WorldWideScience

Sample records for beam focused laser-induced

  1. Laser-Induced Forward Transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs.

    Science.gov (United States)

    Sones, C L; Feinaeugle, M; Sposito, A; Gholipour, B; Eason, R W

    2012-07-02

    We present femtosecond laser-induced forward transfer of focused ion beam pre-machined discs of crystalline magneto-optic yttrium iron garnet (YIG) films. Debris-free circular micro-discs with smooth edges and surface uniformity have been successfully printed. The crystalline nature of the printed micro-discs has not been altered by the LIFT printing process, as was confirmed via micro-Raman measurements.

  2. Validation of the Aerosol Beam-Focused Laser-Induced Plasma Spectrometer (ABF-LIPS) for Metal Emission Characterization

    Science.gov (United States)

    2010-03-01

    Figure 2-3 Focusing Simulation by Computational Fluid Dynamic ( CFD ) Modeling ... 6 Figure 2-4 ABF-LIPS prototype...32 Figure 5-8 Sampling location for ABF-LIPS and reference method during September 2005 test on platform prior to baghouse ...CAAA Clean Air Act Amendments CCD Charge Coupled Device CEMS Continuous Emission Monitoring System CFD Computational Fluid Dynamic CFR Code of

  3. Aerosol Beam Focused-Laser Induced Plasma Spectrometer (ABF-LIPS) Continuous Emissions Multi-Metals Analyzer. Cost and Performance Report: WP-0213

    Science.gov (United States)

    2010-02-01

    Process. ..................................................................... 5 Figure 1-3. Focusing Simulation by Computational Fluid Dynamic ( CFD ...21 Figure 2-8. Sampling location for ABF-LIPS and reference method during September 2005 test on platform prior to baghouse ...Unit CAA Clean Air Act CAAA Clean Air Act Amendments CCD Charge Coupled Device CEMS Continuous Emission Monitoring System CFD Computational Fluid

  4. Theoretical modeling on the laser induced effect of liquid crystal optical phased beam steering

    Science.gov (United States)

    He, Xiaoxian; Wang, Xiangru; Wu, Liang; Tan, Qinggui; Li, Man; Shang, Jiyang; Wu, Shuanghong; Huang, Ziqiang

    2017-01-01

    Non-mechanical laser beam steering has been reported previously in liquid crystal array devices. To be one of the most promising candidates to be practical non-mechanical laser deflector, its laser induced effect still has few theoretical model. In this paper, we propose a theoretical model to analyze this laser induced effect of LC-OPA to evaluate the deterioration on phased beam steering. The model has three parts: laser induced thermal distribution; temperature dependence of material parameters and beam steering deterioration. After these three steps, the far field of laser beam is obtained to demonstrate the steering performance with the respect to the incident laser beam power and beam waist.

  5. Repeatability improvement of laser-induced breakdown spectroscopy using an auto-focus system

    Science.gov (United States)

    Ashrafkhani, Behnam; Bahreini, Maryam; Tavassoli, Seyed Hassan

    2015-05-01

    Laser-induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis of materials. The repeatability of LIBS results is an important issue in many applications. Many factors influence the repeatability of LIBS results. The aim of this study is to examine the effect of laser beam focusing position or lens to sample distance (LTSD) as one of the most important factors influencing LIBS spectra. A point auto-focus system is designed and applied to provide the same lens to sample distance in every LIBS experiment. This system is employed and the result is compared to that of non-auto-focus technique on samples with different degrees of evenness such as aluminum, paper, tape and human fingernail. The standard deviation of this experiment is measured in the range of 4 to 26 μm. Then, spectrum's repeatability is examined with two samples of aluminum and human fingernail. The standard deviation of spectra is considerably reduced. In conclusion, repeatability of LIBS results could be optimized by using the auto-focus system.

  6. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  7. Final focus test beam

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  8. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing

    Science.gov (United States)

    Delrot, Paul; Modestino, Miguel A.; Gallaire, François; Psaltis, Demetri; Moser, Christophe

    2016-08-01

    The on-demand generation of viscous microdroplets to print functional or biological materials remains challenging using conventional inkjet-printing methods, mainly due to aggregation and clogging issues. In an effort to overcome these limitations, we implement a jetting method to print viscous microdroplets by laser-induced shockwaves. We experimentally investigate the dependence of the jetting regimes and the droplet size on the laser-pulse energy and on the inks' physical properties. The range of printable liquids with our device is significantly extended compared to conventional inkjet printers's performances. In addition, the laser-induced flow-focusing phenomenon allows us to controllably generate viscous microdroplets up to 210 mPa s with a diameter smaller than the nozzle from which they originated (200 μ m ). Inks containing proteins are printed without altering their functional properties, thus demonstrating that this jetting technique is potentially suitable for bioprinting.

  9. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; BIAN Bao-Min; LI Zhen-Hua

    2005-01-01

    @@ A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors,a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.

  10. Polarization-dependent single-beam laser-induced grating-like effects on titanium films

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, Santiago [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico)], E-mail: camachol@cicese.mx; Evans, Rodger [Departamento de Optica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Km 107 Carretera Tijuana-Ensenada, Ensenada, Baja California 22860 (Mexico); Escobar-Alarcon, Luis [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico DF 11801 (Mexico); Camacho-Lopez, Miguel A. [Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n, esq. Jesus Carranza, Toluca, Estado de Mexico 50120 (Mexico); Camacho-Lopez, Marco A. [Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Tollocan s/n, esq. Paseo Colon, Toluca, Estado de Mexico, 50110 (Mexico)

    2008-12-30

    In this paper we present results on polarization-dependent laser-induced effects on titanium (Ti) thin films. We irradiated the titanium films, in ambient air, using a nanosecond Nd:YAG laser (532 nm, 9 ns pulse duration, 10 Hz). Using a series of pulses of fluence well below the ablation threshold, it was possible to form grating-like structures, whose grooves run parallel to the linear polarization of the incident beam. No grating-like structures were obtained when circularly polarized light was used. Our results revealed the remarkable formation of tiny (100 nm and even smaller diameter) craters, which self-arrange quasi-periodically along the ridges (never on the valleys) of the grating-like structure. Optical and scanning electron microscopy were used to study the laser-induced changes on the surface of the titanium films. Micro-Raman spectroscopy was used to analyze the irradiated areas on the titanium films. The Raman analysis demonstrated that the grooves in the grating-like structure, build up from the laser-induced oxidation of titanium. This is the first time, to the best of our knowledge, that periodic surface structures are reported to be induced below the ablation threshold regime, with the grooves made of crystalline metal oxide, in this case TiO{sub 2} in the well-known Rutile phase. The laser irradiated areas on the film acquired selective (upon recording polarization) holographic reflectance.

  11. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics.

    Science.gov (United States)

    Zheng, Yi; Ma, Ping; Li, Haibo; Liu, Zhichao; Chen, Songlin

    2013-07-15

    UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.

  12. Focusing Electron Beams at SLAC.

    Science.gov (United States)

    Taylor, Richard L.

    1993-01-01

    Describes the development of a set of magnets that focus high-energy electron and positron beams causing them to collide, annihilate each other, and generate new particles. Explains how dipoles bend the beam, how quadrupoles focus the beam, how the focal length is calculated, and the superconducting final focus. (MDH)

  13. Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement.

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-05

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS.

  14. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  15. Study of laser-induced plasma shock waves by the probe beam deflection technique

    Institute of Scientific and Technical Information of China (English)

    Yan Qian; Jian Lu; Xiaowu Ni

    2009-01-01

    Laser probe beam deflection technique is used for the analysis of laser-induced plasma shock waves in air and distilled water.The temporal and spatial variations of the parameters on shock fronts are studied as funotions of focal lens position and laser energy.The influences of the characteristics of media are investigated on the well-designed experimental setup.It is found that the shock wave in distilled water attenuates to an acoustic wave faster than in air under the same laser energy.Good agreement is obtained between our experimental results and those attained with other techniques.This technique is versatile,economic,and simple to implement,being a pronmising diagnostic tool for pulsed laser processing.

  16. [The auto-focusing remote laser-induced breakdown spectroscopy system].

    Science.gov (United States)

    Han, Zhen-yu; Pan, Cong-yuan; An, Ning; Du, Xue-wei; Yu, Yun-si; Du, Liang-liang; Wang, Sheng-bo; Wang, Qiu-ping

    2015-02-01

    The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS) remote measuring system. This system contains a Schwarzschild telescope, which consists of a convex mirror and a concave mirror. The two spherical mirrors are coaxially placed. The convex mirror is mounted on a motorized linear translation stage. With this motorized linear translation stage, the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror. Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spectra. The advantages of the telescope system include, firstly, the light path of laser focusing and spectra signal collection is the same, which make it easier for mounting and collimation; secondly, the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region; finally, the telescope consists of only two spherical mirrors which are relatively easier to manufacture. Within the translation range of the motorized linear translation stage, the focal length of the telescope in this paper can be adjusted from 1.5 to 3.6 m. The diameter of the focusing spot varies from 0.5 to 1.0 mm. Utilizing this telescope system, LIBS experiments were conducted using copper sample. And the characteristic lines of Cu element (Cu I 223.01 nm, Cu I 224.43 nm) obtained are used for the auto focusing. By investigating the relation of the area of spectral lines covered and the spacing between the mirrors, the optimal laser focusing location was obtained. The LIBS experiment results show that the system functions well, fulfilling the demand of remote ablation of sample and LIBS spectral measuring, and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.

  17. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  18. Full matrix capture and the total focusing imaging algorithm using laser induced ultrasonic phased arrays

    Science.gov (United States)

    Stratoudaki, Theodosia; Clark, Matt; Wilcox, Paul D.

    2017-02-01

    Laser ultrasonics is a technique where lasers are used for the generation and detection of ultrasound instead of conventional piezoelectric transducers. The technique is broadband, non-contact, and couplant free, suitable for large stand-off distances, inspection of components of complex geometries and hazardous environments. In this paper, array imaging is presented by obtaining the full matrix of all possible laser generation, laser detection combinations in the array (Full Matrix Capture), at the nondestructive, thermoelastic regime. An advanced imaging technique developed for conventional ultrasonic transducers, the Total Focusing Method (TFM), is adapted for laser ultrasonics and then applied to the captured data, focusing at each point of the reconstruction area. In this way, the beamforming and steering of the ultrasound is done during the post processing. A 1-D laser induced ultrasonic phased array is synthesized with significantly improved spatial resolution and defect detectability. In this study, shear waves are used for the imaging, since they are more efficiently produced than longitudinal waves in the nondestructive, thermoelastic regime. Experimental results are presented from nondestructive, laser ultrasonic inspection of aluminum samples with side drilled holes and slots at depths varying between 5 and 20mm from the surface.

  19. Compact electron beam focusing column

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  20. Parameters Optimization of Laser-Induced Breakdown Spectroscopy Experimental Setup for the Case with Beam Expander

    Science.gov (United States)

    Wang, Xin; Zhang, Lei; Fan, Juanjuan; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Jia, Suotang

    2015-11-01

    Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%. supported by the 973 Program of China (No. 2012CB921603), National Natural Science Foundation of China (Nos. 61475093, 61127017, 61178009, 61108030, 61378047, 61275213, 61475093, and 61205216), the National Key Technology R&D Program of China (No. 2013BAC14B01), the Shanxi Natural Science Foundation (Nos. 2013021004-1 and 2012021022-1), the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01), and the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China

  1. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    Science.gov (United States)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  2. Refractive beam shapers for focused laser beams

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2016-09-01

    Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.

  3. Focused ion beams in biology.

    Science.gov (United States)

    Narayan, Kedar; Subramaniam, Sriram

    2015-11-01

    A quiet revolution is under way in technologies used for nanoscale cellular imaging. Focused ion beams, previously restricted to the materials sciences and semiconductor fields, are rapidly becoming powerful tools for ultrastructural imaging of biological samples. Cell and tissue architecture, as preserved in plastic-embedded resin or in plunge-frozen form, can be investigated in three dimensions by scanning electron microscopy imaging of freshly created surfaces that result from the progressive removal of material using a focused ion beam. The focused ion beam can also be used as a sculpting tool to create specific specimen shapes such as lamellae or needles that can be analyzed further by transmission electron microscopy or by methods that probe chemical composition. Here we provide an in-depth primer to the application of focused ion beams in biology, including a guide to the practical aspects of using the technology, as well as selected examples of its contribution to the generation of new insights into subcellular architecture and mechanisms underlying host-pathogen interactions.

  4. Potential For Laser-Induced Microbunching Studies with the 3-MHZ-Rate Electron Beams at ASTA

    CERN Document Server

    Lumpkin, A H; Byrd, J M; Wilcox, R B

    2014-01-01

    Investigations of the laser-induced microbunching as it is related to time-sliced electron-beam diagnostics and high-gain-harmonic generation (HGHG) free-electron lasers using bright electron beams are proposed for the ASTA facility. Initial tests at 40-50 MeV with an amplified 800-nm seed laser beam co-propagating with the electron beam through a short undulator (or modulator) tuned for the resonance condition followed by transport through a subsequent chicane will result in energy modulation and z-density modulation (microbunching), respectively. The latter microbunching will result in generation of coherent optical or UV transition radiation (COTR, CUVTR) at a metal converter screen which can reveal slice beam size, centroid, and energy spread. Additionally, direct assessment of the microbunching factors related to HGHG by measurement of the COTR intensity and harmonic content after the chicane as a function of seed laser power and beam parameters will be done. These experiments will be performed using the...

  5. Effect of Power Losses on Self-Focusing of High Intensity Laser Beam in Gases

    CERN Document Server

    Semak, V V

    2013-01-01

    A theoretical study of power loss from periphery of an ultrashort pulse laser beam and temporally resolved defocussing produced by laser induced plasma are performed using paraxial approximation. Our analysis incorporate consideration of spatial distribution of the laser beam irradiance and the results show that substantial power losses (10%-80%) occur from the beam periphery limiting length of a filament. It was also shown that generally accepted concept of self-focusing critical power is inconsistent with consideration of self-induced refraction of spatially distributed laser beam. A new criterion for self-focusing and hypothesis for multiple filamentation are proposed.

  6. Focused laser lithographic system with sub-wavelength resolution based on vortex laser induced opacity of photochromic material.

    Science.gov (United States)

    Wei, Zhen; Bai, Jian; Xu, Jianfeng; Wang, Chen; Yao, Yuan; Hu, Neibin; Liang, Yiyong; Wang, Kaiwei; Yang, Guoguang

    2014-12-01

    A focused laser lithographic system combines with vortex laser induced opacity of photochromic layer to write patterns with linewidth below wavelength. A photochromic layer is formed by coating the mixture of metanil yellow and aqueous PVA solution on the photoresist layer. In our system, the center of a lithographic laser with a 405 nm wavelength coincides with the center of vortex laser with a 532 nm wavelength. When a photochromic layer is illuminated by both lasers simultaneously, the absorbance for the lithographic laser decreases at the hollow region of the vortex laser but increases at its annular region, so that a transparent aperture for the lithographic laser is created and its size could be tuned by changing the power of vortex laser; therefore, the linewidth of written patterns is variable. Experimentally, using a 20× lens (NA = 0.4), this system condenses the linewidth of written patterns from 6614 to 350 nm.

  7. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  8. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  9. Optimal beam focusing through turbulence.

    Science.gov (United States)

    Charnotskii, Mikhail

    2015-11-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called long-term (LT) statistic allows for a relatively simple theoretical description. However, the LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The short-term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thoroughly as the LT spread. We present a theoretical model for the ST beam irradiance that is based on the parabolic equation for the beam wave propagation in random media, and the Markov approximation for calculation of the statistics of the optical field, and discuss an approximation that allows introduction of the isoplanatic ST point spread function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. This allows optimization of the initial beam field in terms of minimizing the ST beam size at the observation plane. Calculations supporting this conjecture are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence.

  10. Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles.

    Science.gov (United States)

    Zhang, Jie; Jin, Chao; He, Zhi-Zhu; Liu, Jing

    2014-07-01

    Clinically, precisely heating and thus completely ablating diseased tumor tissue through laser beam is still facing many technical challenges. In this study, numerical simulation of a conformal heating modality based on multi-beam laser along with biodegradable magnesium nanoparticles (Mg-NPs) was put forward to treat liver tumor with large size or irregular shape. Further, a Gaussian-like distribution was proposed to investigate the influence of Mg-NP deposition on the nanoenhanced laser-induced interstitial thermotherapy (LITT). A temperature feedback system was adopted to control the temperature range to avoid overheating. To preliminarily validate the heating enhancement induced by the applied multi-beam laser and Mg-NPs, a conceptual experiment was performed. Both theoretical simulation and experimental measurements demonstrated that multi-beam laser with Mg-NPs could improve efficiency in the conformal heating of tumors with irregular shape or large size. In addition, the distribution and content of Mg-NPs produced significant impact on thermotherapy: (1) The adjustable parameter σ in the Gaussian-like distribution could reflect various practical situations and diffusivities of Mg-NPs; (2) under the premise of the same concentration of Mg-NPs and short time to heat a small-sized target, the whole liver tumor containing Mg-NPs could not improve the efficiency as the nanoparticles limited the photons to be absorbed only around the fibers, while liver tumor partially containing Mg-NPs could improve the thermotherapy efficiency up to 20 %; and (3) the addition of Mg-NPs was rather beneficial for realizing a conformal heating as the residual thermal energy was much less than that without Mg-NPs. This study suggests a feasible and promising modality for planning a high-performance LITT in future clinics.

  11. Velocity distribution measurements in atomic beams generated using laser induced back-ablation

    CERN Document Server

    Denning, A; Lee, S; Ammonson, M; Bergeson, S D

    2008-01-01

    We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a sub-thermal atomic beam.

  12. Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance.

    Science.gov (United States)

    Sun, Yuxiang; Zhong, Shilei; Shan, Fukai; Lu, Yuan; Sun, Xin; Liu, Zhe; Sheng, Pengpeng

    2015-05-20

    In order to develop a method to analyze metal elements in thin-film samples rapidly, directly and without sample preparation, and to understand the mechanism of laser-film interaction and plasma formation and evolution, a laboratory laser-induced breakdown spectroscopy system was established recently for nanometer-film analysis. ZrO(2) films prepared on silicon chips by a sol-gel process were employed in the following experiment and their thickness was about 40 nm. By the initial investigation that we carried out, the stability of this system was verified and the relative standard deviation of the target peak was found to be lower than 1.6% with the help of a position system. The influences of different experimental parameters, such as laser energy, laser focus to sample distance (LFTSD) settings, and gate delay, were studied under conditions of room temperature and atmospheric pressure. The experimental results show that the LFTSD was one of the most important parameters for plasma formation and spectral collection in comparison with other parameters by means of plasma spectra and images. So the effects of the LFTSD on the spectra, plasma evolution, and craters are specially discussed in this paper. At last, we calculated the plasma temperature and electron density under optimal parameters for quantitative analysis. The result shows that the established system is available for qualitative and quantitative analysis of films under conditions of single pulse and low ablation energy.

  13. Tight Focusing of Partially Coherent Vortex Beams

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Singh

    2012-01-01

    Full Text Available Tight focusing of partially polarized vortex beams has been studied. Compact form of the coherence matrix has been derived for polarized vortex beams. Effects of topological charge and polarization distribution of the incident beam on intensity distribution, degree of polarization, and coherence have been investigated.

  14. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  15. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Science.gov (United States)

    Huynh, T. T. D.; Vayer, M.; Sauldubois, A.; Petit, A.; Semmar, N.

    2015-11-01

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm2). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  16. Generation of intense attosecond x-ray pulses using ultraviolet laser induced microbunching in electron beams

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2009-06-01

    Full Text Available We propose a scheme that combines the echo-enabled harmonic generation technique with the bunch compression and allows one to generate harmonic numbers of a few hundred in a microbunched beam through up-conversion of the frequency of an ultraviolet seed laser. A few-cycle intense laser is used to generate the required energy chirp in the beam for bunch compression and for selection of an attosecond x-ray pulse. Sending this beam through a short undulator results in an intense isolated attosecond x-ray pulse. Using a representative realistic set of parameters, we show that 1 nm x-ray pulse with peak power of a few hundred MW and duration as short as 20 attoseconds (FWHM can be generated from a 200 nm ultraviolet seed laser. The proposed scheme may enable the study of electronic dynamics with a resolution beyond the atomic unit of time (∼24 attoseconds and may open a new regime of ultrafast sciences.

  17. Results of Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Dieter R

    2003-06-13

    The beam experiments of Final Focus Test Beam (FFTB) started in September 1993 at SLAC, and have produced a 1.7 {micro}m x 75 nm spot of 46 GeV electron beam. A number of new techniques involving two nanometer spot-size monitors have been developed. Several beam diagnostic/tuning schemes are applied to achieve and maintain the small spot. This experiment opens the way toward the nanometer world for future linear colliders.

  18. Nanofabrication by Focused Ion Beam

    Science.gov (United States)

    1993-09-28

    MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES AD-A271 290 )N PAGE orhan Sand .01fMI.,r re ~’.nq tn., Oiurda N0o.me 0& Of .018l 04v~~t P - .L...Institute of Technology Cambridge, MA 02139 APPROVED FOR PUBLIC RELEASE; N, S c; . DISTRIBUTION UNLIMITED u..d.. `. B y .. . . . . . .. Dist A-jr I...defined sidewalls indicate that much finer lithography would be possible with a1 more optimum beam. b ) Preferential Oxide growth after ion exposure. (In

  19. Laser induced white lighting of graphene foam

    Science.gov (United States)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources.

  20. Laser induced white lighting of graphene foam

    Science.gov (United States)

    Strek, Wieslaw; Tomala, Robert; Lukaszewicz, Mikolaj; Cichy, Bartlomiej; Gerasymchuk, Yuriy; Gluchowski, Pawel; Marciniak, Lukasz; Bednarkiewicz, Artur; Hreniak, Dariusz

    2017-01-01

    Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/μm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources. PMID:28112254

  1. Focused Ion Beam Technology for Optoelectronic Devices

    Science.gov (United States)

    Reithmaier, J. P.; Bach, L.; Forchel, A.

    2003-08-01

    High-resolution proximity free lithography was developed using InP as anorganic resist for ion beam exposure. InP is very sensitive on ion beam irradiation and show a highly nonlinear dose dependence with a contrast function comparable to organic electron beam resists. In combination with implantation induced quantum well intermixing this new lithographic technique based on focused ion beams is used to realize high performance nano patterned optoelectronic devices like complex coupled distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers.

  2. Influence of laser beam focusing on LIBS efficiency at the elemental analysis of metals

    Science.gov (United States)

    Zhuravleva, V. I.; Rozantsev, V. A.; Ershov-Pavlov, E. A.

    2007-06-01

    Efficiency of the Laser-Induced Breakdown Spectroscopy (LIBS) has been studied as applied to the development of a technique for elemental microanalysis of solid samples, when a rather low consumption of the sample material is demanded allowing the technique to be practically non-destructive and applicable, e.g., at art, archaeological, forensic and similar investigations of unique objects. Higher intensity of the laser-induced emission spectra at lower sample erosion result in the increased efficiency of the LIBS analysis. The efficiency depends on many factors and in particular on thermal properties of the sample material and on its excitation conditions. Here, an influence of the laser beam focusing has been studied for samples of Al and Pb alloys having different thermal properties.

  3. FOCUSING AND ACCELERATION OF BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    PARSA,Z.; ZADOROZHNY,V.

    2000-04-07

    A new approach to solving the kinetic equation for the beam distribution function, (very useful from the practical point of view), is discussed, in which the authors also obtain a complement to the Skrinsky's condition for the self-focused bunched beam. This problem belongs to the theory of nonlinear systems in which both regular and chaotic motion is possible. The kinetic approach, based on Vlasov-Poisson equations, are used to investigate the focusing and acceleration of bunched beam. Special attention is given to the studies of stability in a bunched beam by means of the two norm, which may be used to describe t!he motion of high-energy particles.

  4. Optimization of focused ion beam performance

    NARCIS (Netherlands)

    Hagen, C.W.; Kruit, P.

    2009-01-01

    The authors have analyzed how much current can be obtained in the probe of an optimized two-lens focused ion beam (FIB) system. This becomes relevant, as systems become available that have the potential to image and/or fabricate structures smaller than 10 nm. The probe current versus probe size curv

  5. Focused-ion-beam processing for photonics

    NARCIS (Netherlands)

    Ridder, de René M.; Hopman, Wico C.L.; Ay, Feridun

    2007-01-01

    Although focused ion beam (FIB) processing is a well-developed technology for many applications in electronics and physics, it has found limited application to photonics. Due to its very high spatial resolution in the order of 10 nm, and its ability to mill almost any material, it seems to have a go

  6. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    Science.gov (United States)

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  7. Ion Beam Extraction by Discrete Ion Focusing

    DEFF Research Database (Denmark)

    2010-01-01

    An apparatus (900) and methods are disclosed for ion beam extraction. In an implementation, the apparatus includes a plasma source (or plasma) (802) and an ion extractor (804). The plasma source is adapted to generate ions and the ion extractor is immersed in the plasma source to extract a fraction...... of the generated ions. The ion extractor is surrounded by a space charge (810) formed at least in part by the extracted ions. The ion extractor includes a biased electrode (806) forming an interface with an insulator (808). The interface is customized to form a strongly curved potential distribution (812......) in the space-charge surrounding the ion extractor. The strongly curved potential distribution focuses the extracted ions towards an opening (814) on a surface of the biased electrode thereby resulting in an ion beam....

  8. An electromagnetically focused electron beam line source

    Science.gov (United States)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e.-

    2003-11-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180°, with cathode to work site distance of 130 mm. Dimensions of the beam (1.25×120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment.

  9. Focused electron beam induced deposition: A perspective

    Directory of Open Access Journals (Sweden)

    Michael Huth

    2012-08-01

    Full Text Available Background: Focused electron beam induced deposition (FEBID is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states.Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical

  10. Cutting gold nanoantennas by focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Daniel; Neubrech, Frank; Pucci, Annemarie [Kirchhoff Institute for Physics, Heidelberg (Germany); Gui, Han; Enders, Dominik; Nagao, Tadaaki [National Institute for Materials Science, Tsukuba (Japan)

    2011-07-01

    Gold nanowires (nanoantennas) are plasmonic particles of great interest due to the possibility of tuning their ability to strongly enhance the local electromagnetic field from the THz to the visible range by mainly changing the length. Furthermore, coupling of nanoparticles can lead to even higher enhancement of the local field compared to individual particles. One very promising approach is an arrangement of two nanoantennas which are separated by a very small gap (few nm) between their tip ends. We tried to prepare such nanosized gaps by applying focused ion beam (FIB) milling. Stripe-like, polycrystalline gold nanoantennas were produced by electron beam lithography on silicon wafers and subsequently cut in the middle by FIB. It turned out that the question if the nanoantennas are really separated cannot be answered by scanning electron microscopy or FIB imaging. However, measuring the infrared optical response of such prepared dimers provides a non-contacting, non-destructive, and easy method to prove the successful cut. Alternative methods like cross-sectional transmission electron microscopy and energy dispersive spectroscopy were also applied to confirm the findings from IR spectroscopic measurements.

  11. Induced focusing and conversion of a Gaussian beam into an elliptic Gaussian beam

    Indian Academy of Sciences (India)

    Manoj Mishra; Swapan Konar

    2005-09-01

    We have presented an investigation of the induced focusing in Kerr media of two laser beams, the pump beam and the probe beam, which could be either Gaussian or elliptic Gaussian or a combination of the two. We have used variational formalism to derive relevant beam-width equations. Among several important findings, the finding that a very week probe beam can be guided and focused when power of both beams are well below their individual threshold for self-focusing, is a noteworthy one. It has been found that induced focusing is not possible for laser beams of any wavelength and beam radius. In case both beams are elliptic Gaussian, we have shown that when power of both beams is above a certain threshold value then the effective radius of both beams collapses and collapse distance depends on power. Moreover, it has been found that induced focusing can be employed to convert a circular Gaussian beam into an elliptic Gaussian beam.

  12. Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gustinelli Arantes de Carvalho, Gabriel [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Campus Diadema, Rua Prof. Artur Riedel 275, 09972-270 Diadema, SP (Brazil); Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Gomes, Marcos da Silva [Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905 Sao Carlos, SP (Brazil); Leme, Flavio de Oliveira [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil); Krug, Francisco Jose, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000 Piracicaba, SP (Brazil)

    2012-08-15

    The effects of laser focusing and fluence on LIBS analysis of pellets of plant leaves was evaluated. A Q-switched Nd:YAG laser (5 ns, 10 Hz, 1064 nm) was used and the emission signals were collected by lenses into an optical fiber coupled to a spectrometer with Echelle optics and ICCD. Data were acquired from the accumulation of 20 laser pulses at 2.0 {mu}s delay and 5.0 {mu}s integration time gate. The emission signal intensities increased with both laser fluence and spot size. Higher sensitivities for Ca, K, Mg, P, Al, B, Cu, Fe, Mn, and Zn determinations were observed for fluences in the range from 25 to 60 J cm{sup -2}. Coefficients of variation of site-to-site measurements were generally lower than 10% (n = 30 sites, 20 laser pulses/site) for a fluence of 50 J cm{sup -2} and 750 {mu}m spot size. For most elements, there is an indication that accuracy is improved with higher fluences. - Highlights: Black-Right-Pointing-Pointer Laser focusing and fluence affect the quality of LIBS results. Black-Right-Pointing-Pointer Improvements on sensitivity and precision were observed for most analytes. Black-Right-Pointing-Pointer Matrix effects can be minimized by choosing the most appropriate fluence.

  13. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Dickerson, Jane A; Ramsay, Lauren M; Dada, Oluwatosin O; Cermak, Nathan; Dovichi, Norman J

    2010-08-01

    CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.

  14. Technology basis and perspectives on focused electron beam induced deposition and focused ion beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rius, Gemma, E-mail: rius.gemma@nitech.ac.jp

    2014-12-15

    The main characteristics of focused electron beam induced deposition (FEBID) and focused ion beam induced deposition (FIBID) are presented. FEBID and FIBID are two nanopatterning techniques that allow the fabrication of submicron patterns with nanometer resolution on selected locations of any kind of substrate, even on highly structured supports. The process consists of mask less serial deposition and can be applied to a wide variety of materials, depending strictly on the precursor material source used. The basic mechanism of FEBID and FIBID is the adsorption of volatile precursor molecules onto the sample surface and decomposition of the molecules induced by the energetic electron and ion focused beams. The essential similarities of the two techniques are presented and especial emphasis is dedicated to highlighting their main differences, such as aspects related to resolution, deposition rate, deposits purity, substrate integrity, etc. In both cases, the factors interplay and complex mechanisms are still understood in a qualitative basis, so much work can still be done in terms of modeling and simulating the processes involved in FEBID and FIBID. Current work on FEBID and FIBID is presented through examples of achievements, interesting results and novel approaches.

  15. Spatial dynamics of laser-induced fluorescence in an intense laser beam: experiment and theory in alkali metal atoms

    CERN Document Server

    Auzinsh, Marcis; Ferber, Ruvin; Gahbauer, Florian; Kalnins, Uldis

    2015-01-01

    We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solved a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the $F_g=2\\longrightarrow F_e=1$ transition of the $D_1$ line of $^{87}$Rb agreed very well with the theoretical model up to a laser intensity of around 200 mW/cm$^2$ for a transition whose saturation intensity is around 4.5 mW/cm$^2$. We have studied the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. An experiment was conducted whereby a broad, intense pump laser excited the $F_g=4\\longrightarrow F_e=3$ transition of the $D_2$ line of cesium while a weak, narrow probe ...

  16. An Atomic Lens Using a Focusing Hollow Beam

    Institute of Scientific and Technical Information of China (English)

    夏勇; 印建平; 王育竹

    2003-01-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2π-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist w0 of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  17. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    Science.gov (United States)

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams.

  18. Airy beam self-focusing in a photorefractive medium

    Science.gov (United States)

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-10-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination.

  19. Laser-induced damage in optical materials

    CERN Document Server

    Ristau, Detlev

    2014-01-01

    Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentrates on the major topics of laser-induced damage in optical materials and most specifically addresses research in laser damage that occurs in the bulk and on the surface or the coating of optical components. It considers key issues in the field of hi

  20. Focused helium-ion-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alkemade, P.F.A.; Miro, H. [Delft University of Technology, Kavli Institute of Nanoscience, Delft (Netherlands)

    2014-12-15

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He{sup +} ions in the tens of keV energy range with materials - i.e., minimal deflection and mainly energy loss via electronic excitations - renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm{sup 3}/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal. (orig.)

  1. Measurements and simulations of focused beam for orthovoltage therapy

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Hassan, E-mail: Hassan.Abbas@Yale.Edu [Department of Therapeutic Radiology, Yale University School of Medicine, Yale-New Haven Hospital, New Haven, 344 Lane Street Hamden, Connecticut 06514 (United States); Mahato, Dip N., E-mail: dip.n.mahato@intel.com [Intel Corporation, Mail-Stop RA3-410, 2501 NW 229th Avenue, Hillsboro, Oregon 97124 (United States); Satti, Jahangir, E-mail: sattij@mail.amc.edu [Department of Radiation Oncology, Albany Medical Center, 43 New Scotland Avenue, Albany, New York 12208 (United States); MacDonald, C. A., E-mail: c.macdonald@albany.edu [Department of Physics, University at Albany, SUNY, 1400 Washington Avenue, Albany, New York 12222 (United States)

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  2. Online compositional analysis in coal gasification environment using laser-induced plasma technology

    Science.gov (United States)

    Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

    2006-08-01

    Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

  3. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger, E-mail: rzheng@ouc.edu.cn [Optics and Optoelectronics Laboratory, Ocean University of China, Qingdao 266100 (China)

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  4. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  5. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    Science.gov (United States)

    Joshi, Chan; Malka, Victor

    2010-04-01

    , S Mangles, L O Silva, R Fonseca and P A Norreys Electro-optic shocks from blowout laser wakefields D F Gordon, A Ting, M H Helle, D Kaganovich and B Hafizi Onset of self-steepening of intense laser pulses in plasmas J Vieira, F Fiúza, L O Silva, M Tzoufras and W B Mori Analysis of laser wakefield dynamics in capillary tubes N E Andreev, K Cassou, F Wojda, G Genoud, M Burza, O Lundh, A Persson, B Cros, V E Fortov and C-G Wahlstrom Characterization of the beam loading effects in a laser plasma accelerator C Rechatin, J Faure, X Davoine, O Lundh, J Lim, A Ben-Ismaïl, F Burgy, A Tafzi, A Lifschitz, E Lefebvre and V Malka Energy gain scaling with plasma length and density in the plasma wakefield accelerator P Muggli, I Blumenfeld, C E Clayton, F J Decker, M J Hogan, C Huang, R Ischebeck, R H Iverson, C Joshi, T Katsouleas, N Kirby, W Lu, K A Marsh, W B Mori, E Oz, R H Siemann, D R Walz and M Zhou Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021-1023Wcm-2 Lu-Le Yu, Han Xu, Wei-Min Wang, Zheng-Ming Sheng, Bai-Fei Shen, Wei Yu and Jie Zhang Carbon ion acceleration from thin foil targets irradiated by ultrahigh-contrast, ultraintense laser pulses D C Carroll, O Tresca, R Prasad, L Romagnani, P S Foster, P Gallegos, S Ter-Avetisyan, J S Green, M J V Streeter, N Dover, C A J Palmer, C M Brenner, F H Cameron, K E Quinn, J Schreiber, A P L Robinson, T Baeva, M N Quinn, X H Yuan, Z Najmudin, M Zepf, D Neely, M Borghesi and P McKenna Numerical modelling of a 10-cm-long multi-GeV laser wakefield accelerator driven by a self-guided petawatt pulse S Y Kalmykov, S A Yi, A Beck, A F Lifschitz, X Davoine, E Lefebvre, A Pukhov, V Khudik, G Shvets, S A Reed, P Dong, X Wang, D Du, S Bedacht, R Zgadzaj, W Henderson, A Bernstein, G Dyer, M Martinez, E Gaul, T Ditmire and M C Downer Effects of laser prepulses on laser-induced proton generation D Batani, R Jafer, M Veltcheva, R Dezulian, O Lundh, F Lindau, A

  6. Auto-focusing accelerating hyper-geometric laser beams

    Science.gov (United States)

    Kovalev, A. A.; Kotlyar, V. V.; Porfirev, A. P.

    2016-02-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory.

  7. A high resolution hand-held focused beam profiler

    Science.gov (United States)

    Zapata-Farfan, J.; Garduño-Mejía, J.; Rosete-Aguilar, M.; Ascanio, G.; Román-Moreno, C. J.

    2017-05-01

    The shape of a beam is important in any laser application and depending on the final implementation, there exists a preferred one which is defined by the irradiance distribution.1 The energy distribution (or laser beam profile) is an important parameter in a focused beam, for instance, in laser cut industry, where the beam shape determines the quality of the cut. In terms of alignment and focusing, the energy distribution also plays an important role since the system must be configured in order to reduce the aberration effects and achieve the highest intensity. Nowadays a beam profiler is used in both industry and research laboratories with the aim to characterize laser beams used in free-space communications, focusing and welding, among other systems. The purpose of the profile analyzers is to know the main parameters of the beam, to control its characteristics as uniformity, shape and beam size as a guide to align the focusing system. In this work is presented a high resolution hand-held and compact design of a beam profiler capable to measure at the focal plane, with covered range from 400 nm to 1000 nm. The detection is reached with a CMOS sensor sized in 3673.6 μm x 2738.4 μm which acquire a snap shot of the previously attenuated focused beam to avoid the sensor damage, the result is an image of beam intensity distribution, which is digitally processed with a RaspberryTMmodule gathering significant parameters such as beam waist, centroid, uniformity and also some aberrations. The profiler resolution is 1.4 μm and was probed and validated in three different focusing systems. The spot sizes measurements were compared with the Foucault knife-edge test.

  8. Plasma lens experiments at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, B. [California Univ., Los Angeles, CA (United States)]|[Lawrence Berkeley Lab., CA (United States); Chattopadhyay, S. [Lawrence Berkeley Lab., CA (United States); Chen, P. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)] [and others

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  9. Focused ion beams using a high-brightness plasma source

    Science.gov (United States)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  10. Experimental verification on tightly focused radially polarized vortex beams

    Institute of Scientific and Technical Information of China (English)

    Du Fu-Rong; Zhou Zhe-Hai; Tan Qiao-Feng; Yang Chang-Xi; Zhang Xiao-Qing; Zhu Lian-Qing

    2013-01-01

    The theoretical and experimental results of tightly focused radially polarized vortex beams are demonstrated.An auto-focus technology is introduced into the measurement system in order to enhance the measurement precision,and the radially polarized vortex beams are generated by a liquid-crystal polarization converter and a vortex phase plate.The focused fields of radially polarized vortex beams with different topological charges at numerical apertures (NAs) of 0.65 and 0.85 are measured respectively,and the results indicate that the total intensity distribution at focus is dependent not only on the NA of the focusing objective lens and polarization pattem of the beam but also on the topological charge l of the beam.Some unique focusing properties of radially polarized vortex beams with fractional topological charges are presented based on numerical calculations.The experimental verification paves the way for some practical applications of radially polarized vortex beams,such as in optical trapping,near-field microscopy,and material processing.

  11. Nanopillar growth by focused helium ion-beam-induced deposition

    NARCIS (Netherlands)

    Chen, P.; Veldhoven, E. van; Sanford, C.A.; Salemink, H.W.M.; Maas, D.J.; Smith, D.A.; Rack, P.D.; Alkemade, P.F.A.

    2010-01-01

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH3) 3Pt(CPCH3) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that el

  12. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  13. Focusing neutron beams to sub-millimeter size

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Moxana; Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Focusing neutron guides are a well-established means to significantly increase the neutron flux for the investigation of small samples or samples subject to extreme conditions such as pressure or high magnetic fields. Parabolic and elliptic guides can focus the beam in a single point beyond the guide exit with well defined beam characteristics and a gain in intensity of over 30 compared to a non-focused beam. Focusing guides find applications in elastic and inelastic neutron scattering as well as in neutron imaging to increase the spatial resolution and for magnification. The aim of the Monte Carlo simulations using McStas was to produce focal spots with a diameter of the order of 0.1 mm using supermirrors with large angles of reflection. We will discuss the results of our simulations, i.e. the gains obtained, their variation with wavelength as well as the evolution of the beam size.

  14. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    Science.gov (United States)

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  15. Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus

    Science.gov (United States)

    Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi

    2016-08-01

    A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.

  16. Design of Ring-Focus Elliptical Beam Reflector Antenna

    Directory of Open Access Journals (Sweden)

    Jun-Mo Wu

    2016-01-01

    Full Text Available A new method for the design of elliptical beam reflector antenna is presented in this paper. By means of the basic principles of ring-focus antenna, a circularly symmetric feed and two specially shaped reflectors are used to form an elliptical beam antenna. Firstly, the design process of this ring-focus elliptical beam antenna is studied in detail. Transition function is defined and used in the design process. Then, combining the needs of practical engineering, a ring-focus elliptical beam reflector antenna is manufactured and tested. The gain at center frequency (12 GHz is 37.7 dBi with an aperture efficiency of 74.6%. 3 dB beam-width in φ=0° and φ=90° plane is 2.6° and 1.4°, respectively. Ratio of the elliptical beam (ratio of 3 dB beam-width in φ=0° and φ=90° plane is 2.6/1.4=1.85, substantially equal to designed ratio 2. Simulating and testing results match well, which testify the effectiveness of this design method.

  17. Surface plasmon polariton beam focusing with parabolic nanoparticle chains

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Bozhevolnyi, Sergey I.; Evlyukhin, Andrey B.

    2007-01-01

    We report on the focusing of surface plasmon polariton (SPP) beams with parabolic chains of gold nanoparticles fabricated on thin gold films. SPP focusing with different parabolic chains is investigated in the wavelength range of 700–860 nm, both experimentally and theoretically. Mapping of SPP...

  18. Three-dimensional measurement of a tightly focused laser beam

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xie

    2013-02-01

    Full Text Available The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

  19. Optimal focusing of a beam in a ring vortex

    Science.gov (United States)

    Arrizón, Victor; Ruiz, Ulises; Aguirre-Olivas, Dilia; Mellado-Villaseñor, Gabriel

    2015-12-01

    Conventional light focusing, i.e. concentration of an extended optical field within a small area around a point, is a frequently used process in Optics. An important extension to conventional focusing is the generation of the annular focal field of an optical beam. We discuss a simple optical setup that achieves this kind of focusing employing a phase plate as unique optical component. It is assumed that the annular focal field is modulated by an azimuthal phase of integer order q that converts the field in a ring vortex. We first establish the class of beams that being transmitted through the phase plate can be focused into a ring vortex. Then, for each beam in this class we determine the plate transmittance that generates the vortex with the maximum possible intensity, which is referred to as optimal ring vortex.

  20. Aerosol Beam Focused-Laser Induced Plasma Spectrometer (ABF-LIPS) Continuous Emissions Multi-Metals Analyzer

    Science.gov (United States)

    2012-06-01

    The high end of the conveyor passes through the barricade wall and deposits the waste into containers. High Temperature Cast Ceramic Filter Bag... ceramic candles which are 10 ft by 5.75-in in diameter. This results in a total filter area of 2330 square ft with a filtration velocity of 4.97 ft per...building at NADEP. ........... 20 Figure 8. Kirksite furnace melting pot in hood at NADEP. ................................................. 21 Figure 9

  1. Focused ion beam scanning electron microscopy in biology.

    Science.gov (United States)

    Kizilyaprak, C; Daraspe, J; Humbel, B M

    2014-06-01

    Since the end of the last millennium, the focused ion beam scanning electron microscopy (FIB-SEM) has progressively found use in biological research. This instrument is a scanning electron microscope (SEM) with an attached gallium ion column and the 2 beams, electrons and ions (FIB) are focused on one coincident point. The main application is the acquisition of three-dimensional data, FIB-SEM tomography. With the ion beam, some nanometres of the surface are removed and the remaining block-face is imaged with the electron beam in a repetitive manner. The instrument can also be used to cut open biological structures to get access to internal structures or to prepare thin lamella for imaging by (cryo-) transmission electron microscopy. Here, we will present an overview of the development of FIB-SEM and discuss a few points about sample preparation and imaging.

  2. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.

  3. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  4. Study of a final focus system for high intensity beams

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, Enrique; Eylon, Shmuel; Roy, Prabir K.; Yu, Simon S.; Bieniosek, Frank M.; Shuman, Derek B.; Waldron, William L.

    2004-06-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The final focus scenario in an HIF driver consists of several large aperture quadrupole magnets followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX experiments and associated theory and simulations is to study the various physical mechanisms that determine the final spot size (radius r{sub s}) at a given distance (f) from the end of the last quadrupole. In a fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets properly protected. The NTX final quadrupole focusing system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and the plasma neutralization dynamics in the drift section. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe the theoretical and experimental aspects of the beam dynamics in the quadrupole lattice, and how these physical effects influence the final beam size. In particular, we present theoretical and experimental results on the dependence of final spot size on geometric aberrations and perveance.

  5. Flat-Lens Focusing of Electron Beams in Graphene

    Science.gov (United States)

    Tang, Yang; Cao, Xiyuan; Guo, Ran; Zhang, Yanyan; Che, Zhiyuan; Yannick, Fouodji T.; Zhang, Weiping; Du, Junjie

    2016-09-01

    Coupling electron beams carrying information into electronic units is fundamental in microelectronics. This requires precision manipulation of electron beams through a coupler with a good focusing ability. In graphene, the focusing of wide electron beams has been successfully demonstrated by a circular p-n junction. However, it is not favorable for information coupling since the focal length is so small that the focal spot locates inside the circular gated region, rather than in the background region. Here, we demonstrate that an array of gate-defined quantum dots, which has gradually changing lattice spacing in the direction transverse to propagation, can focus electrons outside itself, providing a possibility to make a coupler in graphene. The focusing effect can be understood as due to the gradient change of effective refractive indices, which are defined by the local energy band in a periodic potential. The strong focusing can be achieved by suitably choosing the lattice gradient and the layer number in the incident direction, offering an effective solution to precision manipulation of electron beams with wide electron energy range and high angular tolerance.

  6. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  7. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  8. Nanostructuring superconducting vortex matter with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guillamón, I. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Suderow, H., E-mail: hermann.suderow@uam.es [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Kulkarni, P.; Vieira, S. [Laboratorio de Bajas Temperaturas, Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid (Spain); Unidad Asociada de Bajas Temperaturas y Altos Campos Magnéticos, UAM, CSIC, Cantoblanco, E-28049 Madrid (Spain); Córdoba, R.; Sesé, J. [Laboratorio de Microscopías Avanzadas (LMA) – Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza 50009 (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); and others

    2014-08-15

    Highlights: • Nanostructuring vortex matter with focused ion beams. • Nanofabrication produces high vortex density gradients. • Patterning gives nanocrystalline vortex lattice. - Abstract: Focused ion beams provide new opportunities to create small nanofabricated structures. Materials where this technique is successfully applied are different from those that are widely used in e-beam or photolithography processes. Arrays of holes have been fabricated in several layered superconductors, such as the transition metal dichalcogenides. A focused ion beam system can be also used to deposit superconducting material. A Ga beam is used to decompose a precusor W(CO){sub 6} molecule, giving an amorphous mixture of W–C–Ga–O which is superconducting below liquid helium temperatures. The amorphous nature of the deposit gives isotropic superconducting features, and vortex pinning is determined by the surface topography (or film thickness). Here we present vortex lattice images in an amorphous thin film with a nanofabricated array of dots. We find vortex confinement within the dots and inhomogeneous vortex distributions with large magnetic field gradients (around a Tesla in 10–20 nm). We discuss scaling behavior of the vortex lattice after nanofabrication.

  9. Evaluation of annealing and double ion beam irradiation by a laser-induced and laser-detected surface acoustic wave diagnostic system

    Science.gov (United States)

    Kitazawa, Sin-iti; Wakai, Eiichi; Aoto, Kazumi

    2016-10-01

    The effects of annealing and double ion irradiation on nuclear structural materials were investigated using a novel, non-destructive, non-contact diagnostic method. A laser-induced and laser-detected surface acoustic wave (SAW) was adopted as a diagnostic system. The SAWs propagation velocity and the SAWs vibration velocity along the normal direction of the surface were measured to investigate mechanical properties of the substrates. Change of the shear modulus was detected in the annealed substrates. Non-linear effect on amplitude of the excited SAW was observed on the double ion irradiated materials. The potential of the SAW diagnostic system for assessing nuclear structural materials was demonstrated.

  10. Focused beams of fast neutral atoms in glow discharge plasma

    Science.gov (United States)

    Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.

    2017-06-01

    Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.

  11. Focused ion beam milling of photonic crystals in bulk silicon

    NARCIS (Netherlands)

    Hu, Wenbin; Ridder, de René M.; Tong, Xing-Lin

    2009-01-01

    Focused ion beam (FIB) direct milling was used to fabricate photonic crystals in bulk silicon. The milling requires the sidewalls as nearly perpendicular to the slab as possible and the top profile of the holes to be smooth. The re-deposition of milled material exaggerates the hole profiles. The eff

  12. Simulation of ion beam extraction and focusing system

    Institute of Scientific and Technical Information of China (English)

    B. A. Soliman; M. M. Abdelrahman; A. G. Helal; F. W. Abdelsalam

    2011-01-01

    The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7. This has been used to evaluate the extraction characteristics (accel-decel system) to generate an

  13. Model equation for strongly focused finite-amplitude sound beams

    Science.gov (United States)

    Kamakura; Ishiwata; Matsuda

    2000-06-01

    A model equation that describes the propagation of sound beams in a fluid is developed using the oblate spheroidal coordinate system. This spheroidal beam equation (SBE) is a parabolic equation and has a specific application to a theoretical prediction on focused, high-frequency beams from a circular aperture. The aperture angle does not have to be small. The theoretical background is basically along the same analytical lines as the composite method (CM) reported previously [B. Ystad and J. Berntsen, Acustica 82, 698-706 (1996)]. Numerical examples are displayed for the amplitudes of sound pressure along and across the beam axis when sinusoidal waves are radiated from the source with uniform amplitude distribution. The primitive approach to linear field analysis is readily extended to the case where harmonic generation in finite-amplitude sound beams becomes significant due to the inherent nonlinearity of the medium. The theory provides the propagation and beam pattern profiles that differ from the CM solution for each harmonic component.

  14. Molecule-by-Molecule Writing Using a Focused Electron Beam

    DEFF Research Database (Denmark)

    Van Dorp, Willem F.; Zhang, Xiaoyan; Feringa, Ben L.;

    2012-01-01

    on graphene can be followed molecule-by-molecule with FEBID. The results show that mechanisms that are inherent to the process inhibit a further increase in control over the process. Hence, our results present the resolution limit of (electron) optical lithography techniques. The writing of isolated...... atoms also be written with an electron beam? We verify this with focused electron-beam-induced deposition (FEBID), a direct-write technique that has the current record for the smallest feature written by (electron) optical lithography. We show that the deposition of an organometallic precursor...

  15. The future of focused electron beam-induced processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C.W. [Delft University of Technology, Department of Imaging Physics, Faculty of Applied Sciences, Delft (Netherlands)

    2014-12-15

    A perspective is sketched for the field of focused electron beam-induced processing (FEBIP). The FEBIP lithography technique is compared to the very successful resist-based electron beam lithography (EBL) technique. The advantages of FEBIP over EBL are identified, the main advantage being its high spatial resolution. This will enable FEBIP to become an important lithography technique for the fabrication of devices with critical dimension in the range between 1 and 20 nm and serve as a complementary technique to EBL. It will be discussed what needs to be done to achieve this and what the potential applications are. (orig.)

  16. ULtrathin vacuum valve and ion beam focusing system

    CERN Document Server

    Shen Guan Ren; Qin Jiu Chang; Su Sheng Yong; Wu Long Cheng

    2001-01-01

    Design and fabrication of the ultrathin vacuum valve and ion beam focusing system are introduced for application on CIAE 600 kV ns Pulse Neutron Generator. The valve is integrated with first electrode of focusing system. The electric dizzy and striking sparks on focusing system disappeared after using these devices. The ion source can be replaced easily and quickly because the ultrathin vacuum valve was used, and the vacuum system of generator is protected; especially, safe action of the accelerating tube is maintained; and using live is extended

  17. Optimal focusing conditions of lenses using Gaussian beams

    Science.gov (United States)

    Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2016-07-01

    By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. We show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used in wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.

  18. H-Mode Accelerating Structures with PMQ Beam Focusing

    CERN Document Server

    Kurennoy, Sergey S; O'Hara, James F; Olivas, Eric R; Wangler, Thomas P

    2011-01-01

    We have developed high-efficiency normal-conducting RF accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of inter-digital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3-D modeling - electromagnetic computations, multi-particle beam-dynamics simulations with high currents, and thermal-stress analysis - for an IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or ...

  19. Direct deposition of gold on silicon with focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Irradiation with ions at very low energies (below 500 eV) no longer induces a removal of substrate material, but the ions are directly deposited on the surface. In this way, gold has been deposited on silicon with focused ion beam exposure and the properties of the film have been investigated with atomic force microscopy and Auger electron spectroscopy. (author) 3 figs., 1 ref.

  20. Surface plasmon interference excited by tightly focused laser beams.

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelier, A.; Ignatovich, F.; Bruyant, A.; Huang, C.; Colas des Francs, G.; Weeber, J.-C.; Dereux, A.; Wiederrecht, G. P.; Novotny, L.; Center for Nanoscale Materials; Univ de Bourgogne; Univ. of Rochester; Univ Technologique de Troyes

    2007-09-01

    We show that interfering surface plasmon polaritons can be excited with a focused laser beam at normal incidence to a plane metal film. No protrusions or holes are needed in this excitation scheme. Depending on the axial position of the focus, the intensity distribution on the metal surface is either dominated by interferences between counterpropagating plasmons or by a two-lobe pattern characteristic of localized surface plasmon excitation. Our experiments can be accurately explained by use of the angular spectrum representation and provide a simple means for locally exciting standing surface plasmon polaritons.

  1. Shaping of light beams with photonic crystals : spatial filtering, beam collimation and focusing

    OpenAIRE

    2014-01-01

    The research developed in the framework of this PhD thesis is a theoretical, numerical and experimental study of light beam shaping (spatial filtering, beam collimation and focusing) in the visible frequency range using photonic crystal structures. Photonic crystals (PhCs) are materials with periodic, spatially modulated refractive index on the wavelength scale. They are primarily known for their chromatic dispersion properties. However, they can also modify the spatial dispersion, which allo...

  2. Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Haaf, G. ten; Wouters, S. H. W.; Vredenbregt, E. J. D.; Mutsaers, P. H. A. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Geer, S. B. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2014-12-28

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here, we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of, amongst others, the flux density of the atomic beam, the temperature of this beam, and the total current. At low currents (I < 10 pA), the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents, this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents, the result agrees well with the analytical model, while at higher currents, the spot sizes found are even lower due to effects that are not taken into account in the analytical model.

  3. Electron beam final focus system for Thomson scattering at ELBE

    Science.gov (United States)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  4. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  5. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  6. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  7. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  8. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    CERN Document Server

    Twedt, Kevin A; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J; Aksyuk, Vladimir A

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam. An ion beam (radius about 50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q > 20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation d...

  9. Analytical possibilities of highly focused ion beams in biomedical field

    Science.gov (United States)

    Ren, M. Q.; Ji, X.; Vajandar, S. K.; Mi, Z. H.; Hoi, A.; Walczyk, T.; van Kan, J. A.; Bettiol, A. A.; Watt, F.; Osipowicz, T.

    2017-09-01

    At the Centre for Ion Beam Applications (CIBA), a 3.5 MV HVEE Singletron™ accelerator serves to provide MeV ion beams (mostly protons or He+) to six state-of-the-art beam lines, four of which are equipped with Oxford triplet magnetic quadrupole lens systems. This facility is used for a wide range of research projects, many of which are in the field of biomedicine. Here we presented a discussion of currently ongoing biomedical work carried out using two beamlines: The Nuclear Microscopy (NM) beamline is mainly used for trace elemental quantitative mapping using a combination of Particle Induced X-ray Emission (PIXE), to measure the trace elemental concentration of inorganic elements, Rutherford Backscattering Spectrometry (RBS), to characterise the organic matrix, and Scanning Transmission Ion Microscopy (STIM) to provide information on the lateral areal density variations of the specimen. Typically, a 2.1 MeV proton beam, focused to 1-2 μm spot size with a current of 100 pA is used. The high resolution single cell imaging beamline is equipped with direct STIM to image the interior structure of single cells with proton and alpha particles of sub-50 nm beam spot sizes. Simultaneously, forward scattering transmission ion microscopy (FSTIM) is utilized to generate images with improved contrast of nanoparticles with higher atomic numbers, such as gold nanoparticles, and fluorescent nanoparticles can be imaged using Proton Induced Fluorescence (PIF). Lastly, in this facility, RBS has been included as an option if required to determine the depth distribution of nanoparticles in cells, albeit with reduced spatial resolution.

  10. Improving the intensity of a focused laser beam

    Science.gov (United States)

    Haddadi, Sofiane; Fromager, Michael; Louhibi, Djelloul; Hasnaoui, Abdelkrim; Harfouche, Ali; Cagniot, Emmanuel; ńit-Ameur, Kamel

    2015-03-01

    Let us consider the family of symmetrical Laguerre-Gaus modes of zero azimuthal order which will be denoted as LGp0 . The latter is made up of central lobe surrounded by p concentric rings of light. The fundamental mode LG00 is a Gaussian beam of width W. The focusing of a LGp0 beam of power P by a converging lens of focal length f produces a focal spot keeping the LGp0 -shape and having a central intensity I0= 2PW2/(λf)2 whatever the value of the radial order p. Many applications of lasers (laser marking, laser ablation, …) seek nowadays for a focal laser spot with the highest as possible intensity. For a given power P, increasing intensity I0 can be achieved by increasing W and reducing the focal length f. However, this way of doing is in fact limited because the ratio W/f cannot increase indefinitely at the risk of introducing a huge truncation upon the edge of the lens. In fact, it is possible to produce a single-lobed focal spot with a central intensity of about p times the intensity I0. This result has been obtained by reshaping (rectification) a LGp0 beam thanks to a proper Binary Diffractive Optical Element (BDOE). In addition, forcing a laser cavity to oscillate upon a LGp0 can improve the power extract due to a mode volume increasing with the mode order p. This could allow envisaging an economy of scale in term of laser pumping power for producing a given intensity I0. In addition, we have demonstrated that a rectified LGp0 beam better stand the lens spherical aberration than the usual Gaussian beam.

  11. Contamination analysis of radioactive samples in focused ion beam instruments.

    Science.gov (United States)

    Evelan, Audrey Ruth; Brey, Richard R

    2013-02-01

    The use of Focused Ion Beam (FIB) instrument's to analyze and prepare samples that are radioactive requires attentiveness to the materials that are dislodged and free inside the chamber. Radioactive sputtered material must be understood even when observed at trace concentrations. Measurements using liquid scintillation counting and high purity germanium detectors were used to evaluate contamination on accessible surfaces inside a focused ion beam chamber that was used in the preparation of samples that were radioactive. The maximum removable contamination found was 0.27 0.4 Bq cm(-2), on the focused ion beam wall with 0.24 0.019 Bq cm(-2) on the door. Although these magnitudes of removable contamination are inconsequential for activation products, these same magnitudes of actinides, for example 239Pu, would represent 3.2% of an Annual Limit of Intake. This might be considered significant if one examines the relatively infrequent use of this device for the preparation of radioactive samples. Predicted activities of sputtered material were found using the software Transport of Ions in Matter, estimating that 0.003% of a radioactive samples activity is released into the FIB chamber. A used secondary electron detector's activity was measured to be 383.7 8.1 Bq. Preferential build-up of sputtered materials due to temperature or static charge gradients was considered. No temperature gradients were observed. Static charge gradients were measured inside the chamber varying between 0.057% below the mean to 34% higher than the mean. However, the magnitudes of contamination measured did not correlate to static charge gradients. Deposition in the chamber appears to have no mechanical cause but rather is sporadic however, measureable. Experience to date has been limited to samples of low activity; nevertheless, contamination inside the chamber was observed. Users should anticipate higher levels of readily dispersible radioactive contamination within the FIB as sample activity

  12. Milling of polymeric photonic crystals by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pialat, E. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Trigaud, T. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Bernical, V. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France); Moliton, J.P. [Unite de Microelectronique et Optoelectronique Polymere (UMOP/CNRS), Pole Limousin des Sciences et Technologies de l' Information et de la Communication (PLSTIC) de l' Universite de Limoges, 123 Avenue A. Thomas, 87060 Limoges Cedex (France)]. E-mail: jpmlt@unilim.fr

    2005-12-15

    The achievement of low cost photonic crystals in organic materials is not a trivial challenge even by top-down processes. Firstly the required conditions for the opening of a 2D Photonic Band Gap (PBG) in polymers by implementation of adapted software are shortly presented. The Focused Ion Beam (FIB) technique appears as a suitable process to carry out the patterning of the required sub-micronic dimensions. Then, the optimum experimental procedures leading to the fabrication of 2D photonic crystals in PMMA and CR39 are mainly exposed and discussed.

  13. Diamond Processing by Focused Ion Beam - Surface Damage and Recovery

    CERN Document Server

    Bayn, Igal; Cytermann, Catherine; Meyler, Boris; Richter, Vladimir; Salzman, Joseph; Kalish, Rafi

    2011-01-01

    The Nitrogen Vacancy color center (NV-) in diamond is of great interest for novel photonic applications. Diamond nano-photonic structures are often implemented using Focused-Ion-Beam (FIB) processing, leaving a damaged surface which has a detrimental effect on the color center luminescence. The FIB processing effect on single crystal diamond surfaces and their photonic properties is studied by Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and photoluminescence (PL). Exposing the processed surface to hydrogen plasma, followed by chemical etching, drastically decreases implanted Ga concentration, resulting in a recovery of the NV- photo-emission and in a significant increase of the NV-/NV0 ratio.

  14. Self-assembled film thickness determination by focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Dejeu, J. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)], E-mail: jerome.dejeu@univ-fcomte.fr; Salut, R. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Spajer, M. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Centrale MIMENTO, Universite de Franche-Comte, 32 avenue de l' Observatoire - 25044 Besancon Cedex (France); Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Membrey, F.; Foissy, A. [Institut UTINAM, UMR 6213 CNRS-UFC - equipe Materiaux et Surfaces Structures, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France); Charraut, D. [Institut FEMTO-ST, UMR 6174 CNRS-UFC-UTBM-ENSMM, Departement d' Optique, Universite de Franche-Comte, UFR Sciences et Techniques, 16 route de Gray - 25030 Besancon Cedex (France)

    2008-06-30

    The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers)

  15. Laser beam self-focusing in turbulent dissipative media.

    Science.gov (United States)

    Hafizi, B; Peñano, J R; Palastro, J P; Fischer, R P; DiComo, G

    2017-01-15

    A high-power laser beam propagating through a dielectric in the presence of fluctuations is subject to diffraction, dissipation, and optical Kerr nonlinearity. A method of moments was applied to a stochastic, nonlinear enveloped wave equation to analyze the evolution of the long-term spot radius. For propagation in atmospheric turbulence described by a Kolmogorov-von Kármán spectral density, the analysis was benchmarked against field experiments in the low-power limit and compared with simulation results in the high-power regime. Dissipation reduced the effect of self-focusing and led to chromatic aberration.

  16. Optical fiber sensors fabricated by the focused ion beam technique

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Bang, Ole

    2012-01-01

    crystal fiber (PCF). Using this technique we fabricate a highly compact fiber-optic Fabry-Pérot (FP) refractive index sensor near the tip of fiber taper, and a highly sensitive in-line temperature sensor in PCF. We also demonstrate the potential of using FIB to selectively fill functional fluid......Focused ion beam (FIB) is a highly versatile technique which helps to enable next generation of lab-on-fiber sensor technologies. In this paper, we demonstrate the use application of FIB to precisely mill the fiber taper and end facet of both conventional single mode fiber (SMF) and photonic...

  17. Effect of native defects and laser-induced defects on multi-shot laser-induced damage in multilayer mirrors

    Institute of Scientific and Technical Information of China (English)

    Ying Wang; Yuanan Zhao; Tanda Shao; Zhengxiu Fan

    2011-01-01

    The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated. The HfO2/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE). Laser damage testing is carried out on both the 1-on-l and S-on-1 regimes using 355-nm pulsed laser at a duration of 8 ns. It is found that the single-shot laser-induced damage threshold (LIDT) is much higher than the multi-shot LIDT. In the multi-shot mode, the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects. The surface morphologies of the samples are observed by optical microscopy. Moreover, the number of laser-induced defects affects the damage probability of the samples. A correlative model based on critical conduction band (CB) electron density (ED) is presented to simulate the multi-shot damage behavior.%@@ The roles of laser-induced defects and native defects in multilayer mirrors under multi-shot irradiation condition are investigated.The Hf02/SiO2 dielectric mirrors are deposited by electron beam evaporation (EBE).Laser damage testing is carried out on both the 1-on-1 and S-on-1 regimes using 355-nn pulsed laser at a duration of 8 us.It is found that the single-shot laser-induced damage threshold(LIDT)is much higher than the multi-shot LIDT.In the multi-shot mode,the main factor influencing LIDT is the accumulation of irreversible laser-induced defects and native defects.The surface morphologies of the samples are observed by optical microscopy.Moreover,the number of laser-induced defects affects the damage probability of the samples.A correlative model based on critical conduction band(CB)electron density(ED)is presented to simulate the multi-shot damage behavior.

  18. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  19. Heavy ion beam transport and focusing with an insulator guide in inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Someya, T.; Nakamura, T.; Sasaki, J.; Kawata, S. [Utsunomiya Univ., Dept. of Energy and Environment Sciences, Utsunomiya, Tochigi (Japan)

    2001-09-01

    One of the key issues on the heavy ion beam inertial confinement fusion is an efficient transport and beam focusing. To get a fine focusing on the fuel pellet, neutralization of the space change of an incident beam is required. The space charge of beam has to be neutralized for the fine focusing. In this paper, we propose to employ an insulator tube guide, through which a heavy ion beam is transported and focused. We confirm that the beam space charge is effectively neutralized by electrons emitted from the insulator beam guide and the ion beam fine focusing is realized. This result shows a possibility of a good beam focusing by the insulator beam guide. (author)

  20. Human skin image analysis using coherent focused beam scattering

    Science.gov (United States)

    Zimnyakov, Dmitry A.; Tuchin, Valery V.; Utz, Sergei R.; Mishin, Alexey A.

    1995-02-01

    The analysis of statistical and correlation properties of speckle patterns formed during different skin tissue scanning by the sharply focused probing laser beam has been carried out. The influences of the biotissues' structural features on the speckle patterns formation under Gaussian beam illumination have been investigated. The relationships between the structural characteristics of the sample under study, Rayleigh range of the probing beam and normalized statistical moments of the speckle intensity (contrast and asymmetry coefficient) are discussed for the different scatterer models. A phenomenological model of speckle pattern formation for the large-scale scatterers allows us to explain the dependence of speckle contrast and the coefficient of asymmetry on the generalized structure parameters and illumination conditions for the samples under study. The experimental investigations of the human skin structure features have been carried out using two types of the tissue samples by means of coherent scanning microscopy (CSM). Firstly, D-SQUAME discs (CuDerm Corporation, Texas, USA) have been used for the evaluation of skin dryness level. Secondly, the samples under study were the thin layers of normal and psoriatic epidermis (skin strippings). The dependencies of contrast and coefficient of asymmetry on the beam defocusing parameter and 2D correlation functions of speckle pattern intensity have been analyzed for different zones on the biotissue's surface. Particularly, promising results in skin dryness studies (using D-SQUAME discs) have been obtained. Our results and conventional 5-pattern kit scale are in good agreement. So, the presented method is accurate and objective and may be useful in novel cosmetic research and development.

  1. Vertical neutron beam focusing with bent mosaic crystals

    Science.gov (United States)

    Courtois, P.

    2016-09-01

    We report on the performance of bent mosaic crystals when used as a vertical focusing neutron monochromator. High-quality Cu(200) and Ge(335) mosaic crystals with a controlled curvature have been successfully produced at the ILL using plastic deformation at high temperature. As expected from simple geometrical considerations, they exhibit excellent properties for focusing a neutron beam vertically when examined on a high-resolution diffractometer installed on an m = 1 thermal neutron guide. Both Cu(200) and Ge(335) curved crystals allow a significant reduction of the focal image size at the sample position compared with a flat crystal with the same defect concentration. As a result, significant gain factors of 6 to 7 in intensity were obtained by replacing a flat crystal of 30 mm with a bent crystal.

  2. Laser and focused ion beam combined machining for micro dies.

    Science.gov (United States)

    Yoshida, Y; Okazaki, W; Uchida, T

    2012-02-01

    We have developed a laser and focused ion beam (FIB) compound process for press mold dies of a micro lens array (MLA) and a micro needle array (MNA) in a glassy carbon (GC). The press mold die of the MLA was roughly fabricated by UV-YAG laser. After this process, we finished this surface by scanning FIB. As a result, higher accuracy and good roughness of surface profile can be realized. An optical glass is used to confirm the shape of lens. Moreover, we fabricated 6 × 6 through-holes in the GC by the spiral drilling in addition to the focus position movement of the UV laser for press mold die of the MNA. After the FIB process, we were able to make the needle die of surface and hole wall roughness less than 0.9 μm. A silicon rubber is used to confirm the shape of the holes.

  3. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  4. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  5. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    Science.gov (United States)

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  6. Study on neutron beam probe. Study on the focused neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotajima, Kyuya; Suzuki, K.; Fujisawa, M.; Takahashi, T.; Sakamoto, I. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Wakabayashi, T.

    1998-03-01

    A monoenergetic focused neutron beam has been produced by utilizing the endoenergetic heavy ion reactions on hydrogen. To realize this, the projectile heavy ion energy should be taken slightly above the threshold energy, so that the excess energy converted to the neutron energy should be very small. In order to improve the capability of the focused neutron beam, some hydrogen stored metal targets have also been tested. Separating the secondary heavy ions (associated particles) from the primary ions (accelerated particles) by using a dipole magnet, a rf separator, and a particle identification system, we could directly count the produced neutrons. This will leads us to the possibility of realizing the standard neutron field which had been the empty dream of many neutron-related researchers in the world. (author)

  7. Modeling of a focused beam in a semi-infinite highly scattering medium

    DEFF Research Database (Denmark)

    Tycho, Andreas

    1999-01-01

    with confocal microscopy by focusing the probing beam. It istherefore interesting to gauge the performance of the Extended-HuygensFresnel theory for a geometry with a focused gaussian beam against a (fortissue) more well established model such as diffusion theory. A new modelof a focused beam in a semi...

  8. Atomic layer deposition ultrathin film origami using focused ion beams

    Science.gov (United States)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  9. Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes.

    Science.gov (United States)

    Hu, Jingping; Holt, Katherine B; Foord, John S

    2009-07-15

    The fabrication of ultramicroelectrodes (UMEs) for analytical electrochemical applications has been explored, using boron-doped diamond as the active electrode material in an insulating coating formed by deposition of electrophoretic paint. Because of the rough nature of the diamond film, the property of such coatings that is normally exploited in the fabrication of UMEs, namely the tendency to retract automatically from sharp protrusions, cannot be used in the present instance. Instead focused ion beam (FIB) sputtering was employed to controllably produce UMEs with well-defined geometry, critical dimension of a few micrometers, and very thin insulating coatings. If the FIB machining is carried out at normal incidence to the diamond electrode surface, significant ion beam damage reduces the yield of successful electrodes. However, if a parallel machining geometry is employed, high yields of ultramicroelectrodes with a flat disk geometry can be obtained very reliably. The electrochemical properties of diamond UMEs are characterized. They show much lower background currents than the equivalent Pt or carbon fiber electrodes but more varied electrochemical response than macroscopic diamond electrodes.

  10. Advances of focused ion beam in micromachining technology

    Science.gov (United States)

    Zhang, S. J.; Fang, F. Z.; Hu, X. T.

    2007-12-01

    The applications of focused ion beam (FIB) technology in micromachining has advantages over other micromachining technologies, such as high feature resolution, capable markless process, rapid prototyping and adaptive for various materials and geometries. FIB direct-writing techniques are explored for their excellent abilities in micromachining. In addition to FIB technology and its principles for imaging, milling and deposition, a typical FIB system is presented. The key to FIB direct-writing technology is to operate a FIB with a proper beam size, shape, current and energy to remove or add a required amount of material from a pre-defined location in a controlled manner. In this way, high-precision and complicated three-dimensional structures with controlled profiles can be fabricated. Several examples of using milling technique for making high-quality microdevices or high-precision microcomponents for optical and other applications are given. The demonstration of milling a narrow readout gap at an oblique angle on a microaccelerometer shows a FIB's application on a small but accurate post-processing step on a micromechanical device. The diffractive optical element (DOE) with continuous relief and submicron feature size fabricated by FIB milling is also presented to prove high resolution and accurate relief control. Furthermore, FIB milling is used to shape a variety of cutting tools with extremely precise dimensions and complex tool face shapes.

  11. Atomic-scale thermocapillary flow in focused ion beam milling

    Science.gov (United States)

    Das, Kallol; Johnson, Harley; Freund, Jonathan

    2016-11-01

    Focused ion beams (FIB) offer an attractive tool for nanometer-scale manufacturing and material processing, particularly because they can be focused to a few nanometer diameter spot. This motivates their use for many applications, such as sample preparation for transmission electron microscopy (TEM), forming nanometer scale pores in thin films for DNA sequencing. Despite its widespread use, the specific mechanisms of FIB milling, especially at high ion fluxes for which significant phase change might occur, remains incompletely understood. Here we investigate the process of nanopore fabrication in thin Si films using molecular dynamics simulation where Ga+ ions are used as the focused ions. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it is driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A continuum flow model with Marangoni forcing reproduces the flow.

  12. Introduction to focused ion beams instrumentation, theory, techniques and practice

    CERN Document Server

    Giannuzzi, Lucille A

    2005-01-01

    The focused ion beam (FIB) instrument has experienced an intensive period of maturation since its inception. Numerous new techniques and applications have been brought to fruition, and over the past few years, the FIB has gained acceptance as more than just an expensive sample preparation tool. It has taken its place among the suite of other instruments commonly available in analytical and forensic laboratories, universities, geological, medical and biological research institutions, and manufacturing plants. Although the utility of the FIB is not limited to the preparation of specimens for subsequent analysis by other analytical techniques, it has revolutionized the area of TEM specimen preparation. The FIB has also been used to prepare samples for numerous other analytical techniques, and offers a wide range of other capabilities. While the mainstream of FIB usage remains within the semiconductor industry, FIB usage has expanded to applications in metallurgy, ceramics, composites, polymers, geology, art, bio...

  13. Atomic-scale thermocapillary flow in focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.; Johnson, H. T.; Freund, J. B., E-mail: jbfreund@illinois.edu [Mechanical Science and Engineering and Aerospace Engineering, University of Illinois at Urbana–Champaign, 1206 West Green Street MC-244, Urbana, Illinois 61801 (United States)

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  14. Multiple charge beam dynamics in alternate phase focusing structure

    Directory of Open Access Journals (Sweden)

    S. Dechoudhury

    2014-07-01

    Full Text Available Asymmetrical alternate phase (A-APF focusing realized in a sequence of 36 superconducting quarter wave resonators (QWRs has been shown to accelerate almost 81% of input uranium beam before foil stripper to an energy of 6.2  MeV/u from 1.3  MeV/u. Ten charge states from 34+ to 43+ could be simultaneously accelerated with the phase of resonators tuned for 34+. The A-APF structure showed the unique nature of a large potential bucket for charge states higher than that of the tuned one. Steering inherent to QWRs can be mitigated by selecting appropriate phase variation of the APF periods and optimization of solenoid field strengths placed in each of the periods. This mitigation facilitates the multiple charge state acceleration scheme.

  15. Fundamental edge broadening effects during focused electron beam induced nanosynthesis

    Directory of Open Access Journals (Sweden)

    Roland Schmied

    2015-02-01

    Full Text Available The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IVMe3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.

  16. Radii broadening due to molecular collision in focused ion beams

    Science.gov (United States)

    Komuro, Masanori

    1988-01-01

    Point exposures of poly(methyl methacrylate) resist are carried out with focused ion beams of Si++ and Au++ from a liquid AuSi ion source in order to obtain a current density distribution in the probe. All the distributions are composed of a main Gaussian distribution and a long tail dependent on r-3.3 (r means radial distance). The magnitude of this tail increases with the increase in ambient pressure of the ion-drifting space. When the probe is steered at the corner of deflection field, two types of clear ghost patterns appear: (1) circular patterns and (2) lines trailing from the main spot toward the deflection center. It is revealed that they are produced by exposures to ions or energetic neutrals generated with charge transfer collision of the primary ions with residual gas molecules. It is shown that the long tail in the current density distribution is also due to scattering with the residual gas molecules.

  17. Focused electron beam induced deposition of magnetic nanostructures

    Science.gov (United States)

    de Teresa, Jose M.

    2011-03-01

    Nanopatterning strategies of magnetic materials normally rely on standard techniques such as electron-beam lithography using electron-sensitive resists. Focused electron beam induced deposition (FEBID) is currently being investigated as an alternative single-step route to produce functional magnetic nanostructures. Thus, Co-based and Fe-based precursors have been recently investigated for the growth of magnetic nanostructures by FEBID. In the present contribution, I will give an overview of the existing literature on magnetic nanostructures by FEBID and I will focus on the growth of Co nanostructures by FEBID using Co 2 (CO)8 as precursor gas. The Co content in the nanostructures can reach 95%. Magnetotransport experiments indicate that full metallic behaviour is displayed with relatively low residual resistivity and standard anisotropic magnetoresistance (0.8%). The coercive field of nanowires with changing aspect ratio has been determined in nanowires with width down to 150 nm by means of Magneto-optical Kerr Effect and the magnetization reversal has been imaged by means of Magnetic Force Microscopy, Scanning Transmission X-ray Microscopy as well as Lorentz Microscopy experiments. Nano-Hall probes have been grown with remarkable minimum detectable magnetic flux. Noticeably, it has been found that the domain-wall propagation field is lower than the domain-wall nucleation field in L-shaped nanowires, with potential applications in magnetic logic, sensing and storage. The spin polarization of these Co nanodeposits has been determined through Andreev-Reflection experiments in ferromagnetic-superconducting nanocontacts and amounts to 35%. Recent results obtained in Fe-based nanostructures by FEBID using Fe 2 (CO)9 precursor will be also presented. I acknowledge the collaboration in this field with A. Fernandez-Pacheco, R. Cordoba, L. Serrano, S. Sangiao, L.A. Rodriguez, C. Magen, E. Snoeck, L. Morellon, M.R. Ibarra.

  18. Optimization of beam geometry for focusing through turbulence

    Science.gov (United States)

    Charnotskii, Mikhail; Baker, Gary

    2016-09-01

    Beam spread and beam wandering are the most perceptible effects of atmospheric turbulence on propagating laser beams. The width of the mean irradiance profile is typically used to characterize the beam spread. This so-called Long- Term (LT) statistic allows for a relatively simple theoretical description. The LT beam size is not a very practical measure of the beam spread because its measurements are sensitive to the movements of the source and detector, and to the large-scale variations of the refractive index that are not associated with turbulence. The Short-Term (ST) beam spread is measured relative to the instantaneous position of the beam center and is free of these drawbacks, but has not been studied as thorough as the LT spread. We use a Markov approximation-based theoretical model for the ST beam irradiance that is valid for the wide range of turbulent conditions. Additional approximations are invoked to allow introduction of the isoplanatic ST Point Spread Function (PSF). Unlike the LT PSF, the ST PSF depends on the overall beam geometry. Adjustments of the initial beam width and focal distance make it possible to increase the contribution of the LT beam spread that is attributed to the beam wander and minimize the ST beam size at the observation plane for any given turbulence level. Analytical calculations of the optimal beam geometry are presented for the simple case of the coherent Gaussian beam, and Kolmogorov turbulence. We present the results of direct numerical simulation of beam wave propagation that confirm the existence of the optimal beam geometry.

  19. Design of a superconducting beam transport channel and beam dynamics for a strong-focusing cyclotron

    Science.gov (United States)

    Badgley, Karie Elizabeth

    There is an increasing interest in high power proton accelerators for use as neutron and muon sources, accelerator driven systems (ADS) for nuclear waste transmutation, high energy physics, medical physics, nuclear physics, and medical isotope production. Accelerating high current beams has a number of challenges; including avoiding harmful resonance crossing, space charge effects and, specific to cyclotrons, sufficient turn separation at injection and extraction. The Accelerator Research Laboratory at Texas A&M University is developing a high-power strong-focusing cyclotron with two main technologies to overcome these challenges. The first is a superconducting RF cavity to provide the energy gain required for fully separated turns. The second is the use of superconducting beam transport channels within the sectors of the cyclotron to provide strong-focusing with alternating focusing and defocusing quadrupoles. A method has been developed to find the equilibrium spiral orbit through the cyclotron which maintains isochronicity. The isochronous spiral orbit was then used to perform full linear optics calculations. The strengths of the quadrupoles were adjusted to hold the horizontal and vertical betatron tunes constant per turn to avoid resonance crossing. Particle tracking was performed with a modified MAD-X-PTC code and Synergia to provide a framework for future space charge studies. Magnetic modeling was performed on a 2D cross section of the beam transport channel. The wire locations were adjusted to reduce the higher order multipoles and a good field region was obtained at 70% of the beam pipe aperture with multipoles less than 10-4 . The 2D model was also used to determine the required current density needed to produce the quadrupole gradients. MgB2 superconducting wire was chosen as it meets all the field and current requirements and can operate at a reduced cryogenic cost. A winding mandrel was also designed and fabricated which minimized the bend radius for

  20. Production of 70-nm Cr dots by laser-induced forward transfer.

    Science.gov (United States)

    Sametoglu, Vahit; Sauer, Vincent T K; Tsui, Ying Y

    2013-07-29

    The effect of donor film thickness and laser beam fluence on the size of laser-induced forward transfer (LIFT) spots is studied to achieve sub-100 nm features. A 130 fs, 800 nm laser is focused on ultrathin Cr films, and the transfer and ablation thresholds of these films at various thicknesses are determined. The minimum transfer spot size decreases with decreasing donor film thickness and incident laser fluence. Minimum LIFT spots of 70-450 nm diameter are obtained from films of 20-80 nm thickness, respectively. The 70 nm diameter transfer spots obtained from sputtered continuous films are the smallest to date.

  1. Adhesion of polymer coatings studied by laser-induced delamination

    NARCIS (Netherlands)

    Fedorov, A; De Hosson, JTM

    2005-01-01

    This paper concentrates on the laser-induced delamination technique, aimed at measuring the practical work of adhesion of thin polymer coatings on metal substrates. In this technique an infrared laser-pulsed beam is used to create an initial blister. Upon increasing the pulse intensity, the size of

  2. Laser-induced collisional autoionization in europium and strontium atoms.

    Science.gov (United States)

    Buffa, R

    1995-01-15

    An experiment that involves laser-induced collisional autoionization in europium and strontium atoms is proposed and the spectral line shape of the cross section is calculated on the basis of data available in the literature. The feasibility of the experiment both in oven cells and in a crossed-atomic-beam geometry is discussed.

  3. Solenoidal Fields for Ion Beam Transport and Focusing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Edward P.; Leitner, Matthaeus

    2007-11-01

    In this report we calculate time-independent fields of solenoidal magnets that are suitable for ion beam transport and focusing. There are many excellent Electricity and Magnetism textbooks that present the formalism for magnetic field calculations and apply it to simple geometries [1-1], but they do not include enough relevant detail to be used for designing a charged particle transport system. This requires accurate estimates of fringe field aberrations, misaligned and tilted fields, peak fields in wire coils and iron, external fields, and more. Specialized books on magnet design, technology, and numerical computations [1-2] provide such information, and some of that is presented here. The AIP Conference Proceedings of the US Particle Accelerator Schools [1-3] contain extensive discussions of design and technology of magnets for ion beams - except for solenoids. This lack may be due to the fact that solenoids have been used primarily to transport and focus particles of relatively low momenta, e.g. electrons of less than 50 MeV and protons or H- of less than 1.0 MeV, although this situation may be changing with the commercial availability of superconducting solenoids with up to 20T bore field [1-4]. Internal reports from federal laboratories and industry treat solenoid design in detail for specific applications. The present report is intended to be a resource for the design of ion beam drivers for Inertial Fusion Energy [1-5] and Warm Dense Matter experiments [1-6], although it should also be useful for a broader range of applications. The field produced by specified currents and material magnetization can always be evaluated by solving Maxwell's equations numerically, but it is also desirable to have reasonably accurate, simple formulas for conceptual system design and fast-running beam dynamics codes, as well as for general understanding. Most of this report is devoted to such formulas, but an introduction to the Tosca{copyright} code [1-7] and some

  4. Focused ion beam damage to MOS integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    FLEETWOOD,D.M.; CAMPBELL,ANN N.; HEMBREE,CHARLES E.; TANGYUNYONG,PAIBOON; JESSING,JEFFREY R.; SODEN,JERRY M.

    2000-05-10

    Commercial focused ion beam (FIB) systems are commonly used to image integrated circuits (ICS) after device processing, especially in failure analysis applications. FIB systems are also often employed to repair faults in metal lines for otherwise functioning ICS, and are being evaluated for applications in film deposition and nanofabrication. A problem that is often seen in FIB imaging and repair is that ICS can be damaged during the exposure process. This can result in degraded response or out-right circuit failure. Because FIB processes typically require the surface of an IC to be exposed to an intense beam of 30--50 keV Ga{sup +} ions, both charging and secondary radiation damage are potential concerns. In previous studies, both types of effects have been suggested as possible causes of device degradation, depending on the type of device examined and/or the bias conditions. Understanding the causes of this damage is important for ICS that are imaged or repaired by a FIB between manufacture and operation, since the performance and reliability of a given IC is otherwise at risk in subsequent system application. In this summary, the authors discuss the relative roles of radiation damage and charging effects during FIB imaging. Data from exposures of packaged parts under controlled bias indicate the possibility for secondary radiation damage during FIB exposure. On the other hand, FIB exposure of unbiased wafers (a more common application) typically results in damage caused by high-voltage stress or electrostatic discharge. Implications for FIB exposure and subsequent IC use are discussed.

  5. Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation

    Science.gov (United States)

    Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.

    2015-03-01

    Formation of laser-induced periodic surface structures (LIPSS) on the titanium surface at the presence of sharply focused fs radiation exhibits two different regimes. Conventional ablative LIPSS with low regularity are oriented orthogonally to the polarization direction of the incident beam, while thermochemical LIPSS with highly uniform periodicity are oriented along the polarization direction. These two types of LIPSS can co-exist and influence each other for arbitrary polarization and beam scanning directions. The observed regimes help to clarify mechanisms of LIPSS formation, as well as to form LIPSS of specific shapes and degrees of regularity.

  6. Laser induced structural vibration

    Science.gov (United States)

    Koss, L. L.; Tobin, R. C.

    1983-01-01

    A technique is described for exciting structural vibration by using a focussed laser beam to vaporize material from a target attached to the structure. The rapid ejection of material results in an impulsive reaction to the target which is transmitted to the structure. The method has been studied with a Nd: glass laser, operated in the long pulse mode, in combination with a bismuth target attached in turn to a ballistic pendulum and cantilever beam. The specific mechanical energy was found to be proportional to the laser pulse energy raised to a power in the range 2.5-2.9. The highest efficiency of energy transfer achieved for the first vibrational mode of the cantilever was about 2 millipercent for the maximum laser pulse energy used, 1.5 J, the signal to noise ratio then being about 40 dB.

  7. Optical fiber tip templating using direct focused ion beam milling.

    Science.gov (United States)

    Micco, A; Ricciardi, A; Pisco, M; La Ferrara, V; Cusano, A

    2015-11-04

    We report on a method for integrating sub-wavelength resonant structures on top of optical fiber tip. Our fabrication technique is based on direct milling of the glass on the fiber facet by means of focused ion beam. The patterned fiber tip acts as a structured template for successive depositions of any responsive or functional overlay. The proposed method is validated by depositing on the patterned fiber a high refractive index material layer, to obtain a 'double-layer' photonic crystal slab supporting guided resonances, appearing as peaks in the reflection spectrum. Morphological and optical characterizations are performed to investigate the effects of the fabrication process. Our results show how undesired effects, intrinsic to the fabrication procedure should be taken into account in order to guarantee a successful development of the device. Moreover, to demonstrate the flexibility of our approach and the possibility to engineering the resonances, a thin layer of gold is also deposited on the fiber tip, giving rise to a hybrid photonic-plasmonic structure with a complementary spectral response and different optical field distribution at the resonant wavelengths. Overall, this work represents a significant step forward the consolidation of Lab-on-Fiber Technology.

  8. Suppression of space charge induced beam halo in nonlinear focusing channel

    Science.gov (United States)

    Batygin, Yuri K.; Scheinker, Alexander; Kurennoy, Sergey; Li, Chao

    2016-04-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  9. Suppression of Space Charge Induced Beam Halo in Nonlinear Focusing Channel

    CERN Document Server

    Batygin, Yuri K; Kurennoy, Sergey; Li, Chao

    2016-01-01

    An intense non-uniform particle beam exhibits strong emittance growth and halo formation in focusing channels due to nonlinear space charge forces of the beam. This phenomenon limits beam brightness and results in particle losses. The problem is connected with irreversible distortion of phase space volume of the beam in conventional focusing structures due to filamentation in phase space. Emittance growth is accompanied by halo formation in real space, which results in inevitable particle losses. A new approach for solving a self-consistent problem for a matched non-uniform beam in two-dimensional geometry is discussed. The resulting solution is applied to the problem of beam transport, while avoiding emittance growth and halo formation by the use of nonlinear focusing field. Conservation of a beam distribution function is demonstrated analytically and by particle-in-cell simulation for a beam with a realistic beam distribution.

  10. The prospects of a subnanometer focused neon ion beam.

    Science.gov (United States)

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H

    2012-01-01

    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress.

  11. Characterizing the beam steering and distortion of Gaussian and Bessel beams focused in tissues with microscopic heterogeneities.

    Science.gov (United States)

    Chen, Ye; Liu, Jonathan T C

    2015-04-01

    Bessel beams have recently been investigated as a means of improving deep-tissue microscopy in highly scattering and heterogeneous media. It has been suggested that the long depth-of-field and self-reconstructing property of a Bessel beam enables an increased penetration depth of the focused beam in tissues compared to a conventional Gaussian beam. However, a study is needed to better quantify the magnitude of the beam steering as well as the distortion of focused Gaussian and Bessel beams in tissues with microscopic heterogeneities. Here, we have developed an imaging method and quantitative metrics to evaluate the motion and distortion of low-numerical-aperture (NA) Gaussian and Bessel beams focused in water, heterogeneous phantoms, and fresh mouse esophagus tissues. Our results indicate that low-NA Bessel beams exhibit reduced beam-steering artifacts and distortions compared to Gaussian beams, and are therefore potentially useful for microscopy applications in which pointing accuracy and beam quality are critical, such as dual-axis confocal (DAC) microscopy.

  12. Spatial-spectral characterization of focused spatially chirped broadband laser beams.

    Science.gov (United States)

    Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-11-20

    Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.

  13. Editorial: Focus on X-ray Beams with High Coherence

    Science.gov (United States)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  14. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  15. Direct patterning of vortex generators on a fiber tip using a focused ion beam.

    Science.gov (United States)

    Vayalamkuzhi, Pramitha; Bhattacharya, Shanti; Eigenthaler, Ulrike; Keskinbora, Kahraman; Samlan, C T; Hirscher, Michael; Spatz, Joachim P; Viswanathan, Nirmal K

    2016-05-15

    The realization of spiral phase optical elements on the cleaved end of an optical fiber by focused ion beam milling is presented. A focused Ga+ ion beam with an acceleration voltage of 30 keV is used to etch continuous spiral phase plates and fork gratings directly on the tip of the fiber. The phase characteristics of the output beam generated by the fabricated structures measured via an interference experiment confirmed the presence of phase singularity in the output beam. The devices are expected to be promising candidates for all-fiber beam shaping and optical trapping applications.

  16. Self-focusing of femtosecond diffraction-resistant vortex beams in water.

    Science.gov (United States)

    Shiffler, Stacy; Polynkin, Pavel; Moloney, Jerome

    2011-10-01

    We report experiments on self-focusing of femtosecond diffraction-resistant vortex beams in water. These beams are higher-order Bessel beams with weak azimuthal modulation of the transverse intensity patterns. The modulation overrides the self-focusing dynamics and results in the formation of regular bottlelike filament distributions. The peak-power thresholds for filamentation, at a particular distance, are relatively accurately estimated by the adaptation of the Marburger formula derived earlier for Gaussian beams. The nonlinear conversion of the incident conical waves into the localized spatial wave packets propagating near the beam axis is observed.

  17. Laser induced fluorescence of dental caries

    Science.gov (United States)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  18. Laser induced fluorescence of dental caries

    Science.gov (United States)

    Albin, S.; Byvik, C. E.; Buoncristiani, A. M.

    1988-01-01

    Significant differences between the optical spectra taken from sound regions of teeth and carious regions have been observed. These differences appear both in absorption and in laser induced fluorescence spectra. Excitation by the 488 nm line of an argon ion laser beam showed a peak in the emission intensity around 553 nm for the sound dental material while the emission peak from the carious region was red-shifted by approximately 40 nm. The relative absorption of carious region was significantly higher at 488 nm; however its fluorescence intensity peak was lower by an order of magnitude compared to the sound tooth. Implications of these results for a safe, reliable and early detection of dental caries are discussed.

  19. Scattering of a Tightly Focused Beam by an Optically Trapped Particle

    Science.gov (United States)

    Lock, James A.; Wrbanek, Susan Y.; Weiland, Kenneth E.

    2006-01-01

    Near-forward scattering of an optically trapped 5 m radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

  20. Reflection of focused beams from opal photonic crystals.

    Science.gov (United States)

    Varis, Karri; Mattila, Marco; Arpiainen, Sanna; Ahopelto, Jouni; Jonsson, Fredrik; Sotomayor Torres, Clivia; Egen, Marc; Zentel, Rudolf

    2005-04-04

    We present a robust method for computing the reflection of arbitrarily shaped and sized beams from finite thickness photonic crystals. The method is based on dividing the incident beam into plane waves, each of which can be solved individually using Bloch periodic boundary conditions. This procedure allows us to take a full advantage of the crystal symmetry and also leads to a linear scaling of the computation time with respect to the number of plane waves needed to expand the incident beam. The algorithm for computing the reflection of an individual plane wave is also reviewed. Finally, we find an excellent agreement between the computational results and measurement data obtained from opals that are synthesized using polystyrene and poly(methyl methacrylate) microspheres.

  1. Tailoring reflection of graphene plasmons by focused ion beams

    CERN Document Server

    Luo, Weiwei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-01-01

    Graphene plasmons are of remarkable features that make graphene plasmon elements promising for applications to integrated photonic devices. The fabrication of graphene plasmon components and control over plasmon propagating are of fundamental important. Through near-field plasmon imaging, we demonstrate controllable modifying of the reflection of graphene plasmon at boundaries etched by ion beams. Moreover, by varying ion dose at a proper value, nature like reflection boundary can be obtained. We also investigate the influence of ion beam incident angle on plasmon reflection. To illustrate the application of ion beam etching, a simple graphene wedge-shape plasmon structure is fabricated and performs excellently, proving this technology as a simple and efficient tool for controlling graphene plasmons.

  2. Nonlinear Stability of Intense Mismatched Beams in a Uniform Focusing Field

    CERN Document Server

    Pakter, Renato; Simeoni, Wilson

    2005-01-01

    We investigate the nonlinear coupling between axisymmetric and elliptic oscillations in the dynamics of intense beams propagating in a uniform magnetic focusing field. It is shown that finite amplitude mismatched oscillations of an initially round beam may destabilize elliptic oscillations, heavily affecting stability and the shape of the beam. This is a potential mechanics for beam particle loss in such systems. Self consistent simulations are performed to verify the findings.

  3. Production of miniaturized biosensors through laser-induced forward transfer

    Science.gov (United States)

    Fernández-Pradas, J. M.; Duocastella, M.; Colina, M.; Serra, P.; Morenza, J. L.

    2007-05-01

    Lasers are adequate tools for the production of patterns with high spatial resolution owing to the high focusing power of their radiation. Laser induced forward transfer (LIFT) is a direct-writing technique allowing the deposition of tiny amounts of material from a donor thin film through the action of a pulsed laser beam. A laser pulse is focused onto the donor thin film through a transparent support, what results in the transference of a small area of the film onto a receptor substrate that is placed parallel to the film-support system. Although LIFT was originally developed to operate with solid films, it has been demonstrated that deposition is also viable from liquid films. In this case, a small amount of liquid is directly ejected from the film onto the receptor substrate, where it rests deposited in the form of a microdroplet. This makes LIFT adequate for biosensors preparation, since biological solutions can be transferred onto solid substrates to produce micrometric patterns of biomolecules. In this case, the liquid solvent acts as transport vector of the biomolecules. The viability of the technique has been demonstrated through the preparation of functional miniaturized biosensors showing similar performances and higher scales of integration than those prepared through more conventional techniques.

  4. Special diffractive elements for optical trapping fabricated on optical fiber tips using the focused ion beam

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Guerreiro, A.; Viegas, J.; Jorge, P. A. S.

    2016-05-01

    In this work, spiral phase lenses and Fresnel zone lenses for beam tailoring, fabricated on the tip of optical fibers, are reported. The spiral phase lenses allow tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. Whereas, the Fresnel lenses are used as focusing systems. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The output optical intensity profiles matching the numerical simulations are presented and analyzed.

  5. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  6. Fabrication of nano structures in thin membranes with focused ion beam technology

    NARCIS (Netherlands)

    Gadgil, V.J.; Tong, H.D.; Cesa, Y.; Bennink, M.L.

    2009-01-01

    In recent years, Focused Ion Beam (FIB) technology has emerged as an important tool for nanotechnology [V.J. Gadgil, F. Morrissey, Encyclopaedia of Nanoscience and Nanotechnology, vol. 1, American Science Publishers, ISBN: 1-58883-057-8, 2004, p101.]. In this paper, applications of focused ion beam

  7. Laser-induced incandescence : recent trends and current questions

    NARCIS (Netherlands)

    Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G.

    2006-01-01

    This paper provides an overview of a workshop focused on fundamental experimental and theoretical aspects of soot measurements by laser-induced incandescence (LII). This workshop was held in Duisburg, Germany in September 2005. The goal of the workshop was to review the current understanding of the

  8. Laser-induced incandescence : recent trends and current questions

    NARCIS (Netherlands)

    Schulz, C.; Kock, B.F.; Hofmann, M.; Michelsen, H.; Will, S.; Bougie, B.; Suntz, R.; Smallwood, G.

    2006-01-01

    This paper provides an overview of a workshop focused on fundamental experimental and theoretical aspects of soot measurements by laser-induced incandescence (LII). This workshop was held in Duisburg, Germany in September 2005. The goal of the workshop was to review the current understanding of the

  9. Results on intense beam focusing and neutralization from the neutralized beam experiment

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Sharp, W.M.

    2003-10-31

    We have demonstrated experimental techniques to provide active neutralization for space-charge dominated beams as well as to prevent uncontrolled ion beam neutralization by stray electrons. Neutralization is provided by a localized plasma injected from a cathode arc source. Unwanted secondary electrons produced at the wall by halo particle impact are suppressed using a radial mesh liner that is positively biased inside a beam drift tube. We present measurements of current transmission, beam spot size as a function of axial position, beam energy and plasma source conditions. Detailed comparisons with theory are also presented.

  10. Focusing of a megavoltage electron beam in a medical accelerator

    Science.gov (United States)

    Friedrichs, P. B.; Konrad, G. T.

    1991-05-01

    Due to packaging constraints in the radiotherapy machine gantry of Siemens Mevatrons, the electron linac used in the lower energy models has a long drift tube between the end of the linae and the 270° achromatic bend assembly. Space charge effects cause the electron beam to grow so that it frequently impinges upon the entrance hole to the bend assembly. A compact solenoid has been designed that is effective in increasing the transmitted beam through the bend assembly by over 40%. A permanent magnet design proved to be unsuccessful because of high transverse fields within the magnet. Trajectory calculations obtained through the electron linac design code PARMELA (Public domain code supplied to Siemens Medical Laboratories, Inc. by L.M. Young, Los Alamos National Laboratories, Los Alamos, NM) support the experimentally observed results. Data is presented for several electron energies over the normal operating range of 4-6 MV photons from these Mevatrons.

  11. Multi-slit triode ion optical system with ballistic beam focusing

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V., E-mail: V.I.Davydenko@inp.nsk.su; Amirov, V.; Gorbovsky, A.; Deichuli, P.; Ivanov, A.; Kolmogorov, A.; Kapitonov, V.; Mishagin, V.; Shikhovtsev, I.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Karpushov, A. N. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland); Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Uhlemann, R. [Institute of Energy and Climate Research-Plasma Physics, Research Center Juelich, 52425 Juelich (Germany)

    2016-02-15

    Multi-slit triode ion-optical systems with spherical electrodes are of interest for formation of intense focused neutral beams for plasma heating. At present, two versions of focusing multi-slit triode ion optical system are developed. The first ion optical system forms the proton beam with 15 keV energy, 140 A current, and 30 ms duration. The second ion optical system is intended for heating neutral beam injector of Tokamak Configuration Variable (TCV). The injector produces focused deuterium neutral beam with 35 keV energy, 1 MW power, and 2 s duration. In the later case, the angular beam divergence of the neutral beam is 20-22 mrad in the direction across the slits of the ion optical system and 12 mrad in the direction along the slits.

  12. Focusing of Partially Coherent Vortex Beams by an Aperture Lens

    Institute of Scientific and Technical Information of China (English)

    RAO Lian-Zhou; PU Ji-Xiong

    2007-01-01

    The focusing properties of partially coherent vortex wave fields are studied. Expressions are derived for the intensity distribution and the degree of coherence near the geometrical focus. It is found that the size of coherence vortex dark core in the focal region depends on the topological charges and normalized coherence lengths. It is found that the desired vortex dark core near the geometrical focus can be generated by choosing appropriate values of parameters. The degree of coherence possesses a pair of phase singularities regions in the geometrical focus neighbourhood.

  13. 自动聚焦激光诱导击穿光谱远程测量系统%The Auto-Focusing Remote Laser-Induced Breakdown Spectroscopy System

    Institute of Scientific and Technical Information of China (English)

    韩振宇; 潘从元; 安宁; 杜学维; 于云偲; 杜亮亮; 王声波; 王秋平

    2015-01-01

    The present paper presents an auto-focus laser-induced breakdown spectroscopy (LIBS)remote measuring system. This system contains a Schwarzschild telescope,which consists of a convex mirror and a concave mirror.The two spherical mir-rors are coaxially placed.The convex mirror is mounted on a motorized linear translation stage.With this motorized linear trans-lation stage,the convex mirror can move along the optical axis to change the spacing between the convex mirror and the concave mirror.Therefore the focal length can be adjusted to focus the laser on samples at different distances and collect the plasma spec-tra.The advantages of the telescope system include,firstly,the light path of laser focusing and spectra signal collection is the same,which make it easier for mounting and collimation;secondly,the light path of the telescope uses total reflection type, which is fit for the detection in ultra-violate region;finally,the telescope consists of only two spherical mirrors which are rela-tively easier to manufacture.Within the translation range of the motorized linear translation stage,the focal length of the tele-scope in this paper can be adjusted from 1. 5 to 3. 6 m.The diameter of the focusing spot varies from 0. 5 to 1. 0 mm.Utilizing this telescope system,LIBS experiments were conducted using copper sample.And the characteristic lines of Cu element (Cu Ⅰ223. 01 nm,Cu Ⅰ 224. 43 nm)obtained are used for the auto focusing.By investigating the relation of the area of spectral lines covered and the spacing between the mirrors,the optimal laser focusing location was obtained .The LIBS experiment results show that the system functions well,fulfilling the demand of remote ablation of sample and LIBS spectral measuring,and the telescope is able to auto-focus the laser on samples at different position to perform remote LIBS experiment.%激光诱导击穿光谱(LIBS)技术具有非接触测量、无需样品预处理以及快速多元素同时分析等特点,

  14. Focusing properties of Gaussian Schell-model beams by an astigmatic aperture lens

    Institute of Scientific and Technical Information of China (English)

    Pan Liu-Zhan; Ding Chao-Liang

    2007-01-01

    This paper studies the focusing properties of Gaussian Schell-model (GSM) beams by an astigmatic aperture lens.It is shown that the axial irradiance distribution, the maximum axial irradiance and its position of focused GSM beams by an astigmatic aperture lens depend upon the astigmatism of the lens, the coherence of partially coherent light, the truncation parameter of the aperture and Fresnel number. The numerical calculation results are given to illustrate how these parameters affect the focusing property.

  15. Laser induced single spot oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jwad, Tahseen, E-mail: taj355@bham.ac.uk; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-30

    Highlights: • A new high resolution laser induced oxidation (colouring) method is proposed (single spot oxidation). • The method is applied to control oxide films thicknesses and hence colours on titanium substrates in micro-scale. • The method enable imprinting high resolution coloured image on Ti substrate. • Optical and morphological periodic surface structures are also produced by an array of oxide spots using the proposed method. • Colour coding of two colours into one field is presented. - Abstract: Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels’ colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  16. Measurement of Irradiated Pyroprocessing Samples via Laser Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phongikaroon, Supathorn [Virginia Commonwealth Univ., Richmond, VA (United States)

    2016-10-31

    The primary objective of this research is to develop an applied technology and provide an assessment to remotely measure and analyze the real time or near real time concentrations of used nuclear fuel (UNF) dissolute in electrorefiners. Here, Laser-Induced Breakdown Spectroscopy (LIBS), in UNF pyroprocessing facilities will be investigated. LIBS is an elemental analysis method, which is based on the emission from plasma generated by focusing a laser beam into the medium. This technology has been reported to be applicable in the media of solids, liquids (includes molten metals), and gases for detecting elements of special nuclear materials. The advantages of applying the technology for pyroprocessing facilities are: (i) Rapid real-time elemental analysis|one measurement/laser pulse, or average spectra from multiple laser pulses for greater accuracy in < 2 minutes; (ii) Direct detection of elements and impurities in the system with low detection limits|element specific, ranging from 2-1000 ppm for most elements; and (iii) Near non-destructive elemental analysis method (about 1 g material). One important challenge to overcome is achieving high-resolution spectral analysis to quantitatively analyze all important fission products and actinides. Another important challenge is related to accessibility of molten salt, which is heated in a heavily insulated, remotely operated furnace in a high radiation environment with an argon atmosphere.

  17. Corrected knife-edge-based reconstruction of tightly focused higher order beams

    CERN Document Server

    Orlov, S; Marchenko, P; Banzer, P; Leuchs, G

    2016-01-01

    The knife-edge method is an established technique for profiling of even tightly focused light beams. However the straightforward implementation of this method fails if the materials and geometry of the knife-edges are not chosen carefully or in particular if knife-edges are used that are made of pure materials. In these cases artifacts are introduced in the shape and position of the reconstructed beam profile due to the interaction of the light beam under study with the knife. Hence, corrections to the standard knife-edge evaluation method are required. Here we investigate the knife-edge method for highly focused radially and azimuthally polarized beams and their linearly polarized constituents. We introduce relative shifts for those constituents and report on the consistency with the case of a linearly polarized Gaussian beam. An adapted knife-edge reconstruction technique is presented and proof-of-concept tests demonstrating the reconstruction of beam profiles are shown.

  18. ATF2 for Final Focus Test Beam for Future Linear Colliders

    Science.gov (United States)

    Kuroda, S.; ATF2 Collaboration

    2016-04-01

    In future linear colliders, extremely small beam size is required at collision point for high luminosity. For example, it is of order of nanometer in ILC(International Linear Collider). ATF2 is a project at ATF(Accelerator Test Facility) in KEK which demonstrates performance of final focus system experimentally. ATF2 beam line is a prototype of ILC final focus system where the local chromaticity correction scheme is adopted. The optics is basically the same and the natural chromaticity, too. Thus the tolerance of magnet alignment and field error is similar for both of the beam lines. We report here observation of small beam size of about 45nm there. We also report plan for smaller beam size with higher beam intensity.

  19. Treatment of Laser-Induced Retinal Injuries

    Science.gov (United States)

    1989-06-29

    Distribution List (enclosed) bI’TF rruIoN STATEMEN A Approved for publi reljaso Disatbunon Unlimited TREATMENT OF LASER-INDUCED RETINAL INJURIES FINAL...suprathreshold retinal laser lesions II. Subthreshold retinal laser lesions III. Effect of steroid treatment on laser-induced retinal injury Discussion and...In the present study we investigated the effect of corticosteroid treatment of argon laser-induced retinal injury on vitreal accumulation of both

  20. Tight focus of a radially polarized and amplitudemodulated annular multi-Gaussian beam

    Institute of Scientific and Technical Information of China (English)

    Chen Jian-Nong; Xu Qin-Feng; Wang Gang

    2011-01-01

    The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component.However,the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible.We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode.Numerical simulation shows that it can be focused into a sharper focal spot of 0.125λ2 without additional apodizations or filters.The beam quality describing the purity of longitudinally polarized component is up to 86%.

  1. Consequences of the angular spectrum decomposition of a focused beam, including slower than c beam propagation

    Science.gov (United States)

    Gouesbet, Gérard; Lock, James A.

    2016-07-01

    When dealing with light scattering and propagation of an electromagnetic beam, there are essentially two kinds of expansions which have been used to describe the incident beam (i) a discrete expansion involving beam shape coefficients and (ii) a continuous expansion in terms of an angular spectrum of plane waves. In this paper, we demonstrate that the angular spectrum decomposition readily leads to two important consequences, (i) laser light beams travel in free space with an effective velocity that is smaller than the speed of light c, and (ii) the optical theorem does not hold for arbitrary shaped beams, both in the case of electromagnetic waves and scalar waves, e.g. quantum and acoustical waves.

  2. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.

    Science.gov (United States)

    Qiu, Jianrong

    2004-01-01

    Femtosecond laser has been widely used in microscopic modifications to materials due to its ultra-short laser pulse and ultrahigh light intensity. When a transparent material e.g. glass is irradiated by a tightly focused femtosecond laser, the photo-induced reaction is expected to occur only near the focused part of the laser beam inside the glass due to the multiphoton processes. We observed various induced structures e.g. color center defects, refractive index change, micro-void and micro-crack, in glasses after the femtosecond laser irradiation. In this paper, we review the femtosecond laser induced phenomena and discuss the mechanisms of the observed phenomena. We also introduce the fabrication of various micro-optical components, e.g. optical waveguide, micro-grating, micro-lens, fiber attenuator, 3-dimensional optical memory by using the femtosecond laser-induced structures. The femtosecond laser will open new possibilities in the fabrication of micro-optical components with various optical functions.

  3. Characterization of femtosecond laser-induced breakdown spectroscopy (fsLIBS) and applications for biological samples.

    Science.gov (United States)

    Gill, Ruby K; Knorr, Florian; Smith, Zachary J; Kahraman, Mehmet; Madsen, Dorte; Larsen, Delmar S; Wachsmann-Hogiu, Sebastian

    2014-01-01

    We characterize the femtosecond laser-induced breakdown spectroscopy (fsLIBS) signal for biological tissues as a function of different excitation parameters with femtosecond laser systems. These parameters include laser energy, depth of focus, and number of pulses per focal volume. We used femtosecond laser pulses of 800 nm and energy between 25 and 123 μJ to generate LIBS signals in biological tissues. As expected, we observed a linear increase in the fsLIBS intensity as a function of the laser energy. In addition, we show that moving the beam out of focus and the presence of overlapping pulses on the same focal area leads to a decrease in fsLIBS intensity due to changes in focal spot size. We also demonstrate that fsLIBS can distinguish between different biological tissue samples.

  4. Remote nano-optical beam focusing lens by illusion optics

    Science.gov (United States)

    Margousi, David; Shoorian, Hamed Reza

    2014-08-01

    In this paper, as a new application of illusion optics, a nano-optical plasmonic focusing lens structure is proposed to manipulate the light remotely by employing illusion optics theory. Plasmonic nano-optic lenses that enable super-focusing beyond the diffraction limit have been proposed as an alternative to the conventional dielectric-based refractive lenses. In the presence of an illusion device, the electromagnetic plane-waves can penetrate into a metal layer and a clear focus appears. When the illusion device is removed, waves are blocked to transmit through the metal wall. In comparison with conventional methods, our proposed method avoids any physical changes or damages in the original structure. The proposed structure can be realized by isotropic layered materials, using effective medium theory. The special feature of the proposed structure and the device concepts introduced in this work gives it an opportunity to be used as a flexible element in ultrahigh nano-scale integrated circuits for miniaturization and tuning purposes.

  5. Versatile AFM setup combined with micro-focused X-ray beam

    CERN Document Server

    Slobodskyy, T; Tholapi, R; Liefeith, L; Fester, M; Sprung, M; Hansen, W

    2015-01-01

    Micro-focused X-ray beams produced by third generation synchrotron sources offer new perspective of studying strains and processes at nanoscale. Atomic force microscope setup combined with a micro-focused synchrotron beam allows precise positioning and nanomanipulation of nanostructures under illumination. In this paper, we report on integration of a portable commercial atomic force microscope setup into a hard X-ray synchrotron beamline. Details of design, sample alignment procedure and performance of the setup are presented.

  6. Tightly Focusing of Circularly Polarized Vortex Beams through a Uniaxial Birefringent Crystal

    Institute of Scientific and Technical Information of China (English)

    RAO Lian-Zhou; WANG Zong-Chi; ZHENG Xiao-Xia

    2008-01-01

    Under the approximation of small birefringence, the properties of circalarly polarized vortex beams tightly focused through a uniaxial birefringent crystal are studied. With the proper combination of the topological charge and the birefringence, the small focus, the small bottle beam and the inverse c-shaped intensity profile can be obtained.The effects of the focal shift and the Strehl ratio on the birefringence are analysed. A relation between angular momentum (included spin and orbital) and topological Pancharatnam charge is also presented.

  7. Advancing the experimental design for simultaneous acquisition of laser induced plasma and Raman signals using a single pulse

    Science.gov (United States)

    Choi, Soo-Jin; Choi, Jae-Jun; Yoh, Jack J.

    2016-09-01

    Simultaneous acquisition was performed of combined signals that show highly resolved and identifiable peaks of both LIBS and Raman signals. A LIBS-Raman combination using a single light source is a daunting task, because the energy required for Raman shift is relatively low, compared to the energy required for laser ablation. Here, we utilize an expanded-focused beam that allows simultaneous detection of the signals of laser induced plasma and Raman shift. A beam expander obtains the Raman signal with minimized interference from the plasma, and a focusing lens of small diameter generates strong laser induced plasma for LIBS. The position of the focusing lens can be adjusted to control the area of Raman scattering to ensure a strong Raman signal. In the proposed design, the key to minimized interference is to generate the Raman scattering apart from the plasma, which allows for sufficiently long gate width and wide area for Raman detection. Furthermore, axial relocation of the end of the optical fiber can easily optimize the Raman, LIBS, or combined Raman-LIBS signal.

  8. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  9. Laser-induced periodic surface structuring of biopolymers

    Science.gov (United States)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  10. Performance predictions for a laser intensified thermal beam for use in high resolution Focused Ion Beam instruments

    CERN Document Server

    Wouters, S H W; Notermans, R P M J W; Debernardi, N; Mutsaers, P H A; Luiten, O J; Vredenbregt, E J D

    2014-01-01

    Photo-ionization of a laser-cooled and compressed atomic beam from a high-flux thermal source can be used to create a high-brightness ion beam for use in Focus Ion Beam (FIB) instruments. Here we show using calculations and Doppler cooling simulations that an atomic rubidium beam with a brightness of $2.1 \\times 10^7 A/(m^2\\,sr\\,eV)$ at a current of 1 nA can be created using a compact 5 cm long 2D magneto-optical compressor which is more than an order of magnitude better than the current state of the art Liquid Metal Ion Source.

  11. Progress in beam focusing and compression for warm-dense matter experiments

    Science.gov (United States)

    Seidl, P. A.; Anders, A.; Bieniosek, F. M.; Barnard, J. J.; Calanog, J.; Chen, A. X.; Cohen, R. H.; Coleman, J. E.; Dorf, M.; Gilson, E. P.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Lidia, S. M.; Logan, B. G.; Ni, P.; Roy, P. K.; Van den Bogert, K.; Waldron, W. L.; Welch, D. R.

    2009-07-01

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the warm-dense matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Longitudinal beam compression by large factors has been demonstrated in the Neutralized Drift Compression Experiment (NDCX) with controlled ramps and forced neutralization. Using an injected 30-mA K + ion beam with initial kinetic energy 0.3 MeV, axial compression leading to ˜50-fold current amplification and simultaneous radial focusing to beam radii of a few mm have led to encouraging energy deposition approaching the intensities required for eV-range target heating experiments. We discuss the status of several improvements to our Neutralized Drift Compression Experiment and associated beam diagnostics that are under development to reach the necessary higher beam intensities, including (1) greater axial compression via a longer velocity ramp using a new bunching module with approximately twice the available volt seconds (Vs); (2) improved centroid control via beam steering dipoles to mitigate aberrations in the bunching module; (3) time-dependent focusing elements to correct considerable chromatic aberrations; and (4) plasma injection improvements to establish a plasma density always greater than the beam density, expected to be >10 13 cm -3.

  12. Evaluation of neon focused ion beam milling for TEM sample preparation.

    Science.gov (United States)

    Pekin, T C; Allen, F I; Minor, A M

    2016-10-01

    Gallium-based focused ion beams generated from liquid-metal sources are widely used in micromachining and sample preparation for transmission electron microscopy, with well-known drawbacks such as sample damage and contamination. In this work, an alternative (neon) focused ion beam generated by a gas field-ionization source is evaluated for the preparation of electron-transparent specimens. To do so, electron-transparent sections of Si and an Al alloy are prepared with both Ga and Ne ion beams for direct comparison. Diffraction-contrast imaging and energy dispersive x-ray spectroscopy are used to evaluate the relative damage induced by the two beams, and cross-sections of milled trenches are examined to compare the implantation depth with theoretical predictions from Monte Carlo simulations. Our results show that for the beam voltages and materials systems investigated, Ne ion beam milling does not significantly reduce the focused ion beam induced artefacts. However, the Ne ion beam does enable more precise milling and may be of interest in cases where Ga contamination cannot be tolerated.

  13. Understanding the focusing of charged particle for 2D sheet beam in a cusped magnetic field

    CERN Document Server

    Banerjee, Tusharika S; Reddy, K T V

    2016-01-01

    The requirement of axial magnetic field for focusing and transportation of sheet beam using cusped magnets is less as compared to solenoid magnetic fields which is uniform. There is often some confusion about how a cusped magnetic field focuses high current density sheet beam because it is generally understood that non-uniform magnetic field cannot guide the particle beam along its axis of propagation .In this paper, we perform simple analysis of the dynamics of sheet beam in a cusped magnetic field with single electron model and emphasize an intuitive understanding of interesting features (as beam geometry, positioning of permanent magnets, particle radius,particle velocity,radius of curvature of particle inside cusped magnetic field)

  14. Self-Focusing/Defocusing of Chirped Gaussian Laser Beam in Collisional Plasma with Linear Absorption

    Science.gov (United States)

    Wani, Manzoor Ahmad; Kant, Niti

    2016-09-01

    This paper presents an investigation on the self-focusing/defocusing of chirped Gaussian laser beam in collisional plasma with linear absorption. We have derived the differential equation for the beam width parameter by using WKB and paraxial approximations and solved it numerically. The effect of chirp and other laser plasma parameters is seen on the behavior of beam width parameter with dimensionless distance of propagation. The results are discussed and presented graphically. Our simulation results show that the amplitude of oscillations decreases with the distance of propagation. Due to collisional frequency, the laser beam shows fast divergence which can be minimized by the introduction of chirp parameter. The chirp decreases the effect of defocusing and increases the ability of self-focusing of laser beam in collisional plasma. Supported by a financial grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  15. Dynamic Nonlinear Focal Shift in Amplitude Modulated Moderately Focused Acoustic Beams

    CERN Document Server

    Jiménez, Noé; González-Salido, Nuria

    2016-01-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25 kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behaviour, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both, for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by ...

  16. Correlation-induced self-focusing and self-shaping effect of a partially coherent beam

    Institute of Scientific and Technical Information of China (English)

    Yahong Chen; Yangjian Cai

    2016-01-01

    A new specially correlated partially coherent beam named nonuniform multi-Gaussian correlated(NMGC) partially coherent beam is introduced. The correlation functions of such beam in x and y directions are different from each other,i.e., nonuniform correlation function in one direction and multi-Gaussian correlated Schell-model function in the other direction. The propagation properties of an NMGC partially coherent beam in free pace are demonstrated, and we find that the intensity distribution of such beam exhibits self-focusing and self-shifting effect in one direction and self-shaping effect in the other direction on propagation. The correlation-induced self-focusing and self-shaping effect will be useful in some applications, where the high power and shaped laser is required, such as material thermal processing and laser carving.

  17. Tight Focusing Properties of Phase Modulated Radially Polarized Laguerre Bessel Gaussian Beam

    Science.gov (United States)

    Prabakaran, K.; Sangeetha, P.; Karthik, V.; Rajesh, K. B.; Musthafa, A. M.

    2017-05-01

    We propose a new approach for generating a multiple focal spot segment of subwavelength size, by tight focusing of a phase modulated radially polarized Laguerre Bessel Gaussian beam. The focusing properties are investigated theoretically by vector diffraction theory. We observe that the focal segment with multiple focal structures is separated with different axial distances and a super long dark channel can be generated by properly tuning the phase of the incident radially polarized Laguerre Bessel Gaussian beam. We presume that such multiple focal patterns and high intense beam may find applications in atom optics, optical manipulations and multiple optical trapping.

  18. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  19. H-mode accelerating structures with PMQ focusing for low-beta ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S [Los Alamos National Laboratory; O' Hara, James F [Los Alamos National Laboratory; Olivas, Eric R [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory

    2010-01-01

    We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank - electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis - are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

  20. Boundary effects in finite size plasmonic crystals: focusing and routing of plasmonic beams for optical communications.

    Science.gov (United States)

    Benetou, M I; Bouillard, J-S; Segovia, P; Dickson, W; Thomsen, B C; Bayvel, P; Zayats, A V

    2015-11-06

    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation from a crystal onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and their behaviour such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components.

  1. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  2. Laser-Induced Energy Transfer in Solids

    NARCIS (Netherlands)

    Morsink, J.B.W.; Rullmann, Johan; Wiersma, Douwe

    1981-01-01

    Laser-induced energy transfer was observed and studied in the system pentacene doped into naphthalene. The transfer spectrum shows a remarkable correspondence with the host density of states function. The rate for laser-induced energy transfer is given and it is concluded that most likely, intermole

  3. Coherence properties of focused X-ray beams at high brilliance synchrotron sources

    CERN Document Server

    Singer, A

    2013-01-01

    An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here we consider Gaussian Schell-model beams and thin optical elements. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed.

  4. Mechanism of laser-induced plasma shock wave evolution in air

    Institute of Scientific and Technical Information of China (English)

    Zhao Rui; Liang Zhong-Cheng; Han Bing; Zhang Hong-Chao; Xu Rong-Qing; Lu Jian; Ni Xiao-Wu

    2009-01-01

    A theoretical model is proposed to describe the mechanism of laser-induced plasma shock wave evolution in air. To verify the validity of the theoretical model, an optical beam deflection technique is employed to track the plasma shock wave evolution process. The theoretical model and the experimental signals are found to be in good agreement with each other. It is shown that the laser-induced plasma shock wave undergoes formation, increase and decay processes; the increase and the decay processes of the laser-induced plasma shock wave result from the overlapping of the compression wave and the rarefaction wave, respectively. In addition, the laser-induced plasma shock wave speed and pressure distributions, both a function of distance, are presented.

  5. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy.

    Science.gov (United States)

    Boudhib, Mohamed; Hermann, Jörg; Dutouquet, Christophe

    2016-04-05

    We demonstrate that the elemental composition of aerosols can be measured using laser-induced breakdown spectroscopy (LIBS) without any preliminary calibration with standard samples. Therefore, a nanosecond Nd:YAG laser beam was focused into a flux of helium charged with alumina aerosols of a few micrometers diameter. The emission spectrum of the laser-generated breakdown plasma was recorded with an echelle spectrometer coupled to a gated detector. The spectral features including emission from both the helium carrier gas and the Al2O3 aerosols were analyzed on the base of a partial local thermodynamic equilibrium. Thus, Boltzmann equilibrium distributions of population number densities were assumed for all plasma species except of helium atoms and ions. By analyzing spectra recorded for different delays between the laser pulse and the detector gate, it is shown that accurate composition measurements are only possible for delays ≤1 μs, when the electron density is large enough to ensure collisional equilibrium for the aerosol vapor species. The results are consistent with previous studies of calibration-free LIBS measurements of solid alumina and glass and promote compositional analysis of aerosols via laser-induced breakdown in helium.

  6. Controlling the optical fiber output beam profile by focused ion beam machining of a phase hologram on fiber tip.

    Science.gov (United States)

    Han, Jiho; Sparkes, Martin; O'Neill, William

    2015-02-01

    A phase hologram was machined on an optical fiber tip using a focused ion beam (FIB) system so that a ring-shaped beam emerges from the fiber tip. The fiber used for this work was a commercial single-mode optical fiber patch cable for a design wavelength of 633 nm with a germanosilicate core. The ring-shaped beam was chosen to ensure a simple geometry in the required phase hologram, though the Gerchberg-Saxton algorithm can be used to calculate a hologram for an arbitrary beam shape. The FIB machining took approximately 45 min at 30 kV and 200 pA. The radius of the resulting ring beam was 0.083 m at 1 m standoff, as compared to 0.1 m as was initially desired. Results suggest that this imaging technique may provide a basis for a beam-shaping method with several advantages over the current commercial solutions, having permanent alignment, compactness, and mechanical robustness. However, it would appear that minimizing the speckle pattern will remain a critical challenge for this technique to become widely implemented.

  7. Focusing a TM(01) beam with a slightly tilted parabolic mirror.

    Science.gov (United States)

    April, Alexandre; Bilodeau, Pierrick; Piché, Michel

    2011-05-09

    A parabolic mirror illuminated with an incident collimated beam whose axis of propagation does not exactly coincide with the axis of revolution of the mirror shows distortion and strong coma. To understand the behavior of such a focused beam, a detailed description of the electric field in the focal region of a parabolic mirror illuminated with a beam having a nonzero angle of incidence is required. We use the Richards-Wolf vector field equation to investigate the electric energy density distribution of a beam focused with a parabolic mirror. The explicit aberration function of this focused field is provided along with numerically calculated electric energy densities in the focal region for different angles of incidence. The location of the peak intensity, the Strehl ratio and the full-width at half-maximum as a function of the angle of incidence are given and discussed. The results confirm that the focal spot of a strongly focused beam is affected by severe coma, even for very small tilting of the mirror. This analysis provides a clearer understanding of the effect of the angle of incidence on the focusing properties of a parabolic mirror as such a focusing device is of growing interest in microscopy. © 2011 Optical Society of America

  8. Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.; /Orsay /KEK, Tsukuba; Alabau Pons, M.; /Valencia U., IFIC; Amann, J.; /SLAC; Angal-Kalinin, D.; /Daresbury; Apsimon, R.; /Oxford U., JAI; Araki, S.; Aryshev, A.; /KEK, Tsukuba; Bai, S.; /Beijing, Inst. High Energy Phys.; Bellomo, P.; /SLAC; Bett, D.; /Oxford U., JAI; Blair, G.; /Royal Holloway, U. of London; Bolzon, B.; /Savoie U.; Boogert, S.; Boorman, G.; /Royal Holloway, U. of London; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; /Oxford U., JAI; Delahaye, Jean-Pierre; /CERN; Deacon, L.; /Royal Holloway, U. of London; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

    2011-11-11

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  9. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Bambade, P; Amann, J; Angal-Kalinin, D; Apsimon, R; Araki, S; Aryshev, A; Bai, S; Bellomo, P; Bett, D; Blair, G; Bolzon, B; Boogert, S; Boorman, G; Burrows, P N; Christian, G; Coe, P; Constance, B; Delahaye, Jean-Pierre; Deacon, L; Elsen, E; Faus-Golfe, A; Fukuda, M; Gao, J; Geffroy, N; Gianfelice-Wendt, E; Guler, H; Hayano, H; Heo, A -Y; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jeremie, A; Jones, J; Kamiya, Y; Karataev, P; Kim, E -S; Kim, H -S; Kim, S H; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lyapin, A; Masuzawa, M; McCormick, D; Molloy, S; Naito, T; Nakamura, T; Nelson, J; Okamoto, D; Okugi, T; Oroku, M; Park, Y J; Parker, B; Paterson, E; Perry, C; Pivi, M; Raubenheimer, T; Renier, Y; Resta-Lopez, J; Rimbault, C; Ross, M; Sanuki, T; Scarfe, A; Schulte, D; Seryi, A; Spencer, C; Suehara, T; Sugahara, R; Swinson, C; Takahashi, T; Tauchi, T; Terunuma, N; Tomas, R; Urakawa, J; Urner, D; Verderi, M; Wang, M -H; Warden, M; Wendt, M; White, G; Wittmer, W; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, Y; Yoda, H; Yokoya, K; Zhou, F; Zimmermann, F

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  10. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Bambade, P; Amann, J; Angal-Kalinin, D; Apsimon, R; Araki, S; Aryshev, A; Bai, S; Bellomo, P; Bett, D; Blair, G; Bolzon, B; Boogert, S; Boorman, G; Burrows, P N; Christian, G; Coe, P; Constance, B; Delahaye, J P; Deacon, L; Elsen, E; Faus-Golfe, A; Fukuda, M; Gao, J; Geffroy, N; Gianfelice-Wendt, E; Guler, H; Hayano, H; Heo, A Y; Honda, Y; Huang, J Y; Hwang, W H; Iwashita, Y; Jeremie, A; Jones, J; Kamiya, Y; Karataev, P; Kim, E S; Kim, H S; Kim, S H; Komamiya, S; Kubo, K; Kume, T; Kuroda, S; Lam, B; Lyapin, A; Masuzawa, M; McCormick, D; Molloy, S; Naito, T; Nakamura, T; Nelson, J; Okamoto, D; Okugi, T; Oroku, M; Park, Y J; Parker, B; Paterson, E; Perry, C; Pivi, M; Raubenheimer, T; Renier, Y; Resta-Lopez, J; Rimbault, C; Ross, M; Sanuki, T; Scarfe, A; Schulte, D; Seryi, A; Spencer, C; Suehara, T; Sugahara, R; Swinson, C; Takahashi, T; Tauchi, T; Terunuma, N; Tomas, R; Urakawa, J; Urner, D; Verderi, M; Wang, M H; Warden, M; Wendt, M; White, G; Wittmer, W; Wolski, A; Woodley, M; Yamaguchi, Y; Yamanaka, T; Yan, Y; Yoda, H; Yokoya, K; Zhou, F; Zimmermann, F; 10.1103/PhysRevSTAB.13.042801

    2010-01-01

    ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  11. Pulse splitting of self-focusing-beams in normally dispersive media

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    1996-01-01

    The influence of the normal group-velocity dispersion on anisotropic self-focusing beams in nonlinear Kerr media is studied analytically. It is shown that a light pulse self-focusing in the presence of normal dispersion is split up into several small-scale cells preventing a catastrophic collapse...

  12. Radiation forces on a Rayleigh dielectric sphere produced by highly focused parabolic scaling Bessel beams.

    Science.gov (United States)

    Guo, Mengwen; Zhao, Daomu

    2017-02-20

    The radiation forces on a Rayleigh dielectric particle induced by a highly focused parabolic scaling Bessel beam (PSBB) are investigated. Numerical results show that the zero-order PSBB can be used to trap a high-index particle at the focus and near the focus by the first-order PSBB. For the low-index particle, it can be guided or confined in the dark core of the nonzero-order PSBB but cannot be stably trapped in this single-beam trap. Further, we analyze the condition of trapping stability. It is found that the lower limit in the particle radius for stable trapping is different for different orders.

  13. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    Science.gov (United States)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  14. The tight focusing properties of Laguerre-Gaussian-correlated Schell-model beams

    Science.gov (United States)

    Xu, Hua-Feng; Zhang, Zhou; Qu, Jun; Huang, Wei

    2016-08-01

    Based on the Richards-Wolf vectorial diffraction theory, the tight focusing properties, including the intensity distribution, the degree of polarization and the degree of coherence, of the Laguerre-Gaussian-correlated Schell-model (LGSM) beams through a high-numerical-aperture (NA) focusing system are investigated in detail. It is found that the LGSM beam exhibits some extraordinary focusing properties, which is quite different from that of the GSM beam, and the tight focusing properties are closely related to the initial spatial coherence ? and the mode order n. The LGSM beam can form an elliptical focal spot, a circular focal spot or a doughnut-shaped dark hollow beam at the focal plane by choosing a suitable value of the initial spatial coherence ?, and the central dark size of the dark hollow beam increases with the increase of the mode order n. In addition, the influences of the initial spatial coherence ? and the mode order n on the degree of polarization and the degree of coherence are also analysed in detail, respectively. Our results may find applications in optical trapping.

  15. Self-Focusing of Hermite-Cosh-Gaussian Laser Beams in Plasma under Density Transition

    Directory of Open Access Journals (Sweden)

    Manzoor Ahmad Wani

    2014-01-01

    Full Text Available Self-focusing of Hermite-Cosh-Gaussian (HChG laser beam in plasma under density transition has been discussed here. The field distribution in the medium is expressed in terms of beam-width parameters and decentered parameter. The differential equations for the beam-width parameters are established by a parabolic wave equation approach under paraxial approximation. To overcome the defocusing, localized upward plasma density ramp is considered, so that the laser beam is focused on a small spot size. Plasma density ramp plays an important role in reducing the defocusing effect and maintaining the focal spot size up to several Rayleigh lengths. To discuss the nature of self-focusing, the behaviour of beam-width parameters with dimensionless distance of propagation for various values of decentered parameters is examined by numerical estimates. The results are presented graphically and the effect of plasma density ramp and decentered parameter on self-focusing of the beams has been discussed.

  16. Generation of Laguerre Gaussian beams using spiral phase diffractive elements fabricated on optical fiber tips using focused ion beam milling

    Science.gov (United States)

    Rodrigues Ribeiro, R. S.; Dahal, P.; Guerreiro, A.; Jorge, P. A. S.; Viegas, J.

    2016-03-01

    In this work, spiral phase lenses fabricated on the tip of single mode optical fibers are reported. This allows tailoring the fundamental guided mode, a Gaussian beam, into a Laguerre - Gaussian profile without using additional optical elements. The lenses are fabricated using Focused Ion Beam milling, enabling high resolution in the manufacturing process. The phase profiles are evaluated and validated using an implementation of the Finite Differences Time Domain. The output optical intensity profiles matching the numerical simulations are presented and analyzed. Finally, results on cell trapping and manipulation are briefly described.

  17. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  18. Radiation protection systems for the final focus test beam at SLAC.

    Science.gov (United States)

    Rokni, S H; Benson, E C; Burke, D L; Jenkins, T M; Liu, J C; Nelson, G; Nelson, W R; Smith, H E; Tenenbaum, P; Vylet, V; Walz, D R

    1996-11-01

    The Final Focus Test Beam (FFTB) is a new beam line at the Stanford Linear Accelerator Center designed to test new beam optics concepts, hardware, and techniques necessary to achieve and measure the small spot sizes required for future generations of high-energy e+e- linear colliders. The FFTB takes a 47 GeVc-1, 1 kW electron beam at the end of the Stanford Linear Accelerator Center linear accelerator and transports it to the FFTB beam dump. A radiation protection system was designed and installed for the FFTB with the primary goal that the integrated dose equivalent outside the shielding resulting from beam loss would not exceed 10 mSv y-1. This system is comprised of shielding, a beam containment system and a personnel protection system. This paper presents various aspects of radiation safety at Stanford Linear Accelerator Center that were considered in the design of the FFTB radiation protection system. Beam tests were conducted in which the performance of various beam containment devices and the shielding effectiveness were evaluated. Preliminary results from these tests are presented.

  19. Laser induced single spot oxidation of titanium

    Science.gov (United States)

    Jwad, Tahseen; Deng, Sunan; Butt, Haider; Dimov, S.

    2016-11-01

    Titanium oxides have a wide range of applications in industry, and they can be formed on pure titanium using different methods. Laser-induced oxidation is one of the most reliable methods due to its controllability and selectivity. Colour marking is one of the main applications of the oxidation process. However, the colourizing process based on laser scanning strategies is limited by the relative large processing area in comparison to the beam size. Single spot oxidation of titanium substrates is proposed in this research in order to increase the resolution of the processed area and also to address the requirements of potential new applications. The method is applied to produce oxide films with different thicknesses and hence colours on titanium substrates. High resolution colour image is imprinted on a sheet of pure titanium by converting its pixels' colours into laser parameter settings. Optical and morphological periodic surface structures are also produced by an array of oxide spots and then analysed. Two colours have been coded into one field and the dependencies of the reflected colours on incident and azimuthal angles of the light are discussed. The findings are of interest to a range of application areas, as they can be used to imprint optical devices such as diffusers and Fresnel lenses on metallic surfaces as well as for colour marking.

  20. Analysis of tungsten carbide coatings by infrared laser-induced argon spark with inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kanický, V.; Otruba, V.; Mermet, J.-M.

    2000-10-01

    Infrared laser ablation was studied for application to the analysis of plasma-sprayed tungsten carbide/cobalt coatings. The potential of the laser induced argon-spark (LINA-Spark™), as a sample introduction device in inductively coupled plasma atomic emission spectrometry was studied. The use of an IR laser along with defocusing led to laser-induced microplasma-based ablation. The mass ablation rate, represented by the ICP emission intensity per laser beam unit area, exhibited a flat increase in the irradiance range 2-250 GW/cm 2. A low slope (0.5) of this dependence in log-log scale gave evidence of plasma shielding. The steep increase in the measured acoustic signal when focused in front of the sample, i.e. in argon, indicated a breakdown of argon. Consequently, considerably lower ICP emissions were observed within the same range of irradiance. The cobalt/tungsten line intensity ratio in the ICP was practically constant from 1.5 up to at least 250 GW/cm 2. Acceptable precision (R.S.D.<5%) was obtained without internal standardization for irradiance between 2 and 8 GW/cm 2. Optimization of the laser pulse energy, repetition rate, beam focusing and sample displacement during interaction led to the linearization of dependences of signal vs. cobalt percentage, at least up to the highest studied value of 23% Co.

  1. Surface profiling of X-ray mirrors for shaping focused beams.

    Science.gov (United States)

    Laundy, David; Alianelli, Lucia; Sutter, John; Evans, Gwyndaf; Sawhney, Kawal

    2015-01-26

    Grazing incidence mirrors are a standard optic for focusing X-rays. Active mirrors, whose surface profile can be finely adjusted, allow control of beam shape and size at the sample. However, progress towards their routine use for beam shaping has been hampered by the strong striations in reflected beams away from the focal plane. Re-entrant (partly concave and partly convex) surface modifications are proposed for shaping X-ray beams to a top-hat in the focal plane while reducing the striations caused by unavoidable polishing errors. A method for constructing such surfaces with continuous height and slope (but only piecewise continuous curvature) will be provided. Ray tracing and wave propagation calculations confirm its effectiveness. A mirror system is proposed allowing vertical beam sizes in the range 0.5 to 10μm. A prototype will be fabricated and is expected to have applications on many synchrotron X-ray beamlines.

  2. Focused electron beam induced etching of titanium with XeF{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schoenaker, F J; Cordoba, R; Fernandez-Pacheco, R; Magen, C; Zuriaga-Monroy, C; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Stephan, O [Laboratoire de Physique des Solides, CNRS UMR 8502, Universite Paris Sud XI, Batiment 510, F-91405 Orsay (France); De Teresa, J M, E-mail: deteresa@unizar.es [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2011-07-01

    Titanium is a relevant technological material due to its extraordinary mechanical and biocompatible properties, its nanopatterning being an increasingly important requirement in many applications. We report the successful nanopatterning of titanium by means of focused electron beam induced etching using XeF{sub 2} as a precursor gas. Etch rates up to 1.25 x 10{sup -3} {mu}m{sup 3} s{sup -1} and minimum pattern sizes of 80 nm were obtained. Different etching parameters such as beam current, beam energy, dwell time and pixel spacing are systematically investigated, the etching process being optimized by decreasing both the beam current and the beam energy. The etching mechanism is investigated by transmission electron microscopy. Potential applications in nanotechnology are discussed.

  3. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  4. Angular anisoplanatism of a focused beam using beacons over horizontal path

    Science.gov (United States)

    Wu, Wu-ming; Ning, Yu

    2016-01-01

    The performance of the achieve laser beam propagation through atmospheric turbulence with adaptive optics is degraded by the fact that the wavefront aberrations difference. This error is only include the angular anisoplanatism when there is separation between the achieve laser beam and beacon. In the paper we derive an analytic expression for the effective angular anisoplanatism as a function of displacement angular when the turbulence profile is uniform. It shows that the effective angular anisoplanatism becomes weaker as the diameter of laser beams and the Fried transverse coherence length increase. We report results from field experiments that the effective angular anisoplanatism of a focused beam over horizontal path. It is found that measured and theoretical results are consistent. The effective wavefront variance increases with the strength of atmospheric turbulence and the angular displacement. And the constant phase of angular anisoplanatism has no effect on the Strehl ratio of the beam.

  5. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jafari Milani, M. R., E-mail: mrj.milani@gmail.com [Plasma Physics Research School, Tehran (Iran, Islamic Republic of); Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Niknam, A. R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Farahbod, A. H. [Plasma Physics Research School, Tehran (Iran, Islamic Republic of)

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  6. In situ nanomechanical testing in focused ion beam and scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Gianola, D. S. [Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Sedlmayr, A.; Moenig, R.; Kraft, O. [Institute for Applied Materials, Karlsruhe Institute of Technology, Karlsruhe (Germany); Volkert, C. A. [Institute for Materials Physics, Georg-August University of Goettingen, Goettingen (Germany); Major, R. C.; Cyrankowski, E.; Asif, S. A. S.; Warren, O. L. [Hysitron, Inc., Minneapolis, Minnesota 55344 (United States)

    2011-06-15

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  7. In situ nanomechanical testing in focused ion beam and scanning electron microscopes.

    Science.gov (United States)

    Gianola, D S; Sedlmayr, A; Mönig, R; Volkert, C A; Major, R C; Cyrankowski, E; Asif, S A S; Warren, O L; Kraft, O

    2011-06-01

    The recent interest in size-dependent deformation of micro- and nanoscale materials has paralleled both technological miniaturization and advancements in imaging and small-scale mechanical testing methods. Here we describe a quantitative in situ nanomechanical testing approach adapted to a dual-beam focused ion beam and scanning electron microscope. A transducer based on a three-plate capacitor system is used for high-fidelity force and displacement measurements. Specimen manipulation, transfer, and alignment are performed using a manipulator, independently controlled positioners, and the focused ion beam. Gripping of specimens is achieved using electron-beam assisted Pt-organic deposition. Local strain measurements are obtained using digital image correlation of electron images taken during testing. Examples showing results for tensile testing of single-crystalline metallic nanowires and compression of nanoporous Au pillars will be presented in the context of size effects on mechanical behavior and highlight some of the challenges of conducting nanomechanical testing in vacuum environments.

  8. Multisplitting and collapse of self-focusing anisotropic beams in normal/anomalous dispersive media

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.

    1996-01-01

    Three-dimensional self-focusing light pulses in normal and anomalous dispersive media are investigated by means of a waveguide instability analysis, a Lagrangian approach, and a quasi-self-similar analysis. In the case of normal dispersion for which no localized ground state exists, it is shown...... that a high-intensity elongated beam cannot self-similarly collapse. Even when the incident beam power widely exceeds the critical power for a two-dimensional self-focusing, the beam is shown to split into multiple cells that ultimately disperse when their individual mass lies below the critical power...... also play an important role in an anomalous dispersive medium. In this case, unlike the former one, the beam self-contracts along its propagation axis and reconcentrates its shape back toward the center where it ultimately collapses in a finite time. (C) 1996 American Institute of Physics....

  9. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  10. Laser-induced positive ion and neutral atom/molecule emissions from single-crystal CaHPO4 center dot 2H20: The role of electron-beam-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Dawes, Mary L.(Washington State University); Hess, Wayne P.(BATTELLE (PACIFIC NW LAB)); Kawaguchi, Yuji (VISITORS); Langford, S C.(Washington State University); Dickinson, J. Tom (Washington State University)

    1998-11-01

    We examine laser-induced ion and neutral emissions from single-crystal CaHPO4 center dot 2H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders magnitude higher following exposure to 2keV electrons at current densities of 200 uA/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation)and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption.

  11. Laser-induced positive ion and neutral atom/molecule emission from single-crystal CaHPO4.2H2O: The role of electron-beam-induced defects

    Science.gov (United States)

    Dawes, M. L.; Hess, W.; Kawaguchi, Y.; Langford, S. C.; Dickinson, J. T.

    We examine laser-induced ion and neutral emissions from single-crystal CaHPO4.2H2O (brushite), a wide-band-gap, hydrated inorganic single crystal, with 248-nm excimer laser radiation. Both laser-induced ion and neutral emissions are several orders of magnitude higher following exposure to 2 keV electrons at current densities of 200 μA/cm2 and doses of 1 C/cm2. In addition to intense Ca+ signals, electron-irradiated surfaces yield substantial CaO+, PO+, and P+ signals. As-grown and as-cleaved brushite show only weak neutral O2 and Ca emissions, whereas electron-irradiated surfaces yield enhanced O2, Ca, PO, PO2, and P emissions. Electron irradiation (i) significantly heats the sample, leading to thermal dehydration (CaHPO4 formation) and pyrolysis (Ca2P2O7 formation) and (ii) chemically reduces the surface via electron stimulated desorption. The thermal effects are accompanied by morphological changes, including recrystallization. Although complex, these changes lead to high defect densities, which are responsible for the dramatic enhancements in the observed laser desorption.

  12. Neutron and Ion Beams Emitted from Plasma Focus (112.5 J) Device

    Science.gov (United States)

    El-Aragi M., G.

    2010-02-01

    Preliminary results of recent experiments performed within the Mather-type 112.5 J plasma focus device are presented. The ion beams from the focus device operated with deuterium filling at 1 mbar were registered using CR-39 solid state nuclear track detectors (SSNTD) and a Faraday cup detector for time-resolved measurements. The time-resolved neutron emission from the focus region measurements was detected with a photomultiplier tube (IP-28) optically coupled with a plastic scintillator NE 102.

  13. Lateral resolution in focused electron beam-induced deposition: scaling laws for pulsed and static exposure

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek, Aleksandra [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland); AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Szmyt, Wojciech; Kapusta, Czeslaw [AGH University of Science and Technology, Department of Solid State Physics, Faculty of Physics and Applied Computer Science, Krakow (Poland); Utke, Ivo [Empa, Laboratory for Mechanics of Materials and Nanostructures, Thun (Switzerland)

    2014-12-15

    In this work, we review the single-adsorbate time-dependent continuum model for focused electron beam-induced deposition (FEBID). The differential equation for the adsorption rate will be expressed by dimensionless parameters describing the contributions of adsorption, desorption, dissociation, and the surface diffusion of the precursor adsorbates. The contributions are individually presented in order to elucidate their influence during variations in the electron beam exposure time. The findings are condensed into three new scaling laws for pulsed exposure FEBID (or FEB-induced etching) relating the lateral resolution of deposits or etch pits to surface diffusion and electron beam exposure dwell time for a given adsorbate depletion state. (orig.)

  14. Control of beam halo-chaos by Gauss function in the triangle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    Yu Hai-Jun; Bai Long; Weng Jia-Qiang; Luo Xiao-Shu; Fang Jin-Qing

    2008-01-01

    This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.

  15. A focusable, convergent fast-electron beam from ultra-high-intensity laser-solid interactions

    CERN Document Server

    Scott, R H H

    2015-01-01

    A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.

  16. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitati...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  17. Low Temperature Plasmas Generated and Sustained Indefinitely Using a Focused Microwave Beam

    Science.gov (United States)

    Reid, Remington; Hoff, Brad; Lepell, Paul; AFRL Team

    2016-10-01

    The Air Force Research Laboratory has constructed a device that can initiate a plasma discharge in a focused microwave beam and sustain it indefinitely. A 10 kW, 4.5 GHz beam is passed through a vacuum chamber outfitted with pressure windows that are transparent to 4.5 GHz radiation. The pressure windows are large enough in diameter to prevent any interactions between the beam and the metallic chamber. The entire experiment is housed inside an anechoic chamber to minimize reflections. This novel plasma source generates low temperature, low density plasmas that have no contact with the walls which minimizes contamination and sheath formation.

  18. Approximate kinetic quasiequilibrium distributions for intense beam propagation through a periodic focusing quadrupole lattice

    Directory of Open Access Journals (Sweden)

    Edward A. Startsev

    2010-06-01

    Full Text Available The transverse dynamics of an intense charged particle beam propagating through a periodic quadrupole focusing lattice is described by the nonlinear Vlasov-Maxwell system of equations, where the propagation distances play the role of time. To determine matched-beam quasiequilibrium distribution functions, one needs to determine a dynamical invariant for the beam particles moving in the combined applied and self-generated fields. In this paper, a perturbative Hamiltonian transformation method is developed which is an expansion in the particle’s vacuum phase advance ϵ[over ¯]∼σ_{v}/2π, treated as a small parameter, which is used to transform away the fast particle orbit oscillations and obtain the average Hamiltonian accurate to order ϵ[over ¯]^{3}. The average Hamiltonian is an approximate invariant of the original system, and can be used to determine self-consistent beam quasiequilibrium solutions that are matched to the focusing channel. The equation determining the average self-field potential is derived for general boundary conditions by taking into account the average contribution of the charges induced on the boundary. It is shown for a cylindrical conducting boundary that the average self-field potential acquires an octupole component, which results in the average motion of some beam particles being nonintegrable and their trajectories chaotic. This chaotic behavior of the beam particles may significantly change the nature of the Landau damping (or growth of collective excitations supported by an intense charged particle beam.

  19. Beam Steering, Focusing and Compression for Warm-Dense Matter Experiments

    Science.gov (United States)

    Lidia, S. M.; Anders, A.; Cohen, R. H.; Coleman, J. E.; Dorf, M.; Gilson, E. P.; Grote, D. P.; Jung, J. Y.; Leitner, M.; Logan, B. G.; Roy, P. K.; Sefkow, A. B.; Seidl, P. A.; Waldron, W. L.; Welch, D. R.

    2008-11-01

    The Heavy-Ion Fusion Sciences Virtual National Laboratory is pursuing an approach to target heating experiments in the Warm Dense Matter regime, using space-charge-dominated ion beams that are simultaneously longitudinally bunched and transversely focused. Axial compression leading to ˜100X current amplification and simultaneous radial focusing have led to encouraging energy deposition approaching, but still short of, the intensities required for eV-range target heating experiments. We present measurements from the Neutralized Drift Compression Experiment to reach the necessary higher beam intensities, including: (1) axial compression and radial focusing; (2) spatial and temporal distribution of energy deposition at the target plane; and (3) centroid motion of the beam spot through the pulse.

  20. Using Focused Electron Beams to Drill Straight Nanopores on a Membrane

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Wang

    2014-08-01

    Full Text Available A high-resolution focused electron beam is used for the fabrication of metal nanostructures and devices with insulating membranes by nanosculpting metal films. This top-down focused electron beam drilling method uses the controlled ablation of materials to produce nanoscale devices with near-atomic precision of order. Using the proposed procedure, nano-drilling is not directly realized through the aperture, but by using a focused electron beam to burn away the solvent. Recent studies have investigated silicon nitride nanopores with an hourglass profile and silica nanopores with a pyramid-shaped cross-section, but electronic drilling in these approaches failed to produce straight nanopores. A method is proposed to improve the membranes’ thermal conductivity to rapidly produce straight nanopores, and is experimentally confirmed and has significant potential for use in nano-sensors or nano-devices.

  1. Second harmonic generation polarization microscopy with tightly focused linearly and radially polarized beams

    Science.gov (United States)

    Yew, E. Y. S.; Sheppard, C. J. R.

    2007-07-01

    Second harmonic generation microscopy was conducted on rat-tail tendons with linearly and radially polarized beams. Transverse and axial field components were generated in the focal region through tight focusing of linearly and radially polarized. It was found that the generated SHG signals could not be qualitatively explained with a scalar approximation to the electric field at the focus. Only by accounting for the interactions of the axial and transverse components of the electric field interacting through the nonlinear susceptibility χ(2) tensor could the SHG images be explained. For the case of collagen we find that the SHG signal varies as a function of the analyzer angle with a cos2 or sin2 dependency for linearly polarized beams. For tightly focused radially polarized beams we find that the output SHG is radially polarized after collimation and is independent of the analyzer angle.

  2. Focused ion beam techniques for fabricating geometrically-complex components and devices.

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Thomas Michael; Adams, David Price; Hodges, V. Carter; Vasile, Michael J.

    2004-03-01

    We have researched several new focused ion beam (FIB) micro-fabrication techniques that offer control of feature shape and the ability to accurately define features onto nonplanar substrates. These FIB-based processes are considered useful for prototyping, reverse engineering, and small-lot manufacturing. Ion beam-based techniques have been developed for defining features in miniature, nonplanar substrates. We demonstrate helices in cylindrical substrates having diameters from 100 {micro}m to 3 mm. Ion beam lathe processes sputter-define 10-{micro}m wide features in cylindrical substrates and tubes. For larger substrates, we combine focused ion beam milling with ultra-precision lathe turning techniques to accurately define 25-100 {micro}m features over many meters of path length. In several cases, we combine the feature defining capability of focused ion beam bombardment with additive techniques such as evaporation, sputter deposition and electroplating in order to build geometrically-complex, functionally-simple devices. Damascene methods that fabricate bound, metal microcoils have been developed for cylindrical substrates. Effects of focused ion milling on surface morphology are also highlighted in a study of ion-milled diamond.

  3. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    Science.gov (United States)

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz.

  4. Excitation of radiationless anapole mode of isotropic dielectric nanoparticles with tightly focused radially polarized beam

    CERN Document Server

    Wei, Lei; Bhattacharya, Nandini; Urbach, H Paul

    2016-01-01

    A high index dielectric nano-sphere can be excited and yet remain radiationless. A method to excite the non-radiating anapole mode of a high index isotropic dielectric nanosphere is presented. With tightly focused radially polarized beam illumination, the main-contributing electric dipole mode and magnetic modes can be zero with only a weak electric quadruple contributing to the total scattering. Further, with a standing wave illumination formed by two counter-propagating focused radially polarized beam under $4\\pi$ configuration, the ideal radiationless ananpole can be excited.

  5. Design of titania nanotube structures by focused laser beam direct writing

    Energy Technology Data Exchange (ETDEWEB)

    Enachi, Mihai [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Stevens-Kalceff, Marion A. [School of Physics, University of New South Wales, Sydney, New South Wales 2052 (Australia); Sarua, Andrei [H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ursaki, Veaceslav [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of); Tiginyanu, Ion, E-mail: tiginyanu@asm.md [National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare av. 168, Chisinau, MD-2004 (Moldova, Republic of); Institute of Electronic Engineering and Nanotechnologies, Academy of Sciences of Moldova, Chisinau, MD-2028 (Moldova, Republic of)

    2013-12-21

    In this work, we report on electrochemical fabrication of titania films consisting of nanotubes (NTs) and their treatment by focused laser beam. The results of sample characterization by optical and scanning electron microscopy, cathodoluminescence imaging, and Raman scattering scanning spectroscopy are compared to those inherent to specimens subjected to thermal treatment in a furnace. The obtained data demonstrate possibilities for controlling crystallographic structure of TiO{sub 2} NTs by focused laser beam direct writing. These findings open new prospects for the design and fabrication of spatial architectures based on titania nanotubes.

  6. Electron beam focusing in a racetrack microtron by means of rotated two-sector dipole magnets

    Science.gov (United States)

    Delhez, J. L.; Webers, G. A.; Botman, J. I. M.; Hagedoorn, H. L.; Muzio, D.; Timmermans, C. J.

    1992-05-01

    We present an unconventional method of electron beam focusing in a racetrack microtron (RTM). The RTM bending magnets have a two-sector shape (valley and hill) and are slightly rotated in their median plane in order to guarantee closed orbits. Then, isochronism is automatically fulfilled. Comparison between this new arrangement and a previous three-sector design, inspired by Froelich [1], shows that the focusing properties are greatly improved, e.g. regarding beam acceptance and construction sensitivity. We will give a detailed description of the two-sector layout, make a comparison with the three-sector magnet (acceptance and sensitivity) and give magnet parameters for optimum performance.

  7. Beam Focusing by a Non-Uniformly-Spaced Nanoslit Array in a Metallic Film

    Institute of Scientific and Technical Information of China (English)

    JIAO Xiao-Jin; WANG Pei; ZHANG Dou-Guo; LU Yong-Hua; XIE Jian-Ping; MING Hai

    2006-01-01

    @@ A finite difference time domain simulation has been performed to analyse the optical transmission through a non-uniformly-spaced nanoslit array in silver film. The phase change of surface plasmons propagating on the silver film is used to modulate the initial phase of the output beam. The beam deflection and focusing function are designed, and the focal depth of the focusing metallic structure are mainly considered. It is found that the focal depth can be controlled by altering the effective width of this structure, i.e. the number of slits, when the relative spacing is fixed.

  8. Deastigmatism, circularization, and focusing of a laser diode beam using a single biconvex microlens

    Science.gov (United States)

    Hasan, Md. Nazmul; Haque, Muttahid-Ull; Lee, Yung Chun

    2016-09-01

    A single biconvex microlens is proposed to correct the astigmatism and ellipticity of a laser diode (LD) beam and focus it to a smallest circular spot. The microlens has three different profiles in which one cylindrical input surface is to collimate the beam in the fast-axis (y-axis) direction. Output surface, on the other hand, holds two different parabolic profiles in fast- and slow-axis (x-axis) directions to correct the astigmatism and focus the beam into a smallest circular spot. A simulation software is used to design and optimize those lens profiles. Theoretically, the smallest focused spot size is around 4.24 μm in diameter. The three profiles are then transferred to photo-masks to fabricate the microlens on polycarbonate material using an excimer laser dragging method with alignment accuracy of 1 μm. The machined microlens is assembled with the LD using double-sided optically clear adhesive tape. The experimental focused spot is found to be 16.75 μm in diameter. Circularity of the focused spot is demonstrated by a single-shot exposure test on thin photoresist layer that shows a circular-dot diameter of 7.32 μm. The proposed technique has great potential in applications such as beam pen lithography, fiber coupling, and optical read-write head.

  9. Pink-beam focusing with a one-dimensional compound refractive lens.

    Science.gov (United States)

    Dufresne, Eric M; Dunford, Robert W; Kanter, Elliot P; Gao, Yuan; Moon, Seoksu; Walko, Donald A; Zhang, Xusheng

    2016-09-01

    The performance of a cooled Be compound refractive lens (CRL) has been tested at the Advanced Photon Source (APS) to enable vertical focusing of the pink beam and permit the X-ray beam to spatially overlap with an 80 µm-high low-density plasma that simulates astrophysical environments. Focusing the fundamental harmonics of an insertion device white beam increases the APS power density; here, a power density as high as 500 W mm(-2) was calculated. A CRL is chromatic so it does not efficiently focus X-rays whose energies are above the fundamental. Only the fundamental of the undulator focuses at the experiment. A two-chopper system reduces the power density on the imaging system and lens by four orders of magnitude, enabling imaging of the focal plane without any X-ray filter. A method to measure such high power density as well as the performance of the lens in focusing the pink beam is reported.

  10. Surgical Treatment of Laser Induced Eye Injuries

    Science.gov (United States)

    1990-12-05

    AD-A234 849 CONTRACT NO.: DAMD17-89-C-9026 TITLE: SURGICAL TREATMENT OF LASER INDUCED EYE INJURIES AUTHORS: Leonard M. Hjelmeland, Maurice B. Landers...62787A 62787A878 BA JDA318205 11. TITLE (Include Secirity Classification) (U) Surgical Treatment of Laser Induced Eye Injuries 12. PERSONAL AUTHOR(S...TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP RA 3; Lasers; Eye injury ; Surgery 09 03 06 04 19. ABSTRACT

  11. H-mode accelerating structures with permanent-magnet quadrupole beam focusing

    Science.gov (United States)

    Kurennoy, S. S.; Rybarcyk, L. J.; O'Hara, J. F.; Olivas, E. R.; Wangler, T. P.

    2012-09-01

    We have developed high-efficiency normal-conducting rf accelerating structures by combining H-mode resonator cavities and a transverse beam focusing by permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of interdigital H-mode (IH-PMQ) structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. Results of the combined 3D modeling—electromagnetic computations, multiparticle beam-dynamics simulations with high currents, and thermal-stress analysis—for an IH-PMQ accelerator tank are presented. The accelerating-field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of electromagnetic and beam-dynamics modeling. Measurements of a cold model of the IH-PMQ tank show a good agreement with the calculations. Examples of cross-bar H-mode structures with PMQ focusing for higher beam velocities are also presented. H-PMQ accelerating structures following a short radio-frequency quadrupole accelerator can be used both in the front end of ion linacs or in stand-alone applications.

  12. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  13. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  14. One-dimensional neutron focusing with large beam divergence by 400mm-long elliptical supermirror

    Science.gov (United States)

    Nagano, M.; Yamaga, F.; Yamazaki, D.; Maruyama, R.; Hayashida, H.; Soyama, K.; Yamamura, K.

    2012-02-01

    Reflective optics is one of the most useful techniques for focusing a neutron beam with a wide wavelength range since there is no chromatic aberration. Neutrons can be focused within a small area of less than 1 mm2 by high-performance aspherical supermirrors with high figure accuracy and a low smooth substrate surface and a multilayer interface. Increasing the mirror size is essential for increasing the focusing gain. We have developed a fabrication process that combines conventional precision grinding, HF dip etching, numerically controlled local wet etching (NC-LWE) figuring, low-pressure polishing and ion beam sputtering deposition of the supermirror coating to fabricate a large aspherical supermirror. We designed and fabricated an piano-elliptical mirror with large clear aperture size using the developed fabrication process. We obtained a figure error of 0.43 μm p-v and an rms roughness of less than 0.2 nm within an effective reflective length of 370 mm. A NiC/Ti supermirror with m = 4 was deposited on the substrate using ion beam sputtering equipment. The results of focusing experiments show that a focusing gain of 52 at the peak intensity was achieved compared with the case without focusing. Furthermore, the result of imaging plate measurements indicated that the FWHM focusing width of the fabricated mirror is 0.128 mm.

  15. Dynamic nonlinear focal shift in amplitude modulated moderately focused acoustic beams.

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; González-Salido, Nuria

    2017-03-01

    The phenomenon of the displacement of the position of the pressure, intensity and acoustic radiation force maxima along the axis of focused acoustic beams under increasing driving amplitudes (nonlinear focal shift) is studied for the case of a moderately focused beam excited with continuous and 25kHz amplitude modulated signals, both in water and tissue. We prove that in amplitude modulated beams the linear and nonlinear propagation effects coexist in a semi-period of modulation, giving place to a complex dynamic behavior, where the singular points of the beam (peak pressure, rarefaction, intensity and acoustic radiation force) locate at different points on axis as a function of time. These entire phenomena are explained in terms of harmonic generation and absorption during the propagation in a lossy nonlinear medium both for a continuous and an amplitude modulated beam. One of the possible applications of the acoustic radiation force displacement is the generation of shear waves at different locations by using a focused mono-element transducer excited by an amplitude modulated signal.

  16. Characteristics of submicron patterns fabricated by gallium focused-ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, H.; Sasaki, Y.; Watakabe, Y.; Kato, T.

    1985-01-01

    Cross sections of the patterns fabricated in (100) GaAs by 100-keV gallium focused ion beam have been studied using a scanning electron microscope (SEM). The probe size of the ion beam is 0.1--0.15 ..mu..m at the current of 100 pA. The etched depth becomes saturated at the high dose region (about 5.0 x 10/sup -6/ C/cm) because of the redeposition effect. The pattern profile becomes asymmetric if it is made up of several adjacent lines perpendicular to the beam scanning direction due to the redeposition effect and the increase of sputtering yield for each scan, which is caused by the change of ion beam incident angle. These effects can be eliminated by the use of multiwriting method.

  17. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    Modern ultrasound scanners estimate the blood velocity by tracking the movement of the blood scatterers along the ultrasound beam. This is done by emitting pulsed ultrasound fields and finding the shift in position from pulse to pulse by correlating the received signals. Only the velocity component...... along the beam direction is found, and this is a serious limitation in the current scanners, since most blood vessels are parallel to the skin surface. A method to find the velocity across the vessel has been suggested by Bonnefous (1988). Here a number of parallel receive beams are measured and used...... or across it or in any direction to the beam. The focused lines, thus, follow the flow and a cross-correlation of lines from different pulses can find the movement of the blood particles between pulse emissions and, thus, the blood velocity. The new approach is investigated using the Field II simulation...

  18. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  19. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  20. Laser-induced axion photoproduction

    Science.gov (United States)

    Brodsky, S. J.; Mottola, E.; Muzinich, I. J.; Soldate, M.

    1986-01-01

    Axion photoproduction is suggested as a systematic technique for investigating the coupling of new elementary pseudoscalar or scalar particles in the megaelectronvolt mass range to leptons, photons, and hadronic matter. The experiments involve a configuration where a low-energy photon collides with a relativistic electron beam. Threshold production energies of 300 GeV can be accomplished with an optical laser, and those of 14.5-50 GeV can be achieved with wigglers directed onto an electron beam. With this scheme, at least 10 to the -7th of the electrons can be converted to axions, providing a 1-100 thousand/s relativistic beam of axions.

  1. Low emittance design of the electron gun and the focusing channel of the Compact Linear Collider drive beam

    Science.gov (United States)

    Dayyani Kelisani, M.; Doebert, S.; Aslaninejad, M.

    2017-04-01

    For the Compact Linear Collider project at CERN, the power for the main linacs is extracted from a drive beam generated from a high current electron source. The design of the electron source and its subsequent focusing channel has a great impact on the beam dynamic considerations of the drive beam. We report the design of a thermionic electron source and the subsequent focusing channels with the goal of production of a high quality beam with a very small emittance.

  2. Cryo DualBeam Focused Ion Beam-Scanning Electron Microscopy to Evaluate the Interface Between Cells and Nanopatterned Scaffolds.

    Science.gov (United States)

    Lamers, Edwin; Walboomers, X Frank; Domanski, Maciej; McKerr, George; O'Hagan, Barry M; Barnes, Clifford A; Peto, Lloyd; Luttge, Regina; Winnubst, Louis A J A; Gardeniers, Han J G E; Jansen, John A

    2011-01-01

    With the advance of nanotechnology in biomaterials science and tissue engineering, it is essential that new techniques become available to observe processes that take place at the direct interface between tissue and scaffold materials. Here, Cryo DualBeam focused ion beam-scanning electron microscopy (FIB-SEM) was used as a novel approach to observe the interactions between frozen hydrated cells and nanometric structures in high detail. Through a comparison of images acquired with transmission electron microscopy (TEM), conventional FIB-SEM operated at ambient temperature, and Cryo DualBeam FIB-SEM, the advantages and disadvantages of each technique were evaluated. Ultrastructural details of both (extra)cellular components and cell organelles were best observe with TEM. However, processing artifacts such as shrinkage of cells at the substrate interface were introduced in both TEM and conventional FIB-SEM. In addition, the cellular contrast in conventional FIB-SEM was low; consequently, cells were difficult to distinguish from the adjoining substrate. Cryo DualBeam FIB-SEM did preserve (extra)cellular details like the contour, cell membrane, and mineralized matrix. The three described techniques have proven to be complementary for the evaluation of processes that take place at the interface between tissue and substrate.

  3. Peakon profiles and collapse-bounce cycles in self-focusing spatial beams.

    Science.gov (United States)

    Sun, Can; Barsi, Christopher; Fleischer, Jason W

    2008-12-01

    We study the over-focusing of spatial light beams due to self-focusing nonlinearity, in both local and nonlocal nonlinear media. Numerical simulation of both cases reveals a peaked profile, with a near-cusp at the center surrounded by exponentially-decaying tails, at a critical self-focusing power. The profile is a local effect, occurring as diffraction counteracts nonlinearity. Nonlocality, however, is needed to prevent modulation instability of the initial beam and to prevent catastrophic collapse in 2D. The peaked profile remains for weak nonlocality but disappears for wide nonlocal responses. Beyond the critical power for a peaked solution, or for longer propagation distances, competition between nonlinearity and diffraction causes oscillatory collapse-bounce behavior. The numerical results are confirmed by observing these dynamics in a self-focusing glass with a nonlocal, thermal response.

  4. Experimental research on the longitudinal field generated by a tightly focused beam

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming-Qian; Wang Jia; Tian Qian

    2013-01-01

    The longitudinal optical field is a peculiar physical phenomenon that is always involved with the domain of near-field optics.Due to its extraordinary properties,it has recently attracted increasing attention in research and application.In this1 work,the longitudinal fields generated by the evanescent illumination of tightly focused,different polarized hollow beams are investigated.The focused light fields are numerically simulated according to vector diffraction theory,and their vector analysis is also carried out.The longitudinal fields on the focal plane are demonstrated experimentally using tip-enhanced scanning near-field microscopy.The simulation and experimental results show that the tightly focused radially polarized beam is suited to generating a stronger and purer longitudinal optical field at the focus.

  5. Interaction of highly focused vector beams with a metal knife-edge

    CERN Document Server

    Quabis, S

    2011-01-01

    We investigate the interaction of highly focused linearly polarized optical beams with a metal knife-edge both theoretically and experimentally. A high numerical aperture objective focusses beams of various wavelengths onto samples of different sub-wavelength thicknesses made of several opaque and pure materials. The standard evaluation of the experimental data shows material and sample dependent spatial shifts of the reconstructed intensity distribution, where the orientation of the electric field with respect to the edge plays an important role. A deeper understanding of the interaction between the knife-edge and the incoming highly focused beam is obtained by extending previous studies on diffraction through a finite slit and incorporating plasmonic modes into the theoretical model.We achieve good qualitative agreement of our numerical simulations with the experimental findings.

  6. Small-Scale Self-Focusing of Intense Laser Beams In the Presence of Vector Effect

    Institute of Scientific and Technical Information of China (English)

    WEN Shuang-Chun; FAN Dian-Yuan

    2000-01-01

    We extend Bespalov-Talanov (B-T) theory on small-scale self-focusing (SSSF) to include vector effect of a very narrow intense laser beam with application of the vector self-focusing model. The gain spectrum for perturbations is obtained by using the standard linear instability analysis. It is shown that the influence on SSSF of vector effect is closely related to the beam width. For a very narrow beam, the role played by vector effect becomes significant, it reduces the fastest growing frequency and the maximum growth rate, and shortens the frequency range for perturbation growing, and thus deviates the gain spectrum from that of B-T theory.

  7. Preliminary study on development of 300 Kv compact focused gaseous ion beam system

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, T.; Ishii, Y.; Kamiya, T. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA) 1233 Watanuki-machi, Takasaki, Gunma, 370-1292 (Japan); Miyake, Y. [Beam Seiko Instruments Inc., 2-10-1 Kamata, Ohta-ku, Tokyo, 144-0052 (Japan)

    2013-04-19

    A new 300 kV compact focused gaseous ion beam (gas-FIB) system with three-stage acceleration lens was constructed at JAEA. The preliminary experiments of formation of the focused gaseous ion beams were carried out to show the availability of the gas-FIB system as a writing tool for 3D proton lithography. As a result of the experiments, it was proved that the focal point was kept at the same position under changing the kinetic energy but with keeping the kinetic energy ratio constant, which was defined as the ratio of kinetic energy in object side to that in image side for the third acceleration lens. This characteristic of the gas-FIB is a good point to advance the 3D proton lithography changing penetration depth in a sample by varying the beam energy.

  8. Effect of spatial coherence on laser beam self-focusing from orbit to the ground in the atmosphere.

    Science.gov (United States)

    Deng, Hanling; Ji, Xiaoling; Li, Xiaoqing; Zhang, Hao; Wang, Xianqu; Zhang, Yuqiu

    2016-06-27

    The effect of spatial coherence on laser beam self-focusing in the atmosphere to assist delivering powerful laser beams from orbit to the ground is studied. It is found that a fully coherent beam is more strongly compressed on the ground than a partially (spatial) coherent beam (PCB), even so, for a PCB the compressed spot size on the ground may be reduced below the diffraction limit due to self-focusing effect, and a PCB has higher threshold critical power than a fully coherent beam. Furthermore, an effective design rule for maximal compression without beam splitting of the transported PCB from orbit to the ground is presented.

  9. Investigation of the Parametric Field from a Focusing Source by Using Superposition of Gaussian Beams

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong; GONG Xiu-Fen; LU Rong-Rong

    2000-01-01

    The superposition method of Gaussian beams is extended to describe the acoustical parametric field from a focusing source. The axial sound pressure of the difference frequency wave 1MHz generated due to the interaction of two primary wave 3.5 and 4.5MHz is theoretically calculated by using 10 items of Gaussian functions. Experimental results coincide well with the calculated results except for the case at the vicinity of the focusing source.

  10. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, M.H.; Abelmann, L.; Lodder, J.C.

    2002-01-01

    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an ex

  11. Thermal interaction of short-pulsed laser focused beams with skin tissues

    Energy Technology Data Exchange (ETDEWEB)

    Jiao Jian; Guo Zhixiong [Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States)], E-mail: guo@jove.rutgers.edu

    2009-07-07

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  12. Thermal interaction of short-pulsed laser focused beams with skin tissues

    Science.gov (United States)

    Jiao, Jian; Guo, Zhixiong

    2009-07-01

    Time-dependent thermal interaction is developed in a skin tissue cylinder subjected to the irradiation of a train of short laser pulses. The skin embedded with a small tumor is stratified as three layers: epidermis, dermis and subcutaneous fat with different optical, thermal and physiological properties. The laser beam is focused to the tumor site by an objective lens for thermal therapy. The ultrafast radiation heat transfer of the focused beam is simulated by the transient discrete ordinates method. The transient Pennes bio-heat equation is solved numerically by the finite volume method with alternating direction implicit scheme. Emphasis is placed on the characterization of the focused beam propagation and absorption and the temperature rise in the focal spot. The effects of the focal spot size and location, the laser power, and the bio-heat equation are investigated. Comparisons with collimated irradiation are conducted. The focused beam can penetrate a greater depth and produce higher temperature rise at the target area, and thus reduce the possibility of thermal damage to the surrounding healthy tissue. It is ideal for killing cancerous cells and small tumors.

  13. Focused ion beam milling of photonic crystals in silicon on insulator

    NARCIS (Netherlands)

    Hu, Wenbin; Hopman, Wico; Ridder, de René

    2009-01-01

    A photonic crystal slab, consisting of an array of circular sub-micron diameter holes in Silicon on Insulator (SOI), has been fabricated using focused ion beam (FIB) milling. This application requires the sidewalls of the holes to be very smooth and as nearly perpendicular to the slab as possible. T

  14. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.

    Science.gov (United States)

    Hariharan, Prasanna; Dibaji, Seyed Ahmad Reza; Banerjee, Rupak K; Nagaraja, Srinidhi; Myers, Matthew R

    2014-12-01

    In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.

  15. Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam

    NARCIS (Netherlands)

    Lu, Yuan; Katz, Joseph; Prosperetti, Andrea

    2013-01-01

    In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line hologr

  16. Charging effects during focused electron beam induced deposition of silicon oxide

    NARCIS (Netherlands)

    de Boer, Sanne K.; van Dorp, Willem F.; De Hosson, Jeff Th. M.

    2011-01-01

    This paper concentrates on focused electron beam induced deposition of silicon oxide. Silicon oxide pillars are written using 2, 4, 6, 8, 10-pentamethyl-cyclopenta-siloxane (PMCPS) as precursor. It is observed that branching of the pillar occurs above a minimum pillar height. The branching is attrib

  17. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  18. Focused ion beam nano-structuring of $Al_2O_3$ dielectric layers for photonic applications

    NARCIS (Netherlands)

    Ay, Feridun; Bradley, Jonathan D.B.; Hopman, Wico C.L.; Gadgil, Vishwas J.; Ridder, de René M.; Wörhoff, Kerstin; Pollnau, Markus

    2007-01-01

    In order to enable full integration of active integrated optical components based on Si-technology, high quality micro- and nano-structuring processes aiming at the development of on-chip resonator structures are to be achieved. By optimizing focused ion beam milling parameters such as ion current,

  19. Focused ion beam nano-structuring of photonic Bragg gratings in $Al_2O_3$ waveguides

    NARCIS (Netherlands)

    Uranga, Amaia; Ay, Feridun; Bradley, Jonathan D.B.; Ridder, de René M.; Wörhoff, Kerstin; Pollnau, Markus; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaart, P.; Leijtens, X.

    2007-01-01

    Focused ion beam (FIB) etching is receiving increasing attention for the fabrication of active integrated optical components such as waveguide amplifiers and lasers. Si-technology compatible low-loss $Al_2O_3$ channel waveguides grown on thermally oxidized silicon substrates have been reported recen

  20. Focused ion beam nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides

    NARCIS (Netherlands)

    Ay, Feridun; Uranga, Amaia; Bradley, Jonathan D.B.; Wörhoff, Kerstin; Ridder, de René M.; Pollnau, Markus; Ridder, de R.M.; Ay, F.; Kauppinen, L.J.

    2008-01-01

    We report our recent results on an optimization study of focused ion beam (FIB) nano-structuring of Bragg gratings in $Al_2O_3$ channel waveguides. By optimizing FIB milling parameters such as ion current, dwell time, loop repetitions, scanning strategy, and applying a top metal layer for reducing c

  1. Nanoimprint lithography with a focused laser beam for the fabrication of nanopatterned microchannel molds.

    Science.gov (United States)

    Lim, Hyungjun; Ryu, Jihyeong; Kim, Geehong; Choi, Kee-Bong; Lee, Sunghwi; Lee, Jaejong

    2013-08-21

    We present a process based on nanoimprint lithography for the fabrication of a microchannel mold having nanopatterns formed at the bottoms of its microchannels. A focused laser beam selectively cures the resist in the micrometer scale during nanoimprint lithography. Nanopatterns within the microchannels may be used to control microfluidic behavior.

  2. Ultrahigh resolution focused electron beam induced processing : the effect of substrate thickness

    NARCIS (Netherlands)

    van Dorp, W. F.; Lazic, I.; Beyer, A.; Goelzhaeuser, A.; Wagner, J. B.; Hansen, T. W.; Hagen, C. W.

    2011-01-01

    It is often suggested that the growth in focused electron beam induced processing (FEBIP) is caused not only by primary electrons, but also (and even predominantly) by secondary electrons (SEs). If that is true, the growth rate for FEBIP can be changed by modifying the SE yield. Results from our Mon

  3. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    NARCIS (Netherlands)

    Woldering, Leon A.; Otter, A.M.(Bert); Husken, Bart H.; Vos, Willem L.

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to rad

  4. Acceleration and Focusing of Electrons and Positrons Using a 30 GeV Drive Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Mark J

    2003-04-07

    A series of plasma wakefield acceleration (PWFA) experiments are being conducted with a 30 GeV drive beam from the Stanford Linear Accelerator Center (SLAC). These experiments continue to address the application of meter-scale plasmas to focus and accelerate electrons and positrons in the context of future applications to high-energy accelerators.

  5. High-resolution direct-write patterning using focused ion beams

    NARCIS (Netherlands)

    Ocola, L.E.; Rue, C.; Maas, D.J.

    2014-01-01

    Over the last few years, significant improvements in sources, columns, detectors, control software, and accessories have enabled a wealth of new focused ion beam applications. In addition, modeling has provided many insights into ion-sample interactions and the resultant effects on the sample. With

  6. The role of electron-stimulated desorption in focused electron beam induced deposition

    NARCIS (Netherlands)

    van Dorp, Willem F.; Hansen, Thomas W.; Wagner, Jakob B.; De Hosson, Jeff T. M.

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)(6) is used as a precursor it is observed that the growth

  7. Focused Ion Beam Milling Strategies of Photonic Crystal Structures in Silicon

    NARCIS (Netherlands)

    Hopman, Wico C.L.; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J.; Kuipers, Laurens; Pollnau, Markus; Ridder, de René M.

    2007-01-01

    We report on optimisation of the side wall angle of focused ion beam (FIB) fabricated submicron diameter holes in silicon. Two optimisation steps were performed. First, we compare two different FIB scanning procedures and show the advantages of using a spiral scanning method for the definition of ho

  8. DNA deposition through laser induced forward transfer.

    Science.gov (United States)

    Colina, M; Serra, P; Fernández-Pradas, J M; Sevilla, L; Morenza, J L

    2005-02-15

    Laser induced forward transfer (LIFT) is a laser direct write technique that appears to be specially adequate for the production of biosensors, since it permits to deposit patterns of biomolecules with high spatial resolution. In the LIFT technique, a laser pulse is focused on a thin film of the material to be transferred through a transparent support, and under the action of the laser pulse, a small fraction of the film is transferred to a receptor substrate that is placed parallel to the film-support system. In the case of biomolecules transfer, the thin film consists in a liquid solution containing the biomolecules. In this work, microarrays of two different cDNAs have been both spotted by LIFT and pin microspotting onto a poly-L-lysine treated glass slide. Once transferred, all the microarrays have been submitted to hybridization with the complementary strands of the spotted cDNAs, each one tagged with a different fluorochrome. Comparative fluorescence scanner analyses have revealed that the microarrays transferred through LIFT are equivalent to those transferred through pin microspotting in terms of signal intensity and gene discrimination capacity, and that the action of the laser pulse does not result in significant damage of the transferred DNA.

  9. Focusing a beam beyond the diffraction limit using a hyperlens-based device

    Institute of Scientific and Technical Information of China (English)

    Zheng Guo-Xing; Zhang Rui-Ying; Li Song; He Ping-An; Zhou Hui

    2011-01-01

    A super-focusing device composed of a focusing objective and a hyperlens is proposed to focus an incident plane wave into the deep subwavelength dimension. In the device,the objective converts the incident plane wave into a convergent one.The half cylindrical hyperlens can support high wave vector k modes propagating towards its core.So the convergent wave can be focused into an ultrasmall spot beyond the diffraction limit.The layout is proposed for the super-focusing device and its characteristics are investigated theoretically.Numerical simulations verify that the focused beams are confined in a spot with a diameter of 16.3 nm in the focal plane of the focusing objective with a numerical aperture of 0.6,which corresponds to a super-resolution spot of λ0/23 (λ0 is the wavelength in vacuum).The simulations confirm the effectiveness of the proposed device.

  10. Performance predictions of a focused ion beam based on laser cooling

    CERN Document Server

    Haaf, G ten; van der Geer, S B; Vredenbregt, E J D; Mutsaers, P H A

    2014-01-01

    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of amongst others the flux density of the atomic beam, the temperature of this beam and the total current. At low currents (I<10 pA) the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model w...

  11. Imperative function of electron beams in low-energy plasma focus device

    Indian Academy of Sciences (India)

    M Z Khan; L K Lim; S L Yap; C S Wong

    2015-12-01

    A 2.2 kJ plasma focus device was analysed as an electron beam and an X-ray source that operates with argon gas refilled at a specific pressure. Time-resolved X-ray signals were observed using an array of PIN diode detectors, and the electron beam energy was detected using a scintillator-assisted photomultiplier tube. The resultant X-rays were investigated by plasma focus discharge for pressures ranging from 1.5 mbar to 2.0 mbar. This range corresponded to the significant values of X-ray yields and electron beam energies from the argon plasma. The electron temperature of argon plasma at an optimum pressure range was achieved by an indirect method using five-channel BPX65 PIN diodes of aluminum foils with different thicknesses. X-ray yield, electron beam energy, and electron temperature of argon plasma were achieved at 1.5–2.0 mbar because of the strong bombardment of the energetic electron beam.

  12. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    Science.gov (United States)

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  13. The effect of laser pulse width on laser-induced damage at K9 and UBK7 components surface

    Science.gov (United States)

    Zhou, Xinda; Ba, Rongsheng; Zheng, Yinbo; Yuan, Jing; Li, Wenhong; Chen, Bo

    2015-07-01

    In this paper, we investigated the effects of laser pulse width on laser-induced damage. We measured the damage threshold of K9 glass and UBK7 glass optical components at different pulse width, then analysis pulse-width dependence of damage threshold. It is shown that damage threshold at different pulse width conforms to thermal restriction mechanism, Because of cm size laser beam, defect on the optical component surface leads to laser-induced threshold decreased.

  14. Ion probe beam experiments and kinetic modeling in a dense plasma focus Z-pinch

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A., E-mail: schmidt36@llnl.gov; Ellsworth, J., E-mail: schmidt36@llnl.gov; Falabella, S., E-mail: schmidt36@llnl.gov; Link, A., E-mail: schmidt36@llnl.gov; McLean, H., E-mail: schmidt36@llnl.gov; Rusnak, B., E-mail: schmidt36@llnl.gov; Sears, J., E-mail: schmidt36@llnl.gov; Tang, V., E-mail: schmidt36@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Welch, D. [Voss Scientific, LLC, 418 Washington St SE, Albuquerque NM 87108 (United States)

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.

  15. An angled nano-tunnel fabricated on poly(methyl methacrylate) by a focused ion beam

    Science.gov (United States)

    Her, Eun Kyu; Chung, Hee-Suk; Moon, Myoung-Woon; Oh, Kyu Hwan

    2009-07-01

    Angled nano-scale tunnels with high aspect ratio were fabricated on poly(methyl methacrylate) (PMMA) using a focused ion beam (FIB). The fabrication parameters such as ion fluence, incidence angle, and acceleration voltage of the Ga+ ion beam were first studied on the PMMA surface to explore the formation of the nano-scale configurations such as nano-holes and cones with diameter in the range of 50-150 nm at an ion beam acceleration voltage of 5-20 kV. It was also found that the PMMA surface exposed to FIB was changed into an amorphous graphitic structure. Angled nano-scale tunnels were fabricated with high aspect ratio of 700-1500 nm in depth and 60 nm in mean diameter at an ion beam acceleration voltage of 5 kV and under a specific ion beam current. The angle of the nano-tunnels was found to follow the incident angle of the ion beam tilted from 0° to 85°, which has the potential for creating a mold for anisotropic adhesives by mimicking the hairs on a gecko's feet.

  16. Generation and focusing of electron beams with initial transverse-longitudinal correlation

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [Colorado State Univ., Fort Collins, CO (United States) Dept. of Electrical and Computer Engineering.; Lewellen, J. W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poole, B. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-07

    In charged particle beams, one of the roles played by space charge is to couple the transverse and longitudinal dynamics of the beam. This can lead to very complex phenomena which are generally studied using computer simulations. However, in some cases models based on phenomenological or analytic approximations can provide valuable insight into the system behavior. In this paper, we employ such approximations to investigate the conditions under which all the slices of a space charge dominated electron beam with slowly varying current could be focused to a waist with the same radius and at the same location, independent of slice current, and show that this can be accomplished approximately if the initial transverse-longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate for the transverse-longitudinal correlation introduced onto the beam in the drift section. The validity of our approximations is assessed by use of progressively more realistic calculations. We also consider several design elements of electron guns that affect the initial correlations in the beams they generate.

  17. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  18. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Kachatkou, Anton, E-mail: anton.kachatkou@manchester.ac.uk [The University of Manchester, Sackville Street Building, Manchester M13 9PL (United Kingdom); Marchal, Julien [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Silfhout, Roelof van, E-mail: anton.kachatkou@manchester.ac.uk [The University of Manchester, Sackville Street Building, Manchester M13 9PL (United Kingdom)

    2014-02-04

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed.

  19. Three-dimensional characterization of tightly focused fields for various polarization incident beams

    Science.gov (United States)

    Cai, Yanan; Liang, Yansheng; Lei, Ming; Yan, Shaohui; Wang, Zhaojun; Yu, Xianghua; Li, Manman; Dan, Dan; Qian, Jia; Yao, Baoli

    2017-06-01

    Tightly focused vectorial optical beams have found extensive applications in variety of technical fields like single-molecule detection, optical tweezers, and super-resolution optical microscopy. Such applications require an accurate measurement and manipulation of focal optical fields. We have developed a compact instrument (with dimensions of 35 × 35 × 30 cm3) to rapidly measure the intensity distribution in three dimensions of the focused fields of vectorial beams and any other incident beams. This instrument employs a fluorescent nanoparticle as a probe to scan the focal region to obtain a high spatial resolution of intensity distribution. It integrates a liquid-crystal spatial light modulator to allow for tailoring the point spread function of the optical system, making it a useful tool for multi-purpose and flexible research. The robust applicability of the instrument is verified by measuring the 3D intensity distributions of focal fields of various polarization and wavefront modulated incident beams focused by a high NA (=1.25) objective lens. The minimal data acquisition time achievable in the experiment is about 8 s for a scanning region of 3.2 × 3.2 μm2 (512 × 512 pixels). The measured results are in good agreement with those predicted by the vectorial diffraction theory.

  20. Innovative Drug Injection via Laser Induced Plasma

    Science.gov (United States)

    Han, Tae-hee; Yoh, Jack J.

    2010-10-01

    A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of the nozzle is 125 um and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  1. Application of strongly focused pulsed electron beam for the reaction wheels balancing

    Science.gov (United States)

    Borduleva, A. O.; Bleykher, G. A.; Solovev, V. V.; Krivobokov, V. P.; Babihina, M. N.

    2016-11-01

    In the given work the material removing possibility by the strongly focused pulsed electron beam was investigated. The optimal mode of flywheels balancing was found. At this mode the power density is 1.6 MW/cm2 and pulse duration is 0.65 s. At such parameters the evaporation rate is equal to 11 g/scm2. It is possible to vary the amount of remote material from 1 to 100 mg, that is sufficient to balance flywheel. It is found that treatment by an electron beam does not change the material structure.

  2. Photonic-based laser driven electron beam deflection and focusing structures

    Directory of Open Access Journals (Sweden)

    T. Plettner

    2009-10-01

    Full Text Available We propose a dielectric photonic structure for ultrafast deflection and focusing of relativistic charged particle beams. The structure is designed to transform a free-space laser beam into a deflection force that acts on the free particles with the same optical phase over a distance of travel that is much greater than the laser wavelength. The proposed structure has a two-dimensional geometry and is compatible with existing nanofabrication methods. Deflection fields of GV/m magnitude and subfemtosecond switching speeds are expected to be possible from these dielectric structures. With these elements a submeter scale extreme ultraviolet synchrotron source seems feasible.

  3. Hexapole State-Selection and Beam Focus of Polar Top Molecules

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Chun; JIN Ming-Xing; GAO Xin; DING Da-Jun

    2006-01-01

    @@ We express a description of the state-selection role for a polar molecule in a hexapole electrostatic field. By a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field, we present the calculated results of the different molecular rotational state selection and beam focus and discuss the influence of the high order Stark effect, the beam speed on the results for the symmetric top molecule CH3CN, CH3I, and the asymmetric top molecule CH2F2 in the hexapole field.

  4. Experimental Modeling of the Electron Beam Focusing Regimesin the Axially-Symmetric Systems

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2014-04-01

    Full Text Available The paper describes the results of the experimental research of the volt-ampere characteristics of the three-electrode electron gun. Such systems are widely used in the electron-ray devices meant for getting visible image on the screen, and in microwave devices, such as TWT, BWT, as well. On the basis of the experimental results practical recommendations of how to choose the optimal voltage regimes on the focusing electrodes were made, which allows to form paraxial axially-symmetric beams with the diameter in crossover about 0.05-0.5 mm and beam current up to 30 mA.

  5. Dynamical behavior of laser-induced nanoparticles during remote processing

    Science.gov (United States)

    Scholz, Tobias; Dickmann, Klaus; Ostendorf, Andreas

    2014-02-01

    Laser remote processing is used in a wide field of industrial applications. Among other things, it is characterized by flexible beam guidance in combination with high processing velocities. But in most cases process gas support in the interaction zone is omitted. Consequently, interaction mechanism between the vapor plume and the incident laser radiation can dynamically affect the process stability. Referring to remote welding with high brilliant laser sources having a wavelength around 1 μm, the interaction between the incident laser radiation and formed particles plays an important role. The presented work shows results of the investigation of the laser-induced particle formation during the laser welding of stainless steel with a 2 kW fiber laser under remote conditions. It is therefore concentrated on the dynamical behavior of the laser-induced particle formation and the dependence of the particle formation on the laser beam power. TEM images of formed particles were analyzed. In addition, the radiation of a LED was directed through the vapor plume. On the one hand, the dynamic of the attenuation was considered. On the other hand, the Rayleigh approximation was used in order to evaluate the detected signals.

  6. LASER INDUCED THERMAL LENS EFFECT

    Institute of Scientific and Technical Information of China (English)

    沈俊; 黄孟才; 江景云; 施教芳

    1991-01-01

    The thermal lens effect has emerged in recent years as a novel ,highly sensitive tool for the study of the very weak molecular absorption of light energy,This paper discusses the theory and technique of the thermal lens measurement.Some opplications of the thermal lens measurement are described.A mode-mismatched dual-beam thermal lens experimental arragement with a modulated probe beam ,designed by the authors.for trace analysis is presented,and its detection limit was found to be 4.1×10-7 for Cu(Ⅱ) in ethanol and 80 mW excitation power.

  7. Controlling backstreaming ions from X-ray converter targets with time varying final focusing solenoidal lens and beam energy variation

    Energy Technology Data Exchange (ETDEWEB)

    Caporaso, G J; Chen, Yu-Jiuan; Paul, A

    1998-08-20

    Backstreaming ions emitted from an x-ray converter hit by a tightly focused intense electron beam can form an ion focusing channel and over-focus the electron beam. As the ions move upstream in time, the net focusing strength increases. The final beam spot size on the target would then change in time and typically be larger than intended. We have developed a model to estimate the backstreaming ions' neutralization factor in a potential sheath near the target surface and away from the sheath. Performance of high resolution x-ray radiography facilities requires high current electron beams to be focused to a millimeter spot size on an x-ray converter through out the entire current pulse. We have studied the possibility of maintaining a constant final spot size for the entire pulse by using either a time varying final focusing solenoid field or beam energy variation to compensate the time varying ion focusing effects

  8. Phase-transition oscillations induced by a strongly focused laser beam

    Science.gov (United States)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

  9. Ion beam and neutron output from a sub-kilojoule dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth, J. L., E-mail: ellsworth7@llnl.gov; Falabella, S., E-mail: ellsworth7@llnl.gov; Schmidt, A., E-mail: ellsworth7@llnl.gov; Tang, V., E-mail: ellsworth7@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2014-12-15

    We are seeking to gain a better fundamental understanding of the ion beam acceleration and neutron production dense plasma focus (DPF) device. Experiments were performed on a kilojoule level, fast rise time DPF located at LLNL. Ion beam spectra and neutron yield were measured for deuterium pinches. Visible light images of the pinch are used to determine the pinch length. In addition, an RF probe was placed just outside the cathode to measure fluctuations in E{sub z} up to 6 GHz, which is within the range of the lower hybrid frequencies. We find these oscillations arise at a characteristic frequency near 4 GHz during the pinch. Comparisons of the neutron yield and ion beam characteristics are presented. The neutron yield is also compared to scaling laws.

  10. Supersonic Fe beam source for chromatic aberration-free laser focusing of atoms

    CERN Document Server

    Bosch, R C M; Van der Straten, P; Leeuwen, K A H

    2002-01-01

    A monochromatic Fe beam is generated by heated supersonic expansion of argon seeded with Fe vapor. At a nozzle temperature of 1930 K and 800 torr argon inlet pressure the Fe beam has an axial velocity spread of 8% and intensity of 3 x 10 sup 1 sup 5 s sup - sup 1 sr sup - sup 1 , corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles are chemically stable for liquid Fe. With 400 mm sup 3 Fe we have operated for more than 200 hours without reloading. The power consumption at 1930 K is 750 W. Temperature stability at constant power (without feedback) is better than 30 K. The source is intended for deposition of nano-structures by laser focusing of the Fe beam. The small axial velocity spread virtually eliminates the increase in focal spot size due to chromatic aberration. (authors)

  11. Three-dimensional microstructural characterization of bulk plutonium and uranium metals using focused ion beam technique

    Science.gov (United States)

    Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.

    2016-05-01

    Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.

  12. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  13. Comparison of technologies for nano device prototyping with a special focus on ion beams: A review

    Science.gov (United States)

    Bruchhaus, L.; Mazarov, P.; Bischoff, L.; Gierak, J.; Wieck, A. D.; Hövel, H.

    2017-03-01

    Nano device prototyping (NDP) is essential for realizing and assessing ideas as well as theories in the form of nano devices, before they can be made available in or as commercial products. In this review, application results patterned similarly to those in the semiconductor industry (for cell phone, computer processors, or memory) will be presented. For NDP, some requirements are different: thus, other technologies are employed. Currently, in NDP, for many applications direct write Gaussian vector scan electron beam lithography (EBL) is used to define the required features in organic resists on this scale. We will take a look at many application results carried out by EBL, self-organized 3D epitaxy, atomic probe microscopy (scanning tunneling microscope/atomic force microscope), and in more detail ion beam techniques. For ion beam techniques, there is a special focus on those based upon liquid metal (alloy) ion sources, as recent developments have significantly increased their applicability for NDP.

  14. Focusing a single ion beam into a 5$\\mu$m spot

    CERN Document Server

    Schnitzler, Wolfgang; Fickler, Robert; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2009-01-01

    We focus down an ion beam consisting of single $^{40}\\mathrm{Ca}^+$ ions to a spot size of a few $\\mu$m using an einzel-lens. Starting from a segmented linear Paul trap, we have implemented a procedure which allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our ion trap. For single ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1$\\sigma$-spot radius of $(4.62\\pm1.25)$\\mu$m at a distance of 257mm from the trap center. Compared to the 1$\\sigma$-spot radius of 83$(^{+8}_{-3})\\mu$m without ion optics, the einzel-lens is focusing down the single ion beam by a factor of 18. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel-lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a prospective substrate.

  15. First-order strong-field QED processes in a tightly focused laser beam

    Science.gov (United States)

    Di Piazza, A.

    2017-03-01

    In a previous article [Phys. Rev. Lett. 117, 213201 (2016), 10.1103/PhysRevLett.117.213201] we have determined the angular resolved and the total energy spectrum of a positron produced via nonlinear Breit-Wheeler pair production by a high-energy photon counterpropagating with respect to a tightly focused laser beam. Here, we first generalize the results in that article by including the possibility that the incoming photon is not exactly counterpropagating with respect to the laser field. As main focus of the present paper, we determine the photon angular resolved and total energy spectrum for the related process of nonlinear Compton scattering by an electron impinging into a tightly focused laser beam. Analytical integral expressions are obtained under the realistic assumption that the energy of the incoming electron is the largest dynamical energy of the problem and that the electron is initially almost counterpropagating with respect to the laser field. The crossing symmetry relation between the two processes in a tightly focused laser beam is also elucidated.

  16. Superposition of nonparaxial vectorial complex-source spherically focused beams: Axial Poynting singularity and reverse propagation

    Science.gov (United States)

    Mitri, F. G.

    2016-08-01

    In this work, counterintuitive effects such as the generation of an axial (i.e., long the direction of wave motion) zero-energy flux density (i.e., axial Poynting singularity) and reverse (i.e., negative) propagation of nonparaxial quasi-Gaussian electromagnetic (EM) beams are examined. Generalized analytical expressions for the EM field's components of a coherent superposition of two high-order quasi-Gaussian vortex beams of opposite handedness and different amplitudes are derived based on the complex-source-point method, stemming from Maxwell's vector equations and the Lorenz gauge condition. The general solutions exhibiting unusual effects satisfy the Helmholtz and Maxwell's equations. The EM beam components are characterized by nonzero integer degree and order (n ,m ) , respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and a weighting (real) factor 0 ≤α ≤1 that describes the transition of the beam from a purely vortex (α =0 ) to a nonvortex (α =1 ) type. An attractive feature for this superposition is the description of strongly focused (or strongly divergent) wave fields. Computations of the EM power density as well as the linear and angular momentum density fluxes illustrate the analysis with particular emphasis on the polarization states of the vector potentials forming the beams and the weight of the coherent beam superposition causing the transition from the vortex to the nonvortex type. Should some conditions determined by the polarization state of the vector potentials and the beam parameters be met, an axial zero-energy flux density is predicted in addition to a negative retrograde propagation effect. Moreover, rotation reversal of the angular momentum flux density with respect to the beam handedness is anticipated, suggesting the possible generation of negative (left-handed) torques. The results are particularly useful in applications involving the design of strongly focused optical laser

  17. Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

  18. Optofluidic lens actuated by laser-induced solutocapillary forces

    Science.gov (United States)

    Malyuk, A. Yu.; Ivanova, N. A.

    2017-06-01

    We demonstrate an adaptive liquid lens controlled by laser-induced solutocapillary forces. The liquid droplet serving as a lens is formed in a thin layer of binary liquid mixture by surface tension driven flows caused by the thermal action of laser irradiation. The shape of droplet, its aperture and the focal length are reversibly changed without hysteresis by varying the intensity of the laser beam. The focal length variation range of the droplet-lens lies in between infinity (a flat layer) to 15 mm (a curved interface). The droplet-lens is capable to adjust the in-plane lateral position in response to a displacement of the laser beam. The proposed laser controlled droplet-lens will enable to develop smart liquid optical devices, which can imitate the accommodation reflex and pupillary light reflex of the eye.

  19. Performance Evaluation of Klystron Beam Focusing System with Anisotropic Ferrite Magnet

    CERN Document Server

    Fuwa, Yasuhiro

    2016-01-01

    A klystron beam focusing system using permanent magnets, which increases reliability in comparison with electromagnet focusing system, is reported. A prototype model has been designed and fabricated for a 1.3 GHz, 800 kW klystron for evaluation of the feasibility of the focusing system with permanent magnets. In order to decrease the production cost and to mitigate complex tuning processes of the magnetic field, anisotropic ferrite magnet is adopted as the magnetic material. As the result of a power test, 798 kW peak output power was successfully achieved with the prototype focusing system. Considering a power consumption of the electromagnet focusing system, the required wall-plug power to produce nominal 800 kW output power with the permanent magnet system is less than that with electromagnet. However, the power conversion efficiency of the klystron with the permanent magnet system was found to be limited by transverse multipole magnetic fields. By decreasing transverse multipole magnetic field components, ...

  20. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Science.gov (United States)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  1. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology—ETC, Santa Fe, New Mexico 87508 (United States)

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  2. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  3. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching

    Science.gov (United States)

    Liebes, Yael; Hadad, Binyamin; Ashkenasy, Nurit

    2011-07-01

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  4. Effects of electrons on the shape of nanopores prepared by focused electron beam induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Liebes, Yael; Ashkenasy, Nurit [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel); Hadad, Binyamin, E-mail: nurita@bgu.ac.il [The Ilze Kaz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel)

    2011-07-15

    The fabrication of nanometric pores with controlled size is important for applications such as single molecule detection. We have recently suggested the use of focused electron beam induced etching (FEBIE) for the preparation of such nanopores in silicon nitride membranes. The use of a scanning probe microscope as the electron beam source makes this technique comparably accessible, opening the way to widespread fabrication of nanopores. Since the shape of the nanopores is critically important for their performance, in this work we focus on its analysis and study the dependence of the nanopore shape on the electron beam acceleration voltage. We show that the nanopore adopts a funnel-like shape, with a central pore penetrating the entire membrane, surrounded by an extended shallow-etched region at the top of the membrane. While the internal nanopore size was found to depend on the electron acceleration voltage, the nanopore edges extended beyond the primary electron beam spot size due to long-range effects, such as radiolysis and diffusion. Moreover, the size of the peripheral-etched region was found to be less dependent on the acceleration voltage. We also found that chemical etching is the rate-limiting step of the process and is only slightly dependent on the acceleration voltage. Furthermore, due to the chemical etch process the chemical composition of the nanopore rims was found to maintain the bulk membrane composition.

  5. Fabrication of laser induced periodic surface structure for geometrical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Naoto [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan)], E-mail: tsutsumi@kit.jp; Fujihara, Arata; Nagata, Kazuya [Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan)

    2008-12-31

    The paper presents the highly ordered geometrical structures of laser induced periodic surface structure (LIPSS) in azobenzene urethane polymer (DR19 polymer) from 4-(N,N-dihydroxyethylamino)-4'-nitroazobenzene (Disperse red 19) with tolylene-2,4-diisocyanate (TDI). One or two regulated striped LIPSS was formed in confined spaces between surface relief gratings (SRG) induced by the s-polarized interfered beams. The pitch of LIPSS was one-half or one-third of SRG pitch. Standing wave with some selected mode between SRG in the surface waveguide is responsible for the formation of the regulated striped LIPSS. The crossed illumination of the interfered beams showed the waffle-like structure for s-polarization beam and the egg crate-like (ECL) structure for p-polarized beam. Photoinduced microscopic molecular ordering was also investigated. The linear polarized beam gave the large optical anisotropy in the polymer and the circularly polarized beam produced the chiral structure. The circular dichroism spectra showed the sharp peak due to the circular Bragg reflection from which the chiral pitch was evaluated.

  6. Deep reactive ion etching and focused ion beam combination for nanotip fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, G. [Centro Nacional de Microelectronica (IMB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Plaza, J.A. [Centro Nacional de Microelectronica (IMB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain)]. E-mail: JoseAntonio.Plaza@cnm.es; Sanchez-Amores, A. [Centro Nacional de Microelectronica (IMB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Bausells, J. [Centro Nacional de Microelectronica (IMB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Martinez, E. [Nanobioengineering Laboratory (CREBEC), Barcelona Science Park, Josep Samitier 1-5, 08028 Barcelona (Spain); Samitier, J. [Nanobioengineering Laboratory (CREBEC), Barcelona Science Park, Josep Samitier 1-5, 08028 Barcelona (Spain); Errachid, A. [Nanobioengineering Laboratory (CREBEC), Barcelona Science Park, Josep Samitier 1-5, 08028 Barcelona (Spain)

    2006-03-15

    We have studied the fabrication of high-aspect ratio silicon tips by a combination of deep reactive ion etching and focused ion beam. The reactive ion etching is used to obtain so-called 'rocket tips' which can be fabricated with a high aspect ratio. The rocket tips are further processed by using a focused ion beam to obtain nanotips at their apex. Typical results obtained are nanotips with a basis radius of 200 nm and a height of 2.5 {mu}m, with an apex radius of 5 nm, located on top of a 3 {mu}m wide and 9 {mu}m high silicon column. The process would allow however obtaining column heights of several tens of microns.

  7. Designing Fresnel microlenses for focusing astigmatic multi-Gaussian beams by using fractional order Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)

    2011-01-01

    According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.

  8. Hexapole State-Selection and Beam Focus of Linear Triatomic Molecules

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Chun; JIN Ming-Xing; DING Da-Jun

    2006-01-01

    @@ The state selection and beam focus of linear triatomic molecules (OCS, HCN, CICN, BrCN and ICN) with doubling states in a hexapole electric field have been numerically realized. The method is based on a quantum mechanical treatment of the molecular Stark energy and a classical mechanical treatment for the molecular trajectory in the field. In linear molecules with doubling states, the second-order Stark effect can be neglected and the doubling states have the same value of J and M. The influences of the molecular properties, state energies, and the apparatus parameters such as molecular beam temperature and length of the hexapole, on the role of state selection and focus have been discussed. The method established here can be taken as a guide for hexapole experiment of orientation of polar molecules.

  9. Single palladium nanowire growth in place assisted by dielectrophoresis and focused ion beam.

    Science.gov (United States)

    La Ferrara, Vera; Alfano, Brigida; Massera, Ettore; Di Francia, Girolamo

    2009-05-01

    Here we report, for the first time, on the combined use of Focused Ion Beam and Dielectrophoresis techniques for the fabrication of a nanodevice whose operating mechanism relies on a single palladium nanowire. Focused Ion Beam is used to deposit, without photolithographic masks, platinum microelectrodes on a silicon/silicon nitride substrate. Dielectrophoresis is employed for assembling the palladium nanowire, starting from a saturated palladium particles solution, and precisely positioning it between the nanocontacts. The nanodevice works as a hydrogen sensor, confirming the reliability of technology. Its electrical response has been recorded, at room temperature, in a dynamic environment, where different hydrogen concentrations, from 0.1% to 4% in dry air, have been introduced. Its sensitivity, towards 0.1% to 1% gas concentrations in dry air, has been calculated, too.

  10. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Science.gov (United States)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam.

  11. Analysis of Frozen Sulfate and Chloride Salt Solutions Using Laser-induced Breakdown Spectroscopy Under Martian Conditions

    Science.gov (United States)

    Schröder, S.; Pavlov, S. G.; Hübers, H.-W.; Rauschenbach, I.; Jessberger, E. K.

    2010-03-01

    We showed the feasibility of laser-induced breakdown spectroscopy to analyze different frozen salt solutions under martian conditions. We focused on chloride and sulphate salts which were found on Mars and could lower the freezing point of water.

  12. Treatment of Laser Induced Retinal Injuries.

    Science.gov (United States)

    1986-04-02

    END 1.0 1.18 Yl(-ROCOPY Ri yjTuION If ’,! (HART !. UIH; iLruud @ N TREATMENT OF LASER INDUCED RETINAL INJURIES (ANNUAL REPORT 00 DTIC Michael Belkin...NO. CCESSION NO _______________________________61102A I102BS1O0 CF 1i. 446 TITLE (Indude S*.curny Claifkaion) TREATMENT OF LASER INDUCED RETINAL... INJURIES PERSONAL AUTHOR(S) M. BELKIN N. NAVEH a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Mont. D y) S. PAGE COUNT FROM Xaj& TO l 2Ann

  13. Experimental investigation on laser-induced plasma ignition of hydrocarbon fuel in scramjet engine at takeover flight conditions

    Science.gov (United States)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin

    2017-09-01

    Laser-induced plasma ignition of an ethylene fuelled cavity is successfully conducted in a model scramjet engine combustor with dual cavities. The simulated flight condition corresponds to takeover flight Mach 4, with isolator entrance Mach number of 2.1, the total pressure of 0.65 MPa and stagnation temperature of 947 K. Ethylene is injected 35 mm upstream of cavity flameholder from four orifices with 2-mm-diameter. The 1064 nm laser beam, from a Q-switched Nd:YAG laser source running at 10 Hz and 940 mJ per pulse, is focused into cavity for ignition. High speed photography is used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation are all recorded and ensuing stable supersonic combustion is established in cavity. The highly ionized plasma zone is almost round at starting, and then the surface of the flame kernel is wrinkled severely in 150 μs after the laser pulse due to the strong turbulence flow in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upstream as the entrainment of circulation flow in cavity. The flame is stabilized at the corner of the cavity for about 200 μs, and then spreads from leading edge to trailing edge via the under part of shear layer to fully fill the entire cavity. The corner recirculation zone of cavity is of great importance for flame spreading. Eventually, a cavity shear-layer stabilized combustion is established in the supersonic flow roughly 2.9 ms after the laser pulse. Both the temporal evolution of normalized chemiluminescence intensity and normalized flame area show that the entire ignition process can be divided into four stages, which are referred as turbulent dissipation stage, combustion enhancement stage, reverting stage and combustion stabilization stage. The results show promising potentials of laser induced plasma for ignition in real scramjets.

  14. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-07-30

    The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr3) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 μm3/pC for the MAPbBr3 perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr3 perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

  15. Spin angular momentum transfer from TEM(00) focused Gaussian beams to negative refractive index spherical particles.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2011-08-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM(00) focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems.

  16. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements

    OpenAIRE

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-01-01

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the ...

  17. Optimal injection scheme for electron acceleration by a tightly focused laser beam

    Institute of Scientific and Technical Information of China (English)

    Chen Min; Sheng Zheng-Ming; Zhang Jie

    2005-01-01

    Electron dynamics and energy gain in a tightly focused laser beam in vacuum are investigated by numerical simulations. There exist two acceleration mechanisms, i.e. acceleration by the longitudinal field or by the transverse field, which corresponds to two different trajectories. The relationship between the energy gain and the injection parameters of electrons, including the injection angle and momentum, is shown. For given laser parameters, the optimum injection parameters can be obtained.

  18. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth;

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...... FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown....

  19. Focused Ion Beam Milling Strategies of Photonic Crystal Structures in Silicon

    OpenAIRE

    Hopman, Wico C.L.; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J.; Kuipers, Laurens; Pollnau, Markus; Ridder, De, Dirk

    2007-01-01

    We report on optimisation of the side wall angle of focused ion beam (FIB) fabricated submicron diameter holes in silicon. Two optimisation steps were performed. First, we compare two different FIB scanning procedures and show the advantages of using a spiral scanning method for the definition of holes in photonic crystal slab structures. Secondly, we investigate the effect on the geometry, of parameters for reducing the tapering effect. Furthermore, we report on the initial results regarding...

  20. In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating.

    Science.gov (United States)

    Stanford, Michael G; Lewis, Brett B; Iberi, Vighter; Fowlkes, Jason D; Tan, Shida; Livengood, Rick; Rack, Philip D

    2016-04-01

    Focused helium and neon ion (He(+)/Ne(+)) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+)/Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  1. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  2. Direct-writing lithography using laser diode beam focused with single elliptical microlens

    Science.gov (United States)

    Hasan, Md. Nazmul; Haque, Muttahid-Ull; Trisno, Jonathan; Lee, Yung-Chun

    2015-10-01

    A lithography method is proposed for arbitrary patterning using an elliptically diverging laser diode beam focused with a single planoconvex elliptical microlens. Simulations are performed to model the propagation properties of the laser beam and to design the elliptical microlens, which has two different profiles in the x- and y-axis directions. The microlens is fabricated using an excimer laser dragging method and is then attached to the laser diode using double-sided optically cleared adhesive (OCA) tape. Notably, the use of OCA tape removes the need for a complicated alignment procedure and thus significantly reduces the assembly cost. The minimum focused spot of the laser diode beam is investigated by performing single-shot exposure tests on a photoresist (PR) layer. Finally, the practical feasibility of this lithography technique to generate an arbitrary pattern is demonstrated by dotted and continuous features through thin chromium layer deposition on PR and a metal lift-off process. The results show that the minimum feature size for the dotted patterns is around 6.23 μm, while the minimum linewidths for continuous patterns is 6.44 μm. In other words, the proposed focusing technique has significant potential for writing any arbitrary high-resolution pattern for applications like printed circuit board fabrication.

  3. Impact of focused gamma ray beam angle on the response of density logging tool.

    Science.gov (United States)

    Wu, He; Zhang, Feng; Guo, Hongbo; Xin, Yi; Han, Zhongyue

    2017-05-01

    The response of the gamma-gamma density logging tool with different focused gamma ray beam angle is investigated by using the MCNP code. This work focuses on the four aspects of spatial distribution and energy spectrum of scattered gamma rays, measurement uncertainty, the depth of investigation, and vertical resolution of the logging tool. The results show that the density measurement accuracy can be improved when a relative larger collimator angle is employed, and the vertical resolution of the tool would not get worse.

  4. Plasmonic resonance scattering from silver nanowire illuminated by tightly focused singular beam.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2010-08-15

    We investigate scattering features of tightly focused singular beams by placing a cylindrical nanowire in the vicinity of a line phase singularity. Applying an illumination wavelength corresponding to silver cylinder plasmonic resonance, we compare the scattering response with that of a perfect conductor. The rigorous modeling employs a 2D version of the Richards-Wolf focusing method and the source model technique. It is found that a cylinder with a plasmonic resonance produces a strong scattering response by deflecting the power flow toward the optical singularity region, where otherwise the power approaches zero.

  5. Focused Acoustic Beam Evaluation of Aluminum — Lithium Friction Stir Weld

    Science.gov (United States)

    Sathish, Shamachary; Jata, Kumar V.; Martin, Richard W.; Reibel, Richard

    2007-03-01

    Local elastic variations were measured across a friction stir welded zone in Al-Li alloy with the use of a focused acoustic beam. The near surface microstructure was investigated by measuring both the amplitude and the local velocity of the Rayleigh Surface Waves (RSW). Both the amplitude and velocity of the focused longitudinal acoustic waves propagating through the thickness of the sample has been used for examination of the variations in the localized bulk elastic properties. The variations observed across the weld zone are explained based on microstructure and residual stress variations.

  6. Direct focusing error correction with ring-wide TBT beam position data

    CERN Document Server

    Yang, M J

    2012-01-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed.

  7. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  8. Laser-induced modification of transport properties of Y-Ba-Cu-O step-edge weak links

    Science.gov (United States)

    Adam, R.; Kula, W.; Sobolewski, Roman; Murduck, J. M.; Pettiette-Hall, C.

    1995-12-01

    We report on the laser-induced permanent changes of the critical current (Ic) and normal resistance (Rn) of YBa2Cu3O7-x (YBCO) step-edge Josephson junctions. The 2- to 20-μm-wide junctions were prepared from a 200-nm-thick YBCO film deposited by a pulsed KrF excimer laser onto 300-nm-high steps etched in the LaAlO3 substrate. The laser modification experiments were performed by illuminating the junctions at 50 K with a focused Ar-ion laser beam of various intensities. Depending on the illumination power density, either increase or decrease of the junction Ic has been observed. In particular, after illumination at the 0.6×105 W/cm2 power level, a 75% enhancement of Ic and increase of the IcRn product up to 25% were obtained without a measurable change in the junction critical temperature. The laser-induced modifications were very reproducible and remained unchanged even after a subsequent room-temperature/helium thermal cycling of the sample. Photoassisted, thermally activated oxygen redistribution in the YBCO grain boundary region is proposed to explain the observed behavior.

  9. Focused azimuthally polarized vector beam and spatial magnetic resolution below the diffraction limit

    Science.gov (United States)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2016-11-01

    An azimuthally electric-polarized vector beam (APB), with a polarization vortex, has a salient feature that it contains a magnetic-dominant region within which electric field ideally has a null while longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beam's longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are examined at the lens's focal plane as a function of the lens's paraxial focal distance. Then, we place a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging APB and demonstrate for the first time that a very high resolution magnetic field at optical frequency is achieved with total magnetic field FWHM of 0.23{\\lambda} (i.e., magnetic field spot area of 0.04{\\lambda}^2) within a magnetic-dominant region. The theory shown here is valuable for development of optical microscopy and spectroscopy systems based on magnetic dipolar transitions which are in general much weaker than their electric counterparts.

  10. H-mode Accelerating Structures with PMQ Focusing for Low-Beta Beams

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, Sergey S. [Los Alamos National Laboratory; O' Hara, James F. [Los Alamos National Laboratory; Olivas, Eric R. [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory

    2011-01-01

    We report on results of the project developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. The shunt impedance of IH-PMQ structures is 10-20 times higher than that of a conventional drift-tube linac, while the transverse size is 4-5 times smaller. The H-PMQ accelerating structures following a short RFQ can be used both in the front end of ion linacs or in stand-alone applications. Results of the combined 3-D modeling -- electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis -- for a full IH-PMQ accelerator tank are presented. The accelerating field profile in the tank is tuned to provide the best propagation of a 50-mA deuteron beam using coupled iterations of EM and beamdynamics modeling. Multi-particle simulations withParmela and CST Particle Studio have been used to confirm the design. Measurement results of a cold model of the IH-PMQ tank are presented.

  11. Bright focused ion beam sources based on laser-cooled atoms

    CERN Document Server

    McClelland, J J; Knuffman, B; Twedt, K A; Schwarzkopf, A; Wilson, T M

    2015-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 uK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Never...

  12. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction.

    Science.gov (United States)

    Plank, Harald

    2015-02-06

    During the last decade, focused ion beam processing has been developed from traditionally used Ga(+) liquid ion sources towards higher resolution gas field ion sources (He(+) and Ne(+)). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic 'gold' standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne(+) beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  13. Focused ion beam fabrication of spintronic nanostructures: an optimization of the milling process

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, M; UhlIr, V; Babor, P; Spousta, J; Sikola, T [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno (Czech Republic); KolIbalova, E; HrncIr, T, E-mail: urbanek@fme.vutbr.cz [TESCAN, s.r.o., Libusina trIda 21, 623 00 Brno (Czech Republic)

    2010-04-09

    Focused ion beam (FIB) milling has been used to fabricate magnetic nanostructures (wires, squares, discs) from single magnetic layers (Co, permalloy) and spin-valve (permalloy/Cu/Co) multilayers (thicknesses 5-50 nm) prepared by ion beam sputtering deposition. Milled surfaces of metallic thin films typically exhibit residual roughness, which is also transferred onto the edges of the milled patterns. This can lead to domain wall pinning and influence the magnetization behaviour of the nanostructures. We have investigated the milling process and the influence of the FIB parameters (incidence angle, dwell time, overlap and ion beam current) on the roughness of the milled surface. It has been found that the main reasons for increased roughness are different sputter yields for various crystallographic orientations of the grains in polycrystalline magnetic thin films. We have found that the oblique ion beam angle, long dwell time and overlap < 1 are favourable parameters for suppression of this intrinsic roughness. Finally, we have shown how to determine the ion dose necessary to mill through the whole thin film up to the silicon substrate from scanning electron microscopy (SEM) images only.

  14. Focused particle beam nano-machining: the next evolution step towards simulation aided process prediction

    Science.gov (United States)

    Plank, Harald

    2015-02-01

    During the last decade, focused ion beam processing has been developed from traditionally used Ga+ liquid ion sources towards higher resolution gas field ion sources (He+ and Ne+). Process simulations not only improve the fundamental understanding of the relevant ion-matter interactions, but also enable a certain predictive power to accelerate advances. The historic ‘gold’ standard in ion-solid simulations is the SRIM/TRIM Monte Carlo package released by Ziegler, Ziegler and Biersack 2010 Nucl. Instrum. Methods B 268 1818-23. While SRIM/TRIM is very useful for a myriad of applications, it is not applicable for the understanding of the nanoscale evolution associated with ion beam nano-machining as the substrate does not evolve with the sputtering process. As a solution for this problem, a new, adapted simulation code is briefly overviewed and finally addresses these contributions. By that, experimentally observed Ne+ beam sputter profiles can be explained from a fundamental point of view. Due to their very good agreement, these simulations contain the potential for computer aided optimization towards predictable sputter processes for different nanotechnology applications. With these benefits in mind, the discussed simulation approach represents an enormous step towards a computer based master tool for adaptable ion beam applications in the context of industrial applications.

  15. Focused Azimuthally E-Polarized Vector Beam and Spatial Magnetic Resolution below the Diffraction Limit

    CERN Document Server

    Veysi, Mehdi; Capolino, Filippo

    2016-01-01

    An azimuthally E-polarized vector beam (AEVB) has a salient feature that it contains a magnetic-dominant region within which electric field has a null and longitudinal magnetic field is maximum. Fresnel diffraction theory and plane-wave spectral (PWS) calculations are applied to quantify the field features of such a beam upon focusing through a lens. The diffraction-limited full width at half maximum (FWHM) of the beams longitudinal magnetic field intensity profile and complementary FWHM (CFWHM) of the beam's annular-shaped total electric field intensity profile are calculated at the lens's focal plane as a function of the lens's paraxial focal distance. Subsequently, we demonstrate, for the first time, that a very high resolution magnetic field at optical frequency with the total magnetic field FWHM of 0.23{\\lambda}(magnetic field spot size of 0.04{\\lambda}^2) can be achieved by placing a subwavelength dense dielectric Mie scatterer in the minimum-waist plane of a self-standing converging AEVB. The theory sh...

  16. Bright focused ion beam sources based on laser-cooled atoms

    Science.gov (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.

    2016-01-01

    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  17. Damage in III-V compounds during focused ion beam milling.

    Science.gov (United States)

    Rubanov, S; Munroe, P R

    2005-10-01

    The damage layers generated in III-V compounds exposed to energetic gallium ions in a focused ion beam (FIB) instrument have been characterized by transmission electron microscopy (TEM). The damage on the side walls of the milled trenches is in the form of amorphous layers associated with direct amorphization from the gallium beam, rather than from redeposition of milled material. However, the damage on the bottom of the milled trenches is more complex. For InP and InAs the damage layers include the presence of crystalline phases resulting from recrystallization associated heating from the incident beam and gallium implantation. In contrast, such crystalline phases are not present in GaAs. The thicknesses of the damage layers are greater than those calculated from theoretical models of ion implantation. These differences arise because the dynamic nature of FIB milling means that the energetic ion beams pass through already damaged layers. In InP recoil phosphorus atoms also cause significant damage.

  18. Laser-induced tobacco protoplast fusion

    Institute of Scientific and Technical Information of China (English)

    李银妹; 关力劼; 楼立人; 崔国强; 姚湲; 王浩威; 操传顺; 鲁润龙; 陈曦

    1999-01-01

    Laser tweezers can manipulate small particles, such as cells and organdies. When coupling them with laser microbeam selective fusion of two tobacco protoplasts containing some chloroplast was achieved. Physical and biological variables that affect laser trapping and laser-induced fusion were also discussed. The results show that the effect of chloroplast content and distribution on the yield of cell fusion is remarkable.

  19. Modeling of laser induced periodic surface structures

    NARCIS (Netherlands)

    Skolski, J.Z.P.; Römer, G.R.B.E.; Huis in 't Veld, A.J.; Mitko, V.S.; Obona, J.V.; Ocelik, V.; Hosson, J.T.M. de

    2010-01-01

    In surfaces irradiated by short laser pulses, Laser Induced Periodic Surface Structures (LIPSS) have been observed on all kind of materials for over forty years. These LIPSS, also referred to as ripples, consist of wavy surfaces with periodicity equal or smaller than the wavelength of the laser radi

  20. High-gradient microelectromechanical system quadrupole electromagnets for particle beam focusing and steering

    Directory of Open Access Journals (Sweden)

    Jere Harrison

    2015-02-01

    Full Text Available Recent advancements in microelectromechanical system (MEMS fabrication techniques have enabled the batch-fabrication of quadrupole MEMS electromagnets producing 100 mT-scale field across sub-mm gaps with the potential for transformational advances in the field of compact high performance charged particle focusing and steering optics. The footprint of these in-vacuum focusing and steering optics can be as small as 3  mm×3  mm×0.5  mm. The low electromagnet impedance (58  mΩ, 32 nH per pole facilitates power-efficient operation and continuous or low duty cycle operation, and the individually controlled electromagnets allow combined dipole-quadrupole fields. Here we report on an experiment where these miniature devices have been used to focus and steer a 34 keV electron beam from a DC photogun, demonstrating the first application of magnetic MEMS to particle beam focusing.

  1. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhao-Xiang; Gong, Lei [Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026 (China); Ren, Yu-Xuan, E-mail: yxren@ustc.edu.cn [National Center for Protein Sciences Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai 200031 (China); Vaveliuk, Pablo [Centro de Investigaciones Opticas (CONICET La Plata-CIC), Cno. Centenario y 506, P.O. Box 3, 1897 Gonnet, La Plata, Pcia. de Buenos Aires (Argentina); Chen, Yue; Lu, Rong-De, E-mail: lrd@ustc.edu.cn [Physics Experiment Teaching Center, School of Physical Sciences, University of Science and Technology of China, Hefei 230026 (China)

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  2. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)]. E-mail: dpadams@sandia.gov; Mayer, T.M. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Vasile, M.J. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Archuleta, K. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)

    2006-01-15

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  3. Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy.

    Science.gov (United States)

    Bushby, Andrew J; P'ng, Kenneth M Y; Young, Robert D; Pinali, Christian; Knupp, Carlo; Quantock, Andrew J

    2011-06-01

    In this protocol, we describe a 3D imaging technique known as 'volume electron microscopy' or 'focused ion beam scanning electron microscopy (FIB/SEM)' applied to biological tissues. A scanning electron microscope equipped with a focused gallium ion beam, used to sequentially mill away the sample surface, and a backscattered electron (BSE) detector, used to image the milled surfaces, generates a large series of images that can be combined into a 3D rendered image of stained and embedded biological tissue. Structural information over volumes of tens of thousands of cubic micrometers is possible, revealing complex microanatomy with subcellular resolution. Methods are presented for tissue processing, for the enhancement of contrast with osmium tetroxide/potassium ferricyanide, for BSE imaging, for the preparation and platinum deposition over a selected site in the embedded tissue block, and for sequential data collection with ion beam milling; all this takes approximately 90 h. The imaging conditions, procedures for alternate milling and data acquisition and techniques for processing and partitioning the 3D data set are also described; these processes take approxiamtely 30 h. The protocol is illustrated by application to developing chick cornea, in which cells organize collagen fibril bundles into complex, multilamellar structures essential for transparency in the mature connective tissue matrix. The techniques described could have wide application in a range of fields, including pathology, developmental biology, microstructural anatomy and regenerative medicine.

  4. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  5. 3D micro-optical elements for generation of tightly focused vortex beams

    Directory of Open Access Journals (Sweden)

    Balčytis Armandas

    2015-01-01

    Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.

  6. Bioaerosol detection and classification using dual excitation wavelength laser-induced fluorescence

    Science.gov (United States)

    Jonsson, Per; Wästerby, Pär.; Gradmark, Per-Åke; Hedborg, Julia; Larsson, Anders; Landström, Lars

    2015-05-01

    We present results obtained by a detection system designed to measure laser-induced fluorescence from individual aerosol particles using dual excitation wavelengths. The aerosol is sampled from ambient air and via a 1 mm diameter nozzle, surrounded by a sheath air flow, confined into a particle beam. A continuous wave blue laser at 404 nm is focused on the aerosol beam and two photomultiplier tubes monitor the presence of individual particles by simultaneous measuring the scattered light and any induced fluorescence. When a particle is present in the detection volume, a laser pulse is triggered from an ultraviolet laser at 263 nm and the corresponding fluorescence spectrum is acquired with a spectrometer based on a diffraction grating and a 32 channel photomultiplier tube array with single-photon sensitivity. The spectrometer measures the fluorescence spectra in the wavelength region from 250 to 800 nm. In the present report, data were measured on different monodisperse reference aerosols, simulants of biological warfare agents, and different interference aerosol particles, e.g. pollen. In the analysis of the experimental data, i.e., the time-resolved scattered and fluorescence signals from 404 nm c.w. light excitation and the fluorescence spectra obtained by a pulsed 263 nm laser source, we use multivariate data analysis methods to classify each individual aerosol particle.

  7. Localized conductive patterning via focused electron beam reduction of graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Kulkarni, Dhaval D.; Zackowski, Paul; Jang, Seung Soon; Tsukruk, Vladimir V. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-03-30

    We report on a method for “direct-write” conductive patterning via reduction of graphene oxide (GO) sheets using focused electron beam induced deposition (FEBID) of carbon. FEBID treatment of the intrinsically dielectric graphene oxide between two metal terminals opens up the conduction channel, thus enabling a unique capability for nanoscale conductive domain patterning in GO. An increase in FEBID electron dose results in a significant increase of the domain electrical conductivity with improving linearity of drain-source current vs. voltage dependence, indicative of a change of graphene oxide electronic properties from insulating to semiconducting. Density functional theory calculations suggest a possible mechanism underlying this experimentally observed phenomenon, as localized reduction of graphene oxide layers via interactions with highly reactive intermediates of electron-beam-assisted dissociation of surface-adsorbed hydrocarbon molecules. These findings establish an unusual route for using FEBID as nanoscale lithography and patterning technique for engineering carbon-based nanomaterials and devices with locally tailored electronic properties.

  8. Strain-dependent conductivity of granular metals prepared by focused particle beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Christina; Baranowski, Markus; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, Frankfurt am Main (Germany); Voelklein, Friedemann [Institut fuer Mikrotechnologien, Hochschule RheinMain, Ruesselsheim (Germany)

    2010-07-01

    We report on the strain-dependence of the electrical conductivity of granular metals prepared by focused particle beam induced deposition. The samples were prepared in a dual-beam electron / Ga ion scanning microscope using selected precursors, such as W(CO){sub 6}. Stripe-like deposits were fabricated on dedicated cantilevers pre-patterned with contact pads made from Cr/Au. The cantilever deflection was induced in-situ by means of a four axes nano-manipulator and the conductivity change was recorded by lock-in technique employing a Wheatstone resistance bridge. Current-voltage characteristics and strain-dependence were measured for samples of various thicknesses and composition. For selected samples time-dependent conductivity data were taken as the samples were slowly exposed to air.

  9. Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing

    Science.gov (United States)

    Li, Wuxia; Fenton, J. C.; Wang, Yiqian; McComb, D. W.; Warburton, P. A.

    2008-11-01

    We have grown tungsten-containing films by focused-ion-beam (FIB)-induced chemical vapor deposition. The films lie close to the metal-insulator transition with an electrical conductivity which changes by less than 5% between room temperature and 7 K. The superconducting transition temperature Tc of the films can be controlled between 5.0 and 6.2 K by varying the ion-beam deposition current. The Tc can be correlated with how far the films are from the metal-insulator transition, showing a nonmonotonic dependence, which is well described by the heuristic model of [Osofsky et al., Phys. Rev. Lett. 87, 197004 (2001)]. Our results suggest that FIB direct-writing of W composites might be a potential approach to fabricate mask-free superconducting devices as well as to explore the role of reduced dimensionality on superconductivity.

  10. Observation of changes in ion beam induced luminescence spectra from organics during focused microbeam irradiation

    Science.gov (United States)

    Kada, Wataru; Kawabata, Shunsuke; Satoh, Takahiro; Sakai, Makoto; Parajuli, Raj Kumar; Yamada, Naoto; Koka, Masashi; Miura, Kenta; Hanaizumi, Osamu; Kamiya, Tomihiro

    2017-08-01

    Continuous measurement of ion beam induced luminescence (IBIL) spectra was demonstrated with organic targets of nicotinamide adenine dinucleotide (NADH), tryptophan, riboflavin, and a polycyclic aromatic hydrocarbon (PAH), which are typically used as markers of biological contaminants in airborne particles. A 3 MeV external proton microbeam from a single-ended accelerator at QST/Takasaki was used to probe for changes in the IBIL spectrum using micro-optics sharing a focal point with the microprobe. We find that the decay of IBIL spectra from NADH and riboflavin varied by target organic species. Moreover, new peaks in the IBIL spectrum were recorded by continuous IBIL spectroscopy from the PAH target after destruction of a peak originally obtained in the initial measurement. These results suggest that IBIL monitoring can detect changes in the chemical composition of organics under focused beam irradiation.

  11. Preparation and Analysis of Atom Probe Tips by Xenon Focused Ion Beam Milling.

    Science.gov (United States)

    Estivill, Robert; Audoit, Guillaume; Barnes, Jean-Paul; Grenier, Adeline; Blavette, Didier

    2016-06-01

    The damage and ion distribution induced in Si by an inductively coupled plasma Xe focused ion beam was investigated by atom probe tomography. By using predefined patterns it was possible to prepare the atom probe tips with a sub 50 nm end radius in the ion beam microscope. The atom probe reconstruction shows good agreement with simulated implantation profiles and interplanar distances extracted from spatial distribution maps. The elemental profiles of O and C indicate co-implantation during the milling process. The presence of small disc-shaped Xe clusters are also found in the three-dimensional reconstruction. These are attributed to the presence of Xe nanocrystals or bubbles that open during the evaporation process. The expected accumulated dose points to a loss of >95% of the Xe during analysis, which escapes undetected.

  12. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  13. Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers

    Science.gov (United States)

    Liu, Langechuan; Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-08-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by the degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ∼130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs.

  14. Design of a 11.4 GHz, 150-MW, Sheet Beam, PPM-Focused Klystron

    Science.gov (United States)

    Caryotakis, G.; Krasnykh, A.; Neubauer, M.; Phillips, R.; Scheitrum, G.; Sprehn, D.; Steele, R.; Jensen, A.; Smithe, D.

    2003-12-01

    The current baseline design for the 500-GeV SLAC/KEK future collider requires approximately 5000 75-MW, 1.6 μs, PPM pencil-beam klystrons. A prototype is currently on test. Although the estimated cost of the klystrons is a small part of the total collider cost, this number of klystrons is at least an order of magnitude higher than the klystron population in any scientific or military system ever fielded. A back-up sheet-beam klystron design has been under study at SLAC for the last six years. It offers several advantages: If two sheet beams were employed in parallel, the current density at the two cathodes would be low, and the power density at the output cavity a fraction of that in the pencil-beam klystron. Furthermore, because of significantly fewer vacuum parts, the 150-MW SBK should have a substantially lower cost than the baseline 75-MW pencil-beam klystron. Finally, it is considered that because of the lower power density, a longer rf pulse (3.2 μs) could be employed. All this means is that, with more pulse compression, the total number of klystrons in the collider could be reduced by a factor of 4, to approximately 1250. The total cost of the klystrons would be cut by an even larger factor. Since a practical SBK has never been designed before, two major problems had to be solved before a meaningful computer simulation of the entire tube could be performed. First, a sheet-beam gun had to be designed, along with a periodically-focused beam transport system outside the vacuum. Secondly, since extended interaction cavities are used throughout, new techniques had to be developed to provide useful designs with adequate stability and mode separation. This work is essentially complete. The work to parallel 24 CPUs, and modify the MAGIC 3D code so simulations of the complete SBK can be performed in a reasonable time, has progressed sufficiently for an interim report on the project to be presented.

  15. Experimental study of femtosecond laser-induced medical energy proton beam%飞秒激光诱发的医用质子束特性的实验研究

    Institute of Scientific and Technical Information of China (English)

    王光昶; 张建炜; 刘玉红; 周维民; 郑志坚

    2011-01-01

    为了探索飞秒脉冲激光与固体靶相互作用中医用质子束特性,在超短超强激光装置"SILEX-I"上进行了医用高能质子束特性实验研究.实验利用HD810辐射变色膜片(RCF)、CR39核径迹探测器和Thomson离子谱仪分别在固体靶背表面法线方向测量了质子束的空间分布、束密度、产额和能谱.实验结果表明:质子束沿着靶背法线方向发射,与入射激光方向无关;质子束空间分布呈现环状、成丝和圆盘状分布,并且质子束存在较小的发射立体角;保持复合靶前表面的Au厚度不变,质子束流随着后表面的CH层厚度的增加而减小;质子束发射在一定能量处出现截止,截止能量的大小与靶厚度有关,即随靶厚度的增加而减小.%To study the characteristics of medical proton beam produced in the interaction of femtosecond pulse laser with solid targets,the proton beam behavior at the normal direction of the rear surface of the solid targets produced from ulintencity pulse laser was explored on SILEX-I laser facility. The spatial distributions of the proton beam with diifferent target thicknesses were recorded by radiochromic film (RCF) HD810. The density and yield of the proton beam were recorded by nuclear track detector CR39.And the proton energy spectrum was measured by Thomson magnetic spectrometer. The results show that high energy protons jet only in the direction normal to the rear surface of target within a small cone angle. With the same thickness of Au layer,the proton beam flux decreases with the increasing of C8H8 layer thickness,and the corresponding spatial profile of proton beam shows ring-,filament-,and disc-like distributions. A sharp cutoff energy exists in the proton energy spectrum,and it depends on the target thickness and decreases with the increasing of target thickness.

  16. Influence of the substrate material on the knife-edge based profiling of tightly focused light beams

    CERN Document Server

    Huber, C; Banzer, P; Leuchs, G

    2016-01-01

    The performance of the knife-edge method as a beam profiling technique for tightly focused light beams depends on several parameters, such as the material and height of the knife-pad as well as the polarization and wavelength of the focused light beam under study. Here we demonstrate that the choice of the substrate the knife-pads are fabricated on has a crucial influence on the reconstructed beam projections as well. We employ an analytical model for the interaction of the knife-pad with the beam and report good agreement between our numerical and experimental results. Moreover, we simplify the analytical model and demonstrate, in which way the underlying physical effects lead to the apparent polarization dependent beam shifts and changes of the beamwidth for different substrate materials and heights of the knife-pad.

  17. Performance of Focused Ion Beam Trimmed Yoke-Type Magnetoresistive Heads for Magnetic Microscopy

    OpenAIRE

    Phillips, Gavin N.; Eisenberg, Martin; Draaisma, Eddie A.; Abelmann, Leon; Lodder, J. Cock

    2002-01-01

    Thin-film yoke-type magnetoresistive (MR) tape heads with eight channels have been used for scanning magnetoresistance microscopy. The NiFe read flux guides of the channels have been trimmed down from 12 ¿m to widths varying between 5 ¿m and 100 nm by focused ion-beam milling with Ga+ ions. The tape-bearing surface of the milled regions has been reconstructed in situ by the local deposition of Pt. Tracks with a minimum bit length of 1 ¿m have been written on Co-Ni-O metal evaporated tape and ...

  18. Single Cell Element of Chalcogenide Random Access Memory Fabricated with the Focused Ion Beam Method

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; SONG Zhi-Tang; FENG Song-Lin; CHEN Bomy

    2004-01-01

    A single cell element of chalcogenide random access memory was fabricated by using the focused ion beam method. The contact size between the Ge2Sb2 Te5 phase change film and the top electrode film is about 600nm (diameter) and the contact area is calculated to be 0.28pm2. The thickness of the phase change film is 83nm.The current-voltage characteristics of the cell element are studied using the home-made current-voltage tester in our laboratory. The minimum threshold current of about 0.6mA is obtained.

  19. Intrinsic Josephson effects in submicrometre Bi2212 mesas fabricated by using focused ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, D.; Mros, N.; Tarte, E.J.; Yurgens, A.; Krasnov, V.M. [Department of Microelectronics and Nanoscience, Chalmers University of Technology and Goeteborg University, SE-412 96 Goeteborg (Sweden); Foord, D.T.; Booij, W.E.; Blamire, M.G. [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    1999-11-01

    We have investigated the current-voltage (I-V) characteristics of sub-{mu}m sized mesas made on the surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} (Bi2212) single crystals. The mesas were fabricated using focused ion beam etching. The samples showed excellent I-V characteristics and their conductance-voltage (G-V) curves were measured from above the transition temperature down to 4.2 K. New ways of making annular mesas with diameters down to 0.5 {mu}m were also investigated. (author)

  20. Nanochannel arrays etched into hexagonal boron nitride mesa-membranes by focused ion beam

    Science.gov (United States)

    Fulcrand, Remy; Linas, Sébastien; Cauwet, François; Poinsot, Blaise; Brioude, Arnaud

    2016-11-01

    Meso-membranes with highly ordered nano channel arrays have been fabricated by patterning hexagonal boron nitride (h-BN) films using a focused ion beam. The complete experimental procedure will be given in detail form the chemical vapor deposition for h-BN synthesis to its patterning and the final membrane design for nanofluidic experiments. The membranes obtained are characterized at each experimental step by electron microscopy and Raman spectroscopy. The technique is finally applied to fabricate devices in which the only passage for a fluid is a nano channel array etched into a h-BN film.

  1. Fabrication of micro DOE using micro tools shaped with focused ion beam.

    Science.gov (United States)

    Xu, Z W; Fang, F Z; Zhang, S J; Zhang, X D; Hu, X T; Fu, Y Q; Li, L

    2010-04-12

    A novel method is proposed to fabricate micro Diffractive Optical Elements (DOE) using micro cutting tools shaped with focused ion beam (FIB) milling. Micro tools with nanometric cutting edges and complicated shapes are fabricated by controlling the tool facet's orientation relative to the FIB. The tool edge radius of less than 30 nm is achieved for the nano removal of the work materials. Semi-circular micro tools and DOE-shaped micro tools are developed to fabricate micro-DOE and sinusoidal modulation templates. Experiments show that the proposed method can be a high efficient way in fabricating micro-DOE with nanoscale surface finishes.

  2. Selective filling of photonic crystal fibers using focused ion beam milled microchannels

    DEFF Research Database (Denmark)

    Wang, Fei; Yuan, Scott Wu; Hansen, Ole;

    2011-01-01

    We introduce a versatile, robust, and integrated technique to selectively fill fluid into a desired pattern of air holes in a photonic crystal fiber (PCF). Focused ion beam (FIB) is used to efficiently mill a microchannel on the end facet of a PCF before it is spliced to a single-mode fiber (SMF......). Selected air holes are therefore exposed to the atmosphere through the microchannel for fluid filling. A low-loss in-line tunable optical hybrid fiber device is demonstrated by using such a technique. (C) 2011 Optical Society of America...

  3. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jinda; Li, Yong-qing, E-mail: liy@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20 kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ∼20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  4. Correlative In Vivo 2 Photon and Focused Ion Beam Scanning Electron Microscopy of Cortical Neurons

    Science.gov (United States)

    Maco, Bohumil; Holtmaat, Anthony; Cantoni, Marco; Kreshuk, Anna; Straehle, Christoph N.; Hamprecht, Fred A.; Knott, Graham W.

    2013-01-01

    Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis. PMID:23468982

  5. Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons.

    Directory of Open Access Journals (Sweden)

    Bohumil Maco

    Full Text Available Correlating in vivo imaging of neurons and their synaptic connections with electron microscopy combines dynamic and ultrastructural information. Here we describe a semi-automated technique whereby volumes of brain tissue containing axons and dendrites, previously studied in vivo, are subsequently imaged in three dimensions with focused ion beam scanning electron microcopy. These neurites are then identified and reconstructed automatically from the image series using the latest segmentation algorithms. The fast and reliable imaging and reconstruction technique avoids any specific labeling to identify the features of interest in the electron microscope, and optimises their preservation and staining for 3D analysis.

  6. Laser-induced vibration of a thin soap film.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  7. Femtosecond laser-induced blazed periodic grooves on metals.

    Science.gov (United States)

    Hwang, Taek Yong; Guo, Chunlei

    2011-07-01

    In this Letter, we generate laser-induced periodic surface structures (LIPSSs) on platinum following femtosecond laser pulse irradiation. For the first time to our knowledge, we study the morphological profile of LIPSSs over a broad incident angular range, and find that the morphological profile of LIPSSs depends significantly on the incident angle of the laser beam. We show that LIPSS grooves become more asymmetric at a larger incident angle, and the morphological profile of LIPSSs formed at an incident angle over 55° eventually resembles that of a blazed grating. Our study suggests that the formation of the blazed groove structures is attributed to the selective ablation of grooves through the asymmetric periodic surface heating following femtosecond pulse irradiation. The blazed grooves are useful for controlling the diffraction efficiency of LIPSSs.

  8. Direct patterning of gold oxide thin films by focused ion-beam irradiation

    Science.gov (United States)

    Machalett, F.; Edinger, K.; Melngailis, J.; Diegel, M.; Steenbeck, K.; Steinbeiss, E.

    For direct writing of electrically conducting connections and areas into insulating gold oxide thin films a scanning Ar+ laser beam and a 30 keV Ga+ focused ion beam (FIB) have been used. The gold oxide films are prepared by magnetron sputtering under argon/oxygen plasma. The patterning of larger areas (dimension 10-100 μm) has been carried out with the laser beam by local heating of the selected area above the decomposition temperature of AuOx (130-150 °C). For smaller dimensions (100 nm to 10 μm) the FIB irradiation could be used. With both complementary methods a reduction of the sheet resistance by 6-7 orders of magnitude has been achieved in the irradiated regions (e.g. with FIB irradiation from 1.5×107 Ω/□ to approximately 6 Ω/□). The energy-dispersive X-ray analysis (EDX) show a considerably reduced oxygen content in the irradiated areas, and scanning electron microscopy (SEM), as well as atomic force microscopy (AFM) investigations, indicate that the FIB patterning in the low-dose region (1014 Ga+/cm2) is combined with a volume reduction, which is caused by oxygen escape rather than by sputtering.

  9. Probability of divacancy trap production in silicon diodes exposed to focused ion beam irradiation

    Science.gov (United States)

    Pastuović, Željko; Vittone, Ettore; Capan, Ivana; Jakšić, Milko

    2011-02-01

    We present ion beam induced charge (IBIC) measurements of the critical displacement damage dose Dd values and modeling of the probability of divacancy trap production in p+-n-n+ silicon diodes exposed to megaelectron volt energy ion beam irradiation. The normalized induced charge (Q0/Q) measured by He ion probe in tested silicon diodes irradiated by focused He, Li, O, and Cl ion beams with energies of about 0.3 MeV/u increases linearly with Dd according to the modified radiation damage function and nonionizing energy loss (NIEL) theory. A simple IBIC model based on Gunn theorem showed clear dependence of the induced charge Q and corresponding equivalent damage factor Ked value on both a depth profile of charge created by ionizing particle (probe) and a depth distribution of stable defects created from primary defects produced by damaging ions. The average probability of the divacancy production (defined as the ratio of the final electrical active defect quantity and primary ion induced vacancy quantity for each impinging ion) of 0.18 (18%) was calculated by the IBIC modeling for all damaging ions.

  10. The controlled fabrication of nanopores by focused electron-beam-induced etching

    Science.gov (United States)

    Yemini, M.; Hadad, B.; Liebes, Y.; Goldner, A.; Ashkenasy, N.

    2009-06-01

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 × 10-6 Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  11. The controlled fabrication of nanopores by focused electron-beam-induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Yemini, M; Ashkenasy, N [Department of Materials Engineering, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel); Hadad, B; Goldner, A [The Weiss Family Laboratory for Nano-Scale Systems, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel); Liebes, Y [Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653 Beer-Sheva (Israel)], E-mail: nurita@bgu.ac.il

    2009-06-17

    The fabrication of nanometric holes within thin silicon-based membranes is of great importance for various nanotechnology applications. The preparation of such holes with accurate control over their size and shape is, thus, gaining a lot of interest. In this work we demonstrate the use of a focused electron-beam-induced etching (FEBIE) process as a promising tool for the fabrication of such nanopores in silicon nitride membranes and study the process parameters. The reduction of silicon nitride by the electron beam followed by chemical etching of the residual elemental silicon results in a linear dependence of pore diameter on electron beam exposure time, enabling accurate control of nanopore size in the range of 17-200 nm in diameter. An optimal pressure of 5.3 x 10{sup -6} Torr for the production of smaller pores with faster process rates, as a result of mass transport effects, was found. The pore formation process is also shown to be dependent on the details of the pulsed process cycle, which control the rate of the pore extension, and its minimal and maximal size. Our results suggest that the FEBIE process may play a key role in the fabrication of nanopores for future devices both in sensing and nano-electronics applications.

  12. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, G. T. Road, Phagwara, Punjab 144411 (India)

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  13. Laser-Induced Breakdown Spectroscopy in Africa

    Directory of Open Access Journals (Sweden)

    M. A. Kasem

    2015-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS, known also as laser-induced plasma spectroscopy (LIPS, is a well-known spectrochemical elemental analysis technique. The field of LIBS has been rapidly matured as a consequence of growing interest in real-time analysis across a broad spectrum of applied sciences and recent development of commercial LIBS analytical systems. In this brief review, we introduce the contributions of the research groups in the African continent in the field of the fundamentals and applications of LIBS. As it will be shown, the fast development of LIBS in Africa during the last decade was mainly due to the broad environmental, industrial, archaeological, and biomedical applications of this technique.

  14. Laser induced breakdown spectroscopy on meteorites

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)], E-mail: alessandro.degiacomo@ba.imip.cnr.it; Dell' Aglio, M.; De Pascale, O. [MIP-CNR sec Bari (Italy); Longo, S.; Capitelli, M. [Department of Chemistry, University of Bari (Italy); MIP-CNR sec Bari (Italy)

    2007-12-15

    The classification of meteorites when geological analysis is unfeasible is generally made by the spectral line emission ratio of some characteristic elements. Indeed when a meteorite impacts Earth's atmosphere, hot plasma is generated, as a consequence of the braking effect of air, with the consequent ablation of the falling body. Usually, by the plasma emission spectrum, the meteorite composition is determined, assuming the Boltzmann equilibrium. The plasma generated during Laser Induced Breakdown Spectroscopy (LIBS) experiment shows similar characteristics and allows one to verify the mentioned method with higher accuracy. On the other hand the study of Laser Induced Breakdown Spectroscopy on meteorite can be useful for both improving meteorite classification methods and developing on-flight techniques for asteroid investigation. In this paper certified meteorites belonging to different typologies have been investigated by LIBS: Dofhar 461 (lunar meteorite), Chondrite L6 (stony meteorite), Dofhar 019 (Mars meteorite) and Sikhote Alin (irony meteorite)

  15. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  16. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  17. Soft X-Ray Magnetic Imaging of Focused Ion Beam Lithographically Patterned Fe Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Paul J.; Shen, Tichan H.; Grundy, PhilJ.; Im, Mi Young; Fischer, Peter; Morton, Simon A.; Kilcoyne, Arthur D.L.

    2008-11-09

    We illustrate the potential of modifying the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no change to the chemical environment of Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

  18. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    Science.gov (United States)

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  19. Fresnel Number Concept and Revision of some Characteristics in the Linear Theory of Focused Acoustic Beams

    CERN Document Server

    Makov, Yu N

    2008-01-01

    The advisability of the use of the Fresnel number as the measure (characteristic) of the ratio of diffraction and focusing properties for ultrasonic transducers and its radiated beams is proposed and demonstrated. Althought this characteristic is more habitual in optics, in acoustics the equivalent (mathematically although not fully in its physical meaning) parameter of linear gain is used as a rule. However, the preference and the more accuracy of the Fresnel number use is demonstrated here on the basis that the usual determination of the linear gain parameter ceases to correspond to the real value of the gain for low Fresnel number acoustic beams. It connects with the linear effect of axial maximum pressure shift from the geometrical focus towards the transducer. This effect is known for a long time, but here the analytical formulas describing this shift with a high accuracy for arbitrary Fresnel numbers are presented. As a consequence, also the analytical dependence of the real gain on the Fresnel number i...

  20. Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures.

    Science.gov (United States)

    Belić, Domagoj; Shawrav, Mostafa M; Gavagnin, Marco; Stöger-Pollach, Michael; Wanzenboeck, Heinz D; Bertagnolli, Emmerich

    2015-02-04

    Three-dimensional gold (Au) nanostructures offer promise in nanoplasmonics, biomedical applications, electrochemical sensing and as contacts for carbon-based electronics. Direct-write techniques such as focused-electron-beam-induced deposition (FEBID) can provide such precisely patterned nanostructures. Unfortunately, FEBID Au traditionally suffers from a high nonmetallic content and cannot meet the purity requirements for these applications. Here we report exceptionally pure pristine FEBID Au nanostructures comprising submicrometer-large monocrystalline Au sections. On the basis of high-resolution transmission electron microscopy results and Monte Carlo simulations of electron trajectories in the deposited nanostructures, we propose a curing mechanism that elucidates the observed phenomena. The in situ focused-electron-beam-induced curing mechanism was supported by postdeposition ex situ curing and, in combination with oxygen plasma cleaning, is utilized as a straightforward purification method for planar FEBID structures. This work paves the way for the application of FEBID Au nanostructures in a new generation of biosensors and plasmonic nanodevices.

  1. Fluorescence activated cell sorting via a focused traveling surface acoustic beam.

    Science.gov (United States)

    Ma, Zhichao; Zhou, Yinning; Collins, David J; Ai, Ye

    2017-09-12

    Fluorescence activated cell sorting (FACS) has become an essential technique widely exploited in biological studies and clinical applications. However, current FACS systems are quite complex, expensive, bulky, and pose potential sample contamination and biosafety issues due to the generation of aerosols in an open environment. Microfluidic technology capable of precise cell manipulation has great potential to reinvent and miniaturize conventional FACS systems. In this work, we demonstrate a benchtop scale FACS system that makes use of a highly focused traveling surface acoustic wave beam to sort out micron-sized particles and biological cells upon fluorescence interrogation at ∼kHz rates. The highly focused acoustic wave beam has a width of ∼50 μm that enables highly accurate sorting of individual particles and cells. We have applied our acoustic FACS system to isolate fluorescently labeled MCF-7 breast cancer cells from diluted whole blood samples with the purity of sorted MCF-7 cells higher than 86%. The cell viability before and after acoustic sorting is higher than 95%, indicating excellent biocompatibility that should enable a variety of cell sorting applications in biomedical research.

  2. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    CERN Document Server

    Fang, Zhao-Xiang; Gong, Lei; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-01-01

    Needle-like electromagnetic fields has various advantages for the applications in high-resolution imaging, Raman Spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device(DMD). Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional(1D) and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We...

  3. Two-dimensional dielectric collimator design and its experimental verification for microwave beam focusing

    Science.gov (United States)

    Kim, H.; Park, J.; Seo, I.; Yoo, J.

    2016-10-01

    A collimator is an electromagnetic device that focuses or aligns the direction of wave propagation to achieve a narrow, intense beam. In this study, we propose a two-dimensional dielectric collimator for microwave beam focusing. This is something that is difficult to achieve using theoretical- or intuition-based approaches. We therefore used a systematic design process, which is referred to as the phase field design method, to obtain an optimal topological configuration for the collimator. The phase field parameter determines the optimal configuration of the dielectric material and, as a consequence, it determines the relative permittivity of the component. To verify the design results, we fabricated a prototype via three-dimensional printing and performed an experimental verification using an electric field scanner to measure the near field distributions of the designed collimator positioned parallel to an incident wave. We also performed angle dependent experiments for which the collimator position was offset at various angles. We confirmed that the experimental results are consistent with the simulation results.

  4. Characterization of Bragg gratings in Al2O3 waveguides fabricated by focused ion beam milling and laser interference lithography

    NARCIS (Netherlands)

    Ay, F.; Bernhardi, Edward; Agazzi, L.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus; de Ridder, R.M.

    Optical grating cavities in Al2O3 channel waveguides were successfully defined by focused ion beam milling and laser interference lithography. Both methods are shown to be suitable for realizing resonant structures for on-chip waveguide lasers.

  5. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  6. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create opt

  7. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  8. Optimization study of the femtosecond laser-induced forward-transfer process with thin aluminum films.

    Science.gov (United States)

    Bera, Sudipta; Sabbah, A J; Yarbrough, J M; Allen, C G; Winters, Beau; Durfee, Charles G; Squier, Jeff A

    2007-07-20

    The parameters for an effective laser-induced forward-transfer (LIFT) process of aluminum thin films using a femtosecond laser are studied. Deposited feature size as a function of laser fluence, donor film thickness, quality of focus, and the pulse duration are varied, providing a metric of the most desirable conditions for femtosecond LIFT with thin aluminum films.

  9. Analysis of Pulverized Coal by Laser-Induced Breakdown Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used to detect atomic species in various environments. The quantitative analysis (C, H, O, N and S) of representative coal samples are being carried out with LIBS, and the effects of particle size are analyzed.A powerful pulse Nd:YAG laser is focused on the coal sample at atmosphere pressure, and the emission spectra from laser-induced plasmas are measured by time-resolved spectroscopy, and the intensity of analyzed spectral lines is obtained through observing the laser plasma with a delay time of 0.4μs. The experimental results show that the slope of calibration curve is nearly 1 when the concentration of the analyzed element is relatively low, and the slope of curve is nearly 0.5 when the concentration of C is higher than other elements. In addition, using the calibration-free model without self-absorption effect, the results show that the decreasing of particle size leads to an increase of the plasma temperature.

  10. Extraction of a strongly focusing He+ beam from three-stage concave electrodes for alpha particle measurement system in ITER.

    Science.gov (United States)

    Kobuchi, T; Sasao, M; Kisaki, M; Tsumori, K; Tanaka, N; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    A strongly focusing He(+) ion beam source equipped with concave multi-aperture electrodes was developed for production of He(-) through a charge exchange cell. The beam was extracted at a voltage less than 20 kV from 301 apertures distributed in an area of 100 mm φ, and focused at 750 mm distance. The beam current and the beam size of 2 A and 20 mm in diameter, respectively, were achieved with an arc power less than 10 kW. The optimum perveance was obtained at 0.02 A∕kV(1.5) at the beam energy less than 20 keV which is suitable for the conversion to He(-) in an alkali vapor cell.

  11. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  12. Thermal effects generated by high-intensity focused ultrasound beams at normal incidence to a bone surface.

    Science.gov (United States)

    Nell, Diane M; Myers, Matthew R

    2010-01-01

    Experiments and computations were performed to study factors affecting thermal safety when high-intensity focused ultrasound (HIFU) beams are normally incident (i.e., beam axis normal to the interface) upon a bone/soft-tissue interface. In particular, the temperature rise and thermal dose were determined as a function of separation between the beam focus and the interface. Under conditions representative of clinical HIFU procedures, it was found that the thermal dose at the bone surface can exceed the threshold for necrosis even when the beam focus is more than 4 cm from the bone. Experiments showed that reflection of the HIFU beam from the bone back into the transducer introduced temperature fluctuations of as much as +/-15% and may be an important consideration for safety analyses at sufficiently high acoustic power. The applicability of linear propagation models in predicting thermal dose near the interface was also addressed. Linear models, while underpredicting thermal dose at the focus, provided a conservative (slight overprediction) estimate of thermal dose at the bone surface. Finally, temperature rise due to absorption of shear waves generated by the HIFU beam in the bone was computed. Modeling shear-wave propagation in the thermal analysis showed that the predicted temperature rise off axis was as much as 30% higher when absorption of shear waves is included, indicating that enhanced heating due to shear-wave absorption is potentially important, even for normally incident HIFU beams.

  13. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Science.gov (United States)

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  14. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Andrei G. [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA (United States); Kim, Songkil; Henry, Mathias [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Kulkarni, Dhaval; Tsukruk, Vladimir V. [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA (United States)

    2014-07-27

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  15. Investigation of focused ion beam induced damage in single crystal diamond tools

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Zhen [Centre for Precision Manufacturing, Department of Design, Manufacture & Engineering Management, University of Strathclyde, Glasgow G1 1XQ (United Kingdom); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo, Xichun, E-mail: Xichun.Luo@strath.ac.uk [Centre for Precision Manufacturing, Department of Design, Manufacture & Engineering Management, University of Strathclyde, Glasgow G1 1XQ (United Kingdom)

    2015-08-30

    Highlights: • The FIB-induced damage layer should be paid enough attention when shaping the cutting edges of nanoscale diamond tools. • During FIB processing cutting tools made of natural single crystal diamond, the Ga{sup +} collision will create a damage layer around tool tips. • The thicknesses of damaged layer and the level for amorphization of diamond significantly increase with beam energy. • The FIB-induced doping and defects during tool fabrication are responsible for the early detection of tool wear of nanoscale diamond tools. - Abstract: In this work, transmission electron microscope (TEM) measurements and molecular dynamics (MD) simulations were carried out to characterise the focused ion beam (FIB) induced damage layer in a single crystal diamond tool under different FIB processing voltages. The results obtained from the experiments and the simulations are in good agreement. The results indicate that during FIB processing cutting tools made of natural single crystal diamond, the energetic Ga{sup +} collision will create an impulse-dependent damage layer at the irradiated surface. For the tested beam voltages in a typical FIB system (from 8 kV to 30 kV), the thicknesses of the damaged layers formed on a diamond tool surface increased from 11.5 nm to 27.6 nm. The dynamic damage process of FIB irradiation and ion–solid interactions physics leading to processing defects in FIB milling were emulated by MD simulations. The research findings from this study provide the in-depth understanding of the wear of nanoscale multi-tip diamond tools considering the FIB irradiation induced doping and defects during the tool fabrication process.

  16. Through-silicon via plating void metrology using focused ion beam mill

    Science.gov (United States)

    Rudack, A. C.; Nadeau, J.; Routh, R.; Young, R. J.

    2012-03-01

    3D IC integration continues to increase in complexity, employing advanced interconnect technologies such as throughsilicon vias (TSVs), wafer-to-wafer (W2W) bonding, and multi-chip stacking. As always, the challenge with developing new processes is to get fast, effective feedback to the integration engineer. Ideally this data is provided by nondestructive in-line metrology, but this is not always possible. For example, some form of physical cross-sectioning is still the most practical way to detect and characterize TSV copper plating voids. This can be achieved by cleaving, followed by scanning electron microscope (SEM) inspection. A more effective physical cross-sectioning method has been developed using an automated dual-beam focused ion beam (FIB)-SEM system, in which multiple locations can be sectioned and imaged while leaving the wafer intact. This method has been used routinely to assess copper plating voids over the last 24 months at SEMATECH. FIB-SEM feedback has been used to evaluate new plating chemistries, plating recipes, and process tool requalification after downtime. The dualbeam FIB-SEM used for these studies employs a gallium-based liquid metal ion source (LMIS). The overall throughput of relatively large volumes being milled is limited to 3-4 hours per section due to the maximum available beam current of 20 nA. Despite the larger volumetric removal rates of other techniques (e.g., mechanical polishing, broad-ion milling, and laser ablation), the value of localized, site-specific, and artifact-free FIB milling is well appreciated. The challenge, therefore, has been to reap the desired FIB benefits, but at faster volume removal rates. This has led to several system and technology developments for improving the throughput of the FIB technique, the most recent being the introduction of FIBs based on an inductively coupled plasma (ICP) ion source. The ICP source offers much better performance than the LMIS at very high beam currents, enabling more than

  17. Ion beam emission within a low energy focus plasma (0.1 kJ) operating with hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    El-Aragi, Gamal E. [Nuclear Research Center, Cairo (Egypt). Plasma Physics and Nuclear Fusion Dept.

    2010-06-15

    An investigation of energetic ion beam emission from a low energy plasma focus (0.1 kJ Mather type) device operating with hydrogen gas is studied. The ion beam emission is investigated using time-integrated and time-resolved detectors. The present plasma focus device is powered by a capacitor bank of 1 {mu}F at 18 kV maximum charging voltage. The correlation of ion beam intensity with filling gas pressure indicates that the beam emission is maximized at the optimum pressure for the focus formation at peak current. Energy of ions is determined with a time-of-flight (TOF) method, taking into account distance from the center electrode to the detection plane. (orig.)

  18. Bi-spectral beam extraction in combination with a focusing feeder

    CERN Document Server

    Zendler, C; Nekrassov, D; Cussen, L D; Strobl, M

    2013-01-01

    Bi-spectral beam extraction combines neutrons from two different kind of moderators into one beamline, expanding the spectral range and thereby the utilization of an instrument. This idea can be realized by a mirror that reflects long wavelength neutrons from an off-axis colder moderator into a neutron guide aligned with another moderator emitting neutrons with shorter wavelengths which will be transmitted through the mirror. The mirror used in such systems is typically several meters long, which is a severe disadvantage because it reduces the possible length of a focusing device in design concepts requiring a narrow beam at a short distance from the source, as used in many instruments under development for the planned European Spallation Source (ESS). We propose a shortened extraction system consisting of several mirrors, and show that such an extraction system is better suited for combination with a feeder in an eye of the needle design, illustrated here in the context of a possible ESS imaging beamline.

  19. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis

    Science.gov (United States)

    Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald

    2016-09-01

    In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.

  20. Comparison of silicon and 4H silicon carbide patterning using focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Veerapandian, S.K.P. [Chair of Electron Devices, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Beuer, S.; Rumler, M.; Stumpf, F. [Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Schottkystrasse 10, 91058 Erlangen (Germany); Thomas, K.; Pillatsch, L.; Michler, J. [Empa Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Frey, L. [Chair of Electron Devices, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Schottkystrasse 10, 91058 Erlangen (Germany); Rommel, M. [Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Schottkystrasse 10, 91058 Erlangen (Germany)

    2015-12-15

    In this work, focused ion beam (FIB) milling of different structures is studied and compared for two different electronic materials, i.e., silicon (Si) and silicon carbide (SiC). Results show that the same processing parameters yield different trench cross sections for Si and SiC, even when the different material removal rates (MRR) are taken into account. In order to investigate more complex structures, nanocone arrays were fabricated in Si and SiC. The difference in the shape of the trench cross section and complex structures can be mainly explained by the significant difference in the angle dependent MRR for both materials. Other effects which occur during FIB irradiation by the non-ideal beam shape such as swelling and damage outside of the purposely processed region are emulated and sensitively studied by scanning probe microscopy techniques such as atomic force microscopy (in-line and off-line) and scanning spreading resistance microscopy, respectively, for SiC and the results are compared with those for Si.

  1. Design and implementation of a micron-sized electron column fabricated by focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Wicki, Flavio, E-mail: flavio.wicki@physik.uzh.ch; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-01-15

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV. - Highlights: • Electron optics • Scaling laws • Low-energy electrons • Coherent electron beams • Micron-sized electron column.

  2. Cobalt-based magnetic nanostructures grown by focused-electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Begun, Evgeniya; Schwenk, Johannes; Porrati, Fabrizio; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, D-60438 Frankfurt am Main (Germany)

    2011-07-01

    The fabrication of magnetic nanostructures by means of the direct-writing technique focused-electron-beam-induced deposition (FEBID) is an alternative to more conventional lithographic methods. We have grown magnetic cobalt structures by FEBID using the precursor dicobaltoctacarbonyl Co{sub 2}(CO){sub 8}. The obtained structures have a large metal content of about 85 at.% as compared to other metal-based deposits grown by the same technique, such as tungsten-based structures with 34 at.% maximum tungsten content and platin-based structures with about 24 at.% maximum platin content. We present a growth strategy for cobalt structures with tunable metal content. In particular, we show the influence of different combinations of electron-beam energy and current, the dwell time and the refresh time on the deposit composition, which was determined by energy-dispersive X-ray spectroscopy (EDX) at 5 keV. First results of magnetotransport measurements on these cobalt-based structures are presented.

  3. Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle

    Science.gov (United States)

    Talebitaher, A.; Springham, S. V.; Rawat, R. S.; Lee, P.

    2017-03-01

    The deuterium-deuterium (DD) fusion neutron yield and anisotropy were measured on a shot-to-shot basis for the NX2 plasma focus (PF) device using two beryllium fast-neutron activation detectors at 0° and 90° to the PF axis. Measurements were performed for deuterium gas pressures in the range 6-16 mbar, and positive correlations between neutron yield and anisotropy were observed at all pressures. Subsequently, at one deuterium gas pressure (13 mbar), the contribution to the fusion yield produced by the forwardly-directed D+ ion beam, emitted from the plasma pinch, was investigated by using a circular Pyrex plate to obstruct the beam and suppress its fusion contribution. Neutron measurements were performed with the obstacle positioned at two distances from the anode tip, and also without the obstacle. It was found that 80% of the neutron yield originates in the plasma pinch column and just above that. In addition, proton pinhole imaging was performed from the 0° and 90° directions to the pinch. The obtained proton images are consistent with the conclusion that DD fusion is concentrated ( 80%) in the pinch column region.

  4. Parametric instabilities in 3D periodically focused beams with space charge

    Science.gov (United States)

    Hofmann, Ingo; Boine-Frankenheim, Oliver

    2017-01-01

    Parametric resonances of beam eigenmodes with a periodic focusing system under the effect of space charge—also called structural instabilities—are the collective counterparts to parametric resonances of single particles or of mechanical systems. Their common feature is that an exponential instability is driven by a temporal modulation of a system parameter. Thus, they are complementary to the more commonly considered space charge single particle resonances, where space charge pseudo-multipole terms are assumed to exist already at finite level in the initial distribution. This article elaborates on the characteristics of such parametric instabilities in 3D bunched beams—as typical in linear accelerators—for modes of second (envelope), third and fourth order, including the transverse coupled "sum envelope instabilities" recently discovered for 2D beams. Noteworthy results are the finding that parametric resonances can be in competition with single particle resonances of twice the order due to overlapping stopbands; furthermore the surprisingly good applicability of the stopband positions and widths obtained from previously published 2D linearised Vlasov stability theory to the 3D non-Kapchinskij-Vladimirskij particle-in-cell code studies presented here.

  5. Intracavity contacts for nitride based monolithic surface emitters by focused ion beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Fandrich, Malte; Dartsch, Heiko; Tessarek, Christian; Aschenbrenner, Timo; Hommel, Detlef [Institut fuer Festkoerperphysik - Halbleiterepitaxie, Universitaet Bremen (Germany)

    2010-07-01

    The realization of electrically driven nitride based vertical-cavity surface-emitting lasers (VCSELs) is challenging due to limitations in the conductivity of the distributed Bragg reflectors (DBRs). Therefore monolithic approaches are based on a doped cavity and one or two undoped DBRs. This requires the use of technologically complex intracavity contacts. The presented process yields intracavity contacts applicable to monolithically grown VCSEL structures. Initially mesas are structured by photolithography and chemical assisted ion beam etching. The precise structuring of the prestructured mesas is performed in a focused ion beam system (FIB), where the micropillars are thinned stepwise down to a diameter of 0.5-5 {mu}m. The contacting of the pillars is realized by FIB deposited metal and insulator structures. Insulator separated Pt ring-contacts connect the micropillars with large-scale contact pads. This procedure was applied to a VCSEL structure consisting of a bottom AlInN/GaN-DBR with 40 pairs, a p/n-doped 5 {lambda} GaN-cavity with embedded InGaN quantum dots and a top 10 pair AlInN/GaN-DBR. The developed contacting structure enables a current up to 15 mA through the cavity which documents the capability for the electrical operation of VCSEL devices.

  6. Fe:O:C grown by focused-electron-beam-induced deposition: magnetic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lavrijsen, R; Schoenaker, F J; Ellis, T H; Barcones, B; Kohlhepp, J T; Swagten, H J M; Koopmans, B [Department of Applied Physics, Center for NanoMaterials and COBRA Research Institute, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Cordoba, R; Ibarra, M R [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, E-50009 Zaragoza (Spain); De Teresa, J M; Magen, C [Departamento de Fisica de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Trompenaars, P; Mulders, J J L, E-mail: r.lavrijsen@tue.nl, E-mail: deteresa@unizar.es [FEI Electron Optics, Achtseweg Noord 5, 5651 GG Eindhoven (Netherlands)

    2011-01-14

    We systematically study the effect of oxygen content on the magneto-transport and microstructure of Fe:O:C nanowires deposited by focused-electron-beam-induced (FEBID) deposition. The Fe/O ratio can be varied with an Fe content varying between {approx} 50 and 80 at.% with overall low C content ({approx}16 {+-} 3 at.%) by adding H{sub 2}O during the deposition while keeping the beam parameters constant as measured by energy dispersive x-ray (EDX) spectroscopy. The room-temperature magnetic properties for deposits with an Fe content of 66-71 at.% are investigated using the magneto-optical Kerr effect (MOKE) and electric magneto-transport measurements. The nanostructure of the deposits is investigated through cross-sectional high-resolution transmission electron microscopy (HRTEM) imaging, allowing us to link the observed magneto-resistance and resistivity to the transport mechanism in the deposits. These results demonstrate that functional magnetic nanostructures can be created, paving the way for new magnetic or even spintronics devices.

  7. Carbon nanotube’s modification by focused ion beam irradiation and its healing strategies

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zongwei; Xu, Lihua [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University (China); Gao, Haifeng; Li, Wanli [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University (China)

    2013-07-15

    Single-walled carbon nanotube (SWNT) clusters’ properties and performance have been studied after irradiated by focused ion beam (FIB) Ga ions and post annealing recovery methods. The SWNT was irradiated by FIB with different energy and different doses ranging from 10{sup 13} to 10{sup 17} ions/cm{sup 2}. Raman spectroscopy results showed that FIB with larger energy or larger ion dose would cause distinct SWNT structure defects. It was also found that scanning electron microscope (SEM) observations would slightly affect the SWNT’s Raman results by electron beam induced carbon deposition. Resulting from the unique reconstruction ability of carbon nanotube’s (CNT’s) network structures, the SWNT’s ion-induced defects can be effectively healed by the post heat annealing from 300 °C to 600 °C for the ion dose less than 10{sup 16} ions/cm{sup 2}. And laser irradiation annealing method also studied to heal the defects in SWNT with 25 mW laser power. Research results would be beneficial for the optimization of the carbon nanotube devices’ functionalizations using FIB Ga ions irradiation.

  8. Growth of GaN based structures on focused ion beam patterned templates

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Y.; Tottereau, O.; Nguyen, L. [Centre de Recherche sur l' Heteroepitaxie et ses Application, UPR-CNRS, Valbonne (France); Ramdani, M.; Soltani, A.; Boucherit, M.; Troadec, D.; Lo, F.Y.; Hu, Y.Y.; Ludwig, A.; Wieck, A.D. [Centre de Recherche sur l' Heteroepitaxie et ses Application, UPR-CNRS, Valbonne (France); Institut d' Electronique, de Microelectronique et de Nanotechnologie, Cite Scientifique, Villeneuve d' Ascq (France); Lehrstuhl fuer Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum (Germany)

    2011-05-15

    Focused ion beam technique is a powerful tool for defining patterns within a semiconductor film. In this paper, we show that it is possible to realize patterns such as disks and columns within thick GaN templates and that it is compatible with the regrowth of GaN based heterostructures. We study the effect of the pattern size and shape on the regrowth by molecular beam epitaxy. We show that the growth using ammonia as the nitrogen source with flux at temperature optimized for 2-dimensional growth leads to the apparition of well defined growth planes. We show that the development of these planes is dependent with the initial pattern size and shape. These results confirm the difficulty for realizing micro or nano-columns with axial heterostructures. At the opposite, these growth conditions seem favourable for core-shell heterostructures column with well defined m-plane and eventually a-plane lateral facets. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  10. Exploring cryogenic focused ion beam milling as a Group III–V device fabrication tool

    Energy Technology Data Exchange (ETDEWEB)

    Dolph, Melissa Commisso, E-mail: mdolph@mitre.org [The MITRE Corporation, McLean, VA 22102 (United States); Santeufemio, Christopher, E-mail: Christopher_Santeufemio@uml.edu [Campus Materials Characterization Labs, University of Massachusetts Lowell, Lowell, MA 01854 (United States)

    2014-06-01

    In this paper, we compare the features observed on a Group III–V strained layer superlattice (SLS) materials system as a result of room temperature Ga{sup +} focused ion beam (FIB) milling to the features observed as a result of cryogenic FIB (cryo-FIB) milling at –135 °C under the same beam conditions (30 kV:1 nA). The features on the cryo-FIB milled material were observed both when the material was still cold and after it returned to room temperature. Although cryo-FIB milling yielded patterned features that were initially cleaner than comparable features defined by FIB milling at room temperature, we found that both room temperature FIB milling and cryo-FIB milling with subsequent sample warm-up resulted in the formation of Group III enriched features. These findings suggest that the structural and chemical properties of features fabricated by cryo-FIB milling are temperature-dependent, which is an important consideration when it comes to device fabrication. These dependencies will need to be better understood and controlled if cryo-FIB milling is to have future applications in this area.

  11. In situ growth optimization in focused electron-beam induced deposition

    Directory of Open Access Journals (Sweden)

    Paul M. Weirich

    2013-12-01

    Full Text Available We present the application of an evolutionary genetic algorithm for the in situ optimization of nanostructures that are prepared by focused electron-beam-induced deposition (FEBID. It allows us to tune the properties of the deposits towards the highest conductivity by using the time gradient of the measured in situ rate of change of conductance as the fitness parameter for the algorithm. The effectiveness of the procedure is presented for the precursor W(CO6 as well as for post-treatment of Pt–C deposits, which were obtained by the dissociation of MeCpPt(Me3. For W(CO6-based structures an increase of conductivity by one order of magnitude can be achieved, whereas the effect for MeCpPt(Me3 is largely suppressed. The presented technique can be applied to all beam-induced deposition processes and has great potential for a further optimization or tuning of parameters for nanostructures that are prepared by FEBID or related techniques.

  12. Control of Beam Halo-Chaos for an Intense Charged-Particle Beam Propagating Through Double Periodic Focusing Field by Soliton

    Institute of Scientific and Technical Information of China (English)

    BAI Long; ZHANG Rong; WENG Jia-Qiang; FANG Jin-Qing

    2008-01-01

    We study an intense beam propagating through the double periodic focusing channel by the particle-core model, and obtain the beam envelope equation. According to the Poincare-Lyapunov theorem, we analyze the stability of beam envelope equation and find the beam halo. The soliton control method for controlling the beam halo-chaos is put forward based on mechanism of halo formation and strategy of controlling beam halo-chaos, and we also prove the validity of the control method, and furthermore, the feasible experimental project is given. We perform multiparticle simulation to control the halo by using the soliton controller. It is shown that our control method is effective. We also find the radial ion density changes when the ion beam is in the channel, not only the halo-chaos and its regeneration can be eliminated by using the nonlinear control method, but also the density uniformity can be found at beam's centre as long as an appropriate control method is chosen.

  13. Three-dimensional core-shell ferromagnetic nanowires grown by focused electron beam induced deposition

    Science.gov (United States)

    Pablo-Navarro, Javier; Magén, César; María de Teresa, José

    2016-07-01

    Functional nanostructured materials often rely on the combination of more than one material to confer the desired functionality or an enhanced performance of the device. Here we report the procedure to create nanoscale heterostructured materials in the form of core-shell nanowires by focused electron beam induced deposition (FEBID) technologies. In our case, three-dimensional (3D) nanowires (nanostructures to demonstrate that the morphology of the shell is conserved during Pt coating, the surface oxidation is suppressed or confined to the Pt layer, and the average magnetization of the core is strengthened up to 30%. The proposed approach paves the way to the fabrication of 3D FEBID nanostructures based on the smart alternate deposition of two or more materials combining different physical properties or added functionalities.

  14. Design and Implementation of a Micron-Sized Electron Column Fabricated by Focused Ion Beam Milling

    CERN Document Server

    Wicki, Flavio; Escher, Conrad; Fink, Hans-Werner

    2015-01-01

    We have designed, fabricated and tested a micron-sized electron column with an overall length of about 700 microns comprising two electron lenses; a micro-lens with a minimal bore of 1 micron followed by a second lens with a bore of up to 50 microns in diameter to shape a coherent low-energy electron wave front. The design criteria follow the notion of scaling down source size, lens-dimensions and kinetic electron energy for minimizing spherical aberrations to ensure a parallel coherent electron wave front. All lens apertures have been milled employing a focused ion beam and could thus be precisely aligned within a tolerance of about 300 nm from the optical axis. Experimentally, the final column shapes a quasi-planar wave front with a minimal full divergence angle of 4 mrad and electron energies as low as 100 eV.

  15. First demonstration of X-ray mirrors using focused ion beam

    Science.gov (United States)

    Numazawa, Masaki; Ezoe, Yuichiro; Ishikawa, Kumi; Ogawa, Tomohiro; Sato, Mayu; Nakamura, Kasumi; Takeuchi, Kazuma; Terada, Masaru; Ohashi, Takaya; Mitsuda, Kazuhisa; Kelley, Ron; Murata, Kaoru

    2016-06-01

    We report on novel X-ray mirrors fabricated with a focused ion beam for future astronomical missions. We fabricated a test sample from a silicon wafer by forming six slits whose sidewalls were used as X-ray reflection surfaces. The six slits were designed with a size of 25 × 300 × 170 µm3 and with different inclination angles of 0 and ±1°. We examined X-ray reflection using three slits with different inclination angles at Al Kα 1.49 keV. Consequently, we demonstrated X-ray reflection from all the three slits. All the sidewalls have multiangular components with a microroughness of ˜1 nm rms. ˜30-45% of the total surface area is effective for X-ray reflection. We confirmed that the inclination angles are consistent with the designed values.

  16. Fracture tests of etched components using a focused ion beam machine

    Science.gov (United States)

    Kuhn, Jonathan L.; Fettig, Rainer K.; Moseley, Samuel H., Jr.; Kutyrev, Alexander S.; Orloff, Jon

    2000-08-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 (mu) m) components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture tests configurations for 0.5 (mu) m thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe, and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  17. Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures

    CERN Document Server

    Schröder, Tim; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Pacheco, Jose L; Camacho, Ryan M; Bielejec, Edward S; Sipahigil, Alp; Evans, Ruffin E; Sukachev, Denis D; Nguyen, Christian T; Lukin, Mikhail D; Englund, Dirk

    2016-01-01

    The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with $\\sim 32$ nm lateral precision and $< 50$ nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to $\\sim 2.5\\%$ and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of $\\sim 51$ GHz, and close to lifetime-limited single-emitter transition linewidths down to $126 \\pm13$ MHz corresponding to $\\sim 1.4$-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development o...

  18. Classical simulation of atomic beam focusing and deposition for atom lithography

    Institute of Scientific and Technical Information of China (English)

    Xianzhong Chen(陈献忠); Hanmin Yao(姚汉民); Xunan Chen(陈旭南)

    2004-01-01

    We start from the intensity distribution of a standing wave (SW) laser field and deduce the classical equation of atomic motion. The image distortion is analyzed using transfer function approach. Atomic flux density distribution as a function of propagation distance is calculated based on Monte-Carlo scheme and trajectory tracing method. Simulation results have shown that source imperfection, especially beam spread, plays an important role in broadening the feature width, and the focus depth of atom lens for real atomic source is longer than that for perfect source. The ideal focal plane can be easily determined by the variation of atomic density at the minimal potential of the laser field as a function of traveling distance.

  19. Focused-ion-beam-assisted fabrication of polymer rolled-up microtubes

    Science.gov (United States)

    Luchnikov, V.; Stamm, M.; Akhmadaliev, Ch; Bischoff, L.; Schmidt, B.

    2006-08-01

    A focused ion beam (FIB) has been applied to the fabrication of polymer microtubes via the rolling-up technique from poly(4-vinyl pyridine)/polystyrene bilayer films deposited on the top of a sacrificial aluminum layer covering a silicon wafer. The bending forces in the film arise due to different swelling of the bilayer components in acidic water and lead to rolling of the film. The dimensions and position of the rolled-up tubes can be controlled by FIB milling (sputtering) of geometrically well-adjusted openings in the polymer films. This technique can be applied to the structuring of scrolled films formed from different materials without the use of lithographically patterned photoresists. The geometrical patterning of the tube interior can also be done by FIB irradiation.

  20. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-14

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  1. Membrane Thickness Dependence of Nanopore Formation with a Focused Helium Ion Beam

    Directory of Open Access Journals (Sweden)

    Furat Sawafta

    2014-05-01

    Full Text Available Solid-state nanopores are emerging as a valuable tool for the detection and characterization of individual biomolecules. Central to their success is the realization of fabrication strategies that are both rapid and flexible in their ability to achieve diverse device dimensions. In this paper, we demonstrate the membrane thickness dependence of solid-state nanopore formation with a focused helium ion beam. We vary membrane thickness in situ and show that the rate of pore expansion follows a reproducible trend under all investigated membrane conditions. We show that this trend shifts to lower ion dose for thin membranes in a manner that can be described quantitatively, allowing devices of arbitrary dimension to be realized. Finally, we demonstrate that thin, small-diameter nanopores formed with our approach can be utilized for high signal-to-noise ratio resistive pulse sensing of DNA.

  2. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-03

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation.

  3. Magnetic properties of ultrathin CO/Pt multilayer Hall devices irradiated using focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: K.Wang@hqu.edu.cn [College of Information Science and Engineering, Huaqiao University, Xiamen City 361021 (China); Huang, Y.; Qiu, Y.Z.; Chen, R.F. [College of Information Science and Engineering, Huaqiao University, Xiamen City 361021 (China); Heard, P. [Interface Analysis Centre, University of Bristol, Tyndall Avenue, Bristol BS2 1TL (United Kingdom); Bending, S. [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-11-01

    A ferromagnetic Co/Pt multilayer was lithographically patterned into 10-μm-wide Hall devices. The anisotropy of the fabricated devices was modified using focused ion beam (FIB). Extraordinary Hall effect (EHE) measurements reveal pronounced reduction in nucleation field of the perpendicular loops at room temperature. At low temperature of 4.2 K reduced remanent ratios in EHE loops were observed, indicating a tilting of easy magnetic axis. The canting magnetization can be explained by an increasing magnetic moment at low temperatures and a reduced anisotropy by irradiation. The aperture angles were estimated to be in the range of 20–32° at 4.2 K. The aperture angle of the easy cone of magnetization was found to increase with doses at low temperatures.

  4. Influence of Early Pregnancy Termination by Focused Ultrasound Beams on Menstrual Recovery of Macaques

    Institute of Scientific and Technical Information of China (English)

    Yong-hong DU; Zheng-ai XIONG; Jian-zhong ZOU; Yi TAN; Jin BAI; Zhi-biao WANG

    2004-01-01

    Objective To explore the effects on macaques' menstrual recovery after terminating early pregnancy by focused ultrasound beams (FUB)Methods FUB was used to terminate early pregnancy in 5 macaques with gestation duration ranging from 37-66 d. Two circles after the recovery of menstruation, color Doppler flow imaging (CDFI) and magnetic resonance imaging (MRI) were used to estimate the shape, size and blood flow of uterus, and pathological examinations were performed to check against any lesions to uterine endometrium and ovary.Results Forty days after FUB abortion, menstruation recovered and the volume and duration of each macaque's menstruation were not changed compared with those before gestation. CDFI and MRI suggested that the siz.e and shape of uterus were normal.The endometrial line was clear and no lesions were found in adjacent organs.Conclusion FUB termination of early pregnancy in macaques did not damage their ovarian tissue and had no influence on subsequent menstrual recovery.

  5. A Study on Photothermal Waves in a Semiconductor Material Photogenerated by a Focused Laser Beam

    Science.gov (United States)

    Abbas, Ibrahim A.; Aly, K. A.

    2016-11-01

    In this work, the theory of coupled plasma, thermal and elastic waves were used to investigate the wave propagation on semiconductor material during photo-thermo-elastic process. A thin slim strip (TSS) medium, elastic semiconductor with isotropic and homogeneous thermal and elastic properties have been considered. The plasma, thermal and elastic waves in a TSS photo generated by a focused and intensity modulated laser beam were analyzed. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions for carrier density, displacement, temperature, and stress. Numerical computations have been carried out on silicon-like semiconductor material. The results are presented graphically to show the effect of the coupling between the plasma, thermal, and elastic waves.

  6. Focused ion beam patterning to dielectrophoretically assemble single nanowire based devices

    Energy Technology Data Exchange (ETDEWEB)

    La Ferrara, V; Massera, E; Francia, G Di [ENEA Research Center, P.le E. Fermi 1, 80055 Portici (Italy); Alfano, B, E-mail: vera.laferrara@portici.enea.i [University of Naples ' Federico II' , P.le Tecchio 80, 80125 Naples (Italy)

    2010-02-01

    Direct-write processing is increasingly taking place in nanodevice fabrication. In this work, Focused Ion Beam (FIB), a powerful tool in maskless micromachining, is used for electrode patterning onto a silicon/silicon nitride substrate. Then a single palladium nanowire is assembled between electrodes by means of dielectrophoresis (DEP). The nanowire morphology depends on the electrode pattern when DEP conditions are fixed. FIB/DEP combination overcomes the problem of nanowire electrical contamination due to gallium ion bombardment and the as-grown nanowire retains its basic electrical properties. Single nanowire based devices have been fabricated with this novel approach and have been tested as hydrogen sensors, confirming the reliability of this technology.

  7. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography

    Science.gov (United States)

    Liu, Zhengjun; Shah, Ali; Alasaarela, Tapani; Chekurov, Nikolai; Savin, Hele; Tittonen, Ilkka

    2017-02-01

    In this work, focused ion beam (FIB) lithography was developed for plasma enhanced atomic layer deposited (PEALD) silicon dioxide SiO2 hard mask. The PEALD process greatly decreases the deposition temperature of the SiO2 hard mask. FIB Ga+ ion implantation on the deposited SiO2 layer increases the wet etch resistivity of the irradiated region. A programmed exposure in FIB followed by development in a wet etchant enables the precisely defined nanoscale patterning. The combination of FIB exposure parameters and the development time provides greater freedom for optimization. The developed process provides high pattern dimension accuracy over the tested range of 90–210 nm. Utilizing the SiO2 mask developed in this work, silicon nanopillars with 40 nm diameter were successfully fabricated with cryogenic deep reactive ion etching and the aspect ratio reached 16:1. The fabricated mask is suitable for sub-100 nm high aspect ratio silicon structure fabrication.

  8. Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures

    Science.gov (United States)

    Xu, Xiaohao; Cheng, Chang; Zhang, Yao; Lei, Hongxiang; Li, Baojun

    2016-07-01

    Metallic nanoparticles and nanowires are extremely important for nanoscience and nanotechnology. Techniques to optically trap and rotate metallic nanostructures can enable their potential applications. However, because of the destabilizing effects of optical radiation pressure, the optical trapping of large metallic particles in three dimensions is challenging. Additionally, the photothermal issues associated with optical rotation of metallic nanowires have far prevented their practical applications. Here, we utilize dual focused coherent beams to realize three-dimensional (3D) optical trapping of large silver particles. Continuous rotation of silver nanowires with frequencies measured in several hertz is also demonstrated based on interference-induced optical vortices with very low local light intensity. The experiments are interpreted by numerical simulations and calculations.

  9. NanoSQUID magnetometry of individual cobalt nanoparticles grown by focused electron beam induced deposition

    Science.gov (United States)

    Martínez-Pérez, M. J.; Müller, B.; Schwebius, D.; Korinski, D.; Kleiner, R.; Sesé, J.; Koelle, D.

    2017-02-01

    We demonstrate the operation of low-noise nano superconducting quantum interference devices (SQUIDs) based on the high critical field and high critical temperature superconductor YBa2Cu3O7 (YBCO) as ultra-sensitive magnetometers for single magnetic nanoparticles (MNPs). The nanoSQUIDs exploit the Josephson behavior of YBCO grain boundaries and have been patterned by focused ion beam milling. This allows us to precisely define the lateral dimensions of the SQUIDs so as to achieve large magnetic coupling between the nanoloop and individual MNPs. By means of focused electron beam induced deposition, cobalt MNPs with a typical size of several tens of nm have been grown directly on the surface of the sensors with nanometric spatial resolution. Remarkably, the nanoSQUIDs are operative over extremely broad ranges of applied magnetic field (-1 T \\lt {μ }0H\\lt 1 T) and temperature (0.3 K \\lt T\\lt 80 K). All these features together have allowed us to perform magnetization measurements under different ambient conditions and to detect the magnetization reversal of individual Co MNPs with magnetic moments (1-30) × {10}6 {μ }{{B}}. Depending on the dimensions and shape of the particles we have distinguished between two different magnetic states yielding different reversal mechanisms. The magnetization reversal is thermally activated over an energy barrier, which has been quantified for the (quasi) single-domain particles. Our measurements serve to show not only the high sensitivity achievable with YBCO nanoSQUIDs, but also demonstrate that these sensors are exceptional magnetometers for the investigation of the properties of individual nanomagnets.

  10. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region.

    Science.gov (United States)

    Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H

    2015-11-01

    A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  11. Investigation of beam deflection reduction and multi-beamlet focus at a large-area negative ion source for a neutral beam injector with 3-D beam trajectory simulation

    CERN Document Server

    Tanaka, M; Asano, E; Oka, Y; Osakabe, M; Tsumori, K; Kaneko, O; Yamashita, Y

    2000-01-01

    We investigated the reduction of ion beam deflection caused by electron deflection magnets, and focus of multi-beamlets at a large-area negative ion source of a neutral beam injector (NBI) in order to reduce beam loss during long-distance beam transport (>10 m) and beam injection into a nuclear fusion device. The electrostatic lens effect by displacement of the beam extraction aperture of a grounded grid (GG) was utilized for the beam deflection reduction and the multi-beamlet focus. We proposed an analysis process to adjust the aperture displacement which avoids beam collision with the GG by too much displacement. The analysis process includes a 3-D beam trajectory simulation used for analyzing the beam deflection angle and beam radius as well as theoretical calculations, which are used to calculate the aperture displacement based on the 3-D simulation results. Applicability of the analysis process was examined for a large-area high-current H sup - ion source of an NBI (0.25 mx1.25 m, 40 A, 180 keV). The ana...

  12. Near-field measurements of vegetation by laser-induced fluorescence imaging

    Science.gov (United States)

    Sowinska, Malgorzata; Cunin, Bernard; Deruyver, Aline; Heisel, Francine; Miehe, Joseph-Albert; Langsdorf, Gabriele; Lichtenthaler, Hartmut K.

    1999-12-01

    In this paper, a validation of a new UV-A laser-induced fluorescence imaging system implemented in an all-road car for near-field remote sensing of vegetation will be presented. It has been developed as a part of a European Community Program INTERREG II and is consisting of three main parts: excitation, detection and control units. The excitation source is a frequency tripled Nd:YAG laser and the laser spot size is adjusted via a variable beam expander. Fluorescence images are recorded at four characteristic fluorescence bands: 440, 520, 690 and 740 nm with a gated intensified digital CCD camera. The laser head and camera are situated on a directed in site and azimuth platform which can be high up to 6 meters. The platform positioning, localization and distance detection, spot size determination and adjustment, focus, sharpness, selection of the filter, laser and camera synchronization, gain of the intensifier, real time visualization of images, acquisition time are controlled by a newly developed software which allows also image storage, analysis and treatment. Examples of remote sensing fluorescence images from several plant species recorded at a distance of 10 - 30 m will be given and discussed further in this paper.

  13. Laser-induced fluorescence detection platform for point-of-care testing

    Science.gov (United States)

    Berner, Marcel; Hilbig, Urs; Schubert, Markus B.; Gauglitz, Günter

    2017-08-01

    Point-of-care testing (POCT) devices for continuous low-cost monitoring of critical patient parameters require miniaturized and integrated setups for performing quick high-sensitivity analyses, away from central clinical laboratories. This work presents a novel and promising laser-induced fluorescence platform for measurements in direct optical test formats that leads towards such powerful POCT devices based on fluorescence-labeled immunoassays. Ultimate sensitivity of thin film photodetectors, integrated with microfluidics, and a comprehensive optimization of all system components aim at low-level signal detection in the targeted biosensor application. The setup acquires fluorescence signals from the volume of a microfluidic channel. An innovative sandwiching process forms a flow channel in the microfluidic chips by embedding laser-cut double-sided adhesive tapes. The custom fit of amorphous silicon based photodiode arrays to the geometry of the flow channel enables miniaturization, fully adequate for POCT devices. A free-beam laser excitation with line focus provides excellent alignment stability, allows for easy and reliable swapping of the disposable microfluidic chips, and therewith greatly improves the ease of use of the resulting integrated device. As a proof-of-concept of this novel in-volume measurement approach, the limit of detection for the dye DY636-COOH in pure water as a model fluorophore is examined and found to be 26 nmol l-1 .

  14. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  15. Investigations of laser-induced plasma in argon by Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI - site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Travaille, G.; Bousquet, B. [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence CEDEX (France)

    2011-09-15

    The Thomson scattering method was applied to quantify the electron number density and temperature of a laser spark formed in argon. The laser spark was generated by focusing a 15 mJ beam from the second harmonic ({lambda}{sub L} = 532 nm) of a nanosecond Nd:YAG laser with an 80 mm focal length lens. Images of the spark emission were obtained for times between 1 ns and 20 {mu}s after the laser pulse in order to characterize its spatial evolution. The electron density and temperature for the core of the plasma plume at different instants of its evolution were determined from the Thomson scattered spectra of another nanosecond Nd:YAG laser (532 nm, 10 to 60 mJ/pulse). In the time interval between 400 ns and 10 {mu}s between the laser induced plasma and Thomson scattering probe pulses, we found n{sub e} and T{sub e} to decrease from 4.3 Multiplication-Sign 10{sup 23} m{sup -3} to 2.4 Multiplication-Sign 10{sup 22} m{sup -3} and from 50 700 K to 11 100 K, respectively. Special care was paid to the plasma disturbance by the probe laser pulse in Thomson scattering experiments due to absorption of laser photons by electrons through the inverse bremsstrahlung process.

  16. Research on laser induced particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Natascha; Buescher, Markus [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany); Willi, Oswald; Jung, Ralph [Institut fuer Laser-Plasma Physik (ILPP), Heinrich Heine Universitaet Duesseldorf (Germany); Seltmann, Michael [Institut fuer Kernphysik (IKP), Forschungszentrum Juelich (Germany); FH Aachen (Germany); Juelich Center for Hadron Physics (JCHP), Forschungszentrum Juelich (Germany)

    2009-07-01

    By directing a high-power, ultrashort laser pulse onto a thin foil, it is now possible to produce electron, proton and ion beams. However, for realizing reliable laser-driven accelerators one must still overcome fundamental and technological limitations. One current challenge is to continuously provide mass-limited targets into the laser focus in which its energy can be effectively converted into kinetic energy of the accelerated ions. IKP and ILPP have initiated a corresponding joint project based on a worldwide unique frozen pellet target that can provide a regular flux of frozen spheres of e.g. H2, N2, Ar and Xe, and the 100-TW laser system PULSAR at ILPP. As a first step measurements are carried out with conventional gas and foil targets. These measurements include detector developement for fast particle detection and magnetic focusing of the particle beam as well as optical probing of the plasma itself, in order to better understand the ion-acceleration mechanisms. The talk outlines the status of the research and the results of the first measurements.

  17. Focused beam total reflection X-ray fluorescence with low power sources coupled to doubly curved crystal optics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.W. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)]. E-mail: zchen@xos.com; Mail, N. [Center For X-ray Optics, State University of New York, University at Albany (United States); Wei, F.Z. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States); MacDonald, C.A. [Center For X-ray Optics, State University of New York, University at Albany (United States); Gibson, W.M. [X-ray Optical Systems, Inc. East Greenbush, NY 12061 (United States)

    2005-04-30

    A focused beam total X-ray fluorescence technique was developed based on doubly curved crystal optics. This technique provides good detection sensitivity and spatial resolution for localized detection of surface deposits. Compact low power X-ray sources were used to demonstrate the benefit of the X-ray optics for focusing Cr K{alpha}, Cu K{alpha} and Mo K{alpha} radiation. The detection capability of the focused beam Total reflection X-ray fluorescence system was investigated with dried droplets of calibrated low concentration solutions. Detection limits at the femtogram level were demonstrated.

  18. Focused ultrasonic beam behavior at a stress-free boundary and applicability for measuring nonlinear parameter in a reflection mode

    Science.gov (United States)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing

    2017-02-01

    In this work, we employ a focused beam theory to modify the phase reversal at the stress-free boundary, and consequently enhance the second harmonic generation during its back-propagation toward the initial source position. We first confirmed this concept through experiment by using a spherically focused beam at the water-air interface, and measuring the reflected second harmonic and comparing with a planar wave reflected from the same stress-free or a rigid boundary. In order to test the feasibility of this idea for measuring the nonlinearity parameter of solids in a reflection mode, a focused nonlinear ultrasonic beam is modeled for focusing at and reflection from a stress-free boundary. A nonlinearity parameter expression is then defined together with diffraction and attenuation corrections.

  19. Relativistic self-focusing of intense laser beam in thermal collisionless quantum plasma with ramped density profile

    Science.gov (United States)

    Zare, S.; Yazdani, E.; Rezaee, S.; Anvari, A.; Sadighi-Bonabi, R.

    2015-04-01

    Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.

  20. Laser induced forward transfer of soft materials

    Science.gov (United States)

    Palla-Papavlu, A.; Dinca, V.; Luculescu, C.; Shaw-Stewart, J.; Nagel, M.; Lippert, T.; Dinescu, M.

    2010-12-01

    A strong research effort is presently aimed at patterning methodologies for obtaining controlled defined micrometric polymeric structures for a wide range of applications, including electronics, optoelectronics, sensors, medicine etc. Lasers have been identified as appropriate tools for processing of different materials, such as ceramics and metals, but also for soft, easily damageable materials (biological compounds and polymers). In this work we study the dynamics of laser induced forward transfer (LIFT) with a gap between the donor and the receiver substrates, which is the basis for possible applications that require multilayer depositions with high spatial resolution.

  1. Laser induced fluorescence technique for environmental applications

    Science.gov (United States)

    Utkin, Andrei B.; Felizardo, Rui; Gameiro, Carla; Matos, Ana R.; Cartaxana, Paulo

    2014-08-01

    We discuss the development of laser induced fluorescence sensors and their application in the evaluation of water pollution and physiological status of higher plants and algae. The sensors were built on the basis of reliable and robust solid-state Nd:YAG lasers. They demonstrated good efficiency in: i) detecting and characterizing oil spills and dissolved organic matter; ii) evaluating the impact of stress on higher plants (cork oak, maritime pine, and genetically modified Arabidopsis); iii) tracking biomass changes in intertidal microphytobenthos; and iv) mapping macroalgal communities in the Tagus Estuary.

  2. Laser-induced breakdown spectroscopy in Asia

    Science.gov (United States)

    Wang, Zhen-Zhen; Deguchi, Yoshihiro; Zhang, Zhen-Zhen; Wang, Zhe; Zeng, Xiao-Yan; Yan, Jun-Jie

    2016-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytical detection technique based on atomic emission spectroscopy to measure the elemental composition. LIBS has been extensively studied and developed due to the non-contact, fast response, high sensitivity, real-time and multi-elemental detection features. The development and applications of LIBS technique in Asia are summarized and discussed in this review paper. The researchers in Asia work on different aspects of the LIBS study in fundamentals, data processing and modeling, applications and instrumentations. According to the current research status, the challenges, opportunities and further development of LIBS technique in Asia are also evaluated to promote LIBS research and its applications.

  3. Laser-Induced Breakdown Spectroscopy: Capabilities and Applications

    Science.gov (United States)

    2010-07-01

    sample preparation. 14 6. References 1. Cremers D.A.; Radziemski, L. J. Handbook of Laser-Induced Breakdown Spectroscopy; West Sussex, England...30 (21), 2882–2884. 17. Salle, B.; Lacour, J. L.; Vors, E.; Fichet, P.; Maurice, S.; Cremers , D. A.; et al. Laser- Induced Breakdown Spectroscopy...90. Martin , M. Z.; Labbe, N.; Andre, N.; Harris, R.; Ebinger, M.; Wullschleger, S. D.; et al. High Resolution Applications of Laser-Induced

  4. 双透镜聚焦系统对高斯激光束的聚焦%Focused of Gaussian Laser Beam with Two-lens Focusing System

    Institute of Scientific and Technical Information of China (English)

    熊小华

    2000-01-01

    In this paper, Formulae for the focal spot size of gaussian Iaser beam with two-lens focusing system are derived by q (z) of gaussian beam .Using the two-lens focusing system, focal spot size of μmn or less was easily obtained, and longer working distance can be obtained than other focusing system.%该文利用高斯光束q(z)参量推导出了反远距双透镜聚焦系统对高斯光束聚焦光斑的精确计算公式.用反远距双透镜聚焦系统能获得μm级甚至更小的聚焦光斑,同时系统可以获得比别的其它聚焦系统较长的工作距离.

  5. Spatial chemistry evolution during focused electron beam-induced deposition: origins and workarounds

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, Robert; Geier, Barbara [Graz Centre for Electron Microscopy, Graz (Austria); Plank, Harald [Graz Centre for Electron Microscopy, Graz (Austria); Graz University of Technology, Institute for Electron Microscopy and Nanoanalysis, Graz (Austria)

    2014-12-15

    The successful application of functional nanostructures, fabricated via focused electron-beam-induced deposition (FEBID), is known to depend crucially on its chemistry as FEBID tends to strong incorporation of carbon. Hence, it is essential to understand the underlying mechanisms which finally determine the elemental composition after fabrication. In this study we focus on these processes from a fundamental point of view by means of (1) varying electron emission on the deposit surface; and (2) changing replenishment mechanism, both driven by the growing deposit itself. First, we revisit previous results concerning chemical variations in nanopillars (with a quasi-1D footprint) depending on the process parameters. In a second step we expand the investigations to deposits with a 3D footprint which are more relevant in the context of applications. Then, we demonstrate how technical setups and directional gas fluxes influence final chemistries. Finally, we put the findings in a bigger context with respect to functionalities which demonstrates the crucial importance of carefully set up fabrication processes to achieve controllable, predictable and reproducible chemistries for FEBID deposits as a key element for industrially oriented applications. (orig.)

  6. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Benson, T M; Gregor, J [Department of Computer Science, University of Tennessee, Knoxville, Tennessee 37996-3450 (United States)

    2006-09-21

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  7. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  8. Direct focusing error correction with ring-wide TBT beam position data

    Energy Technology Data Exchange (ETDEWEB)

    Yang, M.J.; /Fermilab

    2011-03-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.

  9. An adjustable focusing system for a 2 MeV H- ion beam line based on permanent magnet quadrupoles

    CERN Document Server

    Nirkko, M; Ereditato, A; Kreslo, I; Scampoli, P; Weber, M

    2012-01-01

    A compact adjustable focusing system for a 2 MeV H- RFQ Linac is designed, constructed and tested based on four permanent magnet quadrupoles (PMQ). A PMQ model is realised using finite element simulations, providing an integrated field gradient of 2.35 T with a maximal field gradient of 57 T/m. A prototype is constructed and the magnetic field is measured, demonstrating good agreement with the simulation. Particle track simulations provide initial values for the quadrupole positions. Accordingly, four PMQs are constructed and assembled on the beam line, their positions are then tuned to obtain a minimal beam spot size of (1.2 x 2.2) mm^2 on target. This paper describes an adjustable PMQ beam line for an external ion beam. The novel compact design based on commercially available NdFeB magnets allows high flexibility for ion beam applications.

  10. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  11. Detection of early caries by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  12. Picosecond laser-induced water condensation in a cloud chamber.

    Science.gov (United States)

    Sun, Haiyi; Liu, Yonghong; Ju, Jingjing; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Du, Shengzhe; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2016-09-05

    We investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates. It was found that weaker ps laser pulses can also induce water condensation by exploding and breaking down ice crystals and/or water droplets into tiny particles although there was no formation of laser filament. These tiny particles would grow until precipitation in a super-saturation zone due to laser-induced airflow in a cold region with a large temperature gradient.

  13. Multiphoton processes in KrF-laser induced gas breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Poprawe, R.; Herziger, G.

    1986-05-01

    Ionization by multiphoton processes is the dominant generation mechanism of first electrons in the UV-laser-induced gas breakdown. A strongly simplified analytical model for the ion generation rate is used to give an estimate of the threshold intensity I/sub TH/. The result is compared to descriptions by Keldish and Bebb to check its limits of applicability. Solving the kinetic conservation equations for the focus volume gives an estimation of the breakdown intensity where the Debye criterion has been used in the sense of a plasma definition. As an example, breakdown experiments with a KrF-escimer laser have been carried out at different pressures in an argon atmosphere. The pressure dependency of the breakdown threshold intensity and its order of magnitude are predicted by the model.

  14. Heterogeneous atoms in laser-induced synthesis of carbon black

    Science.gov (United States)

    Popovici, E.; Gavrila Florescu, L.; Soare, I.; Scarisoreanu, M.; Sandu, I.; Prodan, G.; Fleaca, C. T.; Morjan, I.; Voicu, I.

    2009-03-01

    Based on a high temperature hydrocarbon/heterogeneous atoms system of well-established composition, the formation of carbon nanostructures by laser-induced pyrolysis is related to the presence of heteroatoms in the reactants. In this paper, the goal is to underline the influence of some heteroatoms on the morphology and functionalizing nanostructured carbon materials by changing both gas composition and experimental parameters, with the focus to drive these materials into a regime where they can naturally interface with the surrounding matter. To investigate, in the versatile laser pyrolysis method, how to in situ modulate - through the presence of heterogeneous atoms - the characteristics of carbon nanopowders claimed by specific application is a challenge. Some preliminary results confirm experimentally their particular behavior during interaction with polymer matrices of some nanocomposites.

  15. Laser-induced break-up of water jet waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Couty, P.; Hoffmann, P. [EPFL/STI/IOA/Advanced Photonics Laboratory, Lausanne BM, 1015, Lausanne (Switzerland); Spiegel, A.; Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Ugurtas, B.I. [EPFL/STI/IMHEF/Laboratory Fluid Mechanics, Lausanne, 1015, Lausanne (Switzerland)

    2004-06-01

    In this article, an optical method to control the break-up of high-speed liquid jets is proposed. The method consists of focusing the light of a pulsed laser source into the jet behaving as a waveguide. Experiments were performed with the help of a Q-switched frequency doubled Nd:Yag laser ({lambda}=532 nm). The jet diameter was 48 {mu}m and jet velocities from 100 to 200 m/s. To study the laser-induced water jet break-up, observations of the jet coupled with the high power laser were performed for variable coupling and jet velocity conditions. Experimentally determined wavelength and growth rate of the laser-generated disturbance were also compared with the ones predicted by linear stability theory of free jets. (orig.)

  16. Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals

    Science.gov (United States)

    Khonina, Svetlana N.; Karpeev, Sergei V.; Paranin, Vyacheslav D.; Morozov, Andrei A.

    2017-08-01

    We report the development of an optical system based on diffractive optical elements and uniaxial crystals to produce radially and azimuthally polarized beams, including beams of higher orders. The conditions for the generation of beams with different polarization states in an anisotropic crystal with an arbitrary axially symmetric amplitude distribution are analyzed theoretically. The results of the experimental study on the generation of cylindrical vector beams in a calcite crystal agree with the results of the simulation.

  17. The LILIA (laser induced light ions acceleration) experiment at LNF

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Anania, M.P. [INFN LNF Frascati, Frascati (Italy); Caresana, M. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Cirrone, G.A.P. [INFN LNS Catania, Catania (Italy); De Martinis, C. [Physics Department, University of Milan and INFN, Milan (Italy); Delle Side, D. [LEAS, University of Salento and INFN, Lecce (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Gatti, G. [INFN LNF Frascati, Frascati (Italy); Giove, D. [Physics Department, University of Milan and INFN, Milan (Italy); Giulietti, D. [Physics Department, University of Pisa and INFN, Pisa (Italy); Gizzi, L.A.; Labate, L. [INO-CNR and INFN, Pisa (Italy); Londrillo, P. [Physics Department, University of Bologna and INFN, Bologna (Italy); Maggiore, M. [INFN LNL, Legnaro (Italy); Nassisi, V., E-mail: vincenzo.nassisi@le.infn.it [LEAS, University of Salento and INFN, Lecce (Italy); Sinigardi, S. [Physics Department, University of Bologna and INFN, Bologna (Italy); Tramontana, A.; Schillaci, F. [INFN LNS Catania, Catania (Italy); Scuderi, V. [INFN LNS Catania, Catania (Italy); Institute of Physics of the ASCR, Prague (Czech Republic); Turchetti, G. [Physics Department, University of Bologna and INFN, Bologna (Italy); and others

    2014-07-15

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50–75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  18. The LILIA (laser induced light ions acceleration) experiment at LNF

    Science.gov (United States)

    Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.

    2014-07-01

    Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.

  19. Simulation on control of beam halo-chaos by power function in the hackle periodic-focusing channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The K-V beam through a hackle periodic-focusing magnetic field is studied using the particle-core model. The beam halo-chaos is found, and a power function controller is proposed based on mechanism of halo formation and strategy of controlling halo-chaos. Multiparticle simulation was performed to control the halo by using the power function control method. The results show that the halo-chaos and its regeneration can be eliminated effectively. We also find that the radial particle density evolvement is of uniformity at the beam's centre as long as appropriate paramours are chosen.

  20. Laser-induced torques in metallic ferromagnets

    Science.gov (United States)

    Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2016-10-01

    We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.

  1. High-flux hard X-ray microbeam using a single-bounce capillary with doubly focused undulator beam.

    Science.gov (United States)

    Barrea, Raul A; Huang, Rong; Cornaby, Sterling; Bilderback, Donald H; Irving, Thomas C

    2009-01-01

    A pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10(13) photons s(-1) using a sagittal-focusing double-crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre-focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre-focused beam (;in-line') and (ii) where one side of the capillary was aligned with the beam (;off-line'). The latter arrangement delivered more flux (3.3 x 10(12) photons s(-1)) and smaller spot sizes (< or =10 microm FWHM in both directions) for a photon flux density of 4.2 x 10(10) photons s(-1) microm(-2). The combination of the beamline main optics with a large-working-distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer-size X-ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm(-2). Micro-XANES experiments are also feasible using this combined optical arrangement.

  2. LASER-INDUCED DECOMPOSITION OF METAL CARBONYLS FOR CHEMICAL VAPOR DEPOSITION OF MICROSTRUCTURES

    OpenAIRE

    1989-01-01

    Tungsten and nickel carbonyls were used to produce metal microstructures by laser-induced chemical vapor deposition (CVD) on various substrates. The deposition rate of microstructures produced by thermodecomposition of W(CO)6 on Si substrates heated with a cw Ar+ laser beam was relatively low (10 to 30 nm/s) even at high temperatures (above 900°C). Ni microstructures were deposited on quartz substrates irradiated with a CO2 laser beam. Relatively high laser powers were needed to heat the Ni s...

  3. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.

    Science.gov (United States)

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2011-04-25

    Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam.

  4. Laser-induced damage of TiO2/SiO2 high reflector at 1064 nm

    Science.gov (United States)

    Yao, Jianke; Ma, Jianyong; Xiu, Cheng; Fan, Zhengxiu; Jin, Yunxia; Zhao, Yuanan; He, Hongbo; Shao, Jianda; Huang, Huolin; Zhang, Feng; Wu, Zhengyun

    2008-04-01

    A high laser-induced damage threshold (LIDT) TiO2/SiO2 high reflector (HR) at 1064nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064nm with a 12ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO2 layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR.

  5. Kinetic description of intense beam propagation through a periodic focusing field for uniform phase-space density

    Directory of Open Access Journals (Sweden)

    Ronald C. Davidson

    2002-08-01

    Full Text Available The Vlasov-Maxwell equations are used to investigate the nonlinear evolution of an intense sheet beam with distribution function f_{b}\\(x,x^{′},s\\ propagating through a periodic focusing lattice κ_{x}\\(s+S\\=κ_{x}\\(s\\, where S=const is the lattice period. The analysis considers the special class of distribution functions with uniform phase-space density f_{b}\\(x,x^{′},s\\=A=const inside of the simply connected boundary curves, x_{+}^{′}\\(x,s\\ and x_{-}^{′}\\(x,s\\, in the two-dimensional phase space \\(x,x^{′}\\. Coupled nonlinear equations are derived describing the self-consistent evolution of the boundary curves, x_{+}^{′}\\(x,s\\ and x_{-}^{′}\\(x,s\\, and the self-field potential ψ\\(x,s\\=e_{b}φ\\(x,s\\/γ_{b}m_{b}β_{b}^{2}c^{2}. The resulting model is shown to be exactly equivalent to a (truncated warm-fluid description with zero heat flow and triple-adiabatic equation of state with scalar pressure P_{b}\\(x,s\\=const[n_{b}\\(x,s\\]^{3}. Such a fluid model is amenable to direct analysis by transforming to Lagrangian variables following the motion of a fluid element. Specific examples of periodically focused beam equilibria are presented, ranging from a finite-emittance beam in which the boundary curves in phase space \\(x,x^{′}\\ correspond to a pulsating parallelogram, to a cold beam in which the number density of beam particles, n_{b}\\(x,s\\, exhibits large-amplitude periodic oscillations. For the case of a sheet beam with uniform phase-space density, the present analysis clearly demonstrates the existence of periodically focused beam equilibria without the undesirable feature of an inverted population in phase space that is characteristic of the Kapchinskij-Vladimirskij beam distribution.

  6. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm{sup 2}) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three

  7. Development of the Technique for Fabricating Submicron Moiré Gratings on Metal Materials Using Focused Ion Beam Milling

    Institute of Scientific and Technical Information of China (English)

    DU Hua; XIE Hui-Min; GUO Zhi-Qiang; LUO Qiang; GU Chang-Zhi; QIANG Hai-Chang; RONG Li-Jian

    2007-01-01

    A focused gallium ion (Ga+) beam is used to fabricate micro/submicron spacing gratings on the surface of porous NiTi shape memory alloy (SMA). The crossing type of gratings with double-frequency (25001/mm and 50001/mm)using the focused ion beam (FIB) milling are successfully produced in a combination mode or superposition are obtained to study the micro-scale deformation of porous NiTi SMA. The grating fabrication technique is discussed in detail. The experimental results verify the feasibility of fabricating high frequency grating on metal surface using FIB milling.

  8. Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti; Wani, Manzoor Ahmad [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2013-11-15

    The early and strong self-focusing of a Hermite-cosh-Gaussian laser beam in magnetoplasma in the presence of density ramp has been observed. Focusing and de-focusing nature of the Hermite-cosh-Gaussian laser beam with decentered parameter and magnetic field has been studied, and strong self-focusing is reported. It is investigated that decentered parameter 'b' plays a significant role for the self-focusing of the laser beam and is very sensitive as in case of extraordinary mode. For mode indices, m = 0, 1, 2, and b = 4.00, 3.14, and 2.05, strong self-focusing is observed. Similarly in case of ordinary mode, for m = 0, 1, 2 and b = 4.00, 3.14, 2.049, respectively, strong self-focusing is reported. Further, it is seen that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For mode indices m = 0, 1, and 2, diffraction term becomes more dominant over nonlinear term for decentered parameter b=0. For selective higher values of decentered parameter in case of mode indices m=0, 1, and 2, self-focusing effect becomes strong for extraordinary mode. Also increase in the value of magnetic field enhances the self-focusing ability of the laser beam, which is very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers.

  9. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0).

    Science.gov (United States)

    Holmlid, Leif

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z.

  10. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    Science.gov (United States)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  11. Measurements of egg shell plasma parameters using laser-induced breakdown spectroscopy

    Indian Academy of Sciences (India)

    Wenfeng Luo; Xiaoxia Zhao; Shuyuan Lv; Haiyan Zhu

    2015-07-01

    Measurements of 1064 nm laser-induced egg shell plasma parameters are presented in this paper. Of special interests were its elemental identification and the determination of spectroscopic temperature and electron density. The electron temperature of 5956 K was inferred using an improved iterative Boltzmann plot method with six calcium atomic emission lines, and the electron number density of 6.1 × 1016 cm−3 was determined by measuring the width of Stark-broadened once-ionized calcium line at 393.37 nm. Based on the experimental results, the laser-induced egg shell plasma was verified to be optically thin and satisfy local thermodynamic equilibrium (LTE). Furthermore, experiments also demonstrated that the loss of energy due to the reflection of the laser beam from the plasma can be neglected and the inverse bremsstrahlung (IB) absorption was the dominant mechanism of plasma heating at the IR wavelength.

  12. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    Science.gov (United States)

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  13. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2015-02-01

    Full Text Available High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc’s above 34 K and narrow superconducting transition widths (ΔTc’s of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  14. Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes

    CERN Document Server

    Olivero, P; Jaksic, M; Pastuovic, Z; Picollo, F; Skukan, N; Vittone, E

    2016-01-01

    This paper reports on the fabrication and characterization of a high purity monocrystalline diamond detector with buried electrodes realized by the selective damage induced by a focused 6 MeV carbon ion beam scanned over a pattern defined at the micrometric scale. A suitable variable-thickness mask was deposited on the diamond surface in order to modulate the penetration depth of the ions and to shallow the damage profile toward the surface. After the irradiation, the sample was annealed at high temperature in order to promote the conversion to the graphitic phase of the end-of-range regions which experienced an ion-induced damage exceeding the damage threshold, while recovering the sub-threshold damaged regions to the highly resistive diamond phase. This process provided conductive graphitic electrodes embedded in the insulating diamond matrix; the presence of the variable-thickness mask made the terminations of the channels emerging at the diamond surface and available to be connected to an external electro...

  15. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  16. Focus Ion Beam/Scanning Electron Microscopy Characterization of Osteoclastic Resorption of Calcium Phosphate Substrates.

    Science.gov (United States)

    Diez-Escudero, Anna; Espanol, Montserrat; Montufar, Edgar B; Di Pompo, Gemma; Ciapetti, Gabriela; Baldini, Nicola; Ginebra, Maria-Pau

    2017-02-01

    This article presents the application of dual focused ion beam/scanning electron microscopy (FIB-SEM) imaging for preclinical testing of calcium phosphates with osteoclast precursor cells and how this high-resolution imaging technique is able to reveal microstructural changes at a level of detail previously not possible. Calcium phosphate substrates, having similar compositions but different microstructures, were produced using low- and high-temperature processes (biomimetic calcium-deficient hydroxyapatite [CDHA] and stoichiometric sintered hydroxyapatite, respectively). Human osteoclast precursor cells were cultured for 21 days before evaluating their resorptive potential on varying microstructural features. Alternative to classical morphological evaluation of osteoclasts (OC), FIB-SEM was used to observe the subjacent microstructure by transversally sectioning cells and observing both the cells and the substrates. Resorption pits, indicating OC activity, were visible on the smoother surface of high-temperature sintered hydroxyapatite. FIB-SEM analysis revealed signs of acidic degradation on the grain surface under the cells, as well as intergranular dissolution. No resorption pits were evident on the surface of the rough CDHA substrates. However, whereas no degradation was detected by FIB sections in the material underlying some of the cells, early stages of OC-mediated acidic degradation were observed under cells with more spread morphology. Collectively, these results highlight the potential of FIB to evaluate the resorptive activity of OC, even in rough, irregular, or coarse surfaces where degradation pits are otherwise difficult to visualize.

  17. Focused-Ion-Beam-Milled Carbon Nanoelectrodes for Scanning Electrochemical Microscopy

    Science.gov (United States)

    Chen, Ran; Hu, Keke; Yu, Yun; Mirkin, Michael V.; Amemiya, Shigeru

    2016-01-01

    Nanoscale scanning electrochemical microscopy (SECM) has emerged as a powerful electrochemical method that enables the study of interfacial reactions with unprecedentedly high spatial and kinetic resolution. In this work, we develop carbon nanoprobes with high electrochemical reactivity and well-controlled size and geometry based on chemical vapor deposition of carbon in quartz nanopipets. Carbon-filled nanopipets are milled by focused ion beam (FIB) technology to yield a flat disk tip with a thin quartz sheath as confirmed by transmission electron microscopy. The extremely high electroactivity of FIB-milled carbon nanotips is quantified by enormously high standard electron-transfer rate constants of ≥10 cm/s for Ru(NH3)63+. The tip size and geometry are characterized in electrolyte solutions by SECM approach curve measurements not only to determine inner and outer tip radii of down to ~27 and ~38 nm, respectively, but also to ensure the absence of a conductive carbon layer on the outer wall. In addition, FIB-milled carbon nanotips reveal the limited conductivity of ~100 nm-thick gold films under nanoscale mass-transport conditions. Importantly, carbon nanotips must be protected from electrostatic damage to enable reliable and quantitative nanoelectrochemical measurements. PMID:27642187

  18. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Ying-Bing; Abbas, Khawar; Ghasemi Baboly, Mohammadhosein; Anjum, D. H.; Chaieb, S.; Leseman, Zayd C.

    2015-02-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  19. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    Science.gov (United States)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  20. Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements.

    Science.gov (United States)

    Murata, Masayuki; Hasegawa, Yasuhiro

    2013-09-26

    Ohmic contact electrodes for four-wire resistance and Hall measurements were fabricated on an individual single-crystal bismuth nanowire encapsulated in a cylindrical quartz template. Focused ion beam processing was utilized to expose the side surfaces of the bismuth nanowire in the template, and carbon and tungsten electrodes were deposited on the bismuth nanowire in situ to achieve electrical contacts. The temperature dependence of the four-wire resistance was successfully measured for the bismuth nanowire, and a difference between the resistivities of the two-wire and four-wire methods was observed. It was concluded that the two-wire method was unsuitable for estimation of the resistivity due to the influence of contact resistance, even if the magnitude of the bismuth nanowire resistance was greater than the kilo-ohm order. Furthermore, Hall measurement of a 4-μm-diameter bismuth microwire was also performed as a trial, and the evaluated temperature dependence of the carrier mobility was in agreement with that for bulk bismuth, which indicates that the carrier mobility was successfully measured using this technique. PACS: 81.07.Gf.