WorldWideScience

Sample records for beam focusing magnets

  1. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    Science.gov (United States)

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams. PMID:25414143

  2. Understanding the focusing of charged particle for 2D sheet beam in a cusped magnetic field

    CERN Document Server

    Banerjee, Tusharika S; Reddy, K T V

    2016-01-01

    The requirement of axial magnetic field for focusing and transportation of sheet beam using cusped magnets is less as compared to solenoid magnetic fields which is uniform. There is often some confusion about how a cusped magnetic field focuses high current density sheet beam because it is generally understood that non-uniform magnetic field cannot guide the particle beam along its axis of propagation .In this paper, we perform simple analysis of the dynamics of sheet beam in a cusped magnetic field with single electron model and emphasize an intuitive understanding of interesting features (as beam geometry, positioning of permanent magnets, particle radius,particle velocity,radius of curvature of particle inside cusped magnetic field)

  3. Final focus test beam

    International Nuclear Information System (INIS)

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  4. Focused Azimuthally E-Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    OpenAIRE

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2016-01-01

    An azimuthally E-polarized vector beam (AEVB) has a salient feature that it contains a magnetic-dominant region within which electric field has a null and longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify the field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beams longitudinal magnetic field intensity profile and complementary FWHM (CFW...

  5. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  6. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  7. Characteristics for beam focusing of a magnetically insulated diode with a toroidal magnetic field (TMID)

    International Nuclear Information System (INIS)

    For the purpose of focusing intense pulsed ion beams, an ion diode insulated for electrons with a toroidal magnetic field (TMID) has been designed and tested as a preliminary experiment. The annular diode assembly is contained in the toroidal field produced with a toroidal coil. The diode power was supplied from a pulsed power supply ''ERIDATRON-II'' at a stored energy of 5kJ. Ion beams of 10 - 20kA with energies of 250 - 350 keV have been produced with an efficiency of about 10 %. It is suggested from observations of circulating current around the anode in nearly E x B direction, that the diode efficiency will be enhanced by increasing the toroidal field strength much above the critical magnetic field for insulation. The measured ion orbits agree well with the calculated single-particle ion orbits in this field even when the conditions for cross-field propagation are satisfied. The toroidal field was found to act as a magnetic lens as well as the insulating field for electrons in the diode. The features of the TMID appear to be very useful for obtaining a well focused ion beam in a simple device. (author)

  8. Design and Construction of Solenoid Magnetic Lens for Focusing Electron Beam from Thermionic Electron Gun

    International Nuclear Information System (INIS)

    Electron gun is an important part of an electron accelerator for producing electron beam to be irradiated on material. The electron gun of electron accelerator constructed at P3TM BATAN, is a thermionic electron gun, A solenoid magnetic lens had been designed and constructed for focusing electron beam extracted from the electron gun in such away that all of the electron beam enter the accelerating tube. Technical specification of the solenoid magnetic lens is given in this paper. Measurement of magnetic field generated by solenoid coil shows that the largest magnetic field is in the middle of the solenoid coil. The test using the thermionic electron gun shows the focusing effect on electron beam by the solenoid magnetic lens. The focus strength is maximum after the coil current reaches 9 A. (author)

  9. Focused-ion-beam induced interfacial intermixing of magnetic bilayers for nanoscale control of magnetic properties

    International Nuclear Information System (INIS)

    Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga+ ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe. (paper)

  10. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  11. Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma

    International Nuclear Information System (INIS)

    This paper presents a theoretical model for terahertz (THz) radiation generation by two cross-focused Gaussian laser beams in a collisionless magnetoplasma. The plasma is redistributed due to the ponderomotive nonlinearity which leads to the cross focusing of the laser beams. The focusing of the copropagating laser beams increases with increasing the externally applied static magnetic field which is perpendicular to the wave propagation direction. The nonlinear current at THz frequency arises on account of nonlinear ponderomotive force as a result of beating of the two lasers. The generated THz radiation amplitude increases significantly with increasing magnetic field. The cross focusing of two laser beams enhances the THz yield. Optimization of laser-plasma parameters gives the radiated normalized THz power of the order of 10 kW

  12. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    OpenAIRE

    Barton, T. J.; Field, David M.; Lang, Kevin M.; Chen, C.

    2012-01-01

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K. R. Samokhvalova, J. Zhou and C. Chen Phys. Plasmas 14 103102 (2007); J. Zhou, K. R. Samokhvalova and C. Chen Phys. Plasmas 15 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope,...

  13. Experimental studies on ion diodes and theoretical studies on ion beam focusing by magnetic lens

    International Nuclear Information System (INIS)

    Experimental investigation of factors that determine the optimum performance of magnetically insulated ion diodes for light ion inertial confinement fusion (ICF) indicates that degradation of both ion production efficiency and beam divergence occurs when current densities of above about 1.5 kA/cm2 are extracted from passive flashover ion sources on the 1 MV, 4 Ω, 40 ns LION accelerator. Observations of these phenomena are complicated by ablation effects on ion diagnostics at high beam fluences. Theoretical studies of ion beam propagation through plasma filled magnetic lens focusing systems for ICF show that the plasma response is in a whistler wave dominated regime. Criteria are developed for lens and plasma parameters that allow self-field perturbations of the beam to be small enough for good beam transport to an ICF target. (author). 3 figs

  14. Probing the magnetic moment of FePt micromagnets prepared by focused ion beam milling

    Science.gov (United States)

    Overweg, H. C.; den Haan, A. M. J.; Eerkens, H. J.; Alkemade, P. F. A.; La Rooij, A. L.; Spreeuw, R. J. C.; Bossoni, L.; Oosterkamp, T. H.

    2015-08-01

    We investigate the degradation of the magnetic moment of a 300 nm thick FePt film induced by Focused Ion Beam (FIB) milling. A 1 μm × 8 μm rod is milled out of a film by a FIB process and is attached to a cantilever by electron beam induced deposition. Its magnetic moment is determined by frequency-shift cantilever magnetometry. We find that the magnetic moment of the rod is μ = 1.1 ± 0.1 × 10-12 Am2, which implies that 70% of the magnetic moment is preserved during the FIB milling process. This result has important implications for atom trapping and magnetic resonance force microscopy, which are addressed in this paper.

  15. Focused Azimuthally E-Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2016-01-01

    An azimuthally E-polarized vector beam (AEVB) has a salient feature that it contains a magnetic-dominant region within which electric field has a null and longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify the field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beams longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are calculated at the lens's focal plane as a function of the lens's paraxial focal distance. Subsequently, we demonstrate, for the first time, that a very high resolution magnetic field at optical frequency with the total magnetic field FWHM of 0.23{\\lambda}(magnetic field spot size of 0.04{\\lambda}^2) can be achieved by placing a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging AEVB. The theory sh...

  16. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    International Nuclear Information System (INIS)

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle

  17. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  18. Generation of a focused proton beam with a self-magnetically BΘ-insulated ion diode

    International Nuclear Information System (INIS)

    A self-magnetically BΘ -insulated ion diode was investigated and optimized at the pulsed power line KALIF (2 MV, 50 ns, 2 Ω) to produce a focused and pulsed high-intensity proton beam for generation of high-power density in matter. This diode is characterized by an azimuthal insulating magnetic field that is generated by the diode current. The beam is neutralized by electrons from the cathode vanes, so that neither a gas filled drift space nor foils are needed. The beam therefore propagates in vacuum and repeated shots are possible without changing parts. The protons had energies up to 1.8 MeV and the proton content in the ion beam was about 50%. The maximum total diode current was about 800 kA and its efficiency was as high as 70%. The beam microdivergence was determined to be 1.1 degree. The radial dependence of the proton current density was measured and is proportional to r-1.74. This result was confirmed by 2D quasistatic particle-in-cell simulations. The focus was optimized by adjusting the anode shape and the gap geometry and by decreasing the beam divergence. The FWHM diameter of the focus at a distance of 300 mm was about 10 mm and the resulting focused power density was 0.13 TW/cm2. The effect of the gap distance on focusing and impedance was investigated and it was found necessary to adjust the gap to better than 0.1 mm over the total 30-cm-diam anode to obtain the best performance. The electron loss and the corresponding erosion at the posts that hold the anode was reduced. The lifetime is now limited by the plastic anode insert to 10--15 pulses. Based on these results a ''small BΘ diode'' is suggested for which a power density increase of a factor of 3 is estimated

  19. Pulsed neutron-beam focusing by modulating a permanent-magnet sextupole lens

    Science.gov (United States)

    Yamada, Masako; Iwashita, Yoshihisa; Ichikawa, Masahiro; Fuwa, Yasuhiro; Tongu, Hiromu; Shimizu, Hirohiko M.; Mishima, Kenji; Yamada, Norifumi L.; Hirota, Katsuya; Otake, Yoshie; Seki, Yoshichika; Yamagata, Yutaka; Hino, Masahiro; Kitaguchi, Masaaki; Garbe, Ulf; Kennedy, Shane J.; Tung Lee, Wai; Andersen, Ken H.; Guerard, Bruno; Manzin, Giuliana; Geltenbort, Peter

    2015-04-01

    We have developed a compact permanent-magnet sextupole lens for neutrons that can focus a pulsed beam with a wide wavelength range-the maximum wavelength being more than double the minimum-while sufficiently suppressing the effect of chromatic aberration. The bore diameter is #x00F8;15 mm. Three units of a double-ring sextupole with a length of 66 mm are cascaded, resulting in a total length of 198 mm. The dynamic modulation range of the unit-averaged field gradient is 1.06 × 104-5.86 × 104Tm^{-2}. Permanent magnets and newly developed torque-canceling elements make the device compact, its production costs low, and its operation simpler than that of other magnetic lenses. The efficacy of this lens was verified using very cold neutrons. The diameter of the focused beam spots over the wavelength range of 27-55 Å was the same as that of the source aperture (2 mm diameter) when the magnification of the optical arrangement was unity. The total beam flux over this wavelength range was enhanced by a factor of 43. The focusing distance from the source to the detector was 1.84 m. In addition, in a demonstration of neutron image magnification, the image of a sample mask magnified by a factor of 4.1 was observed when the magnification of the optical arrangement was 5.0.

  20. Producion of intense focused ion beams in a spherical magnetically insulated diode

    International Nuclear Information System (INIS)

    A magnetically insulated ion diode has been constructed with a spherically focusing geometry. The diode has been operated at voltages of approx.250 and approx.500 kV, with impedances adjusted to 2--3 and 7--10 Ω, respectively. The pulse length was approx.85 ns. Total ion currents were > or =30% of the diode current. In the high-voltage case, a focal current density of 2100 A/cm2 was obtained; this is > or approx. =90 times the anode ion current density. Auxilliary magnetic fields were used to steer the beam, with the beam deflection as calculated for a single proton. The diode design and diagnostic techniques are described, as well as possibilities for improvements suggested by our data

  1. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    OpenAIRE

    S KH Mousavi; A M Poursaleh; S Haseltalab; M Mortazavi; A Behjat; Atefi, M.

    2015-01-01

    In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm...

  2. Focused neutral beams with low chaotic divergence for plasma heating and diagnostics in magnetic fusion devices

    International Nuclear Information System (INIS)

    A series of neutral beam injectors has been developed in the Budker Institute of Nuclear Physics for plasma heating and diagnostics in modern fusion devices. Ion optical system of these injectors is optimized to produce ion beams with low angular divergence. In order to provide beam focusing, the grids are formed to be spherical segments. Such geometrically focused neutral beams are particularly advantageous for plasma diagnostics when high spatial resolution is required. Another application of these beams is plasma heating in the machines with narrow ports through which only small size, high power density beams can be transported. (author)

  3. Self focusing of laser beams and its effect in the generation of magnetic field in laser-produced plasma

    International Nuclear Information System (INIS)

    The present work deals with the generation of magnetic field in a plasma due to self focusing effects of laser beam. Spontaneously generated magnetic fields of the order of several kilogauss have been investigated and the cause for the generation of B-field has been attributed to the time dependent ponderomotive force of a self focused inhomogeneous gaussian shaped laser beam. The magnitude of the magnetic field is found to increase with self focusing effect of the laser beam. It can be shown that for high-frequency laser (viz. Nd-glass laser having the wavelength (λ) = 1.06 μm and amplitude of E-field (E00) = 3.9 x 1011 V/m), the magnitude of B-field is found to be in better agreement with the experiment. B-field varies inversely with temperature which has not been taken care in earlier reports. (author)

  4. A direct-current pion focusing magnet for low energy in-flight muon-neutrino beams

    International Nuclear Information System (INIS)

    A cylindrically-symmetric, direct-current magnet has been designed for use in the focusing of pions to improve the muon-neutrino flux obtained from decays in-flight at low energy accelerators. The device uses conventional magnet technology with specially designed field-shaping windings to achieve optimized focusing for positive pions and defocusing for negative pions. A prototype magnet has been constructed and its magnetic field map used in a ray tracing program from which it has been calculated that a factor of four improvement in the neutrino flux at a downstream detector can be realized when compared to an unfocused pion source. The design approach taken in this paper to select the appropriate coil distribution to optimize focusing may be applicable in other types of particle beam lines as well as in high energy collider detectors where toroidal magnet geometries have been proposed. (orig.)

  5. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron–rhodium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Ohkochi, Takuo [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Kotsugi, Masato [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan); Nakamura, Tetsuya [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Kinoshita, Toyohiko [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); CREST-JST, Kawaguchi, Saitama 332-0012 (Japan); Iwase, Akihiro [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Matsui, Toshiyuki, E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-05-01

    Iron–rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5–30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  6. X-ray magnetic circular dichroism photoemission electron microscopy of focused ion beam-induced magnetic patterns on iron-rhodium surfaces

    Science.gov (United States)

    Tohki, Atsushi; Aikoh, Kazuma; Shinoda, Ryoichi; Ohkochi, Takuo; Kotsugi, Masato; Nakamura, Tetsuya; Kinoshita, Toyohiko; Iwase, Akihiro; Matsui, Toshiyuki

    2013-05-01

    Iron-rhodium (FeRh) thin films were irradiated with a 30 keV Ga ion beam using a focused ion beam system to produce micrometer scale ferromagnetic square dot arrays. Two-dimensional magnetic square dot arrays with dimensions of 30 × 30, 10 × 10, and 5 × 5 μm were successfully produced on the FeRh surface, which was confirmed by magnetic force microscopy. The results of photoemission electron microscopy combined with X-ray magnetic circular dichroism revealed that the magnetization of the magnetic square dots could be controlled by changing the amount of irradiation. The magnetic domain structure of the magnetic square dots with sides of 5-30 μm was found to be a single domain structure, which was possibly influenced by the interaction between ferromagnetic and antiferromagnetic interfaces.

  7. Magnetic focusing of an intense slow positron beam for enhanced depth-resolved analysis of thin films and interfaces

    CERN Document Server

    Falub, C V; Mijnarends, P E; Schut, H; Veen, A V

    2002-01-01

    The intense reactor-based slow positron beam (POSH) at the Delft research reactor has been coupled to a Two-Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) setup. The design is discussed with a new target chamber for the 2D-ACAR setup based on Monte Carlo simulations of the positron trajectories, beam energy distribution and beam transmission in an increasing magnetic field gradient. Numerical simulations and experiment show that when the slow positron beam with a FWHM of 11.6 mm travels in an increasing axial magnetic field created by a strong NdFeB permanent magnet, the intensity loss is negligible above approx 6 keV and a focusing factor of 5 in diameter is achieved. Monte Carlo simulations and Doppler broadening experiments in the target region show that in this configuration the 2D-ACAR setup can be used to perform depth sensitive studies of defects in thin films with a high resolution. The positron implantation energy can be varied from 0 to 25 keV before entering the non-uniform mag...

  8. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove;

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  9. Generalization of the Bennett equilibrium condition for a relativistic electron beam propagating in the Ohmic plasma channel and ion focusing regime along an external magnetic field

    Science.gov (United States)

    Kolesnikov, E. K.; Manuilov, A. S.

    2016-04-01

    The problem of formulating the generalization of the Bennett equilibrium condition is considered for a relativistic electron beam propagating in the Ohmic plasma channel, as well as in the ion focusing regime in the presence of an external longitudinal uniform magnetic field. We assume that the electron component of the background plasma is not completely removed from the region occupied by the beam. This equilibrium condition is derived using the mass and momentum transport equations obtained for a paraxial monoenergetic beam from the Fokker-Planck kinetic equation.

  10. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing

    Science.gov (United States)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of

  11. Micromachining using focused ion beams

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) systems prove to be useful precision micromachining tools for a wide variety of applications. This micromachining technique includes scanning ion microscopy (SIM), micromachining by physical sputtering, and the ion-beam induced surface chemistry for etching and deposition. This technique is applied to image and modify IC's, to micromechanical applications, to modify the tip shape of tungsten emitters, and to prepare cross sections of selected regions for inspection in a transmission electron microscope (TEM). (orig.)

  12. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes

    Science.gov (United States)

    Tu, F.; Drost, M.; Vollnhals, F.; Späth, A.; Carrasco, E.; Fink, R. H.; Marbach, H.

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit–vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2–16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ∼160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties.

  13. On the magnetic properties of iron nanostructures fabricated via focused electron beam induced deposition and autocatalytic growth processes.

    Science.gov (United States)

    Tu, F; Drost, M; Vollnhals, F; Späth, A; Carrasco, E; Fink, R H; Marbach, H

    2016-09-01

    We employ Electron beam induced deposition (EBID) in combination with autocatalytic growth (AG) processes to fabricate magnetic nanostructures with controllable shapes and thicknesses. Following this route, different Fe deposits were prepared on silicon nitride membranes under ultra-high vacuum conditions and studied by scanning electron microscopy (SEM) and scanning transmission x-ray microspectroscopy (STXM). The originally deposited Fe nanostructures are composed of pure iron, especially when fabricated via autocatalytic growth processes. Quantitative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy was employed to derive information on the thickness dependent composition. X-ray magnetic circular dichroism (XMCD) in STXM was used to derive the magnetic properties of the EBID prepared structures. STXM and XMCD analysis evinces the existence of a thin iron oxide layer at the deposit-vacuum interface, which is formed during exposure to ambient conditions. We were able to extract magnetic hysteresis loops for individual deposits from XMCD micrographs with varying external magnetic field. Within the investigated thickness range (2-16 nm), the magnetic coercivity, as evaluated from the width of the hysteresis loops, increases with deposit thickness and reaches a maximum value of ∼160 Oe at around 10 nm. In summary, we present a viable technique to fabricate ferromagnetic nanostructures in a controllable way and gain detailed insight into their chemical and magnetic properties. PMID:27454990

  14. Self-focusing and defocusing of Gaussian laser beams in collisional underdense magnetized plasmas with considering the nonlinear ohmic heating and ponderomotive force effects

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadi Abari, Mehdi; Sedaghat, Mahsa; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, G.C., 19839 Evin, Tehran (Iran, Islamic Republic of)

    2015-10-15

    The propagation characteristics of a Gaussian laser beam in collisional magnetized plasma are investigated by considering the ponderomotive and ohmic heating nonlinearities. Here, by taking into account the effect of the external magnetic field, the second order differential equation of the dimensionless beam width parameter is solved numerically. Furthermore, the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the Gaussian laser pulse is obtained, and its variation in terms of the dimensionless plasma length is analyzed at different initial normalized plasma and cyclotron frequencies. The results show that the dimensionless beam width parameter is strongly affected by the initial plasma frequency, magnetic strength, and laser pulse intensity. Furthermore, it is found that there exists a certain intensity value below which the laser pulse tends to self focus, while the beam diverges above of this value. In addition, the results confirm that, by increasing the plasma and cyclotron frequencies (plasma density and magnetic strength), the self-focusing effect can occur intensively.

  15. Focusing of truncated Gaussian beams

    Science.gov (United States)

    Horváth, Zoltán L.; Bor, Zsolt

    2003-07-01

    It is shown that the focusing of truncated Gaussian beams can be treated by the same manner as uniform spherical waves, i.e., the diffraction integral can be expressed by the Lommel functions, which offers a very efficient way for the calculation of the three-dimensional light distribution near focus. All the expressions for the uniform spherical waves hold good for Gaussian beams if the first variable in the Lommel functions is extended to the complex domain. The intensity distribution depending on the Fresnel number and the truncation coefficient is calculated. The location of the first few minima and maxima of the intensity in focal plane is given for different values of the truncation coefficient. The phase behavior depending on the truncation coefficient is studied.

  16. Geometrically focused neutral beam accelerators

    International Nuclear Information System (INIS)

    A more reliable 40 kV, 65 A power supply drain at 0.4 A/cm2, neutral-beam accelerator was developed for the Tandem Mirror Experiment (TMX). Multiple slotted aperture grids of 60% transparency are fabricated from refractory metal wires mounted to form a spherical surface. This geometrically focuses the beam by aiming individual beamlets at the center of curvature of the spherical grid (r = 3.2 m). We attain greater reliability and faster conditioning with geometrical focusing than with the previous technique of electrostatically steering beamlets to a common point. Electrostatic steering, accomplished by offsetting grid wires, is satisfactory if the offset of a beamlet is much less than the distance from the beamlet to the grids. It was found that Pierce Angle entrance grids performed better if sharper edged. A redesigned accelerator grid support structure reduced the number of ceramic-to-metal vacuum joints, and eliminated O rings between precisely aligned parts. The suppressor grid feedthrough is required to withstand a maximum voltage of 15 kV occurring during breakdown, greatly exceeding the operating voltage of 1.5 kV. Convenient fabrication and assembly techniques have been developed. Assembly of accelerators and plasma sources in a clean room appears to reduce the conditioning time. Following the successful testing of the prototype, eight 40 kV accelerators were built for TMX. Furthermore, ten 20 kV versions were built that are modifiable to 40 kV by exchanging the entrance grid

  17. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  18. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. PMID:26560908

  19. Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

    Directory of Open Access Journals (Sweden)

    Luis A. Rodríguez

    2015-06-01

    Full Text Available Iron nanostructures grown by focused electron beam induced deposition (FEBID are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and determination of the coercive field (HC, which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85%, thus giving a high ferromagnetic signal. Magneto-optical Kerr characterization indicates that HC decreases for increasing thickness and width, providing a route to control the magnetization reversal field through the modification of the nanowire dimensions. Transmission electron microscopy experiments indicate that these wires have a bell-type shape with a surface oxide layer of about 5 nm. Such features are decisive in the actual value of HC as micromagnetic simulations demonstrate. These results will help to make appropriate designs of magnetic nanowires grown by FEBID.

  20. Precise formation of geometrically focused ion beams

    International Nuclear Information System (INIS)

    Geometrically focused intense neutral beams for plasma diagnostic consist of many elementary beams formed by a multiaperture ion-optical system and aimed at the focal point. In real conditions, some of the elementary beams may have increased angular divergence and/or deviate from the intended direction, thus diminishing the neutral beam density at the focus. Several improvements to the geometrical focusing are considered in the article including flattening of the plasma profile across the emission surface, using of quasi-Pierce electrodes at the beam periphery, and minimizing the deviation of the electrodes from the spherical form. Application of these measures to the neutral beam Russian diagnostic injector developed in Budker Institute of Nuclear Physics allows an increase of neutral beam current density in the focus by ∼50%

  1. Underdense plasma lenses for focusing particle beams

    International Nuclear Information System (INIS)

    Plasma lenses are of interest for providing ultra-strong focusing of particle beams in order to enhance the luminosity of a high-energy linear collider. Previous work has explored the selfpinch of e+ or e- beams as they pass through an overdense slab of passive plasma (i.e., plasma density much greater than the beam density). Here the authors examine the focusing of beams in an underdense plasma through physical and particle simulation models. In this regime the plasma dynamics becomes highly non-linear and differs for e+ and e- beams. For e- beams the plasma electrons are almost completely expelled by the beam's space charge leaving a uniform column of ion charge that provides the focusing force. Compared to the overdense lens, the underdense lens has the advantages that spherical aberrations, longitudinal aberrations, and plasma contribution to background in the detectors are all greatly reduced. 10 refs., 4 figs., 1 tab

  2. Results of final focus test beam

    OpenAIRE

    Alexandrof, V.A.; Balakin, V.; Mikhailichenko, A..; Flottmann, K.; Peters, F.; Voss, G.A.; Bharadwaj, V.; Halling, M.; Buon, J.; Jeanjean, J.; LeDiberder, F.; Lepeltier, V.; Puzo, P.; Heimlinger, G.; Settles, R.

    1995-01-01

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 μm×75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders

  3. Results from the final focus test beam

    International Nuclear Information System (INIS)

    First experimental results from the Final Focus Test Beam (FFTB) are given in this report. The FFTB has been constructed as a prototype for the final focus system of a future TeV-scale electron-positron linear collider. The vertical dimension of the 47 GeV electron beam form the SLAC linac has been reduced at the focal point of the FFTB by a demagnification of 320 to a beam height of approximately 70 nanometers

  4. Final focusing system for intensive heavy ion beams to produce hot dense matter

    International Nuclear Information System (INIS)

    For investigations of hot dense matter produced by intense heavy ion beams we have developed a final focusing lens to focus an intense heavy ion beam onto a beam spot of about 0.04 mm2. To increase the specific deposition power of the ion beam above the limits given by conventional quadrupole magnets we propose nonconventional plasma lens focusing techniques. (orig.)

  5. Applications of focused ion beams in microelectronics

    International Nuclear Information System (INIS)

    We present the conclusions of the RSRE programme on the application of focused ion beams in microelectronics and review the literature published in this field. We discuss the design and performance of focused beam implanters and the viability of their application to semiconductor device fabrication. Applications in the areas of lithography, direct implantation and micromachining are discussed in detail. Comparisons are made between the use of focused ion beams and existing techniques for these fabrication processes with a strong emphasis placed on the relative throughputs. We present results on a novel spot size measurement technique and the effect of beam heating on resist. We also present the results of studies into implantation passivation of resist to oxygen plasma attack as basis for a dry development lithography scheme. A novel lithography system employing flood electron exposure from a photocathode which is patterned by a focused ion beam which can also be used to repair mask defects is considered. (author)

  6. Natural focusing of symmetric Airy beams

    CERN Document Server

    Jauregui, R

    2014-01-01

    In this work we study the natural focusing of Airy beams symmetric under reflection of the transverse coordinates. Following a recent proposal, their angular spectra depend on the absolute value of the third power of the transverse components of the wave vector. We show that these beams are related to Airy and Scorer special functions. The caustics have a morphology that does not correspond to the ones described by standard catastrophe optics. The structural stability of symmetric Airy beams is experimentally probed

  7. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, Dorf A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2010-02-02

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe . Here, ωce and ω pe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/ c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ω cr ce = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  8. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    International Nuclear Information System (INIS)

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field (I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)) to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe. Here, ωce and ωpe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ωcecr = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  9. Focusing neutron beams to sub-millimeter size

    International Nuclear Information System (INIS)

    Focusing neutron guides are a well-established means to significantly increase the neutron flux for the investigation of small samples or samples subject to extreme conditions such as pressure or high magnetic fields. Parabolic and elliptic guides can focus the beam in a single point beyond the guide exit with well defined beam characteristics and a gain in intensity of over 30 compared to a non-focused beam. Focusing guides find applications in elastic and inelastic neutron scattering as well as in neutron imaging to increase the spatial resolution and for magnification. The aim of the Monte Carlo simulations using McStas was to produce focal spots with a diameter of the order of 0.1 mm using supermirrors with large angles of reflection. We will discuss the results of our simulations, i.e. the gains obtained, their variation with wavelength as well as the evolution of the beam size.

  10. Focused Ion Beam Technology for Optoelectronic Devices

    Science.gov (United States)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  11. Plasma lenses for focusing particle beams

    International Nuclear Information System (INIS)

    The focusing of particles by a thin plasma lens is analyzed with physical, linearized fluid and particle-in-cell computational models. For parameters similar to next-generation linear colliders, the plasma lens strength can exceed 100 MG/cm, and the luminosity can be enhanced by an order of magnitude by passing each beam through an appropriate plasma slab. The plasma electrons affect the focusing by shifting so as to (partially or completely) charge neutralize the beam. Both overdense and underdense plasma lenses are described (plasma density n0 greater or less than beam density nb). The former case applies equally well to e+ and e- beams, while the latter has distinct advantages for e- beams (including smaller aberrations and background). The effects of spherical and longitudinal aberrations, emittance, plasma boundaries, and non-linear-plasma dynamics on the final spot size are discussed

  12. Beam focusing limitation from synchrotron radiation in two dimensions

    Science.gov (United States)

    Blanco, O. R.; Tomás, R.; Bambade, P.

    2016-02-01

    The Oide effect considers the synchrotron radiation in the final focusing quadrupole, and it sets a lower limit on the vertical beam size at the interaction point, particularly relevant for high-energy linear colliders. The theory of the Oide effect was derived considering only the second moment of the radiation in the focusing plane of the magnet. This article addresses the theoretical calculation of the radiation effect on the beam size considering the first and second moments of the radiation and both focusing and defocusing planes of the quadrupole. The effect for a Gaussian beam is referred to as 2D-Oide; however, an alternative beam size figure is given that could represent better the effect on the minimum achievable βy* . The CLIC 3 TeV final quadrupole (QD0) and beam parameters are used to compare the theoretical results from the Oide effect and the 2D-Oide effect with particle tracking in placet. The 2D-Oide effect is demonstrated to be important, as it increases by 17% the contribution to the beam size. Further insight into the aberrations induced by the synchrotron radiation opens the possibility to partially correct the 2D-Oide effect with octupole magnets. A beam size reduction of 4% is achieved in the simplest configuration, using a single octupole.

  13. A stand for simulation and test of the magnetic components of the focus beam and transport systems for accelerator LUE-200, installation IREN

    International Nuclear Information System (INIS)

    Technical parameters and physical abilities of the equipment stand for simulation and testing of the dipole electromagnet to focus and transport the beam of the linear accelerator (LUE-200) are described. The overall design of the stand, a description of the magnetometer and the positioning system of Hall sensors are presented. The software of the stand has been developed

  14. Preparation of Permalloy nanostructures using focused ion beam methods

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) milling is a powerful and versatile tool for the maskless fabrication of structures and devices at micro- and nanometer scales. The approach is based on the milling and deposition capabilities of a focused ion beam, where the latter is achieved by ion-beam-assisted decomposition of a metalorganic gas precursor of the specific material that has to be deposited. The combination of FIB and scanning electron microscopy in the same unit (so-called dual-beam unit) further expands the capabilities of the approach by the possibility of performing electron-beam-assisted deposition and inspection. Permalloy nanowires with electrical contacts patterned by FIB-Pt deposition were prepared in the dual-beam unit. Various types of notches to pin magnetic domain walls were additionally fabricated by means of FIB. The fabrication parameters for a structural modification of the Permalloy structures without too strongly affecting the material properties were determined previously. Magnetic force microscopy was employed for an observation of the resulting magnetic domain structures.

  15. Nanopillar Fabrication with Focused Ion Beam Cutting

    NARCIS (Netherlands)

    Kuzmin, Oleksii V.; Pei, Yutao T.; De Hosson, Jeff T. M.

    2014-01-01

    A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90 degrees to the long axis of the pillar that enables milling of the pillar sideways avoidin

  16. Focusing a deterministic single-ion beam

    International Nuclear Information System (INIS)

    We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few micrometers using an einzel lens. Starting from a segmented linear Paul trap, we have implemented a procedure that allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1σ-spot radius of (4.6±1.3) μm at a distance of 257 mm from the trap center. Compared to previous measurements without ion optics, the einzel lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.

  17. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    International Nuclear Information System (INIS)

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point

  18. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  19. Plasma focus ion beam-scaling laws

    International Nuclear Information System (INIS)

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 – 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: Ebeam = 18.2E01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams. (author)

  20. Electron Beam Focusing in the Linear Accelerator (linac)

    Science.gov (United States)

    Jauregui, Luis

    2015-10-01

    To produce consistent data with an electron accelerator, it is critical to have a well-focused beam. To keep the beam focused, quadrupoles (quads) are employed. Quads are magnets, which focus the beam in one direction (x or y) and defocus in the other. When two or more quads are used in series, a net focusing effect is achieved in both vertical and horizontal directions. At start up there is a 5% calibration error in the linac at Thomas Jefferson National Accelerator Facility. This means that the momentum of particles passing through the quads isn't always what is expected, which affects the focusing of the beam. The objective is to find exactly how sensitive the focusing in the linac is to this 5% error. A linac was simulated, which contained 290 RF Cavities with random electric fields (to simulate the 5% calibration error), and a total momentum kick of 1090 MeV. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  1. H-Mode Accelerating Structures with PMQ Beam Focusing

    OpenAIRE

    Kurennoy, Sergey S.; Rybarcyk, Lawrence J.; O'Hara, James F.; Olivas, Eric R.; Wangler, Thomas P.

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic c...

  2. Phase focusing for finite emittance beams

    International Nuclear Information System (INIS)

    An accelerator is a prime example of a physical system in which a beam of particles absorbs energy continuously from externally imposed electromagnetic fields only by remaining in, or very close to synchronism with the fields. Traveling-wave amplifiers are another example. When the injected beam has finite emittance, deviations from exact synchronism can arise, usually limiting the ultimate energy exchange with the fields, and the ultimate emittance of an accelerated beam. A general theory is provided in this paper for a means of limiting deviations from exact synchronism. This can be achieved by providing a small space-varying detuning from synchronism for a particle near the center of the distribution, thus allowing otherwise nonsynchronous particles brief opportunities to enjoy synchronism, and thus to limit their excursions in phase. To illustrate, an example is given of two-stage cyclotron autoresonance acceleration of a finite emittance beam, with and without detuning in the first stage. Space-varying detuning is shown to provide phase focusing in the first stage, lower phase spread at the entrance of the second stage, and thus higher ultimate energy. copyright 1999 American Institute of Physics

  3. Phase focusing for finite emittance beams

    International Nuclear Information System (INIS)

    An accelerator is a prime example of a physical system in which a beam of particles absorbs energy continuously from externally imposed electromagnetic fields only by remaining in, or very close to synchronism with the fields. Traveling-wave amplifiers are another example. When the injected beam has finite emittance, deviations from exact synchronism can arise, usually limiting the ultimate energy exchange with the fields, and the ultimate emittance of an accelerated beam. A general theory is provided in this paper for a means of limiting deviations from exact synchronism. This can be achieved by providing a small space-varying detuning from synchronism for a particle near the center of the distribution, thus allowing otherwise nonsynchronous particles brief opportunities to enjoy synchronism, and thus to limit their excursions in phase. To illustrate, an example is given of two-stage cyclotron autoresonance acceleration of a finite emittance beam, with and without detuning in the first stage. Space-varying detuning is shown to provide phase focusing in the first stage, lower phase spread at the entrance of the second stage, and thus higher ultimate energy

  4. Neutron Beam Conditioning for Focusing SANS Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, Janos; Rosta, Laszlo, E-mail: fuzi@szfki.hu

    2010-11-01

    Multibeam focusing offers an appealing compromise between high resolution and high incident flux configurations for SANS spectrometers. In fact so many 'spectrometers' operate in parallel as the number of channels in the collimator. Each channel provides high resolution by small spot size on the detector and long sample-to-detector distance, involving significant limitation of the transmitted beam phase space volume, thus reducing the flux. The flux on the sample is increased by the large number of channels. In view of the multibeam collimation it is beneficial to increase the beam cross section and decrease the divergence at the same time. Two aspects related to the use of rotational velocity selectors are investigated. First the transmitted phase space is determined from the selector parameters. It is found that the beam azimuthal divergence with respect to the rotor axis has a significant effect on the selectivity. Neutrons flying along different paths are treated differently, leading eventually to energetic non-uniformity of the illumination of various collimator channels. Then the effect of the gap in the neutron guide at the selector location on the phase space uniformity at the collimator entrance is investigated and optimal selector location along the beam is proposed together with optimal neutron guide shape in the vicinity of the gap, which accommodates the selector.

  5. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812...

  6. Nanostructuring superconducting vortex matter with focused ion beams

    International Nuclear Information System (INIS)

    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO)6 molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication

  7. Nanostructuring superconducting vortex matter with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guillamón, I. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Kulkarni, P.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Córdoba, R.; Sesé, J. [Laboratorio de Microscopías Avanzadas (LMA) – Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); and others

    2014-08-15

    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO){sub 6} molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication.

  8. Electron beam final focus system for Thomson scattering at ELBE

    Science.gov (United States)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  9. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  10. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  11. Controllable Magnetic Focusing of Cold Atoms on a Chip

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; YUN Min; YIN Jian-Ping

    2006-01-01

    @@ We propose a new lens scheme to focus cold atoms by using a controllable inhomogeneous magnetic field from a square current-carrying wire fabricated on a chip. The spatial distributions of the magnetic field are calculated, and the results show that the generated magnetic field is a two-dimensional (2D) quadrupole one and can be used to focus cold atoms or a cold atomic beam. The dynamic processes of cold atoms passing through our square wire layout and its focusing properties are studied by using Monte Carlo simulations. Our study shows that the atomic clouds can be focused effectively by our magnetic lens scheme, and the focal lengthof the atomic lens and its radius of focused spot can be continuously changed by adjusting the current in the wires.

  12. Focusing of particle beams using two-stage laser ablation

    International Nuclear Information System (INIS)

    We report a new technique for producing focused beams of neutrals, ions, and clusters using two-stage laser ablation. We have produced a collimated beam and beams which were focused in one and two dimensions. The on-axis density is 5 x 1015 atoms/cm3 for a barium beam focused in two dimensions over a distance of 10.7 cm. For a collimated beam the density is 1015 atoms/cm3 at the same distance

  13. Neutral beams for magnetic fusion

    International Nuclear Information System (INIS)

    Significant advances in forming energetic beams of neutral hydrogen and deuterium atoms have led to a breakthrough in magnetic fusion: neutral beams are now heating plasmas to thermonuclear temperatures, here at LLL and at other laboratories. For example, in our 2XIIB experiment we have injected a 500-A-equivalent current of neutral deuterium atoms at an average energy of 18 keV, producing a dense plasma (1014 particles/cm3) at thermonuclear energy (14 keV or 160 million kelvins). Currently, LLL and LBL are developing beam energies in the 80- to 120-keV range for our upcoming MFTF experiment, for the TFTR tokamak experiment at Princeton, and for the Doublet III tokamak experiment at General Atomic. These results increase our long-range prospects of producing high-intensity beams of energies in the hundreds or even thousands of kilo-electron-volts, providing us with optimistic extrapolations for realizing power-producing fusion reactors

  14. MTN magnet for the SPS extracted beam.

    CERN Multimedia

    1976-01-01

    This type of dipole magnet was used in the extracted beam lines of the North Area. It shows an opening for three different proton beam lines: a primary extracted proton beam, split by an upstream magnetic beam splitter (see photo 7612017) into three separated beams passes through different parts of its aperture: right, left up, left down. These magnets were designed to be concrete-insulated for radiation resistance. F. Streun stands on the right.

  15. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  16. H-Mode Accelerating Structures with PMQ Beam Focusing

    CERN Document Server

    Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...

  17. Nanohole pattern formation on Ge by focused ion beam and broad beam

    International Nuclear Information System (INIS)

    The morphology of surfaces strongly influences optical, electrical, and magnetic properties of thin films. Using low energy ion beam sputtering different self-organized periodic patterns can be obtained. These are ripple patterns with periodicities in the nanometre range for oblique ion incidence and hexagonal dot patterns on compound materials for normal incidence. Low energy ion beam sputtering of Ge at normal incidence using a 5 keV Ga+ focused ion beam (FIB) produces periodic nanohole patterns. In this work we studied the flux dependence of nanohole formation using FIB technique and compared the results with patterns produced by broad Ga+ beam sputtering with a six orders of magnitude smaller ion flux. In both cases Ga+ ions with an energy of 5 keV at normal incidence were used. Obtaining the same results shows that nanohole formation is independent of flux over a few orders of magnitude and that rastering of the FIB does not add extra contributions.

  18. Beam self-excited rf cavity driver for a deflector or focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Wadlinger, E.A.

    1996-09-01

    A bunched beam from and accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with and amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle`s motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an apertures or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radio-frequency quadrupole (RFQ) that can change the focusing properties of a beam channel as a function of beam current (space- charge force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadropole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and fives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits.

  19. Beam dynamics in the SLC final focus system

    International Nuclear Information System (INIS)

    The SLC luminosity is reached by colliding beams focused to about 2 μm transverse sizes. The Final Focus System (FFS) must enable, beyond its basic optical design, the detection and correction of errors accumulated in the system. In this paper, after summarizing the design, we review the sensitivity to such errors and the ability to correct them. The overall tuning strategy involves three phases: single beam spot minimization, steering the beams in collision and luminosity optimization with beam-beam effects

  20. Micromachining using a focused ion beam miller

    International Nuclear Information System (INIS)

    Full text: The focused ion beam (FIB) miller is becoming well established as a machine for the structural analysis of materials and for the rapid preparation of transmission electron microscope specimens. It has also been used for some time in the semiconducting materials industry for the analysis, repair and redesign of device materials. However, one emerging technique is the use of the FIB for micromachining. The FIB software can also be used to manufacture and machine components. This process can occur through converting software, typically in the form of bitmaps or TIF files, to proprietary 'stream' files. These files allow, often complex, patterns to be generated and milled into the specimen and thus the generation of micro-electromechanical systems. Frequently, this involves largely two-dimensional patterns and structures, however, more complex patterns and file types can be generated which allow, for example, device prototyping or the preparation of three-dimensional structures such as atom probe field ion microscope (APFIM) specimens. In this presentation the protocols for creating and using these files will be described together with examples of the patterns and its application to micromachining, device prototyping and APFIM specimens. Copyright (2002) Australian Society for Electron Microscopy Inc

  1. Neutron focusing with permanent magnet hexapole lenses

    Energy Technology Data Exchange (ETDEWEB)

    Fuezi, J.; Toeroek, Gy.; Rosta, L

    2004-07-15

    A hexapole neutron lens approximating the Halbach structure using brick-shaped NdFeB permanent magnets has been realized, achieving two-thirds of the ideal field strength. The neutron optical characteristics of the constructed two hexapole lenses have been numerically simulated and tested in neutron beam experiments, using a 2D position-sensitive detector in time-of-flight regime.

  2. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  3. A Superconducting Magnet Upgrade of the ATF2 Final Focus

    International Nuclear Information System (INIS)

    The ATF2 facility at KEK is a proving ground for linear collider technology with a well instrumented extracted beam line and Final Focus (FF). The primary ATF2 goal is to demonstrate the extreme beam demagnification and spot stability needed for a linear collider FF. But the ATF2 FF uses water cooled magnets and the ILC baseline has a superconducting (SC) FF. We plan to upgrade ATF2 and replace some of the warm FF magnets with SC FF magnets. The ATF2 SC magnets, like the ILC FF, will made via direct wind construction. ATF2 coil winding is in progress at BNL and warm magnetic measurements indicate we have achieved good field quality. Studies indicate that having ATF2 FF magnets with larger aperture and better field quality should allow reducing the ATF2 FF beta function for study of focusing regimes relevant to CLIC. The ATF2 magnet cryostat will have laser view ports for directly monitoring cold mass movement. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC QD0 R and D FF prototype under construction at BNL.

  4. An Atomic Lens Using a Focusing Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    夏勇; 印建平; 王育竹

    2003-01-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  5. Primary aberrations in focused radially polarized vortex beams

    Science.gov (United States)

    Biss, David P.; Brown, T. G.

    2004-02-01

    We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus

  6. Properties of self-focusing of elliptic beams

    International Nuclear Information System (INIS)

    Stationary self-focusing of collimated elliptic Gaussian beams is studied numerically. It is shown that the critical self-focusing power increases with increasing the axial ratio of the initial elliptic cross section. Self-focusing is accompanied by oscillations of the beam transverse size caused by the competition between the diffraction-limited divergence and nonlinear compression. As the power of the beam with the axial ratio a/b≥3 increases, aberration self-focusing occurs, at which, after the formation and competition of several intensity maxima in the beam cross section, a global maximum appears at the beam centre, which forms a nonlinear focus. The approximation formula for the self-focusing distance is generalised to elliptic beams. (nonlinear optical phenomena)

  7. Transformation of the beam intensity distribution and formation of a uniform ion beam by means of nonlinear focusing

    International Nuclear Information System (INIS)

    Avoiding undesirable thermal stress or damage of a target vessel is an essential subject in high-intensity beam irradiation for accelerator-driven neutron production. A promising method to tailor the transverse beam intensity distribution for uniform beam irradiation on the target is the use of multipole magnets. We, therefore, study the transformation and uniformization of the transverse intensity distribution by means of nonlinear focusing induced from multipole magnets. It is theoretically described how the intensity distribution is transformed and made uniform by the nonlinear focusing force. Large-area uniform proton and heavy-ion beams are experimentally formed using octupole magnets at the azimuthally-varying-field cyclotron in Japan Atomic Energy Agency. (author)

  8. C. Petrone et al.: "Magnetic measurement of the model magnet QD0 designed for the CLIC final focus beam transport line." CERN TE-MSC Internal Note, EDMS Nr: 1184196

    CERN Document Server

    Arpaia, Pasquale; Petrone, Carlo; Russenschuck, Stephan; Walckiers, Louis

    2012-01-01

    This note presents the results of the magnetic measurements performed on QD0, model magnet for the final focus transport line for CLIC (Fig. 1). This high-gradient, hybrid quadrupole has a yoke length of 0.1 m and an aperture of 8.3 mm. ND2Fe14B Permanent magnet blocks provide a gradient of 150 T/m, which can be further increased to 530 T/m when the four coils are excited to 18.3 A. The request was to measure the strength of the field and the multipole coefficients at different currents. The measurement of the field strength, by means of the single stretched wire system, was done in December 2011 in the I8 laboratory. The measurement of the multipole was done by means of the oscillating wire system [1][2].

  9. The dynamics of radiation damage by focused ion beams in the ion beam synthesis

    International Nuclear Information System (INIS)

    The following topics were covered: direct ion implantation, focused ion beams, cobalt silicides (CoSi2), RBS, ion beam synthesis, CoSi2 ion beam synthesis by focused ion beams in Si(111), germanium FIB implantation in Si(111), radiation damage at FIB implantation, models and simulation. (WL)

  10. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  11. Study of electron beam production by a plasma focus

    International Nuclear Information System (INIS)

    A preliminary investigation of the electron beam produced by a plasma focus device using a current charged transmission line is described. Electron beam currents as high as 10 kA were measured. Interaction of the extracted beam and the filling gas was studied using open shutter photography

  12. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    International Nuclear Information System (INIS)

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used

  13. Gabor lens focusing of a negative ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  14. Gabor lens focusing of a negative ion beam

    International Nuclear Information System (INIS)

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab

  15. Auto-focusing accelerating hyper-geometric laser beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  16. Study on Ka-Band Sheet Beam Traveling Wave Tube Focused by Closed PCM

    Science.gov (United States)

    Wang, Zhan-Liang; Shi, Xianbao; Gong, Yu-Bin; Wei, Yan-Yu; Duan, Zhao-Yun; Su, Xiaogang; Gong, Huarong; Feng, Jinjun; Huang, Hua

    2016-01-01

    This paper reports a Ka-band sheet beam traveling wave tube (TWT) focused by a 0.2 T closed periodic cusped magnet (PCM) system. The TWT with one section of staggered double-vane slow-wave structure (SWS) is driven by a 0.8-A sheet beam with rectangular cross-sectional area of 3.2 mm × 0.6 mm. This sheet beam TWT can produce 100 W output power, and the 3 dB band is 33-38.5 GHz. In order to improve the output power, an optimized sheet beam TWT with two sections of SWSs focused by a novel closed PCM system is proposed. The new closed PCM system is with annular magnetic blocks and can be fabricated and adjusted easily. The simulation shows that the optimized sheet beam TWT can produce 2000 W output power and the 3 dB band ranging from 33 to 40 GHz.

  17. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  18. Beam profiling at focus: the search for the Holy Grail

    Science.gov (United States)

    Green, Lawrence I.

    2007-02-01

    Electronic laser beam profiling is now a widely accepted method to measure the mode quality and spatial profile of a laser beam. For the most part, profiling has been limited to the unfocused or 'raw' beam, because the energy density or irradiance in the vicinity of focus is high enough to destroy almost any measurement device. Recent developments in measuring technology now enable users to make beam profiling measurements at and near the focus of many lasers. We discuss two new designs and show examples of how they function.

  19. Study on electron beam in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  20. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  1. Methods of steering and focusing ion and electron beams

    International Nuclear Information System (INIS)

    This patent describes a method for steering or focussing beams such as ion or electron beams with a magnetic field. The method consists of: generating a large electric current in a straight conducting wire; projecting charged particles in proximity with the conducting wire; deflecting the charged particles by generating in proximity with the wire a circular magnetic field; confining each of the charged particles to a path which extends in a direction substantially coplanar with the conducting wire wherein a deflecting force generated by the coaxial magnetic field is exerted on each particle in the plane defined by the conducting wire and the path of the particle

  2. Production of GW electron and ion beams by focused discharges

    International Nuclear Information System (INIS)

    This chapter attempts to determine how magnetized plasma structure and current distribution must vary with time in the pinch region to have a consistent picture. A method is presented to evaluate the total charge of a beam from a single discharge. Discusses the experimental system; an optimized mode of operation; ion beams; electron beams; the beam source; and plasmoid imaging by nuclear tracks in solids. The data support the existence of a fibrous structure for all stages of evolution of the current sheath (CS), from propagation in the interelectrodegap to axial-pinch collapse and at a later time when CS is fragmented

  3. Beam Transport in Toroidal Magnetic Field

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The concept of a storage ring with toroidal magnetic field was presented in the two previous EPAC conferences. Here we report the first results of experiments performed with beam transport in toroidal magnetic fields and details of the injection system. The beam transport experiments were carried out with 30 degree toroidal segments with an axial magnetic field of 0.6T. The multi turn injection system relies on a transverse injection coil together with an electric kicker system.

  4. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Slater, JD; Wroe, AJ [Loma Linda University Medical Center, Loma Linda, CA (United States)

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  5. Observations of underdense plasma lens focusing of relativistic electron beams

    International Nuclear Information System (INIS)

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion

  6. Multi-physics coupled simulation studies for permanent magnet based focusing lens for a miniature Klystron

    International Nuclear Information System (INIS)

    Application of Permanent magnet technology to high frequency miniature klystron tubes to be utilized for space applications improves the efficiency and operational reliability of these tubes. But nevertheless the task of generating magnetic focusing forces to eliminate beam divergence, once the beam crosses the electrostatic focusing regime and enters the drift region in the RF section of the tube throws several challenges. Building a high quality magnet focusing lens to meet beam optics requirement in cathode gun and RF interaction region is considered to be one of the critical issues for these high frequency miniature tubes. Deviations from the circular configuration of magnet arrangement lead to the asymmetric field configuration in the cathode gun region and increases design complexities. Alignment of the subcomponents in the high frequency miniature tubes also demands tight tolerances. If the axis of the electron beam is not aligned with the axis of the magnetic field which could happen if the electron gun was misaligned during tube fabrication. The gun axis could be either off center or tilted with respect to the axis of the tube. Other causes for misalignment include errors in cathode, grid, or control electrode positioning or non-uniformities in magnetic pole piece material. The result of beam misalignment is that the entire beam spirals about the magnetic field axis at the cyclotron frequency and results in beam loss. Design requirements, challenges, and the results from beam transmission of the prototype lens have been discussed

  7. Alignment of the SLC Final Focus system using beam orbits

    International Nuclear Information System (INIS)

    Beam based alignment is being routinely applied in the SLC Final Focus and has proved to be a very useful tool for determining the quality of the zeroth order orbit as defined by various beam line elements. Given the stringent requirement on the beam quality at the interaction point, a well aligned beam line is essential in that it minimizes the confusion which would otherwise arise in the higher order optics, the demand called on the correctors which also serve as optical knobs, and the problem associated with the background radiation. In the SLC final focus we have been relying on an interplay between the field survey and the orbit analysis to achieve this purpose. Mechanical alignment generally provides coordinate information of various beam line elements and offset values inferred from these data and the model of the beam line. Beam based alignment is done mainly by recording the beam orbit under controlled experiment where optical elements or orbit conditions are varied. Due to the complexity of the beamline layout and special power supply configuration in the SLC Final Focus, the latter method is useful only when coupled with off-line analysis which disentangles the data taken at each measurement. In this report we describe the techniques used and the underlying principle, the procedure as applied in the Final Focus, the outcome of this exercise and some problems encountered. 6 figs

  8. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  9. Materials processing with tightly focused femtosecond vortex laser beams

    OpenAIRE

    Hnatovsky, Cyril; Shvedov, Vladlen G.; Krolikowski, Wieslaw; Rode, Andrei V.

    2010-01-01

    This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pulse energy we consistently machine high-quality micron-size ring-shaped structures with less than...

  10. Six beam spherical compression of plasma focus guns

    International Nuclear Information System (INIS)

    A preliminary experiment with a one beam plasma focus is carried out to confirm plasma formation with the lowest input energy of 0.2 kJ for six beam spherical compression of plasma focus guns. The plasma front of this cableless gun can be used for compression and for the coupling of six guns situated along three rectangular axes, providing a good plasma focus pinch instantaneously or many plasma focus pinches continuously. The whole device with the energy bank is mounted on a sphere, and the minimum requirement for the plasma chamber of this sphere is a diameter of ∼ 22 cm. (author). 4 refs, 3 figs

  11. Chemical state of boron in coal fly ash investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR).

    Science.gov (United States)

    Hayashi, Shun-ichi; Takahashi, Takafumi; Kanehashi, Koji; Kubota, Naoyoshi; Mizuno, Kaoru; Kashiwakura, Shunsuke; Sakamoto, Tetsuo; Nagasaka, Tetsuya

    2010-08-01

    The chemical states of boron in coal fly ash, which may control its leaching into the environment, were investigated by focused-ion-beam time-of-flight secondary ion mass spectrometry (FIB-TOF-SIMS) and satellite-transition magic angle spinning nuclear magnetic resonance (STMAS NMR) spectroscopy. The distribution of boron on the surface and in the interior of micron-sized fly ash particles was directly observed by FIB-TOF-SIMS. Coordination numbers of boron and its bonding with different atoms from particles of bulk samples were investigated by STMAS NMR. Boron in coal fly ash with relatively poor leaching characteristics appears as trigonal BO(3) and coexists with Ca and Fe at the outer layer of every particle and inside CaO-MgO particles. In contrast, boron in coal fly ash with better leaching characteristics appears as CaO- or MgO-trigonal BO(3) and tetragonal BO(4), and it is distributed only on the outer surface of each ash particle without showing any correlation with a particular element. PMID:20570315

  12. Point focusing of intense ion beam by spherical open-quotes plasma focus diodeclose quotes

    International Nuclear Information System (INIS)

    Three-dimensional focusing of intense ion-beam has been obtained by using spherical open-quotes plasma focus diode.close quotes Experimental data have shown that ion beam was focused into a small cylindrical volume with ∼0.5 mm in diameter and ∼2.5 mm in length, where the ion-beam current density and the power density is estimated to be ∼680 kA/cm2 and ∼0.54 TW/cm2

  13. Nanoscale focused ion beam from laser-cooled lithium atoms

    International Nuclear Information System (INIS)

    We demonstrate a new type of nanoscale focused ion beam (FIB) based on photoionizing laser-cooled atoms held at millikelvin temperatures in a magneto-optical trap (MOT). This new source expands the range of available ionic species and accessible ion beam energies for FIBs, enhancing their role as one of the most important tools for nanoscale characterization and fabrication. We show examples of microscopy with lithium ions obtained by scanning the FIB and collecting the resulting secondary electrons, and characterize the beam focus by a 25-75% rise distance measurement of (26.7 ± 1.0) nm at a beam energy of 2 keV. We also examine the dependence of the focal size on MOT temperature and beam energy. (paper)

  14. Possible application of compound Fresnel lens for neutron beam focusing

    International Nuclear Information System (INIS)

    We have developed a Fresnel-type focusing device for cold neutrons fabricated using single crystals of magnesium fluoride. This stacked-lens device using 50 elements (with 50 beam-bending interfaces) demonstrated a focal length of 5 m with a good transmission of 0.829 for 1.14 nm neutrons. The focused beam was 5 times more intense than a beam of the same spot size with the same final flight path length produced with the traditional pinhole collimation. The background-scattering noise from lens was an order of magnitude larger than that of the traditional pinhole collimation in the momentum range of 0.01-0.05 nm-1, almost 10-3 of focused direct beam at the lowest momentum transfers measurable. This device produced an intensity gain in measured SANS data of more than 10 times when compared with the conventional pinhole geometry with the same minimum momentum transfer

  15. Beam profile shape of a parallel plane electrodes focusing system

    International Nuclear Information System (INIS)

    The present work investigates the potential distribution in a five electrodes lens to be used in an electrostatic ion source . The beam profile shape has been investigated using different gases The radii of the beam profile along the axial distance using nitrogen gas are calculated for different perveance, different initial beam radii, different ion charges and different ratios of the magnitude of voltage difference between the central electrode and the outer electrodes , Va , to the voltage corresponding to ion energy Vi . It has been found that a minimum beam radius of 0.22 mm can be obtained for initial beam radius equal 2.5 mm using nitrogen gas. The present lens constitutes a convergent lens. It gives a beam more focused than in case of two hemispherical electrodes and an intermediate flat electrode

  16. Focused ion beam irradiation effects on nanoscale freestanding thin films

    International Nuclear Information System (INIS)

    The focused ion beam (FIB) technique is a versatile tool for nanoscale manipulation, deposition and etching. However, degradation mechanisms which lead to residual stresses in materials exposed to high-energy ion beams are not well understood. In this study, we examine the evolution of residual stresses in 100 nm thick freestanding aluminum films subjected to typical ion beam exposures within a commercial FIB tool. Experimental results show that the magnitude of the residual stresses increase with cumulative ion beam exposure and that upper limits are attainable. Further investigation demonstrates that a decrease in ion beam current at constant acceleration-voltage augments the upper limits, which manifests itself in greater residual stresses. The stress gradients in thin films develop from surface modifications in the form of amorphous top layers, which are modeled as bilayer approximations. Experimental observations and analysis indicate that ion beam exposure effects on the mechanical properties of nanoscale thin films and nanostructures cannot be ignored

  17. Three-dimensional, tight focusing of intense pulsed light-ion beam by spherical plasma focus diode

    International Nuclear Information System (INIS)

    A new type of ion-beam diode, self-magnetically insulated, spherica plasma focus diode (SPFD), was developed. With the SPFD, three-dimensional focusing of an intense pulsed light-ion beam was obtained. Experiments and simulations were carried out to study the behavior of the SPFD. In the experiments, diagnostic results of the Rutherford scattering pinhole camera and the shadow-box showed that the ion beam was focused into a small cylindrical area with ∼ 0.5mm in diameter and ∼ 2.5 mm in length. The average ion-beam current density at the anode surface was found to be ∼ 2 kA/cm2. In the simulations, it was observed that most of the diode gap is well insulated by the self-magnetic field induced by the diode current. The electron sheath in the diode gap significantly enhances the ion flow from the anode. As a result, the ion current density is several times higher than the single-species space-charge limited value. (author)

  18. Diagnostic neutral beams for plasma studies in magnetic fusion devices

    International Nuclear Information System (INIS)

    Nowadays, low-divergent, quasi-stationary neutral beams are widely used in magnetic fusion devices as a diagnostic tool providing unique information about plasma parameters. Essentially, a diagnostic determines the requirements for the beams, which in many cases consist in sufficiently large current density and energy of the particles so that the beam can penetrate to the plasma core. At the same time, the duration of the beams should overlap that of a plasma shot (∼10 s or longer for large machines). We have developed a number of diagnostic hydrogen beams with a maximum beam energy of 55kV, extracted ion current varying up to 6 A, and pulse duration from several milliseconds to 10 s. The beams are formed by a four electrode ion optical system which makes it possible to provide a low divergent (0.5-0.7 deg.) beam. Additionally, a beam can be focused onto a desired point by proper choice of the curvature radius of the grids. The beams can be modulated with a frequency variable up to 500 Hz. The plasma emitter in the injector is provided by a radiofrequency discharge in hydrogen (deuterium) for long duration beams and, alternatively, by an arc-discharge plasma box for the beams with a duration of up to ∼0.5 s. The arc discharge plasma box provides a higher proton fraction (∼90%) than the RF discharge version (∼60%). The parameters for the different beams developed are presented. (author)

  19. The concept of focused magnet for targeted drug delivery

    International Nuclear Information System (INIS)

    A special focused magnet, designed for the use in the magnetic targeted drug delivery system, was constructed. The theoretical calculation of the adhesion condition for a magnetic fluid drop in magnetic field with obtained design showed that the constructed focused magnet generates a sufficient magnetic force for the capture of a magnetic drop on the vessel wall and can be used 2.5-3 cm deeper in an organism compared with the prism permanent magnet which could enable the non-invasivity of the magnetic drug targeting procedure. The maximal values for the magnetic field and gradient of the magnetic field are 0.38 T and 101 T/m

  20. Comparison of electric and magnetic quadrupole focusing for the low energy end of an induction-linac-ICF [Inertial-Confinement-Fusion] driver

    International Nuclear Information System (INIS)

    This report compares two physics designs of the low energy end of an induction linac-ICF driver: one using electric quadrupole focusing of many parallel beams followed by transverse combining; the other using magnetic quadrupole focusing of fewer beams without beam combining. Because of larger head-to-tail velocity spread and a consequent rapid current amplification in a magnetic focusing channel, the overall accelerator size of the design using magnetic focusing is comparable to that using electric focusing

  1. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  2. Ring lens for focusing ion beams to uniform densities

    International Nuclear Information System (INIS)

    An electrostatic lens was designed and built to focus a beam of positive ions into uniform density on a target. The lens has two concentric field regions with a grid separating the inner zero field from the outer radial field. For proper operation the incident ions must emanate with axial symmetry and Gaussian or similar divergence from a small source. An appendix is included on the symmetrization of elliptical beams by a quadrupole singlet lens. (U.S.)

  3. Focusing and guiding intense electron beams by a superconductor tube

    International Nuclear Information System (INIS)

    An intense electron beam travelling axially through the opening of a superconductor tube was studied. Model calculations showed that the beam is focused by the superconductor tube when the space-charge effect of the beam electrons is compensated. The tube functions as a lens for electrons injected parallel to the tube axis and also for electrons having a small initial radial velocity component. The electron trajectories were computed, and the focal length of the superconductor tube was estimated. (author). 2 figs., 6 refs

  4. Optical trapping in secondary maxima of focused laser beam

    International Nuclear Information System (INIS)

    Single beam optical tweezers hold particles behind the focal plane due to the high gradients of optical intensity present in a focused laser beam. However, description of this optical field based on a vectorial theory of diffraction reveals that the high intensity focal area is accompanied by several secondary maxima on the optical axis as well as by a structure of rings away of the optical axis. Such a structure can be found in beams exhibiting spherical aberrations as well as in beams where aberration is corrected. Here, we discuss possibility to use these secondary maxima of aberration-corrected beams as the optical traps. We present the properties of such traps created by objective lenses of various numerical apertures that are focusing plane waves. - Highlights: • Secondary trapping sites in optical tweezers are revealed while using vectorial diffraction theory. • Secondary trapping sites exist both on the optical axis and the off-axis. • Trap stiffnesses in such locations are calculated and compared to trapping site behind beam focus

  5. Large area, direct write focused ion beam lithography system

    International Nuclear Information System (INIS)

    A system for maskless ion beam milling based on a high brightness RF plasma ion source and a compact focusing column using electrostatic elements is designed and developed. So far 1.5 μm spot size with current density of 350 mA/cm2 could be achieved. Pattering is carried out by scanning the sample using high precision 3-axis stage. The size of the micropattering area is only limited by the span of the translation stage which is 25 mm x 25 mm in our case. Measurements to estimate the focused spot size and ion beam profile at the focal plane are carried out by using knife edge scanning method. This article describes the micromachining system, a few examples of micro pattering and possible future programs. This paper also addresses a few issues on focusing low energy beam from plasma sources to micron and submicron dimensions and challenges of measuring their sizes. (author)

  6. Enabling Nanotechnology with Focused Ion Beams from Laser Cooled Atoms

    Science.gov (United States)

    Steele, A. V.; Knuffman, B.; Orloff, J.; Maazouz, M.; McClelland, J. J.

    2011-05-01

    The Magneto-Optical Trap Ion Source (MOTIS) being developed at NIST has the potential to enable numerous advances in nanoscale science. In a MOTIS, atoms are captured into a MOT, photoionized, and accelerated to an energy of a few hundred eV to a few tens of kV. A beam formed in this way can be brought to a tight focus, competitive with the commercial focused ion beam machines deployed widely today. Additionally, the unique characteristics of this source, coupled with the user's choice of ion from the long and growing list of laser-coolable atomic species suggest that the MOTIS has the potential to advance the state of the art in applications such as imaging, nanofabrication, secondary ion mass spectrometry, and others. I will present high-resolution images from our lithium and chromium MOTIS-based focused ion beams and discuss applications which we will pursue with these new tools.

  7. Materials processing with tightly focused femtosecond vortex laser beams

    CERN Document Server

    Hnatovsky, Cyril; Krolikowski, Wieslaw; Rode, Andrei V

    2010-01-01

    This letter is the first demonstration of material modification using tightly focused femtosecond laser vortex beams. Double-charge femtosecond vortices were synthesized with the polarization-singularity beam converter described in Ref [1] and then focused using moderate and high numerical aperture optics (viz., NA = 0.45 and 0.9) to ablate fused silica and soda-lime glasses. By controlling the pulse energy we consistently machine high-quality micron-size ring-shaped structures with less than 100 nm uniform groove thickness.

  8. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  9. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  10. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    International Nuclear Information System (INIS)

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research

  11. A compact beam focusing and steering element using quadrupoles with independently excited poles

    Energy Technology Data Exchange (ETDEWEB)

    Grime, Geoffrey W., E-mail: g.grime@surrey.ac.uk [University of Surrey, Ion Beam Centre, Advanced Technology Institute, Guildford GU2 7XH (United Kingdom)

    2013-07-01

    Beam steering elements for accelerator beam transport are conventionally and conveniently incorporated into beamlines by fitting magnetic dipole elements around the vacuum tube of the line. Two steerers in each plane (X and Y) together with a quadrupole doublet constitute a module providing full control of the direction, position and focus of the beam. In some installations however, there may be insufficient space on the beamline to mount separate steerer elements. To provide steering capabilities in such a situation we have used a magnetic quadrupole doublet with the coils of each pole independently excited to synthesise the desired combination of quadrupole, horizontal dipole and vertical dipole fields. This paper describes the quadrupole steerer and its multichannel power supply and presents calculated magnetic field distributions together with raytracing simulation of its performance.

  12. A compact beam focusing and steering element using quadrupoles with independently excited poles

    International Nuclear Information System (INIS)

    Beam steering elements for accelerator beam transport are conventionally and conveniently incorporated into beamlines by fitting magnetic dipole elements around the vacuum tube of the line. Two steerers in each plane (X and Y) together with a quadrupole doublet constitute a module providing full control of the direction, position and focus of the beam. In some installations however, there may be insufficient space on the beamline to mount separate steerer elements. To provide steering capabilities in such a situation we have used a magnetic quadrupole doublet with the coils of each pole independently excited to synthesise the desired combination of quadrupole, horizontal dipole and vertical dipole fields. This paper describes the quadrupole steerer and its multichannel power supply and presents calculated magnetic field distributions together with raytracing simulation of its performance

  13. Stable two-plane focusing for emittance-dominated sheet-beam transport

    Science.gov (United States)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    Two-plane focusing of sheet electron beams will be an essential technology for an emerging class of high-power, 100 to 300 GHz rf sources [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172]. In these devices, the beam has a unique asymmetry in which the transport is emittance dominated in the sheet’s thin dimension and space-charge dominated in the sheet’s wide dimension. Previous work has studied the stability of the transport of beams in the emittance-dominated regime for both wiggler and periodic permanent magnet (PPM) configurations with single-plane focusing, and has found that bigger envelope scalloping occurs for equilibrium transport, as compared to space-charge dominated beams [Carlsten et al., this issue, Phys. Rev. ST Accel. Beams 8, 062001 (2005), PRABFM, 1098-4402]. In this paper, we describe the differences in transport stability when two-plane focusing is included. Two-plane wiggler focusing degrades the transport stability slightly, whereas two-plane PPM focusing greatly compromises the transport. On the other hand, single-plane PPM focusing can be augmented with external quadrupole fields to provide weak focusing in the sheet’s wide dimension, which has stability comparable to two-plane wiggler transport.

  14. Main magnetic focus ion source with the radial extraction of ions

    CERN Document Server

    Ovsyannikov, V P

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  15. Main magnetic focus ion source with the radial extraction of ions

    OpenAIRE

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2015-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir$^{44+}$ and Ar$^{16+}$ ions. The ion source can operate as the ion trap for X-ray sp...

  16. Main magnetic focus ion source with the radial extraction of ions

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-01-01

    In the main magnetic focus ion source, atomic ions are produced in the local ion trap created by the rippled electron beam in focusing magnetic field. Here we present the novel modification of the room-temperature hand-size device, which allows the extraction of ions in the radial direction perpendicular to the electron beam across the magnetic field. The detected X-ray emission evidences the production of Ir44+ and Ar16+ ions. The ion source can operate as the ion trap for X-ray spectroscopy, as the ion source for the production of highly charged ions and also as the ion source of high brightness.

  17. Excitation of radiationless anapole mode of isotropic dielectric nanoparticles with tightly focused radially polarized beam

    CERN Document Server

    Wei, Lei; Bhattacharya, Nandini; Urbach, H Paul

    2016-01-01

    A high index dielectric nano-sphere can be excited and yet remain radiationless. A method to excite the non-radiating anapole mode of a high index isotropic dielectric nanosphere is presented. With tightly focused radially polarized beam illumination, the main-contributing electric dipole mode and magnetic modes can be zero with only a weak electric quadruple contributing to the total scattering. Further, with a standing wave illumination formed by two counter-propagating focused radially polarized beam under $4\\pi$ configuration, the ideal radiationless ananpole can be excited.

  18. Apparent beam size definition of focused ion beams based on scanning electron microscopy images of nanodots

    OpenAIRE

    Vladov, Nikola; Segal, Joel; Ratchev, Svetan

    2015-01-01

    In this paper the new term apparent beam size of Focused Ion Beam (FIB) is introduced and an original method of its evaluation is demonstrated. Traditional methods of measuring the beam size, like the knife edge method, provide information about the quality of the beam itself but practically they do not give information on the FIB sputtering resolution. To do this, it is necessary to take into account the material dependant interaction of the beam with the specimen and the gas precursor in th...

  19. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  20. Molecule-by-Molecule Writing Using a Focused Electron Beam

    DEFF Research Database (Denmark)

    Van Dorp, Willem F.; Zhang, Xiaoyan; Feringa, Ben L.; Hansen, Thomas Willum; Wagner, Jakob Birkedal; De Hosson, Jeff Th. M.

    2012-01-01

    The resolution of lithography techniques needs to be extended beyond their current limits to continue the trend of miniaturization and enable new applications. But what is the ultimate spatial resolution? It is known that single atoms can be imaged with a highly focused electron beam. Can single...... atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor on...... graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated...

  1. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  2. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  3. Micromachining structured optical fibers using focused ion beam milling.

    Science.gov (United States)

    Martelli, Cicero; Olivero, Paolo; Canning, John; Groothoff, Nathaniel; Gibson, Brant; Huntington, Shane

    2007-06-01

    A focused ion beam is used to mill side holes in air-silica structured fibers. By way of example, side holes are introduced in two types of air-structured fiber, (1) a photonic crystal four-ring fiber and (2) a six-hole single-ring step-index structured fiber. PMID:17546193

  4. On possibility of high frequency electron beam scanning with application of focusing system for x-ray generation

    International Nuclear Information System (INIS)

    The article describes the electron beam scanning system in combination with electromagnetic focusing system. These systems find their application in different vacuum tube devices that provide the generation of X-ray radiation. Similar systems can be utilized in such fields as medicine, industry and defectoscopy. Electron tube system can be based on thermal or field emission cathodes. Scanning system is built up on two pair of electrical deflecting dipoles. The scanning can also be based on magnetic deflecting system. Beam focusing is achieved by the geometrical fea-tures of electrodes structure and electron lenses. Magnetic focusing can also be used for transversal focusing of the beam. The article describes the schemes of the unit with electron beam scanning and different methods of realization. Beam dynamics investigation in electromagnetic fields of the unit is considered

  5. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  6. Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens

    Science.gov (United States)

    Tang, Huiqin; Zhu, Kaicheng

    2013-12-01

    Based on the generalized Huygens-Fresnel diffraction integral, a closed-form propagation equation related to sine-Gaussian beams through a cylindrical lens and a focusing lens is derived and illustrated with numerical methods. It is found that a sine-Gaussian beam through such a system may be converted into a dark hollow beam (DHB) with topological charge index one and its bright enclosure is approximately an elongated ellipse with very high ellipticity. Moreover, the parameter values at which the DHBs have perfect intensity patterns are designed. The optimal relative orientation between the dislocation line of the input sine-Gaussian beam and the axial orientation of the cylindrical lens is specified. And the ellipticity of the elliptical DHBs is mainly defined by the focal length of the cylindrical lens and the Fresnel number of the optical system.

  7. Beam dynamics of alternating-phase-focused linac

    CERN Document Server

    Iwata, Y; Kapin, V

    2004-01-01

    A simple method to find an array of synchronous phases for alternating-phase-focused (APF) linacs is presented. The phase array is described with a smooth function having free parameters. With a set of the parameters, a simulation on the beam dynamics was made and distributions of the six-dimensional phase spaces were calculated for each set of the parameters. The parameters were varied, and numbers of the simulations have been performed. An optimum set of the parameters were determined so that the simulations of the beam dynamics yield large acceptances and small emittances of the extracted beams. Since the APF linac can provide both axial and radial stability of beams just with the rf acceleration-field, no additional focusing element inside of drift tubes are necessary. Comparing with conventional linacs having focusing elements, it has advantage in construction and operation costs as well as its acceleration rate. Therefore, the APF linacs would be suited for an injector of medical synchrotrons. A practic...

  8. Nanopillar growth by focused helium ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ping; Salemink, Huub W M; Alkemade, Paul F A [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Veldhoven, Emile van; Maas, Diederik J [TNO Science and Industry, Stieltjesweg 1, 2628 CK Delft (Netherlands); Sanford, Colin A [Carl Zeiss SMT, Inc., One Corporation Way, Peabody, MA 01960 (United States); Smith, Daryl A; Rack, Philip D, E-mail: p.f.a.alkemade@tudelft.nl [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996-2200 (United States)

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH{sub 3}){sub 3}Pt(C{sub P}CH{sub 3}) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  9. Nanopillar growth by focused helium ion-beam-induced deposition

    International Nuclear Information System (INIS)

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3)3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions.

  10. Research and development of an electron beam focusing system for a high-brightness X-ray generator

    OpenAIRE

    Sakai, Takeshi; Ohsawa, Satoshi; Sakabe, Noriyoshi; Sugimura, Takashi; IKEDA, Mitsuo

    2010-01-01

    A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm−2 (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new c...

  11. Optimal focusing conditions of lenses using Gaussian beams

    Science.gov (United States)

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2016-07-01

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. We show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used in wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.

  12. Superconducting beam bending magnets at CERN

    CERN Multimedia

    1977-01-01

    The photo shows Gerhard Kesseler with the cyogenic vessels for one of the 10.8 Tesla-metre beam bending magnets. The magnet itself (not visible) is sitting inside the superinsukated helium vessel (white). The next larger shell and the biggest tubular structure (with the largest part behind the person) is the insulation vacuum tank. See CERN Courier 1970 pp. 228-229 CERN Courier 1973 pp. 144-145 Yellow Report CERN 78-03, 1978

  13. Beam-based optical tuning of the final focus test beam

    International Nuclear Information System (INIS)

    In order to reduce the SLAC 46.6 GeV beam to submicron sizes, the Final Focus Test Beam (FFTB) must meet tight tolerances on many aberrations. These aberrations include: mismatch and coupling of the incoming beam; dispersion; chromaticity; lattice errors in the chromatic correction sections; lattice coupling; and residual sextupole content in the quadrupoles. In order to address these aberrations, the authors have developed a procedure which combines trajectory analysis, use of intermediate wire scanners, and a pair of novel beam size monitors at the IP. This procedure allows the FFTB IP spot to be reduced to sizes under 100 nanometers

  14. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  15. Research and development of an electron beam focusing system for a high-brightness X-ray generator

    International Nuclear Information System (INIS)

    In order to minimize the size of the X-ray source for a U-shaped rotating anticathode X-ray generator, the electron beam is focused over a short distance by a combined-function bending magnet. Simulation predicts that the beam brightness will reach almost 500 kW mm−2 for a 120 keV/75 mA beam. A new type of rotating anticathode X-ray generator, where an electron beam of up to 60 keV irradiates the inner surface of a U-shaped Cu anticathode, has achieved a beam brilliance of 130 kW mm−2 (at 2.3 kW). A higher-flux electron beam is expected from simulation by optimizing the geometry of a combined-function-type magnet instead of the fringing field of the bending magnet. In order to minimize the size of the X-ray source the electron beam has been focused over a short distance by a new combined-function bending magnet, whose geometrical shape was determined by simulation using the Opera-3D, General Particle Tracer and CST-STUDIO codes. The result of the simulation clearly shows that the role of combined functions in both the bending and the steering magnets is important for focusing the beam to a small size. FWHM sizes of the beam are predicted by simulation to be 0.45 mm (horizontal) and 0.05 mm (vertical) for a 120 keV/75 mA beam, of which the effective brilliance is about 500 kW mm−2 on the supposition of a two-dimensional Gaussian distribution. High-power tests have begun using a high-voltage 120 kV/75 mA power supply for the X-ray generator instead of 60 kV/100 mA. The beam focus size on the target will be verified in the experiments

  16. Magnetic field measurement of the first model of the edge-focusing wiggler

    International Nuclear Information System (INIS)

    We are developing the Edge-Focusing (EF) wiggler as an focusing wiggler. It is based on a Halbach type wiggler made only of permanent magnet blocks but their magnet have trapezoidal or rhomboid shape that makes field gradient. The first model of the edge-focusing wiggler were fabricated to evaluate its performance. Measuring its field strength, it was demonstrated that a high field gradient is realized along the beam axis in the EF wiggler and matched numerical calculation. We report the result of magnetic field measurement of the EF wiggler. (author)

  17. Fabrication of a focusing grating mirror by electron beam lithography.

    Science.gov (United States)

    Hori, Y; Sogawa, F; Asakure, H; Kato, M; Serizawa, H

    1990-06-10

    A focusing grating mirror (FGM), which is a new computer generated holographic grating with functions of focusing lens and diffraction grating mirror, is proposed and fabricated, we believe, for the first time. A high speed and accurate electron beam writing system, based on a multitask minicomputer, 16-bit D/A converters with 64K-word static memories, and a scanning electron beam microscope, is developed and used to fabricate the FGMs comprising grating corrugations with chirp and bend structures. Excellent properties of the FGM are obtained, giving almost diffraction-limited spot size and the expected wavelength dispersion. The fabricated FGM is combined with a laser diode as an external cavity mirror to confirm the functions of direct optical feedback and wavelength selection, and the fundamental operation of an external-cavity laser is demonstrated. PMID:20567287

  18. Beam based alignment of the SLC final focus sextupoles

    International Nuclear Information System (INIS)

    The strong demagnification inherent in final focus systems requires local cancellation of the resulting chromaticty. Strong sextupole pair separated by a -I transform are positioned π/2 in the betatron phase away from the Interaction Point (IP) in order to cancel chromatic aberrations primarily due to the final quadrupoles. Sextupole alignment is critical in order to provide orthogonal tuning of the chromaticty and, in the case of the SLC, to limit the third and higher order optical aberrations generated from misaligned and 'nested' horizontal and vertical sextupole pairs. Reported here is a novel technique for aligning the beam centroid to the sextupole centers, which uses measurements of the criticality dependent parameter - the beam size at the IP. Results for the SLC final focus sextupoles are presented, where a resolution of <50 μm is achieved

  19. Effects on focused ion beam irradiation on MOS transistors

    International Nuclear Information System (INIS)

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 μm minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga+ focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated

  20. Effects on focused ion beam irradiation on MOS transistors

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A.N.; Peterson, K.A.; Fleetwood, D.M.; Soden, J.M.

    1997-04-01

    The effects of irradiation from a focused ion beam (FIB) system on MOS transistors are reported systematically for the first time. Three MOS transistor technologies, with 0.5, 1, and 3 {mu}m minimum feature sizes and with gate oxide thicknesses ranging from 11 to 50 nm, were analyzed. Significant shifts in transistor parameters (such as threshold voltage, transconductance, and mobility) were observed following irradiation with a 30 keV Ga{sup +} focused ion beam with ion doses varying by over 5 orders of magnitude. The apparent damage mechanism (which involved the creation of interface traps, oxide trapped charge, or both) and extent of damage were different for each of the three technologies investigated.

  1. Optical trapping in secondary maxima of focused laser beam

    Czech Academy of Sciences Publication Activity Database

    Šiler, Martin; Zemánek, Pavel

    2015-01-01

    Roč. 162, SI (2015), s. 114-121. ISSN 0022-4073 R&D Projects: GA ČR GPP205/12/P868; GA MŠk ED0017/01/01; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : optical tweezers * optical traps * optical trapstiffness * focused beam Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.645, year: 2014

  2. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  3. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    OpenAIRE

    Roland Schmied; Fowlkes, Jason D.; Robert Winkler; Rack, Phillip D; Harald Plank

    2015-01-01

    The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity r...

  4. Proton beam focusing with a radial applied B-field ion diode on PBFA II

    International Nuclear Information System (INIS)

    Ion beam focusing experiments have been performed on PBFA II using a 15-cm-radius version of an ion diode used on PROTO I. A pair of B-field coils located in the cathodes supply the 2 T axial B-field used to insulate the 1.7 cm anode-cathode gap from electron loss. Anode B-field coils adjust the level of magnetic insulation along the anode surface and control the canonical angular momentum of the bean originating from surface flashover anode sources. The diode uses a cylindrical, 12.5-cm-radius beam current neutralizing gas cell with 2-μm-thick mylar window and 3 torr argon gas fill. Diagnostic measurements presented include the total current, ion current, and voltage at the diode, nuclear activation, witness plate damage, proton beam energy spectrum, and spatial beam profiles at 4 and 0 cm radius

  5. Beam dynamics in magnetic quadrupole triplets

    International Nuclear Information System (INIS)

    The Frankfurt Neutron source at the Stern-Gerlach-Zentrum (FRANZ) will produce high intensity neutron pulses in the energy range of 1 to 500 keV at a very short repetition rate. The neutrons are gained from 7Li(p,n)7Be reactions induced by 2 MeV protons and will be used to examine the nucleosynthesis during the s-process as it occurs in stars, cross sections of neutron capture reactions as well as the behaviour of non-neutral plasmas. In the linear accelerator section, consisting of a 4-rod-radio-frequency-quadrupole and a H-type drift tube linac, the proton pulses are accelerated to 2.03 MeV. Inside the drift tube cavity a magnetic quadrupole triplet will be integrated, in order to compensate transversally defocussing effects and therefore avoid losses. Behind the linear accelerator section the proton beam ist rebunched in a 5-cell CH-rebuncher which is framed by two more quadrupole triplets. To investigate the beam dynamics inside the magnetic quadrupole triplets, various magnetostatic and particle tracking codes like CST Studio and LORASR were used to simulate the beam transport properties of the magnets and compare the individual magnetic field distributions with the ones measured at the magnet laboratory at GSI. In doing so, important aspects to be considered are the longitudinal and transversal fringe fields and the saturation effects which all possibly cause emittance growth and geometrical aberrations.

  6. Beam dynamics in magnetic quadrupole triplets

    Energy Technology Data Exchange (ETDEWEB)

    Claessens, Christine; Heilmann, Manuel; Meusel, Oliver; Podlech, Holger; Ratzinger, Ulrich; Wiesner, Christoph [IAP, Frankfurt University, Frankfurt am Main (Germany)

    2013-07-01

    The Frankfurt Neutron source at the Stern-Gerlach-Zentrum (FRANZ) will produce high intensity neutron pulses in the energy range of 1 to 500 keV at a very short repetition rate. The neutrons are gained from {sup 7}Li(p,n){sup 7}Be reactions induced by 2 MeV protons and will be used to examine the nucleosynthesis during the s-process as it occurs in stars, cross sections of neutron capture reactions as well as the behaviour of non-neutral plasmas. In the linear accelerator section, consisting of a 4-rod-radio-frequency-quadrupole and a H-type drift tube linac, the proton pulses are accelerated to 2.03 MeV. Inside the drift tube cavity a magnetic quadrupole triplet will be integrated, in order to compensate transversally defocussing effects and therefore avoid losses. Behind the linear accelerator section the proton beam ist rebunched in a 5-cell CH-rebuncher which is framed by two more quadrupole triplets. To investigate the beam dynamics inside the magnetic quadrupole triplets, various magnetostatic and particle tracking codes like CST Studio and LORASR were used to simulate the beam transport properties of the magnets and compare the individual magnetic field distributions with the ones measured at the magnet laboratory at GSI. In doing so, important aspects to be considered are the longitudinal and transversal fringe fields and the saturation effects which all possibly cause emittance growth and geometrical aberrations.

  7. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process

    International Nuclear Information System (INIS)

    Focused ion beam (FIB) milling has been used to fabricate magnetic nanostructures (wires, squares, discs) from single magnetic layers (Co, permalloy) and spin-valve (permalloy/Cu/Co) multilayers (thicknesses 5-50 nm) prepared by ion beam sputtering deposition. Milled surfaces of metallic thin films typically exhibit residual roughness, which is also transferred onto the edges of the milled patterns. This can lead to domain wall pinning and influence the magnetization behaviour of the nanostructures. We have investigated the milling process and the influence of the FIB parameters (incidence angle, dwell time, overlap and ion beam current) on the roughness of the milled surface. It has been found that the main reasons for increased roughness are different sputter yields for various crystallographic orientations of the grains in polycrystalline magnetic thin films. We have found that the oblique ion beam angle, long dwell time and overlap < 1 are favourable parameters for suppression of this intrinsic roughness. Finally, we have shown how to determine the ion dose necessary to mill through the whole thin film up to the silicon substrate from scanning electron microscopy (SEM) images only.

  8. Gaussian laser beam in a magnetized plasma. 2

    International Nuclear Information System (INIS)

    Properties of a laser beam propagating perpendicular to the external magnetic field in a plasma are investigated theoretically. The beam is represented by a Helmholtz equation in almost all plasma parameter space. For the upper hybrid wave region the wave equation turns to a hyperbolic partial differential equation. It is shown that both equations can be exactly solved by using a method of separation of variables and that solutions having Gaussian profiles lateral to the propagation direction are obtained. An appreciable difference between two solutions appears in their phase factors. Owing to the asymmetry of the configuration around the axis of wave propagation the cross sections of beams take shapes of ellipse and each beam has two different focus points. (author)

  9. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    Science.gov (United States)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  10. Focus on hybrid magnetic/superconducting systems Focus on hybrid magnetic/superconducting systems

    Science.gov (United States)

    Cooley, Lance; Moshchalkov, Victor; Li, Qiang

    2011-02-01

    Like antagonistic cousins from a common heritage, the competition between superconductivity and magnetism for correlated electron states, and coexistence in some rare cases, produces a rich variety of physical behavior, useful materials, and technologically important properties. Many pages of Superconductor Science and Technology are devoted to cuprates, pnictides, and other compounds where the mechanism of superconductivity itself is intertwined with magnetism. This focus issue explores another area, in which superconductivity and magnetism are combined as a hybrid system to create new properties not possible with either system alone, or to improve upon the properties of either system in dramatic ways. In recent years, great progress has been made in this exciting, relatively new field, followed by many workshops and special sessions in major international conferences. A concise and up-to-date focus issue of Superconductor Science and Technology is timely to summarize the latest developments. We, the Guest Editors, would like to thank those colleagues who contributed their most recent and interesting findings to this focus issue: Silhanek and co-workers reported both theoretical and experimental investigations of the dynamics of vortex chains for different arrangements of magnetic moments. Their approach of time-dependent Ginzburg-Landau formalism now replaces the previously proposed empirical models to explain the most relevant properties of the dynamics of these S/F hybrid systems. Hikino and co-workers presented a new route to observe the spin-wave excitation by the Josephson effect, through a theoretical investigation of the resistively shunted junction model, extended by considering the gauge invariance including magnetization. When the magnetization is driven by the microwave adjusted to the ferromagnetic resonance frequency, the dc supercurrent is induced in the junction, and the current-voltage curve shows step structures as a function of applied voltage

  11. Cryo-focused-ion-beam applications in structural biology.

    Science.gov (United States)

    Rigort, Alexander; Plitzko, Jürgen M

    2015-09-01

    The ability to precisely control the preparation of biological samples for investigations by electron cryo-microscopy is becoming increasingly important for ultrastructural imaging in biology. Precision machining instruments such as the focused ion beam microscope (FIB) were originally developed for applications in materials science. However, today we witness a growing use of these tools in the life sciences mainly due to their versatility, since they can be used both as manipulation and as imaging devices, when complemented with a scanning electron microscope (SEM). The advent of cryo-preparation equipment and accessories made it possible to pursue work on frozen-hydrated biological specimens with these two beam (FIB/SEM) instruments. In structural biology, the cryo-FIB can be used to site-specifically thin vitrified specimens for transmission electron microscopy (TEM) and tomography. Having control over the specimen thickness is a decisive factor for TEM imaging, as the thickness of the object under scrutiny determines the attainable resolution. Besides its use for TEM preparation, the FIB/SEM microscope can be additionally used to obtain three-dimensional volumetric data from biological specimens. The unique combination of an imaging and precision manipulation tool allows sequentially removing material with the ion beam and imaging the milled block faces by scanning with the electron beam, an approach known as FIB/SEM tomography. This review covers both fields of cryo-FIB applications: specimen preparation for TEM cryo-tomography and volume imaging by cryo-FIB/SEM tomography. PMID:25703192

  12. Photoinduced Magnetic Nanoprobe Excited by Azimuthally Polarized Vector Beam

    CERN Document Server

    Guclu, Caner; Capolino, Filippo

    2016-01-01

    The concept of magnetic nanoprobes (or magnetic nanoantennas) providing a magnetic near-field enhancement and vanishing electric field is presented and investigated, together with their excitation. It is established that a particular type of cylindrical vector beams called azimuthally electric polarized vector beams yield strong longitudinal magnetic field on the beam axis where the electric field is ideally null. These beams with an electric polarization vortex and cylindrical symmetry are important in generating high magnetic to electric field contrast, i.e., large local field admittance, and in allowing selective excitation of magnetic transitions in matter located on the beam axis. We demonstrate that azimuthally polarized vector beam excitation of a photoinduced magnetic nanoprobe made of a magnetically polarizable nano cluster leads to enhanced magnetic near field with resolution beyond diffraction limit. We introduce two figures of merit as magnetic field enhancement and local field admittance normaliz...

  13. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  14. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    International Nuclear Information System (INIS)

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect

  15. Transverse centroid oscillations in solenoidially focused beam transport lattices

    International Nuclear Information System (INIS)

    Transverse centroid oscillations are analyzed for a beam in a solenoid transport lattice. Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by both mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on the properties of the ideal lattice in the absence of errors and steering, and have associated expansion amplitudes set by the misalignments and steering fields, respectively. Applications of this formulation are presented for statistical analysis of centroid oscillations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  16. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    CERN Document Server

    Twedt, Kevin A; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J; Aksyuk, Vladimir A

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam. An ion beam (radius about 50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q > 20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation d...

  17. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  18. Magnetic focusing in triangular electron billiards

    DEFF Research Database (Denmark)

    Bøggild, Peter; Kristensen, A.; Lindelof, Poul Erik

    1999-01-01

    focusing spectrum compared to the case of a perpendicular injection angle. From numerical and analytical analysis, we confirm that the quenching is a fundamental geometrical effect, and identify two mechanisms responsible for the anomaly. The focusing spectrum of the considered skewed geometry is...

  19. Schlieren photography of plasma focus discharges with decreased magnetic insulation

    International Nuclear Information System (INIS)

    The dynamics of 6 kJ plasma focus discharges in deuterium at 5 Torr, with a 10% decrease of the magnetic insulation at the breech was monitored with schlieren photography and other diagnostic methods. The resolution on the schlieren image was of 33 line-pairs per mm, and the probed range of electron density gradients, with integration along the path of the ruby laser beam, was between 5 x 1018 cm-3 and 3 x 1020 cm-3. The duration of the typical Q-switched ruby laser pulse was 10 ns. Double and triple pulse generation made the measurement of the current sheath velocity possible. The average radial velocity was 1.2 x 107 cm/s in the interval (-112 ns, -88 ns), the average axial velocity 5 x 106 cm/s and 8 x 106 cm/s in the intervals (-4 ns, +96 ns) and (+96 ns, +126 ns), respectively. The timing is referred to the sharp peak (t = 0) in the electrode current (1) signal | dI/dt |. The data are compared with those from discharges with normal level (no 10% decrease) of magnetic insulation at the breech. The current sheath fine structure in the region of high density gradient is also monitored

  20. Industrial perspective on focused electron beam-induced processes

    Energy Technology Data Exchange (ETDEWEB)

    Bret, Tristan; Hofmann, Thorsten; Edinger, Klaus [Betriebsstaette Rossdorf, Carl Zeiss SMS GmbH, Rossdorf (Germany)

    2014-12-15

    After a short overview of the historical developments of the technique of gas-assisted focused electron beam-induced processing (mostly deposition and etching), this paper deals with the applications of this technology to photolithographic mask repair. A commented list of results is shown on different mask types, for different types of defects, and at different node generations. The scope of this article is double: summarize the state of the art in a fast-paced highly specific industrial environment driven by ''Moore's law'' and feedback to academic researchers some technologically relevant directions for further investigations. (orig.)

  1. Self-assembled film thickness determination by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Dejeu, J. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)], E-mail: jerome.dejeu@univ-fcomte.fr; Salut, R. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Spajer, M. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Membrey, F.; Foissy, A. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Charraut, D. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)

    2008-06-30

    The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers)

  2. Optical fiber tip templating using direct focused ion beam milling

    OpenAIRE

    A. De Micco; Ricciardi, A.; Pisco, M.; La Ferrara, V.; A. Cusano

    2015-01-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab...

  3. Diamond Processing by Focused Ion Beam - Surface Damage and Recovery

    CERN Document Server

    Bayn, Igal; Cytermann, Catherine; Meyler, Boris; Richter, Vladimir; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    The Nitrogen Vacancy color center (NV-) in diamond is of great interest for novel photonic applications. Diamond nano-photonic structures are often implemented using Focused-Ion-Beam (FIB) processing, leaving a damaged surface which has a detrimental effect on the color center luminescence. The FIB processing effect on single crystal diamond surfaces and their photonic properties is studied by Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and photoluminescence (PL). Exposing the processed surface to hydrogen plasma, followed by chemical etching, drastically decreases implanted Ga concentration, resulting in a recovery of the NV- photo-emission and in a significant increase of the NV-/NV0 ratio.

  4. Micro-machining using a focused ion beam

    International Nuclear Information System (INIS)

    This paper describes the micro-machining of micron and sub-micron scale structures by focused ion beams (FIB). The general requirements for micro-machining systems and the characteristics of FIB milling are considered. A range of applications of FIB milling are also discussed. These include failure analysis and device modification, which are now finding wide use in semiconductor research. Applications in other areas (such as optics and micro-mechanics) are increasing in number, FIB milling being a very flexible and precise method for producing prototype or specialized structures. (Author)

  5. EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS

    Science.gov (United States)

    Chambers, Scott A.; Gallagher, Bryan

    2008-05-01

    This focus issue of New Journal of Physics is devoted to the materials science of dilute magnetic semiconductors (DMS). A DMS is traditionally defined as a diamagnetic semiconductor doped with a few to several atomic per cent of some transition metal with unpaired d electrons. Several kinds of dopant-dopant interactions can in principle couple the dopant spins leading to a ferromagnetic ground state in a dilute magnetic system. These include superexchange, which occurs principally in oxides and only between dopants with one intervening oxygen, and double exchange, in which dopants of different formal charges exchange an electron. In both of these mechanisms, the ferromagnetic alignment is not critically dependent on free carriers in the host semiconductor because exchange occurs via bonds. A third mechanism, discovered in the last few years, involves electrons associated with lattice defects that can apparently couple dopant spins. This mechanism is not well understood. Finally, the most desirable mechanism is carrier-mediated exchange interaction in which the dopant spins are coupled by itinerant electrons or holes in the host semiconductor. This mechanism introduces a fundamental link between magnetic and electrical transport properties and offers the possibility of new spintronic functionalities. In particular electrical gate control of ferromagnetism and the use of spin polarized currents to carry signals for analog and digital applications. The spin light emitting diode is a prototypical device of this kind that has been extensively used to characterize the extent of spin polarization in the active light emitting semiconductor heterostructure. The prototypical carrier mediated ferromagnetic DMS is Mn-doped GaAs. This and closely related narrow gap III-V materials have been very extensively studied. Their properties are generally quite well understood and they have led to important insights into fundamental properties of ferromagnetic systems with strong spin

  6. Single-impulse magnetic focusing of launched cold atoms

    International Nuclear Information System (INIS)

    We have theoretically investigated the focusing of a launched cloud of cold atoms. Time-dependent spatially-varying magnetic fields are used to impart impulses leading to a three-dimensional focus of the launched cloud. We discuss possible coil arrangements for a new focusing regime: isotropic 3D focusing of atoms with a single-impulse magnetic lens. We investigate focusing aberrations and find that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D

  7. Single-impulse magnetic focusing of launched cold atoms

    Science.gov (United States)

    Pritchard, Matthew J.; Arnold, Aidan S.; Smith, David A.; Hughes, Ifan G.

    2004-11-01

    We have theoretically investigated the focusing of a launched cloud of cold atoms. Time-dependent spatially-varying magnetic fields are used to impart impulses leading to a three-dimensional focus of the launched cloud. We discuss possible coil arrangements for a new focusing regime: isotropic 3D focusing of atoms with a single-impulse magnetic lens. We investigate focusing aberrations and find that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D.

  8. Single-impulse magnetic focusing of launched cold atoms

    CERN Document Server

    Pritchard, M J; Smith, D A; Hughes, I G; Pritchard, Matthew J; Arnold, Aidan S; Smith, David A; Hughes, Ifan G

    2004-01-01

    We have theoretically investigated the focusing of a launched cloud of cold atoms. Time-dependent spatially-varying magnetic fields are used to impart impulses leading to a three-dimensional focus of the launched cloud. We discuss possible coil arrangements for a new focusing regime: isotropic 3D focusing of atoms with a single-impulse magnetic lens. We investigate focusing aberrations and find that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D.

  9. Application of RF crossed lenses for beam focusing in linac

    International Nuclear Information System (INIS)

    A method of beam focusing by two-electrode RF crossed lenses with decelerating fields is proposed. The lenses are arranged in accelerating gaps of a drift tube linac. The crossed lens is a set of plane electrodes with rectangular apertures such that the apertures in the neighbouring electrodes are rotated 90 degrees each other. Different variants of the focusing period structure are considered. The βλ FD period is shown to be used for low energy part of the linac. The transverse phase advance for the FD period is independent on the particle phase when the synchronous harmonics of the accelerating field is absent and the structure is analogous to RFQ with unmodulated vanes in the case. In the main part of the linac it is worth to change to the 2βλ FODO period to obtain essentially higher acceleration rate. (author)

  10. Light beams focusing in periodically non-uniform crystalline medium

    Directory of Open Access Journals (Sweden)

    S.N.Kurilkina

    2002-03-01

    Full Text Available In the present paper the peculiarities of propagation and diffraction of optical waves in the crystalline periodically non-uniform media are considered. The dependence of light beam divergence in the crystal on curvatures of wave vector surface is obtained. It is shown, that presence of the periodic non-uniformity of the crystal and natural anisotropy lead to essential deformation of wave vector surface, namely, to the appearance of local regions with negative curvature and, hence, to the effect of light focusing in corresponding directions. The application of uniform electric field may intensify the light focusing. The crystalline diffraction lenses are proposed which are controlled by electric field and variation of incident light polarization.

  11. Focused ion beam induced deflections of freestanding thin films

    International Nuclear Information System (INIS)

    Prominent deflections are shown to occur in freestanding silicon nitride thin membranes when exposed to a 50 keV gallium focused ion beam for ion doses between 1014 and 1017 ions/cm2. Atomic force microscope topographs were used to quantify elevations on the irradiated side and corresponding depressions of comparable magnitude on the back side, thus indicating that what at first appeared to be protrusions are actually the result of membrane deflections. The shape in high-stress silicon nitride is remarkably flat-topped and differs from that in low-stress silicon nitride. Ion beam induced biaxial compressive stress generation, which is a known deformation mechanism for other amorphous materials at higher ion energies, is hypothesized to be the origin of the deflection. A continuum mechanical model based on this assumption convincingly reproduces the profiles for both low-stress and high-stress membranes and provides a family of unusual shapes that can be created by deflection of freestanding thin films under beam irradiation

  12. Magnet alignment tolerances in the SLC final focus system determined by Lie algebra techniques

    International Nuclear Information System (INIS)

    Using Lie algebra techniques, static alignment tolerances are derived for all quadrupole and sextupole magnets in the 1994 SLC final focus. Three different effects are identified which limit the tolerable quadrupole misalignment. The largest amplitude of an offset-compensating closed orbit bump and the maximum allowed displacement between beam orbit and magnet center are evaluated for each sextupole. Multiparticle tracking supplements and confirms the analytical results. (orig.)

  13. Focusing Light Beams To Improve Atomic-Vapor Optical Buffers

    Science.gov (United States)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy

    2010-01-01

    Specially designed focusing of light beams has been proposed as a means of improving the performances of optical buffers based on cells containing hot atomic vapors (e.g., rubidium vapor). There is also a companion proposal to improve performance by use of incoherent optical pumping under suitable conditions. Regarding the proposal to use focusing: The utility of atomic-vapor optical buffers as optical storage and processing devices has been severely limited by nonuniform spatial distributions of intensity in optical beams, arising from absorption of the beams as they propagate in atomic-vapor cells. Such nonuniformity makes it impossible to optimize the physical conditions throughout a cell, thereby making it impossible to optimize the performance of the cell as an optical buffer. In practical terms simplified for the sake of brevity, "to optimize" as used here means to design the cell so as to maximize the group delay of an optical pulse while keeping the absorption and distortion of the pulse reasonably small. Regarding the proposal to use incoherent optical pumping: For reasons too complex to describe here, residual absorption of light is one of the main impediments to achievement of desirably long group delays in hot atomic vapors. The present proposal is directed toward suppressing residual absorption of light. The idea of improving the performance of slow-light optical buffers by use of incoherent pumping overlaps somewhat with the basic idea of Raman-based slow-light systems. However, prior studies of those systems did not quantitatively answer the question of whether the performance of an atomic vapor or other medium that exhibits electromagnetically induced transparency (EIT) with Raman gain is superior to that of a medium that exhibits EIT without Raman gain.

  14. Light ion beams generation in dense plasma focus

    International Nuclear Information System (INIS)

    The high energy deuterons and protons in a Mather type plasma focus device were measured by nuclear activation techniques. The radioactivity induced in graphite, aluminum and copper targets provided the deuteron intensity, energy spectra and angular dependence. High energy protons were measured by cellulose nitrate particle track detectors. The plasma focus device was operated at 30 kV for a stored energy of 18 kJ at 1.5 Torr D2 (low pressure mode), and 5 Torr D2 (high pressure mode). The yield ratio of N-13 and Al-28 showed the mean deuteron energy of 1.55 MeV under low pressure mode and of 1.44 MeV under high pressure mode. The deuteron energy spectra were measured by the stacks of 10 aluminum foils, and consisted of two components as well as the proton energy spectra measured by CN film technique. The angular spread of deuteron beam was within 30 degree under low pressure mode. Under high pressure mode, the distribution showed multi-structure, and two peaks were observed at the angle smaller than 20 degree and at 60 degree. The protons with energy more than 770 keV were directed in the angle of 10 degree. The high energy electron beam was also observed. A three-channel ruby laser holographic interferometry was used to see the spatial and temporal location of the generation of high energy ions. The ion temperature in plasma focus was estimated from D + He3 mixture gas experiment. (Kato, T.)

  15. Heavy ion beam transport and focusing with an insulator guide in inertial confinement fusion

    International Nuclear Information System (INIS)

    One of the key issues on the heavy ion beam inertial confinement fusion is an efficient transport and beam focusing. To get a fine focusing on the fuel pellet, neutralization of the space change of an incident beam is required. The space charge of beam has to be neutralized for the fine focusing. In this paper, we propose to employ an insulator tube guide, through which a heavy ion beam is transported and focused. We confirm that the beam space charge is effectively neutralized by electrons emitted from the insulator beam guide and the ion beam fine focusing is realized. This result shows a possibility of a good beam focusing by the insulator beam guide. (author)

  16. Intense ion beam production in a ballistic focusing diode

    International Nuclear Information System (INIS)

    The results of experimental investigation of intense ion beam (IIB) production in a coaxial magnetic insulated diode are presented. The diode consists of a coaxial external anode of 94-120 mm diameter and internal cathode with longitudinal slits of 12 mm width. Two types of insulating magnetic fields: Bsub(Z)-field created by external solenoid and Bsub(o)-pulse field obtained in the course of current transmission from the external battery along the cathode. In the regime with Bsub(Z)=0,42 T the IID amplitudes for anodes from teflon, copper, lead have reached 3,7, 1, 1,3 kA and densities - 330 A/cm2, 87 A/cm2, 114 A/cm2, respectively. In the regime with Bsub(o)=1 T maximum IIB density on the cathode surface has reached 220 A/cm2, IIB maximum current constitutes 10 and 11 kA for the current getting to the cathode ribs and penetrating into slits, respectively. The production efficiency constitutes 67%

  17. Experimental and numerical studies of sheet electron beam propagation through a planar wiggler magnet

    International Nuclear Information System (INIS)

    Detailed experimental studies on sheet relativistic electron beam propagation through a long planar wiggler are reported and compared with numerical simulations. The planar wiggler has 56 periods with a period of 9.6 mm. Typically, the wiggler field peak amplitude is 5 kG. The experimental efforts have been focused on control of the deviation of the beam toward the side edge of the planar wiggler along the wide transverse direction. It is found that a suitably tapered magnetic field configuration at the wiggler entrance can considerably reduce the rate of the deviation. The effects of the following techniques on beam transport efficiency are also discussed: side focusing, beam transverse velocity tuning at the wiggler entrance, and beam spread limiting. High beam transport efficiency (almost 100%) of a 15 A beam has been obtained in some cases. The results are relevant to development of a free electron laser amplifier for application to stabilizing and heating of plasma in magnetic fusion research

  18. Determination of the beam centroid of an obstructed focused Gaussian laser beam.

    Science.gov (United States)

    St John, W Doyle

    2009-08-01

    Diffraction of an obstructed focused Gaussian laser beam has been treated theoretically using the Huygens-Fresnel diffraction integral and was found to be in good agreement with experimental measurements. The obstruction is a vertically oriented opaque cylinder treated as a flat hard aperture. Measurements and calculations are compared for the diffracted irradiance profile and the beam centroid as a function of cylinder diameter and lateral and longitudinal placement along the optic axis. The cylinders used were gauge pins and/or wires with diameters from 0.5 to 100 mil. PMID:19649057

  19. Determination of the beam centroid of an obstructed focused Gaussian laser beam

    International Nuclear Information System (INIS)

    Diffraction of an obstructed focused Gaussian laser beam has been treated theoretically using the Huygens-Fresnel diffraction integral and was found to be in good agreement with experimental measurements. The obstruction is a vertically oriented opaque cylinder treated as a flat hard aperture. Measurements and calculations are compared for the diffracted irradiance profile and the beam centroid as a function of cylinder diameter and lateral and longitudinal placement along the optic axis. The cylinders used were gauge pins and/or wires with diameters from 0.5 to 100 mil.

  20. Determination of the beam centroid of an obstructed focused Gaussian laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Doyle St John, W.

    2009-08-01

    Diffraction of an obstructed focused Gaussian laser beam has been treated theoretically using the Huygens-Fresnel diffraction integral and was found to be in good agreement with experimental measurements. The obstruction is a vertically oriented opaque cylinder treated as a flat hard aperture. Measurements and calculations are compared for the diffracted irradiance profile and the beam centroid as a function of cylinder diameter and lateral and longitudinal placement along the optic axis. The cylinders used were gauge pins and/or wires with diameters from 0.5 to 100 mil.

  1. Focused-electron-beam-induced-deposited cobalt nanopillars for nanomagnetic logic

    Science.gov (United States)

    Sharma, N.; van Mourik, R. A.; Yin, Y.; Koopmans, B.; Parkin, S. S. P.

    2016-04-01

    Nanomagnetic logic (NML) intends to alleviate problems of continued miniaturization of CMOS-based electronics, such as energy dissipation through heat, through advantages such as low power operation and non-volatile magnetic elements. In line with recent breakthroughs in NML with perpendicularly magnetized elements formed from thin films, we have fabricated NML inverter chains from Co nanopillars by focused electron beam induced deposition (FEBID) that exhibit shape-induced perpendicular magnetization. The flexibility of FEBID allows optimization of NML structures. Simulations reveal that the choice of nanopillar dimensions is critical to obtain the correct antiferromagnetically coupled configuration. Experiments carrying the array through a clocking cycle using the Oersted field from an integrated Cu wire show that the array responds to the clocking cycle.

  2. Focused-electron-beam-induced-deposited cobalt nanopillars for nanomagnetic logic.

    Science.gov (United States)

    Sharma, N; van Mourik, R A; Yin, Y; Koopmans, B; Parkin, S S P

    2016-04-22

    Nanomagnetic logic (NML) intends to alleviate problems of continued miniaturization of CMOS-based electronics, such as energy dissipation through heat, through advantages such as low power operation and non-volatile magnetic elements. In line with recent breakthroughs in NML with perpendicularly magnetized elements formed from thin films, we have fabricated NML inverter chains from Co nanopillars by focused electron beam induced deposition (FEBID) that exhibit shape-induced perpendicular magnetization. The flexibility of FEBID allows optimization of NML structures. Simulations reveal that the choice of nanopillar dimensions is critical to obtain the correct antiferromagnetically coupled configuration. Experiments carrying the array through a clocking cycle using the Oersted field from an integrated Cu wire show that the array responds to the clocking cycle. PMID:26941232

  3. Progress on the Design and Fabrication of the MICE Focusing Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A; Baynham, D. Elwyn; Bradshaw, Thomas W.; Cobb, John H.; Lau, Wing W.; Yang, Stephanie Q.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) focusing solenoid magnets focus the muon beam within the MICE cooling channel on a liquid or solid absorber that is within the warm bore of solenoid. The focusing magnet has a warm bore of 470 mm. his magnet consists of two coils 210-mm long that is separated by an aluminum mandrel that is 200 mm long. Each of the coils has its own leads. The coils may be operated in either the non-flip mode (solenoid mode with both coils at the same polarity) or the lip mode (quadrupole focusing mode where both coils are at opposite polarity). This report describes the focusing solenoid magnet design that will be built by the vendor. The progress on the construction of the first of the focusing magnets will also be discussed in this report. Ultimately three of these magnets will be built. These magnets will be cooled using a pair 1.5 W (at 4.2 K) pulse tube coolers.

  4. Transverse Centroid Oscillations in Solenoidially Focused Beam Transport Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lund, S M; Wootton, C J; Lee, E P

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  5. Transverse centroid oscillations in solenoidially focused beam transport lattices

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable"alignment functions" and"bending functions" that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  6. Properties of dark solitons under SBS in focused beams

    Science.gov (United States)

    Bel'dyugin, Igor'M.; Erokhin, A. I.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.

    2012-12-01

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L ll τc, where L is the length of the active medium, τ is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about π under SBS. The computer simulation has shown that when spontaneous noises with the gain increment Γ, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t ≈ T2Γth/2, where T2 is the the lifetime of acoustic phonons, and Γth = 25 - 30 is the stationary threshold gain increment.

  7. Multiple charge beam dynamics in Alternate Phase Focusing structure

    CERN Document Server

    Dechoudhury, S; Chao, Y -C

    2014-01-01

    Asymmetrical Alternate Phase (A-APF) focusing realized in a sequence of 36 Superconducting Quarter Wave Resonators has been shown to accelerate almost 81 % of input Uranium beam before foil stripper to an energy of 6.2 MeV/u from 1.3 MeV/u. Ten charge states from 34+ to 43+ could be simultaneously accelerated with the phase of resonators tuned for 34+. A-APF structure showed unique nature of large potential bucket for charge states higher than that of tuned one. Steering inherent to QWRs can be mitigated by selecting appropriate phase variation of the APF periods and optimization of solenoid field strengths placed in each of the periods. This mitigation facilitates multiple charge state acceleration scheme

  8. Introduction to focused ion beams instrumentation, theory, techniques and practice

    CERN Document Server

    Giannuzzi, Lucille A

    2005-01-01

    The focused ion beam (FIB) instrument has experienced an intensive period of maturation since its inception. Numerous new techniques and applications have been brought to fruition, and over the past few years, the FIB has gained acceptance as more than just an expensive sample preparation tool. It has taken its place among the suite of other instruments commonly available in analytical and forensic laboratories, universities, geological, medical and biological research institutions, and manufacturing plants. Although the utility of the FIB is not limited to the preparation of specimens for subsequent analysis by other analytical techniques, it has revolutionized the area of TEM specimen preparation. The FIB has also been used to prepare samples for numerous other analytical techniques, and offers a wide range of other capabilities. While the mainstream of FIB usage remains within the semiconductor industry, FIB usage has expanded to applications in metallurgy, ceramics, composites, polymers, geology, art, bio...

  9. Chemically Induced Phase Transformation in Austenite by Focused Ion Beam

    Science.gov (United States)

    Basa, Adina; Thaulow, Christian; Barnoush, Afrooz

    2013-11-01

    A highly stable austenite phase in a super duplex stainless steel was subjected to a combination of different gallium ion doses at different acceleration voltages. It was shown that contrary to what is expected, an austenite to ferrite phase transformation occurred within the focused ion beam (FIB) milled regions. Chemical analysis of the FIB milled region proved that the gallium implantation preceded the FIB milling. High resolution electron backscatter diffraction analysis also showed that the phase transformation was not followed by the typical shear and plastic deformation expected from the martensitic transformation. On the basis of these observations, it was concluded that the change in the chemical composition of the austenite and the local increase in gallium, which is a ferrite stabilizer, results in the local selective transformation of austenite to ferrite.

  10. Focus on Materials Analysis and Processing in Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Full Text Available Recently, interest in the applications of feeble (diamagnetic and paramagnetic magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan.Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3, which was held on 14–16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields.This focus issue compiles 13 key papers selected from the proceedings

  11. 磁流体薄片中聚焦激光束对交流磁场的相位独立响应%Phase-independent response of a focused laser beam on a ferrofluid slab to A. C. magnetic field

    Institute of Scientific and Technical Information of China (English)

    袁绥华; 李洪杰; 张广溢

    2002-01-01

    报导了磁流体薄片中聚焦激光束在探测50Hz交流磁场时产生与磁场相位无关响应的效应.聚焦于并通过磁流体薄片的633nm激光束的偏转角仅与交流磁场的幅度相关.为了探寻其机理,还研究了磁流体中聚焦激光束对开/关磁场或激光的瞬态响应.提出了基于磁熵守恒的磁流体中磁性粒子密度再分布正反馈模型来解释这一效应.这一模型也可以预见磁流体中一种磁-热失稳现象.%The effect of phase-independent response of a laser beam focused on a ferrofluid slab in sensing the 50 Hz magnetic field was reported.The refraction angles of a laser beam of 633nm wave-length focused on a slab of ferrofluid only respond to the magnitude of the magnetic field. Transient responses of the ferrofluid to switching magnetic field or light on/off were also measured to search the mechanism of the effect. A model of magnetic entropy conservation-based positive feedback in density redistributions of the magnetic particles in the ferrofluid is proposed for explaining this effect. This model also predicts a magneto-thermal instability in the ferrofluid.

  12. Second and third harmonic waves excited by focused Gaussian beams.

    Science.gov (United States)

    Levy, Uri; Silberberg, Yaron

    2015-10-19

    Harmonic generation by tightly-focused Gaussian beams is finding important applications, primarily in nonlinear microscopy. It is often naively assumed that the nonlinear signal is generated predominantly in the focal region. However, the intensity of Gaussian-excited electromagnetic harmonic waves is sensitive to the excitation geometry and to the phase matching condition, and may depend on quite an extended region of the material away from the focal plane. Here we solve analytically the amplitude integral for second harmonic and third harmonic waves and study the generated harmonic intensities vs. focal-plane position within the material. We find that maximum intensity for positive wave-vector mismatch values, for both second harmonic and third harmonic waves, is achieved when the fundamental Gaussian is focused few Rayleigh lengths beyond the front surface. Harmonic-generation theory predicts strong intensity oscillations with thickness if the material is very thin. We reproduced these intensity oscillations in glass slabs pumped at 1550nm. From the oscillations of the 517nm third-harmonic waves with slab thickness we estimate the wave-vector mismatch in a Soda-lime glass as Δk(H)= -0.249μm(-1). PMID:26480441

  13. The proposed alignment system for the Final Focus Test Beam at SLAC

    International Nuclear Information System (INIS)

    This report describes the current state of work in progress with respect to the geometry, alignment requirements, scenarios, and hardware for meeting the tolerances of the Final Focus Test Beam (FFTB) at SLAC. The methods and systems proposed acknowledge that component motion at the micron level, from whatever cause (ground motion, thermal effects, etc.) must be measured on-line and compensated for on relatively short time scales. To provide an integrated alignment/positioning package, some unique designs for reference systems, calibration of effect electric and magnetic centers, and component movers are introduced. 24 refs., 28 figs

  14. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities

    OpenAIRE

    Chen, Ye; Liu, Jonathan T.C.

    2015-01-01

    Bessel beams have recently been investigated as a means of improving deep-tissue microscopy in highly scattering and heterogeneous media. It has been suggested that the long depth-of-field and self-reconstructing property of a Bessel beam enables an increased penetration depth of the focused beam in tissues compared to a conventional Gaussian beam. However, a study is needed to better quantify the magnitude of the beam steering as well as the distortion of focused Gaussian and Bessel beams in...

  15. Effect of strong solenoidal focusing on beam emittance of low-energy intense proton beam in the SARAF LEBT

    Science.gov (United States)

    Shor, A.; Weissman, L.

    2016-07-01

    Influence of strong solenoidal beam focusing on beam emittance was studied at the SARAF LEBT beam line using 5 mA 20 keV proton quasi-DC beams. The measurements show that within the experimental uncertainties, emittance does not change over the whole focusing range. Detailed beam dynamics simulations were performed to achieve better understanding of the experimental results. The experimental and simulation results are fully consistent with the assumption of nearly full space charge neutralization for the quasi-DC proton beam.

  16. FOREWORD: Focus on Materials Analysis and Processing in Magnetic Fields Focus on Materials Analysis and Processing in Magnetic Fields

    Science.gov (United States)

    Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu

    2009-03-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in excess of 10 000 times that of conventional 0.1 T permanent magnets. Consequently, many interesting phenomena have been observed over the last decade, such as the Moses effect, magnetic levitation and the alignment of feeble magnetic materials. Researchers in this area are widely spread around the world, but their number in Japan is relatively high, which might explain the success of magnetic field science and technology in Japan. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. The 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3), which was held on 14-16 May 2008 at the University of Tokyo, Japan, focused on various topics including magnetic field effects on chemical, physical, biological, electrochemical, thermodynamic and hydrodynamic phenomena; magnetic field effects on the crystal growth and processing of materials; diamagnetic levitation, the magneto-Archimedes effect, spin chemistry, magnetic orientation, control of structure by magnetic fields, magnetic separation and purification, magnetic-field-induced phase transitions, properties of materials in high magnetic fields, the development of NMR and MRI, medical applications of magnetic fields, novel magnetic phenomena, physical property measurement by magnetic fields, and the generation of high magnetic fields. This focus issue compiles 13 key papers selected from the proceedings of MAP3. Other

  17. Focused ion beam damage to MOS integrated circuits

    International Nuclear Information System (INIS)

    Commercial focused ion beam (FIB) systems are commonly used to image integrated circuits (ICS) after device processing, especially in failure analysis applications. FIB systems are also often employed to repair faults in metal lines for otherwise functioning ICS, and are being evaluated for applications in film deposition and nanofabrication. A problem that is often seen in FIB imaging and repair is that ICS can be damaged during the exposure process. This can result in degraded response or out-right circuit failure. Because FIB processes typically require the surface of an IC to be exposed to an intense beam of 30--50 keV Ga+ ions, both charging and secondary radiation damage are potential concerns. In previous studies, both types of effects have been suggested as possible causes of device degradation, depending on the type of device examined and/or the bias conditions. Understanding the causes of this damage is important for ICS that are imaged or repaired by a FIB between manufacture and operation, since the performance and reliability of a given IC is otherwise at risk in subsequent system application. In this summary, the authors discuss the relative roles of radiation damage and charging effects during FIB imaging. Data from exposures of packaged parts under controlled bias indicate the possibility for secondary radiation damage during FIB exposure. On the other hand, FIB exposure of unbiased wafers (a more common application) typically results in damage caused by high-voltage stress or electrostatic discharge. Implications for FIB exposure and subsequent IC use are discussed

  18. Optimization of self-magnetically insulated 'Plasma Focus Diode'

    International Nuclear Information System (INIS)

    The behavior of coaxial type, self-magnetically insulated 'Plasma Focus Diode' (PFD) is analyzed with a one-dimensional calculation model. The calculated results concerning the stability of the electron sheath are used in design of the spherical PFD. Furthermore, the focusability of the spherical PFD is estimated with the calculated results and the experimental results of cylindrical PFD. (author)

  19. Focused ion beam structuring of low melting polymeric materials

    International Nuclear Information System (INIS)

    This thesis focuses on heating effects during focused ion beam (FIB) processing of low melting polymers. The combined approach using experiments and simulations identifies the in part massive local temperatures as a convolution between intrinsic ion-matter effects and a considerable, technically-induced heating component. While the former is invariable, the latter has been minimized by an alternative process strategy which massively improves the morphological stability and minimizes chemical damage during FIB processing, thus opening new possibilities for application on sensitive, low melting materials. The study starts with systematic experimental investigations which strongly suggested the existence of a technically-induced heating component as a consequence of classically-used serpentine or raster-like patterning strategies. Based on these results, a combined simulation approach of ion trajectories and thermal spike model calculations have been employed to get a deeper insight into spatial and temporal temperature evolution. The results were then combined with the thermodynamic behavior of polymers by means of melting and volatizing temperatures. The comparison of these simulationbased predictions with real FIB experiments revealed very good agreement, proving the applicability of the approach used to describe the temperature evolution from a fundamental point of view. As a next step, these simulations were then applied to the dierent scanning strategies which further con rmed the existence of a technically-induced heating component via classically-used patterning approaches. Due to the deep insight gained via simulations, an alternative patterning strategy was developed, which was expected to minimize these avoidable influences. This new strategy was then evaluated using a multi-technique approach, which revealed strongly reduced chemical damage together with increasing morphological stabilities even for temperature-sensitive polymers. Finally, this alternative

  20. Properties of dark solitons under SBS in focused beams

    Energy Technology Data Exchange (ETDEWEB)

    Bel' dyugin, Igor' M; Erokhin, A I; Efimkov, V F; Zubarev, I G; Mikhailov, S I [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-12-31

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L || {tau}c, where L is the length of the active medium, {tau} is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about {pi} under SBS. The computer simulation has shown that when spontaneous noises with the gain increment {Gamma}, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t Almost-Equal-To T{sub 2}{Gamma}{sub th}/2, where T{sub 2} is the the lifetime of acoustic phonons, and {Gamma}{sub th} = 25 - 30 is the stationary threshold gain increment. (special issue devoted to the 90th anniversary of n.g. basov)

  1. Optical fiber tip templating using direct focused ion beam milling

    Science.gov (United States)

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Cusano, A.

    2015-11-01

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a ‘double-layer’ photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  2. Insight into Emiliania huxleyi coccospheres by focused ion beam sectioning

    Directory of Open Access Journals (Sweden)

    R. Hoffmann

    2014-09-01

    Full Text Available Coccospheres of a cultured Emiliania huxleyi clone were sampled in the exponential growth phase and sectioned using a focused ion beam microscope. An average of 69 sections and the corresponding secondary electron micrographs per coccosphere provided detailed information on coccosphere architecture. The latter features, 2–3 layers on average and 20 coccoliths per cell, of which only 15 can be seen in conventional scanning electron micrographs. The outer coccosphere diameter was positively correlated with the number of coccolith layers. By contrast, the inner coccosphere diameter (around 4.36 μm, and hence the cell diameter, was quasi-constant. Coccoliths were not evenly distributed across the coccosphere, resulting more often than not, in one part of the coccosphere displaying more coccolith layers than the other. The architectural data allowed us to calculate, with sufficient accuracy, the PIC/POC ratio and the density of individual cells. The lack of a significant correlation of the latter parameters has implications for the ongoing debate on the function of coccoliths.

  3. Micromachining of semiconductor materials by focused ion beams

    International Nuclear Information System (INIS)

    A Ga+ focused ion beam (FIB) has been used to micromachine semiconductor materials, including III-V compounds. The FIB was operated at 10 keV; (100) substrates of InP, GaAs and Si and epilayers of Ga0.46In0.54As and Ga0.2In0.8As0.4P0.6 grown by metal organic chemical vapour deposition (MOCVD) on (100) InP substrates were used for the micromachining experiments. Large area, rectangular wells with different depths were micromachined in the above, from which material removal rates have been derived using Talysurf profiling and SEM examination, and sputter yields deduced. The uniformity in removal rates with respect to depth has also been examined. In addition, results for clear end-point signals, using sample absorbed current have been established for Ga0.46In0.54As-InP and Ga0.2In0.8As0.4P0.6-InP interfaces. (author)

  4. Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography.

    Science.gov (United States)

    Rigort, Alexander; Bäuerlein, Felix J B; Villa, Elizabeth; Eibauer, Matthias; Laugks, Tim; Baumeister, Wolfgang; Plitzko, Jürgen M

    2012-03-20

    Cryoelectron tomography provides unprecedented insights into the macromolecular and supramolecular organization of cells in a close-to-living state. However because of the limited thickness range (< 0.5-1 μm) that is accessible with today's intermediate voltage electron microscopes only small prokaryotic cells or peripheral regions of eukaryotic cells can be examined directly. Key to overcoming this limitation is the ability to prepare sufficiently thin samples. Cryosectioning can be used to prepare thin enough sections but suffers from severe artefacts, such as substantial compression. Here we describe a procedure, based upon focused ion beam (FIB) milling for the preparation of thin (200-500 nm) lamellae from vitrified cells grown on electron microscopy (EM) grids. The self-supporting lamellae are apparently free of distortions or other artefacts and open up large windows into the cell's interior allowing tomographic studies to be performed on any chosen part of the cell. We illustrate the quality of sample preservation with a structure of the nuclear pore complex obtained from a single tomogram. PMID:22392984

  5. Elastic Scattering of Electron Vortex Beams in Magnetic Matter

    Science.gov (United States)

    Edström, Alexander; Lubk, Axel; Rusz, Ján

    2016-03-01

    Elastic scattering of electron vortex beams on magnetic materials leads to a weak magnetic contrast due to Zeeman interaction of orbital angular momentum of the beam with magnetic fields in the sample. The magnetic signal manifests itself as a redistribution of intensity in diffraction patterns due to a change of sign of the orbital angular momentum of the electron vortex beam. While in the atomic resolution regime the magnetic signal is most likely under the detection limits of present transmission electron microscopes, for electron probes with high orbital angular momenta, and correspondingly larger spatial extent, its detection is predicted to be feasible.

  6. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  7. Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition

    International Nuclear Information System (INIS)

    High-quality cobalt nanowires have been grown by focused-electron-beam-induced deposition (FEBID) and their magnetic and transport properties determined. The nanowires contain up to about 95% Co atomic percentage, as measured by EDX spectroscopy, which remarkably represents a high value compared with other metal deposits grown by the same technique. The Co content has been found to correlate with the beam current used for the growth. The magnetotransport properties have been studied on individual nanowires through 4-probe measurements. For the nanowires with the highest Co content, the resistivity at room temperature is low (∼40 μΩ cm), and shows metallic temperature dependence. The magnetotransport properties clearly demonstrate the ferromagnetic nature of the nanowire, with a saturation magnetization of Ms = 1329 ± 20 emu cm-3, very close to the bulk one. Due to the local character of this type of growth at targeted places and its high lateral resolution, these results pave the way for the creation of magnetic nanostructures and devices with the full potentiality of high-quality Co.

  8. Laser beam deflection by flow and nonlinear self-focusing

    International Nuclear Information System (INIS)

    In general, it is found that the plasma density response to a laser beam close-quote s ponderomotive force is shifted in the direction of a transverse flow, which in turn deflects the laser beam in that direction, and retards the flow at a temporal rate which is proportional to the beam close-quote s spatial deflection rate. This rate is a rapidly increasing function of left-angle I right-angle, the average laser intensity. This may result in finite beam deflections after propagation over a distance of a few speckle lengths for random phase plate optics. In current gas filled hohlraum experiments, the estimated magnitude of these effects is consistent with their experimental observation and one may need to include this physics in order to predict beam pointing which results in a symmetric capsule implosion. Flow retardation may be sufficient to exclude flow from the beam, self-limiting the deflection process. copyright 1996 American Institute of Physics

  9. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    International Nuclear Information System (INIS)

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H+ or He+ ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs

  10. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  11. Time structure of the particle beam source and current sheath filamentation in the plasma focus

    International Nuclear Information System (INIS)

    In previous work the authors have described a method for determining the energy spectrum N(E) of the ion beam emitted from a localized (point) source in the plasma focus pinch. In systematic applications the time structure of the beam source (dN/dt) is assumed to be the same as that of the x-ray localized source recorded from scintillation detector signal with a ≅ 2-5 ns time resolution [the spectrum is derived from the ion time of flight ΔtΓE/sup -1/2/; Δt from the conditions x(t)xMax N/Max x = N(t + Δt) on x-ray signal (x) and particle signal N]. The energy spectrum with a high resolution (ΔE ≤ 0.0 l E) from an alternative method - i.e. from magnetic analyzer data - is essentially the same as that from time of flight. This confirms that the time structure of the ion beam source in the high energy region (E > 0.3 MeV) fits the x-ray (and electron beam) source structure. At any specific time tau (i.e., within a sufficiently small time interval δt during the emission time ≅ 5-50 ns of the beam) the beam is emitted with an amplitude N(E) which is sharply peaked at a specific value of the energy E = E(tau). A correlation of the filamentary structure of the x-ray source with a filamentary structure of the ion source can also be established on a space scale of ≤ 10μm

  12. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    CERN Document Server

    Batygin, Yuri K; Kurennoy, Sergey; Li, Chao

    2016-01-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  13. Suppression of space charge induced beam halo in nonlinear focusing channel

    Science.gov (United States)

    Batygin, Yuri K.; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao

    2016-04-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  14. Main Magnetic Focus Ion Source: I. Basic principles and theoretical predictions

    OpenAIRE

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2015-01-01

    It is proposed to produce highly charged ions in the local potential traps formed by the rippled electron beam in a focusing magnetic field. In this method, the extremely high electron current densities can be attained on short length of the ion trap. The design the very compact ion sources is feasible. For such ions as, for example, Ne${}^{8+}$ and Xe${}^{44+}$, the intensities of about $10^9$ and $10^6$ particles per second, respectively, can be obtained.

  15. Beam focusing by aperture displacement in two-stage acceleration system

    International Nuclear Information System (INIS)

    The effects of beam focusing and the influence of total beam deflection on injection efficiency are estimated numerically for the neutral beam injectors of large tokamaks such as the JT-60. It is shown that beam focusing is important in improving injection efficiency in such a large device. As one method of focusing, beam focusing by aperture displacement was investigated in the two-stage acceleration system on the basis of a thin lens approximation. The simultaneous displacement of apertures in the plasma and gradient grids (or suppressor and exit grids) was found to be adequate for beam focusing, because the focal point hardly depends on the field intensity ratio which determines the two-stage ion beam optics. (author)

  16. Self-Focusing of Hermite-Cosh-Gaussian Laser Beams in Plasma under Density Transition

    OpenAIRE

    Manzoor Ahmad Wani; Niti Kant

    2014-01-01

    Self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot...

  17. Beam deflection into a quadrant by a positionally stationary magnetic bending system

    International Nuclear Information System (INIS)

    A system of postionally stationary magnets is analyzed for the continuously variable deflection of a 50 MeV electron beam. The system is composed of a collection of horizontal and vertical bending magnets, quadrupoles, and a final deflection magnet that is conical in shape and capable of deflections of plus or minus 50 degrees simultaneously in both horizonal and vertical planes. Throughout the system the beam is assumed to be focused by its own magnetic self-field, the electric self-field being neutralized by background ions. The motion of the beam in the externally applied magnetic fields may then be considered as single particle motion. The system of bending magnets and quadrupoles pre-conditions the beam by introducing the proper displacements and angles at the entrance to the final deflection magnet for momentum deviations up to plus or minus one percent. The displacements and angles are determined by the chromaticity of the final deflection and are a function of the bending angles in the two planes. The total system is then doubly achromatic in both planes. The preconditioning magnets are of standard accelerator beam transport design while the conical deflection magnet is of a design fashioned from a television deflection coil scaled up by about a factor of 10 in size

  18. Spatial-spectral characterization of focused spatially chirped broadband laser beams.

    Science.gov (United States)

    Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-11-20

    Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams. PMID:26836543

  19. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  20. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  1. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.

    Science.gov (United States)

    Chen, Ye; Liu, Jonathan T C

    2015-04-01

    Bessel beams have recently been investigated as a means of improving deep-tissue microscopy in highly scattering and heterogeneous media. It has been suggested that the long depth-of-field and self-reconstructing property of a Bessel beam enables an increased penetration depth of the focused beam in tissues compared to a conventional Gaussian beam. However, a study is needed to better quantify the magnitude of the beam steering as well as the distortion of focused Gaussian and Bessel beams in tissues with microscopic heterogeneities. Here, we have developed an imaging method and quantitative metrics to evaluate the motion and distortion of low-numerical-aperture (NA) Gaussian and Bessel beams focused in water, heterogeneous phantoms, and fresh mouse esophagus tissues. Our results indicate that low-NA Bessel beams exhibit reduced beam-steering artifacts and distortions compared to Gaussian beams, and are therefore potentially useful for microscopy applications in which pointing accuracy and beam quality are critical, such as dual-axis confocal (DAC) microscopy. PMID:25909015

  2. Six tesla analyzing magnet for heavy-ion beam transport

    International Nuclear Information System (INIS)

    A superconducting analyzer magnet for particle beam deflection has been designed and is being fabricated for use at the Argonne Tandem-Linac Accelerator System (ATLAS). This six tesla magnet will provide 450 of deflection for the heavy-ion beams from the ATLAS tandem electrostatic accelerator and together with its twin will replace the existing conventional 900 analyzer magnet which will become inadequate when ATLAS is completed

  3. Disruption of geometric focus by self-magnetic fields

    International Nuclear Information System (INIS)

    The perturbation of ballistic ion orbits due to the azimuthal magnetic field associated with incomplete current neutralization is investigated. It is shown that 1% current non-neutralization is sufficient to disrupt the millimeter-radius focus desired for present reactor scenarios. Implications of these results and directions for future research are discussed

  4. A large stroke magnetic fluid deformable mirror for focus control

    Science.gov (United States)

    Min, Ling-kun; Wu, Zhi-zheng; Huang, Ming-shuang; Kong, Xiang-hui

    2016-03-01

    A liquid deformable mirror, which can provide a large stroke deflection more than 100 μm, is proposed for focus control. The deformable mirror utilizes the concept of magnetic fluid deformation shaped with electromagnetic fields to achieve concave or convex surface and to change the optical focus depth of the mirrors. The free surface of the magnetic fluid is coated with a thin layer of metal-liquid-like film (MELLF) prepared from densely packed silver nanoparticles to enhance the reflectance of the deformable mirror. The experimental results on the fabricated prototype magnetic fluid deformable mirror (MFDM) show that the desired concave/convex surface shape can be controlled precisely with a closed-loop adaptive optical system.

  5. Experimental single-impulse magnetic focusing of launched cold atoms

    CERN Document Server

    Smith, D A; Hughes, I G; Pritchard, M J; Arnold, Aidan S.; Hughes, Ifan G.; Pritchard, Matthew J.; Smith, David A.

    2007-01-01

    Three-dimensional magnetic focusing of cold atoms with a single magnetic impulse has been observed for the first time. We load 7x10^7 85-Rb atoms into a magneto-optical trap, precool the atoms with optical molasses, then use moving molasses to launch them vertically through 20.5cm to the apex of flight. In transit the atoms are optically pumped, prior to the single magnetic lens impulse that occurs 16.5cm above the MOT. Fluorescence images at the apex of flight characterise the widths of the focussed cloud. Results were obtained for four different configurations of the baseball lens, which tuned the relationship between the axial and radial frequencies of the lens. Compact focused clouds were seen for all four configurations.

  6. Investigation of diluted magnetic semiconductor and nano magnetic material by ion beam technology

    International Nuclear Information System (INIS)

    In this paper, we focus on constitution, magnetism modification and characterization of GaN-based materials using ion beam technology and formation of the nano structure by implanting Mn+ or Co+ ion of different doses into the film samples. SQUID and AGM were used to measure the magnetic properties, such as coercivity and saturation magnetization, for the samples before and after annealing, M-H and M-T curves showed ferromagnetism in the films at both low temperature and room temperature. RBS/C, PIXE and XRD were used to analyze the microstructure, content of doping transition metal and damage. The nano-cluster of ferromagnetism particle was observed under HRTEM. (authors)

  7. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  8. Propagation and cross-focusing of hollow Gaussian laser beams in plasma

    International Nuclear Information System (INIS)

    This paper presents the cross focusing of two high power Hollow Gaussian laser beams (HGLB) by considering ponderomotive nonlinearity in a collisionless plasma. On account of the nonlinearity present in the plasma the two laser beams affect the dynamics of each other and cross-focusing takes place. The expressions for the laser beam intensities by using the eikonal method have been derived and the beam width parameter is calculated in the case when only ponderomotive nonlinearity is operative. The numerical appreciation of the cross focusing has been presented graphically by plotting beam-width parameter vs. dimensionless distance of propagation. Theself focusing of one laser beam is affected due to the optical inhomogeneities introduced by another copropagating HGLB in the plasma. It is observed thatthe presence of one HGLB also affects the self focusing of different order's (n) of the other HGLB.

  9. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    International Nuclear Information System (INIS)

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>1019 W/cm2) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case

  10. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wen-shuai [Graduate School, China Academy of Engineering Physics, P.O. Box 2101, Beijing 100088 (China); Cai, Hong-bo, E-mail: Cai-hongbo@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Zhu, Shao-ping, E-mail: Zhu-shaoping@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2015-10-15

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.

  11. Magnetic design and measurement of nonlinear multipole magnets for the APT beam expander system

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Shafer, R.E.; Martinez, R.P. [Los Alamos National Lab., NM (United States); Walstrom, P.L. [Northrop Grumman Corp., Princeton, NJ (United States); Kahn, S.; Jain, A.; Wanderer, P. [Brookhaven National Lab., Upton, NY (United States)

    1997-10-01

    Two prototype nonlinear multipole magnets have been designed for use in the 800-MeV beam test of the APT beam-expansion concept at LANSCE. The iron-dominated magnets each consist of three independent coils, two for producing a predominantly octupole field with a tunable duodecapole component, and one for canceling the residual quadrupole field. Two such magnets, one for shaping each transverse plane, are required to produce a rectangular, uniform beam current density distribution with sharp edges on the APT target. This report will describe the magnetic design of these magnets, along with field measurements, and a comparison to the magnetic design.

  12. Tailoring reflection of graphene plasmons by focused ion beams

    CERN Document Server

    Luo, Weiwei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-01-01

    Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental important. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.

  13. Beam dynamics requirement for proposed booster extraction septum magnet

    International Nuclear Information System (INIS)

    To improve the performance of Indus-2 storage ring, it is planned to operate the booster injector at beam energy of 700 MeV, which is presently being operated at 550 MeV. At higher beam energy the beam size will increase and quality of extracted beam from booster will be deteriorated because of the poor magnetic field homogeneity of existing septum magnet. As a consequence it may reduce the injection efficiency of Indus-2. In this perspective, magnetic field homogeneity and good field region of the extraction septum magnet plays a vital role. Thus it is required to upgrade the technical specification of the booster extraction septum magnet. The same has been evolved and its results are presented. (author)

  14. Beam injection with pulsed multipole magnet at UVSOR-III

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N., E-mail: naoto@nagoya-u.jp [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Zen, H. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hosaka, M. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Konomi, T. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Adachi, M. [High Energy Accelerator Research Organization, KEK 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Hayashi, K.; Yamazaki, J. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Takashima, Y. [Synchrotron Radiation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aich 464-8603 (Japan); Katoh, M. [UVSOR, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)

    2014-12-11

    In this study, we designed and manufactured a pulsed multipole magnet for beam injection into the UVSOR-III ring. A sextupole-like magnetic field could be excited when using the multipole magnet. To compensate for the residual field at the center of the magnet caused by manufacturing imprecisions, thin ferrite sheets were used. The injection experiments at UVSOR-III demonstrated multi-turn injections with the pulsed multipole magnet. The injection efficiency was 23% and the electron beam was stored up to the normal operation current of 300 mA. Moreover, we confirmed that oscillations of stored beams caused by beam injection were drastically suppressed compared with conventional pulsed dipole injection.

  15. Micro-patterns fabrication using focused proton beam lithography

    Czech Academy of Sciences Publication Activity Database

    Cutroneo, Mariapompea; Havránek, Vladimír; Macková, Anna; Semián, Vladimír; Torrisi, L.; Calcagno, L.

    2016-01-01

    Roč. 371, MAR (2016), s. 344-349. ISSN 0168-583X. [22nd International conference on Ion Beam Analysis (IBA). Opatija, 14.06.2015-19.06.2015] R&D Projects: GA MŠk(CZ) LM2011019; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : ion-micro-beam * STIM analysis * pattern in PMMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  16. Plasma Neutralized Drift Compression and Final Focus of Heavy Ion Beams

    International Nuclear Information System (INIS)

    In order to drive an inertial fusion target or study high energy density physics with heavy ion beams, the beam radius must be focused to small radius and the pulselength must be greatly compressed. The conventional scheme for temporal pulse compression makes use of an increasing ion velocity to compress the beam as it drifts and beam space charge to stagnate the compression before final focus. Beam compression in a neutralizing plasma does not require stagnation of the compression, enabling a more robust method

  17. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications. PMID:27176945

  18. Focusing of Gaussian beam passed under small angle to optical axis of uniaxial crystal

    Science.gov (United States)

    Ivanov, M. O.; Shostka, N. V.

    2016-07-01

    We showed both experimentally and analytically, the effect of focusing of a Gaussian beam propagated under small angle ϕ with respect to the optical axis of a uniaxial crystal, on the generation of a bottle beam. At ϕ = 0° two foci that correspond to ordinary and extraordinary parts of a beam form a closed 3D structure of a bottle beam. At this point, the beam, in the foci points, has radially and azimuthally aligned polarizations. Increasing the value of ϕ leads to dramatic changes in the intensity and polarization structure of a bottle beam. Starting from the value of ϕ = ±2° the closed 3D symmetric structure of a bottle beam breaks down. At ϕ = ±5° both beams are focused at the same transverse plane, while its polarization evolves to x- and y-linear. With a further increase in angle ϕ two foci ‘switch’ their spatial positions and move further away.

  19. Corrections to the knife-edge based reconstruction scheme of tightly focused light beams.

    Science.gov (United States)

    Huber, C; Orlov, S; Banzer, P; Leuchs, G

    2013-10-21

    The knife-edge method is an established technique for profiling light beams. It was shown, that this technique even works for tightly focused beams, if the material and geometry of the probing knife-edges are chosen carefully. Furthermore, it was also reported recently that this method fails, when the knife-edges are made from pure materials. The artifacts introduced in the reconstructed beam shape and position depend strongly on the edge and input beam parameters, because the knife-edge is excited by the incoming beam. Here we show, that the actual beam shape and spot size of tightly focused beams can still be derived from knife-edge measurements for pure edge materials and different edge thicknesses by adapting the analysis method of the experimental data taking into account the interaction of the beam with the edge. PMID:24150349

  20. Low-temperature transport in ultra-thin tungsten films grown by focused-ion-beam deposition

    OpenAIRE

    Chiatti, O.; Warburton, P. A.

    2010-01-01

    We have fabricated tungsten-containing films by focused-ion-beam (FIB)-induced chemical vapour deposition. By using ion-beam doses below 50 pC/μm² on a substrate of amorphous silicon, we have grown continuous films with thickness below 20 nm. The low-temperature electron transport properties were investigated by measuring current-voltage characteristics for temperatures down to 400 mK and in magnetic fields up to 8 T. FIB-deposited tungsten films are known to have an enhanced transition tem­p...

  1. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    International Nuclear Information System (INIS)

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in a high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described

  2. Self-driven HeII cooling system for the interaction region focusing magnets at SSC

    International Nuclear Information System (INIS)

    The focusing magnets nearest the interaction points of the Superconducting Super Collider (SSC) face concentrated and somewhat unpredictable heat loads from the radiation produced by the proton beam collision. A three-stage cooling system design is shown that interfaces with the SSC external refrigeration system and minimizes hot spots in the magnet. The magnet cold mass can be held below 2 K even with a heat load of 1 kW. Internal convection with zero mass flow between the magnet laminations carries the heat radially outward from the center of the magnets to large coolant passages near the periphery. Cross flow is not required. A circulation system driven by the heat being removed then carries the heat axially through the 60 m long set of magnets. A heat exchanger/thermomechanical pump module transfers the heat to the external refrigeration loop, permitting the external loop to be optimized without matching the flow rate required through the magnets. These results are useful beyond the SSC community as examples of using He II to transfer large amounts of heat in industrial-scale superconducting magnets

  3. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  4. Absorption of focused laser beams by a nonspherical plasma

    International Nuclear Information System (INIS)

    The interaction of a high intensity axially symmetric beam with a nonspherical plasma is studied numerically. The high frequency plasma response is calculated using a linearized fluid approximation. The full three dimensional Maxwell's equations are solved in spherical coordinates. A method for selectively damping the longitudinal electric fields is included to model thermal, kinetic, or nonlinear effects near the critical density. The low frequency response of the plasma to the ponderomotive force is followed with an isothermal hydrodynamic description. The incident laser beam is circularly polarized so that the plasma remains azimuthally symmetric to first order. Detailed descriptions of several representative calculations are given. It is found that the absorption of an initially spherical plasma can be significantly increased by induced aspherical plasma density profile modifications. A simple physical explanation for the observed absorption increase is proposed. Finally, the validity of the approximations made is analyzed briefly

  5. Focused high energy proton beam micromachining: A perspective view

    International Nuclear Information System (INIS)

    Micromachining techniques utilising optical, UV and X-ray photons, as well as electrons, low energy heavy ions and high energy light ions (protons), are briefly reviewed. The advantages and disadvantages of each process are discussed. High energy ion beam micromachining (proton micromachining) is a new process which exhibits a unique feature; direct-write 3-dimensional micromachining at submicron resolutions. Although this technique may not compete with conventional mask processes for producing high volume batch production of microcomponents, high energy ion beam micromachining may have a significant role in rapid prototyping, research into the characteristics of microstructures, and the manufacture of molds, stamps and thick masks. Several examples of high energy proton micromachining are presented to illustrate the potential of the technique

  6. Highly focused ion beams in integrated circuit testing

    International Nuclear Information System (INIS)

    The nuclear microprobe has proven to be a useful tool in radiation testing of integrated circuits. This paper reviews single event upset (SEU) and ion beam induced charge collection (IBICC) imaging techniques, with special attention to damage-dependent effects. Comparisons of IBICC measurements with three-dimensional charge transport simulations of charge collection are then presented for isolated p-channel field effect transistors under conducting and non-conducting bias conditions

  7. Focusing of short-pulse high-intensity laser-accelerated proton beams

    Science.gov (United States)

    Bartal, Teresa; Foord, Mark E.; Bellei, Claudio; Key, Michael H.; Flippo, Kirk A.; Gaillard, Sandrine A.; Offermann, Dustin T.; Patel, Pravesh K.; Jarrott, Leonard C.; Higginson, Drew P.; Roth, Markus; Otten, Anke; Kraus, Dominik; Stephens, Richard B.; McLean, Harry S.; Giraldez, Emilio M.; Wei, Mingsheng S.; Gautier, Donald C.; Beg, Farhat N.

    2012-02-01

    Recent progress in generating high-energy (>50MeV) protons from intense laser-matter interactions (1018-1021Wcm-2 refs , , , , , , ) has opened up new areas of research, with applications in radiography, oncology, astrophysics, medical imaging, high-energy-density physics, and ion-proton beam fast ignition. With the discovery of proton focusing with curved surfaces, rapid advances in these areas will be driven by improved focusing technologies. Here we report on the first investigation of the generation and focusing of a proton beam using a cone-shaped target. We clearly show that the focusing is strongly affected by the electric fields in the beam in both open and enclosed (cone) geometries, bending the trajectories near the axis. Also in the cone geometry, a sheath electric field effectively `channels' the proton beam through the cone tip, substantially improving the beam focusing properties. These results agree well with particle simulations and provide the physics basis for many future applications.

  8. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  9. Matching bunched beams to alternating gradient focusing systems

    International Nuclear Information System (INIS)

    A numerical procedure for generating phase-space distributions matched to alternating gradient focusing systems has been tested. For a smooth-focusing system a matched distribution can be calculated. With a particle tracing simulation code such a distribution can be followed while adiabatically deforming the focusing forces until an alternating gradient configuration is reached. The distribution remains matched; the final distribution is periodic with the structure period. External nonlinearities, including nonlinear couplings, were included in our examples but space charge was not. This procedure is expected to work with space charge but will require a 3-D space-charge calculation in the simulation code

  10. Laser cooling of a magnetically guided ultra cold atom beam

    Energy Technology Data Exchange (ETDEWEB)

    Aghajani-Talesh, Anoush

    2014-07-01

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  11. Laser cooling of a magnetically guided ultra cold atom beam

    International Nuclear Information System (INIS)

    This thesis examines two complimentary methods for the laser cooling of a magnetically guided ultra-cold atom beam. If combined, these methods could serve as a starting point for high-through put and possibly even continuous production of Bose-Einstein condensates. First, a mechanism is outlined to harvest ultra cold atoms from a magnetically guided atom beam into an optical dipole trap. A continuous loading scheme is described that dissipates the directed kinetic energy of a captured atom via deceleration by a magnetic potential barrier followed by optical pumping to the energetically lowest Zeeman sublevel. The application of this scheme to the transfer of ultra cold chromium atoms from a magnetically guided atom beam into a deep optical dipole trap is investigated via numerical simulations of the loading process. Based on the results of the theoretical studies the feasibility and the efficiency of our loading scheme, including the realisation of a suitable magnetic field configuration, are analysed. Second, experiments were conducted on the transverse laser cooling of a magnetically guided beam of ultra cold chromium atoms. Radial compression by a tapering of the guide is employed to adiabatically heat the beam. Inside the tapered section heat is extracted from the atom beam by a two-dimensional optical molasses perpendicular to it, resulting in a significant increase of atomic phase space density. A magnetic offset field is applied to prevent optical pumping to untrapped states. Our results demonstrate that by a suitable choice of the magnetic offset field, the cooling beam intensity and detuning, atom losses and longitudinal heating can be avoided. Final temperatures below 65 μK have been achieved, corresponding to an increase of phase space density in the guided beam by more than a factor of 30.

  12. A critical literature review of focused electron beam induced deposition

    Science.gov (United States)

    van Dorp, W. F.; Hagen, C. W.

    2008-10-01

    An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally

  13. Multi-slit triode ion optical system with ballistic beam focusing

    Science.gov (United States)

    Davydenko, V.; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N.; Karpushov, A. N.; Smirnov, A.; Uhlemann, R.

    2016-02-01

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  14. Multi-slit triode ion optical system with ballistic beam focusing

    International Nuclear Information System (INIS)

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits

  15. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  16. Charged particle beam structure having electrostatic coarse and fine double deflection system with dynamic focus and diverging beam

    International Nuclear Information System (INIS)

    An electron beam or other charged particle beam tube of the compound fly's eye type having a coarse deflection system is described. The beam tube comprises an evacuated housing together with an electron gun or other charged particle beam producing means disposed at one end of the evacuated housing for producing a beam of electrons or other charged particles. A coarse deflector, a compound micro lens assembly, and a fine deflector are disposed in the housing in the path of the electron or other charged particle beam for first selecting a lenslet and thereafter finely deflecting an electron or other charged particle beam to a desired spot on a target plane. The electron or other charged particle beam tube is designed in a manner such that the electron or other charged particle beam is caused to diverge at a small angle of divergence in advance of passing through the coarse deflector by appropriately locating the virtual origin or point source of the charged particle a small distance in advance of the coarse deflector. In addition, a dynamic focusing correction potential is supplied to the micro lens assembly along with a high voltage energizing potential with the dynamic focusing correction potential being derived from components of both the coarse deflection potentials and the fine deflection potentials

  17. Estimation of the Beam Width in Magnetic Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    O.N. Peregudov

    2010-01-01

    Full Text Available A method for estimation of the beam width in magnetic sector mass spectrometers is proposed. This method consists in the restoration of the initial ion density distribution function in a beam cross-section before the receiving collector slit and can be used for the qualitative estimation of the mass spectrometer ion-optical scheme.

  18. Physico-chemical study of the focused electron beam induced deposition process

    OpenAIRE

    Bret, Tristan; Hoffmann, Patrik

    2007-01-01

    The focused electron beam induced deposition process is a promising technique for nano and micro patterning. Electrons can be focused in sub-angström dimensions, which allows atomic-scale resolution imaging, analysis, and processing techniques. Before the process can be used in controlled applications, the precise nature of the deposition mechanism must be described and modelled. The aim of this research work is to present a physical and chemical description of the focused electron beam induc...

  19. Matching bunched beams to alternating gradient focusing systems

    International Nuclear Information System (INIS)

    A numerical procedure for generating phase-space distributions matched to alternating gradient focusing systems has been tested. For a smooth-focusing system a matched distribution can be calculated. With a particle tracing simulation code such a distribution can be followed while adiabatically deforming the focusing forces until an alternating gradient configuration is reached. The distribution remains matched; that is, the final distribution is periodic with the structure period. This method is useful because it can produce distributions matched to nonlinear forces. This is a feature that elliptical distributions, with ellipse parameters obtained from the Courant-Snyder theory, do not have. External nonlinearities, including nonlinear couplings, were included in our examples but space charge was not. This procedure is expected to work with space charge but will require a three-dimensional space charge calculation in the simulation code

  20. Correlation between ion beam parameters and physical characteristics of nanostructures fabricated by focused ion beam

    International Nuclear Information System (INIS)

    We report a study of the physical characteristics of the pillars of C, Pt and W grown by 10-30 keV Ga focused ion beam (FIB) as a function of Ga ion flux, and present a quantitative analysis of the elements using energy-dispersive analysis of X-rays (EDAX). All the FIB grown pillars exhibit a rough morphology with whisker like protrusions on the cylindrical surface and broadening of the base as compared to the nominal size. For a constant fluence, the height of the pillar initially increases and then reduces after going through a maximum as a function of ion flux in all the cases. The compositional analysis shows good metallic quality for Pt structures but reveals significant contamination of Ga in C and Ga and C in W structures at higher ion fluxes. Explanation to all these observations has been sought in the light of secondary ion and electron effects and the different processes involved which lead to the FIB induced deposition

  1. Self-focusing of Hermite-Gaussian laser beam with relativistic nonlinearity

    International Nuclear Information System (INIS)

    This paper presents an investigation of self-focusing of Hermite-Gaussian laser beams in plasma considering relativistic nonlinearity. The differential equations for beam width parameters are obtained using the usual Wentzel–Kramers–Brillouin and paraxial approximations. The nonlinearity in the dielectric constant is assumed to be aroused mainly due to the relativistic mass correction of electron. To highlight the nature of focusing, graphical results of the behavior of beam-width parameters with the dimensionless distance of propagation is presented. The numerical computation is completed by using Taylor series method. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments

  2. Neutron production and ion beam generation in plasma focus devices

    International Nuclear Information System (INIS)

    Concerning the physical processes leading to neutron emission, a clearer situation has been achieved compared to the state at the start of this work. The general discussion will realize that the whole experimental data cannot be described consistently by the predictions of either the beam-target model or the quasi-thermonuclear fusion model, although many questions about the neutron production properties have been solved. In particular the neutron fluence anisotropy is found to be a property basically related to the existence of fast ions escaping axially out of the pinch region. The requirements to explain broad radial neutron energy spectra, long emission times, and energetic but not spatial emission anisotropies suggest a kind of particle trapping in the main source region. (orig./HT)

  3. Alternate gradient focusing and deceleration of a molecular beam

    International Nuclear Information System (INIS)

    Neutral dipolar molecules can be decelerated and trapped using time-varying inhomogeneous electric fields. This has been demonstrated only for molecules in low-field seeking states, but can, in principle, be performed on molecules in high-field seeking states as well. Transverse stability is then much more difficult to obtain, however, since molecules in high-field seeking states always experience a force towards the electrodes. Here we demonstrate that an array of dipole lenses in alternate gradient configuration can be used to maintain transverse stability. A pulsed beam of metastable CO in high-field seeking states is accelerated from 275 to 289 m/s as well as decelerated from 275 to 260 m/s

  4. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  5. Beam Coupling Impedance of the New Beam Screen of the LHC Injection Kicker Magnets

    CERN Document Server

    Day, H; Caspers, F; Métral, E; Salvant, B; Uythoven, J

    2014-01-01

    The LHC injection kicker magnets experienced significant beam induced heating of the ferrite yoke, with high beam currents circulating for many hours, during operation of the LHC in 2011 and 2012. The causes of this beam induced heating were studied in depth and an improved beam screen implemented to reduce the impedance. Results of measurements and simulations of the new beam screen design are presented in this paper: these are used to predict power loss for operation after long shutdown 1 and for proposed HL-LHC operational parameters.

  6. Transverse centroid oscillations in solenoidially focused beam transport lattices

    OpenAIRE

    Lund, Steven M.

    2008-01-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable "alignment functions" and "bending functions" that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalig...

  7. Formation of large-area heavy-ion uniform beams using multipole magnets in TIARA, JAEA

    International Nuclear Information System (INIS)

    A research and development study related to the uniformization of the transverse beam intensity distribution using multipole magnets is ongoing for a new uniform irradiation method of proton and heavy-ion beams at an azimuthally-varying-field cyclotron facility of TIARA in Japan Atomic Energy Agency. In this method, a uniform transverse intensity distribution can be formed by folding the tail of a Gaussian initial distribution into the inside with a nonlinear focusing force of multipole magnets. First, a Gaussian-like intensity distribution was generated from a complicated distribution of the beam accelerated by the cyclotron through multiple Coulomb scattering using a thin foil at a low loss of beam energy. The response of Gafchromic radiochromic films to various ion beams was investigated for the evaluation of the size and uniformity in a large-area beam. Large-area (>100 cm2) uniform distributions have been attained for argon ion beams of 4 ∼ 13 MeV/u, as well as for proton beams of 10 MeV. Heavy-ion uniform beams will be applied to research and production of functional materials. (author)

  8. About possibilities of obtaining focused beams of thermal neutrons of radionuclide source

    International Nuclear Information System (INIS)

    Full text: In the last years significant progress is achieved in development of neutron focusing methods (concentrating neutrons in a given direction and a small area). In this, main attention is given to focusing of neutron beams of reactor, particularly cold neutrons and their applications. [1,2]. However, isotope sources also let obtain intensive neutron beams and solve quite important (tasks) problems (e.g. neutron capture therapy for malignant tumors) [3], and an actual problems is focusing of neutrons. We developed a device on the basis of californium source of neutrons, allowing to obtain focused (preliminarily) beam of thermal neutrons with the aid of respective choice of moderators, reflectors and geometry of their disposition. Here, fast neutrons and gamma rays in the beam are minimized. With the aid of the model we developed on the basis of Monte-Carlo method, it is possible to modify aforementioned device and dynamics of output neutrons in wide energy range and analyze ways of optimization of neutron beams of isotope sources with different neutron outputs. Device of preliminary focusing of thermal neutrons can serve as a basis for further focus of neutrons using micro- and nano-capillar systems. It is known that, capillary systems performed with certain technology can form beam of thermal neutrons increasing its density by more than two orders of magnitude and effectively divert beams up to 20o with length of system 15 cm

  9. Transverse characterization of focused Bessel beams with angular momentum applied to study degree of coherence

    International Nuclear Information System (INIS)

    The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams. (paper)

  10. Transverse characterization of focused Bessel beams with angular momentum applied to study degree of coherence

    Science.gov (United States)

    He, Xi; Wu, Fengtie; Chen, Ziyang; Pu, Jixiong; Chavez-Cerda, Sabino

    2016-05-01

    The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams.

  11. Control of Beam Halo-Chaos by Fraction Power-Law Function in Hackle Periodic-Focusing Channel

    Institute of Scientific and Technical Information of China (English)

    YU Hai-Jun; BAI Long; WENG Jia-Qiang; LUO Xiao-Shu; FANG Jin-Qing

    2008-01-01

    The Kapehinsky-Vladimirsky (K-V) beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and an idea of fraction power-law function controller is proposed based on the mechanism of halo formation and the strategy of controlling halo-chaos. The method is applied to the multi-particle simulation to control the halo. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively by using the fraction power-law function control method. At the same time, the radial particle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen.

  12. Control of Beam Halo-Chaos by Fraction Power-Law Function in Hackle Periodic-Focusing Channel

    International Nuclear Information System (INIS)

    The Kapchinsky-Vladimirsky (K-V) beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and an idea of fraction power-law function controller is proposed based on the mechanism of halo formation and the strategy of controlling halo-chaos. The method is applied to the multi-particle simulation to control the halo. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively by using the fraction power-law function control method. At the same time, the radial particle density is uniform at the beam's center as long as the control method and appropriate parameter are chosen

  13. Focused electron beam induced deposition as a tool to create electron vortices.

    Science.gov (United States)

    Béché, A; Winkler, R; Plank, H; Hofer, F; Verbeeck, J

    2016-01-01

    Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be ∼0.8ℏ per electron with almost 60% of the beam ending up in the ℓ=1 state. PMID:26432987

  14. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  15. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    Science.gov (United States)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  16. Investigation of the chaotic dynamics of an electron beam with a virtual cathode in an external magnetic field

    Science.gov (United States)

    Egorov, E. N.; Hramov, A. E.

    2006-08-01

    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring in an electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beam and interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased, the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation and interaction of spatiotemporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator is achieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.

  17. Evidence for beam self-focusing in the corona of laser-irradiated spherical targets

    International Nuclear Information System (INIS)

    Time integrated photographs have been obtained of the 3/2ω0 harmonic emission from spherical targets irradiated uniformly with a six-beam Nd glass laser system in the ablative mode. Extended filamentary structures are observed which indicate that self-focusing of the incident laser beams in the subcritical density plasma corona is occurring. (author)

  18. Development of multilayer Fresnel lens (zone plate) for formation of focused neutron beam

    International Nuclear Information System (INIS)

    A fabrication technique of a multilayer optics for the neutron beamline has been shown. The optics is a Fresnel zone plate (FZP) which is used to guide neutron beams to a pinhole in order to use the beam effectively. The design parameter of the FZP as a focusing optics has also been designed. (author)

  19. Vector treatment of second-harmonic generation produced by tightly focused vignetted Gaussian beams

    Science.gov (United States)

    Asatryan, Ara A.; Sheppard, Colin J. R.; de Sterke, C. Martijn

    2004-12-01

    We present a fast and accurate method to calculate the vector-field distribution of a focused Gaussian beam. This method is applied to calculate the second harmonic that is generated by such a beam from a sample in the undepleted pump approximation. These calculations can be used to model second-harmonic imaging in an optical microscope with a wide aperture.

  20. Focusing of ion beam with limit emittance by accelerator tube of electrostatic accelerator

    International Nuclear Information System (INIS)

    Focusing of nonrelativistic ion beam with finite emittance by accelerator tube is considered. Analytical relation between positions of the entrance and exit crossovers as a function of the beam emittance and the accelerator tube parameters was obtained. The comparison of conditions providing crossover to crossover transformation and conditions of entrance crossover optical image forming was carried out. 10 refs.; 3 figs

  1. Optics analysis of Final Focus Test Beam with the help of methods based on Lie algebra

    International Nuclear Information System (INIS)

    The Final Focus Test Beam being built at SLAC is a test bed for future linear collider final focus systems. The parameters and the optics of the FFTB are presented in chapter one. The mathematical tools for this thesis which are based on Lie algebras are then reviewed in chapter two. One relies particularly on the Lie transformations together with the similarity transformation and the Campbell-Baler-Haussdorff theorem for the manipulation of Hamiltonians. Chapter three presents the application of these methods to magnetic optics in accelerators; the separation of linear and non-linear effects and the building of the total Hamiltonian of the line from the thin-lens formulation. Chapter four analytically establishes a catalog of aberrations, up to order five in the Hamiltonians, at the FFTB. The emphasis is put on the methods of analysis. It is shown that the system has a significant fifth-order aberration and that no higher-order aberration appears. Finally chapter six presents some stability tolerances - alignment strength and multipole content - for the FFTB. In the conclusion the present situation of these methods, as well as possible computer codes using them, are reviewed

  2. Focusing and targeting of magnetic brain stimulation using multiple coils.

    Science.gov (United States)

    Ruohonen, J; Ilmoniemi, R J

    1998-05-01

    Neurones can be excited by an externally applied time-varying electromagnetic field. Focused magnetic brain stimulation is attained using multiple small coils instead of one large coil, the resultant induced electric field being a superposition of the fields from each coil. In multichannel magnetic brain stimulation, partial cancellation of fields from individual coils provides a significant improvement in the focusing of the stimulating field, and independent coil channels allow targeting of the stimuli on a given spot without moving the coils. The problem of shaping the stimulating field in multichannel stimulation is analysed, and a method is derived that yields the driving currents required to induce a field with a user-defined shape. The formulation makes use of lead fields and minimum-norm estimation from magneto-encephalography. Using these methods, some properties of multichannel coil arrays are examined. Computer-assisted multichannel stimulation of the cortex will enable several new studies, including quick determination of the cortical regions, the stimulation of which disrupts cortical processing required by a task. PMID:9747568

  3. Focus on Materials Analysis and Processing in Magnetic Fields

    OpenAIRE

    Yoshio Sakka, Noriyuki Hirota, Shigeru Horii and Tsutomu Ando

    2009-01-01

    Recently, interest in the applications of feeble (diamagnetic and paramagnetic) magnetic materials has grown, whereas the popularity of ferromagnetic materials remains steady and high. This trend is due to the progress of superconducting magnet technology, particularly liquid-helium-free superconducting magnets that can generate magnetic fields of 10 T and higher. As the magnetic energy is proportional to the square of the applied magnetic field, the magnetic energy of such 10 T magnets is in...

  4. Versatile AFM setup combined with micro-focused X-ray beam

    CERN Document Server

    Slobodskyy, T; Tholapi, R; Liefeith, L; Fester, M; Sprung, M; Hansen, W

    2015-01-01

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure and performance of the setup are presented.

  5. From x-ray telescopes to neutron scattering: using axisymmetric mirrors to focus a neutron beam

    OpenAIRE

    Khaykovich, B.; Gubarev, M. V.; Bagdasarova, Y.; Ramsey, B. D.; Moncton, D.E.

    2012-01-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in x-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We have implemented a system containing four nested Ni mirror pairs, which was tested by focusing a polychromatic neutron beam at the MIT Reactor. In ...

  6. Effect of a spectrometer magnet on the beam-beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cornacchia, M; Parzen, G

    1981-01-01

    The presence of experimental apparatus in the interaction regions of an intersecting beam accelerator changes the configuration of the crossing beams. This changes the space-charge forces with respect to the standard, magnet-free crossing. The question is: what is the maximum allowable perturbation caused by the spectrometer magnet that can be tolerated from the point of view of the beam dynamics. This paper is limited to the perturbations that the curved trajectories cause the beam-beam space charge nonlinearities. The question has arisen of how one defines the strength of the perturbation. The only solution is to compute the strength of the most important nonlinear resources. In what follows, the computational method used in calculating these resonances is described, and compared with those induced by random orbit errors.

  7. Effects of beam velocity and density on an ion-beam pulse moving in magnetized plasmas

    CERN Document Server

    Zhao, Xiao-ying; Zhao, Yong-tao; Qi, Xin; Yang, Lei

    2016-01-01

    The wakefield and stopping power of an ion-beam pulse moving in magnetized plasmas are investigated by particle-in-cell (PIC) simulations. The effects of beam velocity and density on the wake and stopping power are discussed. In the presence of magnetic field, it is found that beside the longitudinal conversed V-shaped wakes, the strong whistler wave are observed when low-density and low-velocity pulses moving in plasmas. The corresponding stopping powers are enhanced due to the drag of these whistler waves. As beam velocities increase, the whistler waves disappear, and only are conversed V-shape wakes observed. The corresponding stopping powers are reduced compared with these in isotropic plasmas. When high-density pulses transport in the magnetized plasmas, the whistler waves are greatly inhibited for low-velocity pulses and disappear for high-velocity pulses. Additionally, the magnetic field reduces the stopping powers for all high-density cases.

  8. Design of electron beam bending magnet system using three sector magnets for electron and photon therapy: a simulation approach

    International Nuclear Information System (INIS)

    The 270 degree doubly achromatic beam bending magnet system using three sector magnets has been designed mainly for treating cancer and skin diseases. The main requirements of the design of three magnet system is to focus an electron beam having a spot size less than 3mm x 3mm, energy spread within 3% and divergence angle ≤ 3 mrad at the target. To achieve these parameters the simulation was carried out using Lorentz-3EM software. The beam spot, divergence angle and energy spread were observed with respect to the variation in angles of sector magnets and drift distances. From the simulated results, it has been optimized that all the three sector magnets has an angle of 62 degree and the drift distance 68 mm. It is also observed that at the 1637, 2425, 3278, 4165 and 5690 Amp-turn, the optimized design produces 3851, 5754, 7434, 9356 and 11425 Gauss of magnetic field at median plane require to bend 6, 9, 12, 15 and 18 MeV energy of electron respectively for electron therapy. The output parameters of the optimized design are energy spread 3%, divergence angle ∼ 3 mrad and spot size 2.8 mm. Moreover, for 6 MV and 15 MV photon therapy application, an electron beam of energy 6.5 MeV and 15.5 MeV extracted from magnet system and focussed on the Bremsstrahlung target. For the photon therapy the 1780, and 4456 amp-turn, an optimized design produces 4148 and 9682 Gauss of magnetic field at median plane require to bend 6.5 and 15.5 MeV energy of electron respectively, which further produces Bremsstrahlung in Tungsten target. (author)

  9. On the focused beam parameters of an electron gun with a plasma emitter

    International Nuclear Information System (INIS)

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented

  10. On the focused beam parameters of an electron gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  11. Low-temperature charge transport in Ga-acceptor nanowires implanted by focused-ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, Thomas; Robinson, S.J.; Perkins, C.L.; Tucker, J.R.; Schenkel, T.; Wang, X.W.; Ma, T.P.; Shen, T.-C.

    2007-07-31

    Ga-acceptor nanowires were embedded in crystalline Si using focused-ion beams. The dc current-voltage characteristics of these wires after annealing are highly nonlinear at low temperatures, and a threshold voltage of less than 50 mV is observed independent of Ga+ dosage and implant beam overlap. These features suggest a Coulomb blockade transport mechanism presumably caused by a network of Ga precipitates in the substrate. This granular scenario is further supported by measurements of gated nanowires. Nanowires with metallic conductance at low temperatures could be achieved by reducing the current density of the focused-ion beams.

  12. Spectral behavior of pulsed Bessel beams focused by a dispersive lens

    Science.gov (United States)

    Pan, Liuzhan; Ding, Chaoliang; Yuan, Xiao; Lü, Baida

    2008-08-01

    Starting from the Huygens-Fresnel diffraction integral, the analytical expression for the power spectrum of pulsed Bessel beams focused by a dispersive aperture lens is derived and used to study the spectral anomalies of pulsed Bessel beams in the focused field. Numerical calculation results are given to illustrate the dependence of spectral anomalous behavior on the pulse parameters, truncation parameter and material dispersion of the lens. It is shown that near the phase singularities the spectral anomalies may take place. The potential applications of spectral anomalies of ultrashort pulsed beams in information encoding and information transmission are considered.

  13. Atomic beam study of a superconductor's magnetic vortex lattice

    International Nuclear Information System (INIS)

    We have developed an atomic beam technique for studying magnetic vortices and vortex lattices of superconductors. Atoms moving near a superconductor's surface see a fluctuating magnetic field as they pass vortices. This field may drive magnetic resonance transitions between hyperfine states. Measuring the magnetic resonance transition probability as a function of atom velocity probes the vortex lattice autocorrelation function. We demonstrate this technique by studying the vortex lattice of a niobium film sample and measuring the sample's penetration depth. We also identify a systematic problem that we think thwarted an earlier attempt to experimentally realize this technique. copyright 1997 The American Physical Society

  14. On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator.

    Science.gov (United States)

    Smistrup, K; Kjeldsen, B G; Reimers, J L; Dufva, M; Petersen, J; Hansen, M F

    2005-11-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic separator with arrays of soft magnetic elements. The soft magnetic elements placed on both sides of the channel are magnetized by a relatively weak applied external magnetic field (21 mT) and provide magnetic field gradients attracting magnetic beads. Flows with two differently functionalized magnetic beads and a separating barrier flow are introduced simultaneously at the two channel sides and the centre of the microfluidic channel, respectively. On-chip experiments with fluorescence labeled beads demonstrate that the two types of beads are captured at each of the channel sidewalls. On-chip hybridization experiments show that the microfluidic systems can be functionalized with two sets of beads carrying different probes that selectively recognize a single base pair mismatch in target DNA. By switching the places of the two types of beads it is shown that the microsystem can be cleaned and functionalized repeatedly with different beads with no cross-talk between experiments. PMID:16234958

  15. PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR WARM-DENSE MATTER EXPERIMENTS

    International Nuclear Information System (INIS)

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30-mA K+ ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ∼50-fold current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including: (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available volt seconds; (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >1013 cm-3

  16. Demonstration of no feasibility of a crystalline beam in a Betatron Magnet II

    International Nuclear Information System (INIS)

    This paper investigates the feasibility of a Crystalline Beam in a weak-focusing Betatron Magnet. The curvature effect due to the bending magnet is also investigated. The case of circular one- dimensional string of electrically-charged particles is examined. It is found that the motion is unstable due to the dependence of the precession movement with the radial displacement. That is a form of negative-mass instability which can be avoided with an alternating-focussing structure. The calculation of the particle-particle interaction as well as of the forces due to the external magnetic field is done directly in the laboratory frame

  17. Analyzer of energy spectra of a magnetized relativistic electron beam

    International Nuclear Information System (INIS)

    Analyzer of magnetized REB instant energy spectrum is described. The analyzer operation principle is based on the application of a sharp change of the direction of force lines of a magnetic field which is non-adiabatic for the beam electrons. The analyzer design is described, the main factors effecting the energy resolution are considered. The analyzer serviceability is examined in the course of experiments on plasma heating using a heavy-current microsecond REB at the GOL-3 device. The analyzer energy resolution which does not exceed 10% at 0.8 MeV energy and 20% at 0.3 MeV is determined. Beam energy spectra are obtained in one of the regimes of beam interaction with plasma. The efficiency of beam interaction with plasma determined using the analyzer achieves 30%. 10 refs.; 7 figs

  18. Beaming of particles and synchrotron radiation in relativistic magnetic reconnection

    CERN Document Server

    Kagan, Daniel; Piran, Tsvi

    2016-01-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given freq...

  19. Theoretical and Computational Investigation of Periodically Focused Intense Charged-Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chiping [Massachusetts Institute of Technology

    2013-06-26

    The purpose of this report is to summarize results of theoretical and computational investigations of periodically focused intense charged-particle beams in parameter regimes relevant to the development of advanced high-brightness, high-power accelerators for high-energy physics research. The breakthroughs and highlights in our research in the period from April 1, 2010 to March 30, 2013 were: a) Theory and simulation of adiabatic thermal Child-Langmuir flow; b) Particle-in-cell simulations of adiabatic thermal beams in periodic solenoidal focusing field; c)Dynamics of charged particles in an adiabatic thermal beam equilibrium in a periodic solenoidal focusing field; d) Training of undergraduate researchers and graduate student in accelerator and beam physics. A brief introduction and summary is presented. Detailed descriptions of research results are provided in an appendix of publications at the end of the report.

  20. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    The results of studies on focusing the wide-aperture heavy ion beams by a high-current electrostatic plasma lens within the range of low (100-400 eV) and medium (5-25 keV) energies are presented. It si established, that due to significant electron leakages the effective focusing of such beams is possible only under the condition of rigid fixation of the external potentials on the plasma lens electrodes. The peculiarities of the lens static and dynamic characteristics under such conditions are studied. The role of spherical and moment aberrations by focusing the wide-aperture weakly-diverging ion beams is identified. It is shown, that the role of the moment aberrations decreases with the energy growth, and focusing of the heavy elements high-current beams by the plasma lens becomes considerably more efficient as compared, to the focusing of the hydrogen light ion beams. This opens the possibility for application of electrostatic plasma lenses for controlling the ion beams in the high-dose ion implanters and in the high-current heavy-ion accelerators

  1. Study of the production, the propagation and the focusing of an electron beam

    International Nuclear Information System (INIS)

    The electron beam (500 keV, 30 kA, 100 ns) of the RKA (Relativistic Klystron Amplifier) generator is used to study materials under shocks at low fluences (≤ 10 cal/cm2). Their response depends on the beam characteristics at the impact location, mainly in terms of spatial homogeneity. We have used electrical diagnostics as well as an optical diagnostics where the visible photons produced by Cerenkov emission in a silica target are collected by fast cameras. Beam homogeneity has been studied in the vacuum diode as a function of the materials used for the cathode and the anode. Beam propagation and focusing in a chamber filled with a low-pressure gas has also been investigated. Each part of the installation has been optimized during this work. We found that, among the tested materials, a velvet cathode with well-aligned fibers is the best emitter. An anode of thickness about ten micrometers improves the beam homogeneity by scattering of electrons. Next, we focused on beam propagation and focusing in the chamber. For example, a 400 keV, 4.2 kA electron beam can be propagated at constant radius in argon at 0.7 mbar. We performed simulations with the Monte Carlo code Geant4 in order to compute the beam interaction with the Cerenkov target as well as with the anode. Beam emission and propagation were simulated with the PIC code Magic. The good agreement with the experimental results allows us to estimate the electron distributions at any position along the beam path in order to initialize correctly the computation of the beam-material interaction. (author)

  2. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications

    Science.gov (United States)

    Benetou, M. I.; Bouillard, J.-S.; Segovia, P.; Dickson, W.; Thomsen, B. C.; Bayvel, P.; Zayats, A. V.

    2015-11-01

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  3. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  4. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  5. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    CERN Document Server

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  6. Self-focusing and self-compression of a laser pulse in the presence of an external tapered magnetized density-ramp plasma

    Science.gov (United States)

    Saedjalil, N.; Jafari, S.

    2016-06-01

    In this paper, the effects of external tapered axial magnetic field and plasma density-ramp on the spatiotemporal evolution of the laser pulse in inhomogeneous plasma have been studied. The external magnetic field can modify the refractive index of plasma and consequently intensifies the nonlinear effects. By considering the relativistic nonlinearity effect, self-focusing and self-compression of the laser beam propagating through the magnetized plasma have been investigated, numerically. Numerical results indicate that self-focusing and self-compression are better enhanced in a tapered magnetic field than in a uniform one. Besides, in plasma density-ramp profile, self-focusing and self-compression of the laser beam improve in comparison with no ramp structure. In addition, with increasing both the slope of the density ramp and slope constant parameter of the tapered magnetic field, the laser focusing increases, properly, in short distances of the laser propagation through the plasma.

  7. Pulse splitting of self-focusing-beams in normally dispersive media

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    1996-01-01

    The influence of the normal group-velocity dispersion on anisotropic self-focusing beams in nonlinear Kerr media is studied analytically. It is shown that a light pulse self-focusing in the presence of normal dispersion is split up into several small-scale cells preventing a catastrophic collapse...

  8. Emittance preservation during bunch compression with a magnetized beam

    Science.gov (United States)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  9. Emittance preservation during bunch compression with a magnetized beam

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  10. Electron beam therapy with coil-generated magnetic fields

    International Nuclear Information System (INIS)

    This paper presents an initial study on the issues involved in the practical implementation of the use of transverse magnetic fields in electron beam therapy. By using such magnetic fields the dose delivered to the tumor region can increase significantly relative to that deposited to the healthy tissue. Initially we calculated the magnetic fields produced by the Helmholtz coil and modified Helmholtz coil configurations. These configurations, which can readily be used to generate high intensity magnetic fields, approximate the idealized magnetic fields studied in our previous publications. It was therefore of interest to perform a detailed study of the fields produced by these configurations. Electron beam dose distributions for 15 MeV electrons were calculated using the ACCEPTM code for a 3T transverse magnetic field produced by the modified Helmholtz configuration. The dose distribution was compared to those obtained with no magnetic field. The results were similar to those obtained in our previous work, where an idealized step function magnetic field was used and a 3T field was shown to be the optimal field strength. A simpler configuration was also studied in which a single external coil was used to generate the field. Electron dose distributions are also presented for a given geometry and given magnetic field strength using this configuration. The results indicate that this method is more difficult to apply to radiotherapy due to its lack of symmetry and its irregularity. For the various configurations dealt with here, a major problem is the need to shield the magnetic field in the beam propagation volume, a topic that must be studied in detail

  11. Characterization of focused beam of desktop 10-Hz capillary-discharge 46.9-nm laser

    Science.gov (United States)

    Vyšin, Ludek; Burian, Tomás; Chalupský, Jaromír; Grisham, Michael; Hájková, Vera; Heinbuch, Scott; Jakubczak, Krzysztof; Martz, Dale; Mocek, Tomás; Pira, Peter; Polan, Jirí; Rocca, Jorge J.; Rus, Bedrich; Sobota, Jaroslav; Juha, Libor

    2009-05-01

    The desktop capillary-discharge Ne-like Ar laser (CDL) providing 10-μJ nanosecond pulses of coherent 46.9-nm radiation with a repetition rate up to 12 Hz was developed and built at the Colorado State University in Fort Collins and then installed in Prague. The beam of the laser was focused by a spherical mirror covered with Si/Sc multilayer coating onto the surface of poly(methyl methacrylate) - PMMA. Interaction parameters vary by changing the distance between sample surface and beam focus. The samples were exposed to various numbers of shots. Analysis of damaged PMMA by atomic force (AFM) and Nomarski (DIC - differential interference contrast) microscopes allows not only to determine the key characteristics of the focused beam (e.g. Rayleigh's parameter, focal spot diameter, tight focus position, etc.) but also to investigate mechanisms of the radiation-induced erosion processes.

  12. Focusing characteristics of an accelerating structure with non-circular beam holes

    International Nuclear Information System (INIS)

    High energy linacs of the next generation are required to keep stably high bunch populations and very small beam spots at colliding points, in order to realize high luminosity at TeV energy region. CERN proposed to apply the rf focusing technology which makes a strong focusing force according to the rf phase within a bunch, and rf focusing power is proportional to both the accelerating gradient and the operating frequency. Some computed results of the focusing property of 3 GHz accelerating structures are presented which has non-circular beam holes. The construction of this 3 GHz structure, because an rf technology for 3 GHz is well-established, will be useful in order to know, at an early stage of the development, whether the idea will be successful or not. The 3D code MAFIA was used to investigate the deflecting force caused by the asymmetry of the beam aperture. (R.P.) 5 refs., 14 figs., 3 tabs

  13. Electron beam characteristics in the hollow beam diode and cusped magnetic field of the Maryland ERA

    International Nuclear Information System (INIS)

    The University of Maryland electron ring accelerator (ERA) concept calls for the formation of an electron ring current by transmission of a hollow relativistic electron beam through a static, azimuthally symmetric, cusped magnetic field. Electron motion is approximately paraxial in the diode and pre-cusp drift region and is axis-encircling in the post-cusp region. Experiments show the electron flow in the diode to be approximately pressureless. The radial thickness of the drifting Brillouin hollow beam is derived from a radial force balance equation. Time-resolved measurements of the beam current and energy are made by measuring the extrapolated range of the beam in aluminum targets. These measurements are analyzed with a model of the diode as a terminating impedance driven by a transmission line. Beam motion in the cusped field region is analyzed. Beam dynamics in the post-cusp region are studied by examining the interaction of a hollow rotating beam with its self-induced potentials in a cylindrical box with conducting walls and ends. The energy of the self-induced electric and magnetic potentials is much less than the kinetic energy of the beam electrons for cases approximating experimental conditions

  14. Self-Focusing of Hermite-Cosh-Gaussian Laser Beams in Plasma under Density Transition

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad Wani

    2014-01-01

    Full Text Available Self-focusing of Hermite-Cosh-Gaussian (HChG laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot size. Plasma density ramp plays an important role in reducing the defocusing effect and maintaining the focal spot size up to several Rayleigh lengths. To discuss the nature of self-focusing, the behaviour of beam-width parameters with dimensionless distance of propagation for various values of decentered parameters is examined by numerical estimates. The results are presented graphically and the effect of plasma density ramp and decentered parameter on self-focusing of the beams has been discussed.

  15. Focusing of heavy ion beams by a high-current plasma lens

    International Nuclear Information System (INIS)

    Results are presented from studies of the focusing of wide-aperture low-energy (100-400 eV) and moderate-energy (5-25 keV) beams of heavy-metal ions by a high-current electrostatic plasma lens. It is found experimentally that, because of the significant electron losses, the efficient focusing of such beams can be achieved only if the external potentials at the plasma-lens electrodes are maintained constant. Static and dynamic characteristics of the lens are studied under these conditions. It is shown that, as the beam current and the electrode voltage increase, the maximum electrostatic field in the lens tends to a certain limiting value because of the increase in the spatial potential near the lens axis. The role of spherical and moment aberrations in the focusing of wide-aperture low-divergence ion beams is revealed. It is shown that, even when spherical aberrations are minimized, unremovable moment aberrations decrease the maximum compression ratio of a low-energy heavy-ion beam because of the charge separation of multiply charged ions in the focal region. At the same time, as the ion energy increases, the role of the moment aberrations decreases and the focusing of high-current heavy-ion beams by a plasma lens becomes more efficient than the focusing of light-ion (hydrogen) beams. This opens up the possibility of using electrostatic plasma lenses to control ion beams in high-dose ion implanters and high-current accelerators of heavy ions

  16. Collection and focusing of laser accelerated ion beams for therapy applications

    Science.gov (United States)

    Hofmann, Ingo; Meyer-Ter-Vehn, Jürgen; Yan, Xueqing; Orzhekhovskaya, Anna; Yaramyshev, Stepan

    2011-03-01

    Experimental results in laser acceleration of protons and ions and theoretical predictions that the currently achieved energies might be raised by factors 5-10 in the next few years have stimulated research exploring this new technology for oncology as a compact alternative to conventional synchrotron based accelerator technology. The emphasis of this paper is on collection and focusing of the laser produced particles by using simulation data from a specific laser acceleration model. We present a scaling law for the “chromatic emittance” of the collector—here assumed as a solenoid lens—and apply it to the particle energy and angular spectra of the simulation output. For a 10 Hz laser system we find that particle collection by a solenoid magnet well satisfies requirements of intensity and beam quality as needed for depth scanning irradiation. This includes a sufficiently large safety margin for intensity, whereas a scheme without collection—by using mere aperture collimation—hardly reaches the needed intensities.

  17. Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    CERN Document Server

    Egorov, E N

    2006-01-01

    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation andinteraction of spatio-temporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator isachieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.

  18. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Bambade, P; Amann, J; Angal-Kalinin, D; Apsimon, R; Araki, S; Aryshev, A; Bai, S; Bellomo, P; Bett, D; Blair, G; Bolzon, B; Boogert, S; Boorman, G; Burrows, P N; Christian, G; Coe, P; Constance, B; Delahaye, J P; Deacon, L; Elsen, E; Faus-Golfe, A; Fukuda, M; Gao, J; Geffroy, N; Gianfelice-Wendt, E; Guler, H; Hayano, H; Heo, A Y; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jeremie, A; Jones, J; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lyapin, A; Masuzawa, M; McCormick, D; Molloy, S; Naito, T; Nakamura, T; Nelson, J; Okamoto, D; Okugi, T; Oroku, M; Park, Y J; Parker, B; Paterson, E; Perry, C; Pivi, M; Raubenheimer, T; Renier, Y; Resta-Lopez, J; Rimbault, C; Ross, M; Sanuki, T; Scarfe, A; Schulte, D; Seryi, A; Spencer, C; Suehara, T; Sugahara, R; Swinson, C; Takahashi, T; Tauchi, T; Terunuma, N; Tomas, R; Urakawa, J; Urner, D; Verderi, M; Wang, M H; Warden, M; Wendt, M; White, G; Wittmer, W; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, Y; Yoda, H; Yokoya, K; Zhou, F; Zimmermann, F

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  19. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.; /Orsay /KEK, Tsukuba; Alabau Pons, M.; /Valencia U., IFIC; Amann, J.; /SLAC; Angal-Kalinin, D.; /Daresbury; Apsimon, R.; /Oxford U., JAI; Araki, S.; Aryshev, A.; /KEK, Tsukuba; Bai, S.; /Beijing, Inst. High Energy Phys.; Bellomo, P.; /SLAC; Bett, D.; /Oxford U., JAI; Blair, G.; /Royal Holloway, U. of London; Bolzon, B.; /Savoie U.; Boogert, S.; Boorman, G.; /Royal Holloway, U. of London; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; /Oxford U., JAI; Delahaye, Jean-Pierre; /CERN; Deacon, L.; /Royal Holloway, U. of London; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  20. Multisplitting and collapse of self-focusing anisotropic beams in normal/anomalous dispersive media

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    1996-01-01

    Three-dimensional self-focusing light pulses in normal and anomalous dispersive media are investigated by means of a waveguide instability analysis, a Lagrangian approach, and a quasi-self-similar analysis. In the case of normal dispersion for which no localized ground state exists, it is shown...... that a high-intensity elongated beam cannot self-similarly collapse. Even when the incident beam power widely exceeds the critical power for a two-dimensional self-focusing, the beam is shown to split into multiple cells that ultimately disperse when their individual mass lies below the critical power...... pulses also play an important role in an anomalous dispersive medium. In this case, unlike the former one, the beam self-contracts along its propagation axis and reconcentrates its shape back toward the center where it ultimately collapses in a finite time. (C) 1996 American Institute of Physics....

  1. Self-focusing and defocusing of Gaussian laser beams in plasmas with linear temperature ramp

    International Nuclear Information System (INIS)

    The propagation characteristics of the Gaussian laser beam in plasmas in the presence of a linear electron temperature ramp have been investigated by taking the electron temperature as an individual variable. The ponderomotive force and collision have been considered as the mechanisms of nonlinearity. The second order differential equation of the dimensionless beam-width parameter has been acquired and solved with several initial electron temperatures and plus-minus temperature ramp parameters. The propagation regimes of laser beam are found to be sensitive with the selection of electron temperature. The linear temperature ramp breaks the stationary propagating mode and enhances the self-focusing or defocusing propagation properties. Results indicate the feasibility of extended propagation of focused laser beam in plasmas by modifying the electron temperature.

  2. Transport properties of modulation-doped structures grown by molecular beam epitaxy after focused ion beam implantation

    International Nuclear Information System (INIS)

    Modulation-doped structures are grown by molecular beam epitaxy after focused ion beam writing. The growth and implantation chambers are connected in a high vacuum to minimize the effect of growth interruption. The electron channel is drastically depleted by the buried Be+ implanted region, but only slightly depleted by the buried Au+ and Au2+ implanted regions. This is because Be+ implantation forms a p-type material, while Au+ or Au2+ implantation leaves damage only in the n-type material. Be+ implantation is therefore used to fabricate 0.1 μm-wide wires with electron mobility of 2.1x105 cm2/Vs. (author)

  3. Angular anisoplanatism of a focused beam using beacons over horizontal path

    Science.gov (United States)

    Wu, Wu-ming; Ning, Yu

    2016-01-01

    The performance of the achieve laser beam propagation through atmospheric turbulence with adaptive optics is degraded by the fact that the wavefront aberrations difference. This error is only include the angular anisoplanatism when there is separation between the achieve laser beam and beacon. In the paper we derive an analytic expression for the effective angular anisoplanatism as a function of displacement angular when the turbulence profile is uniform. It shows that the effective angular anisoplanatism becomes weaker as the diameter of laser beams and the Fried transverse coherence length increase. We report results from field experiments that the effective angular anisoplanatism of a focused beam over horizontal path. It is found that measured and theoretical results are consistent. The effective wavefront variance increases with the strength of atmospheric turbulence and the angular displacement. And the constant phase of angular anisoplanatism has no effect on the Strehl ratio of the beam.

  4. Focused ion beam machining of hard materials for micro engineering applications

    OpenAIRE

    Evans, R.

    2009-01-01

    The Focused Ion Beam (FIB) milling of single crystal diamond was investigated and the beam drift and mill yield were quantified. The effect of water assistance on the milling of diamond was found to double the yield. The surface morphology that spontaneously forms during milling was measured and the mechanisms behind its formation investigated. The effect of gallium implantation on the diamond crystal structure was measured by x-ray diffraction. Chemical vapour deposited polycrystalline di...

  5. Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing

    OpenAIRE

    Li, W.X.; Fenton, J. C.; Gu, C. Z.; Warburton, P. A.

    2011-01-01

    The electrical properties of lateral ultra-fine tungsten nanowires, which were grown by focused-ion-beam-induced deposition with 1 pA ion-beam current, were investigated. Temperature-dependent electrical measurements show that the wires are conducting and have a superconducting transition with a transition temperature (T-c) about 5.1 K. Resistance vs. temperature measurements reveal that, with decreasing cross-sectional area, the wires display an increasingly broad superconducting transition....

  6. 3D micro-optical elements for generation of tightly focused vortex beams

    OpenAIRE

    Balčytis Armandas; Hakobyan Davit; Gabalis Martynas; Žukauskas Albertas; Urbonas Darius; Malinauskas Mangirdas; Petruškevičius Raimondas; Brasselet Etienne; Juodkazis Saulius

    2015-01-01

    Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable ...

  7. Analysis of nitrogen ion beam produced in dense plasma focus device using Faraday cup

    International Nuclear Information System (INIS)

    A nanosecond response Faraday cup was fabricated and employed to characterize pulsed ion beam of a 2.2 kJ Mather type dense plasma focus device. The Faraday cup operating in bias ion collector mode was used to determine the energy spectrum and flux of fast nitrogen ion beam along the electrode axis (0 deg) of the device. It has been possible to register the ion energy up to a lower kinetic energy threshold of ∼ 7 keV which is a value much lower than that obtained in any previous works. The correlation of the ion beam intensity with filling gas pressure is also reported. (author)

  8. Spin-controlled orbital motion in tightly focused high-order Laguerre-Gaussian beams.

    Science.gov (United States)

    Cao, Yongyin; Zhu, Tongtong; Lv, Haiyi; Ding, Weiqiang

    2016-02-22

    Spin angular momentum can contribute to both optical force and torque exerted on spheres. Orbit rate of spheres located in tightly focused LG beams with the same azimuthal mode index l is spin-controlled due to spin-orbit coupling. Laguerre-Gaussian beams with high-order azimuthal mode are used here to study the orbit rate of dielectric spheres. Orbit rates of spheres with varying sizes and refravtive indices are investigated as well as optical forces acting on spheres in LG beams with different azimuthal modes. These results would be much helpful to investigation on optical rotation and transfer of spin and orbital angular momentum. PMID:26906996

  9. Comparing different approaches to characterization of focused X-ray laser beams

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Boháček, Pavel; Hájková, Věra; Hau-Riege, S.P.; Heimann, P.A.; Juha, Libor; Krzywinski, J.; Messerschmidt, M.; Moeller, S.P.; Nagler, B.; Rowen, M.; Schlotter, W.F.; Swiggers, M.L.; Turner, J.J.

    2011-01-01

    Roč. 631, č. 1 (2011), s. 130-133. ISSN 0168-9002 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA ČR GAP208/10/2302; GA MŠk LA08024; GA AV ČR IAAX00100903; GA MŠk(CZ) ME10046 Institutional research plan: CEZ:AV0Z10100523 Keywords : X-ray laser * X-ray ablation * beam focusing * beam characterization * beam profile measurement Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.207, year: 2011

  10. Direct etching process for nanofabrication of crosslinked PTFE using focused ion beam

    International Nuclear Information System (INIS)

    We have studied etching of crosslinked Polytetrafluoroethylene (PTFE) using focused ion beam (FIB). After the irradiation, etching width and depth of the process have been evaluated by FE-SEM photographs of the fabricated samples. Width of the etched line on the surface of crosslinked PTFE was about 130 nm. It was indicated that Ga+ ion beam profiles affected etching width of the crosslinked PTFE. Ga+ ion beam profiles and fluence would be important to carry out nanofabrication of the crosslinked PTFE by FIB direct-etching. (author)

  11. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    International Nuclear Information System (INIS)

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  12. A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions

    CERN Document Server

    Scott, R H H

    2015-01-01

    A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

  13. A core-particle model for periodically focused ion beams with intense space-charge

    International Nuclear Information System (INIS)

    A core-particle (CP) model is derived to analyze transverse orbits of test-particles evolving in the presence of a core ion beam that has uniform density within an elliptical cross-section. The model can be applied to both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image-charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image-charge nonlinearities. Transformations are employed in diagnostics to remove coherent flutter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied-focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The CP model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms-envelope matched beam in a periodic quadrupole focusing-channel [S.M. Lund, S.R. Chawla, Nucl. Instr. and Meth. A 561 (2006) 203]. Further characteristics of these processes are presented here

  14. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    Science.gov (United States)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  15. Observations of low-aberration plasma lens focusing of relativistic electron beams at the underdense threshold

    International Nuclear Information System (INIS)

    Focusing of a 15 MeV electron bunch by a plasma lens operated at the threshold of the underdense regime has been demonstrated. The strong, 1.7 cm focal length, plasma lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. It is shown through analytic analysis and simulation that the observed spherical aberration of this underdense lens, when expressed as the fractional departure of the focusing strength from its linear expectation, is ΔK/K=0.08±0.04. This is significantly lower than the minimum theoretical value for the spherical aberration of an overdense plasma lens. Parameter scans showing the dependence of focusing performance on beam charge, as well as time resolved measurements of the focused electron bunch, are reported.

  16. Tight focus of a radially polarized and amplitude-modulated annular multi-Gaussian beam

    International Nuclear Information System (INIS)

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Modeling of a focused beam in a semi-infinite highly scattering medium

    DEFF Research Database (Denmark)

    Tycho, Andreas

    In recent years, models based on the ”Extended Huygens-Fresnel” principlehas been applied in the description of light propagation in tissue. Thisprinciple was originally developed for light propagation through aerosolsand clear air turbulence. An adaptation of this principle to tissue for...... theanalysis of Optical Coherence Tomography (OCT) systems is advantageous,because of the convenient description of complex optical systems throughimplication of the ABCD-matrix formalism, and because -contrary to transporttheory and diffusion theory- the phase of the light can be modeled. OCT isoften combined...... with confocal microscopy by focusing the probing beam. It istherefore interesting to gauge the performance of the Extended-HuygensFresnel theory for a geometry with a focused gaussian beam against a (fortissue) more well established model such as diffusion theory. A new modelof a focused beam in a semi...

  18. Modeling of a focused beam in a semi-infinite highly scattering medium

    DEFF Research Database (Denmark)

    Tycho, Andreas

    1999-01-01

    theanalysis of Optical Coherence Tomography (OCT) systems is advantageous,because of the convenient description of complex optical systems throughimplication of the ABCD-matrix formalism, and because -contrary to transporttheory and diffusion theory- the phase of the light can be modeled. OCT isoften combined......In recent years, models based on the ”Extended Huygens-Fresnel” principlehas been applied in the description of light propagation in tissue. Thisprinciple was originally developed for light propagation through aerosolsand clear air turbulence. An adaptation of this principle to tissue for...... with confocal microscopy by focusing the probing beam. It istherefore interesting to gauge the performance of the Extended-HuygensFresnel theory for a geometry with a focused gaussian beam against a (fortissue) more well established model such as diffusion theory. A new modelof a focused beam in a semi...

  19. Fast magnetic field penetration into an intense neutralized ion beam

    International Nuclear Information System (INIS)

    Experiments involving propagation of neutralized ion beams across a magnetic field indicate a magnetic field penetration time determined by the Hall resistivity rather than the Spitzer or Pedersen resistivity. In magnetohydrodynamics the Hall current is negligible because electrons and ions drift together in response to an electric field perpendicular to the magnetic field. For a propagating neutralized ion beam, the ion orbits are completely different from the electron orbits and the Hall current must be considered. There would be no effect unless there is a component of magnetic field normal to the surface which would usually be absent for a good conductor. It is necessary to consider electron inertia and the consequent penetration of the normal component to a depth c/ωp. In addition it is essential to consider a component of magnetic field parallel to the velocity of the beam which may be initially absent, but is generated by the Hall effect. The penetration time is determined by whistler waves rather than diffusion

  20. Magnetic materials. Trend in magnetic materials, expectations for synchrotron beam, neutron and muon

    International Nuclear Information System (INIS)

    Recently, to obtain higher performance both soft and hard magnetic materials, nano-structural control become indispensable. Because of this circumstance, researcher needs both local precise information and averaged hierarchical information to reveal origin of material performance. In order to do so, utilizing quantum beam, i.e. synchrotron beam, neutron and muon, analysis is important. In this article, examples of utilizing quantum beam analysis for magnetic material research are introduced. In addition, importance of quantifying material data will be mentioned for next generation material research. (author)

  1. Time-of-flight measurements in atomic beam devices using adiabatic high frequency transitions and sextupole magnets

    International Nuclear Information System (INIS)

    Atomic beam devices are frequently equipped with sextupole magnets to focus the beam or to act as spin filters in combination with RF-transitions for manipulating the hyperfine population within the atomic beam. A useful tool for the analysis of sextupole systems, the application of time-of-flight (TOF) measurements is presented. TOF measurements are enabled without mechanical beam chopper by utilizing adiabatic radio frequency transitions to select atoms within a certain time interval. This method is especially interesting for the use in atomic beam devices that are already equipped with RF-transitions and sextupole magnets and where space limitations or the required quality of the vacuum do not allow the installation of a mechanical chopper. The measurements presented here were performed with the atomic beam polarimeter of the HERMES polarized deuterium target and the results have been used to optimize the sextupole system of the polarimeter

  2. Modulational instability of intense laser beam in magnetized plasma

    International Nuclear Information System (INIS)

    The nonlinear dispersion relation is derived for an intense left-hand elliptically polarized laser beam propagating through magnetized plasma by means of the Lorentz transformation. In terms of the Karpman method, the nonlinear governing equation for the envelope of the laser field is obtained. The modulational instability of the intense left-hand elliptically polarized laser beam in magnetized plasma is analyzed and the temporal growth rate of modulational instability is found. The analysis shows that the maximum growth rate of self-modulation instability is obviously smaller for magnetized plasma compared to the unmagnetized case. It is also shown that the temporal growth rate of modulational instability is increased significantly near the critical surface in a laser-plasma. (authors)

  3. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  4. Beam optics optimization in the KEK digital accelerator LEBT considering the effect of remnant magnetic fields

    International Nuclear Information System (INIS)

    KEK Digital Accelerator is a compact induction synchrotron which sets little limitation on the charged ion beam's species and injection velocities. Extracted from an Electron Cyclotron Resonance Ion Source (ECRIS), the ion beam (A/Q=2, 4) is transported though Low Energy Beam Transport (LEBT) line before injected into the ring for acceleration. As the velocity is relatively small (β∼10-2), effects originating from remnant fields in different magnets along the LEBT line should be taken into account for orbit correction and optics optimization. With the help of online wire monitors, the following goals have been realized: (1) Beam orbit correction; (2) Twiss parameters and emittance at a chosen position are estimated; (3) beta function and injection focusing mismatch are studied with fitted results. These processes and results are presented and discussed in this paper. (author)

  5. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  6. Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water.

    Science.gov (United States)

    Hafizi, B; Palastro, J P; Peñano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-04-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown, and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. The phenomenon of gain-focusing discussed here for propagation in water is expected to be of general occurrence applicable to any medium supporting nonlinear focusing and stimulated Raman scattering. PMID:25831383

  7. Identification and reduction of acoustic-noise influence on focused ion beam (FIB)

    International Nuclear Information System (INIS)

    The use of focused ion beam (FIB) for research or processing of nanostructures requires very accurate beam positioning. However, numerous reasons for beam-position fluctuations exist. When FIB is used for specimen imaging, then these beam fluctuations cause the image jitter, blur or specimen-edge deformation. Similarly, beam fluctuations decrease the spatial resolution of FIB-based technological processes of milling or deposition. The sources of fluctuations are electromagnetic interference (EMI), floor vibrations and airborne acoustic noise. Our work concerns acoustic noise impact on focused ion beam fluctuations. The measurements were carried out on Helios NanoLab 600 DualBeam system with ion and electron beam columns. Reference specimens were imaged by electron or ion beam while acoustic waves of different frequency, magnitude and direction were intentionally generated nearby the system. It was found that while EMI-related distortions are caused by a wide and continuous spectrum of frequencies, for acoustic noise the strong deformations of image occur only at several resonant frequencies (mainly in the range 100–400 Hz). Comparison of results obtained for either electron or ion beam allowed to attribute different resonant peaks to various FIB-system components (ion column, electron column, specimen stage). Spectral analysis showed that resonant components of the acoustic noise surrounding the system cause beam-position fluctuations in the range of several nanometers, highly unfavourable for nanotechnological works on FIB. The noise is generated mainly by various parts of the system itself. A method was also developed to identify whether the observed beam-position fluctuations originate from acoustic noise or from electromagnetic interference. It was possible because electromagnetic field impacts charged particles along their entire path while the acoustic vibrations act only on the mechanic elements of the system. Therefore the electromagnetic fluctuations are

  8. Identification and reduction of acoustic-noise influence on focused ion beam (FIB)

    Energy Technology Data Exchange (ETDEWEB)

    Pluska, M.; Czerwinski, A.; Wzorek, M.; Juchniewicz, M.; Kątcki, J.

    2015-04-01

    The use of focused ion beam (FIB) for research or processing of nanostructures requires very accurate beam positioning. However, numerous reasons for beam-position fluctuations exist. When FIB is used for specimen imaging, then these beam fluctuations cause the image jitter, blur or specimen-edge deformation. Similarly, beam fluctuations decrease the spatial resolution of FIB-based technological processes of milling or deposition. The sources of fluctuations are electromagnetic interference (EMI), floor vibrations and airborne acoustic noise. Our work concerns acoustic noise impact on focused ion beam fluctuations. The measurements were carried out on Helios NanoLab 600 DualBeam system with ion and electron beam columns. Reference specimens were imaged by electron or ion beam while acoustic waves of different frequency, magnitude and direction were intentionally generated nearby the system. It was found that while EMI-related distortions are caused by a wide and continuous spectrum of frequencies, for acoustic noise the strong deformations of image occur only at several resonant frequencies (mainly in the range 100–400 Hz). Comparison of results obtained for either electron or ion beam allowed to attribute different resonant peaks to various FIB-system components (ion column, electron column, specimen stage). Spectral analysis showed that resonant components of the acoustic noise surrounding the system cause beam-position fluctuations in the range of several nanometers, highly unfavourable for nanotechnological works on FIB. The noise is generated mainly by various parts of the system itself. A method was also developed to identify whether the observed beam-position fluctuations originate from acoustic noise or from electromagnetic interference. It was possible because electromagnetic field impacts charged particles along their entire path while the acoustic vibrations act only on the mechanic elements of the system. Therefore the electromagnetic fluctuations are

  9. Beam Focusing by a Non-Uniformly-Spaced Nanoslit Array in a Metallic Film

    Institute of Scientific and Technical Information of China (English)

    JIAO Xiao-Jin; WANG Pei; ZHANG Dou-Guo; LU Yong-Hua; XIE Jian-Ping; MING Hai

    2006-01-01

    @@ A finite difference time domain simulation has been performed to analyse the optical transmission through a non-uniformly-spaced nanoslit array in silver film. The phase change of surface plasmons propagating on the silver film is used to modulate the initial phase of the output beam. The beam deflection and focusing function are designed, and the focal depth of the focusing metallic structure are mainly considered. It is found that the focal depth can be controlled by altering the effective width of this structure, i.e. the number of slits, when the relative spacing is fixed.

  10. Design of titania nanotube structures by focused laser beam direct writing

    Energy Technology Data Exchange (ETDEWEB)

    Enachi, Mihai [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Stevens-Kalceff, Marion A. [School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Sarua, Andrei [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ursaki, Veaceslav [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of); Tiginyanu, Ion, E-mail: tiginyanu@asm.md [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of)

    2013-12-21

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.

  11. Pink-beam focusing with a one-dimensional compound refractive lens.

    Science.gov (United States)

    Dufresne, Eric M; Dunford, Robert W; Kanter, Elliot P; Gao, Yuan; Moon, Seoksu; Walko, Donald A; Zhang, Xusheng

    2016-09-01

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported. PMID:27577759

  12. Studies on the transport and on the focusing of intense, high-energetic heavy ion beams for the production of high energy density in matter

    International Nuclear Information System (INIS)

    A measurement place for the production of hot, dense plasmas by the bombardment of matter with intense, high-energetic ion beams, was constructed, erected and taken into operation at the Society for Heavy Ion Research (GSI) in Darmstadt. A focusing system consisting of five quadrupole and one dipole magnet was calculated at the II. Physical Institute of the JLU in Giessen and erected at the high-temperature (HT) measuring place. The ion-optical properties of this system were in the framework of this thesis studied and optimized. Especially connection between the operational mode of the heavy-ion synchrotron SIS, the beam transport to the HT measuring place, and the focusing properties were elaborated. by this it succeeded to produce the calculated circular focusing area with a radius of 145 μm. A new procedure for the determination of the entrance beam parameters and, based on this, an optimization of the adjustment of the beam guiding system was tested. For the study of the interaction of the ion beams with the hot, dense target plasma stopped ions are excellently suited. For the determination of the energy loss and the charge change of such ions a spectrometer was constructed and its component erected. On the base of beam tests at the Z6 measuring place for the spectrometer at the HT measurement place a high-current-pulsed quadrupole doublet was constructed and erected. For the separation of the single charge states two classical dipole magnets in the spectrometer are foreseen

  13. Investigation of the Chaotic Dynamics of an Electron Beam with a Virtual Cathode in an External Magnetic Field

    OpenAIRE

    Egorov, E. N.; Hramov, A. E.

    2006-01-01

    The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring inan electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beamand interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased,the dynamics of an electron beam with a virtual cathode becomes more ...

  14. Time Reversal Beam Focusing of Ultrasonic Array Transducer on a Defect in a Two Layer Medium

    International Nuclear Information System (INIS)

    The ability of time reversal techniques to focus ultrasonic beams on the source location is important in many aspects of ultrasonic nondestructive evaluation. In this paper, we investigate the time reversal beam focusing of ultrasonic array sensors on a defect in layered media. Numerical modeling is performed using the commercially available software which employs a time domain finite difference method. Two different time reversal approaches are considered - the through transmission and the pulse-echo. Linear array sensors composed of N elements of line sources are used for signal reception/excitation, time reversal, and reemission in time reversal processes associated with the scattering source of a side-drilled hole located in the second layer of two layer structure. The simulation results demonstrate the time reversal focusing even with multiple reflections from the interface of layered structure. We examine the focusing resolution that is related to the propagation distance, the size of array sensor and the wavelength.

  15. Planar electron beams in a wiggler magnet array

    Indian Academy of Sciences (India)

    Arti Hadap; K C Mittal

    2013-02-01

    Transport of high current (∼kA range with particle energy ∼ 1 MeV) planar electron beams is a topic of increasing interest for applications in high-power (1–10 GW) and high-frequency (10–20 GHz) microwave devices such as backward wave oscillator (BWO), klystrons, gyro-BWOs, etc. In this paper, we give a simulated result for transport of electron beams with velocity $V_{b} = 5.23 × 10^{8}$ cm s-1 , relativistic factor = 1.16, and beam voltage = ∼80 kV in notched wiggler magnet array. The calculation includes self-consistent effects of beam-generated fields. Our results show that the notched wiggler configuration with ∼6.97 kG magnetic field strength can provide vertical and horizontal confinements for a sheet electron beam with 0.3 cm thickness and 2 cm width. The feasibility calculation addresses to a system expected to drive for 13–20 GHz BWO with rippled waveguide parameters as width = 3.0 cm, thickness = 1.0 cm, corrugation depth ℎ = 0.225 cm, and spatial periodicity = 1.67 cm.

  16. Study of temperature rise during focused Ga ion beam irradiation using nanothermo-probe

    International Nuclear Information System (INIS)

    Estimation of temperature rise during focused ion beam irradiation is of immense importance, since it affects various processes related to micro-machining and deposition. When ion beam impinges on a surface, it transfers its kinetic energy by way of electronic excitations and collisions, which eventually gets converted in the form of heat leading to rise in local temperature. This temperature rise affects and governs the properties of the machined region. The temperature rise can be calculated on the basis of energy deposition and heat transfer. However, there are very few reports on the measurement of such local temperature rise which lasts for very short time. We have designed and fabricated nanothermocouples of Pt-W to monitor local temperature rise (i) near a microheater and (ii) in the close proximity of an intense focused ion beam spot on a substrate. The junctions having size of 100 nm x 100 nm have been fabricated using focused ion beam chemical vapor deposition (FIB-CVD). The nanothermocouples have shown a fast response to the changes in temperature. These nanothermocouples can find useful applications in thermal characterization of nanomaterials and for understanding of temperature mediated phenomena in the samples treated under directed energy deposition processes, e.g. ion, laser and electron beam treatment.

  17. Electromagnetic design and development of a combined function horizontal and vertical dipole steerer magnet for medium energy beam transport line

    International Nuclear Information System (INIS)

    Medium Energy Beam Transport (MEBT) line is required to match the optical functions between the RFQ and SRF cavities/DTL cavities.The primary function of the MEBT lines is to keep the emittance growth of the output beam as low as possible in a highly space charge environment at low energies. The transverse focusing of the beam is achieved by strong focusing quadrupoles and the longitudinal dynamics is achieved by the buncher cavities. The Dipole Steerers serve the function of a control element to achieve the desired transverse beam position. To minimize the emittance growth high magnetic field rigidity is required in a highly constrained longitudinal space for these corrector magnets. The design and development of an air-cooled dipole steerer magnet has been done for an integral dipole field of 2.1mT-m in a Good Field Region (GFR) of 23 mm diameter with Integral Field homogeneity better than 0.5%. Electromagnetic field simulations were done using 3D-FEM simulation software OPERA. Error sensitivity studies have been carried out to specify the manufacturing tolerances to estimate and minimize the beam transmission loss due to likely misalignments and rotation of the magnet. A combined function dipole corrector magnet has been designed and fabricated at the Control Instrumentation Division, BARC. This paper discusses measurement results of a combined function dipole steerer for MEBT line for Proton (H+) beam at 2.5 MeV. (author)

  18. Beam induced electron cloud resonances in dipole magnetic fields

    Science.gov (United States)

    Calvey, J. R.; Hartung, W.; Makita, J.; Venturini, M.

    2016-07-01

    The buildup of low energy electrons in an accelerator, known as electron cloud, can be severely detrimental to machine performance. Under certain beam conditions, the beam can become resonant with the cloud dynamics, accelerating the buildup of electrons. This paper will examine two such effects: multipacting resonances, in which the cloud development time is resonant with the bunch spacing, and cyclotron resonances, in which the cyclotron period of electrons in a magnetic field is a multiple of bunch spacing. Both resonances have been studied directly in dipole fields using retarding field analyzers installed in the Cornell Electron Storage Ring. These measurements are supported by both analytical models and computer simulations.

  19. Bunch-length and beam-timing monitors in the SLC final focus

    International Nuclear Information System (INIS)

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations. copyright 1999 American Institute of Physics

  20. Processes in a dense long-pulse electron beam focused on a solid target

    International Nuclear Information System (INIS)

    The results obtained in beam-target experiments with dense medium-energy electron beam in the regime of long single pulses are presented. The measured power density of the focused beam at the target reached 20 MW/cm2 in these experiments. The processes caused by dense flows of secondary particles and by a dense target ablation plasma were studied in detail. Substantial target shielding occurs when the energy density at the target exceeds the value of about 1 kJ/cm2. The target plasma and the sputtered matter that is responsible for shielding affects also the beam structure, as well as the target etching rates. (J.U.). 3 figs., 5 refs

  1. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo;

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitative...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...... as it was estimated using the dual beam SEM....

  2. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  3. Diagnostics of ion beam generated from a Mather type plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Lim, L. K., E-mail: yapsl@um.edu.my; Ngoi, S. K., E-mail: yapsl@um.edu.my; Wong, C. S., E-mail: yapsl@um.edu.my; Yap, S. L., E-mail: yapsl@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya (Malaysia)

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  4. Wave front reversal during nonstationary stimulated Mandel'shtam-Brillouin scattering of focused beams

    Science.gov (United States)

    Betin, A. A.; Vasilev, A. F.; Kulagin, O. V.; Manishin, V. G.; Iashin, V. E.

    1985-09-01

    Consideration is given to the conditions for the existence and observation of wave front reversal in focused light beams due to nonstationary stimulated Mandel'shtam-Brillouin scattering. Experimental observations were carried out for light beams having small scale spatial inhomogeneities at a wavelength of 1.05 microns. The precision of the wave front reversal is determined, and the reflection coefficients of the Mandel'shtam-Brillouin scattering mirrors are measured with respect to quasi-homogeneous light beams under saturation conditions. The relative duration of the light pulses was t sub i/T2 = 0.15-1 (where T2 is the hypersound relaxation time). It is shown that the maximum duration of the pulses, which were reflected by a stimulated Mandel'shtam-Brillouin mirror, was limited by competing nonlinear breakdown and self-focusing processes. The accuracy of a correction for wave front reversal is also determined.

  5. Focused ion beam writing of optical patterns in amorphous silicon carbide

    International Nuclear Information System (INIS)

    In the present work we investigate the use of ion beam techniques for properties modification and optimisation of wide-bandgap materials with view of their uses in sub-micron lithography and high-density data storage for archival purposes. We propose scanning near-field optical microscopy as a novel technique for characterizing the ion-implanted patterns fabricated in amorphous silicon carbide (a-SiC:H). Different patterns have been fabricated in a-SiC:H films with a focused Ga+-ion beam system and examined with scanning near-field optical microscopy and atomic force microscopy. Although a considerable thickness change (thinning tendency) has been observed in the ion-irradiated areas, the near-field measurements confirm increases of optical absorption in these areas. The observed values of the optical contrast modulation are sufficient to justify the efficiency of the method for optical data recording using focused ion beams. (author)

  6. Tight focusing of partially polarized vortex beams by binary phase Fresnel zone plates

    Institute of Scientific and Technical Information of China (English)

    Shu Jian-Hua; Chen Zi-Yang; Pu Ji-Xiong; Liu Yong-Xin

    2011-01-01

    Based on vectorial Debye theory,the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated.The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates,the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail.It is shown that elliptical light spots and the fiat top beam can be obtained by selecting certain parameters.Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field,which is zero in the source plane,is improved in the focal plane for vortex beam,but it is hardly changed for the nonvortex beam.It is also proved that any two of the three electric field components Ex,Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized.

  7. Tight focusing of partially polarized vortex beams by binary phase Fresnel zone plates

    International Nuclear Information System (INIS)

    Based on vectorial Debye theory, the focusing properties of partially polarized vortex beam by high numerical aperture Fresnel zone plate are investigated. The effects of the numerical apertures of and the phase difference of binary phase Fresnel zone plates, the topological charge of vortex beam and the degree of polarization of incident beam on the intensity distribution and degree of coherence in the focal plane are investigated in detail. It is shown that elliptical light spots and the flat top beam can be obtained by selecting certain parameters. Studies of degree of coherence reveal that the degree of coherence between x and y components of the electric field, which is zero in the source plane, is improved in the focal plane for vortex beam, but it is hardly changed for the nonvortex beam. It is also proved that any two of the three electric field components Ex, Ey and Ez are completely coherent everywhere in the focal region if the incident light beam is linearly polarized. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Beaming of Particles and Synchrotron Radiation in Relativistic Magnetic Reconnection

    Science.gov (United States)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-08-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealized analytical models, reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with an isotropic electron velocity distribution in its rest frame, we find that the bulk motion of the particles in X-points is similar to their Lorentz factor γ, and the particles are beamed within ˜ 5/γ . On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropize after completing a full Larmor gyration and their radiation is no longer strongly beamed. The radiation pattern at a given frequency depends on where the corresponding emitting electrons radiate their energy. Lower-energy particles that cool slowly spend most of their time in the islands and their radiation is not highly beamed. Only particles that quickly cool at the edge of the X-points generate a highly beamed fan-like radiation pattern. The radiation emerging from these fast cooling particles is above the burn-off limit (˜100 MeV in the overall rest frame of the reconnecting plasma). This has significant implications for models of gamma-ray bursts and active galactic nuclei that invoke beaming in that frame at much lower energies.

  9. Focused electron beam induced processing and the effect of substrate thickness revisited

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Beyer, A.; Mainka, M.; Gölzhäuser, A.; Hansen, Thomas Willum; Wagner, Jakob Birkedal; Hagen, C. W.; De Hosson, J. Th. M.

    2013-01-01

    The current understanding in the study of focused electron beam induced processing (FEBIP) is that the growth of a deposit is mainly the result of secondary electrons (SEs). This suggests that the growth rate for FEBIP is affected by the SE emission from the support. Our experiments, with membranes...

  10. Portable test bench for the studies concerning ion sources and ion beam extraction and focusing systems

    International Nuclear Information System (INIS)

    A portable test bench is described, which was designed to check ion sources, ion beam extraction and focusing systems before its use in a 600 KeV Cockcroft-Walton accelerator. The vacuum possibilities of the system are specially analyzed in connection with its particular use. The whole can be considered as a portable accelerator of low energy (50 keV). (Author)

  11. Focused Ion Beam - Scanning Electron Microscopy Applied to Electrically Insulating Materials

    NARCIS (Netherlands)

    de Winter, D.A.M.

    2015-01-01

    The Focused Ion Beam – Scanning Electron Microscope (FIB-SEM) is a versatile instrument originating from the semiconductor industry. The FIB is used to produce cross sections of pre-defined locations of interest, which are imaged and analyzed with the SEM. Repeated FIB cross sectioning and subsequen

  12. High-resolution direct-write patterning using focused ion beams

    NARCIS (Netherlands)

    Ocola, L.E.; Rue, C.; Maas, D.J.

    2014-01-01

    Over the last few years, significant improvements in sources, columns, detectors, control software, and accessories have enabled a wealth of new focused ion beam applications. In addition, modeling has provided many insights into ion-sample interactions and the resultant effects on the sample. With

  13. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling

    DEFF Research Database (Denmark)

    Lei, Anders; Petersen, Dirch Hjorth; Booth, Tim;

    2010-01-01

    Nano- and microelectromechanical structures for in situ operation in a transmission electron microscope (TEM) were fabricated with a turnaround time of 20 min and a resolution better than 100 nm. The structures are defined by focused ion beam (FIB) milling in 135 nm thin membranes of single...

  14. Selective filling of photonic crystal fibers using focused ion beam milled microchannels

    DEFF Research Database (Denmark)

    Wang, Fei; Yuan, Scott Wu; Hansen, Ole;

    2011-01-01

    We introduce a versatile, robust, and integrated technique to selectively fill fluid into a desired pattern of air holes in a photonic crystal fiber (PCF). Focused ion beam (FIB) is used to efficiently mill a microchannel on the end facet of a PCF before it is spliced to a single-mode fiber (SMF...

  15. Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam

    NARCIS (Netherlands)

    Lu, Yuan; Katz, Joseph; Prosperetti, Andrea

    2013-01-01

    In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line hologr

  16. Lecture-Room Interference Demo Using a Glass Plate and a Laser Beam Focused on It

    Science.gov (United States)

    Ageev, Leonid A.; Yegorenkov, Vladimir D.

    2010-01-01

    We describe a simple case of non-localized interference produced with a glass plate and a laser beam focused on it. The proposed setup for observing interference is compact when semiconductor lasers are employed, and it is well suited for demonstration and comparison of interference in reflected and transmitted light in a large lecture-room. This…

  17. Main magnetic focus ion source: Basic principles, theoretical predictions and experimental confirmations

    Science.gov (United States)

    Ovsyannikov, V. P.; Nefiodov, A. V.

    2016-03-01

    It is proposed to produce highly charged ions in the local potential traps formed by the rippled electron beam in a focusing magnetic field. In this method, extremely high electron current densities can be attained on short length of the ion trap. The design of very compact ion sources of the new generation is presented. The computer simulations predict that for such ions as, for example, Ne8+ and Xe44+, the intensities of about 109 and 106 ions per second, respectively, can be obtained. The experiments with pilot example of the ion source confirm efficiency of the suggested method. The X-ray emission from Ir59+, Xe44+ and Ar16+ ions was detected. The control over depth of the local ion trap is shown to be feasible.

  18. Isentropic focusing of supersonic plasma jets for magnetized target fusion

    International Nuclear Information System (INIS)

    It is shown that high energy flux densities can be reached by the isentropic Prandtl-Meyer compression flow of a supersonic plasma jet in a convergent nozzle. The energy flux density thereby increases in proportion to M2/(γ-1) where M is the Mach number of the jet and γ the specific heat ratio. With an axial magnetic field set up inside the nozzle by the thermomagnetic Nernst effect, the jet is magnetically insulated from the nozzle wall, reducing the bremsstrahlung radiation and conveniently magnetizing the target plasma. A sufficiently large number of spherically arranged nozzles can then be used for the ignition and confinement of a magnetized thermonuclear target

  19. Patterning of Spiral Structure on Optical Fiber by Focused-Ion-Beam Etching

    Science.gov (United States)

    Mekaru, Harutaka; Yano, Takayuki

    2012-06-01

    We produce patterns on minute and curved surfaces of optical fibers, and develop a processing technology for fabricating sensors, antennas, electrical circuits, and other devices on such patterned surfaces by metallization. A three-dimensional processing technology can be used to fabricate a spiral coil on the surface of cylindrical quartz materials, and then the microcoils can also be applied to capillaries of micro-fluid devices, as well as to receiver coils connected to a catheter and an endoscope of nuclear magnetic resonance imaging (MRI) systems used in imaging blood vessels. To create a spiral line pattern with a small linewidth on a full-circumference surface of an optical fiber, focused-ion-beam (FIB) etching was employed. Here, a simple rotation stage comprising a dc motor and an LR3 battery was built. However, during the development of a prototype rotation stage before finalizing a large-scale remodelling of our FIB etching system, a technical problem was encountered where a spiral line could not be processed without running into breaks and notches in the features. It turned out that the problem was caused by axis blur resulting from an eccentric spinning (or wobbling) of the axis of the fiber caused by its unrestrained free end. The problem was solved by installing a rotation guide and an axis suppression device onto the rotation stage. Using this improved rotation stage. we succeeded in the seamless patterning of 1-µm-wide features on the full-circumference surface of a 250-µm-diameter quartz optical fiber (QOF) by FIB etching.

  20. Compact 180 deg magnetic energy analyzer for relativistic electron beams

    International Nuclear Information System (INIS)

    A compact, 180 deg deflection magnetic energy analyzer has been designed and used to measure the energy spectrum of the beam produced by the Tesla Transformer-Pulse forming line type Relativistic Electron Beam (REB) generator being used in the FEL experiments that are currently underway at Institute for Plasma Research. Relativistic electron beams have been used in many applications ranging from free-electron lasers to virtual cathode oscillators and other high power microwave devices. In all these cases, it is required that the electron beam is propagated without considerable loss across a drift region and it is also imperative that accurate energy measurements are required for dependable estimates and analysis regarding the output parameters of the system. In the case of a free-electron laser, the output wavelength of the FEL has a strong dependence on the beam energy and hence it is important to determine as accurately as possible, the energy of the electron beam in order to accurately estimate the FEL radiation frequency

  1. A numerical study of transcranial focused ultrasound beam propagation at low frequency

    International Nuclear Information System (INIS)

    The feasibility of transcranial ultrasound focusing with a non-moving phased array and without skull-specific aberration correction was investigated using computer simulations. Three cadaver skull CT image data sets were incorporated into an acoustic wave transmission model to simulate transskull ultrasound wave propagation. Using a 0.25 MHz hemispherical array (125 mm radius of curvature, 250 mm diameter, 24 255 elements), the simulated beams could be focused and steered with transducer element driving phases and amplitude adjusted for focal beam steering in water (water-path). A total of 82 foci, spanning wide ranges of distance in the three orthogonal dimensions, were simulated to test the focal beam steering capability inside the three skulls. The acoustic pressure distribution in a volume of 20 x 20 x 20 mm3 centred at each focus was calculated with a 0.5 mm spacing in each axis. Clearly defined foci were retained through the skulls (skull-path) in most cases. The skull-path foci were on average 1.6 ± 0.8 mm shifted from their intended locations. The -3 dB skull-path beam width and length were on average 4.3 ± 1.0 mm and 7.7 ± 1.8 mm, respectively. The skull-path sidelobe levels ranged from 25% to 55% of the peak pressure values. The skull-path peak pressure levels were about 10%-40% of their water-path counterparts. Focusing low-frequency beam through skull without skull-specific aberration correction is possible. This method may be useful for applying ultrasound to disrupt the blood-brain barrier for targeted delivery of therapeutic or diagnostic agents, or to induce microbubbles, or for other uses of ultrasound in brain where the required power levels are low and the sharp focusing is not needed

  2. Emittance growth due to radial density variations of an emittance-dominated electron beam in a channel with continuous acceleration and focusing

    International Nuclear Information System (INIS)

    Simulations have identified charge-density variations as driving the dominant emittance growth mechanism for high-current, low-emittance induction linacs using solenoidal focusing, once the beam enters the emittance-dominated regime. In this paper, we use the radial equation of motion, including the nonlinearities resulting from radial density variations, to understand this effect. Nonlinearities in the beam close-quote s radial motion while in a solenoid arise from the noncancellation of the effects from the diamagnetic axial magnetic field and the potential depression of the beam, if the beam density is nonuniform. Any initial density variation drives a logarithmic increase in additional higher-order density variations (through the differential betatron motion), and an emittance growth that scales logarithmically, or greater (even potentially faster than linear), with the axial distance along the accelerator. The growth rate depends on the beam current, the focusing force, and the accelerating gradient, and for typical machine parameters, the growth rate can be faster than linear with distance. The magnitude of the emittance growth depends critically on the matching of the beam from the injector to the beamline. This formalism leads to a criterion of how uniform the beam density has to be and how well the beam needs to be matched in order not to have an unacceptable emittance growth. copyright 1998 American Institute of Physics

  3. Magnetoinduction sensor of beam current with magnetic noise screening

    International Nuclear Information System (INIS)

    A description is given of a magnetoinduction sensor of beam current in a synchrotron, the latter being a booster of the VEhPP-4 electron-positron complex. The sensor operates under conditions of heavy background noise induced by the synchrotron pulsed magnetic fields. The means reducing the noise level in the sensor are considered. The most efficient screen protecting against pulsed fields is one made of conducting materials where the field is reduced at the expense of induced currents passing in a skin-layer. The screen has an azimuthal slit, which results in the beam vortex field penetration to the sensor without reduction. The noise field is reduced due to the conducting walls and deep slit. Application of the means deseribed allowed to measure low (of the order of 100 mcA) synchrotron beam currents

  4. Type I parametric down conversion of highly focused Gaussian beams in finite length crystals

    CERN Document Server

    Jeronimo-Moreno, Yasser

    2014-01-01

    We study the correlations in wave vector space of photon pairs generated by type I spontaneous parametric down conversion using a Gaussian pump beam. We analyze both moderate focused and highly focused regimes taking special attention to the angular spectrum and the conditional angular spectrum. Simple analytic expressions are derived that allow us to study in detail the dependence of these spectra on the waist of the source and the length of the nonlinear crystal. These expressions are in good agreement with numerical expectations and reported experimental results. They are used to make a systematic search of optimization parameters that improve the feasibility of using highly focused Gaussian beams to generate idler and signal photons with predetermined mean values and spread of their transverse wave vectors.

  5. Adaptive optical beam shaping for compensating projection-induced focus deformation

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  6. Imperative function of electron beams in low-energy plasma focus device

    Indian Academy of Sciences (India)

    M Z Khan; L K Lim; S L Yap; C S Wong

    2015-12-01

    A 2.2 kJ plasma focus device was analysed as an electron beam and an X-ray source that operates with argon gas refilled at a specific pressure. Time-resolved X-ray signals were observed using an array of PIN diode detectors, and the electron beam energy was detected using a scintillator-assisted photomultiplier tube. The resultant X-rays were investigated by plasma focus discharge for pressures ranging from 1.5 mbar to 2.0 mbar. This range corresponded to the significant values of X-ray yields and electron beam energies from the argon plasma. The electron temperature of argon plasma at an optimum pressure range was achieved by an indirect method using five-channel BPX65 PIN diodes of aluminum foils with different thicknesses. X-ray yield, electron beam energy, and electron temperature of argon plasma were achieved at 1.5–2.0 mbar because of the strong bombardment of the energetic electron beam.

  7. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    Science.gov (United States)

    Patterson, N.; Adams, D. P.; Hodges, V. C.; Vasile, M. J.; Michael, J. R.; Kotula, P. G.

    2008-06-01

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  8. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    International Nuclear Information System (INIS)

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations

  9. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  10. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  11. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan, E-mail: vladan@biochem.mpg.de

    2014-08-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography.

  12. Investigation of E x B mass filters for focused ion beam systems

    International Nuclear Information System (INIS)

    E x B mass filters have been investigated by 3-D simulations of electromagnetic field and ion trajectories, based on a 3-D boundary integral method. A new algorithm has been developed which enables the simulation of complex 3-D field configurations with less complicated data preparation. Five different shapes and arrangements of electrode/pole-piece, from parallel to non-parallel plates to curved inner surface, have been investigated in an attempt to find the optimum geometry of field configuration giving the least deterioration to the focused beam. The effect of beam energy spread has been studied by strictly 3-D simulation of ion trajectories under different focusing conditions. It has been found that the optimum geometry of an E x B mass filter is not the widely used parallel-plate configuration but the one with slightly curved inner surface in its electrode/pole-piece, which significantly reduces the astigmatic focusing effect. The beam dispersion caused by ion energy spread is the intrinsic feature of an E x B mass filter, which cannot be cancelled, as previously suggested, by arranging the beam crossover at the centre of an E x B mass filter. (orig.)

  13. Space-charge transport limits of ion beams in periodic quadrupole focusing channels

    CERN Document Server

    Lund, S M; Lund, Steven M.; Chawla, Sugreev R.

    2006-01-01

    It has been empirically observed in both experiments and particle-in-cell simulations that space-charge-dominated beams suffer strong growth in statistical phase-space area (degraded quality) and particle losses in alternating gradient quadrupole transport channels when the undepressed phase advance sigma_0 increases beyond about 85 degrees per lattice period. Although this criterion has been used extensively in practical designs of strong focusing intense beam transport lattices, the origin of the limit has not been understood. We propose a mechanism for the transport limit resulting from classes of halo particle resonances near the core of the beam that allow near-edge particles to rapidly increase in oscillation amplitude when the space-charge intensity and the flutter of the matched beam envelope are both sufficiently large. When coupled with a diffuse beam edge and/or perturbations internal to the beam core that can drive particles outside the edge, this mechanism can result in large and rapid halo-drive...

  14. Generation and focusing of electron beams with initial transverse-longitudinal correlation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [Colorado State Univ., Fort Collins, CO (United States) Dept. of Electrical and Computer Engineering.; Lewellen, J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poole, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-07

    In charged particle beams, one of the roles played by space charge is to couple the transverse and longitudinal dynamics of the beam. This can lead to very complex phenomena which are generally studied using computer simulations. However, in some cases models based on phenomenological or analytic approximations can provide valuable insight into the system behavior. In this paper, we employ such approximations to investigate the conditions under which all the slices of a space charge dominated electron beam with slowly varying current could be focused to a waist with the same radius and at the same location, independent of slice current, and show that this can be accomplished approximately if the initial transverse-longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate for the transverse-longitudinal correlation introduced onto the beam in the drift section. The validity of our approximations is assessed by use of progressively more realistic calculations. We also consider several design elements of electron guns that affect the initial correlations in the beams they generate.

  15. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    Science.gov (United States)

    Schmidt, A.; Ellsworth, J.; Falabella, S.; Link, A.; McLean, H.; Rusnak, B.; Sears, J.; Tang, V.; Welch, D.

    2014-12-01

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ˜cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  16. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    International Nuclear Information System (INIS)

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications

  17. Precise milling of nano-gap chains in graphene with a focused helium ion beam

    Science.gov (United States)

    Zhou, Yangbo; Maguire, Pierce; Jadwiszczak, Jakub; Muruganathan, Manoharan; Mizuta, Hiroshi; Zhang, Hongzhou

    2016-08-01

    A focused helium ion beam was used to introduce nano-sized gap chains in graphene. The effect of beam scanning strategies in the fabrication of the nano-gap chains was investigated. The tuning of graphene conductivity has been achieved by modulating the magnitude and uniformity of the ion dose and hence the morphology of the nano-gap chains. A model based on the site-specific and dose-dependent conductivity was built to understand the tuning of the conductivity, taking into account the nanoscale non-uniformity of irradiation.

  18. Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals

    International Nuclear Information System (INIS)

    We demonstrate that extremely high aspect ratio patterns can be created at a submicrometre scale using focused-ion-beam etching in a porous material. Thanks to a preliminary microscopic structuration of the etching material, the limiting effects usually observed in bulk material ion-beam etching are strongly reduced. Holes with an overall aspect ratio of 50 are obtained. In combination with the photo-electrochemical etching, this method is successfully used to fabricate three-dimensional silicon photonic crystals up to five periods thick at a submicrometre scale. (author)

  19. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several...

  20. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R.O.; Mark, J.W.K.; Meeker, D.J.; Judd, D.L.

    1981-01-01

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems.

  1. Hexapole State-Selection and Beam Focus of Polar Top Molecules

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Chun; JIN Ming-Xing; GAO Xin; DING Da-Jun

    2006-01-01

    @@ We express a description of the state-selection role for a polar molecule in a hexapole electrostatic field. By a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field, we present the calculated results of the different molecular rotational state selection and beam focus and discuss the influence of the high order Stark effect, the beam speed on the results for the symmetric top molecule CH3CN, CH3I, and the asymmetric top molecule CH2F2 in the hexapole field.

  2. Influence of target requirements on the production, acceleration, transport, and focusing of ion beams

    International Nuclear Information System (INIS)

    We have calculated the energy gain of ion-driven fusion targets as a function of input energy, ion range, and focal spot radius. For heavy-ion drivers a given target gain, together with final-lens properties, determines a 6-D phase space volume which must exceed that occupied by the ion beam. Because of Liouville's theorem and the inevitability of some phase space dilutions, the beams's 6-D volume will increase between the ion source and the target. This imposes important requirements on accelerators and on transport and focusing systems

  3. Precise milling of nano-gap chains in graphene with a focused helium ion beam.

    Science.gov (United States)

    Zhou, Yangbo; Maguire, Pierce; Jadwiszczak, Jakub; Muruganathan, Manoharan; Mizuta, Hiroshi; Zhang, Hongzhou

    2016-08-12

    A focused helium ion beam was used to introduce nano-sized gap chains in graphene. The effect of beam scanning strategies in the fabrication of the nano-gap chains was investigated. The tuning of graphene conductivity has been achieved by modulating the magnitude and uniformity of the ion dose and hence the morphology of the nano-gap chains. A model based on the site-specific and dose-dependent conductivity was built to understand the tuning of the conductivity, taking into account the nanoscale non-uniformity of irradiation. PMID:27347752

  4. Polarized Positrons at a Future Linear Collider and the Final Focus Test Beam

    International Nuclear Information System (INIS)

    Having both the positron and electron beams polarized in a future linear e+e- collider is a decisive improvement for many physics studies at such a machine. The motivation for polarized positrons, and a demonstration experiment for the undulator-based production of polarized positrons are reviewed. This experiment (E-166) uses the 50 GeV Final Focus Test electron beam at SLAC with a 1 m-long helical undulator to make ∼ 10MeV polarized photons. These photons are then converted in a thin (∼ 0.5 radiation length) target into positrons (and electrons) with about 50% polarization

  5. Fabrication and characterization of highly reproducible, high resistance nanogaps made by focused ion beam milling

    International Nuclear Information System (INIS)

    Nanoelectrodes were fabricated combining photolithography, electron beam lithography and focused ion beam milling allowing for large scale integration and nanoengineering of the electrode properties. The structure determination by transmission and scanning electron microscopy showed a highly reproducible gap width. The atomic scale electrode structure was characterized using scanning and transmission electron microscopy. The nanogap resistances were found to be the highest hitherto reported for nanogaps, namely in the 300-1300 TΩ range. Gold nanoparticles were trapped by ac dielectrophoresis, and the electrodes were shown to be stable enough to endure empty gap voltages as high as 5 V as well as currents high enough to induce fusing of trapped nanoparticles

  6. Focused-ion-beam nanostructuring of Al2O3 dielectric layers for photonic applications

    International Nuclear Information System (INIS)

    In this work, we report on utilization and optimization of the focused-ion-beam technique for the fabrication of nanostructures on Al2O3 waveguides for applications in integrated photonic devices. In particular, the investigation of the effects of parameters such as ion-beam current, dwell time, and scanning strategy is addressed. As a result of optimizing these parameters, excellent quality gratings with smooth and uniform sidewalls are reported. The effects of redeposition are minimized and good control of the nanostructuring process is reported. The effect of Ga+ ion implantation during the milling process on the optical performance of the devices is discussed. (paper)

  7. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.

    Science.gov (United States)

    Dai, Lin; Li, Jian-Xing; Zang, Wei-Ping; Tian, Jian-Guo

    2011-05-01

    Electron acceleration in vacuum driven by a tightly focused radially polarized Gaussian beam has been studied in detail. Weniger transformation method is used to eliminate the divergence of the radially polarized electromagnetic field derived from the Lax series approach. And, electron dynamics in an intense radially polarized Gaussian beam is analyzed by using the Weniger transformation field. The roles of the initial phase of the electromagnetic field and the injection angle, position and energy of electron in energy gain of electron have been studied in detail. PMID:21643185

  8. Developments in magnet modeling and beam optics for the ARIS separator at FRIB

    Science.gov (United States)

    Portillo, M.; Hausmann, M.; Chouhan, S.

    2016-06-01

    A description is given on the methods used for field analysis of magnets and the extracted parameters used for accurate beam simulations of the fragment separator. For the strong focusing magnets, Fourier decomposition is used in order to extract induced fields associated with higher order multipoles. For dipoles, a 2D field map model is used instead in order to emulate complex field distributions. The theory of the models and the techniques chosen are described, along with results from Monte Carlo beam simulations up to 5th order. The n = 6 multipole induced by the quadrupole is the most significant component. The effects on separator performance with and without this component in the model are demonstrated.

  9. Primary Beam Steering Due to Field Leakage from Superconducting SHMS Magnets

    OpenAIRE

    Moore, Michael H.; Waidyawansa, Buddhini P.; Covrig, Silviu; Carlini, Roger; Benesch, Jay

    2014-01-01

    Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a...

  10. Development of an all-permanent-magnet microwave ion source equipped with multicusp magnetic fields for high current proton beam production.

    Science.gov (United States)

    Tanaka, M; Hara, S; Seki, T; Iga, T

    2008-02-01

    An all-permanent-magnet (APM) microwave hydrogen ion source was developed to reduce the size and to simplify structure of a conventional solenoid coil microwave ion source developed for reliability improvement of high current proton linac application systems. The difficulty in developing the APM source was sensitive dependence of the source performance on axial magnetic field in the microwave discharge chamber. It was difficult to produce high current proton beam stably without precise tuning of the magnetic field using solenoid coils. We lowered the sensitivity using multicusp magnetic fields for plasma confinement at the discharge chamber sidewall of the source. This enabled stable high current proton beam production with the APM microwave ion source with no tuning coil. The water cooling and the power supply for the coils are not necessary for the APM source, which leads to better reliability and system simplification. The outer diameter of the APM source was around 300 mm, which was 20% lower than the coil source. The APM source produced a maximum hydrogen ion beam current of 65 mA (high current density of 330 mA/cm(2), proton ratio of 87%, and beam energy of 30 keV) with a 5 mm diameter extraction aperture, pulse width of 400 micros, and 20 Hz repetition rate at 1.3 kW microwave power. This performance is almost the same as the best performances of the conventional coil sources. The extracted ion beams were focused with electrostatic five-grid lens to match beam to acceptance of radio-frequency quadrupole linacs. The maximum focused beam current through the orifice (5 mm radius) and the lens was 36 mA and the 90% focused beam half-width was 1-2 mm. PMID:18315183

  11. Measurement of beam energy of spherical plasma focus diode and its PIC code simulations

    International Nuclear Information System (INIS)

    We have evaluated dynamic characteristics of spherical plasma focus diode (SPFD) by experiments and simulations. Using a calorimeter, there was a peak of 84 J/cm2 on z-axis of an intense, pulsed, light-ion beam energy density. To evaluate the species and energy, Thomson parabola energy spectrometer measurement was carried out. To obtain beam flux, new types of electrodes were used; grooveless high flux anode and highly transparent, webbed cathode. We found that the protonic ratio, defined by the ratio of protons over heavy ions (C+, C++, O+, and O++), is 8.2. The energy of protons, which had a peak at 300 keV, distributed in the range of 230 - 600 keV. In PIC code simulations, we proposed initial thermal energy model to express the local divergence of LIB. We assumed that the initial thermal energy models takes half vector space. The vector had a constant magnitude and random direction. When the initial energy is 20 eV, the ion beam focused in a cylindrical area of 0.4 mmφ x 2.4 mm. This focusing size was much tighter than the experimental results (6.0 mmφ x 4.5 mm) measured by time-integrated backward Rutherford scattering pinhole camera. Above 20 eV, simulation results gave better focusing. The local divergence, however, could not be expressed by the above models. (author)

  12. Acoustical tweezers using single spherically focused piston, X-cut, and Gaussian beams.

    Science.gov (United States)

    Mitri, Farid G

    2015-10-01

    Partial-wave series expansions (PWSEs) satisfying the Helmholtz equation in spherical coordinates are derived for circular spherically focused piston (i.e., apodized by a uniform velocity amplitude normal to its surface), X-cut (i.e., apodized by a velocity amplitude parallel to the axis of wave propagation), and Gaussian (i.e., apodized by a Gaussian distribution of the velocity amplitude) beams. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSEs assuming weakly focused beams (with focusing angle α ⩽ 20°) in the Fresnel-Kirchhoff (parabolic) approximation. In contrast with previous analytical models, the derived expressions allow computing the scattering and acoustic radiation force from a sphere of radius a without restriction to either the Rayleigh (a ≪ λ, where λ is the wavelength of the incident radiation) or the ray acoustics (a ≫λ) regimes. The analytical formulations are valid for wavelengths largely exceeding the radius of the focused acoustic radiator, when the viscosity of the surrounding fluid can be neglected, and when the sphere is translated along the axis of wave propagation. Computational results illustrate the analysis with particular emphasis on the sphere's elastic properties and the axial distance to the center of the concave surface, with close connection of the emergence of negative trapping forces. Potential applications are in single-beam acoustical tweezers, acoustic levitation, and particle manipulation. PMID:26470046

  13. Phase-transition oscillations induced by a strongly focused laser beam.

    Science.gov (United States)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at T(c)=306.6K and volume fraction ϕ(c)=12.8% [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced. PMID:26651700

  14. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    Science.gov (United States)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  15. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  16. Tentative design of beam focusing for the AHF linac and transport systems

    International Nuclear Information System (INIS)

    Proposals for an advanced hadron facility include building afterburner linacs for LAMPF. A first afterburner, Add-on Linac number 1, is proposed to accelerate the beam from 0.8 to 1.6 GeV. The output beam would then be fed to a compressor ring and to another afterburner, Add-on Linac number 2. We make a rough estimate of the transverse focusing strength needed in these linacs, and consider the transport line from the end of the LAMPF 805-MHz linac to the start of Add-on Linac number 1. A rebuncher is needed in this transport line for proper acceptance of the beam into the add-on linac. 2 refs., 4 figs

  17. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    International Nuclear Information System (INIS)

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in Ez up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws

  18. Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams.

    Science.gov (United States)

    Urey, Hakan

    2004-01-20

    Simple polynomial formulas to calculate the FWHM and full width at 1/e2 intensity diffraction spot size and the depth of focus at a Strehl ratio of 0.8 and 0.5 as a function of a Gaussian beam truncation ratio and a system f-number are presented. Formulas are obtained by use of the numerical integration of a Huygens-Fresnel diffraction integral and can be used to calculate the number of resolvable spots, the modulation transfer function, and the defocus tolerance of optical systems that employ laser beams. I also derived analytical formulas for the diffraction ring intensity as a function of the Gaussian beam truncation ratio and the system f-number. Such formulas can be used to estimate the diffraction-limited contrast of display and imaging systems. PMID:14765922

  19. Phase-transition oscillations induced by a strongly focused laser beam

    Science.gov (United States)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

  20. Experimental simulation of beam propagation over long path lengths using radio-frequency and magnetic traps

    International Nuclear Information System (INIS)

    An overview is given of the novel beam-dynamics experiments based on compact non-neutral plasma traps at Hiroshima University. We have designed and constructed two different classes of trap systems, one of which uses a radio-frequency electric field (Paul trap) and the other uses an axial magnetic field (Penning trap) for transverse plasma confinement. These systems are called “S-POD” (Simulator for Particle Orbit Dynamics). The S-POD systems can approximately reproduce the collective motion of a charged-particle beam propagating through long alternating-gradient (AG) quadrupole focusing channels using the Paul trap and long continuous focusing channels using the Penning trap. This allows us to study various beam-dynamics issues in compact and inexpensive experiments without relying on large-scale accelerators. So far, the linear Paul traps have been applied for the study of resonance-related issues including coherent-resonance-induced stop bands and their dependence on AG lattice structures, resonance crossing in fixed-field AG accelerators, ultralow-emittance beam stability, etc. The Penning trap with multi-ring electrodes has been employed primarily for the study of beam halo formation driven by initial distribution perturbations. In this paper, we briefly overview the S-POD systems, and then summarize recent experimental results on resonance effects and halo formation

  1. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  2. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  3. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  4. Self-focusing of a pulsed electron beam in gases and their ionization

    International Nuclear Information System (INIS)

    A relativistic high-intensity pulsed electron beam generated from a Febetron 706 was strongly self-focused in two pressure regions, i.e., below and above 5 Torr. The dependence of the electron energy spectrum on pressure and path length in He was at first studied by measuring depth-dose distributions in an aluminum-blue cellophane stack. Then, maximum doses of the depth-dose curves in the dosimeter placed on the beam axis at 10.4 cm from the cell window were measured as functions of pressure in He, Ne, Ar, Kr, Xe, H2, D2, N2, O2, N2O, CO2, SF6, CH4, C2H2, C2H4, C2H6, C3H8, CH3F, CHClF2, CCl2F2, He + X, Ar + X, and O2 + X (X: additive gas). The strong self-focusing at pressure lower than 5 Torr is attributed to space-charge neutralization by positive ions due to escaping of secondary electrons. Therefore, relative total ionization cross sections for beam electrons could be obtained in this region. When the spa ce-charge neutralization time becomes shorter than a rise time of the pulsed beam, secondary electrons are accelerated by a backward electric field E sub(z) induced by the pulsed beam so that the self-focusing declines abruptly due to electron avalanching. The beam is self-focused again gradually with further increasing pressure because of suppression of this avalanching. The avalanching was analyzed self-consistently for He, Ar, H2, N2, and CH4 by a computer simulation in the pressure region between 5 and 300 Torr. The present computational results indicate that the larger cose is given by the longer mean ionization time t sub(i) which depends on E sub(z)/p. The value of t sub(i) increases with increasing pressure in the pressure region of gradually-increasing self-focusing. (J.P.N.)

  5. Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    International Nuclear Information System (INIS)

    Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within ∼10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks

  6. Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams

    International Nuclear Information System (INIS)

    Nanopores fabricated in solid-state membranes have previously been used for the rapid electrical detection and characterization of single biopolymer molecules. Various methods for producing solid-state nanopores have been reported, but fabricating nanopores of desired sizes controllably is still challenging. Here we report a fabrication technique which uses a focused ion beam (FIB) system to engineer nanopores precisely. This technique provides visual feedback over the formation process. The present method can produce highly symmetrical nanopores with diameters smaller than ∼5 nm and can be used to create an array of multiple nanopores simultaneously. In addition, nanopores produced using the focused ion beam sculpting technique can be tailored down to less than 1 nm in diameter using high-energy electron radiation

  7. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    International Nuclear Information System (INIS)

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  8. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Khaykovich, B., E-mail: bkh@mit.ed [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Gubarev, M.V. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Bagdasarova, Y. [Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Ramsey, B.D. [Marshall Space Flight Center, NASA, VP62, Huntsville, AL 35812 (United States); Moncton, D.E. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, 138 Albany Street, Cambridge, MA 02139 (United States); Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-03-01

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  9. From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

    International Nuclear Information System (INIS)

    We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

  10. Hexapole State-Selection and Beam Focus of Linear Triatomic Molecules

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Chun; JIN Ming-Xing; DING Da-Jun

    2006-01-01

    @@ The state selection and beam focus of linear triatomic molecules (OCS, HCN, CICN, BrCN and ICN) with doubling states in a hexapole electric field have been numerically realized. The method is based on a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field. In linear molecules with doubling states, the second-order Stark effect can be neglected and the doubling states have the same value of J and M. The influences of the molecular properties, state energies, and the apparatus parameters such as molecular beam temperature and length of the hexapole, on the role of state selection and focus have been discussed. The method established here can be taken as a guide for hexapole experiment of orientation of polar molecules.

  11. Fermilab Main Ring low level RF system modifications for focus free transition beam tests

    International Nuclear Information System (INIS)

    A novel idea for crossing transition energy has been proposed for study in the Fermilab Main Ring accelerator. The idea has been named focus free transition crossing and involves reducing the RF focusing force nearly to zero when the beam energy is near the transition energy by adding a third harmonic to the RF accelerating voltage, and then adjusting the accelerating phase angle to 90 degrees. The modification of the accelerating voltage wave form shape and phase are accomplished by accurate program control of the amplitude and phase of the 53 Mhz RF cavities and a recently installed 159 Mhz cavity. The studies also require interrupting the normal LLRF system beam energy feedback loops in favor of a new energy control loop near the transition energy. This paper describes the functions of the LLRF system electronics recently installed to facilitate this control, and initial operational experience with the system

  12. Customized silicon cantilevers for Casimir force experiments using focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Garza, R; Chang, C-C; Mohideen, U [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Yan Dong, E-mail: umar.mohideen@ucr.ed [Center of NanoSciences and NanoEngineering, Bourns Hall 900 University Ave Riverside, CA 92521 (United States)

    2009-04-01

    Higher sensitivity cantilevers will lead to exploration of new phenomena in the Casimir effect. We have used focused ion beam milling to reduce the width of a commercial single crystal, rectangular-shaped silicon cantilevers with a massive Cr/Au-coated-hollow sphere attached at their free end. Theoretically these milled and modified cantilevers should have better Casimir force sensitivity than their non-milled counterparts. In this preliminary report however only 1 out of 4 modified cantilevers were found to have a higher force sensitivity. Future studies will be needed to determine the general applicability of focused ion beam milling for force sensitivity improvements in comparison to the complete nanofabrication of cantilevers.

  13. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  14. Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma

    Science.gov (United States)

    Singh, Arvinder; Gupta, Naveen

    2015-06-01

    A scheme for beat wave excitation of electron plasma wave (EPW) is proposed by relativistic cross-focusing of two coaxial Cosh-Gaussian (ChG) laser beams in an under dense plasma. The plasma wave is generated on account of beating of two coaxial laser beams of frequencies ω1 and ω2 . The mechanism for laser produced nonlinearity is assumed to be relativistic nonlinearity in electron mass. Following moment theory approach in Wentzel Kramers Brillouin (W.K.B) approximation, the coupled differential equations governing the evolution of spot size of laser beams with distance of propagation have been derived. The relativistic nonlinearity depends not only on the intensity of first laser beam but also on the intensity of second laser beam. Therefore, propagation dynamics of one laser beam affect that of second beam and hence cross-focusing of the two laser beams takes place. Due to non uniform intensity distribution of pump laser beams, the background electron concentration gets modified. The amplitude of EPW, which depends on the background electron concentration, thus gets nonlinearly coupled with the laser beams. The effects of relativistic electron mass nonlinearity and the cross-focusing of pump beams on excitation of EPW have been incorporated. Numerical simulations have been carried out to investigate the effect of laser as well as plasma parameters on cross-focusing of laser beams and further its effect on power of excited EPW.

  15. Planar S-F-S Josephson junctions made by focused ion beam etching

    International Nuclear Information System (INIS)

    Superconductor-ferromagnet-superconductor (S-F-S) Josephson junctions were fabricated by making a narrow cut through a S-F double layer using direct writing by focused ion beam (FIB). Due to a high resolution (spot size smaller than 10 nm) of FIB, junctions with a small separation between superconducting electrodes (cRn product ranging from 0.5 mV to ∼1 μV were fabricated

  16. Self-focusing and self-trapping of optical beams upon photopolymerization

    OpenAIRE

    Kewitsch, Anthony S.; Yariv, Amnon

    1996-01-01

    We demonstrate theoretically and experimentally that optical beams are self-focused and self-trapped upon initiating photopolymerization. This unique nonlinear optical phenomenon is dependent on the optical exposure and produces permanent index-of-refraction changes larger than 0.04. The resulting nonlinear wave equation is shown to be nonlocal in time and displays self-trapped solutions only for sufficiently low average optical intensities.

  17. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-07-30

    The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr3) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 μm3/pC for the MAPbBr3 perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr3 perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

  18. Focusing of a singular beam in the presence of spherical aberration and defocusing

    Science.gov (United States)

    Singh, Rakesh Kumar; Senthilkumaran, P.; Singh, Kehar

    2008-08-01

    Focusing of a singular beam by a lens in the presence of spherical aberration and defocusing is studied by using Fresnel-Kirchhoff diffraction integral for two different values of topological charge. Results of intensity distribution and encircled energy are plotted for defocused observation planes. Spherical aberration spreads the dark core and reduces the intensity at maxima. The results have been verified by the optical transfer function (OTF) approach.

  19. Intense beams from gases generated by a permanent magnet ECR ion source at PKU.

    Science.gov (United States)

    Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E

    2012-02-01

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam. PMID:22380337

  20. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    Energy Technology Data Exchange (ETDEWEB)

    Ren, H. T.; Chen, J. E. [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y. [SKLNPT, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  1. Analytical expansion of highly focused vector beams into vector spherical harmonics and its application to Mie scattering

    Science.gov (United States)

    Orlov, S.; Peschel, U.; Bauer, T.; Banzer, P.

    2012-06-01

    The analytical expansion of linearly, azimuthally, and radially polarized rigorous beam-type solutions of Maxwell's equations into vector spherical harmonics (VSHs) is presented. We report on the dominance of higher order multipoles in highly focused radially and azimuthally polarized beams compared to linearly polarized beams under similar conditions. Furthermore, we theoretically investigate a scenario in which highly focused azimuthally and radially polarized beams interact with a linear polarizer placed in the focal plane and expand the resulting fields into VSHs. The generalized Mie theory is used afterwards to investigate the scattering of the studied beams off a spherical gold nanoparticle.

  2. Investigation of wide-aperture plasmonic detectors by a tightly focused terahertz beam

    International Nuclear Information System (INIS)

    Terahertz response of wide-aperture plasmonic detectors is studied experimentally by using a focused terahertz radiation with frequencies 1.63, 1.89 and 2.55 THz. Two different types of plasmonic detector have been investigated: (i) field-effect transistor (FET) with a grating-gate of large (2×2 mm2) area and (ii) FET with a single gate and ohmic contacts forming a bow-tie antenna. By raster scanning the detector area by using a tightly focused terahertz beam, we studied the contribution of individual parts of the detector to the total detection response and we determined the effective area of the detector structures

  3. Simulation of Ultrasonic Beam Focusing on a Defect in Anisotropic, Inhomogeneous Media

    International Nuclear Information System (INIS)

    In ultrasonic testing of dissimilar metal welds, application of phased array technique in terms of incident beam focusing is not easy because of complicated material structures formed during the multi-pass welding process. Time reversal(TR) techniques can overcome some limitations of phased array since they are self-focusing that does not depend on the geometrical and physical properties of testing components. In this paper, we test the possibility of TR focusing on a defect within anisotropic, heterogeneous austenitic welds. A commercial simulation software is employed for TR focusing and imaging of a side-drilled hole. The performance of time reversed adaptive focal law is compared with those of calculated focal laws for both anisotropic and isotropic welds

  4. Tight focusing of a double-ring-shaped, azimuthally polarized beam through a dielectric interface.

    Science.gov (United States)

    Shu, Jianhua; Chen, Ziyang; Pu, Jixiong; Liu, Yongxin

    2014-06-01

    We investigate the tight focusing properties of a double-ring-shaped, azimuthally polarized vector beam (DRS-APVB) by use of vectorial Debye theory. It is shown that a dark channel with an ultralong depth of focus (~106λ) and subwavelength focal holes (~0.5λ) can be generated by focusing a DRS-APVB through a dielectric interface with an annular high-numerical aperture (NA) objective lens. The influence of the NA of the objective, the relative refractive indices of two dielectric media, and the probe depth of the system on the focusing properties of the dark channel has been studied in detail. Such a non-diffracting dark channel could find potential applications in atom optical experiments, such as with atomic lenses, atom traps, and atom switches. PMID:24977354

  5. Direct-writing lithography using laser diode beam focused with single elliptical microlens

    Science.gov (United States)

    Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun

    2015-10-01

    A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.

  6. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    International Nuclear Information System (INIS)

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations

  7. Liquid Gradient Refractive Index Microlens for Dynamically Adjusting the Beam Focusing

    Directory of Open Access Journals (Sweden)

    Zichun Le

    2015-12-01

    Full Text Available An in-plane liquid gradient index (L-GRIN microlens is designed for dynamically adjusting the beam focusing. The ethylene glycol solution (core liquid withde-ionized (DI water (cladding liquid is co-injected into the lens chamber to form a gradient refractive index profile. The influences of the diffusion coefficient, mass fraction of ethylene glycol and flow rate of liquids on the refractive index profile of L-GRIN microlens are analyzed, and the finite element method and ray tracing method are used to simulate the convection-diffusion process and beam focusing process, which is helpful for the prediction of focusing effects and manipulation of the device. It is found that not only the focal length but the focal spot of the output beam can be adjusted by the diffusion coefficient, mass fraction and flow rate of liquids. The focal length of the microlens varies from 942 to 11 μm when the mass fraction of the ethylene glycol solution varies from 0.05 to 0.4, and the focal length changes from 127.1 to 8 μm by varying the flow rate of the core liquid from 0.5 × 103 to 5 × 103 pL/s when there is no slip between the core and cladding inlet. The multiple adjustable microlens with a simple planar microfluidic structure can be used in integrated optics and lab-on-chip systems.

  8. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Science.gov (United States)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-01

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon "halo" deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  9. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  10. Optical Pattern Fabrication in Amorphous Silicon Carbide with High-Energy Focused Ion Beams

    International Nuclear Information System (INIS)

    Topographic and optical patterns have been fabricated in a-SiC films with a focused high-energy (1 MeV) H+ and He+ ion beam and examined with near-field techniques. The patterns have been characterized with atomic force microscopy and scanning near-field optical microscopy to reveal local topography and optical absorption changes as a result of the focused high-energy ion beam induced modification. Apart of a considerable thickness change (thinning tendency), which has been observed in the ion-irradiated areas, the near-field measurements confirm increases of optical absorption in these areas. Although the size of the fabricated optical patterns is in the micron-scale, the present development of the technique allows in principle writing optical patterns up to the nanoscale (several tens of nanometers). The observed values of the optical contrast modulation are sufficient to justify the efficiency of the method for optical data recording using high-energy focused ion beams. (author)

  11. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  12. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    International Nuclear Information System (INIS)

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation

  13. Construction of Superconducting Magnet System for the J-PARC Neutrino Beam Line

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, T.; Wanderer, P.; Sasaki, K.; Ajima, Y.; Araoka, O.; Fujii, Y.; Hastings, N.; Higashi, N.; Iida, M.; Ishii, T.; Kimura, N.; Kobayashi, T.; Makida, Y.; Nakadaira, T.; Ogitsu, T.; Ohhata, H.; Okamura, T.; Sakashita, K.; Sugawara, S.; Suzuki, S.; Tanaka, K.; Tomaru, T.; Terashima, A.; Yamamoto, A.; Ichikawa, A.; Kakuno, H.; Anerella, M.; Escallier, J.; Ganetis, G.; gupta, R.; Jain, A.; Muratore, J.; Parker, B.; Boussuge, T.; Charrier, J.-P.; Arakawa, M.; Ichihara, T.; Minato, T.; Okada, Y.; Itou, A.; Kumaki, T.; Nagami, M.; Takahashi, T.

    2009-10-18

    Following success of a prototype R&D, construction of a superconducting magnet system for J-PARC neutrino beam line has been carried out since 2005. A new conceptual beam line with the superconducting combined function magnets demonstrated the successful beam transport to the neutrino production target.

  14. Fabrication of high sensitivity 3D nanoSQUIDs based on a focused ion beam sculpting technique

    Science.gov (United States)

    De Leo, Natascia; Fretto, Matteo; Lacquaniti, Vincenzo; Granata, Carmine; Vettoliere, Antonio

    2016-09-01

    In this paper a nanofabrication process, based on a focused ion beam (FIB) nanosculpting technique, for high sensitivity three-dimensional nanoscale superconducting quantum interference devices (nanoSQUIDs) is reported. The crucial steps of the fabrication process are described, as are some peculiar features of the superconductor–normal metal–insulator–superconductor (SNIS) Josephson junctions, which may useful for applications in cryocooler systems. This fabrication procedure is employed to fabricate sandwich nanojunctions and high sensitivity nanoSQUIDs. Specifically, the superconductive nanosensors have a rectangular loop of 1 × 0.2–0.4 μm2 interrupted by two square Nb/Al–AlO x /Nb SNIS Josephson junctions with side lengths of 0.3 μm. The characterization of a typical nanoSQUID has been carried out and a spectral density of magnetic flux noise as low as 0.8 μΦ0 Hz–1/2 has been measured.

  15. An improved beam waist formula for ultrashort, tightly-focused linearly, radially, and azimuthally polarized laser pulses in free space

    OpenAIRE

    Wong, Liang Jie; Kaertner, Franz; Johnson, Steven G.

    2013-01-01

    We derive an asymptotically accurate formula for the beam waist of ultrashort, tightly focused fundamental linearly polarized, radially polarized, and azimuthally polarized modes in free space. We compute the exact beam waist via numerical cubature to ascertain the accuracy with which our formula approximates the exact beam waist over a broad range of parameters of practical interest. Based on this, we describe a method of choosing parameters in the model given the beam waist and pulse durati...

  16. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecturea

    OpenAIRE

    Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-01-01

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chambe...

  17. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  18. Integration of RFQ beam coolers and solenoidal magnetic fields

    Science.gov (United States)

    Cavenago, M.; Romé, M.; Maggiore, M.; Porcellato, A. M.; Maero, G.; Chiurlotto, F.; Comunian, M.; Galatà, A.; Cavaliere, F.

    2016-02-01

    Electromagnetic traps are a flexible and powerful method of controlling particle beams, possibly of exotic nuclei, with cooling (of energy spread and transverse oscillations) provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). A RFQC prototype can be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component Bz up to 0.2 T, where z is the solenoid axis. Confinement in the transverse plane is provided both by Bz and the rf voltage Vrf (up to 1 kV at few MHz). Transport is provided by a static electric field Ez (order of 100 V/m), while gas collisions (say He at 1 Pa, to be maintained by differential pumping) provide cooling or heating depending on Vrf. The beamline design and the major parameters Vrf, Bz (which affect the beam transmission optimization) are here reported, with a brief description of the experimental setup.

  19. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.

  20. Magnetic Resonance-Guided High-Intensity Focused Ultrasound (MR-HIFU) in Treatment of Symptomatic Uterine Myomas

    International Nuclear Information System (INIS)

    Magnetic Resonance-guided High-Intensity Focused Ultrasound (MR-HIFU) is a noninvasive technique for ablation therapy for uterine myomas, where focused ultrasound energy beam generates localized high temperature in the selected area and coagulates chosen tissue, leaving the skin and tissues in between unharmed. Magnetic resonance imaging enables accurate targeting for HIFU as well as temperature monitoring during treatment. MR guidance with 3D anatomical imaging provides reference data for treatment planning, while real-time temperature monitoring aids in controlling ablation process. This review provides basic information regarding methodology, clinical indications for this kind of treatment, expected outcome and patient management during MR-HIFU procedure. The aim of this work is to introduce a new, noninvasive treatment method for uterine leiomyomas and to present a comparison with other currently used methods

  1. Pediatric Magnetic Resonance Enterography: Focused on Crohn's Disease

    OpenAIRE

    Lee, So Mi; Kim, Woo Sun; Choi, Young Hun

    2015-01-01

    Crohn's disease is a chronic idiopathic inflammatory disease of the intestines characterized by frequent relapse and remission. It often develops in children and adolescents, who are vulnerable to repeated exposure to ionizing radiations. Magnetic resonance enterography (MRE) is an increasingly important radiation-free imaging modality that is used to evaluate pediatric patients with Crohn's disease. MRE can evaluate extraluminal and extraintestinal abnormalities as well as the status of the ...

  2. Beam heating studies on an early model is a superconducting cosine theta magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G; Bunce, G; Danby, G; Foelsche, H; Jackson, J; Prodell, A; Soukas, A; Stevens, A; Stoehr, R; Weisenbloom, J

    1980-01-01

    Superconducting magnets for accelerators can be accidentally quenched by heat resulting from beam losses in the magnet. The threshold for such quenches is determined by the time structure of the beam loss and by details of the magnet application, construction and cooling. A 4.25 m long superconducting cosine theta dipole magnet, MARK VI, constructed during the research and development phase of the ISABELLE Project at BNL was installed in the 28.5 GeV/c primary proton beam line from the AGS. By energizing the magnet, the proton beam could be deflected into the magnet. The beam intensity required to quench the magnet was observed for different beam sizes and at several values of magnet current up to 2400 A or approximately 70% of the highest magnet operating current. The maximum current was limited by the gas-cooled power lead flow available using pool-boiling helium rather than single phase forced-flow helium at 5 atm for which the magnet system was designed. Details of the experimental setup including the magnet and cryogenic system, the beam-monitoring equipment and instrumentation are described. The measurements are discussed and compared with beam heating measurements made on another superconducting magnet and interpreted using the Cascade Simulation Program, CASIM.

  3. Intense ion beam applications to magnetic confinement fusion

    International Nuclear Information System (INIS)

    The ion ring project objective is to trap a ring of high energy, axis-encircling ions in a magnetic mirror. The number of ring ions should be such as to produce deltaB/B on the ring axis of order 10%. The second experiment, LONGSHOT, is directed to producing a long pulse ion beam source so that the total number of protons required for an ion ring can be provided a lower diode power and, hence, at much less cost than that of 100 nsec pulsed power generators like the NRL GAMBLE II. A detailed report of the progress on IREX and LONGSHOT is given

  4. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    International Nuclear Information System (INIS)

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences

  5. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhao-Xiang; Gong, Lei [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031 (China); Vaveliuk, Pablo [Centro de Investigaciones Opticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, La Plata, Pcia. de Buenos Aires (Argentina); Chen, Yue; Lu, Rong-De, E-mail: lrd@ustc.edu.cn [Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  6. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  7. The positive charging effect of dielectric films irradiated by a focused electron beam

    International Nuclear Information System (INIS)

    Space charge and surface potential profiles are investigated with numerical simulation for dielectric films of SiO2 positively charged by a focused electron beam. By combining the Monte Carlo method and the finite difference method, the simulation is preformed with a newly developed comprehensive two-dimensional model including electron scattering, charge transport and trapping. Results show that the space charge is distributed positively, like a semi-ellipsoid, within a high-density region of electrons and holes, but negatively outside the region due to electron diffusion along the radial and beam incident directions. Simultaneously, peak positions of the positive and negative space charge densities shift outwards or downwards with electron beam irradiation. The surface potential, along the radial direction, has a nearly flat-top around the center, abruptly decreases to negative values outside the high-density region and finally increases to zero gradually. Influences of electron beam and film parameters on the surface potential profile in the equilibrium state are also shown and analyzed. Furthermore, the variation of secondary electron signal of a large-scale integration sample positively charged in scanning electron microscopic observation is simulated and validated by experiment.

  8. Breakdown simulations in a focused microwave beam within the simplified model

    Science.gov (United States)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-07-01

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime of subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.

  9. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    Science.gov (United States)

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga+ liquid ion sources towards higher resolution gas field ion sources (He+ and Ne+). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne+ beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  10. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    International Nuclear Information System (INIS)

    During the last decade, focused ion beam processing has been developed from traditionally used Ga+ liquid ion sources towards higher resolution gas field ion sources (He+ and Ne+). Process simulations not only improve the fundamental understanding of the relevant ion–matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion–solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818–23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne+ beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications. (viewpoint)

  11. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  12. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-03-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  13. Focused ion beam micromachining of Ti Ni film on Si(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Xie, D.Z. E-mail: mdzxie@ntu.edu.sg; Ngoi, B.K.A.; Ong, A.S.; Fu, Y.Q.; Lim, B.H

    2003-11-01

    Having an excellent shape memory effect, titanium-nickel (Ti Ni) thin films are often used for fabrication of microactuators in microelectromechanical systems. In this work, the Ga{sup +} focused ion beam (FIB) etching characteristics of TiNi thin films has been investigated. The thin films were deposited on Si(1 1 1) wafers by co-sputtering NiTi and Ti targets using a magnetron-sputtering system. Some patterns have been etched on the surface of the films by FIB. Atomic force microscopy has been used to analyze the surface morphology of the etched areas. It is found that the etched depth depends linearly on the ion dose per area with a slope of 0.259 {mu}m/(nC/{mu}m{sup 2}). However, the etching depth decreases with increasing the ion beam current. The root-mean-square (RMS) surface roughness changes nonlinearly with ion dose and reaches a minimum of about 5.00 nm at a dose of about 0.45 nC/{mu}m{sup 2}. The RMS decreases with increasing ion beam current and reaches about 4.00 nm as the ion beam current is increased to 2 nA.

  14. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  15. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    Energy Technology Data Exchange (ETDEWEB)

    Offermann, Dustin T [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Gaillard, Sandrine A [Los Alamos National Laboratory

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  16. Lateral damage in graphene carved by high energy focused gallium ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhongquan, E-mail: zhongquan.liao@ikts-md.fraunhofer.de [Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Straße 2, 01109 Dresden (Germany); Dresden Center for Nanoanalysis (DCN), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden (Germany); Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden (Germany); Zhang, Tao; Jordan, Rainer [Professur für Makromolekulare Chemie, Department Chemie, Technische Universität Dresden, Mommsenstraße 4, 01069 Dresden (Germany); Gall, Martin; Rosenkranz, Rüdiger [Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Straße 2, 01109 Dresden (Germany); Dianat, Arezoo [Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden (Germany); Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Würzburger Straße 46, 01187 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), Technische Universität Dresden, Hallwachsstraße 3, 01069 Dresden (Germany); and others

    2015-07-06

    Raman mapping is performed to study the lateral damage in supported monolayer graphene carved by 30 keV focused Ga{sup +} beams. The evolution of the lateral damage is tracked based on the profiles of the intensity ratio between the D (1341 cm{sup −1}) and G (1582 cm{sup −1}) peaks (I{sub D}/I{sub G}) of the Raman spectra. The I{sub D}/I{sub G} profile clearly reveals the transition from stage 2 disorder into stage 1 disorder in graphene along the direction away from the carved area. The critical lateral damage distance spans from <1 μm up to more than 30 μm in the experiment, depending on the parameters used for carving the graphene. The wide damage in the lateral direction is attributed to the deleterious tail of unfocused ions in the ion beam probe. The study raises the attention on potential sample damage during direct patterning of graphene nanostructures using the focused ion beam technique. Minimizing the total carving time is recommended to mitigate the lateral damage.

  17. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    International Nuclear Information System (INIS)

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (1017-1019 ions/cm2) and incidence angles (Θ = 0-80o). Carbon bombarded by 20 keV Ga+ either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large Θ, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at Θ = 75o. Similar trends of decreasing yield are found for H2O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  18. Focusing a laser beam by means of an off-centre parabolic mirror

    International Nuclear Information System (INIS)

    In this study particular attention was paid to defining and optimizing a focusing system for concentrating a CO2 laser beam (wave length lambda = 10.6 μm) on to a target containing a deuterium and tritium mixture. A digital study of the focusing of a spherical wave, in conjunction with the examination of the properties of reflecting surfaces led to the development of a focusing device using an off-centre parabolic mirror. Despite an aberration of 6 μm in the mirror, the lighting achieved experimentally in the plane of the circle of least scattering is 1.6 times greater than that achieved during the use of an NaCl spherical plane lense

  19. Focus modulation of cylindrical vector beams through negative-index grating lenses

    Science.gov (United States)

    Wang, Shengming; Xu, Ji; Zhong, Yi; Ren, Rong; Lu, Yunqing; Wan, Hongdan; Wang, Jin; Ding, Jianping

    2016-08-01

    A cylindrically symmetric negative-index grating lens composed of unitary material is proposed as an effective method to modulate the focusing of cylindrical vector beams (CVBs). The grating parameters are designed to obtain an appropriate negative index, and the lens profile is tailored to realize the constructive interference. The plano-concave lens is parameterized to achieve desired focal length and the plano-cone lens is proposed to obtain large depth of focus. An optical needle is generated with radially polarized incidence, and an optical tube is achieved with incidence of azimuthal polarization. Moreover, the presented modulation methods can be applied for any arbitrary polarized CVBs. This work offers a more flexible and effective approach to design negative-index lenses for subwavelength focusing of CVBs, which has potential application value in related areas, such as optical trapping, and other nano-optics fields.

  20. Magnetic field measurements of superconducting magnets for the colliding beam accelerator

    International Nuclear Information System (INIS)

    An important aspect of the development and production of superconducting magnets for the Colliding Beam Accelerator is the measurement of the magnetic field in the aperture of these magnets. The measurements have the three-fold purpose of determining the field quality as compared to the lattice requirements of the CBA, of obtaining the survey data necessary to position the magnets in the CBA tunnel, and lastly, of characterizing the magnetic fields for use in initial and future orbit studies of the CBA proton beams. Since for a superconducting storage accelerator it is necessary to carry out these detailed measurements on many (approx. 1000) magnets and at many current values (approx. 1000), we have chosen, in agreement with previous experience, to develop a system which Fourier analyses the voltages induced in a number of rotating windings and thereby obtains the multipole field components. The important point is that such a measuring system can be fast and precise. It has been used for horizontal measurements of the CBA ring dipoles