness, and coded gate length. The largest increase was 5.1 V for a 0.8 μm MOSFET fabricated in a 125 nm thick SOI film with a body implant dose of 5.6times10^ {12} B cm^{-2}. Devices fabricated in SOI films of thickness 250 nm showed smaller increases in latching voltage with the LDS than those in 125 nm SOI films.

  14. E-beam lithography and optical near-field lithography: new prospects in fabrication of various grating structures

    Science.gov (United States)

    Kley, Ernst-Bernhard; Clausnitzer, Tina

    2003-12-01

    Today"s technologies available for the fabrication of micro structured optical elements are well developed for defined classes of structures. Techniques for very complex optical functions or for combinations of optical functions together with others are more or less in the level of research or labs. A promising approach for complex grating fabrication is the use of optical near field holography (NFH) and e-beam writing for unification of the advantages. The paper wants to show the potential of both techniques itself as well as the potential that arises from their teamwork. The paper demonstrates one and two dimensional gratings, chirped and unidirectional gratings fabricated by NFH using e-beam written masks. It shows also possibilities for the fabrication of gratings on binary, multilevel and continuous optical profiles.

  15. Describing freeform surfaces with orthogonal functions

    Science.gov (United States)

    Ochse, D.; Uhlendorf, K.; Reichmann, L.

    2015-09-01

    In optical design with freeform surfaces descriptions of the surfaces are needed that use only few parameters and are suitable for optimisation. Depending on the merit function - spot size or wavefront error - and the position of the surface in the system, different surface types can yield different optimisation performance. It has been demonstrated by G. Forbes that slope orthogonal polynomials are an advantageous freeform description. From literature on Gaussian moments it is known that this can be achieved using differences of Zernike polynomials, which are easy to compute and implement with recent algorithms. We will demonstrate the benefits of Zernike polynomials with optimisation examples. Furthermore we present an orthogonal surface representation on a rectangular aperture based on Chebyshev polynomials. This description is very convenient when the aperture has a very high aspect ratio, or when designing a system with a rectangular pupil.

  16. Designing coupled free-form surfaces.

    Science.gov (United States)

    Hicks, R Andrew; Croke, Christopher

    2010-10-01

    The problem of designing optical systems that contain free-form surfaces is a challenging one, even in the case of designing a single surface. Here we present a method for the coupled design of two free-form reflective surfaces that will have a prescribed distortion. On one hand, the method can be described using traditional vectors and matrices, which we do, but it is motivated by viewing the problem in the language of distributions from differential geometry and makes use of the exterior differential systems, which we relegate to an appendix. Example applications are given to the design of a mirror pair that increases the field of view of an observer, a similar mirror pair that also rotates the observer's view, and a pair of mirrors that give the observer a traditional panoramic strip view of the scene.

  17. Fabrication of nanoelectrodes for neurophysiology: cathodic electrophoretic paint insulation and focused ion beam milling

    Science.gov (United States)

    Qiao, Yi; Chen, Jie; Guo, Xiaoli; Cantrell, Donald; Ruoff, Rodney; Troy, John

    2005-09-01

    The fabrication and characterization of tungsten nanoelectrodes insulated with cathodic electrophoretic paint is described together with their application within the field of neurophysiology. The tip of a 127 µm diameter tungsten wire was etched down to less than 100 nm and then insulated with cathodic electrophoretic paint. Focused ion beam (FIB) polishing was employed to remove the insulation at the electrode's apex, leaving a nanoscale sized conductive tip of 100-1000 nm. The nanoelectrodes were examined by scanning electron microscopy (SEM) and their electrochemical properties characterized by steady state linear sweep voltammetry. Electrode impedance at 1 kHz was measured too. The ability of a 700 nm tipped electrode to record well-isolated action potentials extracellularly from single visual neurons in vivo was demonstrated. Such electrodes have the potential to open new populations of neurons to study.

  18. Focused-ion-beam-assisted fabrication of polymer rolled-up microtubes

    Science.gov (United States)

    Luchnikov, V.; Stamm, M.; Akhmadaliev, Ch; Bischoff, L.; Schmidt, B.

    2006-08-01

    A focused ion beam (FIB) has been applied to the fabrication of polymer microtubes via the rolling-up technique from poly(4-vinyl pyridine)/polystyrene bilayer films deposited on the top of a sacrificial aluminum layer covering a silicon wafer. The bending forces in the film arise due to different swelling of the bilayer components in acidic water and lead to rolling of the film. The dimensions and position of the rolled-up tubes can be controlled by FIB milling (sputtering) of geometrically well-adjusted openings in the polymer films. This technique can be applied to the structuring of scrolled films formed from different materials without the use of lithographically patterned photoresists. The geometrical patterning of the tube interior can also be done by FIB irradiation.

  19. Fabrication of electrospun Si-Zr-C fibers by electron beam irradiation

    International Nuclear Information System (INIS)

    Silicon-based non-oxide ceramic carbide fiber is one of the leading candidate ceramic materials for engineering applications because of its excellent mechanical properties at high temperature and good chemical resistance. In this study, polycarbosilane (PCS) and zirconium butoxide were used as a precursor to prepare polyzirconocarbosilane (PZC) fibers A polymer solution was prepared by dissolving PCS in zirconium butoxide (50/50 wt %). This solution was heated at 250 .deg. C in a nitrogen atmosphere for 2 hour with stirring, and then dried in a vacuum oven for 48 hour. PZC fibers were fabricated using an electrospinning technique. The fibers were irradiated with an electron beam to induce structural crosslinking. Crosslinked PZC fibers were heat treated at 1,300 .deg. C in a nitrogen atmosphere. The microstructures of PZC fibers were examined by SEM. Chemical structures of PZC fibers were examined by FT-IR and XRD. Thermal stability of PZC fibers was investigated by TGA

  20. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting

    Science.gov (United States)

    Ramsperger, Markus; Singer, Robert F.; Körner, Carolin

    2016-03-01

    Powder bed-based additive manufacturing (AM) processes are characterized by very high-temperature gradients and solidification rates. These conditions lead to microstructures orders of magnitude smaller than in conventional casting processes. Especially in the field of high performance alloys, like nickel-base superalloys, this opens new opportunities for homogenization and alloy development. Nevertheless, the high susceptibility to cracking of precipitation-hardenable superalloys is a challenge for AM. In this study, electron beam-based AM is used to fabricate samples from gas-atomized pre-alloyed CMSX-4 powder. The influence of the processing strategy on crack formation is investigated. The samples are characterized by optical and SEM microscopy and analyzed by microprobe analysis. Differential scanning calorimetry is used to demonstrate the effect of the fine microstructure on characteristic temperatures. In addition, in situ heat treatment effects are investigated.

  1. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  2. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres.

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-06-24

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices.

  3. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres

    Science.gov (United States)

    Gissibl, Timo; Thiele, Simon; Herkommer, Alois; Giessen, Harald

    2016-01-01

    Micro-optics are widely used in numerous applications, such as beam shaping, collimation, focusing and imaging. We use femtosecond 3D printing to manufacture free-form micro-optical elements. Our method gives sub-micrometre accuracy so that direct manufacturing even on single-mode fibres is possible. We demonstrate the potential of our method by writing different collimation optics, toric lenses, free-form surfaces with polynomials of up to 10th order for intensity beam shaping, as well as chiral photonic crystals for circular polarization filtering, all aligned onto the core of the single-mode fibres. We determine the accuracy of our optics by analysing the output patterns as well as interferometrically characterizing the surfaces. We find excellent agreement with numerical calculations. 3D printing of microoptics can achieve sufficient performance that will allow for rapid prototyping and production of beam-shaping and imaging devices. PMID:27339700

  4. Design and Fabrication of Nanoscale IDTs Using Electron Beam Technology for High-Frequency SAW Devices

    Directory of Open Access Journals (Sweden)

    Wei-Che Shih

    2014-01-01

    Full Text Available High-frequency Rayleigh-mode surface acoustic wave (SAW devices were fabricated for 4G mobile telecommunications. The RF magnetron sputtering method was adopted to grow piezoelectric aluminum nitride (AlN thin films on the Si3N4/Si substrates. The influence of sputtering parameters on the crystalline characteristics of AlN thin films was investigated. The interdigital transducer electrodes (IDTs of aluminum (Al were then fabricated onto the AlN surfaces by using the electron beam (e-beam direct write lithography method to form the Al/AlN/Si3N4/Si structured SAW devices. The Al electrodes were adopted owing to its low resistivity, low cost, and low density of the material. For 4G applications in mobile telecommunications, the line widths of 937 nm, 750 nm, 562 nm, and 375 nm of IDTs were designed. Preferred orientation and crystalline properties of AlN thin films were determined by X-ray diffraction using a Siemens XRD-8 with CuKα radiation. Additionally, the cross-sectional images of AlN thin films were obtained by scanning electron microscope. Finally, the frequency responses of high-frequency SAW devices were measured using the E5071C network analyzer. The center frequencies of the high-frequency Rayleigh-mode SAW devices of 1.36 GHz, 1.81 GHz, 2.37 GHz, and 3.74 GHz are obtained. This study demonstrates that the proposed processing method significantly contributes to high-frequency SAW devices for wireless communications.

  5. Corrosion and Fatigue Testing of Microsized 304 Stainless Steel Beams Fabricated by Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Qiang Zhang; Xingpeng Guo; Nengli Dai; Peixiang Lu

    2009-01-01

    The 304 stainless steel (SS) microcantilever specimens with dimensions of 30 μm×30 μm×50μm (thickness×width × length) were fabricated by femtosecond (fs) laser. The microsized cantilevers of good quality with structure and dimensions according commendably with that of the designed cantilever were obtained. The result shows that fs laser micromachining is a promising method for directly fabricating metallic microcomponents.Corrosion and fatigue properties of microsized specimens were carried out on the microsized 304 SS cantilever beams by a newly developed fatigue testing machine. The results show that the microsized 304 SS specimens appear to have an improved resistance towards localized corrosion compared to ordinary-sized 304 SS specimens after the static corrosion testing. The testing result shows that the presence of corrosive solution reduces the fatigue lifetime of the 304 SS specimen by a factor of 10-100. The maximum bending loads measured by fatigue testing machine decrease rapidly at the terminal stage of environment assisted fatigue testing.Corrosion fracture first occurred at the range of notch with a higher tensile bending stress, and exhibited clear evidence of trans-columnar fracture detected by SEM (scanning electron microscopy).

  6. The response of fibroblasts to hexagonal nanotopography fabricated by electron beam lithography.

    Science.gov (United States)

    Dalby, Matthew J; Gadegaard, Nikolaj; Wilkinson, Chris D W

    2008-03-15

    It has been known for many years that cells will react to the shape of their microenvironment. It is more recently becoming clear that cells can alter their morphology, adhesions, and cytoskeleton in response to their nanoenvironment. A few studies have gone further and measured cellular response to high-adhesion nanomaterials. There have, however, been practical difficulties associated with genomic studies focusing on low-adhesion nanotopographies. Because of advancement in fabrication techniques allowing the production of large area of structure and the ability to amplify mRNA prior to microarray hybridization, these difficulties can be overcome. Here, electron beam lithography has been used to fabricate arrays of pits with 120 nm diameters, 100 nm depth and 300 nm center to center spacing in hexagonal arrangement. Electron and fluorescent microscopies have been used to observe morphological changes in fibroblasts cultured on the pits. 1.7k gene microarray was used to gauge genomic response to the pits. The results show reduction in cellular adhesion, decrease in spreading, and a broad genomic down-regulation. Also noted was an increase in endocytotic activity in cells on the pits. PMID:17647239

  7. Fabrication of three-dimensional SU-8 microchannels by proton beam writing for microfluidics applications: Fluid flow characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Shehri, S., E-mail: s.al-shehri@surrey.ac.uk; Palitsin, V.; Webb, R.P.; Grime, G.W.

    2015-04-01

    The proton beam writing (PBW) technique was used to fabricate microfluidic structures in SU-8 resist. A network of the buried channels was fabricated as part of a project to develop functional microfluidic device for neuronal studies and self-powered microfluidics. Protons with energies between 2.5 MeV and 0.75 MeV were used to fabricate the buried channels with a minimum feature size of around 1 μm and depths of 40–55 μm. Roughness of channels sidewalls was around 2.5 nm rms. Exposure regime and examples of functional networks fabricated using PBW are described. COMSOL Multiphysics® software was used to model the flow characteristics of fluid in the SU-8 microchannels structured by PBW. The results obtained using PBW are compared with the structures fabricated by UV-lithography.

  8. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis.

    Science.gov (United States)

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-01-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861

  9. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    Science.gov (United States)

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-09-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.

  10. Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement.

    Science.gov (United States)

    Zhang, Xiaodong; Zeng, Zhen; Liu, Xianlei; Fang, Fengzhou

    2015-09-21

    Freeform surface is promising to be the next generation optics, however it needs high form accuracy for excellent performance. The closed-loop of fabrication-measurement-compensation is necessary for the improvement of the form accuracy. It is difficult to do an off-machine measurement during the freeform machining because the remounting inaccuracy can result in significant form deviations. On the other side, on-machine measurement may hides the systematic errors of the machine because the measuring device is placed in situ on the machine. This study proposes a new compensation strategy based on the combination of on-machine and off-machine measurement. The freeform surface is measured in off-machine mode with nanometric accuracy, and the on-machine probe achieves accurate relative position between the workpiece and machine after remounting. The compensation cutting path is generated according to the calculated relative position and shape errors to avoid employing extra manual adjustment or highly accurate reference-feature fixture. Experimental results verified the effectiveness of the proposed method.

  11. Efficient composite fabrication using electron-beam rapidly cured polymers engineered for several manufacturing processes

    International Nuclear Information System (INIS)

    Low cost, efficiently processed ultra high specific strength and stiffness graphite fiber reinforced polymeric composite materials are of great interest to commercial transportation, construction and aerospace industries for use in various components with enhanced degrees of weight reduction, corrosion/erosion resistance and fatigue resistance. 10 MeV Electron Beam cure processing has been found to increase the cure rate by an order of magnitude over thermally cured systems yet provide less molded in stresses and high Tgs. However, a limited range of resins are available which are easily processed with low shrinkage and with performance properties equal or exceeding those of state of the art toughened epoxies and BMI's. The technology, introduced by an academia-industry partnership sparked by Langley Research Center utilizes a cost effective, rapid curing polymeric composite processing technique which effectively reduces the need for expensive tooling and energy inefficient autoclave processing and can cure the laminate in seconds (compared to hours for thermal curing) in ambient or sub-ambient conditions. The process is based on electron beam (E-Beam) curing of a new series of (65 to 1,000,000 cPs.) specially formulated resins that have been shown to exhibit excellent mechanical and physical properties once cured. Fabrication processes utilizing these specially formulated and newly commercialized resins, (e.g. including Vacuum Assist Resin Transfer molding (VARTM), vacuum bag prepreg layup, pultrusion and filament winding grades) are engineered to cure with low shrinkage, provide excellent mechanical properties, be processed solventless (environmentally friendly) and are inherently non toxic

  12. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept. PMID:27410878

  13. Quantitative optimization of solid freeform deposition of aqueous hydrogels

    International Nuclear Information System (INIS)

    Many soft tissues exhibit complex anatomical geometry that is challenging to replicate for regenerative medicine applications. Solid freeform fabrication (SFF) has emerged as an attractive approach for creating 3D tissues, but a detailed understanding of how specific fabrication parameters affect accuracy and viability has not been established to date. In this study, we evaluate the effects of printing parameters of the Fab-Home 3D printing system on accuracy using alginate, photocrosslinkable polyethylene-glycol diacrylate (PEG-DA) and gelatin as commonly used model hydrogel materials. Print accuracy and resolution along the length, width and height were determined based on quantitative image analysis. The effects of extrusion parameters on cell viability were assessed using porcine aortic valve interstitial cells (PAVIC) as a model cell type. We observed that pressure, pathheight and pathspace all significantly affected print accuracy and resolution. Printing conditions did not affect PAVIC viability within the ranges applied. We predicted that optimal pressure, pathheight and pathspace values would be increased linearly with increasing nozzle diameter, and we confirmed that the predicted values generate accurate 3D geometries while poorly chosen parameters yield inaccurate, unpredictable geometries. This systematic optimization strategy therefore improves the accuracy of 3D printing platforms for biofabrication and tissue engineering applications. (paper)

  14. FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography

    CERN Document Server

    Zito, G; Santamato, E; Marino, A; Tkachenko, V; Abbate, G

    2013-01-01

    Multiple-beam holography has been widely used for the realization of photonic quasicrystals with high rotational symmetries not achievable by the conventional periodic crystals. Accurate control of the properties of the interfering beams is necessary to provide photonic band-gap structures. Here we show, by FDTD simulations of the transmission spectra of 8-fold quasiperiodic structures, how the geometric tiling of the structure affects the presence and properties of the photonic band-gap for low refractive index contrasts. Hence, we show an interesting approach to the fabrication of photonic quasicrystals based on the use of a programmable Spatial Light Modulator encoding Computer-Generated Holograms, that permits an accurate control of the writing pattern with almost no limitations in the pattern design. Using this single-beam technique we fabricated quasiperiodic structures with high rotational symmetries and different geometries of the tiling, demonstrating the great versatility of our technique.

  15. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN; Fan

    2001-01-01

    [1]Hirata,K.,Yamamoto,K.,Iijinma,J.et al.,Tunneling measurements on superconductor/insulator/superconductor junctions using single-crystal YBa2Cu3O7-x thin films,Appl.Phys.Lett.,1990,56(7):683-685.[2]Kingston,J.J.,Wellstood,F.C.,Lerch,P.et al.,Multilayer YBa2Cu3Ox-SrTiO3-YBa2Cu3Ox films for insulating crossovers,Appl.Phys.Lett.,1990,56(2):189-191.[3]Grundler,D.,Krumme,J.P.,David,B.et al.,YBa2Cu3O7 ramp-type junctions and superconducting quantum interference devices with an ultra thin barrier of NdGaO3,Appl.Phys.Lett.,1994,65(14):1841-1843.[4]Yang Guozhen,Lu Huibin,Chen Zhenghao et al.,Laser molecular beam epitaxy system and its key technologies,Science in China (in Chinese),Ser.A,1998,28(3):260-265.[5]Wang Ning,Lu Huibin,Chen,W.Z.et al.,Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy,Appl.Phys.Lett.,1999,75(22):3464-3466.[6]Chen Li-Chyng,Particulates generated by pulsed laser ablation,in Pulsed Laser Deposition of Thin Films (eds.Chrisey,D.B.,Hulber,G.K.),New York:John Wiley & Sons,Inc.,1994,167-198.[7]Wang,H.S.,Dietsche,W.,Eissler,D.et al.,Molecular beam epitaxial growth and structure properties of DyBa2Cu3O7-y,J.Crys.Growth,1993,126:565-577.[8]Kita,R.,Hase,T.,Itti,R.et al.,Synthesis of CuO films using mass-separated,low-energy O+ ion beams,Appl.Phys.Lett.,1992,60(21):2684-2685.[9]Lu Huibin,Zhou Yueliang,Yang Guozhen et al.,Active gas source for thin film preparation,Chinese Patent (in Chinese),1996,No.ZL 96219046.2.[10]Wang Jing,Chen Fan,Zhao Tong et al.,Fabrication of high stable DC-SQUIDS with L-MBE YBCO thin films,Chinese Journal of Low Temperature Physics (in Chinese),1999,21(1):13-16.

  16. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO_2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle; Fabien; Luo; Aiping; Marin; Emmanuel; Meunier; Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  17. Effect of Scanning Beam Profile to Fabricate Fused Fiber Tapers by CO2 Laser Irradiation Method

    Institute of Scientific and Technical Information of China (English)

    Bayle Fabien; Luo Aiping; Marin Emmanuel; Meunier Jean-Pierre

    2003-01-01

    Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.

  18. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.

    Science.gov (United States)

    Hinton, Thomas J; Jallerat, Quentin; Palchesko, Rachelle N; Park, Joon Hyung; Grodzicki, Martin S; Shue, Hao-Jan; Ramadan, Mohamed H; Hudson, Andrew R; Feinberg, Adam W

    2015-10-01

    We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312

  19. Electron beam melting of advanced materials and structures

    Science.gov (United States)

    Mahale, Tushar Ramkrishna

    Layered manufacturing has for long been used for the fabrication of non-functional parts using polymer-based processes. Developments in laser beam and electron beam welding technologies and their adoption to layered manufacturing has made it possible to fabricate high-density functional parts in metal irrespective of the level of complexity. The Electron Beam Melting (EBM) process by Arcam AB is one such layered manufacturing process that utilizes a focused electron beam to process metal powder, layer by layer, in a vacuum environment. Research conducted as part of this body of work looks into the development of both bulk materials in the form of metal alloys and ceramic metal-matrix composites as well as the development of tunable mechanical & thermal metamaterials. Simulation models to approximate electron beam melting were suggested using commercial finite element analysis packages. A framework was developed based on the finite difference method to simulate layered manufacturing using Arcam AB's electron beam melting process. The outputs from the simulation data could be used to better understand the local melting, grain evolution, composition and internal stresses within freeform-fabricated metal parts.

  20. Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes

    CERN Document Server

    Olivero, P; Jaksic, M; Pastuovic, Z; Picollo, F; Skukan, N; Vittone, E

    2016-01-01

    This paper reports on the fabrication and characterization of a high purity monocrystalline diamond detector with buried electrodes realized by the selective damage induced by a focused 6 MeV carbon ion beam scanned over a pattern defined at the micrometric scale. A suitable variable-thickness mask was deposited on the diamond surface in order to modulate the penetration depth of the ions and to shallow the damage profile toward the surface. After the irradiation, the sample was annealed at high temperature in order to promote the conversion to the graphitic phase of the end-of-range regions which experienced an ion-induced damage exceeding the damage threshold, while recovering the sub-threshold damaged regions to the highly resistive diamond phase. This process provided conductive graphitic electrodes embedded in the insulating diamond matrix; the presence of the variable-thickness mask made the terminations of the channels emerging at the diamond surface and available to be connected to an external electro...

  1. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  2. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2015-02-01

    Full Text Available High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc’s above 34 K and narrow superconducting transition widths (ΔTc’s of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  3. Broad and focused ion beams Ga+ implantation damage in the fabrication of p+-n Si shallow junctions

    International Nuclear Information System (INIS)

    The use of focused and broad beam Ga+ implantation for the fabrication of p+-n Si shallow junctions is explored. In particular, the issue of ion induced damage and its effect on diode electrical properties is explored. FIB-fabricated junctions exhibit a deeper junction with lower sheet resistance and higher leakage current than the BB-implanted diodes. TEM analysis exhibits similar amorphization and recrystallization behavior for both implantation techniques with the BB case generating a higher dislocation loop density after a 900 degree C anneal. 6 refs., 5 figs., 1 tab

  4. Detection and reconstruction of freeform sweeps

    KAUST Repository

    Barton, Michael

    2014-05-01

    We study the difficult problem of deciding if parts of a freeform surface can be generated, or approximately generated, by the motion of a planar profile through space. While this task is basic for understanding the geometry of shapes as well as highly relevant for manufacturing and building construction, previous approaches were confined to special cases like kinematic surfaces or "moulding" surfaces. The general case remained unsolved so far. We approach this problem by a combination of local and global methods: curve analysis with regard to "movability", curve comparison by common substring search in curvature plots, an exhaustive search through all planar cuts enhanced by quick rejection procedures, the ordering of candidate profiles and finally, global optimization. The main applications of our method are digital reconstruction of CAD models exhibiting sweep patches, and aiding in manufacturing freeform surfaces by pointing out those parts which can be approximated by sweeps. © 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

  5. Freeform reflector design for LED street lighting

    Science.gov (United States)

    Li, Chen; Schreiber, Peter; Walkling, Andreas; Schierz, Christoph; Schwede, Maik; Gühne, Volker

    2011-10-01

    Faceted freeform reflectors were designed for intelligent street lighting with LED cluster arrays for main traffic roads. Special attention was paid to achieve highly efficient illumination on both wet and dry road surfaces. CIE reflection tables W4 and C2 were applied in the simulation for these two conditions, respectively. The reflector design started with plane facets, then - to avoid artifacts from the images of the individual LEDs - plane facets were replaced with cylindrical facets. To get even more flexibility for the design and optimization, freeform facets were employed, modeled by extruding two different conic curves together. Besides of achieving well-proportioned road luminance distribution, the basic shapes of the reflectors were formed to control stray light caused by multiple reflections within the reflector and by reflection of light from neighbor clusters within the cluster array. The merit functions include useful transmission of light to the road as well as overall and lengthwise uniformity according to road illumination standards. Due to the large amount of variables, the optimization was carried out sequentially facet by facet. The design loops included compromising with manufacturing limitations for plastics molding and thorough analysis of conformity with DIN EN 13201 standards for ME road lighting classes. The calculated reflector profiles are realized by plastic injection molding.

  6. Strategy for a flexible and noncontact measuring process for freeforms

    Science.gov (United States)

    Beutler, Andreas

    2016-07-01

    The cylindrical coordinate measuring machine MarForm MFU200 can measure not only rotationally symmetric aspheric samples but also nonrotationally symmetric freeform surfaces. Applying both an optical and a tactile probe system, the measuring processes of the optical freeform surface and fiducials can be combined in a very flexible way. A strategy to measure freeforms including the determination of reference coordinate systems, the measuring process, and the analysis are discussed. In this process, fiducials defining a reference coordinate system are of fundamental importance. It is shown how different positions of fiducials can be measured.

  7. Spiral phase plates with radial discontinuities for the generation of multiring orbital angular momentum beams: fabrication, characterization, and application

    Science.gov (United States)

    Ruffato, Gianluca; Massari, Michele; Carli, Marta; Romanato, Filippo

    2015-11-01

    A design of spiral phase plates for the generation of multiring beams carrying orbital angular momentum (OAM) is presented. Besides the usual helical profile, these phase plates present radial π-discontinuities in correspondence of the zeros of the associated Laguerre polynomials. Samples were fabricated by electron beam lithography over glass substrates coated with a polymethylmethacrylate resist layer. The optical response was analyzed and the purity of the generated beams was investigated in terms of Laguerre-Gaussian modes contributions. The far-field intensity pattern was compared with theoretical models and numerical simulations, while the expected phase features were confirmed by interferometric analysis with a Mach-Zehnder setup. The high quality of the output beams confirms the applicability of these phase plates for the generation of high-order OAM beams with nonzero radial index. An application consisting of the design of computer-generated holograms encoding information for light beams carrying phase singularities is presented and described. A numerical code based on an iterative Fourier transform algorithm has been developed for the computation of phase-only diffractive optical element for illumination under OAM beams. Numerical analysis and preliminary experimental results confirm the applicability of these devices as high-security optical elements for anticounterfeiting applications.

  8. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    Science.gov (United States)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  9. Computational study and experimental validation of porous structures fabricated by electron beam melting: A challenge to avoid stress shielding

    International Nuclear Information System (INIS)

    In this paper, several diamond non-stochastic lattice structures, fabricated by electron beam melting, were mechanically characterized by compression tests. A finite element model of the structures was developed, obtaining an equation that estimates the elastic modulus of the lattice structure. Finally, the differences between the numerical and the experimental results were analyzed and discussed. - Highlights: • Diamond non-stochastic lattice structures were fabricated by electron beam melting. • Finite element models of the structures were developed. • An inverse relationship between aspect ratio and elastic modulus it is shown. • An equation that estimates the elastic modulus of the structure was obtained. • Differences between the numerical and the experimental results were discussed

  10. Design and fabrication of hollow-core photonic crystal fibers for high power fast laser beam transportation and pulse compression

    Science.gov (United States)

    Wang, Y. Y.; Peng, Xiang; Alharbi, M.; Dutin, C. F.; Bradley, T. D.; Mielke, Michael; Booth, Timothy; Benabid, F.

    2012-03-01

    We report on recent design and fabrication of Kagome type hollow-core photonic crystal fiber (HC-PCF) for the purpose of high power fast laser beam transportation. The fabricated seven-cell three-ring hypocycloid-shaped large core fiber exhibits an up-to-date lowest attenuation (among all Kagome fibers) of 40dB/km over a broadband transmission centered at 1500nm. We show that the large core size, low attenuation, broadband transmission, single modedness, low dispersion and relatively low banding loss makes it an ideal host for high power laser beam transportation. By filling the fiber with helium gas, a 74μJ, 850fs and 40kHz repetition rate ultra-short pulse at 1550nm has been faithfully delivered with little propagation pulse distortion. Compression of a 105μJ laser pulse from 850fs to 300fs has been achieved by operating the fiber in ambient air.

  11. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology

    International Nuclear Information System (INIS)

    In this paper, a novel capacitive power sensor based on the microelectromechanical systems (MEMS) cantilever beam at 8–12 GHz is proposed, fabricated and tested. The presented design can not only realize a cantilever beam instead of the conventional fixed–fixed beam, but also provide fine compatibility with the GaAs monolithic microwave integrated circuit (MMIC) process. When the displacement of the cantilever beam is very small compared with the initial height of the air gap, the capacitance change between the measuring electrode and the cantilever beam has an approximately linear dependence on the incident radio frequency (RF) power. Impedance compensating technology, by modifying the slot width of the coplanar waveguide transmission line, is adopted to minimize the effect of the cantilever beam on the power sensor; its validity is verified by the simulation of high frequency structure simulator software. The power sensor has been fabricated successfully by Au surface micromachining using polyimide as the sacrificial layer on the GaAs substrate. Optimization of the design with impedance compensating technology has resulted in a measured return loss of less than −25 dB and an insertion loss of around 0.1 dB at 8–12 GHz, which shows the slight effect of the cantilever beam on the microwave performance of this power sensor. The measured capacitance change starts from 0.7 fF to 1.3 fF when the incident RF power increases from 100 to 200 mW and an approximate linear dependence has been obtained. The measured sensitivities of the sensor are about 6.16, 6.27 and 6.03 aF mW−1 at 8, 10 and 12 GHz, respectively. (paper)

  12. Efficient Design And Fabrication Of Free-Form Reciprocal Structures

    DEFF Research Database (Denmark)

    Parigi, Dario; Kirkegaard, Poul Henning

    2013-01-01

    Structures based on the principle of reciprocity have been autonomously studied and used since the antiquity on the basis of different needs and purposes. The application of the principle of reciprocity requires the presence of at least two elements, at the same time both supporting and being sup...

  13. Solid freeform fabrication of bone tissue engineering scaffolds

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhuo; YAN Yongnian; ZHANG Renji; CHEN Lifeng; WANG Li

    2001-01-01

    @@ INTRODUCTIONTissue engineering is a promising approach to large segmental bone repair fortrauma, replacement surgery, skeletal deficiency or abnormal development. Thefabrication of bone regeneration scaffolds with appropriate bone conductive property,bone inductive property, biodegradation property and mechanical properties is thecrux of this approach.

  14. Optical Fabrication and Metrology of Aspheric and Freeform Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The requirement for cost effective manufacturing and metrology of large optical surfaces is instrumental for the success of future NASA programs such as LISA,...

  15. Characterization of Ti-6Al-4V open cellular foams fabricated by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Ti-6Al-4V open cellular foams were fabricated by additive manufacturing using electron beam melting (EBM). Foam models were developed from CT-scans of aluminum open cellular foams and embedded in CAD for EBM. These foams were fabricated with solid cell structures as well as hollow cell structures and exhibit tailorable stiffness and strength. The strength in proportion to the measured microindentation hardness is as much as 40% higher for hollow cell (wall) structures in contrast to solid, fully dense EBM fabricated components. Plots of relative stiffness versus relative density were in good agreement with the Gibson-Ashby model for open cellular foam materials. Stiffness or Young's modulus values measured using a resonant frequency-damping analysis technique were found to vary inversely with porosity especially for solid cell wall, open cellular structure foams. These foams exhibit the potential for novel biomedical, aeronautics, and automotive applications.

  16. Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique

    Science.gov (United States)

    De Leo, Natascia; Fretto, Matteo; Lacquaniti, Vincenzo; Granata, Carmine; Vettoliere, Antonio

    2016-09-01

    In this paper a nanofabrication process, based on a focused ion beam (FIB) nanosculpting technique, for high sensitivity three-dimensional nanoscale superconducting quantum interference devices (nanoSQUIDs) is reported. The crucial steps of the fabrication process are described, as are some peculiar features of the superconductor-normal metal-insulator-superconductor (SNIS) Josephson junctions, which may useful for applications in cryocooler systems. This fabrication procedure is employed to fabricate sandwich nanojunctions and high sensitivity nanoSQUIDs. Specifically, the superconductive nanosensors have a rectangular loop of 1 × 0.2-0.4 μm2 interrupted by two square Nb/Al-AlO x /Nb SNIS Josephson junctions with side lengths of 0.3 μm. The characterization of a typical nanoSQUID has been carried out and a spectral density of magnetic flux noise as low as 0.8 μΦ0 Hz-1/2 has been measured.

  17. Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique

    Science.gov (United States)

    De Leo, Natascia; Fretto, Matteo; Lacquaniti, Vincenzo; Granata, Carmine; Vettoliere, Antonio

    2016-09-01

    In this paper a nanofabrication process, based on a focused ion beam (FIB) nanosculpting technique, for high sensitivity three-dimensional nanoscale superconducting quantum interference devices (nanoSQUIDs) is reported. The crucial steps of the fabrication process are described, as are some peculiar features of the superconductor–normal metal–insulator–superconductor (SNIS) Josephson junctions, which may useful for applications in cryocooler systems. This fabrication procedure is employed to fabricate sandwich nanojunctions and high sensitivity nanoSQUIDs. Specifically, the superconductive nanosensors have a rectangular loop of 1 × 0.2–0.4 μm2 interrupted by two square Nb/Al–AlO x /Nb SNIS Josephson junctions with side lengths of 0.3 μm. The characterization of a typical nanoSQUID has been carried out and a spectral density of magnetic flux noise as low as 0.8 μΦ0 Hz–1/2 has been measured.

  18. Magnetic-ion-doped silicon nanostructures fabricated by ion implantation and electron beam annealing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Fang, E-mail: v.fang@gns.cri.nz [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Johnson, Peter B. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Kennedy, John; Markwitz, Andreas [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2013-07-15

    Magnetic-ion-doped Si nanostructures (nanowhiskers) were fabricated by a two-step process on Si (1 0 0) substrates. The substrates were implanted with 7 keV Fe{sup +} to a fluence (F) in the range 1 × 10{sup 13}–4 × 10{sup 15} Fe{sup +} cm{sup −2} prior to electron beam annealing (EBA) for 15 s at a maximum temperature, T, in the range 600–1100 °C. The two-step process was found to produce nanowhiskers at higher surface densities than those produced by applying EBA alone. With increase in Fe{sup +} fluence there is a striking increase in the surface density of the Si nanowhiskers, together with a decrease in the average height. For example, for T = 1000 °C, the density and average height are respectively 12 μm{sup −2} and 8.8 nm for F = 1 × 10{sup 13} Fe{sup +} cm{sup −2}, and 82 μm{sup −2} and 3.1 nm for F = 4 × 10{sup 15} Fe{sup +} cm{sup −2}. The results are compared with those from a three-step process in which the nanowhiskers are pre-formed in a prior EBA treatment. The two-step process is found to be superior for producing high densities with height distributions having lower fractional spreads. The mechanism of the nucleation and growth of nanowhiskers in the final EBA step is discussed. Selected results are presented to show the possibility of controlling the density and average height of Si nanowhiskers doped with magnetic ions for spin-dependent enhanced field emission.

  19. Magnetic-ion-doped silicon nanostructures fabricated by ion implantation and electron beam annealing

    Science.gov (United States)

    Fang, Fang; Johnson, Peter B.; Kennedy, John; Markwitz, Andreas

    2013-07-01

    Magnetic-ion-doped Si nanostructures (nanowhiskers) were fabricated by a two-step process on Si (1 0 0) substrates. The substrates were implanted with 7 keV Fe+ to a fluence (F) in the range 1 × 1013-4 × 1015 Fe+ cm-2 prior to electron beam annealing (EBA) for 15 s at a maximum temperature, T, in the range 600-1100 °C. The two-step process was found to produce nanowhiskers at higher surface densities than those produced by applying EBA alone. With increase in Fe+ fluence there is a striking increase in the surface density of the Si nanowhiskers, together with a decrease in the average height. For example, for T = 1000 °C, the density and average height are respectively 12 μm-2 and 8.8 nm for F = 1 × 1013 Fe+ cm-2, and 82 μm-2 and 3.1 nm for F = 4 × 1015 Fe+ cm-2. The results are compared with those from a three-step process in which the nanowhiskers are pre-formed in a prior EBA treatment. The two-step process is found to be superior for producing high densities with height distributions having lower fractional spreads. The mechanism of the nucleation and growth of nanowhiskers in the final EBA step is discussed. Selected results are presented to show the possibility of controlling the density and average height of Si nanowhiskers doped with magnetic ions for spin-dependent enhanced field emission.

  20. In Vitro and in Vivo Evaluation of Silicate-Coated Polyetheretherketone Fabricated by Electron Beam Evaporation.

    Science.gov (United States)

    Wen, Jin; Lu, Tao; Wang, Xiao; Xu, Lianyi; Wu, Qianju; Pan, Hongya; Wang, Donghui; Liu, Xuanyong; Jiang, Xinquan

    2016-06-01

    Intrinsic bioinertness severely hampers the application of polyetheretherketone (PEEK), although in the field of dentistry it is considered to be an ideal titanium substitute implanting material. In this study, a bioactive silicate coating was successfully introduced onto PEEK surface by using electron beam evaporation (EBE) technology to improve its bioactivity and osseointegration of PEEK. Through controlling the duration of EBE, the incorporated amounts of silicon (Si) could be exquisitely adjusted to obtain proper biofunctionality, as assessed by cell adhesion, proliferation, osteogenic gene expression, and protein detection. In vivo, the samples were then tested in a femur implantation model to assay osseointegration effects in ovariectomized (OVX) rats. Remarkable enhancement of adhesion, spreading, osteogenesis, and differentiation of bone marrow stem cells (rBMSCs-OVX) were noted on silicate-coated samples. In particular, the group that was processed for 5 min with EBE (EBE-5 min) showed the most improvements in ALP activity and osteogenic-related gene expression compared to the remaining groups. Better osseointegration of the group that was processed for 8 min with EBE (EBE-8 min) was observed in vivo, as indicated by micro-CT test, fluorescent labeling, and histological and histomorphometric analyses. Collectively, the outcomes of the above experiments demonstrate that the present work is a meaningful attempt to promote osseointegration under osteoporotic conditions with only Si element incorporated to PEEK surface by the application of EBE technique. To the best of our knowledge, this work is the first demonstration of tuning the surface properties of PEEK via the adoption of an EBE-fabricated silicate coating to address an osteoporotic problem both in vitro and in vivo.

  1. Active array design for FAME: Freeform Active Mirror Experiment

    Science.gov (United States)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  2. Additive manufacturing for freeform mechatronics design: from concepts to applications

    NARCIS (Netherlands)

    Baars, G. van; Smeltink, J.; Werff, J. van der; Limpens, M.; Barink, M.; Berg, D. van den; Vreugd, J. de; Witvoet, G.; Galaktionov, O.S.

    2015-01-01

    This article presents developments of freeform mechatronics concepts, enabled by industrial Additive Manufacturing (AM), aiming at breakthroughs for precision engineering challenges such as lightweight, advanced thermal control, and integrated design. To assess potential impact in future application

  3. Geometric Modeling and Reasoning of Human-Centered Freeform Products

    CERN Document Server

    Wang, Charlie C L

    2013-01-01

    The recent trend in user-customized product design requires the shape of products to be automatically adjusted according to the human body’s shape, so that people will feel more comfortable when wearing these products.  Geometric approaches can be used to design the freeform shape of products worn by people, which can greatly improve the efficiency of design processes in various industries involving customized products (e.g., garment design, toy design, jewel design, shoe design, and design of medical devices, etc.). These products are usually composed of very complex geometric shapes (represented by free-form surfaces), and are not driven by a parameter table but a digital human model with free-form shapes or part of human bodies (e.g., wrist, foot, and head models).   Geometric Modeling and Reasoning of Human-Centered Freeform Products introduces the algorithms of human body reconstruction, freeform product modeling, constraining and reconstructing freeform products, and shape optimization for improving...

  4. Design of freeform optics for an ophthalmological application

    Science.gov (United States)

    Sieber, Ingo; Yi, Allen; Li, Likai; Beckert, Erik; Steinkopf, Ralf; Gengenbach, Ulrich

    2014-05-01

    Optical freeform surfaces are gaining importance in different optical applications. A huge demand arises e.g. in the fields of automotive and medical engineering. Innovative systems often need high-quality and high-volume optics. Injectionmoulded polymer optics represents a cost-efficient solution. However, it has to be ensured that the tight requirements with respect to the system's performance are met by the replicated freeform optics. To reach this goal, it is not sufficient to only characterise the manufactured optics by peak-to-valley or rms data describing a deviation from the nominal surface. Instead, optical performance of the manufactured freeform optics has to be analysed and compared with the performance of the nominal surface. This can be done by integrating the measured surface data of the manufactured freeform optics into the optical simulation model. The feedback of the measured surface data into the model allows for a simulation of the optical performance of the optical subsystem containing the real freeform optics manufactured. Hence, conclusions can be drawn as to whether the specifications with respect to e.g. imaging quality are met by the real manufactured optics. This approach will be presented using an Alvarez-Humphrey optics as an example of a tuneable optics of an ophthalmological application. The focus of this article will be on design for manufacturing the freeform optics, the integration of the measured surface data into the optical simulation model, simulation of the optical performance, and analysis in comparison to the nominal surface.

  5. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures.

    Science.gov (United States)

    Guo, Shuang-Zhuang; Heuzey, Marie-Claude; Therriault, Daniel

    2014-02-01

    Solvent-cast printing is a highly versatile microfabrication technique that can be used to construct various geometries such as filaments, towers, scaffolds, and freeform circular spirals by the robotic deposition of a polymer solution ink onto a moving stage. In this work, we have performed a comprehensive characterization of the solvent-cast printing process using polylactide (PLA) solutions by analyzing the flow behavior of the solutions, the solvent evaporation kinetics, and the effect of process-related parameters on the crystallization of the extruded filaments. Rotational rheometry at low to moderate shear rates showed a nearly Newtonian behavior of the PLA solutions, while capillary flow analysis based on process-related data indicated shear thinning at high shear rates. Solvent vaporization tests suggested that the internal diffusion of the solvent through the filaments controlled the solvent removal of the extrudates. Different kinds of three-dimensional (3D) structures including a layer-by-layer tower, nine-layer scaffold, and freeform spiral were fabricated, and a processing map was given to show the proper ranges of process-related parameters (i.e., polymer content, applied pressure, nozzle diameter, and robot velocity) for the different geometries. The results of differential scanning calorimetry revealed that slow solvent evaporation could increase the ability of PLA to complete its crystallization process during the filament drying stage. The method developed here offers a new perspective for manufacturing complex structures from polymer solutions and provides guidelines to optimize the various parameters for 3D geometry fabrication.

  6. Intelligent freeform manufacturing of complex organs.

    Science.gov (United States)

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney. PMID:22888830

  7. Intelligent freeform manufacturing of complex organs.

    Science.gov (United States)

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney.

  8. Design and development of a micro polycrystalline diamond ball end mill for micro/nano freeform machining of hard and brittle materials

    International Nuclear Information System (INIS)

    Micro end mills play a key role in micro/nano milling applications for intricate three-dimensional die/molds or sensors for micro-electro-mechanical systems (MEMS). In order to achieve higher machining accuracy and longer tool life, micro end mills are usually made of ultra-hard materials such as polycrystalline diamond (PCD) or cubic boron nitride (CBN). One of the best choices for their fabrication is the wire electrical discharge machining (WEDM) method. There are two basic categories of micro end mills, namely the ball end mill for 3D freeform surface machining and straight/round edge end mills for non-freeform surface machining. This paper focuses on the design and development of the micro ball end mill for hard and brittle materials. Firstly, the available typical ball end mill is analyzed. Secondly, a micro ball end mill with uniform axial rake and clearance angles is designed and analyzed by the finite element method (FEM). The designed micro ball end mill only needs simultaneously three linear and one index rotational WEDM axes instead of simultaneously five WEDM axes for traditional ball end mills. Then, micro PCD ball end mills are fabricated and the radius variation follows in ±2.0 µm, which is more accurate than commercially available ones. Finally, the 3D freeform geometry milling on tungsten carbide (WC) and silicon wafer successfully demonstrated the possibility of micro-mechanical freeform machining by the developed micro ball end mill

  9. Ray mapping approach for the efficient design of continuous freeform surfaces.

    Science.gov (United States)

    Bösel, Christoph; Gross, Herbert

    2016-06-27

    The efficient design of continuous freeform surfaces, which maps a given light source to an arbitrary target illumination pattern, remains a challenging problem and is considered here for collimated input beams. A common approach are ray-mapping methods, where first a ray mapping between the source and the irradiance distribution on the target plane is calculated and in a subsequent step the surface is constructed. The challenging aspect of this approach is to find an integrable mapping ensuring a continuous surface. Based on the law of reflection/refraction and an integrability condition, we derive a general condition for the surface and ray mapping for a collimated input beam. It is shown that in a small-angle approximation a proper mapping can be calculated via optimal mass transport - a mathematical framework for the calculation of a mapping between two positive density functions. We show that the surface can be constructed by solving a linear advection Eq. with appropriate boundary conditions. The results imply that the optimal mass transport mapping is approximately integrable over a wide range of distances between the freeform and the target plane and offer an efficient way to construct the surface by solving standard integrals. The efficiency is demonstrated by applying it to two challenging design examples, which shows the ability of the presented approach to handle target illumination patterns with steep irradiance gradients and numerous gray levels. PMID:27410583

  10. Electrical properties comparison of TiO2/PS/Si devices fabricated by spin coating and electron beam gun

    Science.gov (United States)

    Dariani, R. S.; Faraji, F.

    2016-04-01

    Three porous silicon (PS) samples with different porosities by electrochemical anodization are fabricated. Then, TiO2 nanoparticles are deposited on PS by two methods, spin coating and electron beam gun. I- V characteristics of all samples show diode behavior. Our result showed that transient current decreases with increasing porosity for PS/Si samples while increases for TiO2/PS/Si samples in both deposition methods. The reason could be due to filling pores by TiO2 nanoparticles and reduction of resistivity on PS surface. Also, our result showed that transient current increases highly for samples which were deposited by electron beam gun with respect to spin coating. The reason could be that in spin coating method TiO2 sol with high viscosity was used and causes that TiO2 nanoparticles cannot easily penetrate into PS pores. But in electron beam gun method TiO2 nanoparticles reaches to PS surface as a few atoms and can easily penetrate into PS pores. Ideality factor of our samples reduces after TiO2 deposition. Also, ideality factor of samples which were deposited by electron beam gun decreases with respect to spin coating, since transient current and I- V curve slop increase in electron beam gun.

  11. Tailored femtosecond Bessel beams for high-throughput, taper-free through-silicon vias (TSVs) fabrication

    Science.gov (United States)

    He, Fei; Yu, Junjie; Chu, Wei; Wang, Zhaohui; Tan, Yuanxin; Cheng, Ya; Sugioka, Koji

    2016-03-01

    For higher-density integration and acceleration of operating speed in Si ICs, 3D integration of wafers and/or dies is essential. Fabrication of current 3D ICs relies on 3D assembly which electrically connects stacked chips to form a single circuit. A key technology for the 3D assembly is TSVs which are vertical electrical connections passing completely through silicon chips to electrically connect vertically assembled Si ICs. Typical TSVs have wide features, with diameters of a range from several microns to 50 μm and depths up to 500 μm with aspect ratios up to 15 depending on the application and integration scheme. In this work, we present high-throughput, taper-free TSVs fabrication using femtosecond Bessel beams operated at different wavelengths from 400 nm to 2.4 μm. Furthermore, special phase filters are designed to suppress the damages induced by the side-lobes of Bessel beams for high-quality TSVs fabrication. Our technique can be potentially used for 3D assembly in manufacture of 3D silicon integrated circuits.

  12. Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed

    Science.gov (United States)

    Ahuja, Bhrigu; Karg, Michael; Nagulin, Konstantin Yu.; Schmidt, Michael

    The proposed paper illustrates fabrication and characterization of high strength Aluminium Copper alloys processed using Laser Beam Melting process. Al-Cu alloys EN AW-2219 and EN AW-2618 are classified as wrought alloys and 2618 is typically considered difficult to weld. Laser Beam Melting (LBM) process from the family of Additive Manufacturing processes, has the unique ability to form fully dense complex 3D geometries using micro sized metallic powder in a layer by layer fabrication methodology. LBM process can most closely be associated to the conventional laser welding process, but has significant differences in terms of the typical laser intensities and scan speeds used. Due to the use of high intensities and fast scan speeds, the process induces extremely high heating and cooling rates. This property gives it a unique physical attribute and therefore its ability to process high strength Al-Cu alloys needs to be investigated. Experiments conducted during the investigations associate the induced energy density controlled by varying process parameters to the achieved relative densities of the fabricated 3D structures.

  13. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam.

    Science.gov (United States)

    Fox, Daniel S; Maguire, Pierce; Zhou, Yangbo; Rodenburg, Cornelia; O'Neill, Arlene; Coleman, Jonathan N; Zhang, Hongzhou

    2016-05-13

    A flexible and efficient method to fabricate nanopores in graphene has been developed. A focused, low-energy (5 keV) electron beam was used to locally activate etching of a graphene surface in a low pressure (0.3 Pa) N2 environment. Nanopores with sub-5 nm diameters were fabricated. The lattice structure of the graphene was observed to recover within 20 nm of the nanopore edge. Nanopore growth rates were investigated systematically. The effects of nitrogen pressure, electron beam dwell time and beam current were characterised in order to understand the etching mechanism and enable optimisation of the etching parameters. A model was developed which describes how the diffusion of ionised nitrogen affects the nanopore growth rate. Etching of other two-dimensional materials was attempted as demonstrated with MoS2. The lack of etching observed supports our model of a chemical reaction-based mechanism. The understanding of the etching mechanism will allow more materials to be etched by selection of an appropriate ion species.

  14. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam

    Science.gov (United States)

    Fox, Daniel S.; Maguire, Pierce; Zhou, Yangbo; Rodenburg, Cornelia; O’Neill, Arlene; Coleman, Jonathan N.; Zhang, Hongzhou

    2016-05-01

    A flexible and efficient method to fabricate nanopores in graphene has been developed. A focused, low-energy (5 keV) electron beam was used to locally activate etching of a graphene surface in a low pressure (0.3 Pa) N2 environment. Nanopores with sub-5 nm diameters were fabricated. The lattice structure of the graphene was observed to recover within 20 nm of the nanopore edge. Nanopore growth rates were investigated systematically. The effects of nitrogen pressure, electron beam dwell time and beam current were characterised in order to understand the etching mechanism and enable optimisation of the etching parameters. A model was developed which describes how the diffusion of ionised nitrogen affects the nanopore growth rate. Etching of other two-dimensional materials was attempted as demonstrated with MoS2. The lack of etching observed supports our model of a chemical reaction-based mechanism. The understanding of the etching mechanism will allow more materials to be etched by selection of an appropriate ion species.

  15. Water resistance and surface morphology of synthetic fabrics covered by polysiloxane/acrylate followed by electron beam irradiation

    CERN Document Server

    El-Naggar, A M; Mohammed, S S; Alam, E A

    2003-01-01

    Different synthetic fabrics were treated by electron beam surface coating with two formulations based on polydimethylsiloxane (PDMS) and polystyrene (PS) or poly(methyl methacrylate) (PMMA) oligomers. The water resistance properties were investigated in terms of the percentage of water repellency and absorption. Also, the surface coated fabrics were examined by scanning electron microscopy/microscope (SEM) connected to an energy dispersive X-ray (EDX) unit to determine the percentage atomic contents of elements. The results showed that the adhesion of the polysiloxane formulation to the surface depends largely on the kind of acrylate oligomer and textile fabric as indicated by the EDX analysis for silicon. In this regard, PDMS/PS formulation is more compatible with polyester and nylon-6 fabrics than PDMS/PMMA one. However, it was found that PDMS/PMMA formulation is more compatible with cotton/polyester blend than PDMS/PS. The SEM micrographs give further supports to the EDX analysis. On the basis of the perce...

  16. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu2+ and Ni2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu2+ is four times higher than Ni2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu2+ is four times higher than Ni2+ ions. • Grafted adsorbent can remove Cu2+ faster than a chemically similar commercial resin

  17. Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering.

    Science.gov (United States)

    Liao, Wenlin; Dai, Yifan; Liu, Zongzheng; Xie, Xuhui; Nie, Xuqing; Xu, Mingjin

    2016-02-22

    Formation of subsurface damage has an inseparable relationship with microscopic material behaviors. In this work, our research results indicate that the formation process of subsurface damage often accompanies with the local densification effect of fused silica material, which seriously influences microscopic material properties. Interestingly, we find ion beam sputtering (IBS) is very sensitive to the local densification, and this microscopic phenomenon makes IBS as a promising technique for the detection of nanoscale subsurface damages. Additionally, to control the densification effect and subsurface damage during the fabrication of high-performance optical components, a combined polishing technology integrating chemical-mechanical polishing (CMP) and ion beam figuring (IBF) is proposed. With this combined technology, fused silica without subsurface damage is obtained through the final experimental investigation, which demonstrates the feasibility of our proposed method.

  18. High-performance beam steering using electrowetting-driven liquid prism fabricated by a simple dip-coating method

    Science.gov (United States)

    Enrico Clement, Carlos; Park, Sung-Yong

    2016-05-01

    A high degree of beam steering is demonstrated using an electrowetting-driven liquid prism. While prism devices have typically relied on complex and expensive laboratory setups, such as high-vacuum facilities for fabrication of dielectric layers, this work utilizes a simple dip-coating method to provide an ion gel layer as a dielectric, offering 2 or 3 orders higher specific capacitance (c ≈ 10 μF/cm2) than that of conventional dielectrics. Analytical studies present the effects of liquid selection and arrangement on overall prism performance. For experimental demonstrations of high-performance beam steering, we not only selected two immiscible liquids of water and 1-bromonaphthalene (1-BN) oil which provide the large refractive index difference (nwater = 1.33 and n1-BN = 1.65 at λ = 532 nm) between them, but also utilized a double-stacked prism configuration which increases the number of interfaces for incoming light to be steered. At a prism apex angle of φ = 27°, we were able to achieve significantly large beam steering of up to β = 19.06°, which is the highest beam steering performance ever demonstrated using electrowetting technology.

  19. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo;

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitative...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...... as it was estimated using the dual beam SEM....

  20. The design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    The Neutral Beam Engineering Test Facility (NBETF) at the Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. The thermal hydraulic design of the panels permits the dissipation of 2 kW/cm2 anywhere on the panel surface. The cooling water requirements of the actively cooled dump system are provided by the closed loop Primary High Pressure Cooling Water System. To minimize the operating costs of continuously running this high power system, a variable speed hydraulic drive is used for the main pump. During beam pulses, the pump rotates at high speed, then cycles to low speed upon completion of the beam shot. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline also has an inertially cooled duct calorimeter assembly. This assembly is a moveable hinged matrix of copper plates that can be used as a beam stop up to pulse lengths of 50 ms. The beamline is also equipped with many beam scraper plates of differing detail design and dissipation capabilities

  1. Novel precipitate-microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting

    International Nuclear Information System (INIS)

    Highlights: → In this study we have fabricated copper monoliths by electron beam melting. → We observe columnar Cu2O (Cuprite) precipitates which extend in the build direction. → These precipitates are interconnected by dislocations and exhibit 2 μm spatial arrays. → These spatial columns of precipitates and elongated copper grains occur by a directional solidification process. - Abstract: The fabrication of Cu components by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates exhibits a novel example of precipitate-dislocation architecture. Such architectures are seen by optical metallography, and scanning and transmission electron microscopy, to consist generally of equiaxed precipitate-dislocation cell-like arrays (1-3 μm) in the horizontal reference plane perpendicular to the build direction with elongated or columnar-like arrays extending from ∼12 to >60 μm in length and corresponding spatial dimensions of 1-3 μm. The hardnesses for these architectures ranged from ∼HV 83 to 88, in contrast to the original Cu powder microindentation hardness of HV 72 and the commercial Cu base plate hardness of HV 57. These observations illustrate the prospect for creating some form of controlled microstructural architecture by EBM parameter alternation or optimization.

  2. Fabrication of single TiO2 nanotube devices with Pt interconnections using electron- and ion-beam-assisted deposition

    Science.gov (United States)

    Lee, Mingun; Cha, Dongkyu; Huang, Jie; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    Device fabrication using nanostructured materials, such as nanotubes, requires appropriate metal interconnections between nanotubes and electrical probing pads. Here, electron-beam-assisted deposition (EBAD) and ion-beam-assisted deposition (IBAD) techniques for fabrication of Pt interconnections for single TiO2 nanotube devices are investigated. IBAD conditions were optimized to reduce the leakage current as a result of Pt spreading. The resistivity of the IBAD-Pt was about three orders of magnitude less than that of the EBAD-Pt, due to low carbon concentration and Ga doping, as indicated by X-ray photoelectron spectroscopy analysis. The total resistances of single TiO2 nanotube devices with EBAD- or IBAD-Pt interconnections were 3.82 × 1010 and 4.76 × 108 Ω, respectively. When the resistivity of a single nanotube is low, the high series resistance of EBAD-Pt cannot be ignored. IBAD is a suitable method for nanotechnology applications, such as photocatalysis and biosensors.

  3. Design, fabrication, and beam commissioning of a continuous-wave four-rod rf quadrupole

    Science.gov (United States)

    Yin, X. J.; Yuan, Y. J.; Xia, J. W.; He, Y.; Zhao, H. W.; Zhang, X. H.; Du, H.; Li, Z. S.; Li, X. N.; Jiang, P. Y.; Yang, Y. Q.; Ma, L. Z.; Wu, J. X.; Xu, Z.; Sun, L. T.; Zhang, W.; Zhang, X. Z.; Meng, J.; Zhou, Z. Z.; Yao, Q. G.; Cai, G. Z.; Lu, W.; Wang, H. N.; Chen, W. J.; Zhang, Y.; Xu, X. W.; Xie, W. J.; Lu, Y. R.; Zhu, K.; Liu, G.; Yan, X. Q.; Gao, S. L.; Wang, Z.; Chen, J. E.

    2016-01-01

    A new heavy-ion linac within a continuous-wave (CW) 4-rod radio-frequency quadrupole (RFQ) was designed and constructed as the injector for the separated-sector cyclotron (SSC) at the Heavy Ion Research Facility at Lanzhou (HIRFL). In this paper, we present the development of and the beam commissioning results for the 53.667 MHz CW RFQ. In the beam dynamics design, the transverse phase advance at zero current, σ0 ⊥ , is maintained at a relatively high level compared with the longitudinal phase advance (σ0 ∥ ) to avoid parametric resonance. A quasi-equipartitioning design strategy was applied to control the emittance growth and beam loss. The installation error of the electrodes was checked using a FARO 3D measurement arm during the manufacturing procedure. This method represents a new approach to measuring the position shifts of electrodes in a laboratory environment and provides information regarding the manufacturing quality. The experimental results of rf measurements exhibited general agreement with the simulation results obtained using CST code. During on-line beam testing of the RFQ, two kinds of ion beams (40Ar 8 + and 16O5+ ) were transported and accelerated to 142.8 keV /u , respectively. These results demonstrate that the SSC-Linac has made a significant progress. And the design scheme and technology experiences developed in this work can be applied to other future CW RFQs.

  4. Design, fabrication and operation of the mechanical systems for the Neutral Beam Engineering Test Facility

    International Nuclear Information System (INIS)

    The Neutral Beam Engineering Test Facility (NBETF) at Lawrence Berkeley Laboratory (LBL) is a National Test Facility used to develop long pulse Neutral Beam Sources. The Facility will test sources up to 120 keV, 50 A, with 30 s beam-on times with a 10% duty factor. For this application, an actively cooled beam dump is required and one has been constructed capable of dissipating a wide range of power density profiles. The flexibility of the design is achieved by utilizing a standard modular panel design which is incorporated into a moveable support structure comprised of eight separately controllable manipulator assemblies. A unique neutralizer design has been installed into the NBETF beamline. This is a gun-drilled moveable brazed assembly which provides continuous armoring of the beamline near the source. The unit penetrates the source mounting valve during operation and retracts to permit the valve to close as needed. The beamline is also equpped with many beam scraper plates of differing detail design and dissipation capabilities

  5. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  6. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey’s multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods. PMID:27391895

  7. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes.

    Science.gov (United States)

    Tu, F; Drost, M; Vollnhals, F; Späth, A; Carrasco, E; Fink, R H; Marbach, H

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ∼160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties. PMID:27454990

  8. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  9. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    Science.gov (United States)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ˜160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  10. Structural optimization of free-form reciprocal structures

    DEFF Research Database (Denmark)

    Parigi, Dario

    2014-01-01

    This paper presents an optimization algorithm for the design of structurally efficient free-form reciprocal structures. Because of the geometric complexity of reciprocal structures, only a few structural studies have been carried out so far, and we have a limited knowledge of the relation between...... geometry and structural behaviour in reciprocal structures. This study takes advantage of the preceding work carried by the author on the Reciprocalizer, a software tool for the generation of reciprocal geometries. The Reciprocalizer has been included into a structural optimization algorithm...... for the generation of structurally efficient free-form reciprocal structures....

  11. Optimization of freeform lightpipes for light-emitting-diode projectors.

    Science.gov (United States)

    Fournier, Florian; Rolland, Jannick

    2008-03-01

    Standard nonimaging components used to collect and integrate light in light-emitting-diode-based projector light engines such as tapered rods and compound parabolic concentrators are compared to optimized freeform shapes in terms of transmission efficiency and spatial uniformity. We show that the simultaneous optimization of the output surface and the profile shape yields transmission efficiency within the étendue limit up to 90% and spatial uniformity higher than 95%, even for compact sizes. The optimization process involves a manual study of the trends for different shapes and the use of an optimization algorithm to further improve the performance of the freeform lightpipe. PMID:18311267

  12. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    International Nuclear Information System (INIS)

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results

  13. A one-dimensional ion beam figuring system for x-ray mirror fabrication.

    Science.gov (United States)

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  14. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Idir, Mourad, E-mail: midir@bnl.gov; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken [NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States); Conley, Ray [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rennie, Kent; Kahn, Jim; Nethery, Richard [Kaufman & Robinson, Inc., 1330 Blue Spruce Drive, Fort Collins, Colorado 80524 (United States); Zhou, Lin [College of Mechatronics and Automation, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073 (China); Hu’nan Key Laboratory of Ultra-precision Machining Technology, Changsha, Hunan 410073 (China)

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  15. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling

    DEFF Research Database (Denmark)

    Lei, Anders; Petersen, Dirch Hjorth; Booth, Tim;

    2010-01-01

    crystalline silicon extending over the edge of a pre-fabricated silicon microchip. Four-terminal resistance measurements of FIB-defined nanowires showed at least two orders of magnitude increase in resistivity compared to bulk. We show that the initial high resistance is due to amorphization of silicon...

  16. Design, fabrication and testing of elliptical crystal bender for the EXAFS beam-line at INDUS-II synchrotron source

    Indian Academy of Sciences (India)

    N C Das; S N Jha; D Bhattacharyya; A K Poswal; A K Sinha; V K Mishra

    2004-10-01

    An extended X-ray absorption fine structure (EXAFS) beam-line for X-ray absorption studies using energy dispersive geometry and position sensitive detector is being developed for the INDUS-II synchrotron source. The optical design of the beam-line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The heart of the beam-line is the crystal bender which has been designed on the basis of the principle of four-point bending and has been fabricated indigenously. The crystal bender is capable of producing pre-defined elliptical curvature on a crystal surface by applying different couples at the two-ends of the crystal which has variable width along its length. The focusing property of the crystal bender has been tested using a laser source and has been compared with the theoretically simulated results.

  17. Sensitivity Jump of Micro Accelerometer Induced by Micro-fabrication Defects of Micro Folded Beams

    Science.gov (United States)

    Zhou, Wu; Chen, Lili; Yu, Huijun; Peng, Bei; Chen, Yu

    2016-08-01

    The abnormal phenomenon occurring in sensor calibration is an obstacle to product development but a useful guideline to product improvement. The sensitivity jump of micro accelerometers in the calibrating process is recognized as an important abnormal behavior and investigated in this paper. The characteristics of jumping output in the centrifuge test are theoretically and experimentally analyzed and their underlying mechanism is found to be related to the varied stiffness of supporting beam induced by the convex defect on it. The convex defect is normally formed by the lithography deviation and/or etching error and can result in a jumping stiffness of folded microbeams and further influence the sensitivity when a part of the bending beams is stopped from moving by two surfaces contacting. The jumping level depends on the location of convex and has nothing to do with the contacting properties of beam and defects. Then the location of defect is predicted by theoretical model and simulation and verified by the observation of micro structures under microscopy. The results indicate that the tested micro accelerometer has its defect on the beam with a distance of about 290μm from the border of proof mass block.

  18. Three-dimensional Nanostructures Fabricated by Ion-Beam-Induced Deposition

    NARCIS (Netherlands)

    Chen, P.

    2010-01-01

    The direct writing technology known as ion-beam-induced deposition (IBID) has been attracting attention mainly because of its high degree of flexibility of locally prototyping three-dimensional (3D) nanostructures. These high-resolution nanostructures have various research applications. However, no

  19. Fabrication and characterization of a metal nanocrystal memory using molecular beam epitaxy

    International Nuclear Information System (INIS)

    Recently, single and few electron devices have attracted a lot of attention due to their advantages when compared to the conventional DRAM or Flash memories. There is also a great effort to replace the silicon oxide (SiO2) with materials of high dielectric constant that could allow the further downscaling of MOSFET devices. In this work, initially we study the hafnium oxide (HfO2) deposition on thin SiO2. We fabricate a HfO2 layer, with good dielectric properties and with high dielectric constant. Then, we fabricate a novel MOS memory device with platinum (Pt) nanoparticles embedded in the HfO2/SiO2 interface

  20. Reflective Optics Design for an LED High Beam Headlamp of Motorbikes

    Directory of Open Access Journals (Sweden)

    Peng Ge

    2015-01-01

    Full Text Available We propose a reflective optics design for an LED motorbike high beam lamp. We set the measuring screen as an elliptical zone and divide it into many small lattices and divide the spatial angle of the LED source into many parts and make relationships between them. According to the conservation law of energy and the Snell’s law, the reflector is generated by freeform optics design method. Then the optical system is simulated by Monte Carlo method using ASAP software. Light pattern of simulation could meet the standard. The high beam headlamp is finally fabricated and assembled into a physical object. Experiment results can fully comply with United Nations Economic Commission for Europe (ECE vehicle regulations R113 revision 2 (Class C.

  1. Ballistic impact properties of mixed multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation

    International Nuclear Information System (INIS)

    The objective of this study is to investigate ballistic impact properties of multi-layered amorphous surface alloyed materials fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous alloy powders and LiF+MgF2 flux powders was deposited on a Ti alloy substrate, and then electron beam was irradiated on this powder mixture to fabricate an one-layered surface alloyed material. On top of this layer, the powder mixture was deposited again and then irradiated with electron beam whose beam current was decreased to fabricate the multi-layered surface alloyed material. In the mixed multi-layered surface alloyed materials fabricated with LM1 alloy powders and LM2 or LM10 alloy powders, the surface region consisted of amorphous phases, together with a small amount of crystalline particles, whereas the center region was complicatedly composed of amorphous phases, crystallized phases, and dendritic β phases. Since the surface region mostly composed of amorphous matrix was quite hard, the alloyed materials sufficiently blocked the travel of a projectile. When cracks formed at the surface region propagated into the center region, the formation of many cracks or debris was accelerated, which could beneficially work for absorbing the ballistic impact energy, thereby leading to the higher ballistic impact properties than the surface alloyed materials fabricated with LM1 or LM2 alloy powders

  2. Adaptive laser beam forming for laser shock micro-forming for 3D MEMS devices fabrication

    Science.gov (United States)

    Zou, Ran; Wang, Shuliang; Wang, Mohan; Li, Shuo; Huang, Sheng; Lin, Yankun; Chen, Kevin P.

    2016-07-01

    Laser shock micro-forming is a non-thermal laser forming method that use laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. In this paper, we present an adaptive optical technique to engineer spatial profiles of the laser beam to exert precision control on the laser shock forming process for free-standing MEMS structures. Using a spatial light modulator, on-target laser energy profiles are engineered to control shape, size, and deformation magnitude, which has led to significant improvement of the laser shock processing outcome at micrometer scales. The results presented in this paper show that the adaptive-optics laser beam forming is an effective method to improve both quality and throughput of the laser forming process at micrometer scales.

  3. Highly energetic nonequilibrium microstructure fabricated by ion beam manipulation in the Ag-Pd system

    CERN Document Server

    Li, Z C

    2003-01-01

    An artificial ordered layered structure of high energy was obtained by a form of ion beam manipulation, namely interface-assisted ion beam mixing, of appropriately designed nano-sized Ag-Pd multilayered films, in which the interfacial free energy elevated the Ag-Pd multilayered films to near to the corresponding highly energetic state. Diffraction analysis suggested that the ordered layered structure consisted of two overlapped face-centred-cubic lattices with lattice constants smaller than those of both pure Ag and pure Pd. The growth mechanism was also discussed in terms of a dynamic atomic collision, followed by a relaxation lasting for an extremely short time, involved in the irradiation process.

  4. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    Science.gov (United States)

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  5. Beam propagation modeling of modified volume Fresnel zone plates fabricated by femtosecond laser direct writing

    OpenAIRE

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-01-01

    Light diffraction by volume Fresnel zone plates (VFZPs) is simulated by the Hankel transform beam propagation method (Hankel BPM). The method utilizes circularly symmetric geometry and small step propagation to calculate the diffracted wave fields by VFZP layers. It is shown that fast and accurate diffraction results can be obtained with the Hankel BPM. The results show an excellent agreement with the scalar diffraction theory and the experimental results. The numerical method allows more com...

  6. Porous γ-TiAl Structures Fabricated by Electron Beam Melting Process

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2016-01-01

    Full Text Available Porous metal structures have many benefits over fully dense structures for use in bio-implants. The designs of porous structures can be made more sophisticated by altering their pore volume and strut orientation. Porous structures made from biocompatible materials such as titanium and its alloys can be produced using electron-beam melting, and recent reports have shown the biocompatibility of titanium aluminide (γ-TiAl. In the present work, we produced porous γ-TiAl structures by electron-beam melting, incorporating varying pore volumes. To achieve this, the individual pore dimensions were kept constant, and only the strut thickness was altered. Thus, for the highest pore volume of ~77%, the struts had to be as thin as half a millimeter. To accomplish such fine struts, we used various beam currents and scan strategies. Microscopy showed that selecting a proper scan strategy was most important in producing these fine struts. Microcomputed tomography revealed no major gaps in the struts, and the fine struts displayed compressive stiffness similar to that of natural bone. The characteristics of these highly-porous structures suggest their promise for use in bio-implants.

  7. Advances in traceability of Freeform Measurements on CMMs

    DEFF Research Database (Denmark)

    Savio, Enrico; Hansen, Hans Nørgaard; Larsen, Erik;

    2001-01-01

    Poster Presentation: The work here presented is concerned with the calibration of freeform surfaces using coordinate measuring machines (CMMs). The approach to calibration is based on repeated measurements of an uncalibrated object in multiple orthogonal positions. The basic idea is to eleminate ...

  8. Deformation-based freeform feature reconstruction in reverse engineering

    Institute of Scientific and Technical Information of China (English)

    Qing WANG; Jiang-xiong LI; Ying-lin KE

    2008-01-01

    For reconstructing a freeform feature from point cloud,a deformation-based method is proposed in this paper.The freeform feature consists of a secondary surface and a blending surface.The secondary surface plays a role in substituting a local region of a given primary surface.The blending surface acts as a bridge to smoothly connect the unchanged region of the primary surface with the secondary surface.The secondary surface is generated by surface deformation subjected to line constraints,I.e.,character lines and limiting lines,not designed by conventional methotis.The lines are used to represent the underlying information of the freeform feature in point cloud.where the character lines depict the feature's shape,and the limiting lines determine its location and orientation.The configuration of the character lines and the extraction of the limiting lines are discussed in detail.The blending surface is designed by the traditional modeling method.whose intrinsic parameters are recovered from point cloud through a series of steps,namely,point cloud slicing,circle fitting and regression analysis.The proposed method is used not only to effectively and efficiently reconstruct the freeform feature,but also to modify it by manipulating the line constraints.Typical examples are given to verify our method.

  9. Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment

    International Nuclear Information System (INIS)

    Repairing critical human skull injuries requires the production and use of customized cranial implants and involves the integration of computer aided design and manufacturing (CAD and CAM). The main causes for large cranial defects are trauma, cranial tumors, infected craniotomy bone flaps and external neurosurgical decompression. The success of reconstructive cranial surgery depends upon: the preoperative evaluation of the defect, the design and manufacturing of the implant, and the skill of the operating surgeon. Cranial implant design is usually carried out manually using CAD although this process is very time-consuming and the quality of the end product depends wholly upon the skill of the operator. This paper presents an alternative automated method for the design of custom-made cranial plates in a PHANToM®-based haptic environment, and their direct fabrication in biocompatible metal using electron beam melting (EBM) technology.

  10. High Growth Rate Metal-Organic Molecular Beam Epitaxy for the Fabrication of GaAs Space Solar Cells

    Science.gov (United States)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S.; Dargan, P.; Levy, M.

    2005-01-01

    In this work it is shown that high quality GaAs photovoltaic devices can be produced by Molecular Beam Epitaxy (MBE) with growth rates comparable to metal-organic chemical vapor deposition (MOCVD) through the subsitution of group III solid sources by metal-organic compounds. The influence the III/V flux-ratio and growth temperatures in maintaining a two dimensional layer by layer growth mode and achieving high growth rates with low residual background impurities is investigated. Finally subsequent to the study of the optimization of n- and p doping of such high growth rate epilayers, results from a preliminary attempt in the fabrication of GaAs photovoltaic devices such as tunnel diodes and solar cells using the proposed high growth rate approach are reported.

  11. Atomic retention and near infrared photoluminescence from PbSe nanocrystals fabricated by sequential ion implantation and electron beam annealing

    International Nuclear Information System (INIS)

    Nanocrystals of PbSe have been fabricated in a silicon dioxide matrix by sequential low energy ion implantation followed by an electron beam annealing step. Transmission electron microscopy reveals PbSe nanocrystals with typical sizes between 3 and 10 nm in the sub-surface region. Rutherford Backscattering Spectrometry has been used to study the total atomic retention, as a function of implanted atoms, following annealing. Photoluminescence was observed in various samples, at 4 K, as a broad peak between 1.4 and 2.0 μm, with observation of a dependence of the peak wavelength on annealing temperature. Room temperature photoluminescence was observed for samples with a high retention of implanted atoms, demonstrating the importance of nanocrystal density for achieving ambient temperature emission in these systems

  12. Fabrication of GeSn-multiple quantum wells by overgrowth of Sn on Ge by using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, F. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Fischer, I. A.; Schulze, J. [Institute for Semiconductor Engineering, University of Stuttgart, 70569 Stuttgart (Germany); Benedetti, A. [CACTI, Univ. de Vigo, Campus Universitario Lagoas Marcosende 15, Vigo (Spain); Zaumseil, P. [IHP GmbH, Innovations for High Performance Microelectronics, Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Cerqueira, M. F.; Vasilevskiy, M. I. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Stefanov, S.; Chiussi, S. [Dpto. Fisica Aplicada, Univ. de Vigo, Rua Maxwell s/n, Campus Universitario Lagoas Marcosende, Vigo (Spain)

    2015-12-28

    We report on the fabrication and structural characterization of epitaxially grown ultra-thin layers of Sn on Ge virtual substrates (Si buffer layer overgrown by a 50 nm thick Ge epilayer followed by an annealing step). Samples with 1 to 5 monolayers of Sn on Ge virtual substrates were grown using solid source molecular beam epitaxy and characterized by atomic force microscopy. We determined the critical thickness at which the transition from two-dimensional to three-dimensional growth occurs. This transition is due to the large lattice mismatch between Ge and Sn (≈14.7%). By depositing Ge on top of Sn layers, which have thicknesses at or just below the critical thickness, we were able to fabricate ultra-narrow GeSn multi-quantum-well structures that are fully embedded in Ge. We report results on samples with one and ten GeSn wells separated by 5 and 10 nm thick Ge spacer layers that were characterized by high resolution transmission electron microscopy and X-ray diffraction. We discuss the structure and material intermixing observed in the samples.

  13. Niobium nano-SQUIDs based on sub-micron tunnel junction fabricated by three-dimensional Focused Ion Beam sculpting

    Science.gov (United States)

    Fretto, M.; Enrico, E.; De Leo, N.; Boarino, L.; Lacquaniti, V.; Granata, C.; Russo, R.; Vettoliere, A.

    2014-05-01

    A three dimensional nano-SQUID (Superconducting Quantum Interference Device) has been realized in a vertical configuration (with the loop in the same plane of Josephson Tunneling Junctions, JTJs). The loop area is 0.25 μm2 corresponding to a modulation period of about 5 mT, the square JTJs have a side length of 0.3 μm. Josephson junction's fabrication is carried out combining optical lithography to pattern trilayer and three dimensional (3D) Focused Ion Beam (FIB) sculpting technique to define the junctions' and the loop's areas. Two different ion etching processes were performed, perpendicular and parallel to the multilayer, resulting in a precise 3D structure. Finally, a standard anodization was performed to eliminate the unstructured surface material generated by the high energetic ion beam assuring high quality junctions. Electric transport characteristics of the nanodevice measured at T = 4.2 K are reported, in particular the current-voltage characteristics and critical current vs external magnetic field. The high modulation depth of the critical current (up to 70% of the Ic at zero magnetic flux) and the device reliability are very encouraging in view of nanoscience applications.

  14. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    Science.gov (United States)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-07-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  15. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Diego, E-mail: diegorepet@gmail.com; Giordano, Maria Caterina, E-mail: marinagiordano88@gmail.com; Martella, Christian, E-mail: christian.martella@gmail.com; Buatier de Mongeot, Francesco, E-mail: buatier@fisica.unige.it

    2015-02-01

    Highlights: • Self-organized Al nanowires were grown on glass substrates by ion beam sputtering. • Al nanowire pattern exhibit electrical and optical anisotropy. • Al NW pattern can be used as transparent electrodes for optoelectronic devices. - Abstract: Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  16. Fabrication of atomically smooth SrRuO3 thin films by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High-quality SrRuO3 (SRO) thin films and SrTiO3/SRO bilayer were grown epitaxially on SrTiO3 (STO)(001) substrates by laser molecular beam epitaxy. The results of in situ observation of reflection high-energy electron diffraction and ex situ X-ray diffraction θ -2θ scan indicate that the SRO thin films have good crystallinity. The measurements of atomic force microscopy and scan tunneling microscopy reveal that the surface of the SRO thin film is atomically smooth. The resistivity of the SRO thin film is 300 μΩ·cm at room temperature. Furthermore, the transmission electron microscopy study shows that the interfaces of STO/SRO and SRO/STO are very clear and no interfacial reaction layer was observed. The experimental results show that the SRO thin film is an excellent electrode material for devices based on perovskite oxide materials.

  17. Fabrication of Al/AlO x /Al junctions using pre-exposure technique at 30-keV e-beam voltage

    Science.gov (United States)

    Lan, Dong; Xue, Guangming; Liu, Qiang; Tan, Xinsheng; Yu, Haifeng; Yu, Yang

    2016-08-01

    We fabricate high-quality Al/AlO x /Al junctions using improved bridge and bridge-free techniques at 30-keV e-beam voltage, in which the length of undercut and the size of junction can be well controlled by the pre-exposure technique. The dose window is 5 times as large as that used in the usual Dolan bridge technique, making this technique much more robust. Similar results, comparable with those achieved using a 100-keV e-beam writer, are obtained, which indicate that the 30-keV e-beam writer could be an economic choice for the superconducting qubit fabrication. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Basic Research Program of China (Grant Nos. 2011CB922104 and 2011CBA00205).

  18. Nonlinear optical studies of inorganic nanoparticles-polymer nanocomposite coatings fabricated by electron beam curing

    Science.gov (United States)

    Misra, Nilanjal; Rapolu, Mounika; Venugopal Rao, S.; Varshney, Lalit; Kumar, Virendra

    2016-05-01

    The optical nonlinearity of metal nanoparticles in dielectrics is of special interest because of their high polarizability and ultrafast response that can be utilized in potential device applications. In this study nanocomposite thin films containing in situ generated Ag nanoparticles dispersed in an aliphatic urethane acrylate (AUA) matrix were synthesized using electron beam curing technique, in presence of an optimized concentration of diluent Trimethylolpropanetriacrylate (TMPTA). The metal nanocomposite films were characterized using UV-visible spectrophotometry, transmission electron microscope (TEM) and field emission scanning electron microscope (FE-SEM) techniques. Ag nanoparticle impregnated films demonstrated an absorption peak at ∼420 nm whose intensity increased with increase in the Ag concentration. The optical limiting property of the coatings was tested using a nanosecond Nd-YAG laser operated at third harmonic wavelength of 355 nm. For a 25 ns pulse and 10 Hz cycle, Ag-polymer coatings showed good optical limiting property and the threshold fluence for optical limiting was found to be ∼3.8×10-2 J/cm2 while the transmission decreased to 82%. The nonlinear optical coefficients were also determined using the standard Z-scan technique with picosecond (∼2 ps, 1 kHz) and femtosecond (∼150 fs, 100 MHz) pulses. Open aperture Z-scan data clearly suggested two-photon absorption as the dominant nonlinear absorption mechanism. Our detailed studies suggest these composites are potential candidates for optical limiting applications.

  19. Controlled fabrication of Si nanostructures by high vacuum electron beam annealing

    Science.gov (United States)

    Fang, F.; Markwitz, A.

    2009-10-01

    Silicon nanostructures, called Si nanowhiskers, have been successfully synthesized on Si(1 0 0) substrate by high vacuum electron beam annealing (EBA). Detailed analysis of the Si nanowhisker morphology depending on annealing temperature, duration and the temperature gradients applied in the annealing cycle is presented. A correlation was found between the variation in annealing temperature and the nanowhisker height and density. Annealing at 935 °C for 0 s, the density of nanowhiskers is about 0.2 μm -2 with average height of 2.4 nm grow on a surface area of 5×5 μm, whereas more than 500 nanowhiskers (density up to 28 μm -2) with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 °C for 0 s. At a cooling rate of -50 °C s -1 during the annealing cycle, 10-12 nanowhiskers grew on a surface area of 5×5 μm, whereas close to 500 nanowhiskers grew on the same surface area for samples annealed at the cooling rate of -5 °C s -1. An exponential dependence between the density of Si nanowhiskers and the cooling rate has been found. At 950 °C, the average height of Si nanowhiskers increased from 4.0 to 6.3 nm with an increase of annealing duration from 10 to 180 s. A linear dependence exists between the average height of Si nanowhiskers and annealing duration. Selected results are presented showing the possibility of controlling the density and the height of Si nanowhiskers for improved field emission properties by applying different annealing temperatures, durations and cooling rates.

  20. NEW VISUAL METHOD FOR FREE-FORM SURFACE RECONSTRUCTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is put forward combining computer vision with computer aided geometric design (CAGD) to resolve the problem of free-form surface reconstruction. The surface is first subdivided into N-sided Gregory patches, and a stereo algorithm is used to reconstruct the boundary curves. Then, the cross boundary tangent vectors are computed through reflectance analysis. At last, the whole surface can be reconstructed jointing these patches with G1 continuity(tangent continuity). Examples on synthetic images are given.

  1. AHA! meets Auld Linky : Integrating Designed and Freeform Hypertext Systems

    OpenAIRE

    Millard, David E.; Davis, Hugh C.; Weal, Mark J; Aben, Koen; De Bra, Paul

    2003-01-01

    In this paper we present our efforts to integrate two adaptive hypermedia systems that take very different approaches. The Adaptive Hypermedia Architecture (AHA!) aims to establish a consistently organized, strictly designed form of hypertext while Auld Linky takes an open and potentially sculptural approach, producing more freeform, less deterministic hypertexts. We describe the difficulties in reconciling the two approaches. This leads us to draw a number of conclusions about the benefits a...

  2. EQUIVALENT NORMAL CURVATURE APPROACH MILLING MODEL OF MACHINING FREEFORM SURFACES

    Institute of Scientific and Technical Information of China (English)

    YI Xianzhong; MA Weiguo; QI Haiying; YAN Zesheng; GAO Deli

    2008-01-01

    A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.

  3. APPROXIMATION OF FREE-FORM CURVE – AIRFOIL SHAPE

    Directory of Open Access Journals (Sweden)

    CHONG PERK LIN

    2013-12-01

    Full Text Available Approximation of free-form shape is essential in numerous engineering applications, particularly in automotive and aircraft industries. Commercial CAD software for the approximation of free-form shape is based almost exclusively on parametric polynomial and rational parametric polynomial. The parametric curve is defined by vector function of one independent variable R(u = (x(u, y(u, z(u, where 0≤u≤1. Bézier representation is one of the parametric functions, which is widely used in the approximating of free-form shape. Given a string of points with the assumption of sufficiently dense to characterise airfoil shape, it is desirable to approximate the shape with Bézier representation. The expectation is that the representation function is close to the shape within an acceptable working tolerance. In this paper, the aim is to explore the use of manual and automated methods for approximating section curve of airfoil with Bézier representation.

  4. FAME: Freeform Active Mirrors Experiment: manufacturing process development

    Science.gov (United States)

    Challita, Zalpha; Hugot, Emmanuel; Venema, Lars; Schnetler, Hermine; Ferrari, Marc; Cuby, Jean-Gabriel

    2014-07-01

    Extreme freeform mirrors couple a non-axisymmetrical shape and an extreme asphericity, i.e. more than one millimeter of deviation from the best fit sphere. In astronomical instrumentation, such a large asphericity allows compact instruments, using less optical components. However, the lack of freeform mirrors manufacturing facilities is a real issue. We present the concept and development of an innovative manufacturing process based on plasticity forming which allow imprinting permanent deformations on mirrors, following a pre-defined mold. The aim of this activity, pursued in the frame of the OPTICON-FAME (Freeform Active Mirrors Experiment) project, is to demonstrate the suitability of this method for VIS/NIR/MIR applications. The process developed can operate on thin and flat polished initial substrates. Three study cases have been highlighted by FEA (Finite Element Analysis) and the real tests associated were performed on thin substrates in AISI420b stainless steel with 100 mm optical diameter. A comparison between FEA and tests is performed to study the evolution of the mechanical behaviour and the optical quality. The opto-mechanical results will allow a fine tuning of FEA parameters to optimize the residual form errors obtained through this process to converge toward an innovative and recurrent process.

  5. Fabrication of Fe3Si/CaF2 heterostructures ferromagnetic resonant tunneling diode by selected-area molecular beam epitaxy

    International Nuclear Information System (INIS)

    We have fabricated 200-nm-diameter ferromagnetic resonant tunneling diodes (FM-RTDs) using CaF2/Fe3Si heterostructures on Si(111) substrates, by selected-area molecular beam epitaxy (MBE) using electron-beam (EB) lithography. Clear negative differential resistances (NDRs) were observed in the current-voltage (I-V) characteristics at room temperature (RT). The reproducibility of the I-V characteristics was greatly improved, and approximately 40% of the FM-RTDs showed clear NDRs at RT.

  6. Fabrication of Fe{sub 3}Si/CaF{sub 2} heterostructures ferromagnetic resonant tunneling diode by selected-area molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Sadakuni-Makabe, Kenji; Suzuno, Mitsushi; Harada, Kazunori [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan); Suemasu, Takashi, E-mail: suemasu@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573 (Japan); Akinaga, Hiro [Nanodevice Innovation Research Center and Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan)

    2011-10-03

    We have fabricated 200-nm-diameter ferromagnetic resonant tunneling diodes (FM-RTDs) using CaF{sub 2}/Fe{sub 3}Si heterostructures on Si(111) substrates, by selected-area molecular beam epitaxy (MBE) using electron-beam (EB) lithography. Clear negative differential resistances (NDRs) were observed in the current-voltage (I-V) characteristics at room temperature (RT). The reproducibility of the I-V characteristics was greatly improved, and approximately 40% of the FM-RTDs showed clear NDRs at RT.

  7. Application of the NANOMEFOS non-contact measurement machine in asphere and freeform optics production

    NARCIS (Netherlands)

    Henselmans, R.; Gubbels, G.P.H.; Drunen, C. van

    2010-01-01

    The NANOMEFOS machine is capable of fast, non-contact and universal measurement of aspheres and freeforms, up to ø500 mm with a measurement uncertainty below 30 nm (2σ). It is now being applied in asphere and freeform production at TNO.

  8. Novel powder/solid composites possessing low Young’s modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications

    International Nuclear Information System (INIS)

    Highlights: • We fabricated novel porous composites by electron beam melting. • The composites consist of necked powder and melted solid framework. • Unmelted powder that is usually discarded was mechanically functionalized by necking. • The composites possess controllably low Young’s modulus and excellent toughness. • The composites would be promising for utilization in biomedical applications. - Abstract: A novel, hierarchical, porous composite from a single material composed of necked powder and melted solid, with tunable mechanical properties, is fabricated by electron beam melting and subsequent heat treatment. The composite demonstrates low Young’s modulus (⩽31 GPa) and excellent energy absorption capacity, both of which are necessary for use in orthopedic applications. To the best of our knowledge, this is the first report on the synthesis of a material combining controllably low Young’s modulus and excellent toughness

  9. Fabrication of reproducible sub-5 nm nanogaps by a focused ion beam and observation of Fowler-Nordheim tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hu; Wani, Ishtiaq H.; Hayat, Aqib; Leifer, Klaus, E-mail: Klaus.Leifer@angstrom.uu.se [Appled Materials Science, Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala (Sweden); Jafri, S. Hassan M. [Appled Materials Science, Department of Engineering Sciences, Uppsala University, Box 534, 75121 Uppsala (Sweden); Department of Electrical Engineering, Mirpur University of Science and Technology, Mirpur, Azad Kashmir, 10250 (Pakistan)

    2015-09-07

    Creating a stable high resistance sub-5 nm nanogap in between conductive electrodes is one of the major challenges in the device fabrication of nano-objects. Gap-sizes of 20 nm and above can be fabricated reproducibly by the precise focusing of the ion beam and careful milling of the metallic lines. Here, by tuning ion dosages starting from 4.6 × 10{sup 10} ions/cm and above, reproducible nanogaps with sub-5 nm sizes are milled with focused ion beam. The resistance as a function of gap dimension shows an exponential behavior, and Fowler-Nordheim tunneling effect was observed in nanoelectrodes with sub-5 nm nanogaps. The application of Simmon's model to the milled nanogaps and the electrical analysis indicates that the minimum nanogap size approaches to 2.3 nm.

  10. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.

    Science.gov (United States)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-12-22

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer.

  11. Ohmic Contact Fabrication Using a Focused-ion Beam Technique and Electrical Characterization for Layer Semiconductor Nanostructures.

    Science.gov (United States)

    Chen, Ruei-San; Tang, Chih-Che; Shen, Wei-Chu; Huang, Ying-Sheng

    2015-01-01

    Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed

  12. Design and development of a freeform active mirror for an astronomy application

    CERN Document Server

    Challita, Zalpha; Hugot, Emmanuel; Jaskó, Attila; Kroes, Gabby; Taylor, William; Miller, Chris; Schnetler, Hermine; Venema, Lars; Mosoni, Laszlo; Mignant, David Le; Ferrari, Marc; Cuby, Jean-Gabriel

    2014-01-01

    The advent of extremely large telescopes will bring unprecedented light-collecting power and spatial resolution, but it will also lead to a significant increase in the size and complexity of focal-plane instruments. The use of freeform mirrors could drastically reduce the number of components in optical systems. Currently, manufacturing issues limit the common use of freeform mirrors at short wavelengths. This article outlines the use of freeform mirrors in astronomical instruments with a description of two efficient freeform optical systems. A new manufacturing method is presented which seeks to overcome the manufacturing issues through hydroforming of thin polished substrates. A specific design of an active array is detailed, which will compensate for residual manufacturing errors, thermoelastic deformation, and gravity-induced errors during observations. The combined hydroformed mirror and the active array comprise the Freeform Active Mirror Experiment, which will produce an accurate, compact, and stable f...

  13. An easy method to perform e-beam negative tone lift-off fabrication on dielectric material with a sandwiched conducting polymer layer

    International Nuclear Information System (INIS)

    A HSQ/PMMA bilayer negative tone lift-off process has recently been used for the fabrication of nano-structures on metallic and semi-conducting substrates with high precision and high aspect ratios. In this study, the HSQ/PMMA bilayer process was further extended to the fabrication of nano-structures on insulating substrates through introducing an additional conducting polymer layer to eliminate resist/substrate charging and proximity effects during e-beam lithography. With this new approach, nano-structures with high aspect ratios and high spatial resolutions can be fabricated on a wide range of substrates. High numerical aperture micro zone plates (MZPs) and phase micro zone plates (PMZPs) with focus distances ∼3 µm have been demonstrated with this new approach on fused silica substrates. The focusing characteristics of resulting MZPs and PMZPs showed good consistency with the design values of the specified working wavelength (∼409 nm)

  14. Influence of 700 °C vacuum annealing on fracture behavior of micro/nanoscale focused ion beam fabricated silicon structures

    Science.gov (United States)

    Goshima, Yoshiharu; Fujii, Tatsuya; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, we describe the influence of 700 °C vacuum annealing on strength and fracture behavior of micro- and nano-scale Si structures fabricated by focused ion beam (FIB). Si nanowires (NWs) made from silicon-on-nothing (SON) membrane are fabricated using FIB. Microscale Si specimens are fabricated by conventional micromachining technologies and FIB. These specimens are tensioned to failure using specially developed microelectromechanical systems (MEMS) device and thin-film tensile tester, respectively. The mean fracture strengths of the nano- and microscale specimens are 5.6 and 1.6 GPa, respectively, which decrease to 2.9 and 0.9 GPa after vacuum annealing at 700 °C for only 10 s. These strength values do not vary with increasing annealing time. Fracture origin and its behavior are discussed in the light of fracture surface and FIB damage layer observations.

  15. Optical properties of organic films, multilayers and plasmonic metal-organic waveguides fabricated by organic molecular beam deposition

    Science.gov (United States)

    Wickremasinghe, Niranjala D.

    In this thesis, the optical properties of tris (8-hydroxyquinoline) aluminum (Alq3) and 3,5,9,10-perylentetracarboxylic dianhydride (PTCDA) organic films, PTCDA/ Alq3 multilayers and plasmonic Alq3 -metal waveguides are investigated. The organic films and heterostructures used for this work were fabricated by organic molecular beam deposition (OMBD). We investigated the quenching of the light emission in Alq3 films grown on a Si substrate as a function of cw laser excitation intensity at varying temperatures from 15 to 300 K. The saturation of the singlet-singlet annihilation coefficient was measured with spectrally-integrated (SI) photoluminescence (PL) using a photodiode. The bimolecular quenching coefficient was further studied with time-resolved (TR) PL as a function of 100 fs pulse fluences. The PL quenching is attributed to the annihilation of trapped excitons at Alq3 nanocrystal grain boundaries. The saturation is explained by the limited density of available trapping states at the grain boundaries. Our interpretation is supported by structural investigations of ultrathin Alq3 films with atomic force microscopy (AFM), scanning electron microscopy (SEM) and by comparing the experimental data with calculations using a coupled rate equation model. The wavelength dispersion of the refractive indices of PTCDA and Alq 3 layers and of PTCDA/Alq3 multilayer waveguides grown on Pyrex substrates was investigated. The m-line technique, an evanescent prism coupling technique, was used to determine the layers' thickness and the in-plane (TE modes) and normal (TM modes) refractive indices. The potential for controlling the refractive index dispersion and anisotropy by tailored organic multilayer waveguides is discussed.

  16. Correlation of microstructure with hardness and wear resistance in (TiC, SiC)/stainless steel surface composites fabricated by high-energy electron-beam irradiation

    Science.gov (United States)

    Yun, Eunsub; Kim, Yong Chan; Lee, Sunghak; Kim, Nack J.

    2004-03-01

    Stainless-steel-based surface composites reinforced with TiC and SiC carbides were fabricated by high-energy electron beam irradiation. Four types of powder/flux mixtures, i.e., TiC, (Ti + C), SiC, and (Ti + SiC) powders with 40 wt. pct of CaF2 flux, were deposited evenly on an AISI 304 stainless steel substrate, which was then irradiated with an electron beam. TiC agglomerates and pores were found in the surface composite layer fabricated with TiC powders because of insufficient melting of TiC powders. In the composite layer fabricated with Ti and C powders having lower melting points than TiC powders, a number of primary TiC carbides were precipitated while very few TiC agglomerates or pores were formed. This indicated that more effective TiC precipitation was obtained from the melting of Ti and C powders than of TiC powders. A large amount of precipitates such as TiC and Cr7C3 improved the hardness, high-temperature hardness, and wear resistance of the surface composite layer two to three times greater than that of the stainless steel substrate. In particular, the surface composite fabricated with SiC powders had the highest volume fraction of Cr7C3 distributed along solidification cell boundaries, and thus showed the best hardness, high-temperature hardness, and wear resistance.

  17. Design, fabrication and VNA testing of an auto-focussing buncher section for 40 keV, 500 mA DC electron beam injection

    International Nuclear Information System (INIS)

    A buncher section for the 40 keV, DC electron beam has been designed in such a way so that it will act as a buncher and focuser to the injected electron beam. The autofocussing effect is obtained by introducing a slow rise of the Eacc in the first buncher cell. The RF phase focusing force is proportional to the factor (βγ2)-1 and it damps out very quickly as the particle becomes relativistic. Taking this dependency into account, the field asymmetry is introduced only in the first bunching cavity. This paper presents the electromagnetic (EM) design of the RF structure, beam dynamics, fabrication and the measurements of the EM parameters with VNA. (author)

  18. Performance comparison of polynomial representations for optimizing optical freeform systems

    Science.gov (United States)

    Brömel, A.; Gross, H.; Ochse, D.; Lippmann, U.; Ma, C.; Zhong, Y.; Oleszko, M.

    2015-09-01

    Optical systems can benefit strongly from freeform surfaces, however the choice of the right representation isn`t an easy one. Classical representations like X-Y-polynomials, as well as Zernike-polynomials are often used for such systems, but should have some disadvantage regarding their orthogonality, resulting in worse convergence and reduced quality in final results compared to newer representations like the Q-polynomials by Forbes. Additionally the supported aperture is a circle, which can be a huge drawback in case of optical systems with rectangular aperture. In this case other representations like Chebyshev-or Legendre-polynomials come into focus. There are a larger number of possibilities; however the experience with these newer representations is rather limited. Therefore in this work the focus is on investigating the performance of four widely used representations in optimizing two ambitious systems with very different properties: Three-Mirror-Anastigmat and an anamorphic System. The chosen surface descriptions offer support for circular or rectangular aperture, as well as different grades of departure from rotational symmetry. The basic shapes are for example a conic or best-fit-sphere and the polynomial set is non-, spatial or slope-orthogonal. These surface representations were chosen to evaluate the impact of these aspects on the performance optimization of the two example systems. Freeform descriptions investigated here were XY-polynomials, Zernike in Fringe representation, Q-polynomials by Forbes, as well as 2-dimensional Chebyshev-polynomials. As a result recommendations for the right choice of freeform surface representations for practical issues in the optimization of optical systems can be given.

  19. Freeform correction polishing for optics with semi-kinematic mounting

    Science.gov (United States)

    Huang, Chien-Yao; Kuo, Ching-Hsiang; Peng, Wei-Jei; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Ming-Ying; Hsu, Wei-Yao

    2015-10-01

    Several mounting configurations could be applied to opto-mechanical design for achieving high precise optical system. The retaining ring mounting is simple and cost effective. However, it would deform the optics due to its unpredictable over-constraint forces. The retaining ring can be modified to three small contact areas becoming a semi-kinematic mounting. The semi-kinematic mounting can give a fully constrained in lens assembly and avoid the unpredictable surface deformation. However, there would be still a deformation due to self-weight in large optics especially in vertical setup applications. The self-weight deformation with a semi-kinematic mounting is a stable, repeatable and predictable combination of power and trefoil aberrations. This predictable deformation can be pre-compensated onto the design surface and be corrected by using CNC polisher. Thus it is a freeform surface before mounting to the lens cell. In this study, the freeform correction polishing is demonstrated in a Φ150 lens with semi-kinematic mounting. The clear aperture of the lens is Φ143 mm. We utilize ANSYS simulation software to analyze the lens deformation due to selfweight deformation with semi-kinematic mounting. The simulation results of the self-weight deformation are compared with the measurement results of the assembled lens cell using QED aspheric stitching interferometer (ASI). Then, a freeform surface of a lens with semi-kinematic mounting due to self-weight deformation is verified. This deformation would be corrected by using QED Magnetorheological Finishing (MRF® ) Q-flex 300 polishing machine. The final surface form error of the assembled lens cell after MRF figuring is 0.042 λ in peak to valley (PV).

  20. FORMING FREEFORM SURFACE SHEET METAL USINGINTEGRATED REVERSE ENGINEERING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    邢渊

    2001-01-01

    This paper presented a model of integrated reverse engineering system and set up its various data output flowchart, which is easy to be associated with other systems. The idea of integrated reverse engineer is introduced to the system of forming sheet metal with complex surface and using IDEF0 method sets up the function model of the system. The freeform surface reconstruction and CAD modeling of the system are described and decomposed. This paper discussed some problems, such as the feature expression, feature modeling and feature translation of the sheet parts and dies.

  1. GFFD: Generalized free-form deformation with scalar fields

    Institute of Scientific and Technical Information of China (English)

    秦绪佳; 华炜; 方向; 鲍虎军; 彭群生

    2003-01-01

    The novel free-form deformation(FFD) technique presented in the paper uses scalar fields defined by skeletons with arbitrary topology. The technique embeds objects into the scalar field by assigning a field value to each point of the objects. When the space of the skeleton is changed, the distribution of the scalar field changes accordingly, which implicitly defines a deformation of the space. The generality of skeletons assures that the technique can freely define deformable regions to produce a broader range of shape deformations.

  2. GFFD: Generalized free-form deformation with scalar fields

    Institute of Scientific and Technical Information of China (English)

    秦绪佳; 华炜; 方向; 鲍虎军; 彭群生

    2003-01-01

    The novel free-form deformation (FFD) technique presented in the paper uses scalar fields definedby skeletons with arbitrary topology. The technique embeds objects into the scalar field by assigning a field value to each point of the objects. When the space of the skeleton is changed, the distribution of the scalar field changes accordingly, which implicitly defines a deformation of the space. The generality of skeletons assures that the technique can freely define deformable regions to produce a broader range of shape deformations.

  3. Design, fabrication, installation and commissioning of water-cooled beam viewer for undulator front-ends of Indus-2

    International Nuclear Information System (INIS)

    A water-cooled beam viewer is developed indigenously to observe the bright synchrotron light coming from recently installed undulators in Indus-2 storage ring at RRCAT, Indore. The beam viewer is installed in the undulator front-end. The frontend is a long ultra high vacuum (UHV) assembly consisting of UHV valves, shutters, vacuum pumps and beam diagnostic devices. The front-end acts as an interface between Indus-2 ring and beamline. The beam viewer uses a fluorescent sheet of Chromium doped Alumina (CHROMOX) which produces visible fluorescent light when bright synchrotron light from the undulator falls on it. This visible fluorescent light is observed through a glass window by a CCD camera. The beam viewer has been successfully tested and commissioned in Indus-2 front-end for undulator. At present, the beam viewer is operating under vacuum of 5 x 10-10 mbar in the Indus-2 undulator front-end

  4. Generating optical freeform surfaces considering both coordinates and normals of discrete data points.

    Science.gov (United States)

    Zhu, Jun; Wu, Xiaofei; Yang, Tong; Jin, Guofan

    2014-11-01

    Through direct design methods, both coordinates and normals of discrete data points on a freeform surface are usually obtained, but traditionally the freeform surface is generated by only fitting the coordinates. In this paper, a novel generating method that fits both the coordinates and the normals is proposed based on the mathematical multiobjective optimization theory. This new method is suited for generating some freeform polynomial surfaces. Two design examples are introduced, and their optical performance is significantly improved when applying the new method compared with the traditional method. This new method is validated to be effective, and it is widely useful as long as the coordinates and the normals are provided in advance.

  5. ELOIS: an innovative spectrometer design using a free-form grating

    Science.gov (United States)

    De Clercq, Coralie; Moreau, Vincent; Jamoye, Jean-François; Zuccaro Marchi, Alessandro; Gloesener, Pierre

    2015-09-01

    For spaceborne hyperspectral applications1, grating-based spectrometers are of special interest due to the high spectral resolution and optical throughput that can be achieved. The classical spectrometer designs are 1:1 systems. For these systems the achievable signal to noise ratio is limited by the slit width/pixel pitch combination. One way to increase the signal to noise ratio of a spectrometer without increasing the global instrument size is to design an instrument with a magnification power of less than one. With a smaller magnification, the entrance slit is wider and a larger amount of light is collected while the image is smaller and compatible with typical detector size and pixel pitch. We presents an innovative spectrometer design with 2:1 magnification and high image quality and radiometric performances. This spectrometer called ELOIS (for Enhanced Light Offner Imaging Spectrometer) is designed with a grating atop a free-form surface. The use non-rotationally symmetric surfaces offer additional freedom for designing compact and well-corrected instruments. Nevertheless, most of the available manufacturing techniques, such as direct ruling, holography, lithography or e-beam writing, are typically applicable on simple shape of the grating surface, such as flat or spherical surface. AMOS demonstrated the feasibility of the Free Form Grating (FFG), i.e. a ruled grating on a surface without any rotational symmetry, using cost-effective approach for manufacturing blazed grating by Single Point Diamond Turning (SPDT).

  6. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    Science.gov (United States)

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. PMID:26878293

  7. High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • A graphene/silicon multilayer is fabricated by electron beam deposition. • It exhibits specific capacity retention over 1000 mA h g−1. • Capacity retention at 100 nm and 7-layer exceeds 90%. • It can be used for lighting of light-emitting diodes. - Abstract: A graphene/silicon (Si) multilayer sandwich structures are fabricated using electron beam (EB) deposition without air exposure. The graphene and Si thin films are formed on Cu current correctors through a continuous process in high-vacuum EB chamber. Synthesized graphene should be suggested to the stacked multiple layer from Raman analysis. The fabricated multilayer films are used as anodes. In the beginning, the half-cell, which used a seven-layer of each thickness 50-nm graphene and Si film, exhibits good specific capacity retention over 1000 mA h g−1 after 30 charge/discharge cycles. The capacity value changed with the number of graphene and Si layers. In this study, the number of layers that exhibited optimal properties is seven. Morphological investigation showed a fine layer-by-layer structure. The relationship between different thicknesses of graphene and Si is investigated at 7 L. A 100-nm thickness exhibited optimal properties. Finally, the optimal 7 L and 100-nm thick graphene/Si exhibited high discharge capacitance >1600 mA h g−1 at a current density of 100 mA g−1 after 30 cycles. Initial coulombic and reversible efficiencies exceed 84%. The capacity retention (30th/1st discharge value) at 100 nm and 7 L exceeds 90%. Finally, the soft package battery is assembled by combining the fabricated graphene and Si electrode as anode, LiCoO2 as cathode, separator and liquid electrolyte. It can be used for commercial light-emitting diode (LED) lighting even under bending status

  8. Three-dimensional cone-beam computed tomography-based virtual treatment planning and fabrication of a surgical splint for asymmetric patients: surgery first approach.

    Science.gov (United States)

    Uribe, Flavio; Janakiraman, Nandakumar; Shafer, David; Nanda, Ravindra

    2013-11-01

    Virtual 3-dimensional planning in orthognathic surgery allows for a detailed visualization and analysis of skeletal and dental deformities, especially in patients with asymmetries. This approach also eliminates conventional stone model surgery through computer-aided fabrication of surgical stents. This article presents a new approach with 3-dimensional cone-beam computed tomography-based treatment planning for the surgical correction of facial asymmetry in conjunction with the surgery first approach. Good esthetic and occlusal outcomes were obtained for 2 patients after orthognathic surgery and orthodontic treatment with a short total treatment time. PMID:24182591

  9. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    OpenAIRE

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-01-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling,...

  10. Fabrication of metallic nanostructures of sub-20 nm with an optimized process of E-beam lithography and lift-off

    KAUST Repository

    Yue, Weisheng

    2012-01-01

    A process consisting of e-beam lithography and lift-off was optimized to fabricate metallic nanostructures. This optimized process successfully produced gold and aluminum nanostructures with features size less than 20 nm. These structures range from simple parallel lines to complex photonic structures. Optical properties of gold split ring resonators (SRRs) were characterized with Raman spectroscopy. Surface-Enhanced Raman Scattering (SERS) on SRRs was observed with 4-mercaptopyridine (4-MPy) as molecular probe and greatly enhanced Raman scattering was observed. Copyright © 2012 American Scientific Publishers.

  11. CAD-DIRECTED INSPECTION PLANNING FOR FREEFORM SURFACE USING CONTACT PROBES

    Institute of Scientific and Technical Information of China (English)

    Chen Manyi; Li Bin; Duan Zhengcheng

    2005-01-01

    A methodology for CAD-directed measurement of freeform surface using a coordinate measuring machine equipped with a touch-trigger probe is presented, mainly including adaptive sampling of measurement points and registration of freeform surface. The proposed sampling method follows four steps:Freeform surface is fitted by bi-cubic B-spline; Curvedness measure of the surface is computed; Given a number of sampling points, an iterative algorithm is constructed for selecting a set of measurement points by employing the curvedness information; The measurement points is regularized for tradeoffbetween maximizing the measurement accuracy and minimizing the sampling time and cost. The aforesaid algorithm is demonstrated in term of a marine propeller blade. An offset surface registration method is presented to improve alignment accuracy of freeform objects, and Monte Carlo simulation is conducted to verify the effectiveness of the method.

  12. Improving the Performance of Three-Mirror Imaging Systems with Freeform Optics

    Science.gov (United States)

    Howard, Joseph M.; Wolbach, Steven

    2013-01-01

    The image quality improvement for three-mirror systems by Freeform Optics is surveyed over various f-number and field specifications. Starting with the Korsch solution, we increase the surface shape degrees of freedom and record the improvements.

  13. Aberrations measurement of freeform spectacle lenses based on Hartmann wavefront technology.

    Science.gov (United States)

    Yu, Jing; Fang, Fengzhou; Qiu, Zhongjun

    2015-02-10

    Freeform spectacle lenses have been popularized in the past few years. Traditional evaluation methods only focused on the refractive power parameters. The inspection technology of wavefront aberration has been introduced to optometry. In this paper, the wavefront aberration is used to evaluate the freeform spectacle lenses. The Shack-Hartmann wavefront technology is used to measure the same zones on the lenses with different designed forms. It shows that the aberration distributions are different from each other. The design with the freeform surface on the back can obtain the smallest aberrations in the entire surface. The aberrations on different zones for the same lens are analyzed. The blending zones show the greatest aberrations. The aberration on the progressive corridor is greater than the other zones. The Hartmann wavefront technology can be used to measure the wavefront aberration of freeform spectacle lenses. PMID:25968012

  14. Manufacture of Free-Form Optical Surfaces with Limited Mid-Spatial Frequency Error Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed innovation is a robust manufacturing process for free-form optical surfaces with limited mid-spatial frequency (MSF) irregularity error. NASA and many...

  15. Process influences and correction possibilities for high precision injection molded freeform optics

    Science.gov (United States)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2016-08-01

    Modern injection molding processes offer a cost-efficient method for manufacturing high precision plastic optics for high volume applications. Besides form deviation of molded freeform optics, internal material stress is a relevant influencing factor for the functionality of a freeform optics in an optical system. This paper illustrates dominant influence parameters of an injection molding process relating to form deviation and internal material stress based on a freeform demonstrator geometry. Furthermore, a deterministic and efficient way for 3D mold correcting of systematic, asymmetrical shrinkage errors is shown to reach micrometer range shape accuracy at diameters up to 40 mm. In a second case, a stress-optimized parameter combination using unusual molding conditions was 3D corrected to reach high precision and low stress freeform polymer optics.

  16. Development of an Indirect Stereolithography Technology for Scaffold Fabrication with a Wide Range of Biomaterial Selectivity

    OpenAIRE

    Kang, Hyun-Wook; Cho, Dong-Woo

    2012-01-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. Howev...

  17. Peculiarities of profile formation for orifices fabricated by electron beam drilling at gun pulsed supply with trapezoidal voltage

    International Nuclear Information System (INIS)

    Peculiarities of substance removal from the surface of a solid body under effect of a pulse beam with beam diameter varying during the pulse and distribution of power density by its cross section taking place at electron gun pulsed supply with trapezoidal voltage are considered. Conical holes with different configuration of the profile envelope can be obtained with variation of pulse duration. Photos of hole profiles obtained by pulsed beam at gun pulsed supply with different pulse duration are presented. Experiments have been conducted with various materials including quartz and nickel

  18. Architectural Geometry and Fabrication-Aware Design

    KAUST Repository

    Pottmann, Helmut

    2013-04-27

    Freeform shapes and structures with a high geometric complexity play an increasingly important role in contemporary architecture. While digital models are easily created, the actual fabrication and construction remains a challenge. This is the source of numerous research problems many of which fall into the area of Geometric Computing and form part of a recently emerging research area, called "Architectural Geometry". The present paper provides a short survey of research in Architectural Geometry and shows how this field moves towards a new direction in Geometric Modeling which aims at combining shape design with important aspects of function and fabrication. © 2013 Kim Williams Books, Turin.

  19. Machining and metrology systems for free-form laser printer mirrors

    Indian Academy of Sciences (India)

    D W Davis; M Walter; M Takahashi; T Masaki

    2003-10-01

    A major challenge in optics is to make optical components like mirrors and lenses smaller and cheaper. This is achieved by designing optical components that have conformal or free-form shapes. A free-form optic is defined as one that is not symmetrical about any axis. These highly demanding requirements are met by single point diamond machining in rigid ultra precision machine tools.

  20. On the Use of Quaternions, Dual Quaternions, and Double Quaternions For Freeform Motion Synthesis

    Institute of Scientific and Technical Information of China (English)

    Q.J.Ge; C.Chang; A.Varshney; J.Menon

    2004-01-01

    Recently, there has been considerable effort to bring together quaternion-based representations of spatial displacements with curve design techniques in Computer Aided Geometric Design (CAGD) to develop methods for synthesizing freeform Cartesian motions. These methods have a wide range of applications from computer graphics,Cartesian motion planning for robot manipulators to task specification and motion approximation for spatial mechanism design. This paper compares the use of quaternions, dual quaternions, and double quaternions for freeform motion synthesis in a CAD environment.

  1. High growth rate metal-organic molecular beam epitaxy for the fabrication of GaAs space solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, A.; Newman, F.; Monier, C.; Street, S. [University of Houston, TX (United States). Space Vacuum Epitaxy Center; Dargan, P.; Levy, M. [Riber Inc., Edison, NJ (United States)

    2000-06-01

    In this work, the epitaxial growth of GaAs photovoltaic devices using metalorganic molecular beam epitaxy (MOMBE) and chemical beam epitaxy (CBE) with growth rates in excess of 3 {mu}m/h is undertaken. The performance of these preliminary devices offer encouraging evidence for MOMBE and CBE as possible alternatives to the more common metalorganic chemical vapor deposition (MOCVD) for the production of III-V solar cells. (author)

  2. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Arun [Univ. of Delhi, New Delhi (India)

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  3. Free-Form Deformation with Rational DMS-Spline Volumes

    Institute of Scientific and Technical Information of China (English)

    Gang Xu; Guo-Zhao Wang; Xiao-Diao Chen

    2008-01-01

    In this paper, we propose a novel free-form deformation (FFD) technique, RDMS-FFD (Rational DMS-FFD),based on rational DMS-spline volumes. RDMS-FFD inherits some good properties of rational DMS-spline volumes and combines more deformation techniques than previous FFD methods in a consistent framework, such as local deformation,control lattice of arbitrary topology, smooth deformation, multiresolution deformation and direct manipulation of deforma-tion. We first introduce the rational DMS-spline volume by directly generalizing the previous results related to DMS-splies.How to generate a tetrahedral domain that approximates the shape of the object to be deformed is also introduced in this paper. Unlike the traditional FFD techniques, we manipulate the vertices of the tetrahedral domain to achieve deformation results. Our system demonstrates that RDMS-FFD is powerful and intuitive in geometric modeling.

  4. Freeform surface measurement and characterisation using a toolmakers microscope

    International Nuclear Information System (INIS)

    Current freeform surface (FFS) characterization systems mainly cover aspects related to computer-aided design/manufacture (CAD/CAM). This paper describes a new approach that extends into computer-aided inspection (CAI).The following novel features are addressed: - ◼ Feature recognition and extraction from surface data; - ◼ Characterisation of properties of the surface's M and N vectors at individual vertex; - ◼ Development of a measuring plan using a toolmakers microscope for the inspection of the FFS; - ◼ Inspection of the actual FFS produced by CNC milling; - ◼ Verification of the measurement results and comparison with the CAD design data; Tests have shown that the deviations between the CAI and CAD data were within the estimated uncertainty limits

  5. Free-formed insulated concentrating solar collector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, G.

    1981-01-01

    A free-formed, insulated solar concentrating-collector was designed, built, and tested. The design utilizes new concepts to achieve simplicity, low cost, high efficiency, and long service life. Three concepts were utilized to meet these goals: First, the concentrating reflector is free-formed by hand from a thin steel sheet. Second, a transparent cover is placed over the concentrator and insulation is placed on the back and ends reduce heat losses and protect the reflecting surface from attack by rain and dust. Third, a highly-reflective aluminum film, protected by bonding between two thin sheets of uv stabilized polyester, is fastened to the steel substrate by peelable adhesive. The material cost of the unit without sun seeking electronics and drive motor is about $6.75 per square foot of sun capturing area. Sun following equipment adds to the cost, however, in units of about 100 square feet sun following equipment contributes about $2.00 per square foot. Labor costs are estimated to be approximately $3.00 per square foot for a $5.00 per hour labor rate for a trained crew. On a do-it-yourself basis a 100 square foot unit would cost about $875. Tests of the prototype collector performed by a certified solar test laboratory were made and the results compared with similar tests of a commercial unit. These tests indicate that the efficiency of the prototype is higher than the commercial unit at outlet temperatures below 160/sup 0/F and comparable with the commercial unit at the boiling point of water.

  6. Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM fabricated by electron-beam-induced deposition of platinum

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Jason, E-mail: jason.brown@physics.ox.ac.uk [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Kocher, Paul; Ramanujan, Chandra S; Sharp, David N [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Torimitsu, Keiichi [NTT Basic Research Laboratories, NTT Corporation, Atsugi, 243-0198 (Japan); Ryan, John F [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2013-10-15

    We report on the fabrication of electrically conducting, ultra-sharp, high-aspect ratio probes for atomic force microscopy by electron-beam-induced deposition of platinum. Probes of 4.0 ±1.0 nm radius-of-curvature are routinely produced with high repeatability and near-100% yield. Contact-mode topographical imaging of the granular nature of a sputtered gold surface is used to assess the imaging performance of the probes, and the derived power spectral density plots are used to quantify the enhanced sensitivity as a function of spatial frequency. The ability of the probes to reproduce high aspect-ratio features is illustrated by imaging a close-packed array of nanospheres. The electrical resistance of the probes is measured to be of order 100 kΩ. - Highlights: • Electrically conducting, ultra-sharp, high aspect-ratio probes for AFM with radius-of-curvature 4.0±±1.0 nm. • AFM probe fabrication by electron-beam-induced deposition of platinum. • Enhanced spatial resolution demonstrated through AFM of sputtered gold grains. • AFM imaging of deep clefts and recesses on a close-packed array of nanospheres.

  7. MgB{sub 2} thin films with high J{sub c} fabricated on Al tape substrates by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, K. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Fujiyoshi, T., E-mail: fuji@cs.kumamoto-u.ac.jp [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Sueyoshi, T.; Okita, K. [Department of Computer Science and Electrical Engineering, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555 (Japan); Doi, T. [Graduate School of Energy Science, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Yoshihara, K. [Department of Electrical and Electronics Engineering, Kagoshima University, 1-21-40, Koorimoto, Kagoshima 890-0065 (Japan); Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2012-10-15

    MgB{sub 2} thin films on nontextured Al tape substrates were fabricated by electron beam evaporation. MgB{sub 2} thin film with a boron buffer layer of about 3 nm thickness was also prepared. The thickness of MgB{sub 2} thin films is 250 nm. The obtained MgB{sub 2} thin films on Al tape substrates were boron rich in composition and c-axis oriented. The self-field J{sub c} of the MgB{sub 2} thin film with a boron buffer layer at 10 K and 20 K are 9.45 Multiplication-Sign 10{sup 10} A/m{sup 2} and 4.85 Multiplication-Sign 10{sup 10} A/m{sup 2}, respectively. The magnetic field reduction of J{sub c} in MgB{sub 2} thin films on Al tape substrates is smaller compared with MgB{sub 2} wires fabricated by a powder-in-tube method and MgB{sub 2} thin films fabricated by a hybrid physical chemical vapor deposition method. The field angular dependences of J{sub c} of MgB{sub 2} thin films on Al tape substrates are similar to that of the MgB{sub 2} thin film on Si, which was reported previously. This result indicates that grain boundaries act as a dominant pinning center in MgB{sub 2} thin films on Al tape substrates.

  8. An orientation competition in yttria-stabilized zirconia thin films fabricated by ion beam assisted sputtering deposition

    International Nuclear Information System (INIS)

    A previously found orientation competition in ion beam sputtered yttria-stabilized zirconia thin films was studied in detail. The effects of sputtering energy and deposition angle were analyzed in ion sputtered films without assisting ions bombardment. It is found that for normally deposited films, (001) and (011) orientations are favored at low and high sputtering energy respectively. For inclined substrate deposited films, as deposition angle increases, (001), (011) and (111) orientations are advantaged in turn. The results can be attributed to the in-plane energy exchange of deposition atom and adatoms. In ion beam assisting deposited YSZ films of low assisting ions energy and current, a (001) oriented biaxial texture is gradually induced as ion energy increased. In the case of ion beam assisted inclined deposition of 45°, (001) orientation is enhanced and two preferential in-plane orientations are found coexist.

  9. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field...

  10. Understanding the Role of Hot Isostatic Pressing Parameters on the Microstructural Evolution of Ti-6Al-4V and Inconel 718 Fabricated by Electron Beam Melting

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H [ORNL; Nandwana, Peeyush [ORNL; Kirka, Michael M [ORNL; Dehoff, Ryan R [ORNL; Sames, William [Texas A& M University; ERDMAN III, DONALD L [ORNL; Eklund, Anders [Avure Technologies, Inc.; Howard, Ron [Avure Technologies, Inc.

    2015-04-01

    In this project, Avure and ORNL evaluated the influence of hot isostatic pressing (HIP) and thermal cycling as standalone post processing techniques on the microstructure of electron beam powder bed deposited Ti-6Al-4V and Inconel 718 alloys. Electron beam powder bed deposition is an effective technology for fabricating complex net shape components that cannot be manufactured with conventional processes. However, material deposited by this technology results in columnar grain growth which is detrimental for many applications. For Ti-6Al-4V, it has been found that thermal cycling alone is not sufficient to breakdown the columnar microstructure that is typical of electron beam powder bed technology. HIP, on the other hand, has the potential to be an effective technique to break down the columnar microstructure of Ti-6Al-4V into a more equiaxed and refined β grain structure, and provide a more homogeneous microstructure compared to the thermally cycled samples. Overall, the project showed that hot isostatic pressing reduced/eliminated porosity in both Ti-6Al-4V and Inconel 718 However, based on the unique thermal cycle and the application of pressure in the HIP vessel, Ti-6Al-4V e-beam deposited microstructures were modified from columnar grain growth to equiaxed microstructures; a significant outcome to this collaboration. Inconel 718, on the other hand, shows no change in the macrostructure as a result of the current HIP cycle based on the thermal history, and would require further investigation. Though the results of HIP cycle were very good at changing the microstructure, further development in optimizing the post heat treatments and HIP cycles is required to improve mechanical properties.

  11. Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multi-beam pulsed laser deposition

    OpenAIRE

    Sloyan, Katherine A.; May-Smith, Timothy C.; Zervas, Michalis N.; Eason, Robert W.

    2012-01-01

    Crystalline Bragg reflectors are of interest for high power, high temperature and integrated applications. We demonstrate the automated growth of such structures by shuttered multi-beam Pulsed Laser Deposition (PLD). Geometries include 145 layer stacks exhibiting >99.5% reflection and ? phase-shifted designs. A crystalline grating strength-apodized sample was grown by mixing plumes to obtain layers with custom refractive indices. Peak reflection wavelength was tuneable with incident position,...

  12. Mapping algorithm for freeform construction using non-ideal light sources

    Science.gov (United States)

    Li, Chen; Michaelis, D.; Schreiber, P.; Dick, L.; Bräuer, A.

    2015-09-01

    Using conventional mapping algorithms for the construction of illumination freeform optics' arbitrary target pattern can be obtained for idealized sources, e.g. collimated light or point sources. Each freeform surface element generates an image point at the target and the light intensity of an image point is corresponding to the area of the freeform surface element who generates the image point. For sources with a pronounced extension and ray divergence, e.g. an LED with a small source-freeform-distance, the image points are blurred and the blurred patterns might be different between different points. Besides, due to Fresnel losses and vignetting, the relationship between light intensity of image points and area of freeform surface elements becomes complicated. These individual light distributions of each freeform element are taken into account in a mapping algorithm. To this end the method of steepest decent procedures are used to adapt the mapping goal. A structured target pattern for a optics system with an ideal source is computed applying corresponding linear optimization matrices. Special weighting factor and smoothing factor are included in the procedures to achieve certain edge conditions and to ensure the manufacturability of the freefrom surface. The corresponding linear optimization matrices, which are the lighting distribution patterns of each of the freeform surface elements, are gained by conventional raytracing with a realistic source. Nontrivial source geometries, like LED-irregularities due to bonding or source fine structures, and a complex ray divergence behavior can be easily considered. Additionally, Fresnel losses, vignetting and even stray light are taken into account. After optimization iterations, with a realistic source, the initial mapping goal can be achieved by the optics system providing a structured target pattern with an ideal source. The algorithm is applied to several design examples. A few simple tasks are presented to discussed

  13. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    Science.gov (United States)

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  14. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    Science.gov (United States)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  15. 0.532-μm laser conditioning of HfO2/SiO2 third harmonic separator fabricated by electron-beam evaporation

    Institute of Scientific and Technical Information of China (English)

    Dawei Li; Yuan'an Zhao; Jianda Shao; Zhengxiu Fan; Hongbo He

    2008-01-01

    The 0.532-μm laser conditioning of HfO2/SiO2 third harmonic separator fabricated by electron-beam evaporation (EBE) was studied.The laser induced damage threshold (LIDT) of the separator determined by 1-on-1 test is 9.1 J/cm2 and it is 15.2 J/cm2 after laser conditioning determined by raster scanning.Two kinds of damage morphologies,taper pits and flat bottom pits,are found on the sample surface and they show different damage behaviors.The damage onset of taper pits does not change obviously and the laser conditioning effect is contributed to the flat bottom pits,which limits the application of laser conditioning.

  16. Undefined freeform surfaces having deterministic structure: issues of their characterization for functionality and manufacture

    Science.gov (United States)

    Whitehouse, David J.

    2016-09-01

    There is an increasing use of surfaces which have structure, an increase in the use of freeform surfaces, and most importantly an increase in the number of surfaces having both characteristics. These can be called multi-function surfaces, where more than one function is helped by the geometrical features: the structure can help one, the freeform another. Alternatively, they can be complementary to optimize a single function, but in all cases both geometries are involved. This paper examines some of the problems posed by having such disparate geometries on one surface; in particular, the methods of characterization needed to help understand the functionality and also to some extent their manufacture. This involves investigating ways of expressing how local and global geometric features of undefined freeform surfaces might influence function and how surface structure on top of or in series with the freeform affects the nature of the characterization. Some methods have been found of identifying possible strategies for tackling the characterization problem, based in part on the principles of least action and on the way that nature has solved the marriage of flexible freeform geometry and structure on surfaces.

  17. Cold Light Mirror Fabricated by Electron Beam Evaporation of TiO2 and SiO2

    Institute of Scientific and Technical Information of China (English)

    ZHONGDi-sheng; XUGuang-zhong; 等

    2000-01-01

    A process suitable for production on a large scale of cold light mirror for film projector is introduced.Deposition parameters required for producing TiO2/SiO2 optical multialyer systems by electron beam evaporation of TiO2 and SiO2 starting materials are investigated.Manufacture and techniques of cold mirror and the adhesion, stability, wear and corrosion resistance of cold mirror by this process are discussed.The result shows that cold mirror produced has good optical properties and better adhesion.

  18. FORMING FREEFORM SURFACE SHEET METAL USINGINTEGRATED REVERSE ENGINEERING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    XING; Yuan(

    2001-01-01

    [1]Puntambekar N V, Jablokow A G, Sommer H J. Unified review of 3D model generation for reverse engineering[J]. Computer Integrated Manufacturing System,1994,7(4):259~268.[2]Chikofsky E J. Reverse engineering and design recovery: a taxonomy[J]. IEEE Software,1990,6(3):13~17.[3]Chou Hon-yue. Application of reverse engineering in die and mold manufacturing[A]. 3rd Int Conf on Mould & Die Technique in Asia[C]. Taibei, China,1995.753~764.[4]Dipl-Ing Thomas Haller. Rapid mould and die making using reverse engineering and rapid prototyping[A]. 3rd Int Conf on Mould & Die Technique in Asia[C]. Taibei, China,1995.739~752.[5]Abella R J, Daschbach J M. Reverse engineering industrial applications[J]. Computers Ind Engng,1994,26(2):381~385.[6]Chen Y D, Tang X J. Automatic digitization of freeform curves by coordinate measuring machines[J]. ASME PED,1992,62:113~125.[7]Antonie van Rensburg. Implementing IDEF techniques as simulation modeling specifications[J]. Computers Ind Engng,1994,29(1-4):467~571.[8]Eastma C M, Fereshetian N. Informaiton models for use in product design: a comparison[J]. Computer-Aided Design.1994,26(7):551~572.

  19. High Brightness HDR Projection Using Dynamic Freeform Lensing

    KAUST Repository

    Damberg, Gerwin

    2016-05-03

    Cinema projectors need to compete with home theater displays in terms of image quality. High frame rate and spatial resolution as well as stereoscopic 3D are common features today, but even the most advanced cinema projectors lack in-scene contrast and, more important, high peak luminance, both of which are essential perceptual attributes of images appearing realistic. At the same time, HDR image statistics suggest that the average image intensity in a controlled ambient viewing environment such as the cinema can be as low as 1% for cinematic HDR content and not often higher than 18%, middle gray in photography. Traditional projection systems form images and colors by blocking the source light from a lamp, therefore attenuating between 99% and 82% of light, on average. This inefficient use of light poses significant challenges for achieving higher peak brightness levels. In this work, we propose a new projector architecture built around commercially available components, in which light can be steered to form images. The gain in system efficiency significantly reduces the total cost of ownership of a projector (fewer components and lower operating cost), and at the same time increases peak luminance and improves black level beyond what is practically achievable with incumbent projector technologies. At the heart of this computational display technology is a new projector hardware design using phase modulation in combination with a new optimization algorithm that is capable of on-the-fly computation of freeform lens surfaces. © 2016 ACM.

  20. Efficient free-form surface representation with application in orthodontics

    Science.gov (United States)

    Yamany, Sameh M.; El-Bialy, Ahmed M.

    1999-03-01

    Orthodontics is the branch of dentistry concerned with the study of growth of the craniofacial complex. The detection and correction of malocclusion and other dental abnormalities is one of the most important and critical phases of orthodontic diagnosis. This paper introduces a system that can assist in automatic orthodontics diagnosis. The system can be used to classify skeletal and dental malocclusion from a limited number of measurements. This system is not intended to deal with several cases but is aimed at cases more likely to be encountered in epidemiological studies. Prior to the measurement of the orthodontics parameters, the position of the teeth in the jaw model must be detected. A new free-form surface representation is adopted for the efficient and accurate segmentation and separation of teeth from a scanned jaw model. THe new representation encodes the curvature and surface normal information into a 2D image. Image segmentation tools are then sued to extract structures of high/low curvature. By iteratively removing these structures, individual teeth surfaces are obtained.

  1. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    Science.gov (United States)

    Matsutani, Takaomi; Yamasaki, Kayo; Imaeda, Norihiro; Kawasaki, Tadahiro

    2015-12-01

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N2+ ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si-N and C-N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  2. Applications for Gradient Metal Alloys Fabricated Using Additive Manufacturing

    Science.gov (United States)

    Hofmann, Douglas C.; Borgonia, John Paul C.; Dillon, Robert P.; Suh, Eric J.; Mulder, jerry L.; Gardner, Paul B.

    2013-01-01

    Recently, additive manufacturing (AM) techniques have been developed that may shift the paradigm of traditional metal production by allowing complex net-shaped hardware to be built up layer-by-layer, rather than being machined from a billet. The AM process is ubiquitous with polymers due to their low melting temperatures, fast curing, and controllable viscosity, and 3D printers are widely available as commercial or consumer products. 3D printing with metals is inherently more complicated than with polymers due to their higher melting temperatures and reactivity with air, particularly when heated or molten. The process generally requires a high-power laser or other focused heat source, like an electron beam, for precise melting and deposition. Several promising metal AM techniques have been developed, including laser deposition (also called laser engineered net shaping or LENS® and laser deposition technology (LDT)), direct metal laser sintering (DMLS), and electron beam free-form (EBF). These machines typically use powders or wire feedstock that are melted and deposited using a laser or electron beam. Complex net-shape parts have been widely demonstrated using these (and other) AM techniques and the process appears to be a promising alternative to machining in some cases. Rather than simply competing with traditional machining for cost and time savings, the true advantage of AM involves the fabrication of hardware that cannot be produced using other techniques. This could include parts with "blind" features (like foams or trusses), parts that are difficult to machine conventionally, or parts made from materials that do not exist in bulk forms. In this work, the inventors identify that several AM techniques can be used to develop metal parts that change composition from one location in the part to another, allowing for complete control over the mechanical or physical properties. This changes the paradigm for conventional metal fabrication, which relies on an

  3. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  4. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.

    2012-04-01

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm2 have been measured from lithium alumino-silicate ion sources at a temperature of ~1275 °C. At higher extraction voltages, the source appears to become emission limited with J ≥ 1.5 mA/cm2, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, ≤0.25 mm thick, has a measured lifetime of ~40 h at ~1275 °C, when pulsed at 0.05 Hz and with pulse length of ~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. Finally, the source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  5. Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Porrati, F; Sachser, R; Huth, M [Physikalisches Institut, Goethe-Universitaet, Max-von-Laue-Strasse 1, D-60438 Frankfurt am Main (Germany); Strauss, M [Max-Planck-Institut fuer Biophysik, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main (Germany); Andrusenko, I; Gorelik, T; Kolb, U [Institut fuer Physikalische Chemie, Johannes Gutenberg-Universitaet Mainz, Welderweg 11, D-55099 Mainz (Germany); Bayarjargal, L; Winkler, B [Institut fuer Geowissenschaften, Abt. Kristallographie, Goethe-Universitaet, Altenhoeferallee 1, D-60438 Frankfurt am Main (Germany)

    2010-09-17

    We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO){sub 6} precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman investigations. Independent of the deposition parameters, TEM measurements show that the dots are constituted of amorphous tungsten carbide clusters embedded in an amorphous carbonaceous matrix. Micro-Raman spectra show two peaks, around 690 and 860 cm{sup -1} associated with the W-C stretching modes. Higher frequency peaks give information on the composition of the matrix. In particular, we measure a peak at about 1290 cm{sup -1}, which is associated with sp{sup 3} carbon bonds. Furthermore we detect the so-called D and G peaks, at about 1350 and 1560 cm{sup -1}, associated with the vibration modes of the sp{sup 2} carbon bonds. The analysis of the position of the peaks and of their relative intensity suggests that the composition of the matrix is between nanocrystalline graphite and amorphous carbon.

  6. Variation in mechanical behavior due to different build directions of Titanium6Aluminum4Vanadium fabricated by electron beam additive manufacturing technology

    Science.gov (United States)

    Roy, Lalit

    Titanium has always been a metal of great interest since its discovery especially for critical applications because of its excellent mechanical properties such as light weight (almost half of that of the steel), low density (4.4 gm/cc) and high strength (almost similar to steel). It creates a stable and adherent oxide layer on its surface upon exposure to air or water which gives it a great resistance to corrosion and has made it a great choice for structures in severe corrosive environment and sea water. Its non-allergic property has made it suitable for biomedical application for manufacturing implants. Having a very high melting temperature, it has a very good potential for high temperature applications. But high production and processing cost has limited its application. Ti6Al4V is the most used titanium alloy for which it has acquired the title as `workhouse' of the Ti family. Additive layer Manufacturing (ALM) has brought revolution in manufacturing industries. Today, this additive manufacturing has developed into several methods and formed a family. This method fabricates a product by adding layer after layer as per the geometry given as input into the system. Though the conception was developed to fabricate prototypes and making tools initially, but its highly economic aspect i.e., very little waste material for less machining and comparatively lower production lead time, obviation of machine tools have drawn attention for its further development towards mass production. Electron Beam Melting (EBM) is the latest addition to ALM family developed by Arcam, ABRTM located in Sweden. The electron beam that is used as heat source melts metal powder to form layers. For this thesis work, three different types of specimens have been fabricated using EBM system. These specimens differ in regard of direction of layer addition. Mechanical properties such as ultimate tensile strength, elastic modulus and yield strength, have been measured and compared with standard data

  7. Mathematical description and measurement of refractive parameters of freeform spectacle lenses.

    Science.gov (United States)

    Yu, Jing; Qiu, Zhongjun; Fang, Fengzhou

    2014-08-01

    Refractive parameters are the main design and evaluation parameters of freeform spectacle lenses. In this paper, the mathematical model of refractive parameters is established, and the refractive power distribution on the whole surface is drawn with a radial basis function. The measurement methods are analyzed, and typical freeform spectacle lenses are measured with a freeform verifier. The refractive power distribution on the whole surface, the cylinder view, and the refractive power curve along the progressive corridor are drawn up. There are no evident image changes on the whole surface. The refractive power smoothly varies along the progressive corridor. In comparing the results with the analysis, measurement results are in agreement with the calculation. PMID:25090322

  8. Cavity Design, Fabrication and Commission Performance of a 750MHz, 4-rod Separator for CEBAF 4-Hall Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Jefferson Lab, Newport News, VA; Cheng, Guangfeng [Jefferson Lab, Newport News, VA; Turlington, Larry T. [Jefferson Lab, Newport News, VA; Wissmann, Mark J. [Jefferson Lab, Newport News, VA

    2015-09-01

    A short version of the original CEBAF normal conducting 4-rod separator cavity has been developed into a 750MHz one * since the concept of simultaneous 4-hall operation for CEBAF is introduced **. This work has been advanced further based on the EM design optimization, bench measurement and by conducting RF-thermal coupled simulation using CST and ANSYS to confirm the cavity tuning and thermal performance. The cavity fabrication used matured technology like copper plating and machining. The cavity flanges, couplers, tuners and cooling channels adopted consistent/compatible hardware with the existing 500MHz cavities. The electromagnetic and thermal design simulations have greatly reduced the prototyping and bench tuning time of the first prototype. Four production cavities have reached a typical 1.94MV kick voltage or 3.0kW wall loss on each cavity after a minor multipactoring or no processing, 7.5% overhead power than the design specification.

  9. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    Science.gov (United States)

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  10. The field emission properties of high aspect ratio diamond nanocone arrays fabricated by focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Z.L. Wang, Q. Wang, H.J. Li, J.J. Li, P. Xu, Q. Luo, A.Z. Jin, H.F. Yang and C.Z. Gu

    2005-01-01

    Full Text Available High aspect ratio diamond nanocone arrays are formed on freestanding diamond film by means of focused ion beam (FIB milling technology and hot-filament chemical vapor deposition (HFCVD method. The structure and phase purity of an individual diamond nanocone are characterized by scanning electron microscopy (SEM and micro-Raman spectroscopy. The result indicates that the diamond cones with high aspect ratio and small tip apex radius can be obtained by optimizing the parameters of FIB milling and diamond growth. The diamond nanocone arrays were also used to study the electron field emission properties and electric field shielding effect, finding high emission current density, low threshold and weak shielding effect, all attributable to the high field enhancement factor and suitable cone density of the diamond nanocone emitter

  11. Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    CERN Document Server

    Haverkamp, Caspar; Jäckle, Sara; Manzoni, Anna; Christiansen, Silke

    2016-01-01

    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most no...

  12. Comment on the article "Distilling free-form natural laws from experimental data"

    CERN Document Server

    Hillar, Christopher

    2012-01-01

    In the article "Distilling free-form natural laws from experimental data", Schmidt and Lipson introduced the idea that free-form natural laws can be learned from experimental measurements in a physical system using symbolic (genetic) regression algorithms. An important claim in this work is that the algorithm finds laws in data without having incorporated any prior knowledge of physics. Upon close inspection, however, we show that their method implicitly incorporates Hamilton's equations of motions and Newton's second law, demystifying how they are able to find Hamiltonians and special classes of Lagrangians from data.

  13. Accuracy Assessment for Cad Modeling of Freeform Surface Described by Equation

    Directory of Open Access Journals (Sweden)

    Golba Grzegorz

    2015-06-01

    Full Text Available This paper presents the results of comparative analysis of modeling accuracy the freeform surface constructed by using a variety of algorithms for surface modeling. Also determined the accuracy of mapping the theoretical freeform surface described by mathematical equation. To model surface objects used: SolidWorks 2012, CATIA v5 and Geomagic Studio 12. During the design process of CAD models were used: profile curves, fitting parametric surface and polygonal mesh. To assess the accuracy of the CAD models used Geomagic Qualify 12. On the basis of analyse defined the scope of application of each modeling techniques depending on the nature of the constructed object.

  14. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV. PMID:23592622

  15. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling.

    Science.gov (United States)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne; Szeghalmi, Adriana; Knez, Mato; Weigand, Markus; Snigirev, Anatoly; Snigireva, Irina; Schütz, Gisela

    2013-05-01

    Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ~10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al2O3/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  16. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration

    OpenAIRE

    G-S Huang; C-S Tseng; B Linju Yen; L-G Dai; P-S Hsieh; S-h Hsu

    2013-01-01

    Three-dimensional (3D) cellular spheroids have recently emerged as a new trend to replace suspended single cells in modern cell-based therapies because of their greater regeneration capacities in vitro. They may lose the 3D structure during a change of microenvironment, which poses challenges to their translation in vivo. Besides, the conventional microporous scaffolds may have difficulty in accommodating these relatively large spheroids. Here we revealed a novel design of microenvironment fo...

  17. In-chip fabrication of free-form 3D constructs for directed cell migration analysis

    DEFF Research Database (Denmark)

    Olsen, Mark Holm; Hjortø, Gertrud Malene; Hansen, Morten;

    2013-01-01

    with a range of pore sizes from 5 × 5 μm to 15 × 15 μm and prefilled with fibrillar collagen. Dendritic cells seeded into the polymer chip in a concentration gradient of the chemoattractant CCL21 efficiently negotiated the microporous maze structure for pore sizes of 8 × 8 μm or larger. The cells migrating...

  18. Solid Freeform Fabrication of Continuous Fiber Reinforced Composites for Propulsion Applications

    Science.gov (United States)

    Vaidyanathan, R.; Fox, M.; Walish, J.; Rigali, M.; Cipriani, R.; Gillespie, J.; Yarlagadda, S.; Effinger, M.

    2001-01-01

    Monolithic ceramics lack the fracture toughness necessary to be considered for propulsion related applications. To be used for such applications, materials must possess low density, high elastic modulus, a low thermal expansion coefficient, high thermal conductivity, excellent erosion and oxidation/corrosion resistance, and flaw-insensitivity. They will in many cases also be required to possess the ability to be joined, to survive thermal cycling and multi-axial stress states, and for reusable applications the materials must maintain the above attributes after prolonged exposure to extremely harsh chemical environments. The final and possibly most important attributes for these materials are the need to be of low cost and readily available in large quantities.

  19. Student Evaluation of Teaching: A Study Exploring Student Rating Instrument Free-Form Text Comments

    Science.gov (United States)

    Stupans, Ieva; McGuren, Therese; Babey, Anna Marie

    2016-01-01

    Student rating instruments are recognised to be valid indicators of effective instruction, providing a valuable tool to improve teaching. However, free-form text comments obtained from the open-ended question component of such surveys are only infrequently analysed comprehensively. We employed an innovative, systematic approach to the analysis of…

  20. Optical design through optimization using freeform orthogonal polynomials for rectangular apertures

    Science.gov (United States)

    Nikolic, Milena; Benítez, P.; Miñano, Juan C.; Grabovickic, D.; Liu, Jiayao; Narasimhan, B.; Buljan, M.

    2015-09-01

    With the increasing interest in using freeform surfaces in optical systems due to the novel application opportunities and manufacturing techniques, new challenges are constantly emerging. Optical systems have traditionally been using circular apertures, but new types of freeform systems call for different aperture shapes. First non-circular aperture shape that one can be interested in due to tessellation or various folds systems is the rectangular one. This paper covers the comparative analysis of a simple local optimization of one design example using different orthogonalized representations of our freeform surface for the rectangular aperture. A very simple single surface off-axis mirror is chosen as a starting system. The surface is fitted to the desired polynomial representation, and the whole system is then optimized with the only constraint being the effective focal length. The process is repeated for different surface representations, amongst which there are some defined inside a circle, like Forbes freeform polynomials, and others that can be defined inside a rectangle like a new calculated Legendre type polynomials orthogonal in the gradient. It can be observed that with this new calculated polynomial type there is a faster convergence to a deeper minimum compared to "defined inside a circle" polynomials. The average MTF values across 17 field points also show clear benefits in using the polynomials that adapted more accurately to the aperture used in the system.

  1. Asymmetrical clustering by sex in free-forming groups: an observational field study.

    Science.gov (United States)

    Kramer-Moore, Daniela

    2010-08-01

    464 observations were carried out in public places of 3- or 4-person, mixed sex, free-forming groups who spontaneously divided into subgroups. An analysis of sex composition of the subgroups showed that significantly more single-sex subgroups were formed than expected by chance. This was significantly more pronounced among women than among men. Several explanations were considered.

  2. Analysis of nodal aberration properties in off-axis freeform system design.

    Science.gov (United States)

    Shi, Haodong; Jiang, Huilin; Zhang, Xin; Wang, Chao; Liu, Tao

    2016-08-20

    Freeform surfaces have the advantage of balancing off-axis aberration. In this paper, based on the framework of nodal aberration theory (NAT) applied to the coaxial system, the third-order astigmatism and coma wave aberration expressions of an off-axis system with Zernike polynomial surfaces are derived. The relationship between the off-axis and surface shape acting on the nodal distributions is revealed. The nodal aberration properties of the off-axis freeform system are analyzed and validated by using full-field displays (FFDs). It has been demonstrated that adding Zernike terms, up to nine, to the off-axis system modifies the nodal locations, but the field dependence of the third-order aberration does not change. On this basis, an off-axis two-mirror freeform system with 500 mm effective focal length (EFL) and 300 mm entrance pupil diameter (EPD) working in long-wave infrared is designed. The field constant aberrations induced by surface tilting are corrected by selecting specific Zernike terms. The design results show that the nodes of third-order astigmatism and coma move back into the field of view (FOV). The modulation transfer function (MTF) curves are above 0.4 at 20 line pairs per millimeter (lp/mm) which meets the infrared reconnaissance requirement. This work provides essential insight and guidance for aberration correction in off-axis freeform system design. PMID:27557003

  3. Optimizing front metallization patterns: Efficiency with aesthetics in free-form solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2016-01-01

    Free-form solar cells are cells of unconventional shapes (e.g. hexagonal, leaf-shaped etc). Their flexible shape adds to the aesthetics of the surroundings as well as allows to place them over objects where conventional solar cells might not fit. Evidently, these cells need to be efficient as well,

  4. Efficient focusing of 8 keV X-rays with multilayer Fresnel zone plates fabricated by atomic layer deposition and focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Marcel; Keskinbora, Kahraman; Grévent, Corinne, E-mail: grevent@is.mpg.de [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Szeghalmi, Adriana [Friedrich-Schiller-Universität Jena, Albert-Einstein-Strasse 15, D-07745 Jena (Germany); Knez, Mato [CIC nanoGUNE Consolider, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastian (Spain); Basque Foundation for Science, Alameda Urquijo 36-5, E-48011 Bilbao (Spain); Weigand, Markus [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Snigirev, Anatoly; Snigireva, Irina [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble (France); Schütz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, D-70569 Stuttgart (Germany)

    2013-05-01

    The fabrication and performance of multilayer Al{sub 2}O{sub 3}/Ta{sub 2}O{sub 5} Fresnel zone plates in the hard X-ray range and a discussion of possible future developments considering available materials are reported. Fresnel zone plates (FZPs) recently showed significant improvement by focusing soft X-rays down to ∼10 nm. In contrast to soft X-rays, generally a very high aspect ratio FZP is needed for efficient focusing of hard X-rays. Therefore, FZPs had limited success in the hard X-ray range owing to difficulties of manufacturing high-aspect-ratio zone plates using conventional techniques. Here, employing a method of fabrication based on atomic layer deposition (ALD) and focused ion beam (FIB) milling, FZPs with very high aspect ratios were prepared. Such multilayer FZPs with outermost zone widths of 10 and 35 nm and aspect ratios of up to 243 were tested for their focusing properties at 8 keV and shown to focus hard X-rays efficiently. This success was enabled by the outstanding layer quality thanks to ALD. Via the use of FIB for slicing the multilayer structures, desired aspect ratios could be obtained by precisely controlling the thickness. Experimental diffraction efficiencies of multilayer FZPs fabricated via this combination reached up to 15.58% at 8 keV. In addition, scanning transmission X-ray microscopy experiments at 1.5 keV were carried out using one of the multilayer FZPs and resolved a 60 nm feature size. Finally, the prospective of different material combinations with various outermost zone widths at 8 and 17 keV is discussed in the light of the coupled wave theory and the thin-grating approximation. Al{sub 2}O{sub 3}/Ir is outlined as a promising future material candidate for extremely high resolution with a theoretical efficiency of more than 20% for as small an outermost zone width as 10 nm at 17 keV.

  5. Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples

    Energy Technology Data Exchange (ETDEWEB)

    Basu, T.; Kumar, M.; Som, T., E-mail: tsom@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Nandy, S. [CENIMAT, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica 2829 516 (Portugal); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Saini, C. P.; Kanjilal, A. [Department of Physics, School of Natural Sciences, Shiv Nadar University, Gautam Budh Nagar, Uttar Pradesh 201 314 (India)

    2015-09-14

    Al-doped ZnO (AZO) thin films of thicknesses 5,10, 15, 20, and 30 nm were deposited on 500 eV argon ion-beam fabricated nanoscale self-organized rippled-Si substrates at room temperature and are compared with similar films deposited on pristine-Si substrates (without ripples). It is observed that morphology of self-organized AZO films is driven by the underlying substrate morphology. For instance, for pristine-Si substrates, a granular morphology evolves for all AZO films. On the other hand, for rippled-Si substrates, morphologies having chain-like arrangement (anisotropic in nature) are observed up to a thickness of 20 nm, while a granular morphology evolves (isotropic in nature) for 30 nm-thick film. Photoluminescence studies reveal that excitonic peaks corresponding to 5–15 nm-thick AZO films, grown on rippled-Si templates, show a blue shift of 8 nm and 3 nm, respectively, whereas the peak shift is negligible for 20-nm thick film (with respect to their pristine counter parts). The observed blue shifts are substantiated by diffuse reflectance study and attributed to quantum confinement effect, associated with the size of the AZO grains and their spatial arrangements driven by the anisotropic morphology of underlying rippled-Si templates. The present findings will be useful for making tunable AZO-based light-emitting devices.

  6. Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Yi; Liao, Jiunn-Der; Ju, Yu-Hung; Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Shiau, Ai-Li, E-mail: jdliao@mail.ncku.edu.tw [Department of Microbiology and Immunology, National Cheng Kung University, No 1, University Road, Tainan 70101, Taiwan (China)

    2011-05-06

    The focused ion beam (FIB) technique was used to precisely fabricate patterned Au micro/nanostructures (fibAu). The effects of surface enhanced Raman scattering (SERS) on the fibAu samples were investigated by adjusting the geometrical, dimensional, and spacing factors. The SERS mechanism was evaluated using low-concentration rhodamine 6G (R6G) molecules, physically adsorbed or suspended on/within the micro/nanostructures. The results indicated that for detecting R6G molecules, hexagon-like micro/nanostructures induced a higher electromagnetic mechanism (EM) due to the availability of multiple edges and small curvature. By decreasing the dimensions from 300 to 150 nm, the laser-focused area contained an increasing number of micro/nanostructures and therefore intensified the excitation of SERS signals. Moreover, with an optimized geometry and dimensions of the micro/nanostructures, the relative intensity/surface area value reached a maximum as the spacing was 22 nm. An exponential decrease was found as the spacing was increased, which most probably resulted from the loss of EM. The spacing between the micro/nanostructures upon the fibAu was consequently regarded as the dominant factor for the detection of R6G molecules. By taking an optimized fibAu to detect low-concentration influenza virus, the amino acids from the outermost surface of the virus can be well distinguished through the SERS mechanism.

  7. Electron beam welding in the fabrication of thick-walled large-size pipes of C-Mn steels. Final report; Elektronenstrahlschweissen bei der Fertigung von dickwandigen Grossrohren aus C-Mn-Staehlen. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Woeste, K.

    2001-11-01

    This research project investigates electron beam welding as a method of fabrication of large-size pipes with longitudinal welds. The effects of the welding speed on the mechanical and technological properties of the weld are investigated. From the economic view, electron beam welding is much more favourable than submerged-arc welding. [German] Dieses Forschungsprojekt soll dazu beitragen, das Elektronenstrahlschweissen als Fertigungsverfahren fuer laengsnahtgeschweisste Grossrohre zu qualifizieren. Dabei wird der Einfluss der Schweissgeschwindigkeit auf die mechanisch-technologischen Eigenschaften der Schweissung untersucht. Im Wirtschaftlichkeitsvergleich schneidet Elektronenstrahlschweissverfahren gegenueber dem Unterpulverschweissverfahren eindeutig besser ab.

  8. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (AuNRsd) is made by focused ion beam. •AuNRsd coupled with Ag nanoparticles (Ag NPs/AuNRsd) is competent to sense target molecules in a solution. •Ag NPs/AuNRsd SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/AuNRsd as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10−12 M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (AuNRsd) was fabricated using the focused ion beam method. AuNRsd was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on AuNRsd and Ag NPs/AuNRsd was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on AuNRsd was estimated by an enhancement factor of ≈107 in magnitude, which increased ≈1012 in magnitude for that on Ag NPs/AuNRsd. A highly SERS-active Ag NPs/AuNRsd was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10−3 to 10−12 M) in water or milk solution upon AuNRsd or Ag NPs/AuNRsd were well distinguished. The peaks at 680 and 702 cm−1 for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm−1 was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., AuNRsd) or Ag (i.e., Ag NPs/AuNRsd) surface. At the interface of Ag NPs/AuNRsd and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and competent to sense low-concentration MEL molecules interacting with Ag and Au surfaces. Accordingly, Ag NPs/AuNRsd is very promising to be used as a fast and sensitive tool for screening MEL in complex matrices such as adulteration in e.g., food

  9. Template matching of freeform surfaces based on orthogonal distance fitting for precision metrology

    International Nuclear Information System (INIS)

    Freeform surfaces are widely used in advanced optical and mechanical devices. In order to assess the form quality of a freeform surface, it is required to match the measurement surface with the design template. To improve the matching efficiency and accuracy, the whole procedure is divided into two stages: rough matching and final fitting. A new rough matching method, called the structured region signature, is proposed. The structured region signature is a generalized global feature which represents the surface shape by a one-dimensional function. The template location occupying the best matching signature is considered to be the correct rough position of the measurement surface. After that the motion parameters are updated iteratively based on the orthogonal distance fitting. The dependence between the foot-point parameters of the projection points and the motion parameters is derived from the closest-distance relationship between correspondence point pairs. Numerical experiments are given to demonstrate the validity of this approach

  10. Free-form geometric modeling by integrating parametric and implicit PDEs.

    Science.gov (United States)

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  11. Shape optimization for viscous flows by reduced basis methods and free-form deformation

    OpenAIRE

    Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi

    2011-01-01

    In this paper we further develop an approach previously introduced in [Lassila and Rozza, C.M.A.M.E 2010] for shape optimization that combines a suitable low-dimensional parametrization of the geometry (yielding a geometrical reduction) with reduced basis methods (yielding a reduction of computational complexity). More precisely, free-form deformation techniques are considered for the geometry description and its parametrization, while reduced basis methods are used upon a finite element dis...

  12. Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?

    Science.gov (United States)

    Thompson, Kevin P.; Schiesser, Eric; Rolland, Jannick P.

    2015-10-01

    As freeform optical systems emerge as interesting and innovative solutions for imaging in 3D packages there is an assumption they are going to be more sensitive particularly at assembly. While it is true that the clocking of the component becomes a relatively weak new tolerance, for the most effective new class of freeform systems the alignment sensitivity is actually lower in most cases than for a comparable traditional unobscured three mirror anastigmatic (TMA) telescope. Traditional unobscured TMA telescopes, whose designs emerged in the mid-70s and which begin to appear as hardware in the literature in the early 90s, are based on using increasingly offset apertures with otherwise coaxial rotationally symmetric mirrors. The mirrors (typically 3 to correct spherical, coma, and astigmatism) have evolved to contain more high order terms as the designs are pushed to more compact and wider field packages - the NIRCAM camera for the JWST is an excellent example of this [1]. As the higher order terms are added, the mirrors become increasingly sensitive to decenters and tilts. An emerging class of freeform telescopes that provide wider field of view and/or faster f/numbers than the traditional TMA are based on a strategy where the surface shape remains a low order Zernike-type surface even in compact, unobscured packages. This optical design strategy results in an optical form that is not only higher performance but simultaneously less sensitive to alignment.

  13. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  14. Focused-ion-beam-fabricated Au nanorods coupled with Ag nanoparticles used as surface-enhanced Raman scattering-active substrate for analyzing trace melamine constituents in solution

    Energy Technology Data Exchange (ETDEWEB)

    Sivashanmugan, Kundan [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liu, Bernard Haochih; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-10-24

    Graphical abstract: -- Highlights: •Well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) is made by focused ion beam. •Au{sub N}Rs{sub d} coupled with Ag nanoparticles (Ag NPs/Au{sub N}Rs{sub d}) is competent to sense target molecules in a solution. •Ag NPs/Au{sub N}Rs{sub d} SERS active substrate can detect a single molecule of crystal violet. •Ag NPs/Au{sub N}Rs{sub d} as a SERS-active substrate can distinguish melamine contaminants at low concentrations (e.g., 10{sup −12} M). -- Abstract: A well-ordered Au-nanorod array with a controlled tip ring diameter (Au{sub N}Rs{sub d}) was fabricated using the focused ion beam method. Au{sub N}Rs{sub d} was then coupled with Ag nanoparticles (Ag NPs) to bridge the gaps among Au nanorods. The effect of surface-enhanced Raman scattering (SERS) on Au{sub N}Rs{sub d} and Ag NPs/Au{sub N}Rs{sub d} was particularly verified using crystal violet (CV) as the molecular probe. Raman intensity obtained from a characteristic peak of CV on Au{sub N}Rs{sub d} was estimated by an enhancement factor of ≈10{sup 7} in magnitude, which increased ≈10{sup 12} in magnitude for that on Ag NPs/Au{sub N}Rs{sub d}. A highly SERS-active Ag NPs/Au{sub N}Rs{sub d} was furthermore applied for the detection of melamine (MEL) at very low concentrations. Raman-active peaks of MEL (10{sup −3} to 10{sup −12} M) in water or milk solution upon Au{sub N}Rs{sub d} or Ag NPs/Au{sub N}Rs{sub d} were well distinguished. The peaks at 680 and 702 cm{sup −1} for MEL molecules were found suitable to be used as the index for sensing low-concentration MEL in a varied solution, while that at 1051 cm{sup −1} was practical to interpret MEL molecules in water or milk solution bonded with Au (i.e., Au{sub N}Rs{sub d}) or Ag (i.e., Ag NPs/Au{sub N}Rs{sub d}) surface. At the interface of Ag NPs/Au{sub N}Rs{sub d} and MEL molecules in milk solution, a laser-induced electromagnetic field or hotspot effect was produced and

  15. Fabrication of Nanoimprint stamps for photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kouba, J [BESSY GmbH, Anwenderzentrum fuer Mikrotechnik, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Kubenz, M [Micro resist technology GmbH, Koepenicker Str. 325, 12555 Berlin (Germany); Mai, A [BESSY GmbH, Anwenderzentrum fuer Mikrotechnik, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Ropers, G [BESSY GmbH, Anwenderzentrum fuer Mikrotechnik, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Eberhardt, W [BESSY GmbH, Anwenderzentrum fuer Mikrotechnik, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Loechel, B [BESSY GmbH, Anwenderzentrum fuer Mikrotechnik, Albert-Einstein-Str. 15, 12489 Berlin (Germany)

    2006-04-01

    We report on fabrication of nanoimprint stamps for fabrication of two dimensional photonic crystals in visible range of spectra. Nanoimprint stamps made of silicon and/or nickel were successfully fabricated using electron beam lithography and advanced dry etching techniques. The quality of the stamps was evaluated using scanning electron microscopy. The fabricated stamps were also evaluated by imprinting them into suitable polymer materials.

  16. Rapid Fabrication Techniques for Liquid Rocket Channel Wall Nozzles

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    The functions of a regeneratively-cooled nozzle are to (1) expand combustion gases to increase exhaust gas velocity while, (2) maintaining adequate wall temperatures to prevent structural failure, and (3) transfer heat from the hot gases to the coolant fluid to promote injector performance and stability. Regeneratively-cooled nozzles are grouped into two categories: tube-wall nozzles and channel wall nozzles. A channel wall nozzle is designed with an internal liner containing a series of integral coolant channels that are closed out with an external jacket. Manifolds are attached at each end of the nozzle to distribute coolant to and away from the channels. A variety of manufacturing techniques have been explored for channel wall nozzles, including state of the art laser-welded closeouts and pressure-assisted braze closeouts. This paper discusses techniques that NASA MSFC is evaluating for rapid fabrication of channel wall nozzles that address liner fabrication, slotting techniques and liner closeout techniques. Techniques being evaluated for liner fabrication include large-scale additive manufacturing of freeform-deposition structures to create the liner blanks. Abrasive water jet milling is being evaluated for cutting the complex coolant channel geometries. Techniques being considered for rapid closeout of the slotted liners include freeform deposition, explosive bonding and Cold Spray. Each of these techniques, development work and results are discussed in further detail in this paper.

  17. Optical performance simulation of free-form optics for an eye implant based on a measurement data enhanced model.

    Science.gov (United States)

    Sieber, Ingo; Li, Likai; Gengenbach, Ulrich; Beckert, Erik; Steinkopf, Ralf; Yi, Allen Y

    2016-08-20

    This paper describes the application of a modeling approach for precise optical performance prediction of free-form optics-based subsystems on a demonstration model of an eye implant. The simulation model is enhanced by surface data measured on the free-form lens parts. The manufacturing of the free-form lens parts is realized by two different manufacturing processes: ultraprecision diamond machining and microinjection molding. Evaluation of both processes is conducted by a simulation of the optical performance on the basis of their surface measurement comparisons with the nominal geometry. The simulation results indicate that improvements from the process optimization of microinjection molding were obtained for the best manufacturing accuracy. PMID:27556988

  18. Proton beam writing

    OpenAIRE

    Frank Watt; Breese, Mark B H; Bettiol, Andrew A; Jeroen A. van Kan

    2007-01-01

    Proton beam (p-beam) writing is a new direct-writing process that uses a focused beam of MeV protons to pattern resist material at nanodimensions. The process, although similar in many ways to direct writing using electrons, nevertheless offers some interesting and unique advantages. Protons, being more massive, have deeper penetration in materials while maintaining a straight path, enabling p-beam writing to fabricate three-dimensional, high aspect ratio structures with vertical, smooth side...

  19. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  20. Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays.

    Science.gov (United States)

    Bauer, Aaron; Rolland, Jannick P

    2014-06-01

    Head-worn displays have begun to infiltrate the commercial electronics scene as mobile computing power has decreased in price and increased in availability. A prototypical head-worn display is both lightweight and compact, while achieving high quality optical performance. In off-axis geometries, freeform optical surfaces allow an optical designer additional degrees of freedom necessary to create a device that meets these conditions. In this paper, we show two optical see-through head-worn display designs, both comprising two freeform elements with an emphasis on visual space assessment and parameters. PMID:24921511

  1. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    OpenAIRE

    Birgit Huber; Sascha Engelhardt; Wolfdietrich Meyer; Hartmut Krüger; Annika Wenz; Veronika Schönhaar; Tovar, Günter E. M.; Kluger, Petra J.; Kirsten Borchers

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of appr...

  2. Study of the Contact Force in Free-form Surfaces Compliant EDM Polishing by Robot

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With an elastic negative pole being driven by ultra so nic vibration and being moved along the surface of work-piece compliantly by ro bot, a new kind of effective EDM, the compliant EDM, cuts the electrically condu ctive materials away and polishes work-piece of free-form surface. The study o f the contact force between the end of polishing tool and the surface of work-p iece is the key for the compliant EDM to study its cutting mechanism and to make better use of it. This paper makes a model for the cont...

  3. A Computer Vision Method for 3D Reconstruction of Curves-Marked Free-Form Surfaces

    Institute of Scientific and Technical Information of China (English)

    Xiong Hanwei; Zhang Xiangwei

    2001-01-01

    Visual method is now broadly used in reverse engineering for 3D reconstruction. Thetraditional computer vision methods are feature-based, i.e., they require that the objects must revealfeatures owing to geometry or textures. For textureless free-form surfaces, dense feature points areadded artificially. In this paper, a new method is put forward combining computer vision with CAGD.The surface is subdivided into N-side Gregory patches using marked curves, and a stereo algorithm isused to reconstruct the curves. Then, the cross boundary tangent vector is computed throughreflectance analysis. At last, the whole surface can be reconstructed by jointing these patches withG1 continuity.

  4. CW RFQ fabrication and engineering

    International Nuclear Information System (INIS)

    The design and fabrication of a four-vane RFQ to deliver a 100 mA CW proton beam at 6.7 MeV is described. This linac is an Oxygen-Free Electrolytic (OFE) copper structure 8 m in length and was fabricated using hydrogen furnace brazing as the joining technology

  5. CO II laser free-form processing of hard tissue

    Science.gov (United States)

    Werner, Martin; Klasing, Manfred; Ivanenko, Mikhail; Harbecke, Daniela; Steigerwald, Hendrik; Hering, Peter

    2007-07-01

    Drilling and surface processing of bone and tooth tissue belongs to standard medical procedures (bores and embeddings for implants, trepanation etc.). Small circular bores can be generally quickly produced with mechanical drills. However problems arise at angled drilling, the need to execute drilling procedures without damaging of sensitive soft tissue structures underneath the bone or the attempt to mill small non-circular cavities in hard tissue with high precision. We present investigations on laser hard tissue "milling", which can be advantageous for solving these problems. The processing of bone is done with a CO II laser (10.6 μm) with pulse durations of 50 - 100 μs, combined with a PC-controlled fast galvanic laser beam scanner and a fine water-spray, which helps keeping the ablation process effective and without thermal side-effects. Laser "milling" of non-circular cavities with 1 - 4 mm width and about 10 mm depth can be especially interesting for dental implantology. In ex-vivo investigations we found conditions for fast laser processing of these cavities without thermal damage and with minimised tapering. It included the exploration of different filling patterns (concentric rings, crosshatch, parallel lines, etc.), definition of maximal pulse duration, repetition rate and laser power, and optimal water spray position. The optimised results give evidence for the applicability of pulsed CO II lasers for biologically tolerable effective processing of deep cavities in hard tissue.

  6. A Laboratory Project on the Theory, Fabrication, and Characterization of a Silicon-on-Insulator Micro-Comb Drive Actuator with Fixed-Fixed Beams

    Science.gov (United States)

    Abbas, K.; Leseman, Z. C.

    2012-01-01

    A laboratory course on the theory, fabrication, and characterization of microelectromechanical systems (MEMS) devices for a multidisciplinary audience of graduate students at the University of New Mexico, Albuquerque, has been developed. Hands-on experience in the cleanroom has attracted graduate students from across the university's engineering…

  7. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    Science.gov (United States)

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  8. Using the 3D-SMS for finding starting configurations in imaging systems with freeform surfaces

    Science.gov (United States)

    Satzer, Britta; Richter, Undine; Lippmann, Uwe; Metzner, Gerburg S.; Notni, Gunther; Gross, Herbert

    2015-09-01

    As the scientific field of the freeform optics is newly developing, there is only a small number of approved starting systems for the imaging lens design. We investigate the possibility to generate starting configurations of freeform lenses with the Simultaneous Multiple Surface (SMS) method. Surface fit and transfer to the ray tracing program are discussed in detail. Based on specific examples without rotational symmetry, we analyze the potential of such starting systems. The tested systems evolve from Scheimpflug configurations or have arbitrarily tilted image planes. The optimization behavior of the starting systems retrieved from the 3D-SMS is compared to classical starting configurations, like an aspheric lens. Therefore we evaluate the root mean square (RMS) spot radius before and after the optimization as well as the speed of convergence. In result the performance of the starting configurations is superior. The mean RMS spot diameter is reduced about up to 17.6 % in comparison to an aspheric starting configuration and about up to 28 % for a simple plane plate.

  9. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    Science.gov (United States)

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering. PMID:20173861

  10. Feature, design intention and constraint preservation for direct modeling of 3D freeform surfaces

    Science.gov (United States)

    Fu, Luoting; Kara, Levent Burak; Shimada, Kenji

    2012-06-01

    Direct modeling has recently emerged as a suitable approach for 3D free-form shape modeling in industrial design. It has several advantages over the conventional, parametric modeling techniques, including natural user interactions, as well as the underlying, automatic feature-preserving shape deformation algorithms. However, current direct modeling packages still lack several capabilities critical for product design, such as managing aesthetic design intentions, and enforcing dimensional, geometric constraints. In this paper, we describe a novel 3D surface editing system capable of jointly accommodating aesthetic design intentions expressed in the form of surface painting and color-coded annotations, as well as engineering constraints expressed as dimensions. The proposed system is built upon differential coordinates and constrained least squares, and is intended for conceptual design that involves frequent shape tuning and explorations. We also provide an extensive review of the state-of-the-art direct modeling approaches for 3D mesh-based, freeform surfaces, with an emphasis on the two broad categories of shape deformation algorithms developed in the relevant field of geometric modeling. [Figure not available: see fulltext.

  11. Design of compact freeform lens for application specific Light-Emitting Diode packaging.

    Science.gov (United States)

    Wang, Kai; Chen, Fei; Liu, Zongyuan; Luo, Xiaobing; Liu, Sheng

    2010-01-18

    Application specific LED packaging (ASLP) is an emerging technology for high performance LED lighting. We introduced a practical design method of compact freeform lens for extended sources used in ASLP. A new ASLP for road lighting was successfully obtained by integrating a polycarbonate compact freeform lens of small form factor with traditional LED packaging. Optical performance of the ASLP was investigated by both numerical simulation based on Monte Carlo ray tracing method and experiments. Results demonstrated that, comparing with traditional LED module integrated with secondary optics, the ASLP had advantages of much smaller size in volume (approximately 1/8), higher system lumen efficiency (approximately 8.1%), lower cost and more convenience for customers to design and assembly, enabling possible much wider applications of LED for general road lighting. Tolerance analyses were also conducted. Installation errors of horizontal and vertical deviations had more effects on the shape and uniformity of radiation pattern compared with rotational deviation. The tolerances of horizontal, vertical and rotational deviations of this lens were 0.11 mm, 0.14 mm and 2.4 degrees respectively, which were acceptable in engineering.

  12. Reverse engineering of free-form surface based on the closed-loop theory.

    Science.gov (United States)

    He, Xue Ming; He, Jun Fei; Wu, Mei Ping; Zhang, Rong; Ji, Xiao Gang

    2015-01-01

    To seek better methods of measurement and more accurate model of reconstruction in the field of reverse engineering has been the focus of researchers. Based on this, a new method of adaptive measurement, real-time reconstruction, and online evaluation of free-form surface was presented in this paper. The coordinates and vectors of the prediction points are calculated according to a Bézier curve which is fitted by measured points. Final measured point cloud distribution is in agreement with the geometric characteristics of the free-form surfaces. Fitting the point cloud to a surface model by the nonuniform B-spline method, extracting some check points from the surface models based on grids and a feature on the surface, review the location of these check points on the surface with CMM and evaluate the model, and then update the surface model to meet the accuracy. Integrated measurement, reconstruction, and evaluation, with the closed-loop reverse process, established an accurate model. The results of example show that the measuring points are distributed over the surface according to curvature, and the reconstruction model can be completely expressed with micron level. Meanwhile, measurement, reconstruction and evaluation are integrated in forms of closed-loop reverse system.

  13. Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Jinschek, Joerg R.; Ou, Haiyan;

    2012-01-01

    A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using e...

  14. Effect of Substrate Movement Speed by Synchronous Rolling-casting Freeform Manufacturing for Metal on Microstructure and Mechanical Property of ZLl04 Aluminum Alloy Slurry

    Institute of Scientific and Technical Information of China (English)

    LUO Xiaoqiang; LI Zhengyang; CHEN Guangnan; XU Wanli; YAN Qingzhi

    2015-01-01

    Synchronous rolling-casting freeform manufacturing for Metal (SRCFMM) means that the refined liquid metal is continuously pressed out from the bottom of crucible. There is a horizontal movable plate beneath the outlet. The clearance between the outlet and the plate is about several hundred micrometers. SRCFMM, similar to additive manufacturing, implies layer by layer shaping and consolidation of feedstock to arbitrary conifgurations, normally using a computer controlled movable plate. The primary dendritic crystal is easily crushed by movement of substrate in the rolling-casting area. ZL104 was used as the test materials, determi-ning the control temperature by differential scanning thermal analysis (DSC), preparing a kind of samples by SR CFMM, then analyzing microstructures and mechanical property of the samples. Characteristics and distribution of the primary particles were assessed by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) and image analysis software. Mechanical property of the samples was assessed by vickers hardness. The results show that the samples fabricated by SRCFMM have uniform structures and good performances with the velocity of the substrate controlled about 10 cm/s and temperature at about 580℃.

  15. Advanced trans-tibial socket fabrication using selective laser sintering.

    Science.gov (United States)

    Rogers, Bill; Bosker, Gordon W; Crawford, Richard H; Faustini, Mario C; Neptune, Richard R; Walden, Gail; Gitter, Andrew J

    2007-03-01

    There have been a variety of efforts demonstrating the use of solid freeform fabrication (SFF) for prosthetic socket fabrication though there has been little effort in leveraging the strengths of the technology. SFF encompasses a class of technologies that can create three dimensional objects directly from a geometric database without specific tooling or human intervention. A real strength of SFF is that cost of fabrication is related to the volume of the part, not the part's complexity. For prosthetic socket fabrication this means that a sophisticated socket can be fabricated at essentially the same cost as a simple socket. Adding new features to a socket design becomes a function of software. The work at The University of Texas Health Science Center at San Antonio (UTHSCSA) and University of Texas at Austin (UTA) has concentrated on developing advanced sockets that incorporate structural features to increase comfort as well as built in fixtures to accommodate industry standard hardware. Selective laser sintering (SLS) was chosen as the SFF technology to use for socket fabrication as it was capable of fabricating sockets using materials appropriate for prosthetics. This paper details the development of SLS prosthetic socket fabrication techniques at UTHSCSA/UTA over a six-year period.

  16. Evolution of InAs islands in the Stranski-Krastanow mode of InAs/GaAs(001) fabricated using molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    WU Ju; JIN Pen; L(U) Xiao-jing; JIAO Yu-heng; WANG Zhan-guo

    2007-01-01

    Based on step-by-step observation using atomic force microscope, two distinctive successive phases were distinguished in accordance with evolution of the three-dimensional InAs islands during the Stranski-Krastanow mode of the InAs/GaAs(001) system fabricated using molecularbeam epitaxy. The initial phase is consistent with a power law, and the latter phase is a comparatively gradual one.

  17. Fabrication of nanopore on pyramid

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seong Soo, E-mail: sscphy2010@gmail.com [Department of Nanoscience and Instrument Center, SunMoon University, Ahsan 336-708 (Korea, Republic of); Park, Myong-Jin; Yamaguchi, Tokutaro [Department of Nanoscience and Instrument Center, SunMoon University, Ahsan 336-708 (Korea, Republic of); Kim, Sung-In; Park, Kyung-Jin [Team for Measurement and Analysis, National Nanofab Center, Daejeon 305-806 (Korea, Republic of); Park, Nam Kyoo [School of Electrical Engineering, Seoul National University, Seoul (Korea, Republic of)

    2014-08-15

    Graphical abstract: - Highlights: • Au nanopores on the apex of the pyramidal structure were fabricated. • The nanopore formations dependent upon the electron currents, the primary electron voltage, and the scan rate were examined. • Nanopore formation using focused ion beam was also investigated. - Abstract: There have been tremendous interests about the fabrication of metallic nanopore due to the ultrafast genome sequencing biosensor capability. In this report, the fabrication of the nanopore on the Au coated SiO{sub 2} pyramid has been examined using various high energy electron beam irradiation and focused ion beam (FIB) milling techniques. The microfabricated Au nano-apertures on pyramid were irradiated with various high energy electron beam and FIB techniques. The formation of the nanopore dependent on the probe current was also examined using electron probe micro-analysis (EPMA). The nanopore on the Au coated SiO{sub 2} pyramid is found to be an Au-Si mixture. The Au nanopore on the crater type hole was also fabricated using FIB Ga ion beam scanning. The shrinking rate was found to be the fastest compared with those fabricated with the other electron beam techniques.

  18. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Moon, Myoung-Woon; Lee, Kwang-Ryeol [Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-07-31

    Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. - Highlights: Black-Right-Pointing-Pointer Ti doped DLC films (Ti {approx} 24 at.% )were deposited by a hybrid ion beam system. Black-Right-Pointing-Pointer Solubility of the Ti atoms in the DLC films was found around 7 {approx} 13 at .%. Black-Right-Pointing-Pointer Microstructure evolution from DLC to nanocomposite played key role in film behaviors.

  19. Deformable registration for image-guided spine surgery: preserving rigid body vertebral morphology in free-form transformations

    Science.gov (United States)

    Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.

    2014-03-01

    Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation

  20. Smart freeform optics solution for an extremely thin direct-lit application

    Science.gov (United States)

    Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Wenzl, Franz P.; Sommer, Christian

    2016-04-01

    Light-emitting diodes (LEDs) based lighting solutions offer many advantages like the huge potential for energy saving, long lifetime, high reliability and the compact size compared to incandescent light bulbs. Especially the last-mentioned aspect favors new concepts for the design and integration of light points and luminaires. In case of a direct-lit system for general lighting applications the LEDs are separated by a certain distance, arranged in a regular array and illuminate an out-coupling surface which is placed in a certain height above the LED array. One approach to fulfill the demand of a uniform luminance of the out-coupling surface is to replace the surface by a diffuser sheet. In order to allow for a flat luminaire design the distance of the out-coupling surface has to be modified synchronously with a variation of the distance between the LEDs. This means, in order to maintain the uniformity of the luminance the distance to height ratio (DHR) of the optical arrangement has to be kept constant. A (from the viewpoint of costs desirable) reduction of the number of the LEDs and as a consequence thereof an increase of the DHR value can be achieved by using additional optical elements like, e.g., freeform optics. However, this can cause additional design problems due to the size of such optical elements. In this contribution we discuss a smart design of an extremely flat direct-lit luminaire for general lighting applications. The main advantage of this concept is the increased DHR ratio compared to diffuser sheet only-approaches and a smaller thickness of the whole set-up compared to common freeform approaches. For this demand we have designed very thin freeform optical elements with a maximal height of 75 μm that allow to maintain a uniform illumination in direct-lit applications using an LED-array with a comparably large distance between the individual LEDs. The presented design concept in addition emphasizes the use of cost-effective manufacturing methods

  1. MCF (Magnetic Compound Fluid) Polishing Process for Free-formed Resin Device using Robotic Arm

    Science.gov (United States)

    Wu, Y.; Sato, T.; Lin, W.; Yamamoto, K.; Shimada, K.

    2011-01-01

    The automatic polishing process for three-dimensional forms, such as prototype models of products made of acrylic resin, are being required to develop in order to reduce cost and time consumption. This paper proposes a new polishing technique using magnetic compound fluid (MCF) and robotic arm. Firstly, a polishing unit, which can generate a dynamic magnetic field and be attachable to the robotic arm, is developed. This unit can hold MCF slurry that acts as a flexible and restorable polishing tool for the sake of magnetic force. Secondly, the effects of the clearance between workpiece and polishing unit, the composition of MCF slurry, the relative motion, the dynamic magnetic field and the supplied amount of slurry on polishing characteristics of acrylic resin are experimentally demonstrated. As a result, the smoothest surface roughness is achieved to below 10 nm Ra in a few min, and the feasibility of polishing the free-formed device by controlling robotic arm has been confirmed.

  2. Human-computer interaction in freeform object design and simultaneous manufacturing

    Science.gov (United States)

    Zhang, Wei; Lin, Heng; Ma, Liang; Chen, Delin

    2004-03-01

    Freeform object design and simultaneous manufacturing is a novel virtual design and manufacturing method that aims to enable creative and individualized product geometry design and rapid manufacturing of the designed model. The geometry is defined through the process of "virtual sculpting" during which the designer can touch and visualize the designed object in a virtual environment. Natural human-computer interaction is a key issue for this method. This paper first briefly reviewed the principle of the method, including the system configuration, data flow, and fundamental algorithm. Then an input/output device was developed to achieve natural human-computer interaction. Structure of the device and algorithms of calculating the input coordinates and output force were presented. Finally a feedback model was proposed and discussed to apply force feedback during virtual sculpting design.

  3. Free-form thin lens design with light scattering surfaces for practical LED down light illumination

    Science.gov (United States)

    Lin, Raychiy J.; Sun, Ching-Cherng

    2016-05-01

    The free-form optical quasilens surface technology was utilized to develop and design a solid transparent plastic optical lens for the LED down light with the narrow angular light distribution requirement in the LED lighting applications. In order to successfully complete the mission, the precise mid-field angular distribution model of the LED light source was established and built. And also the optical scattering surface property of the Harvey BSDF scattering model was designed, measured, and established. Then, the optical simulation for the entire optical system was performed to develop and design this solid transparent plastic optical lens system. Finally, the goals of 40 deg angular light distribution pattern defined at full width half maximum with glare reduced in the areas of interest and the optical performance of nearly 82% light energy transmission optics were achieved for the LED down light illumination.

  4. ADAPTIVE MEASUREMENT METHOD BASED ON CHANGING-CURVATURE FOR UNKNOWN FREE-FORM SURFACE

    Institute of Scientific and Technical Information of China (English)

    Wu Shixiong; Wang Wen; Chen Zichen

    2004-01-01

    Current measurement method for unknown free-form surface has low efficiency. To acquire given precision, a lot of null points are measured. Based on change surface curvature, a new measurement planning is put forward. Sample step is evaluated from the change curvature and the locally-bounded character of extrapolating curve. Two coefficients, maximum error coefficient and local camber coefficient, are used to optimize sampling step. The first coefficient is computed to avoid sampling-point exceeding the measurement range and the second control sampling precision. Compared with the other methods, the proposed planning method can reduce the number of the measuring-point efficiently for the given precision. Measuring point distributes adaptively by the change surface curvature. The method can be applied to improve measurement efficiency and accuracy.

  5. New developments in the manufacture of large freeform surfaces with micro-structures

    Science.gov (United States)

    Roblee, Jeff; Walter, Mark; Jacobs, Ben

    2015-10-01

    A new capability for simultaneously generating micro-structures and large freeform surfaces has been developed. Multiple axes of CNC coordinated motion have been integrated into an ultra precision machine platform, enabling a wide variety of optical mold masters to be created. Facilitated by a specially developed control system, freeform optical surfaces as large as 600 x 600 x 100 mm are possible. Some machine alignments are critical to the production of accurate parts and these will be discussed. A bridge construction reduces Abbe offsets, and oil hydrostatic linear slide ways provide sub-micron straightness. The linear axes are capable of accurate positioning by means of linear motors in combination with the non contact oil hydrostatic slide ways. Optical surface finishes are achieved with the stability of a large granite base supported by a high performance vibration isolation system. The machine includes a unique, self-compensating, patented oil bearing rotary axis. Critical machine errors are measured and corrected with integrated CNC machine compensation. The machine has accuracy and repeatability for the creation of precise, intersecting groove structures with multiple angles over large areas. Optical surfaces can be generated either by a ruling/shaping operation with a non-rotating tool, or by a flycutting tool rotating on a high speed air bearing spindle. The spindle can double as a positioning axis to generate variable angle grooves in ruling mode. A Fast Tool Servo can be utilized to create fine micro-structures. Work piece quality can be evaluated in-situ with metrology sensors.

  6. Optic design of head-up displays with freeform surfaces specified by NURBS

    Science.gov (United States)

    Ott, Peter

    2008-09-01

    The imaging system of a head-up display of production-vehicles in automobile industry includes the windshield which is different for each automobile type. Thus, the the imaging system has to be matched to it. This requires an effcient optic design procedure in order to minimize the development costs. One challenge is the layout of the freeform surfaces of the imaging reflectors because there is a lack of procedures comparable to classical imaging systems like first order design or aberration theory. Additionally, reference systems are not published. Onother big issue is consistent data management. It is usual practice in automotive industriy that the surface data of the imaging surfaces will be imported in CAD systems. Often, from these systems manufacturing code is automaticall generated. Importing surface date is delicate, because the surface describtion in CAD systems is done by NURBS (non-uniform rational B-Splines) which are not or insufficently implemented in commercial optic design software. Thus, a conversion of the surface is performed by the software tools. This conversion is normally not much documented and problems with e.g. accuracy, surface continuity often arrise. In this contribution some methods for the design of an imaging reflector for a head-up display and some resulting designs are presented. Additionally it is shown that already in the design phase the freeform surface can be described by NURBS without any lack of performance. This kind of describtion can then easily be transfered to CAD systems by standardized formats like IGES or STEP without any error-prone conversion.

  7. Effect of Annealing Temperature on CuInSe2/ZnS Thin-Film Solar Cells Fabricated by Using Electron Beam Evaporation

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2013-01-01

    Full Text Available CuInSe2 (CIS thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD for crystallinity and field-emission scanning electron microscopy (FESEM for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2 films with (1 1 1, (2 2 0/(2 0 4, and (3 1 2/(1 1 6 planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2 formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2 solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.

  8. 基于微分几何的矩形照度分布自由曲面反射器设计%Freeform Reflector Design for Rectangular Illuminance Distribution Based on Differential Geometry

    Institute of Scientific and Technical Information of China (English)

    刘正权; 孙耀杰; 林燕丹

    2012-01-01

    A freeform reflector design method,which is mainly based on a first-order linear partial differential equation,is proposed for uniform rectangular illuminance distribution in the field of LED illumination. The interaction between the freeform surface and the light beam is depicted based on theory of the differential geometry and Snell's law. The energy topological relation between the Lambertian luminaire and the illuminated rectangular surface is established according to the LED luminous intensity distribution. The method deducts a first-order linear partial differential equation with some boundary conditions to represent the freeform reflector. The boundary conditions and the partial differential equation are solved by the Runge-Kutta method and finite difference method,respectively. The numerical results are validated in the form of raytracing,which reveal that the luminous flux efficiency is about 94 % ,the transverse uniformity of illuminance on the target surface is 0. 9 and the longitudinal uniformity of illuminance on the target surface is 0.8. The numerical computation time is less than 1 s.%在LED照明应用中为实现矩形均匀照度分布要求,提出了一种基于一阶线性偏微分方程的自由曲面反射器设计方法.基于微分几何理论和折射定律描述了光线与自由曲面的相互作用.根据LED光源特性建立了朗伯光源与矩形被照面之间的能量拓扑关系,推导了自由曲面反射器的一阶线性偏微分方程和边界条件.分别使用Runge-Kutta法和有限差分法对边界条件和偏微分方程进行数值计算,并对计算结果进行光线追迹仿真.仿真结果表明自由曲面反射器光通利用率达到了94%,矩形被照面横向照度均匀度达到了0.9,纵向照度均匀度达到了0.8.程序计算时间少于1 s.

  9. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  10. Beam director design report

    International Nuclear Information System (INIS)

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 300 beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project

  11. Blue electroluminescence from Sb-ZnO/Cd-ZnO/Ga-ZnO heterojunction diode fabricated by dual ion beam sputtering.

    Science.gov (United States)

    Pandey, Sushil Kumar; Awasthi, Vishnu; Verma, Shruti; Mukherjee, Shaibal

    2014-12-15

    p-type Sb-doped ZnO/i-CdZnO/n-type Ga-doped ZnO was grown by dual ion beam sputtering deposition system. Current-voltage characteristics of the heterojunction showed a diode-like rectifying behavior with a turn-on voltage of ~5 V. The diode yielded blue electroluminescence emissions at around 446 nm in forward biased condition at room temperature. The emission intensity increased with the increase of the injection current. A red shifting of the emission peak position was observed with the increment of ambient temperature, indicating a change of band gap of the CdZnO active layer with temperature in low-temperature measurement. PMID:25607047

  12. Hot rolling and annealing effects on the microstructure and mechanical properties of ODS austenitic steel fabricated by electron beam selective melting

    Science.gov (United States)

    Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng

    2016-03-01

    The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.

  13. Freeform fluidics

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R; Lind, Randall F; Love, Lonnie L; Peter, William H; Richardson, Bradley S

    2015-02-10

    A robotic, prosthetic or orthotic member includes a body formed of a solidified metallic powder. At least one working fluid cylinder is formed in the body. A piston is provided in the working fluid cylinder for pressurizing a fluid in the cylinder. At least one working fluid conduit receives the pressurized fluid from the cylinder. The body, working fluid cylinder and working fluid conduit have a unitary construction. A method of making a robotic member is also disclosed.

  14. Cluster ion beam evaporation

    International Nuclear Information System (INIS)

    Cluster ions can be made by the supercooling due to adiabatic expansion of substances to be vaporized which are ejected from a nozzle. This paper is described on the recent progress of studies concerning the cluster beam. The technique of cluster ion beam has been applied for the studies of thermonuclear plasma, the fabrication of thin films, crystal growth and electronic devices. The density of cluster ion beam is larger than that of atomic ion beam, and the formation of thin films can be easily done in high vacuum. This method is also useful for epitaxial growth. Metallic vapour cluster beam was made by the help of jetting rare gas beam. Various beam sources were developed. The characteristics of these sources were measured and analyzed. (Kato, T.)

  15. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  16. WAFER-SCALE, SOLID FREEFORM FABRICATION OF FULLY-ASSEMBLED METAL MICRO-MECHANISMS FOR MINIMALLY-INVASIVE MEDICAL DEVICES.

    Science.gov (United States)

    Cohen, A; Chen, R; Frodis, U; Wu, M; Folk, C

    2009-01-01

    The EFAB process was first presented at the SFF Symposium in 1998, at a very early stage of its development. Currently, the technology is able to produce complex 3-D devices-including mechanisms built pre-assembled-in production volumes, using a three-step process of selective electrodeposition of one metal, blanket electrodeposition of another metal, and planarization. Layer thickness is as small as 4 μm, minimum feature size is down to 10 μm, and linear tolerances are ~2 μm. Metals are biocompatible materials with mechanical properties similar to stainless steel. The technology enables new instruments for minimally-invasive surgical and interventional procedures. PMID:25284969

  17. Fabrication and characterization of silicon nanowires by means of molecular beam epitaxy; Herstellung und Charakterisierung von Silizium-Nanodraehten mittels Molekularstrahlepitaxie

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Luise

    2007-06-19

    In this work, basic processes of silicon whisker growth were examined. For the first time, Si nanowhiskers were produced under UHV conditions by Molecular Beam Epitaxy (MBE) and characterized by different analysis methods afterwards. The existence of Au/Si droplets on a Si(111) substrate surface is a precondition of this growth method. Analyses of the temporal development of the Au/Si droplets during the whisker growth show a decrease of the number of small droplets resp. whiskers during the whisker growth with increasing growth time. This behaviour, i.e. the dissolution of smaller droplets/whiskers and the growth of larger ones in parallel can be explained by Ostwald ripenning. The diffusion-determined material transition of gold, which occurs during this process, is theoretically described by the Lifshitz-Slyozov-Wagner (LSW)-Theory. After this theory only whiskers grow which radii are larger than the critical radius. The whisker radii are temperature dependend whereas analogous whisker radii exist for identical growth times. Electron microscopy analysis show that all whiskers possess a hexagonal but no cylindrical habitus. The planes that form during the growth are crystallographic (111) planes. The growth of Si nanowhiskers under MBE conditions is determined by the Vapour Liquid Solid (VLS) mechanism and by surface diffusion of Si atoms. (orig.)

  18. Effect of Building Height on Microstructure and Mechanical Properties of Big-Sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Wang Pan

    2015-01-01

    Full Text Available Electron beam melting (EBM is a layer by layer additive manufacturing technology, which has the capability of producing near-net shaped parts with complex geometries. It is also suitable for handling high melting point and reactive metallic materials, such as Ti alloy, which is widely used in the aerospace and biomedical applications. The present study focused on the relationship between the microstructure and mechanical properties of big-sized Ti-6Al-4V parts. A plate (6mm×180mm×372mm was additively manufactured by EBM. The microstructure evolution and variation of mechanical properties were investigated by using the x-ray diffraction, optical microscope, scanning electron microscope and tensile test. The results revealed that with an increasing in the build height, there was a variation in the microstructure and the mechanical properties of the build plate. Although only α phase and a relatively small fraction of β phase were detected in both the bottom and top specimens of the build plate, yield strength and ultimate tensile strength decreased with an increase of build height. This was attributed to the increase of α lath width which was caused by the different thermal histories along the build height of the plate.

  19. Effect of discharge current and deposition temperature on roughness and density of NbC films fabricated by ion beam sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay, E-mail: rajnish@rrcat.gov.in; Lodha, G. S., E-mail: rajnish@rrcat.gov.in [X-ray optics Section, Indus Synchrotron Utilization Division, Raja Ramanna Center for Advanced Technology, Indore-452013 (India)

    2014-04-24

    NbC films were prepared using Ion beam sputtering system at various discharges current from 0.4 amps to 1.2 amps at room temperature. Effect of temperature on NbC films were also studied by depositing NbC films at various temperatures from room temperature to 200,300,400 and 600°C. X-ray reflectivity (XRR) study shows that surface roughness of the film decreases with decrease in discharge current. The optimum lowest roughness 3.2Å having density 92% of bulk was achieved at discharge current 0.6 amps at 3.0 cm{sup 3}/min Ar gas flow. X-ray study also shows that film roughness decreases with increase in temperature of the film and after a certain temperature it increases with increase in temperature. The lowest surface roughness 2.1Å was achieved at 300°C with density 83% of bulk NbC at constant discharge current 0.6 amps.

  20. Interface controlled growth of nanostructures in discontinuous Ag and Au thin films fabricated by ion beam sputter deposition for plasmonic applications

    Indian Academy of Sciences (India)

    R Brahma; M Ghanashyam Krishna

    2012-08-01

    The growth of discontinuous thin films of Ag and Au by low energy ion beam sputter deposition is reported. The study focuses on the role of the film–substrate in determining the shape and size of nanostructures achieved in such films. Ag films were deposited using Ar ion energy of 150 eV while the Au films were deposited with Ar ion energies of 250–450 eV. Three types of interfaces were investigated in this study. The first set of film–substrate interfaces consisted of Ag and Au films grown on borosilicate glass and carbon coated Cu grids used as substrates. The second set of films was metallic bilayers in which one of the metals (Ag or Au) was grown on a continuous film of the other metal (Au or Ag). The third set of interfaces comprised of discontinuous Ag and Au films deposited on different dielectrics such as SiO2, TiO2 and ZrO2. In each case, a rich variety of nanostructures including self organized arrays of nanoparticles, nanoclusters and nanoneedles have been achieved. The role of the film–substrate interface is discussed within the framework of existing theories of thin film nucleation and growth. Interfacial nanostructuring of thin films is demonstrated to be a viable technique to realize a variety of nanostructures. The use of interfacial nanostructuring for plasmonic applications is demonstrated. It is shown that the surface Plasmon resonance of the metal nanostructures can be tuned over a wide range of wavelengths from 400 to 700 nm by controlling the film–substrate interface.

  1. Evaluation of antinociceptive activity of nanoliposome-encapsulated and free-form diclofenac in rats and mice

    Directory of Open Access Journals (Sweden)

    Goh JZ

    2014-12-01

    Full Text Available Jun Zheng Goh,1 Sook Nai Tang,1 Hoe Siong Chiong,1,2 Yoke Keong Yong,3 Ahmad Zuraini,1 Muhammad Nazrul Hakim1,4 1Department of Biomedical Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2InQpharm Group, Kuala Lumpur, Malaysia; 3Department of Human Anatomy, 4Halal Product Research Institute, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Diclofenac is a nonsteroidal anti-inflammatory drug (NSAID that exhibits anti-inflammatory, antinociceptive, and antipyretic activities. Liposomes have been shown to improve the therapeutic efficacy of encapsulated drugs. The present study was conducted to compare the antinociceptive properties between liposome-encapsulated and free-form diclofenac in vivo via different nociceptive assay models. Liposome-encapsulated diclofenac was prepared using the commercialized proliposome method. Antinociceptive effects of liposome-encapsulated and free-form diclofenac were evaluated using formalin test, acetic acid-induced abdominal writhing test, Randall–Selitto paw pressure test, and plantar test. The results of the writhing test showed a significant reduction of abdominal constriction in all treatment groups in a dose-dependent manner. The 20 mg/kg liposome-encapsulated diclofenac demonstrated the highest antinociceptive effect at 78.97% compared with 55.89% in the free-form group at equivalent dosage. Both liposome-encapsulated and free-form diclofenac produced significant results in the late phase of formalin assay at a dose of 20 mg/kg, with antinociception percentages of 78.84% and 60.71%, respectively. Significant results of antinociception were also observed in both hyperalgesia assays. For Randall–Sellito assay, the highest antinociception effect of 71.38% was achieved with 20 mg/kg liposome-encapsulated diclofenac, while the lowest antinociceptive effect of 17.32% was recorded with 0 mg/kg liposome formulation, whereas in the plantar test, the highest antinociceptive effect

  2. Proof-of-concept demonstration of free-form optics enhanced confocal Raman spectroscopy in combination with optofluidic lab-on-chip

    Science.gov (United States)

    Liu, Qing; De Coster, Diane; Loterie, Damien; Van Erps, Jürgen; Vervaeke, Michael; Missinne, Jeroen; Thienpont, Hugo; Ottevaere, Heidi

    2016-07-01

    Raman spectroscopy is a powerful optical and non-destructive technique and a well-known method for analysis purposes, especially to determine the molecular fingerprint of substances. Traditionally, such analyses are done in a specialized lab, with considerable requirements in terms of equipment, time and manual sampling of substances of interest. In this paper we take a step from bulky Raman spectroscopy laboratory analyses towards lab-on-chip (LOC) analyses. We present an optofluidic lab-on-chip for confocal Raman spectroscopy, which can be used for the analysis of liquids. The confocal detection suppresses the unwanted background from the polymer material out of which the chip is fabricated. We design the free-form optical reflector using non-sequential ray-tracing combined with a mathematical code to simulate the Raman scattering behavior of the substance under test. We prototype the device in Polymethyl methacrylate (PMMA) by means of ultraprecision diamond tooling. In a proof-of-concept demonstration, we first show the confocal behavior of our Raman lab-on-chip system by measuring the Raman spectrum of ethanol. In a next step, we compare the Raman spectra measured in our lab-on-chip with spectra measured with a commercial Raman spectrometer. Finally, to calibrate the system we perform Raman measurements on urea solutions with different concentrations. We achieve a detection limit that corresponds to a noise equivalent concentration of 20mM. Apart from strongly reducing the background perturbations, our confocal Raman spectroscopy system has other advantages as well. The reflector design is robust from a mechanical point of view and has the potential for mass-manufacturing using hot embossing or injection molding.

  3. Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: Energy input, orientation, and location

    International Nuclear Information System (INIS)

    Selective electron beam melting (EBM) is a layer-by-layer additive manufacturing technique that shows great promise for fabrication of medical devices and aerospace components. Before its potential can be fully realized, however, a comprehensive understanding of processing-microstructure-properties relationships is necessary. Titanium alloy (Ti–6Al–4V) parts were built in a newly developed, unique geometry to allow accurate investigation of the following intra-build processing parameters: energy input, orientation, and location. Microstructure evaluation (qualitative prior-β grain size, quantitative α lath thickness), tensile testing, and Vickers microhardness were performed for each specimen. For a wide range of energy input (speed factor 30–40), small differences in mechanical properties (2% change in ultimate tensile strength (UTS) and 3% change in yield strength (YS)) were measured. Vertically built parts were found to have no difference in UTS or YS compared to horizontally built parts, but the percent elongation at break (% EL) was 30% lower. The difference in % EL was attributed to a different orientation of the tensile axis for horizontal and vertical parts compared to the elongated prior-β grain and microstructural texture direction in EBM Ti–6Al–4V. Orientation within the x–y plane as well as location were found to have less than 3% effect on mechanical properties, and it is possible a second order effect of thermal mass contributed to these results

  4. Carbon nanotube collimator fabrication and application

    Science.gov (United States)

    Chow, Lee; Chai, Guangyu; Schenkel, Thomas

    2010-07-06

    Apparatus, methods, systems and devices for fabricating individual CNT collimators. Micron size fiber coated CNT samples are synthesized with chemical vapor deposition method and then the individual CNT collimators are fabricated with focused ion beam technique. Unfocused electron beams are successfully propagated through the CNT collimators. The CNT nano-collimators are used for applications including single ion implantation and in high-energy physics, and allow rapid, reliable testing of the transmission of CNT arrays for transport of molecules.

  5. Freeform étendue-preserving optics for light and color mixing

    Science.gov (United States)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benítez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-09-01

    Today's SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue). Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED, this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where the images of the chips merge. The virtual source is located at the same position with essentially the same size of the original source. The diameter of this optics was 3 times that of the chip-array footprint. In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell- Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness, color uniformity and efficiency.

  6. Adaptive tool servo diamond turning for enhancing machining efficiency and surface quality of freeform optics.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet

    2015-08-10

    Fast tool servo/ slow tool servo (FTS/STS) diamond turning is a very promising technique for the generation of freeform optics. However, the currently adopted constant scheme for azimuth sampling and side-feeding motion possesses no adaptation to surface shape variation, leading to the non-uniform surface quality and low machining efficiency. To overcome this defect, this paper reports on a novel adaptive tool servo (ATS) diamond turning technique which is essentially based on the novel two-degree-of-freedom (2-DOF) FTS/STS. In the ATS, the sampling interval and the side-feeding motion are actively controlled at any cutting point to adapt the machining process to shape variation of the desired surface, making both the sampling induced interpolation error and the side-feeding induced residual tool mark be within the desired tolerances. Characteristic of the required cutting motion suggests that besides the conventional z-axis servo motion, another servo motion along the x-axis synthesizing by the c-axis is mandatory for implementing the ATS. Comparative studies of surface generation of typical micro-structured surfaces in FTS/STS and ATS are thoroughly conducted both theoretically and experimentally. The result demonstrates that the ATS outperforms the FTS/STS with improved surface quality while simultaneously enhanced machining efficiency.

  7. A system for the dynamic industrial inspection of specular freeform surfaces

    Science.gov (United States)

    Wedowski, Raphael D.; Atkinson, Gary A.; Smith, Melvyn L.; Smith, Lyndon N.

    2012-05-01

    The inspection of moving specular freeform surfaces is an industrial challenge so far largely unsolved, even for the qualitative case, i.e. the mere determination of the presence of surface defects as opposed to the quantitative reconstruction of a surface. Products produced in high quantities therefore still have to be inspected manually which is labour intensive, expensive, monotonous and subjective. We propose a novel hardware setup and methodology to overcome this shortfall. The reflection of a line laser from a moving surface is captured on a translucent screen; surface defects show as gaps or bulges. Two methods to extract the resulting information are proposed and ways for its interpretation are shown. The proposed method is very cost effective and easy to implement. While limitations to surface geometry exist and absolute precision is not achievable, it is shown that the system is able to reliably detect, characterise and localise a range of typical surface defects on moving glazed ceramic tiles, our example application. The method is however applicable to a wide range of hybrid and specular surfaces.

  8. Efficient color mixing through étendue conservation using freeform optics

    Science.gov (United States)

    Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benitez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian

    2015-08-01

    Today's SSL illumination market shows a clear trend to high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness. Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. The diameter of this so-called Shell-Mixer was 3 times that of the chip array footprint. A new version of the Shell-Mixer, based on the Edge Ray Principle and conservation of etendue, where neither the outer shape of the cap nor the surfaces of the lenses are constrained to spheres or 2D Cartesian ovals will be shown in this work. The new shell is freeform, only twice as large as the original chip-array and equals the original model in terms of color uniformity, brightness and efficiency.

  9. Mesh-free free-form lensing - I. Methodology and application to mass reconstruction

    Science.gov (United States)

    Merten, Julian

    2016-09-01

    Many applications and algorithms in the field of gravitational lensing make use of meshes with a finite number of nodes to analyse and manipulate data. Specific examples in lensing are astronomical CCD images in general, the reconstruction of density distributions from lensing data, lens-source plane mapping or the characterization and interpolation of a point spread function. We present a numerical framework to interpolate and differentiate in the mesh-free domain, defined by nodes with coordinates that follow no regular pattern. The framework is based on radial basis functions (RBFs) to smoothly represent data around the nodes. We demonstrate the performance of Gaussian RBF-based, mesh-free interpolation and differentiation, which reaches the sub-percent level in both cases. We use our newly developed framework to translate ideas of free-form mass reconstruction from lensing on to the mesh-free domain. By reconstructing a simulated mock lens we find that strong-lensing only reconstructions achieve data.

  10. Multi-sensor data fusion for measurement of complex freeform surfaces

    Science.gov (United States)

    Ren, M. J.; Liu, M. Y.; Cheung, C. F.; Yin, Y. H.

    2016-01-01

    Along with the rapid development of the science and technology in fields such as space optics, multi-scale enriched freeform surfaces are widely used to enhance the performance of the optical systems in both functionality and size reduction. Multi-sensor technology is considered as one of the promising methods to measure and characterize these surfaces at multiple scales. This paper presents a multi-sensor data fusion based measurement method to purposely extract the geometric information of the components with different scales which is used to establish a holistic geometry of the surface via data fusion. To address the key problems of multi-sensor data fusion, an intrinsic feature pattern based surface registration method is developed to transform the measured datasets to a common coordinate frame. Gaussian zero-order regression filter is then used to separate each measured data in different scales, and the datasets are fused based on an edge intensity data fusion algorithm within the same wavelength. The fused data at different scales is then merged to form a new surface with holistic multiscale information. Experimental study is presented to verify the effectiveness of the proposed method.

  11. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  12. INTERFERENCE-FREE TOOL POSTURE GENERATION FOR 5-AXIS NC MILLING FREE-FORM SURFACES WITH CYLINDRICAL MILL

    Institute of Scientific and Technical Information of China (English)

    Chen Liping; Chen Yan; Hu Dejin

    2004-01-01

    The 5-axis NC machining offers the potential of efficient and accurate machining. However, the present CAM system for 5-axis control is still an unsolved problem due to interference between tool and surrounding objects. A new method is presented. There are two steps in this procedure. First, it detects the interference by calculating the shortest distance between the tool-axis and the surrounding surfaces. Then upon the maximum gouging, the interference-free tool posture for 5-axis NC cylindrical milling free-form surfaces is obtained by adjusting tool. The validity of the proposed method has been confirmed by machining an impeller.

  13. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  14. Fabrication and characteristic analysis of a poly(propylene fumarate) scaffold using micro-stereolithography technology.

    Science.gov (United States)

    Lee, Jin Woo; Lan, Phung Xuan; Kim, Byung; Lim, Geunbae; Cho, Dong-Woo

    2008-10-01

    Scaffold fabrication for regenerating functional human tissues has an important role in tissue engineering, and there has been much progress in research on scaffold fabrication. However, current methods are limited by the mechanical properties of existing biodegradable materials and the irregular structures that they produce. Recently, several promising biodegradable materials have been introduced, including poly(propylene fumarate) (PPF). The development of micro-stereolithography allows the fabrication of free-form 3D microstructures as designed. Since this technology requires a low-viscosity resin to fabricate fine structures, we reduced the viscosity of PPF by adding diethyl fumarate. Using our system, the curing characteristics and material properties of the resin were analyzed experimentally. Then, we fabricated waffle shape and 3D scaffolds containing several hundred regular micro pores. This method controlled the pore size, porosity, interconnectivity, and pore distribution. The results show that micro-stereolithography has big advantages over conventional fabrication methods. In addition, the ultimate strength and elastic modulus of the fabricated scaffolds were measured, and cell adhesion to the fabricated scaffold was observed by growing seeded cells on it. These results showed that the PPF/DEF scaffold is a potential bone scaffold for tissue engineering.

  15. Influence of the process parameters on the replication of microstructured freeform surfaces

    Science.gov (United States)

    Burgsteiner, M.; Müller, F.; Lucyshyn, T.; Kukla, C.; Holzer, C.

    2014-05-01

    Surfaces of technical parts are getting more and more attention in terms of functionalization. By modification, additional functionality is given to the part, e.g. self-cleaning effect or antireflection behavior. Nowadays mainly flat surfaces are structured which is a consequence of the available production methods. However, the demand of micro structured free form surfaces is increasing, enabling novel products. A major problem in the mass production (e.g. injection molding) of structured freeform surfaces is to demold these structures without ripping or deforming them due to occurring undercuts. Recently a novel concept was developed which overcomes this limitation. A nickel substrate containing a structure composed of lines orientated in two different directions, one orientated in melt flow direction, the other one perpendicular to that, but both with a cross-section of approximately 45 μm × 55 μm (w × h) was used as a premaster to cast a flexible master. This master made of poly(dimethylsiloxane) (PDMS) was mounted on a bending edge in an injection mold cavity. Within this paper the influence of process parameters on the replication grade of the structure lines depending on the structure orientation was evaluated, varying the holding pressure, melt and mold temperature using statistical design of experiment methods. The replication grade was evaluated by characterizing the shape of the structure lines along the entire process chain, using an infinite focus system. The results show, that the melt temperature has the biggest influence on the dimensions of the structures, the mold temperature only a slight one.

  16. Grazing incidence beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Akkapeddi, P.R.; Glenn, P.; Fuschetto, A.; Appert, Q.; Viswanathan, V.K.

    1985-01-01

    A Grazing Incidence Beam Expander (GIBE) telescope is being designed and fabricated to be used as an equivalent end mirror in a long laser resonator cavity. The design requirements for this GIBE flow down from a generic Free Electron Laser (FEL) resonator. The nature of the FEL gain volume (a thin, pencil-like, on-axis region) dictates that the output beam be very small. Such a thin beam with the high power levels characteristic of FELs would have to travel perhaps hundreds of meters or more before expanding enough to allow reflection from cooled mirrors. A GIBE, on the other hand, would allow placing these optics closer to the gain region and thus reduces the cavity lengths substantially. Results are presented relating to optical and mechanical design, alignment sensitivity analysis, radius of curvature analysis, laser cavity stability analysis of a linear stable concentric laser cavity with a GIBE. Fabrication details of the GIBE are also given.

  17. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Li, Haiyan [Key Laboratory of Computer Integrated Manufacturing System, Guangdong University of Technology, Guangzhou 510006 (China); Jing, Longfei, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Huang, Tianxuan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  18. A free-form lensing model of A370 revealing stellar mass dominated BCGs, in Hubble Frontier Fields images

    CERN Document Server

    Diego, Jose M; Broadhurst, Tom; Lam, Daniel; Vega-Ferrero, Jesus; Zheng, Wei; Lee, Slanger; Morishita, Takahiro; Bernstein, Gary; Lim, Jeremy; Silk, Joseph; Ford, Holland

    2016-01-01

    We derive a free-form mass distribution for the unrelaxed cluster A370 (z=0.375), using the latest Hubble Frontier Fields images and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems we produce a free-form lens model that identifies ~ 80 multiple-images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent Brightest Cluster Galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r<100 kpc of each BCG. This conclusion may favour a cooled cluster gas origin for BCGs, rather than via mergers of normal galaxies for which dark matter should dominate ove...

  19. Evaluation of Parameters Affecting Magnetic Abrasive Finishing on Concave Freeform Surface of Al Alloy via RSM Method

    Directory of Open Access Journals (Sweden)

    Mehrdad Vahdati

    2016-01-01

    Full Text Available The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC. The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.

  20. Design of a machine for the universal non-contact measurement of large free-form optics with 30 nm uncertainty

    NARCIS (Netherlands)

    Henselmans, R.; Rosielle, P.C.J.N.; Steinbuch, M.; Saunders, I.; Bergmans, R.

    2005-01-01

    A new universal non-contact measurement machine design for measuring free-form optics with 30 nm expanded uncertainty is presented. In the cylindrical machine concept, an optical probe with 5 mm range is positioned over the surface by a motion system. Due to a 2nd order error effect when measuring s

  1. Fabrication of multipoint light emitting optical fibers for optogenetics

    Science.gov (United States)

    Sileo, Leonardo; Pisanello, Marco; De Vittorio, Massimo; Pisanello, Ferruccio

    2015-03-01

    Multipoint Light Emitting Optical Fibers (MPF) has been recently demonstrated as a versatile tool for spatially addressable optogenetics experiments. Their fabrication has been possible thanks to a number of key microfabrication technologies, in particular the unique nanofabrication capabilities of a Focused Ion Beam. This work provides the complete description of MPF fabrication, detailing the optimization process for each fabrication step.

  2. Inspection of Free-Form Optics%自由曲面光学器件检测技术

    Institute of Scientific and Technical Information of China (English)

    李圣怡; 陈善勇; 戴一帆

    2005-01-01

    自由曲面光学器件尽管有其突出的优点,但还远不能进入到现代光学系统的主流中去,问题之一就是精密检测.自由曲面光学器件的检测对于其精密加工不可或缺,并且两者通常具有不可分割的联系.文中阐述了与不同加工阶段相关的自由曲面光学器件检测中的问题和对策.在抛光前后宜分别采用坐标测量机和光学干涉仪,两种方法都存在一些问题有待解决.实际上坐标测量方法是近十几年来自由曲面测量的主流,这方面的研究主要集中于定位、误差补偿及采样策略等问题上.相比之下,自由曲面光学器件的光学测试是一个新的技术,其中不仅是分析软件上的存在问题,首要的还是缺乏适当的测量手段.尽管也可应用专门的轮廓测量仪,但它还存在诸多限制.结合子孔径拼接技术的干涉仪在某些自由曲面光学器件的测量中前景良好,不过对于更复杂的曲面,它同样无法进行测量.%Despite their appealing advantages, free-form optics are worming their way to the mainstream of modern optical system. One of the obstacles is precision inspection. It is indispensable and usually coupled with the manufacturing process. This paper gives a survey of problems and solutions in inspection of free-form optics, associated with different manufacturing processes. Coordinate measuring machine and optical interferometer are preferred instruments before and after polishing, respectively. Problems exist in both methods. Actually coordinate measuring method has been prevailing for the recent decade for free-form surface inspection. Most attention is paid to issues such as localization, error compensation,sampling strategy, etc. In contrast, optical test of free-form optics is relatively a new technique. There are not only problems of analysis software, but first a lack of proper means. Special profilers may find applications, yet suffer a number of limitations

  3. Fabrication Technology

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  4. Multi-Volume CAD Modeling for Heterogeneous Object Design and Fabrication

    Institute of Scientific and Technical Information of China (English)

    SUN Wei

    2000-01-01

    he current computer-aided technologies in design and product development, the evolution of CAD modeling, and a framework of multi-volume CAD modeling system for heterogeneous object design and fabrication are presented in this paper.The multi-volume CAD modeling system is presented based on nonmanifold topological elements. Material identifications are defined as design attributes introduced along with geometric and topological information at the design stage. Extended Euler operation and reasoning Boolean operations for merging and extraction are executed according to the associated material identifications in the developed multi-volume modeling system for heterogeneous object.An application example and a pseudo-processing algorithm for prototyping of heterogeneous structure through solid free-form fabrication are also described.1

  5. Terahertz wave behaviours in ceramic and metal structures fabricated by spatial joining of micro-stereolithography

    Energy Technology Data Exchange (ETDEWEB)

    Kirihara, S; Niki, T; Kaneko, M [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka Ibaraki, 567-0047 Osaka (Japan)], E-mail: kirihara@jwri.osaka-u.ac.jp

    2009-05-01

    We have newly developed micro-stereolithography system to realize freeform fabrication of micrometer order 3D metal structures. In this process, the photo-sensitive resin paste mixed with nanometer sized ceramic and metal particles was spread on a glass substrate with 10 {mu}m in layer thickness by using a mechanical knife edge, and two-dimensional images of UV ray were exposed using DMD (Digital Micro-mirror Device) with 2 {mu}m in part accuracy. Through the layer by layer stacking process, micrometer order three-dimensional objects were formed. Dense metal structures could be obtained by dewaxing and successive sintering of the formed objects. In our recent investigation, micro photonic crystals with lattice structures of alumina or pure copper were fabricated in order to control electromagnetic wave propagation in a terahertz (THz) frequency range. The micro photonic crystals with a diamond structure perfectly reflected the THz wave by Bragg diffraction.

  6. Electron Beam Lithography

    Science.gov (United States)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  7. Compact electron beam focusing column

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  8. Rapid fabrication of materials using directed light fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J.; Lewis, G.K.; Milewski, J.O.; Chen, K.C.; Nemec, R.B.

    1997-10-01

    Directed light fabrication (DLF) is a rapid fabrication process that fuses gas delivered metal powders within a focal zone of a laser beam to produce fully dense, near-net shape, 3-dimensional metal components from a computer generated solid model. Computer controls dictate the metal deposition pathways, and no preforms or molds are required to generate complex sample geometries. The focal zone of the laser beam is programmed to move along or across a part cross-section, and coupled with a multi-axis sample stage, produces the desired part. By maintaining a constant molten puddle within the focal zone, a continuous liquid/solid interface is possible while achieving constant cooling rates that can be varied between 10 to 10{sup 4} K s{sup -1} and solidification growth rates (that scale with the beam velocity) ranging up to 10{sup 2} m s{sup -1}. The DLF technique offers unique advantages over conventional thermomechanical processes in that many labor and equipment intensive steps can be avoided. Moreover, owing to the flexibility in power distributions of lasers, a variety of materials can be processed, ranging from aluminum alloys to rhenium, and including intermetallics such as Mo{sub 5}Si{sub 3}. As a result, the rapid fabrication of conventional and advanced materials are possible.

  9. Fabrication and Characterization of NEMS

    Institute of Scientific and Technical Information of China (English)

    JIAO Ji-wei; YANG Heng; LI Tie; LI Xin-xin; WANG Yue-lin

    2007-01-01

    We proposed a called "nano-fabrication based on MEMS technology" approach to realize the typical nano-electromechanical structures,such as integrated nano probe,ultrathin cantilever,silicon nano wire,and doubly clamped nano beam,to demonstrate the feasibility and advantages. We also introduced the characterization of nano structures based on laser vibrometer and piezoresistive effect,the latter method was first time applied to investigate a doubly daped nanobeam with a thickness of about 200 nm.

  10. Molecular beam epitaxy

    CERN Document Server

    Pamplin, Brian R

    1980-01-01

    Molecular Beam Epitaxy introduces the reader to the use of molecular beam epitaxy (MBE) in the generation of III-V and IV-VI compounds and alloys and describes the semiconductor and integrated optics reasons for using the technique. Topics covered include semiconductor superlattices by MBE; design considerations for MBE systems; periodic doping structure in gallium arsenide (GaAs); nonstoichiometry and carrier concentration control in MBE of compound semiconductors; and MBE techniques for IV-VI optoelectronic devices. The use of MBE to fabricate integrated optical devices and to study semicond

  11. MEMS: fabrication of cryogenic bolometers

    Science.gov (United States)

    Kunert, J.; Anders, S.; May, T.; Zakosarenko, V.; Zieger, G.; Kreysa, E.; Meyer, H.-G.

    2012-02-01

    Cryogenic bolometers are among the most sensitive devices for the detection of electromagnetic radiation in the submillimeter wavelength range. Such radiation is of interest for astronomical observations as well as for security checks. We describe how we fabricate an array of these bolometers. Standard contact lithography is sufficient for these relatively coarse features. To increase the sensitivity, it is imperative to weaken the thermal link between the thermistors (the sensing devices) and the temperature bath. This is achieved by placing them on a silicon nitride membrane that is structured so that the thermistors are placed on a platform which is held only by a few beams. The fabrication process does not require sophisticated lithographic techniques, but special care to achieve the desired yield of 100 % intact bolometers in one array. We discuss bolometer basics and requirements for our applications, critical fabrication issues, and show results of complete systems built for a radio telescope and for security cameras.

  12. SRF Cavity Fabrication and Materials

    CERN Document Server

    Singer, W

    2014-01-01

    The technological and metallurgical requirements of material for highgradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10μg/g. The hydrogen content should be kept below 2μg/g to prevent degradation of the Q-value under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Defects may be detected by quality control methods such as eddy current scanning and identified by a number of special methods. Conventional and alternative cavity fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and Electron-Beam Welding (EBW). The welding of half-cells is a delicate...

  13. Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity.

    Science.gov (United States)

    Kang, Hyun-Wook; Cho, Dong-Woo

    2012-09-01

    Tissue engineering, which is the study of generating biological substitutes to restore or replace tissues or organs, has the potential to meet current needs for organ transplantation and medical interventions. Various approaches have been attempted to apply three-dimensional (3D) solid freeform fabrication technologies to tissue engineering for scaffold fabrication. Among these, the stereolithography (SL) technology not only has the highest resolution, but also offers quick fabrication. However, a lack of suitable biomaterials is a barrier to applying the SL technology to tissue engineering. In this study, an indirect SL method that combines the SL technology and a sacrificial molding process was developed to address this challenge. A sacrificial mold with an inverse porous shape was fabricated from an alkali-soluble photopolymer by the SL technology. A sacrificial molding process was then developed for scaffold construction using a variety of biomaterials. The results indicated a wide range of biomaterial selectivity and a high resolution. Achievable minimum pore and strut sizes were as large as 50 and 65 μm, respectively. This technology can also be used to fabricate three-dimensional organ shapes, and combined with traditional fabrication methods to construct a new type of scaffold with a dual-pore size. Cytotoxicity tests, as well as nuclear magnetic resonance and gel permeation chromatography analyses, showed that this technology has great potential for tissue engineering applications.

  14. An Ethology of Urban Fabric(s)

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Thomsen, Bodil Marie Stavning

    2014-01-01

    The article explores a non-metaphorical understanding of urban fabric(s), shifting the attention from a bird’s eye perspective to the actual, textural manifestations of a variety of urban fabric(s) to be studied in their real, processual, ecological and ethological complexity within urban life. We...

  15. Methods for calculating the vergence of an astigmatic ray bundle in an optical system that contains a freeform surface

    Science.gov (United States)

    Shirayanagi, Moriyasu

    2016-07-01

    A method using the generalized Coddington equations enables calculating the vergence of an astigmatic ray bundle in the vicinity of a skew ray in an optical system containing a freeform surface. Because this method requires time-consuming calculations, however, there is still room for increasing the calculation speed. In addition, this method cannot be applied to optical systems containing a medium with a gradient index. Therefore, we propose two new calculation methods in this paper. The first method, using differential ray tracing, enables us to shorten computation time by using simpler algorithms than those used by conventional methods. The second method, using proximate rays, employs only the ray data obtained from the rays exiting an optical system. Therefore, this method can be applied to an optical system that contains a medium with a gradient index. We show some sample applications of these methods in the field of ophthalmic optics.

  16. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  17. Fabrication of faceted nanopores in magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shujing; Cao, Fan; Zheng, He; Sheng, Huaping; Liu, Chun; Liu, Yu; Zhao, Dongshan; Wang, Jianbo, E-mail: wang@whu.edu.cn [School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-Structures, Wuhan University, Wuhan 430072 (China)

    2013-12-09

    In this paper, using high resolution transmission electron microscopy, we showed the fabrication of faceted nanopores with various shapes in magnesium by focused electron beam (e-beam). The characteristics of nanopore shapes and the crystallographic planes corresponding to the edges of the nanopores were discussed in detail. Interestingly, by manipulating the e-beam (e.g., irradiation direction and duration), the nanopore shape and size could be effectively controlled along different directions. Our results provide important insight into the nanopore patterning in metallic materials and are of fundamental importance concerning the relevant applications, such as nanopore-based sensor, etc.

  18. Fabrication of faceted nanopores in magnesium

    International Nuclear Information System (INIS)

    In this paper, using high resolution transmission electron microscopy, we showed the fabrication of faceted nanopores with various shapes in magnesium by focused electron beam (e-beam). The characteristics of nanopore shapes and the crystallographic planes corresponding to the edges of the nanopores were discussed in detail. Interestingly, by manipulating the e-beam (e.g., irradiation direction and duration), the nanopore shape and size could be effectively controlled along different directions. Our results provide important insight into the nanopore patterning in metallic materials and are of fundamental importance concerning the relevant applications, such as nanopore-based sensor, etc

  19. Fabrication and Prototyping Lab

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The Fabrication and Prototyping Lab for composite structures provides a wide variety of fabrication capabilities critical to enabling hands-on research and...

  20. Rapid fabrication of miniature lens arrays by four-axis single point diamond machining.

    Science.gov (United States)

    McCall, Brian; Tkaczyk, Tomasz S

    2013-02-11

    A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion - X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error.

  1. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  2. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E. M.; Kluger, Petra J.; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors. PMID:27104576

  3. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization

    Directory of Open Access Journals (Sweden)

    Birgit Huber

    2016-04-01

    Full Text Available Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM, biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap® technology by the authors.

  4. Blood-Vessel Mimicking Structures by Stereolithographic Fabrication of Small Porous Tubes Using Cytocompatible Polyacrylate Elastomers, Biofunctionalization and Endothelialization.

    Science.gov (United States)

    Huber, Birgit; Engelhardt, Sascha; Meyer, Wolfdietrich; Krüger, Hartmut; Wenz, Annika; Schönhaar, Veronika; Tovar, Günter E M; Kluger, Petra J; Borchers, Kirsten

    2016-01-01

    Blood vessel reconstruction is still an elusive goal for the development of in vitro models as well as artificial vascular grafts. In this study, we used a novel photo-curable cytocompatible polyacrylate material (PA) for freeform generation of synthetic vessels. We applied stereolithography for the fabrication of arbitrary 3D tubular structures with total dimensions in the centimeter range, 300 µm wall thickness, inner diameters of 1 to 2 mm and defined pores with a constant diameter of approximately 100 µm or 200 µm. We established a rinsing protocol to remove remaining cytotoxic substances from the photo-cured PA and applied thio-modified heparin and RGDC-peptides to functionalize the PA surface for enhanced endothelial cell adhesion. A rotating seeding procedure was introduced to ensure homogenous endothelial monolayer formation at the inner luminal tube wall. We showed that endothelial cells stayed viable and adherent and aligned along the medium flow under fluid-flow conditions comparable to native capillaries. The combined technology approach comprising of freeform additive manufacturing (AM), biomimetic design, cytocompatible materials which are applicable to AM, and biofunctionalization of AM constructs has been introduced as BioRap(®) technology by the authors. PMID:27104576

  5. Polymorphous computing fabric

    Science.gov (United States)

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  6. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates

    Science.gov (United States)

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Xia; Xu, Zhenbo; Li, Bing

    2016-01-01

    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs. PMID:27384561

  7. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates.

    Science.gov (United States)

    Liang, Zhili; Li, Lin; Qi, Haiping; Zhang, Xia; Xu, Zhenbo; Li, Bing

    2016-01-01

    Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of distribution of peptide lengths and the amino acid compositions of protein in PEDs. PMID:27384561

  8. Geometric Corroboration of the Earliest Lensed Galaxy at z~10.8 from Robust Free-Form Modelling

    CERN Document Server

    Chan, Brian M Y; Lim, Jeremy; Diego, Jose M; Zitrin, Adi; Coe, Dan; Ford, Holland C

    2016-01-01

    A multiply-lensed galaxy, MACS0647-JD, with a probable photometric redshift of $z\\simeq 10.7^{+0.6}_{-0.4}$ is claimed to constitute one of the very earliest known galaxies, formed well before reionization was completed. However, spectral evidence that MACS0647-JD lies at high redshift has proven infeasible and so here we seek an independent lensing based "geometric redshift" derived from the angles between the three lensed images of MACS0647-JD, using our free-form mass model (WSLAP+) for the lensing cluster MACSJ0647.7+7015 (at $z=0.591$). Our lens model uses the 9 sets of multiple images, including those of MACS0647-JD, identified by the CLASH survey towards this cluster. We convincingly exclude the low redshift regime of $z<3$, for which convoluted critical curves are generated by our method, as the solution bends to accommodate the wide angles of MACS0647-JD for this low redshift. Instead, a best fit to all sets of lensed galaxy positions and redshifts provides a geometric redshift of $z\\simeq 10.8^{+...

  9. Tool selection and collision-free in 5-axis numerical control machining of free-form surfaces

    Institute of Scientific and Technical Information of China (English)

    杨长祺; QIN; Datong; 等

    2002-01-01

    The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented.The combination of different cutters is adopt aiming at short machining time and high precision.The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface.Several larger cutters are slected to machine the surface in order to find the interference-free area.The difference of machining time for this area between the optimal small cutter and the large cutters is calculated.The functional relationship between the machining time and the radius of a cutter is established,by which the optimal number of cutters is obtained.The combination of cutters,which possesses the minimum overall machining time,is selected as the optimal cutter sizes.A case study has demonstrated the validity of the proposed methodology and algorithms.

  10. Predictive Synthesis of Freeform Carbon Nanotube Microarchitectures by Strain-Engineered Chemical Vapor Deposition.

    Science.gov (United States)

    Park, Sei Jin; Zhao, Hangbo; Kim, Sanha; De Volder, Michael; John Hart, A

    2016-08-01

    High-throughput fabrication of microstructured surfaces with multi-directional, re-entrant, or otherwise curved features is becoming increasingly important for applications such as phase change heat transfer, adhesive gripping, and control of electromagnetic waves. Toward this goal, curved microstructures of aligned carbon nanotubes (CNTs) can be fabricated by engineered variation of the CNT growth rate within each microstructure, for example by patterning of the CNT growth catalyst partially upon a layer which retards the CNT growth rate. This study develops a finite-element simulation framework for predictive synthesis of complex CNT microarchitectures by this strain-engineered growth process. The simulation is informed by parametric measurements of the CNT growth kinetics, and the anisotropic mechanical properties of the CNTs, and predicts the shape of CNT microstructures with impressive fidelity. Moreover, the simulation calculates the internal stress distribution that results from extreme deformation of the CNT structures during growth, and shows that delamination of the interface between the differentially growing segments occurs at a critical shear stress. Guided by these insights, experiments are performed to study the time- and geometry-depended stress development, and it is demonstrated that corrugating the interface between the segments of each microstructure mitigates the interface failure. This study presents a methodology for 3D microstructure design based on "pixels" that prescribe directionality to the resulting microstructure, and show that this framework enables the predictive synthesis of more complex architectures including twisted and truss-like forms.

  11. Increase in the diffusion length of minority carriers in Al{sub x}Ga{sub 1–x}N alloys ({sub x} = 0–0.1) fabricated by ammonia molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Malin, T. V., E-mail: mal-tv@mail.ru; Gilinsky, A. M.; Mansurov, V. G.; Protasov, D. Yu.; Kozhuhov, A. S. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Yakimov, E. B. [Russian Academy of Sciences, Institute of Microelectronics Technology and High Purity Materials (Russian Federation); Zhuravlev, K. S. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The room-temperature diffusion length of minority carriers in n-Al{sub 0.1}Ga{sub 0.9}N layers grown by ammonia molecular beam epitaxy on sapphire (0001) substrates used in structures for ultraviolet photodetectors is studied. Measurements were performed using the spectral dependence of the photocurrent recorded in a built-in p–n junction for thin samples and using the induced electron-current procedure for films up to 2 µm thick. The results show that the hole diffusion length in n-AlGaN films is 120–150 nm, which is larger than in GaN films grown under similar growth conditions by a factor of 3–4. This result can be associated with the larger lateral sizes characteristic of hexagonal columns in AlGaN layers grown by molecular beam epitaxy. No increase in the hole diffusion length is observed for thicker films.

  12. Microphotonic parabolic light directors fabricated by two-photon lithography

    OpenAIRE

    Atwater, J.H.; Spinelli, Paolo; Kosten, E.; Parsons, J.; C. van Lare; Van de Groep, J.; García de Abajo, Francisco Javier; Polman, A.; Atwater, H. A.

    2011-01-01

    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 m high and 10 m in diameter exhibit strong beam directivity with a beam divergence of 5.6, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors f...

  13. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  14. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  15. Electro-Hydraulic Forming of Sheet Metals: Free-forming vs. Conical-die Forming

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, Aashish; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.; Soulami, Ayoub; Ahzi, Said

    2012-05-01

    This work builds upon our recent advances in quantifying high-rate deformation behavior of sheet metals, during electro-hydraulic forming (EHF), using high-speed imaging and digital image correlation techniques. Following recent publication of an earlier manuscript, resulting from this project, in the Journal of Materials Processing Technology, this manuscript further details our results and compares forming behavior when the process is carried out inside an open-die or a conical die. It is anticipated that quantitative information of the sheet deformation history, made possible by the experimental technique developed in this work, will improve our understanding on the roles of strain-rate and sheet-die interactions in enhancing the sheet metal formability during high-rate forming. This knowledge will be beneficial to the automotive industry and enable them to fabricate light-weight sheet parts out of Al and advanced high strength steels.

  16. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  17. Multi-electron beam system for high resolution electron beam induced deposition

    NARCIS (Netherlands)

    Van Bruggen, M.J.

    2008-01-01

    The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure

  18. Applications of focused ion beams in microelectronics

    International Nuclear Information System (INIS)

    We present the conclusions of the RSRE programme on the application of focused ion beams in microelectronics and review the literature published in this field. We discuss the design and performance of focused beam implanters and the viability of their application to semiconductor device fabrication. Applications in the areas of lithography, direct implantation and micromachining are discussed in detail. Comparisons are made between the use of focused ion beams and existing techniques for these fabrication processes with a strong emphasis placed on the relative throughputs. We present results on a novel spot size measurement technique and the effect of beam heating on resist. We also present the results of studies into implantation passivation of resist to oxygen plasma attack as basis for a dry development lithography scheme. A novel lithography system employing flood electron exposure from a photocathode which is patterned by a focused ion beam which can also be used to repair mask defects is considered. (author)

  19. Winding light beams along elliptical helical trajectories

    Science.gov (United States)

    Wen, Yuanhui; Chen, Yujie; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-07-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We developed a superposition caustic method capable of winding light beams along nonconvex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implemented the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of nonconvex trajectories, thereby opening up a route of manipulating light beams for fundamental research and practical applications.

  20. Winding light beams along elliptical helical trajectories

    CERN Document Server

    Wen, Yuanhui; Zhang, Yanfeng; Chen, Hui; Yu, Siyuan

    2016-01-01

    Conventional caustic methods in real or Fourier space produced accelerating optical beams only with convex trajectories. We develop a superposition caustic method capable of winding light beams along non-convex trajectories. We ascertain this method by constructing a one-dimensional (1D) accelerating beam moving along a sinusoidal trajectory, and subsequently extending to two-dimensional (2D) accelerating beams along arbitrarily elliptical helical trajectories. We experimentally implement the method with a compact and robust integrated optics approach by fabricating micro-optical structures on quartz glass plates to perform the spatial phase and amplitude modulation to the incident light, generating beam trajectories highly consistent with prediction. The theoretical and implementation methods can in principle be extended to the construction of accelerating beams with a wide variety of non-convex trajectories, thereby opening up a new route of manipulating light beams for fundamental research and practical ap...

  1. 自由曲面LED汽车前照灯光学透镜设计方法%Design method of LED headlamp freeform optical lens

    Institute of Scientific and Technical Information of China (English)

    王洪; 陈赞吉; 吴衡; 葛鹏

    2014-01-01

    由于LED配光特性不同于传统光源,为了将LED应用于汽车照明中需对LED进行二次光学设计。文中根据LED汽车前照灯的配光特性,提出了一种自由曲面LED汽车前照灯光学透镜的设计方法。首先由能量守恒原理,在接收屏上的坐标和透镜自由曲面上的坐标之间建立能量的一一对应关系,基于非成像光学理论,采用照度优化设计法,运用数值计算求解出光学透镜曲面各个点坐标的坐标值,并使用三维模型软件制作出透镜光学模型。通过蒙特卡洛模拟法来追迹光线仿真,最后的配光效果完全满足《汽车用LED前照灯》(GB25991-2010)标准,系统的光学效率得到显著提高,可达到91%。%Different from the light distribution characteristics of the traditional light source, LED light characteristics are more complex, the second optical design for LED used in automotive lighting needs to be done. According to the light distribution characteristics of LED automobile headlamp, a freeform optical lens design method for LED headlamp was presented in this paper. By establishing one- to- one relationship between the coordinates of point on the receiving surface and the coordinates of point on the freeform surface of lens according to energy conservation principle, determining the mapping relationship between the energy and the lens, and applying the illumination optimization method, the coordinates of point on the freeform surface of lens was solved out with numerical methods based on non- imaging optics theory, then modeling software was used to establish an optical model for the freeform optical lens. Through tracing the light with Monte Carlo simulation method, the final effect of light distribution fully meets the Automotive headlamps with LED light sources and/or LED modules (GB25991-2010) standards. The simulation results show that the optical efficiency is improved greatly and can be up to 91%.

  2. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  3. A traveling wave piezoelectric beam robot

    International Nuclear Information System (INIS)

    In this paper, the operation principles of a traveling wave piezoelectric beam robot are presented. A prototype consisting of an aluminum beam structure, with two non-collocated piezoelectric patches bonded on its surface, was fabricated and tested to demonstrate the generation of a traveling wave on the beam based on the one mode excitation and the two mode excitation operation principles for propulsion. A numerical model was developed and used to study and optimize the generated motion of the piezoelectric beam robot. Experimental characterization of the robot for the two types of operation has been carried out, a comparison between them is made and results are given in this paper. (paper)

  4. Chemically enabled nanostructure fabrication

    Science.gov (United States)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  5. Determination of Free-Form and Peptide Bound Pyrraline in the Commercial Drinks Enriched with Different Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Zhili Liang

    2016-07-01

    Full Text Available Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs in foods. Peptide-enriched drinks (PEDs are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr. In this study we determined free-form pyrraline (Free-Pyr and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH, soy protein hydrolysate (SPH and collagen protein hydrolysate (CPH. A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE. The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs.

  6. Fabrication Design Progress of ITER Vacuum Vessel in Korea

    International Nuclear Information System (INIS)

    Full text: Korea as the in kind provider of the two ITER vacuum vessel (VV) main vessel sectors, equatorial and lower ports structures made the first procurement arrangement (PA) on VV. After the contract with Hyundai Heavy Industry for the VV fabrication, HHI with KODA do some R and D to develop the fabrication procedures. The two types of mock up to optimize the electron beam welding techniques will be fabricated. In parallel, the fabrication design is also undergoing with the special attention on the control of welding deformation. To meet the special requirement on the material, the supporting R and D with KO mill maker was also done. (author)

  7. Solving the input data in error correction of optical fabrication by finite Fourier coefficient algorithm

    Institute of Scientific and Technical Information of China (English)

    CHENG; Haobo; SUN; Guozheng; FENG; Zhijing

    2006-01-01

    A free-form lens (FFL) is a special surface that is difficult to be fabricated. FFL are usually fabricated by computer-controlled optical surfacing (CCOS) technique. During CCOS, the material removal amount is determined by the unit removal function (URF) convoluting with the input data--the dwell time. When the removal amount and the URF are known, how to solve the input data involves the special algorithm--deconvolution. Usually, the input data are solved by virtue of low pass filter or iterative methods. However, an approximation solution would destroy the machining stability necessary to perform precisely CCOS. In this paper, to solve the input data, a new method that is based on the finite Fourier coefficient is put forward. It can give a continuous and accurate solution for fabricating choice. Several parameters are simulated, which influence the process of CCOS, and evaluating on the effect of the method is also carried out. Experimental results verify that this method is suitable for guiding the manufacturing of high precision FFL.

  8. Beam splitter and combiner based on Bloch oscillations in spatially modulated waveguide arrays

    CERN Document Server

    Zhang, Yiqi; Zhong, Weiping; Wen, Feng; Guo, Yang; Guo, Yao; Lu, Keqing; Zhang, Yanpeng

    2014-01-01

    We numerically investigate the light beam propagation in periodic waveguide arrays which are elaborately modulated with certain structures. We find that the light beam may split, coalesce, deflect, and be localized during propagation in these spatially modulated waveguide arrays. All the phenomena originate from Bloch oscillations, and supply possible method for fabricating on-chip beam splitters and beam combiners.

  9. Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures.

    Science.gov (United States)

    Stankevičius, Evaldas; Garliauskas, Mantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas

    2015-11-01

    Here, we report the formation of Bessel-like beam array from periodic patterns fabricated by the four-beam interference lithography. Characteristics of the generated Bessel-like beams depend on geometrical parameters of the fabricated microaxicon-like structures, which can be easily controlled via the laser processing parameters. The output beam characteristics disclose the attributes of Bessel beams. The demonstrated method enables an easy fabrication of angular-tolerant wavefront detectors, optical tweezers, optical imaging systems or materials processing tools, having a broad range of applications. PMID:26561125

  10. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  11. 基于光学自由曲面的离轴三反光学系统%Off-axis three-mirror system based on freeform mirror

    Institute of Scientific and Technical Information of China (English)

    薛栋林; 郑立功; 张峰

    2011-01-01

    为了研制长焦距大视场离轴三反空间光学系统,描述了自由曲面光学数理模型,设计了基于自由曲面的离轴三反光学系统.针对焦距为4500 mm,成像视场角为11°,系统总长与焦距的比值为1/3的光学系统,对比分析了传统离轴三反光学系统和次镜为自由曲面的离轴三反光学系统的关键性能.在提出的光学系统中次镜采用自由曲面设计,提升了光学系统的像差平衡能力;最终选用相对孔径为1/9.5的设计方案,使光学系统全视场平均波像差优于0.030λ(λ=632.8 nm),平均传递函数优于0.434(71.4 lp/mm),接近衍射极限;在同等条件下系统设计传递函数比传统离轴三反系统提高5%以上.优化设计后光学系统自由曲面次镜与理论球面偏差为1.1λ,采用定制的标准球面镜结合基于数字样板的非零位检测方法可完成面形实时高精度检测,解决了大口径凸自由曲面检测的难题.结果表明,采用基于自由曲面次镜的空间光学系统,具有体积小、技术可实现性强、波像差和传递函数等关键性能优越等优点.%A freeform off-axis three-mirror system based on a freeform mirror was designed for the long focal length and wide-field off-axis three-mirror system in a space telescope. To obtain a system with a focal length of 4 500 mm, field of view of 11° and the ratio of the total length of system and the focal length in 1/3, the design and performance between traditional off-axis three-mirror system and freeform off-axis three-mirror system were compared. In the designed optical system, the freeform mirror was introduced to the secondary mirror to enhance system optimization and improve the balance capacity for optical aberration. After the comparison and optimization, the relative aperture of 1/9. 5 was chosen. In the system, the average of wavefront error of all field of view is better than 0. 030λ(λ= 632. 8 nm), and the average of the Modulation Transform

  12. Polarization converter for higher-order laser beams using a single binary diffractive optical element as beam splitter.

    Science.gov (United States)

    Khonina, Svetlana N; Karpeev, Sergey V; Alferov, Sergey V

    2012-06-15

    We propose a new approach to generating a pair of initial beams for a polarization converter that operates by summing up two opposite-sign circularly polarized beams. The conjugated pairs of vortex beams matched with laser modes are generated using binary diffractive optical elements (DOEs). The same binary element simultaneously serves two functions: a beam shaper and a beam splitter. Two proposed optical arrangements are compared in terms of alignment complexity and energy efficiency. The DOEs in question have been designed and fabricated. Natural experiments that demonstrate the generation of vector higher-order cylindrical beams have been conducted. PMID:22739916

  13. Nano-fabrication processes for magnesium diboride

    International Nuclear Information System (INIS)

    We compare the various nanowire fabrication processes for MgB2 ultra-thin films: Ar ion beam milling with or without a protective layer (Au and SiO2), an reactive ion etching (RIE) with fluorine-based gas, and a liftoff process using an Si/C bilayer mask. With Ar milling, we can fabricate nanowires down to 200 nm-wide, but the superconducting properties degrade as the width decreases further. MgB2 can be etched by the fluorine-based RIE, but the etch rate is too slow for fabrication. The liftoff process gives the reliable and damage-free nanowires down to 100 nm-wide.

  14. OrmoStamp mold fabrication via PBW for NIL

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Yao, Y.; Kan, J.A. van, E-mail: phyjavk@nus.edu.sg

    2015-04-01

    Nanoimprint lithography (NIL) is a promising technology that can fabricate structures with high resolution and high throughput. To replicate patterns through NIL, a high quality master mold is needed. A UV patternable inorganic–organic hybrid polymer, OrmoStamp with high resolution is promising for the fabrication of NIL molds. Here, OrmoStamp molds were fabricated by proton beam writing (PBW) in resist followed by OrmoStamp casting. In this paper, different resists (HSQ, PMMA, SU-8 and SML) were evaluated by PBW for OrmoStamp mold fabrication. The results show that HSQ gives the smallest line width down to 30 nm. These lines have subsequently been successfully replicated in OrmoStamp. High aspect ratio structures in OrmoStamp and Ni were obtained from proton beam written resist samples, featuring an aspect ratio of ∼7 and ∼70, respectively. Finally thermal NIL has been demonstrated in PMMA using OrmoStamp molds.

  15. Fabrication of microlens and microlens array on polystyrene using CO 2 laser

    KAUST Repository

    Fan, Yiqiang

    2011-11-01

    This study presents a new process for fabricating microlens and microlens arrays directly on a surface of polystyrene using a CO2 laser. The working spot of the polystyrene is heated locally by a focused CO2 laser beam, which tends to have a hyperboloid profile due to the surface tension and can be used as a microlens. The microlenses with different dimensions were fabricated by changing the power of the laser beam. Microlens array was also fabricated with multiple scans of the laser beam on the polystyrene surface. © (2012) Trans Tech Publications, Switzerland.

  16. Microstructure and magneto-resistor of Co/Ru multimembranes fabricated by electron beam vapor deposition metheod%电子束蒸发法制备Co/Ru多层膜的微观结构与磁电阻

    Institute of Scientific and Technical Information of China (English)

    郝安林

    2014-01-01

    The Co/Ru multimembranes with different thickness of Co layer were prepared by electron beam vapor deposition. XRD, HRTEM and TEM were employed to investigate the microstructure of the multimembranes. The effect of microstructure on magnetic properties and the magneto-resistor origin mechanism of Co/Ru multimembranes were discussed. The results show that the thickness of Co layer has great effect on the microstructure and magneto-resisitor properties of the multimembranes. When the thickness of Co layer is more than 0.8 nm, the growth of multimembranes follows Frank-van der Merwe mode while the crystallinity is better with the thickness of the Co layer increase, and the multimembranes show negative magneto-resistance effect;when the thickness of Co layer is less than 0.5 nm, the growth of multimembranes follows Volmer-Weber mode and the multimembranes show positive magneto-resistance effect due to the asymmetry interface.%采用电子束蒸发法制备具有不同Co层厚度的Co/Ru多层膜。采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、扫描电镜(TEM)等对多层膜的微观结构进行观察与分析,研究多层膜微观结构对多层膜磁阻性能的影响,并探讨多层膜磁阻的产生机理。结果表明:Co层的厚度tCo对于薄膜的微观结构和磁阻性能有很大影响,当tCo≥0.8 nm时Co/Ru多层膜以层状方式连续生长,且tCo越大,薄膜结晶越完整,薄膜呈现负磁阻效应;当tCo=0.5 nm时,Co/Ru多层膜为岛状生长,Co/Ru界面的不对称性使得薄膜出现正磁阻效应。

  17. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, Aaron T.; Szalay, Tamas [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Lu, Bo [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Xie, Ping [Oxford Nanopore Technologies, One Kendall Square, Cambridge, Massachusetts 02139 (United States); Golovchenko, Jene A., E-mail: golovchenko@physics.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  18. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States); Siemens Healthcare XP Division, Erlangen 91052 (Germany); Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21202 (United States)

    2012-10-15

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within {approx}200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  19. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-05-06

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.

  20. Fabrication and Properties of Polymer Matrix Composites by Low-energy Electron Beam In-situ Cured Fiber Placement Process%低能电子束原位固化树脂基复合材料纤维铺放制造及性能

    Institute of Scientific and Technical Information of China (English)

    赵新明; 段玉岗; 刘潇龙; 张小辉; 李涤尘

    2013-01-01

    针对树脂基复合材料热压罐固化能耗高、工艺周期长以及高能电子束固化辐射大,设备笨重等问题,研究125keV低能电子束与纤维铺放相结合的复合材料原位固化分层制造方法及复合材料性能.试验结果表明,125keV低能电子束穿透能力较差,在辐照固化过程中电子能量衰减很大,不能穿透0.125mm单层预浸带,双面辐照能够穿透复合材料预浸带且辐照剂量分布均匀.由于低能电子束固化过程温度低,即使辐照剂量达到250kGy,固化度及玻璃化转变温度仍然只有60.7%和48.3℃.但经加热后固化处理后,复合材料的固化度及玻璃化转变温度得到了大幅度提高,50kGy双面辐照复合材料层压板经180℃加热30min后固化处理,其固化度从16.7%上升到97.4%玻璃化转变温度从-3.2℃提高到167.3℃,同时试验结果表明经50kGy双面辐照及热后固化复合材料的层间抗剪强度达到59.62MPa,接近高能电子束固化复合材料层间抗剪强度.%The stepwise fabrication method combines 125 keV low en~ electron beam and fiber placement for polymer matrix composites is investigated to reduce the high energy consumption and curing time of the auto-clave process and to overcome the high shield investment of the high energy electron beam process,the properties of the composites is also evaluated.The experimental results show that the 125 keV electron beam can not penetrate the single layer prepreg with the thickness of 0.125 mm due to its low energy.But the consistent irradiation can be gotten in the prepreg by both-side irradiation.Because of the very low temperature of the prepreg during the irradiation process,the degree of curing and the glass transition temperature of the composites at the 250 kGy irradiation does level are only 60.71% and 48.34 (℃,respectively.But after heat postcure,the degree of curing and the glass transition temperature of the composites increase significantly

  1. Process and device for fabricating nuclear fuel assembly grids

    International Nuclear Information System (INIS)

    The method for fabricating PWR fuel assembly grids consists to place the grid of which the constituent parts are held firmly in place within a frame into a sealed chamber full of inert gas. This chamber can rotate about an axis. The welding on one face at a time is carried out with a laser beam orthogonal to the axis orientation of the device. The laser source is outside of the chamber and the beam penetrates via a transparent view port

  2. Production of ion micro-beams

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yasuyuki; Isoya, Akira; Arakawa, Kazuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Tanaka, Ryuichi [Ion Beam Irradiation Service Limited Company, Takasaki, Gunma (Japan)

    2001-02-01

    This is a short summary on the test fabrication and performance testing. Here micro-beams are understood as beams in diameter smaller than 0.01 {mu} m. We had made a choice of the combination, of the focusing action with a single hole lens, and of the focusing and acceleration actions with a uniform electrostatic field between the electrodes. Measurements has been repeated of the beam radius with a moving knifedge. The spatial resolution now reaches 0.05 {mu} m. (M. Tanaka)

  3. Design for controllable optofluidic beam splitter

    Science.gov (United States)

    Tang, Xionggui; Liang, Shan; Li, Rujian

    2016-01-01

    A novel configuration for controllable optofluidic beam splitter is proposed, which consists of the asymmetric Y-branch waveguide and the microfluidic channel filled with fluid mixture. The beam propagation method (BPM) is employed to numerically investigate the optical performance of device in our layout. The simulated results demonstrate that arbitrary splitting ratio and low optical loss for both TE and TM mode can be easily achieved, with a low dependence of wavelength and polarization. Particularly, the optofluidic beam splitter has advantages such as compact structure and large fabrication tolerance. The proposed device provides a new way to manipulate the optical power splitting, and has wide potential applications in integrated optofluidic system.

  4. Fabricating architectural volume

    DEFF Research Database (Denmark)

    Feringa, Jelle; Søndergaard, Asbjørn

    2015-01-01

    The 2011 edition of Fabricate inspired a number of collaborations, this article seeks to highlight three of these. There is a common thread amongst the projects presented: sharing the ambition to close the rift between design and fabrication while incorporating structural design aspects early on....

  5. Large optics fabrication and testing at the College of Optical Sciences

    Science.gov (United States)

    Burge, James H.

    2014-10-01

    The origin of the Optical Sciences Center (OSC) at the University of Arizona was closely tied to the need to expand the national capability for manufacturing large optics. This connection allowed OSC to grow quickly to become a truly unique place where new technologies are born and applied and where students have opportunities to apply academic lessons to real-world projects. In the decades that follow, OSC has grown to become a leader in many other optical disciplines, including photonics, imaging, optical engineering, and optical physics. But the core capability of optical fabrication and testing has remained as a unique University of Arizona asset. The last decade has seen explosive growth in development and implementation of new technologies for manufacturing and measuring large optics at the College of Optical Sciences. The classic polishing techniques have given way to advanced computer controlled machines and highly engineered laps. New measuring methods have enabled accurate metrology of steeply aspheric surfaces, concave and convex, symmetric and freeform. This paper discusses the history of optical fabrication and testing at University of Arizona and reviews some recent major projects and the technical developments that have enabled their success.

  6. Multi-modality liver image registration based on multilevel B-splines free-form deformation and L-BFGS optimal algorithm

    Institute of Scientific and Technical Information of China (English)

    宋红; 李佳佳; 王树良; 马婧婷

    2014-01-01

    A new coarse-to-fine strategy was proposed for nonrigid registration of computed tomography (CT) and magnetic resonance (MR) images of a liver. This hierarchical framework consisted of an affine transformation and a B-splines free-form deformation (FFD). The affine transformation performed a rough registration targeting the mismatch between the CT and MR images. The B-splines FFD transformation performed a finer registration by correcting local motion deformation. In the registration algorithm, the normalized mutual information (NMI) was used as similarity measure, and the limited memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) optimization method was applied for optimization process. The algorithm was applied to the fully automated registration of liver CT and MR images in three subjects. The results demonstrate that the proposed method not only significantly improves the registration accuracy but also reduces the running time, which is effective and efficient for nonrigid registration.

  7. A piezoelectric vibration harvester based on clamped-guided beams

    NARCIS (Netherlands)

    Wang, Z.; Matova, S.; Elfrink, R.; Jambunathan, M.; Nooijer, C. de; Schaijk, R. van; Vullers, R.J.M.

    2012-01-01

    The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both te

  8. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  9. Surface plasmon polariton beam focusing with parabolic nanoparticle chains

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Bozhevolnyi, Sergey I.; Evlyukhin, Andrey B.;

    2007-01-01

    We report on the focusing of surface plasmon polariton (SPP) beams with parabolic chains of gold nanoparticles fabricated on thin gold films. SPP focusing with different parabolic chains is investigated in the wavelength range of 700–860 nm, both experimentally and theoretically. Mapping of SPP...... for parabolic structures to improve their focusing of slightly divergent SPP beams....

  10. Deployment and evaluation of a dual-sensor autofocusing method for on-machine measurement of patterns of small holes on freeform surfaces.

    Science.gov (United States)

    Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation. PMID:24787187

  11. BNL 56 MHz HOM damper prototype fabrication at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Huque, N.; McIntyre, G.; Daly, E. F.; Clemens, W.; Wu, Q.; Seberg, S.; Bellavia, S.

    2015-05-03

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider’s (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  12. BNL 56 MHz HOM Damper Prototype Fabrication at JLab

    Energy Technology Data Exchange (ETDEWEB)

    Huque, Naeem A. [Jefferson Lab., Newport News, VA (United States); Daly, Edward F. [Jefferson Lab., Newport News, VA (United States); Clemens, William A. [Jefferson Lab., Newport News, VA (United States); McIntyre, Gary T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Qiong [Brookhaven National Lab. (BNL), Upton, NY (United States); Seberg, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States); Bellavia, Steve [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-01

    A prototype Higher-Order Mode (HOM) Damper was fabricated at JLab for the Relativistic Heavy-Ion Collider's (RHIC) 56 MHz cavity at Brookhaven National Laboratory (BNL). Primarily constructed from high RRR Niobium and Sapphire, the coaxial damper presented significant challenges in electron-beam welding (EBW), brazing and machining via acid etching. The results of the prototype operation brought about changes in the damper design, due to overheating braze alloys and possible multi-pacting. Five production HOM dampers are currently being fabricated at JLab. This paper outlines the challenges faced in the fabrication process, and the solutions put in place.

  13. Optimization of focused ion beam performance

    NARCIS (Netherlands)

    Hagen, C.W.; Kruit, P.

    2009-01-01

    The authors have analyzed how much current can be obtained in the probe of an optimized two-lens focused ion beam (FIB) system. This becomes relevant, as systems become available that have the potential to image and/or fabricate structures smaller than 10 nm. The probe current versus probe size curv

  14. Beam dynamics with new booster dipoles

    International Nuclear Information System (INIS)

    New bending magnets are being designed for the booster synchrotron at RRCAT, Indore with the same effective length and field which will be installed in the existing ring with the same configuration of drifts and quadrupole magnets. Presently sector type dipoles are in use. It is easier to fabricate parallel edge (rectangular type) dipoles but the beam optics gets modified due to edges which provide additional focusing. The effect on tune point can be corrected using two quadrupole families. Studies indicate that the beam emittance is lower in the optics with rectangular type dipoles but the beam injection and extraction are more difficult. In this paper, the beam optics, beam emittance, injection and extraction with two configurations of the dipole magnets are compared. (author)

  15. Beam director design report: Volume 1

    International Nuclear Information System (INIS)

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 300 beam-bending achromat and a prototype vernier steering magnet were designed and built. In volume I, the design requirements are stated, the design is summarized and illustrated, and detailed analysis and computations are provided. Also, a summary of materials used, a description of the manufacturing process, and a summary of project funding are provided

  16. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena;

    2014-01-01

    Electron beam lithography is a versatile tool for fabrication of nano-sized patterns. The patterns are generated by scanning a focused beam of high-energy electrons onto a substrate coated with a thin layer of electron-sensitive polymer (resist), i.e. by directly writing custom-made patterns...... in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke...... are mounted on a stage which is positionally controlled by laserinterferometry. This results in a resolution of 10 nm and stitching accuracy of 10 nm. The electron beam writer is located in a class 10 (ISO 4) cleanroom which is vibrationally and electromagnetically screened from the surroundings. Furthermore...

  17. PAL-XFEL cavity beam position monitor pick-up design and beam test

    Science.gov (United States)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  18. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  19. Feasibility Study of Laser Cutting for Fabrication of Tensile Specimen

    International Nuclear Information System (INIS)

    The specimen fabrication technique was established to machine the specimen from the irradiated materials. The wire cut EDM(electric discharge machine) was modified to fabricate the mechanical testing specimens from irradiated components and fuel claddings. The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated components and claddings interrupted the applying the electric current during the processing. However, zirconium oxide is protective against further corrosion as well as beneficial to mechanical strength for the tensile deformation of the cladding. Thus, it is important to fabricate the irradiated specimens without removal of oxide layer on the surface of the irradiated structural components and claddings. In the present study, laser cutting system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the feasibility of the laser cutting system was studied for the fabrication of various types of irradiated specimens in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser beam machining system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the dimensions were compared for the feasibility of the laser cutting system. The effect of surface oxide layer was also investigated for machining process of the zircaloy-4 fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer

  20. Feasibility Study of Laser Cutting for Fabrication of Tensile Specimen

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Y. G.; Baik, S. J.; Kim, G. S.; Heo, G. S.; Yoo, B. O.; Ahn, S. B.; Chun, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The specimen fabrication technique was established to machine the specimen from the irradiated materials. The wire cut EDM(electric discharge machine) was modified to fabricate the mechanical testing specimens from irradiated components and fuel claddings. The oxide layer removal system was also developed because the oxide layer on the surface of the irradiated components and claddings interrupted the applying the electric current during the processing. However, zirconium oxide is protective against further corrosion as well as beneficial to mechanical strength for the tensile deformation of the cladding. Thus, it is important to fabricate the irradiated specimens without removal of oxide layer on the surface of the irradiated structural components and claddings. In the present study, laser cutting system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the feasibility of the laser cutting system was studied for the fabrication of various types of irradiated specimens in a hot cell at IMEF (Irradiated Materials Examination Facility) of KAERI. Laser beam machining system was introduced to fabricate the various mechanical testing specimens from the unirradiated fuel cladding and the dimensions were compared for the feasibility of the laser cutting system. The effect of surface oxide layer was also investigated for machining process of the zircaloy-4 fuel cladding and it was found that laser beam machining could be a useful tool to fabricate the specimens with surface oxide layer.