FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Institute of Scientific and Technical Information of China (English)
文双春; 范滇元
2001-01-01
The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.
Electric field generation by the electron beam filamentation instability: Filament size effects
Dieckmann, M E
2009-01-01
The filamentation instability (FI) of counter-propagating beams of electrons is modelled with a particle-in-cell simulation in one spatial dimension and with a high statistical plasma representation. The simulation direction is orthogonal to the beam velocity vector. Both electron beams have initially equal densities, temperatures and moduli of their nonrelativistic mean velocities. The FI is electromagnetic in this case. A previous study of a small filament demonstrated, that the magnetic pressure gradient force (MPGF) results in a nonlinearly driven electrostatic field. The probably small contribution of the thermal pressure gradient to the force balance implied, that the electrostatic field performed undamped oscillations around a background electric field. Here we consider larger filaments, which reach a stronger electrostatic potential when they saturate. The electron heating is enhanced and electrostatic electron phase space holes form. The competition of several smaller filaments, which grow simultaneo...
Filamentation instability in a light ion beam-plasma system with external magnetic field
International Nuclear Information System (INIS)
The filamentation instability for a light ion beam (LIB) penetrating plasma is investigated. For the stabilization of the filamentation instability, an external magnetic field which is parallel to the direction of the light ion beam propagation is applied. From a dispersion relation, linear growth rates of filamentation instabilities are obtained in a light ion beam-plasma system with an external magnetic field. Numerical simulations are carried out using a particle-in-cell (PIC) method. The stabilizing mechanism of the filamentation instability is described. The theory and simulation comparisons illustrate the results. (author)
Electromagnetic two-stream and filamentation instabilities for a relativistic beam--plasma system
International Nuclear Information System (INIS)
Previous investigations on the two-stream and filamentation instabilities are based on either the electrostatic or the ordinary-mode approximation. A general relativistic dispersion formulation is presented to study these two instabilities for a scattered electron beam propagating a collisional, bi-Maxwellian plasma. New analytical results that apply to a general beam distribution are obtained for the stability boundary of the filamentation instability. The general dispersion relation uncovers the inadequacy in applying the ordinary-mode approximation in a frame other than the rest frame of the plasma. Analytical expressions for the the growth rates of the filamentation modes in various parameter regimes are obtained. Finally, numerical comparisons are made between the general dispersion results and the earlier results based on the electrostatic and ordinary-mode approximations
Dieckmann, M E; Kourakis, I; Borghesi, M
2008-01-01
Two counter-propagating cool and equally dense electron beams are modelled with particle-in-cell (PIC) simulations. The electron beam filamentation instability is examined in one spatial dimension. The box length resolves one pair of current filaments. A small, a medium-sized and a large filament are considered and compared. The magnetic field amplitude at the saturation time of the filamentation instability is proportional to the filament size. It is demonstrated, that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away. The confining potential is not sinusoidal, as assumed by the magnetic trapping model, and it permits an...
Rumolo, G
2014-01-01
When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.
On viscoelastic instability in polymeric filaments
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...
Neutrino beam plasma instability
Indian Academy of Sciences (India)
Vishnu M Bannur
2001-10-01
We derive relativistic ﬂuid set of equations for neutrinos and electrons from relativistic Vlasov equations with Fermi weak interaction force. Using these ﬂuid equations, we obtain a dispersion relation describing neutrino beam plasma instability, which is little different from normal dispersion relation of streaming instability. It contains new, nonelectromagnetic, neutrino-plasma (or electroweak) stable and unstable modes also. The growth of the instability is weak for the highly relativistic neutrino ﬂux, but becomes stronger for weakly relativistic neutrino ﬂux in the case of parameters appropriate to the early universe and supernova explosions. However, this mode is dominant only for the beam velocity greater than 0.25 and in the other limit electroweak unstable mode takes over.
Mitigating the relativistic laser beam filamentation via an elliptical beam profile.
Huang, T W; Zhou, C T; Robinson, A P L; Qiao, B; Zhang, H; Wu, S Z; Zhuo, H B; Norreys, P A; He, X T
2015-11-01
It is shown that the filamentation instability of relativistically intense laser pulses in plasmas can be mitigated in the case where the laser beam has an elliptically distributed beam profile. A high-power elliptical Gaussian laser beam would break up into a regular filamentation pattern-in contrast to the randomly distributed filaments of a circularly distributed laser beam-and much more laser power would be concentrated in the central region. A highly elliptically distributed laser beam experiences anisotropic self-focusing and diffraction processes in the plasma channel ensuring that the unstable diffractive rings of the circular case cannot be produced. The azimuthal modulational instability is thereby suppressed. These findings are verified by three-dimensional particle-in-cell simulations. PMID:26651801
Filamentation due to the Weibel Instability in two counterstreaming laser ablated plasmas
Dong, Quan-Li; Yuan, Dawei; Gao, Lan; Liu, Xun; Chen, Yangao; Jia, Qing; Hua, Neng; Qiao, Zhanfeng; Chen, Ming; Zhu, Baoqiang; Zhu, Jianqiang; Zhao, Gang; Ji, Hantao; Sheng, Zheng-Ming; Zhang, Jie
2016-05-01
Weibel-type filamentation instability was observed in the interaction of two counter streaming laser ablated plasma flows, which were supersonic, collisionless, and closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with 1ns-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.
Electron beam instabilities in gyrotron beam tunnels
International Nuclear Information System (INIS)
Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs
Beam instability Workshop - plenary sessions
International Nuclear Information System (INIS)
The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions
Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments
Saggiorato, G; Winkler, R G; Gompper, G
2015-01-01
The conformations and dynamics of semiflexible filaments subject to a homogeneous external (gravitational) field, e.g., in a centrifuge, are studied numerically and analytically. The competition between hydrodynamic drag and bending elasticity generates new shapes and dynamical features. We show that the shape of a semiflexible filament undergoes instabilities as the external field increases. We identify two transitions that correspond to the excitation of higher bending modes. In particular, for strong fields the filament stabilizes in a non-planar shape, resulting in a sideways drift or in helical trajectories. For two interacting filaments, we find the same transitions, with the important consequence that the new non-planar shapes have an effective hydrodynamic repulsion, in contrast to the planar shapes which attract themselves even when their osculating planes are rotated with respect to each other. For the case of planar filaments, we show analytically and numerically that the relative velocity is not n...
Energy Technology Data Exchange (ETDEWEB)
Sayed, F.; Tyshetskiy, Yu. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Vladimirov, S. V. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya st. 13 Bld. 2, Moscow 125412 (Russian Federation); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St Petersburg 199034 (Russian Federation); Ishihara, O. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Institute of Science and Technology Research, Chubu University, Kasugai, 487-8501 (Japan)
2015-05-15
The modulational and filamentational instabilities of a monochromatic Langmuir pump wave are investigated for the case of collisionless quantum plasmas, using renormalized quantum linear and nonlinear plasma polarization responses. We obtain the quantum-corrected dispersion equation for the modulational and filamentational instabilities growth rates. It is demonstrated that the quantum effect suppresses the growth rates of the modulational and filamentational instabilities.
International Nuclear Information System (INIS)
The modulational and filamentational instabilities of a monochromatic Langmuir pump wave are investigated for the case of collisionless quantum plasmas, using renormalized quantum linear and nonlinear plasma polarization responses. We obtain the quantum-corrected dispersion equation for the modulational and filamentational instabilities growth rates. It is demonstrated that the quantum effect suppresses the growth rates of the modulational and filamentational instabilities
Free-Space Nonlinear Beam Combining Towards Filamentation
Rostami, Shermineh; Kepler, Daniel; Baudelet, Matthieu; Litchinitser, Natalia M; Richardson, Martin
2016-01-01
Multi-filamentation opens new degrees of freedom for manipulating electromagnetic waves in air. However, without control, multiple filament interactions, including attraction, repulsion or fusion often result in formation of complex disordered filament distributions. Moreover, high power beams conventionally used in multi-filament formation experiments often cause significant surface damage. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of ultrashort beams with initial powers below the critical value enable the eventual formation of a filament downstream. Filament formation is delayed to a predetermined distance in space, avoiding optical damage to external beam optics while still enabling robust filaments with controllable properties as if formed from a single high power beam. This paradigm introduces new opportunities for filament engineering eliminating the nee...
Sheet Beam Klystron Instability Analysis
Energy Technology Data Exchange (ETDEWEB)
Bane, K.L.F.; Jensen, A.; Li, Z.; Stupakov, G.; Adolphsen, C.; /SLAC
2009-05-08
Using the principle of energy balance we develop a 2D theory for calculating growth rates of instability in a two-cavity model of a sheet beam klystron. An important ingredient is a TE-like mode in the gap that also gives a longitudinal kick to the beam. When compared with a self-consistent particle-in-cell calculation, with sheet beam klystron-type parameters, agreement is quite good up to half the design current, 65 A; at full current, however, other, current-dependent effects come in and the results deviate significantly.
Filamentation instability of counter-streaming laser-driven plasmas
Fox, W; Bhattacharjee, A; Chang, P -Y; Germaschewski, K; Hu, S X; Nilson, P M
2013-01-01
Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.
Dieckmann, M E; Borghesi, M; Rowlands, G
2009-01-01
Two counter-propagating cool and equally dense electron beams are modelled with particle-in-cell (PIC) simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasi-planar filament boundary. It is confirmed, that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
Longitudinal instability in HIF beams
International Nuclear Information System (INIS)
In contrast to an electron induction accelerator, in which the particle velocity is virtually constant, the resistive and inductive components of accelerating module impedances can cause instability for an intense non-relativistic heavy ion beam accelerated in a similar structure. Since focusing requirements at the fusion pellet imply a momentum spread approx-lt 3 x 10-4 at the end of the accelerator, it is essential to understand and suppress this instability. There is also an economic issue involved for this application; selection of parameters to control the instability must not unduly affect the efficiency and cost of the accelerator. This paper will present the results of analytic and computational work on module impedances, growth rates and feed back (forward) systems. 2 refs., 3 figs
Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range
International Nuclear Information System (INIS)
The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented
Triggering filamentation using turbulence
Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J
2016-01-01
We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.
Self-induced dipole force and filamentation instability of a matter wave
DEFF Research Database (Denmark)
Saffman, M.
1998-01-01
The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....
Zhang, Weiping; Search, Chris P.; Pu, Han; Meystre, Pierre; Wright, Ewan M.
2002-01-01
We study the propagation of an atom laser beam through a spatial region with a magnetic field tuned to a Feshbach resonance. Tuning the magnetic field below the resonance produces an effective focusing Kerr medium that causes a modulational instability of the atomic beam. Under appropriate circumstances, this results in beam breakup and filamentation seeded by quasi-particle fluctuations, and in the generation of correlated atomic pairs.
On nonlinear development of beam instability
International Nuclear Information System (INIS)
Radiation-resonance interactions are taken into account in the problem of dynamics of an electron beam inb plasma. The beam characteristics to be taken into account are determined. Stabilization conditions for beam instability are established
Laser beam propagation, filamentation and channel formation in laser-produced plasmas
International Nuclear Information System (INIS)
The understanding of laser beam propagation through underdense plasmas is of vital importance to laser-plasma interaction experiments, as well as being a fundamental physics issue. Formation of plasma channels has numerous applications including table-top x-ray lasers and laser-plasma-produced particle accelerators. The fast ignitor concept, for example, requires the formation of an evacuated channel through a large, underdense plasma. Scaled experiments have shown that the axial extent of a channel formed by a 100 ps pulse is limited by the onset of the filamentation instability. We have obtained quantitative comparison between filamentation theory and experiment. More recent experiments have shown that by increasing the duration of the channel-forming pulse, the filamentation instability is overcome and the channel extent is substantially increased. This result has important implications for the fast ignitor design and the understanding of time-dependent beam dynamics. copyright 1996 American Institute of Physics
Coherent instabilities of a relativistic bunched beam
Energy Technology Data Exchange (ETDEWEB)
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.
Coherent instabilities of a relativistic bunched beam
International Nuclear Information System (INIS)
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references
On the descriptions of beam instabilities
Maillard, Antoine
2016-01-01
We investigate two interesting features of beam instabilities in accelerators : First, we provide the equivalence between two models to describe transverse instabilities, the circulant matrix model (based on a longitudinal phase space discretization) and the Vlasov formalism. Secondly, we show how to derive dispersion integrals for transverse detuning effects in the Vlasov formalism, thus allowing for Landau damping mechanism.
Energy Technology Data Exchange (ETDEWEB)
Stupakov, G.V. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
The ionization of residual gas by an electron beam in an accelerator generates ions that can resonantly couple to the beam through a wave propagating in the beam-ion system. Results of the study of a beam-ion instability are presented for a multi-bunch train taking into account the decoherence of ion oscillations due to the ion frequency spread and spatial variation of the ion frequency. It is shown that the combination of both effects can substantially reduce the growth rate of the instability. (author)
THREE-BEAM INSTABILITY IN THE LHC*
Burov, A
2013-01-01
In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions. The instability results from a combined action of the cloud nonlinear focusing and impedance.
The role of Rayleigh-Taylor instabilities in filament threads
Terradas, J; Ballester, J L
2012-01-01
Many solar filaments and prominences show short-lived horizontal threads lying parallel to the photosphere. In this work the possible link between Rayleigh-Taylor instabilities and thread lifetimes is investigated. This is done by calculating the eigenmodes of a thread modelled as a Cartesian slab under the presence of gravity. An analytical dispersion relation is derived using the incompressible assumption for the magnetohydrodynamic (MHD) perturbations. The system allows a mode that is always stable, independently of the value of the Alfv\\'en speed in the thread. The character of this mode varies from being localised at the upper interface of the slab when the magnetic field is weak, to having a global nature and resembling the transverse kink mode when the magnetic field is strong. On the contrary, the slab model permits another mode that is unstable and localised at the lower interface when the magnetic field is weak. The growth rates of this mode can be very short, of the order of minutes for typical thr...
Beam wandering of femtosecond laser filament in air.
Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei
2015-10-01
The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc. PMID:26480079
Dieckmann, Mark E.; Shukla, P. K.; Stenflo, Lennart
2009-01-01
The filamentation instability driven by two spatially uniform and counter-streaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the elec...
International Nuclear Information System (INIS)
This paper presents a rigorous theoretical investigation of the filamentation and modulational instabilities of an upper hybrid laser radiation in a hot, collisionless and homogeneous plasma in the presence of the self-generated dc magnetic field of the order of a few megagauss. Fluid equations have been employed to find the nonlinear response of electrons. The low-frequency nonlinearity p arises through the ponderomotive force on electrons, whereas the high-frequency nonlinearity arises through the current densities associated with the scattered sidebands. It is observed that the growth rate of the filamentation instability decreases with increasing magnetic field, while the growth rate of the modulational instability increases with increasing magnetic field. Furthermore, the growth rate of the filamentation instability is higher by about one order of magnitude than that of the modulational instability for the same set of plasma parameters
International Nuclear Information System (INIS)
The evolution of filamentation instability in a weakly ionized current-carrying plasma with nonextensive distribution was studied in the diffusion frequency region, taking into account the effects of electron-neutral collisions. Using the kinetic theory, Lorentz transformation formulas, and Bhatnagar-Gross-Krook collision model, the generalized dielectric permittivity functions of this plasma system were achieved. By obtaining the dispersion relation of low-frequency waves, the possibility of filamentation instability and its growth rate were investigated. It was shown that collisions can increase the maximum growth rate of instability. The analysis of temporal evolution of filamentation instability revealed that the growth rate of instability increased by increasing the q-parameter and electron drift velocity. Finally, the results of Maxwellian and q-nonextensive velocity distributions were compared and discussed
Dieckmann, M E; Stenflo, L; 10.1088/0741-3335/51/6/065015
2009-01-01
The filamentation instability driven by two spatially uniform and counter-streaming beams of charged particles in plasmas is modelled by a particle-in-cell (PIC) simulation. Each beam consists of the electrons and positrons. The four species are equally dense and they have the same temperature. The one-dimensional simulation direction is orthogonal to the beam velocity vector. The magnetic field grows spontaneously and rearranges the particles in space, such that the distributions of the electrons of one beam and the positrons of the second beam match. The simulation demonstrates that as a result no electrostatic field is generated by the magnetic field through its magnetic pressure gradient prior to its saturation. This electrostatic field would be repulsive at the centres of the filaments and limit the maximum charge and current density. The filaments of electrons and positrons in this simulation reach higher charge and current densities than in one with no positrons. The oscillations of the magnetic field ...
Current-Driven Filament Instabilities in Relativistic Plasmas. Final report
International Nuclear Information System (INIS)
This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics
Current-Driven Filament Instabilities in Relativistic Plasmas. Final report
Energy Technology Data Exchange (ETDEWEB)
Ren, Chuang
2013-02-13
This grant has supported a study of some fundamental problems in current- and flow-driven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.
Ryutov, D. D.
2008-11-01
The physics of relativistic electron particle beams propagating through the plasma is of a significant interest for laboratory astrophysics, fast ignition, and Z-pinch research. Most attention has been directed towards the analysis of electromagnetic filamentation instabilities. On the other hand, there exists a broad class of very powerful electrostatic instabilities, e.g., the Buneman instability. The author considers in a unified fashion linear theory for both types of instabilities under conditions where there is no magnetic field in an unperturbed state (i.e., the beam current is fully neutralized by the plasma current). The following factors are taken into account: the beam energy and angular spread; plasma non-uniformity; particle collisions in the background plasma. The areas of the parameter domain where particular instability is prevalent are identified; the results are presented in the form of several easy-to-use diagrams. Prepared by LLNL under contract DE-AC52-07NA27344.
International Nuclear Information System (INIS)
Two-dimensional simulations of the initial stages of plasma formation in a dense plasma focus show the formation, in a few tens of nanoseconds, of a dense layer of plasma (ne∼1018 cm-3,Te∼3 eV) in a thin layer surrounding the insulator-covered central anode of the focus device, and carrying axially-directed current at rather high current density.Earlier work on the filamentation of dense cathode plasma in high-power diodes seems to indicate that the anode plasma current layer in a dense plasma focus (DPF) device could be subject to the same instability, creating a growth of axially-directed filaments in the current density. The growth rate for resistive-thermal-driven filamentation, e.g. at 30 torr and ∼3 eV electron temperature, exceeds the that due to non-thermal current (JxB) driving, and is determined by electron dynamics, so its evolution is quicker than the response-time of the ions.Nonetheless, with such a growing current-density perturbation as a seed and its increasing rippling of the azimuthal magnetic field as a driver, the ions will eventually take part in the azimuthal bunching, forming filaments in the ion density as well. The resistive-thermal-driven filamentation fields thus serve to ''hurry-up'' the development of ion density filamentation, as shown approximately in the work presented here. This theory predicts, for light ions, a relatively early (≤250 ns) development of visible filaments along the anode, perhaps even before the main rundown phase of the focus plasma motion, and these filaments may persist during the 'liftoff' phase of the current layer to form the rundown phase of the plasma front. This work is supported by Larwenceville Plasma Physics.
Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques
International Nuclear Information System (INIS)
Experimental results are presented for the interaction of an intense laser beam in large preformed, homogeneous underdense plasmas. Parametric instabilities, including filamentation, stimulated Raman (SRS) and stimulated Brillouin scattering (SBS), have been extensively studied. In this paper comparisons are made between coherent and smoothed laser interaction beams for their effectiveness in suppressing these instabilities. Direct observations of the enhanced breakup of the coherent interaction beam due to filamentation are presented. Measurements of the transverse scale lengths of the hot spots, and the level of the intensity modulations of the filamentary structures are given. Further, direct experimental observations of SRS and SBS generated in filaments are presented. These provided conclusive evidence that this instability provides the primary mechanism for the generation of SRS and SBS under such plasma conditions. With the smoothed laser interaction beams, using random phase plates (RPP) and induced spatial incoherence (ISI), the level of filamention was significantly reduced. The backscattered fractions of SRS and SBS with respect to the irradiance of the interaction beam were measured for coherent, RPP and ISI. Reduction of typically a factor of 20 and 500 were recorded using RPP and ISI, respectively, in the backscattering levels of SRS and SBS when compared with the coherent interaction beam. The reductions are attributed primarily to the effectiveness of the beam-smoothing techniques in suppressing the filamentation instability
Beam instability studies at the APS
International Nuclear Information System (INIS)
The Argonne Advanced Photon Source, APS (Fig. 1), is a 7-GeV positron storage ring with a circumference of 1104 m. It has a ''third generation, DBA or Chasman-Green'' lattice composed of 40 sectors each having a ∼6 m long zero-dispersion straight-section for accommodating insertion devices. Neighboring straight-sections are connected by a 360 degrees/40 = 9 degrees double-bend-achromatic bending section designed to produce the smallest emittance attainable with reasonable component parameter values and dynamic apertures. Thus, it is a very strongly focusing lattice with vx = 35.22 and vy = 14.30. The beam chamber of the storage ring including all rf, vacuum and photon beam components is designed to ensure that a beam current > 100 mA can be stably stored. We expect that the maximum stable beam current could be as high as 300 mA. This paper will give some details of the studies and computations to ensure the stability of such a beam. The discussions will be organized in the following three parts: Coupled-bunch instability caused by the higher-order modes (HOMs) of the rf cavities; Single-bunch instability due to the resistive wall impedance; and Single-bunch instability due to broadband impedances arising from beam chamber irregularities
An important effect of filamentation instability on laser fusion physical processes
Institute of Scientific and Technical Information of China (English)
Zunqi; Lin; Anle; Lei; Wei; Fan; Shenlei; Zhou; Li; Wang
2013-01-01
The process of high power laser interaction with the large scale length corona plasma produced by the leading edge of the laser pulse has been investigated. Early experimental results are re-analyzed and conclusions drawn. In particular,studies of the close connection of unstable filamentation instability with – mainly – two-plasmon decay and – partly –stimulated Raman scattering, stimulated Brillouin scattering, and resonance absorption are carried out in this paper. The positive and negative effects of filamentation instability are also discussed.
International Nuclear Information System (INIS)
A theoretical investigation has been made on the relativistic filamentation and modulational instabilities of a laser radiation propagating in an unmagnetized collisionless laser-produced plasma. The relativistic Vlasov equation has been employed to find the nonlinear response of electrons for the four-wave parametric processes. It is noted here that for typical plasma parameters of interest the relativistic growth rates of both the filamentation and modulational instabilities turn out to be quite large and increase with increasing the intensity of the incident laser radiation and the equilibrium electron density. (author). 14 refs., 1 fig
Bunched beam longitudinal instability: Coherent dipole motion
International Nuclear Information System (INIS)
In this paper, the authors present a new formulation for the longitudinal coherent dipole motion, where a quadrature response of the environmental impedance is shown to be the effective longitudinal impedance for the beam instability. The Robinson-Pedersen formulation for the longitudinal dipole motion is also presented, the difference of the two approaches is discussed in the comparison. The results by using the Sacherer integral equation for the coherent dipole motion can generate the same results as by using the other two approaches, except for a scaling difference. The formulation is further generalized to the rigid bunch motion using signal analysis method, where a form factor shows up naturally. Finally, the formulation is applied to solve the coupled bunch instabilities. Examples of the AGS Booster and the AGS coupled bunch instabilities are used to illustrate the applications of the formulation
Cosmic-ray-induced filamentation instability in collisionless shocks
Caprioli, D
2012-01-01
We used unprecedentedly large 2D and 3D hybrid (kinetic ions - fluid electrons) simulations of non-relativistic collisionless strong shocks in order to investigate the effects of self-consistently accelerated ions on the overall shock dynamics. The current driven by suprathermal particles streaming ahead of the shock excites modes transverse to the background magnetic field. The Lorentz force induced by these self-amplified fields tends to excavate tubular, underdense, magnetic-field-depleted cavities that are advected with the fluid and perturb the shock surface, triggering downstream turbulent motions. These motions further amplify the magnetic field, up to factors of 50-100 in knot-like structures. Once downstream, the cavities tend to be filled by hot plasma plumes that compress and stretch the magnetic fields in elongated filaments; this effect is particularly evident if the shock propagates parallel to the background field. Highly-magnetized knots and filaments may provide explanations for the rapid X-r...
Beam-Ion Instability in PEP-II
Energy Technology Data Exchange (ETDEWEB)
Heifets, S.; Kulikov, A.; Wang, Min-Huey; Wienands, U.; /SLAC
2007-11-07
The instability in the PEP-II electron ring has been observed while reducing the clearing gap in the bunch train. We study the ion effects in the ring summarizing existing theories of the beam-ion interaction, comparing them with observations, and estimating effect on luminosity in the saturation regime. Considering the gap instability we suggest that the instability is triggered by the beam-ion instability, and discuss other mechanisms pertinent to the instability.
Instability in the Peeling of a Polymeric Filament from a Rigid Surface
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
2000-01-01
The 3D Lagrangian integral method is used to simulate the effects of the rheology on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates.It is shown that strain hardening materials with a negative second normal stress...... difference undergo the instability at a highter critical Hencky strain compared to materials with zero second normal stress difference. Furthermore it is demonstrated that strain hardening in itself playes a key role in the development of the instability in polymeric materials....
COSMIC-RAY-INDUCED FILAMENTATION INSTABILITY IN COLLISIONLESS SHOCKS
International Nuclear Information System (INIS)
We used unprecedentedly large two-dimensional and three-dimensional hybrid (kinetic ions—fluid electrons) simulations of non-relativistic collisionless strong shocks in order to investigate the effects of self-consistently accelerated ions on the overall shock dynamics. The current driven by suprathermal particles streaming ahead of the shock excites modes transverse to the background magnetic field. The Lorentz force induced by these self-amplified fields tends to excavate tubular, underdense, magnetic-field-depleted cavities that are advected with the fluid and perturb the shock surface, triggering downstream turbulent motions. These motions further amplify the magnetic field, up to factors of 50-100 in knot-like structures. Once downstream, the cavities tend to be filled by hot plasma plumes that compress and stretch the magnetic fields in elongated filaments; this effect is particularly evident if the shock propagates parallel to the background field. Highly magnetized knots and filaments may provide explanations for the rapid X-ray variability observed in RX J1713.7–3946 and for the regular pattern of X-ray bright stripes detected in Tycho's supernova remnant.
Ultrarelativistic modulation and filamentation instabilities in a laser-produced plasma
International Nuclear Information System (INIS)
A rigorous theoretical investigation is made on the ultrarelativistic modulation and filamentation instabilities in a collisionless and unmagnetized laser-produced plasma. The kinetic description of the laser-produced plasma, viz., the relativistic Vlasov equation has been employed to find the nonlinear response of electrons for the four-wave parametric processes in the plasma. It is noted that the modulation and filamentation instabilities have significant relativistic effects and the growth rates of both the instabilities in the ultrarelativistic consideration are approximately (c2/v2e) times higher than those in the nonrelativistic consideration, where c and ve are the free-space speed of light and the thermal speed of the plasma electrons. (author). 21 refs
Regulated 15-V, 7500-A, neutral-beam filament supply
International Nuclear Information System (INIS)
Lawrence Livermore Laboratory (LLL) designed a cost-effective, regulated 15-V, 7500-A filament supply for use with the High-Voltage Test Stand , a major ERDA developmental neutral-beam test facility. The filament supply can float to 200 kV and can provide pulse widths up to 30 s. Powered by a 24-V, 0.5-TJ battery bank, it avoids the use of expensive isolation transformers and induction voltage regulators (IVR's). Battery output is regulated by a water-cooled resistor-contactor combination in which contactors are closed in sequential format to create a staircase current waveform. A fine-tuning network tunes in-between the ''steps'' for regulation to less than 0.5 percent. The regulator is digitally controlled except for the sense amplifiers, which are optically coupled to the digital controller. All ground telemetry uses optical links to minimize effects of rfi and emi noise in the data channels
The single-mode CSR instability for a bunched beam
International Nuclear Information System (INIS)
The coherent synchrotron radiation (CSR) instability at the shielding threshold may be driven by a single synchronous mode excited by the beam in the beam pipe. The instability in this case has been analyzed [1] in the coasting beam approximation neglecting synchrotron motion. The later becomes important at large time intervals in storage rings where it substantially affects the beam dynamics. The single-mode CSR instability of a bunched beam with the synchrotron motion taken into account is described in this paper both in linear and nonlinear regimes. Analysis is relevant to other instabilities where the interaction is dominated by a single mode
Beam instabilities in the scale-free regime.
Folli, V; DelRe, E; Conti, C
2012-01-20
The instabilities arising in a one-dimensional beam sustained by the diffusive photorefractive nonlinearity in out-of-equilibrium ferroelectrics are theoretically and numerically investigated. In the "scale-free model," in striking contrast with the well-known spatial modulational instability, two different beam instabilities dominate: a defocusing and a fragmenting process. Both are independent of the beam power and are not associated with any specific periodic pattern. PMID:22400741
Microfabrication of transparent materials using filamented femtosecond laser beams
Butkus, S.; Paipulas, D.; Gaižauskas, Eugenijus; KaškelytÄ--, D.; Sirutkaitis, V.
2014-05-01
Glass drilling realized with the help of femtosecond lasers attract industrial attention, however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length. This article demonstrates the application of a femtosecond (280fs) laser towards rapid cutting of different transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime, hardened glasses and sapphire. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated.
D'Angelo, M; Sgattoni, A; Pegoraro, F; Macchi, A
2015-01-01
The evolution of the filamentation instability produced by two counter-streaming pair plasmas is studied with particle-in-cell (PIC) simulations in both one (1D) and two (2D) spatial dimensions. Radiation friction effects on particles are taken into account. After an exponential growth of both the magnetic field and the current density, a nonlinear quasi-stationary phase sets up characterized by filaments of opposite currents. During the nonlinear stage, a strong broadening of the particle energy spectrum occurs accompanied by the formation of a peak at twice their initial energy. A simple theory of the peak formation is presented. The presence of radiative losses does not change the dynamics of the instability but affects the structure of the particle spectra.
2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma
Shukla, Chandrashekhar; Patel, Kartik
2015-01-01
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...
Plasma Heating under Beam Instability Conditions
International Nuclear Information System (INIS)
Results are discussed of the interaction of electron beams with a plasma in mirror magnetic fields and the heating of the electron and ion components of the plasma under beam instability conditions. The experiments were carried out in a mirror device with mirror ratio 1.5 and a maximum field of 1500 Oe at the centre. An electron beam of 200 to 300 mA and energy up to 4 keV was injected continuously. Plasma was formed by the ionization of the gas (hydrogen or helium) filling the vessel at pressures of 10-4 to 10-5 Torr. As a result of the interaction of the electron beam with the plasma, a broad spectrum of plasma and electromagnetic waves is excited in the system. The spectra of the high- and of the low-frequency oscillations in beam instability conditions were experimentally investigated. A broad spectrum of oscillations in the region of the plasma and cyclotron frequencies was observed. The results are described of the investigations of the systematic low-frequency oscillations excited in the region from 10 to 50 kc/s, and possible mechanisms responsible for the excitation of the oscillations are discussed. The observed absorption of the energy of the high-frequency oscillations in the region of the electroncyclotron frequency and its harmonics is also considered. The interaction between the plasma particles and the fields of the oscillations excited in the system cause the directed energy of the beam to be transformed into thermal plasma energy. Intense X-radiation from the plasma region was recorded; from its energy distribution, the plasma electron temperature was determined of the order of 20 to 40 keV. The plasma density determined from the X-radiation power was (1 to 2) x 1011 cm-3. According to microwave measurements one obtains ne ∼(0.7 to 1) x 10-12 cm-3. The heating of the plasma is also confirmed by spectrometric measurements of the electron temperature from the relative intensity of the helium lines. The ion temperature measured from the Doppler
The electron beam instability and turbulence theories
Dum, C. T.
1990-01-01
Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.
Simulation Study of Magnetic Fields Generated by the Electromagnetic Filamentation Instability
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C. B.; Mizuno, Y.; Fishman, G. J.
2007-01-01
We have investigated the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of the original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.
Energy Technology Data Exchange (ETDEWEB)
Xia Xiongping; Yi Lin [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Xu Bin [Department of Mathematics and Information Sciences, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Lu Jianduo [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081 (China)
2011-10-15
The splitted beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma is investigated. Based on Wentzel-Kramers-Brillouin (WKB) approximation and paraxial/nonparaxial ray theory, simulation results show that the steady beam width and single beam filamentation along the propagation distance in paraxial case is due to the influence of ponderomotive nonlinearity. In nonparaxial case, the influence of the off-axial of {alpha}{sub 00} and {alpha}{sub 02} (the departure of the beam from the Gaussian nature) and S{sub 02} (the departure from the spherical nature) results in more complicated ponderomotive nonlinearity and changing of the channel density and refractive index, which led to the formation of two/three splitted beam filamentation and the self-distortion of beam width. In addition, influence of several parameters on two/three splitted beam filamentation is discussed.
Study of filamentation dynamics of ultrashort laser radiation in air: beam diameter effect
International Nuclear Information System (INIS)
A single filamentation of femtosecond gigawatt laser radiation with a millimeter-size aperture upon collimated and sharply focused propagation in atmospheric air at 800 nm and 400 nm wavelengths is studied both theoretically and experimentally. The influence of beam initial radius on the parameters of the forming filament is analyzed. Three filament parameters, namely, start coordinate, filament length, and longitudinal continuity are considered. We report that unlike Marburger’s formula the single filamentation onset reveals marked nonquadratic dependence on the laser beam radius providing the same initial pulse power. Additionally, for sharply focused radiation the minor dependence of the filament length on the laser beam diameter at the constant initial pulse intensity was experimentally revealed. (paper)
Extension of filament propagation in water with Bessel-Gaussian beams
Kaya, G.; Kaya, N.; Sayrac, M.; Boran, Y.; Strohaber, J.; Kolomenskii, A. A.; Amani, M.; Schuessler, H. A.
2016-03-01
We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.
Extension of filament propagation in water with Bessel-Gaussian beams
Directory of Open Access Journals (Sweden)
G. Kaya
2016-03-01
Full Text Available We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size of the central peak of the incident beam, suggesting that the radial modal lobes may serve as an energy reservoir for the filaments formed by the central intensity peak.
Fuchs, J.; Nakatsutsumi, M.; Marquès, J.-R.; Antici, P.; Bourgeois, N.; Grech, M.; Lin, T.; Romagnani, L.; Tikhonchuk, V.; Weber, S.; Kodama, R.; Audebert, P.
2007-12-01
We have performed a systematic study of beam propagation (400 ps, I = 1010-1014 W cm-2) in underdense plasmas (ne = 1019-1020 cm-3) at a level of reduced complexity compared with the smoothed beams currently used in inertial confinement fusion studies, using one or two well-controlled filaments. These experiments have been performed on the LULI 100 TW laser facility. The use of well-controlled, diffraction-limited single filaments is possibly due to the use of adaptative optics. We have used either a single filament or two filaments having variable distance, delay, intensity ratio and polarization. The single filament configuration allows to study basic beam propagation and reveals occurrence of filamentation at low intensity levels. The use of two filaments demonstrates the occurrence of beam coupling and merging, and the importance of cross-talk effects supported by the plasma.
Transverse instability of the antiproton beam in the Recycler Ring
Prost, L R; Burov, A; Crisp, J; Eddy, N; Hu, M; Shemyakin, A
2012-01-01
The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
Transverse instability of the antiproton beam in the Recycler Ring
Energy Technology Data Exchange (ETDEWEB)
Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab
2011-03-01
The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
Some Features of Transverse Instability of Partly Compensated Proton Beams
Energy Technology Data Exchange (ETDEWEB)
Vadim Dudnikov
2001-10-23
suppression of generation and accumulation of secondary particles is a traditional method for suppression the transverse electron-proton instability: improve the vacuum, use a gap in beam for electron removing, use cleaning electrodes, suppressing secondary emission. But opposite solution is also possible. Transverse e-p instability in proton rings can be damped by increasing beam density and the rate of secondary particles generation above a threshold level, with decrease of the unstable wavelength below a transverse beam size. In high current Proton Storage Rings (PSR) such as, the LANSCE PSR it is possible to reach this island of stability by multiturn, concentrated charge exchange injection without painting and by enhanced generation of secondary plasma. This possibility was demonstrated in smaller scale PSR at the INP, Novosibirisk [1]. Damping of the e-p instability allowed to accumulate a coasting, space charge compensated, circulating proton beam with intensity, corresponding to the Laslett tune shift of {Delta}{nu} = 5 in the ring with original tune of {nu} = 0.85. In the other PSR transverse instability of bunched beam was damped by a simple feed back [2,3]. In this article they discuss experimental observations of transverse instability of proton beams in different accelerators and storage rings and consider methods to damp the instability. The presented experimental dates could be useful for verification of computer simulation tools developed for investigation of space charge effects and beam instabilities in realistic conditions [4,5].
International Nuclear Information System (INIS)
The parametric interaction of an intense laser beam with ion plasma modes in a two-dimensional Cartesian geometry has been studied for the first time by avoiding the paraxial optics approximation. This model allows investigation of the competition between forward, sideward, and backward stimulated Brillouin scattering (SBS) along with filamentation and self-focusing instabilities. It is shown that the SBS saturation level, the angular distribution of transmitted and scattered light, and their temporal dependence are governed mainly by two control parameters: the backward SBS gain coefficient G, and the ratio αsf of the incident beam power to its critical value for the onset of self-focusing. In the case of large values of G approx-gt 15, backward SBS dominates and prevents both self-focusing and forward SBS. For smaller values of G, the interaction exhibits a complex oscillatory behavior, which corresponds to the competition between backward and forward SBS for αsf approx-lt 1, and involves also self-focusing for higher beam intensities
Coupled-Beam and Coupled-Bunch Instabilities
Burov, Alexey
2016-01-01
A problem of coupled-beam instability is solved for two multibunch beams with slightly different revolution frequencies, as in the Fermilab Recycler Ring (RR). Sharing of the inter-bunch growth rates between the intra-bunch modes is described. The general analysis is applied to the RR; possibilities to stabilize the beams by means of chromaticity, feedback and Landau damping are considered.
Extension of filament propagation in water with Bessel-Gaussian beams
KAYA, G.; Kaya, N.; M. Sayrac; Y. Boran; Strohaber, J.; Kolomenskii, A. A.; M. Amani; Schuessler, H. A.
2016-01-01
We experimentally studied intense femtosecond pulse filamentation and propagation in water for Bessel-Gaussian beams with different numbers of radial modal lobes. The transverse modes of the incident Bessel-Gaussian beam were created from a Gaussian beam of a Ti:sapphire laser system by using computer generated hologram techniques. We found that filament propagation length increased with increasing number of lobes under the conditions of the same peak intensity, pulse duration, and the size o...
Space-Charge Waves and Instabilities in Intense Beams
Wang, J. G.
1997-11-01
Advancced accelerator applications, such as drivers for heavy ion inertial fusion, high-intensity synchrotrons for spallation neutron sources, high energy boosters, free electron lasers, high-power microwave generators, etc., require ever-increasing beam intensity. An important beam dynamics issue in such beams is the collective behavior of charged particles due to their space charge effects. This includes the phenomena of space-charge waves and instabilities excited on beams by external perturbations. It is very crucial to fully understand these phenomena in order to develop advanced accelerators for various applications. At the University of Maryland we have been conducting experimental programs to study space-charge waves and longitudinal instabilities by employing low-energy, high-current, space-charge dominated electron beams. Localized perturbations on the beams are generated from a gridded electron gun. In a conducting transport channel focused by short solenoids, these perturbations evolve into space-charge waves propagating on the beams. The wave speed is measured and many beam parameters are determined with this technique. The reflection of space-charge waves at the shoulder of an initially rectangular beam bunch is also observed. In a resistive-wall channel focused by a uniform long solenoid, the space-charge waves suffer longitudinal instability. The properties of the instabilities are studied in detail in the long wavelength range. In this talk we review our experimental results on the waves and instabilities and compare with theory.
Optical beam dynamics in a gas repetitively heated by femtosecond filaments
Jhajj, N; Wahlstrand, J K; Milchberg, H M
2013-01-01
We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.
The axisymmetric hollowing instability of an intense relativistic electron beam propagating in air
International Nuclear Information System (INIS)
A space-charge neutralized electron beam propagating through an ionizable gas can be destablized as a result of magnetic repulsion of the beam electrons by induced return currents. The hollowing instability has recently been studied through the use of axially-symmetric particle simulation codes, which have shown that it is the result of avalanche ionization near the beam axis. The resulting highly concentrated return current weakens the self-pinching force near the axis and triggers the hollowing. The criteria that E/p must be greater than ≅130 kV cm/sup -1/ Atm/sup -1/ and current neutralization greater than ≅50% are required for avalanche initiated hollowing have been deduced from these computer experiments. The authors have performed experiments with the beam produced by the IBEX accelerator (E≅4 MeV, I≅70 kA and >4 kA/ns) that have verified the existence of the hollowing instability on this beam as predicted when the air pressure was reduced below the threshold value. The most persuasive observations were time-resolved radiographs of the beam striking a thin tantalum target foil that were made with an X-ray framing camera. These radiographs also revealed a tendency of the beam to tear into filaments after hollowing
Nonlinear instability and reliability analysis of composite laminated beams
Fereidooni, Alireza
The wide range of high performance engineering applications of composite laminated structures demands a proper understanding of their dynamics performance. Due to the complexity and nonlinear behaviour of such structures, developing a mathematical model to determine the dynamic instability boundaries is indispensable and challenging. The aim of this research is to investigate the dynamic behaviour of shear deformable composite laminated beams subjected to varying time conservative and nonconservative loads. The dynamic instability behaviour of non-conservative and conservative system are dissimilar. In case of conservative loading, the instability region intersects the loading axis, but in case of non-conservative loads the region will be increased with loading increases. The extended Hamilton's principle and the first order shear deformation theory are employed in this investigation to establish the integral form of the equation of motion of the beam. A five node beam model is presented to descritize the integral form of the governing equations. The model has the capability to capture the dynamic effects of the transverse shear stress, warping, and bending-twisting, bending-stretching, and stretching-twisting couplings. Also, the geometric and loading nonlinearities are included in the equation of system. The beam model incorporates, in a full form, the non-classical effects of warping on stability and dynamic response of symmetrical and unsymmetrical composite beams. In case of nonlinear elasticity, the resonance curves are bent toward the increasing exciting frequencies. The response of the stable beam is pure periodic and follow the loading frequency. When the beam is asymptotically stable the response of the beam is aperiodic and does not follow the loading frequency. In unstable state of the beam response frequency increases with time and is higher than the loading frequency, also the amplitude of the beam will increases, end to beam failure. The amplitude of
Numerical investigation of hose instability of a Bennet beam
International Nuclear Information System (INIS)
The hose instability is examined numerically for an unmodulated beam with the Bennett current profile J(r) α (1 + r2/a2)-2. Channel conductivity sigma(r) is also of this form. The dispersion relation of Lee shows excellent agreement with numerical results. Transient behavior of beam is studied and found consistent with Lee's work
Ruyer, C; Debayle, A; Bonnaud, G
2015-01-01
We present a predictive model of the nonlinear phase of the Weibel instability induced by two symmetric, counter-streaming ion beams in the non-relativistic regime. This self-consistent model combines the quasilinear kinetic theory of Davidson et al. [Phys. Fluids 15, 317 (1972)] with a simple description of current filament coalescence. It allows us to follow the evolution of the ion parameters up to a stage close to complete isotropization, and is thus of prime interest to understand the dynamics of collisionless shock formation. Its predictions are supported by 2-D and 3-D particle-in-cell simulations of the ion Weibel instability. The derived approximate analytical solutions reveal the various dependencies of the ion relaxation to isotropy. In particular, it is found that the influence of the electron screening can affect the results of simulations using an unphysical electron mass.
Modulational instability of intense laser beam in magnetized plasma
International Nuclear Information System (INIS)
The nonlinear dispersion relation is derived for an intense left-hand elliptically polarized laser beam propagating through magnetized plasma by means of the Lorentz transformation. In terms of the Karpman method, the nonlinear governing equation for the envelope of the laser field is obtained. The modulational instability of the intense left-hand elliptically polarized laser beam in magnetized plasma is analyzed and the temporal growth rate of modulational instability is found. The analysis shows that the maximum growth rate of self-modulation instability is obviously smaller for magnetized plasma compared to the unmagnetized case. It is also shown that the temporal growth rate of modulational instability is increased significantly near the critical surface in a laser-plasma. (authors)
Nonlinear Evolution of the Ion-Ion Beam Instability
DEFF Research Database (Denmark)
Pécseli, Hans; Trulsen, J.
1982-01-01
The criterion for the existence of vortexlike ion phase-space configurations, as obtained by a standard pseudopotential method, is found to coincide with the criterion for the linear instability for two (cold) counterstreaming ion beams. A nonlinear equation is derived, which demonstrates...... that this instability actually evolves into such phase-space configurations. A small, but nonzero, ion-temperature turns out to be essential for the saturation into stationary structures...
Study of HOM properties for beam instability of the JAERI
International Nuclear Information System (INIS)
An energy-recovery linac (ERL) current is limited by the higher order mode (HOM) instability. This instability is caused by the HOMs excited in the cavities by the beam. The superconducting accelerator of the JAERI ERL-FEL has three HOM couplers, from which HOM power can be extracted to analyze the power spectrums with time-dependence. The direct measurement of the HOM in the cavities can help to understand the HOM instability by comparing with the result of a simulation code. (author)
Luminosity Loss due to Beam Distortion and the Beam-Beam Instability
Wu, Juhao; Raubenheimer, Tor O; Seryi, Andrei; Sramek, Christopher K
2005-01-01
In a linear collider, sources of emittance dilution such as transverse wakefields or dispersive errors will couple the vertical phase space to the longitudinal position within the beam (the so-called banana effect'). When the Intersection Point (IP) disruption parameter is large, these beam distortions will be amplified by a single bunch kink instability which will lead to luminosity loss. We study this phenomena both analytically using linear theory and via numerical simulation. In particular, we examine the dependence of the luminosity loss on the wavelength of the beam distortions and the disruption parameter. This analysis may prove useful when optimizing the vertical disruption parameter for luminosity operation with given beam distortions.
Collaborative Research: Instability and transport of laser beam in plasma
Energy Technology Data Exchange (ETDEWEB)
Rose, Harvey Arnold [New Mexico Consortium; Lushnikov, Pavel [University of New Mexico
2014-11-18
Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.
Instability Versus Equilibrium Propagation of Laser Beam in Plasma
Lushnikov, Pavel M.; Rose, Harvey A.
2003-01-01
We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...
Ion-beam-driven lower-hybrid instability and resultant anomalous beam slowing
International Nuclear Information System (INIS)
A lower-hybrid instability with ion cyclotron harmonics is observed to be driven by an ion beam injected obliquely to the magnetic field confining the isothermal plasma of the Q-1 double plasma device. The instability occurs with the injection of a low density, low velocity beam and propagates normal to the field with phase velocity ω/k/sub perpendicular/ approximately equal to u/sub b//sub perpendicular/, the perpendicular velocity component of the spiraling ions. The frequency spectrum, propagation, and growth rate are all in good agreement with a numerical calculation based on linear kinetic theory. Pulsed beams are used to follow the instability from the linearly growing stage to nonlinear saturation. The anomalous perpendicular momentum loss of the beam is examined by both direct energy analysis and by measurements of the resultant beam orbit modifications. By varying the beam parameters, a transition of the nonlinear saturation mechanism from the quasilinear to the trapping regime is demonstrated
Electromagnetic instability in an electron beam-ion channel system
Su, D.; Tang, C. J.
2009-05-01
The transverse electromagnetic instability in the electron beam-ion channel system is investigated using kinetic theory. The equilibrium distribution function of a relativistic electron beam, which takes into account a strong ion channel effect, is obtained. The linearized Vlasov equation is solved and the dispersion relation of the system is derived by perturbing the equilibrium with a high frequency electromagnetic wave (EMW). Analysis of the dispersion relation shows that the coupling of the electron beam with the transverse high frequency EMW is achieved through the deflection of the beam electrons due to the synergistic effects of the transverse high frequency EMW and transverse betatron oscillation. The numerical calculation finds that a branch of slow wave instability (SWI) with a wide frequency band is excited. The attenuation index of the SWI increases and its frequency band broadens as the normalized beam radii increases. Besides, the SWI will be suppressed as the longitudinal velocity of the electron beam increases to a certain value; meanwhile, a bunch of fast wave instability (FWI) is excited, which is equal to the increase of the relativistic factor. Also both the SWI and the FWI reach maximum when the EMW frequency meets a resonance condition.
Electromagnetic instability in an electron beam-ion channel system
International Nuclear Information System (INIS)
The transverse electromagnetic instability in the electron beam-ion channel system is investigated using kinetic theory. The equilibrium distribution function of a relativistic electron beam, which takes into account a strong ion channel effect, is obtained. The linearized Vlasov equation is solved and the dispersion relation of the system is derived by perturbing the equilibrium with a high frequency electromagnetic wave (EMW). Analysis of the dispersion relation shows that the coupling of the electron beam with the transverse high frequency EMW is achieved through the deflection of the beam electrons due to the synergistic effects of the transverse high frequency EMW and transverse betatron oscillation. The numerical calculation finds that a branch of slow wave instability (SWI) with a wide frequency band is excited. The attenuation index of the SWI increases and its frequency band broadens as the normalized beam radii increases. Besides, the SWI will be suppressed as the longitudinal velocity of the electron beam increases to a certain value; meanwhile, a bunch of fast wave instability (FWI) is excited, which is equal to the increase of the relativistic factor. Also both the SWI and the FWI reach maximum when the EMW frequency meets a resonance condition.
Ion-Beam-Excited Electrostatic Ion Cyclotron Instability
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....
Ion-Beam-Excited Electrostatic Ion Cyclotron Instability
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....
Ion-Beam-Excited, Electrostatic, Ion Cyclotron Instability
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
The stability limits of the ion‐beam‐excited, electrostatic, ion cyclotron instability were investigated in a Q‐machine plasma where the electrons could be heated by microwaves. In agreement with theory, the beam energy necessary for excitation decreased with increasing electron temperature....
International Nuclear Information System (INIS)
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω0) scale. At such small scale lengths channelization of currents is also observed in simulation
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2015-11-01
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω0) scale. At such small scale lengths channelization of currents is also observed in simulation.
Energy Technology Data Exchange (ETDEWEB)
Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)
2015-11-15
Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.
Instability Versus Equilibrium Propagation of Laser Beam in Plasma
Lushnikov, P M; Lushnikov, Pavel M.; Rose, Harvey A.
2003-01-01
We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtained, which provides an essential correction to a geometric optic approximation for beam propagation.
International Nuclear Information System (INIS)
Solar filaments are magnetic structures often observed in the solar atmosphere and consist of plasma that is cooler and denser than their surroundings. They are visible for days—even weeks—which suggests that they are often in equilibrium with their environment before disappearing or erupting. Several eruption models have been proposed that aim to reveal what mechanism causes (or triggers) these solar eruptions. Validating these models through observations represents a fundamental step in our understanding of solar eruptions. We present an analysis of the observation of a filament eruption that agrees with the torus instability model. This model predicts that a magnetic flux rope embedded in an ambient field undergoes an eruption when the axis of the flux rope reaches a critical height that depends on the topology of the ambient field. We use the two vantage points of the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory to reconstruct the three-dimensional shape of the filament, to follow its morphological evolution, and to determine its height just before eruption. The magnetograms acquired by SDO/Helioseismic and Magnetic Imager are used to infer the topology of the ambient field and to derive the critical height for the onset of the torus instability. Our analysis shows that the torus instability is the trigger of the eruption. We also find that some pre-eruptive processes, such as magnetic reconnection during the observed flares and flux cancellation at the neutral line, facilitated the eruption by bringing the filament to a region where the magnetic field was more vulnerable to the torus instability.
Vertical coherent instabilities in bunched particle-beams
International Nuclear Information System (INIS)
The purpose of this paper is to study the vertical coherent instabilities which occur in bunched particle beams. The problem is complicated by the fact that the velocity of a single particle in a bunch is not constant, but rather consists of an equilibrium velocity and an oscillation about that. This synchrotron oscillation occurs at a frequency which is in general much less than the other characteristic frequencies of the system: the revolution frequency and the transverse betatron frequencies. The approach used here to study coherent instabilities illuminates the effect of the synchrotron frequency in setting the time scale for an instability, without making restrictive assumptions on the relative size of the synchrotron frequency and the coherent frequency shift
LONGITUDINAL RESISTIVE INSTABILITIES OF INTENSE COASTING BEAMS IN PARTICLE ACCELERATORS
Energy Technology Data Exchange (ETDEWEB)
Neil, V. Kelvin; Sessler, Andrew M.
1964-09-29
The effect of finite resistance in the vacuum-tank walls on the longitudinal stability of an intense beam of particles in an accelerator is investigated theoretically. We show that even if the particle frequency is an increasing function of particle energy, the wall resistance can render the beam unstable against longitudinal bunching. In the absence of frequency spread in the unperturbed beam, the instability occurs with a growth rate that is proportional to (N/{sigma}){sup 1/2}, where N is the number of particles in the beam and {sigma} is the conductivity of the surface material. By means of the Vlasov equation a criterion for beam stability is obtained. In the limit of highly conducting walls the criterion involves the frequency spread in the unperturbed beam, the number of particles N, the beam energy, geometrical properties of the accelerator, but not the conductivity {sigma}. A numerical example presented indicates that certain observations of beam behavior in the MURA 40-Mev-electron accelerator may be related to the phenomenon we investigated.
Ion beam instability in the presence of a fireball
International Nuclear Information System (INIS)
A low frequency instability is excited in an ion beam plasma system in presence of a localized discharge, a so-called fireball. The experiment has been performed in the Innsbruck double plasma device of 90 cm length and 45 cm diameter with a mesh grid separating the two chambers. The optical transparency of the grid is almost 60 %. An ion rich sheath is created across the grid by biasing the grid negatively with respect to ground. A fireball is formed at one end of the target chamber by an additional positively biased plane circular electrode. An instability is observed, the frequency of which varies when there is an asymmetry between the plasma densities in the target and source chamber. In addition the frequency depends on the grid biasing voltage and the source anode biasing voltage. Moreover, the character of the instability differs completely in presence of the fireball. Experiments have been performed by producing fireballs at different gas pressures and different ratios of the target plasma to the source plasma densities. It has been observed that the instability produced by the grid biasing voltage is mainly local in nature, i.e., near the presheath region, while it is global in nature in presence of a fireball under our device configuration. (author)
Coherent space charge instability of a two-dimensional beam
International Nuclear Information System (INIS)
Results are presented of analytic calculations on the coherent space charge instabilities of a beam with initial Kapchinskij-Vladimirskij distribution and unequal emittances, rsp. average energy in the two transverse phase planes x-p/sub x/ and y-p/sub y/. We note that in computer simulation calculations evidence has been given for rapid emittance transfer to occur if the initial emittances epsilon/sub x/, epsilon/sub y/ are noticeably different. We have not attempted to make a quantitative comparison of our results with those from computer simulation. The main purpose of this study is to give some insight into the instability mechanism, the dimensionless parameters that characterize the situation and the growth rates one may expect to find
Understanding the beam self-cleaning behavior of ultrashort laser pulse filamentation
Institute of Scientific and Technical Information of China (English)
LIU WeiWei; See Leang Chin
2007-01-01
In this paper we report a recent study on the beam self-cleaning behavior occurred during the ultrashort laser pulse filamentation process. The propagation of a Gaussian beam with distorted beam profile is numerically simulated based on the nonlinear wave equation. Our results demonstrate that when the power is not too high so that multiple filaments are not yet induced, the intensity perturbation contained in the initial beam profile could be treated as high order spatial modes superpositioning on a fundamental mode. Then the self-focusing of the laser beam acts as a spatial filter. It focuses the fundamental mode toward the propagation axis, and produces a fundamental mode profile at the self-focus. While the strong diffraction of higher order modes could not be counteracted by the self-focusing. Therefore their propagation is mainly governed by the divergence without destroying the high profile quality at the self-focal region. These lead to the observation of beam profile self-cleaning behavior.
Understanding the beam self-cleaning behavior of ultrashort laser pulse filamentation
Institute of Scientific and Technical Information of China (English)
See; Leang; Chin
2007-01-01
In this paper we report a recent study on the beam self-cleaning behavior occurred during the ultrashort laser pulse filamentation process. The propagation of a Gaussian beam with distorted beam profile is numerically simulated based on the nonlinear wave equation. Our results demonstrate that when the power is not too high so that multiple filaments are not yet induced, the intensity perturbation con-tained in the initial beam profile could be treated as high order spatial modes su-perpositioning on a fundamental mode. Then the self-focusing of the laser beam acts as a spatial filter. It focuses the fundamental mode toward the propagation axis, and produces a fundamental mode profile at the self-focus. While the strong diffraction of higher order modes could not be counteracted by the self-focusing. Therefore their propagation is mainly governed by the divergence without de-stroying the high profile quality at the self-focal region. These lead to the observa-tion of beam profile self-cleaning behavior.
Dissipative instability of overlimiting electron beam in no uniform cross-section system
International Nuclear Information System (INIS)
Paper presents a type of streaming instabilities with new, previously unknown physics. It realizes under very high, overlimiting beam current in no uniform cross section systems with dissipation. In this case two factors that lead to excitation of the beam wave with negative energy superimpose and this superposition results in instability of new type - dissipative instability of overlimiting electron beam. Physics of this instability in no uniform cross section system sharply differs from that in uniform cross section system. The growth rate of presented instability has more critical dependence on dissipation. (author)
International Nuclear Information System (INIS)
During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists
Estimate of tilt instability of mesa-beam and Gaussian-beam modes for advanced LIGO
Savov, Pavlin; Vyatchanin, Sergey
2006-10-01
Sidles and Sigg have shown that advanced LIGO interferometers will encounter a serious tilt instability, in which symmetric tilts of the mirrors of an arm cavity cause the cavity’s light beam to slide sideways, so its radiation pressure exerts a torque that increases the tilt. Sidles and Sigg showed that the strength T of this torque is 26.2 times greater for advanced LIGO’s baseline cavities—nearly flat spherical mirrors which support Gaussian beams (FG cavities), than for nearly concentric spherical mirrors which support Gaussian beams (CG cavities) with the same diffraction losses as the baseline case: TFG/TCG=26.2. This has motivated a proposal to change the baseline design to nearly concentric, spherical mirrors. In order to reduce thermal noises in advanced LIGO, O’Shaughnessy and Thorne have proposed replacing the spherical mirrors and their Gaussian beams by “Mexican-Hat” (MH) shaped mirrors which support flat-topped, mesa shaped beams. In this paper, we compute the tilt-instability torque for advanced-LIGO cavities with nearly flat MH mirrors and mesa beams (FM cavities) and nearly concentric MH mirrors and mesa beams (CM cavities), with the same diffraction losses as in the baseline FG case. We find that the relative sizes of the restoring torques are TCM/TCG=0.91, TFM/TCG=96, TFM/TFG=3.67. Thus, the nearly concentric MH mirrors have a weaker tilt instability than any other configuration. Their thermoelastic noise is the same as for nearly flat MH mirrors, and is much lower than for spherical mirrors.
Energy Technology Data Exchange (ETDEWEB)
Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)
2014-06-30
The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.
Rapid microfabrication of transparent materials using a filamented beam of the IR femtosecond laser
Butkus, S.; Paipulas, D.; Viburys, Ž.; Alesenkov, A.; Gaižauskas, E.; KaškelytÄ--, D.; Barkauskas, M.; Sirutkaitis, V.
2014-03-01
Glass drilling and welding applications realized with the help of femtosecond lasers attract industrial attention , however, desired tasks may require systems employing high numerical aperture (NA) focusing conditions, low repetition rate lasers and complex fast motion translation stages. Due to the sensitivity of such systems, slight instabilities in parameter values can lead to crack formations, severe fabrication rate decrement and poor quality overall results. A microfabrication system lacking the stated disadvantages was constructed and demonstrated in this report. An f-theta lens was used in combination with a galvanometric scanner, in addition, a water pumping system that enables formation of water films of variable thickness in real time on the samples. Water acts as a medium for filament formation, which in turn decreases the focal spot diameter and increases fluence and axial focal length . This article demonstrates the application of a femtosecond (280fs) laser towards two different micromachining techniques: rapid cutting and welding of transparent materials. Filament formation in water gives rise to strong ablation at the surface of the sample, moreover, the water, surrounding the ablated area, adds increased cooling and protection from cracking. The constructed microfabrication system is capable of drilling holes in thick soda-lime and hardened glasses. The fabrication time varies depending on the diameter of the hole and spans from a few to several hundred seconds. Moreover, complex-shape fabrication was demonstrated. Filament formation at the interface of two glass samples was also used for welding applications. By varying repetition rate, scanning speed and focal position optimal conditions for strong glass welding via filamentation were determined.
Dissipative instability of negative energy wave of an intense E-beam
International Nuclear Information System (INIS)
Dissipative instabilities in a flowing system have been widely discussed in the literature, and is being sought to be applied to explain various phenomena in fusion plasma. The instabilities are accompanied by plasma heating and diffusion and can also greatly enhance plasma transport across magnetic-field lines. Physical nature of these instabilities actually is coupled with that of resistive wall modes. Physics of instabilities in flowing systems is elaborated and it may seem that one fail to encounter a variety of that with new physics. This investigation presents new type of dissipative streaming instability. Strong dissipation changes physical nature of streaming instabilities. Instability becomes of dissipative type, caused by excitation of the beam wave of negative energy. Another type of streaming instability caused by excitation of the negative energy beam wave also is known in theory. With increase in beam intensity space charge fields set an upper limit on beam current that can be transmitted through given vacuum electrodynamic system. In systems of uniform transversal geometry overlimiting e-beam instability is due to modulation of the beam density in media with negative permittivity. Influence of dissipation on this instability was considered. But in no-uniform-cross-section plasma-filled systems overlimiting e-beam instability is also due to growing of the negative energy beam wave. Superposition of the two processes that lead to excitation of the beam wave with negative energy leads to new type of dissipative streaming instability. Its growth rate has previously unknown, inverse proportional dependence on dissipation. The influence of dissipation on excitation of the beam wave with negative energy is elaborated in detail as well as the transformation of the instability to that of dissipative type. Growth rate of the instability is obtained for arbitrary level of dissipation. An approach is developed that enables to investigate the dynamics of the
Startsev, Edward; Lee, Wei-li
2005-01-01
In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.
Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering
International Nuclear Information System (INIS)
This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=1016 W/cm2) and plasma density (n/ncr) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)
Beam divergence due to convective drift instabilities in an applied-B ion diode
International Nuclear Information System (INIS)
A low-frequency instability is identified, which is convected through an applied-B ion diode by the ion beam, is driven by the cross-field flow of electrons relative to drifting ions, and produces a spread in beam velocity. The consequences of this convective instability are explored in detail, and many of the aspects needed for application to ion beam physics are calculated and combined into a single unified theory. Many aspects of this instability agree with the frequency range, growth properties, spatial structure, saturation level, and beam spread seen in experiments and computer simulations
Experimental research of electron beam instability on the Doppler anomalous effect
International Nuclear Information System (INIS)
Beam instability caused by the Doppler anomalous effect (DAE) at electron beam interaction with the decelerating electrodynamic system (a resonator with a single-thread spiral and a resonator with a space-periodic structure) placed in the external homogeneous field are studied experimentally to investigate main mechanisms of instability of charged particle beams. Such general properties of DAE as resonance conditions for instability excitation, increase of the internal energy of oscillators (Larmor and Langmuir) during radiation, energy ratios for slow cyclotron and plasma waves of an electron beam are studied. Good agreement between experimental and theoretical results is obtained
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Cui Hu; She Wei-Long
2009-01-01
The modulational instability of two incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity is investigated analytically and numerically. Our results show that as a precursor to spatial optical soliton formation, modulational instability can be adjusted and controlled by the wavelength combinations of the signal and background beams. We also discuss the dependences of strength of modulational instability on intensities of two signal beams and background beam. These findings make it possible to predict the formation of incoherently coupled soliton pairs in azobenzene-containing polymer.
International Nuclear Information System (INIS)
The modulational instability of two incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity is investigated analytically and numerically. Our results show that as a precursor to spatial optical soliton formation, modulational instability can be adjusted and controlled by the wavelength combinations of the signal and background beams. We also discuss the dependences of strength of modulational instability on intensities of two signal beams and background beam. These findings make it possible to predict the formation of incoherently coupled soliton pairs in azobenzene-containing polymer. (classical areas of phenomenology)
Kinetic study of the sausage mode of a resistive instability of a relativistic electron beam
International Nuclear Information System (INIS)
The nonlinear problem of the growth of the sausage mode of the resistive instability of a relativistic electron beam propagating without collisions through a tenuous plasma is solved. The plasma conductivity is assumed to be high, so that the wave phase velocity is low in comparison with the velocity of light. A kinetic approach is taken to the description of the beam. A numerical solution of the problem shows that this instability occurs in a cold, uniform beam. In the nonlinear stage of the instability the beam goes through states with a hollow structure. Suppression of the instability is found for a beam with a Bennett distribution function. The stabilization results from phase mixing of the beam particles
Modulational Instability of Ion-Acoustic Waves in a Warm Plasma with a Relativistic Electron Beam
Institute of Scientific and Technical Information of China (English)
XUE Ju-Kui; LANG He
2003-01-01
The modulational instability of ion-acoustic wave in a collisionless, unmagnetized plasma consisting ofwarm ions, hot isothermal electrons, and relativistic electron beam is studied. A modified nonlinear Schrodinger equationincluding one additional term that comes from the effect of relativistic electron beam is derived. It is found that theinclusion of a relativistic electron beam would modify the modulational instability of the wave packet and could notadmit any stationary soliton waves.
The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation
Energy Technology Data Exchange (ETDEWEB)
Rapson, Christopher, E-mail: chris.rapson@ipp.mpg.de [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching (Germany); Grulke, Olaf [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Matyash, Konstantin [Institut für Physik, Ernst-Moritz-Arndt Universität, Domstr. 10a, 17489 Greifswald (Germany); Klinger, Thomas [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany); Institut für Physik, Ernst-Moritz-Arndt Universität, Domstr. 10a, 17489 Greifswald (Germany)
2014-05-15
The ion acoustic beam-plasma instability is known to excite strong solitary waves near the Earth's bow shock. Using a double plasma experiment, tightly coupled with a 1-dimensional particle-in-cell simulation, the results presented here show that this instability is critically sensitive to the experimental conditions. Boundary effects, which do not have any counterpart in space or in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these instabilities lead to an increase of the beam temperature which reduces the growth rate such that non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the increased temperature modifies the range of beam velocities for which an ion acoustic beam plasma instability is observed.
Defocusing of an ion beam propagating in background plasma due to two-stream instability
Energy Technology Data Exchange (ETDEWEB)
Tokluoglu, Erinc; Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2015-04-15
The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.
Defocusing of an ion beam propagating in background plasma due to two-stream instability
Tokluoglu, Erinc; Kaganovich, Igor D.
2015-04-01
The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.
Recent studies of the electron cloud induced beam instability at the Los Alamos PSR
International Nuclear Information System (INIS)
Recent beam studies have demonstrated that a stable beam with the standard production bunch width of 290 ns and near the e-p instability threshold will become unstable when the bunch width is shortened significantly. This was not the case years earlier when the ring rf operated at the 72.000 integer subharmonic of the Linac bunch frequency. The present operating frequency is set at the 72.070 non-integer subharmonic and appears to be responsible for the recently observed 'short pulse instability phenomenon'. Experimental characteristics of the short pulse instability are presented along with comparisons to the instability under 72.000 subharmonic operating conditions.
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Longin, Pierre-Yves; Bach, Anders; Hassager, Ole
2001-01-01
We consider here a particular instability, an axis symmetry breaking meniscus instability, that occurs under certain conditions in the transient filament stretching apparatus near the endplates as the plates are separated. Spiegelberg and McKinley [1] investigated this instability development in...
International Nuclear Information System (INIS)
This paper studies the effect of nonlinear left-hand polarized waves supported by a proton beam on the linear circularly polarized instabilities driven by the same beam. It shows that the nonlinear wave can either stabilize or destabilize the linear instabilities. The effects depend on the amplitude of the nonlinear wave and on the temperature of the system. It also shows that purely electrostatic ion-acoustic-like waves, can be destabilized by the large amplitude wave. The latter instabilities do not occur in the absence of the nonlinear waves
Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament
Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.
1988-01-01
Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.
Wareing, C J; Falle, S A E G; Van Loo, S
2016-01-01
We have used the AMR hydrodynamic code, MG, to perform 3D MHD simulations of the formation of clumpy and filamentary structure in a thermally unstable medium. A stationary thermally unstable spherical diffuse cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from beta=0.1 to beta=1.0 to the zero magnetic field case (beta=infinity), where beta is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (beta=0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic a...
Modulation instability of broad optical beams in nonlinear media with general nonlinearity
Institute of Scientific and Technical Information of China (English)
Hongcheng Wang; Weilong She
2006-01-01
@@ The modulation instability of quasi-plane-wave optical beams is investigated in the frame of generalized Schr(o)dinger equation with the nonlinear term of a general form. General expressions are derived for the dispersion relation, the critical transverse spatial frequency, as well as the instability growth rate.The analysis generalizes the known results reported previously. A detailed discussion on the modulation instability in biased centrosymmetric photorefractive media is also given.
Van Hoven, G.; Mok, Y.
1984-01-01
The condensation-mode growth rate of the thermal instability in an empirically motivated sheared field is shown to depend upon the existence of perpendicular thermal conduction. This typically very small effect (perpendicular conductivity/parallel conductivity less than about 10 to the -10th for the solar corona) increases the spatial-derivative order of the compressible temperature-perturbation equation, and thereby eliminates the singularities which appear when perpendicular conductivity = 0. The resulting growth rate is less than 1.5 times the controlling constant-density radiation rate, and has a clear maximum at a cross-field length of order 100 times and a width of about 0.1 the magnetic shear scale for solar conditions. The profiles of the observable temperature and density perturbations are independent of the thermal conductivity, and thus agree with those found previously. An analytic solution to the short-wavelength incompressible case is also given.
Dissipative instability of an intense e-beam in finite external magnetic field
International Nuclear Information System (INIS)
Full text: Microinstabilities, along with large-scale perturbations, play an important role in devices for controlled fusion. Last few decades substantial efforts have been made to understand microinstabilities in fusion plasma. They are accompanied by plasma heating and diffusion and can also greatly enhance plasma transport across magnetic-field lines. Plasma anomalous resistance is also being thought to be connected with microinstabilities. Most frequently encountered microinstabilities are that in current carrying plasma and in electron beams. The physical nature of intense e-beam instability in plasma significantly depends on many factors. Most important of them are: (i) beam current value (e.g. underlimiting) or overlimiting), (ii) level of overlap of the beam and the plasma fields, and (iii) dissipation. Dissipation plays an important role, particularly in dense fusion plasma. Dissipation of high level transforms instability to that of dissipative type. This takes place due to negative energy wave (NEW) of the beam space charge. Dissipation serves as a channel for energy withdrawal for excitation of this wave. Dissipative instabilities are coupled with resistive wall modes. On the other hand excitation NEW means coupling of dissipative and space charge phenomena. The influence of dissipation on various beam instabilities was considered. New type dissipative beam instability is substantiated. Its growth rate has more critical (as compared to conventional) dependence on dissipation. Consideration of the instability in infinite external magnetic field essentially simplifies the analysis. But in many cases such consideration is undesirable and even inappropriate. This investigation substantiates the new type of dissipative streaming instability for finite external magnetic field. The investigation also states that the evolution of the instability in space and time is governed by partial differential equation of second order independently on geometry and specific
Auroral ion beams and ion acoustic wave generation by fan instability
International Nuclear Information System (INIS)
Satellite observations indicate that efficient energy transport among various plasma particles and between plasma waves and plasma particles is taking place in auroral ion beam regions. These observations show that two characteristic wave types are associated with the auroral ion beam regions: electrostatic hydrogen cyclotron waves with frequencies above hydrogen gyrofrequency, and low frequency waves with frequencies below hydrogen gyrofrequency. We speculate that the low frequency waves can be ion acoustic waves generated through the fan instability. The presence of a cold background ion component is necessary for the onset of this instability. A cold ion component has been directly observed and has been indirectly suggested from observations of solitary wave structures. The wave-particle interaction during the development of the fan instability results in an efficient ion beam heating in the direction perpendicular to the ambient magnetic field. The fan instability development and the ion beam heating is demonstrated in a numerical particle simulation. 23 refs, 16 figs
The Effect of Nonlinear Landau Damping on Ultrarelativistic Beam Plasma Instabilities
Chang, Philip; Lamberts, Astrid
2014-01-01
Very-high energy gamma-rays from extragalactic sources pair-produce off of the extragalactic background light, yielding an electron-positron pair beam. This pair beam is unstable to various plasma instabilities, especially the "oblique" instability, which can be the dominant cooling mechanism for the beam. However, recently, it has been claimed that nonlinear Landau damping renders it physically irrelevant by reducing the effective damping rate to a low level. Here, we show with numerical calculations that the effective damping rate is $8\\times 10^{-4}$ of the growth rate of the linear instability, which is sufficient for the "oblique" instability to be the dominant cooling mechanism of these pair beams. In particular, we show that previous estimates of this rate ignored the exponential cutoff in the scattering amplitude at large wavenumber and assumed that the damping of scattered waves entirely depends on collisions, ignoring collisionless processes. We find that the total wave energy eventually grows to ap...
Particle-in-cell (PIC) simulations of beam instabilities in gyrotrons
International Nuclear Information System (INIS)
Extensive simulations are performed to investigate effects of electron cyclotron instabilities on the gyrotron beam quality, using two-dimensional axisymmetric particle-in-cell (PIC) codes. Both electrostatic and electromagnetic models, as well as realistic geometries of the gyrotron are considered. It is found that a large beam density can lead to an electrostatic-instability-induced energy spread which substantially degrades the gyrotron efficiency. (author) 11 figs., 14 refs
Beam-plasma instability in charged plasma in the absence of ions
Dubinov, Alexander E.; Petrik, Alexey G.; Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.
2016-04-01
We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.
Energy Technology Data Exchange (ETDEWEB)
Zhan Kaiyun, E-mail: zhankaiyun@yahoo.com.c [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)] [College of Physics Science and Technology, China University of Petroleum, Dongying 257061 (China); Hou Chunfeng [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China)
2009-12-28
We study the one-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals under steady-state conditions. The one-dimensional modulational instability growth rates are obtained by globally and locally treating the space-charge field, which depend on the external bias field and the ratio of the intensity of optical beam to that of the dark irradiance. Our analysis indicates that the modulational instability growth rate in local effects can be determined from that in nonlocal effects.
International Nuclear Information System (INIS)
We study the one-dimensional modulational instability of broad optical beams in biased centrosymmetric photorefractive crystals under steady-state conditions. The one-dimensional modulational instability growth rates are obtained by globally and locally treating the space-charge field, which depend on the external bias field and the ratio of the intensity of optical beam to that of the dark irradiance. Our analysis indicates that the modulational instability growth rate in local effects can be determined from that in nonlocal effects.
Institute of Scientific and Technical Information of China (English)
Lu Ke-Qing; Zhao Wei; Yang Yan-Long; Zhu Xiang-Ping; Li Jin-Ping; Zhang Yan-Peng
2004-01-01
We investigate the modulation instability of quasi-plane-wave optical beams in biased photorefractive-photovoltaic crystals by globally treating the space-charge field. The modulation instability growth rate is obtained, which depends on the external bias field, on the bulk photovoltaic effect, and on the ratio of the optical beam's intensity to that of the dark irradiance. Our analysis indicates that this modulation instability growth rate is identical to the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals when the bulk photovoltaic effect is negligible for shorted circuits, and predicts the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals when the external bias field is absent.
Stability Limits of the Ion Beam Excited Electrostatic Ion Cyclotron Instability
DEFF Research Database (Denmark)
Michelsen, Poul
1976-01-01
The dispersion relation for low‐frequency electrostatic waves was analyzed numerically to find the region of instability for an ion beam plasma versus beam velocity vb, and versus electron to ion temperature ratio. For Vb≳1.6 a the marginal unstable mode has a perpendicular wavenumber k⊥≠0....
Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Nikolov, Nikola Ivanov; Neshev, D.; Wyller, J.; Rasmussen, J.J.; Edmundson, D.
2004-01-01
We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction...
The instability of an electron beam with a finite radius in a boundless plasma
Directory of Open Access Journals (Sweden)
G. V. Lizunov
Full Text Available Within the framework of a linear theory, the instability of an electron beam with a finite radius in a cold magnetised boundless plasma is considered. It is shown that a finite beam dimension influences the generation of quasi-potential waves in two aspects: the perpendicular wave number is quantised so that the frequencies of the waves are subjected to strong selection; a new kind of instability appears due to wave energy losses by emission into surrounding space. Growth rate dependence of wave numbers and frequencies is investigated for typical parameters of experiments with electron beams in space.
Behrens, Christopher; Xiang, Dao
2011-01-01
The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future X-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., "heating" the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) in front and behind a magnetic bunch compressor chicane. The additional energy spread will be introduced in the first TDS, which suppresses the microbunching instability, and then will be eliminated in the second T...
Transverse Instabilities of Coasting Beams with Space Charge
Burov, Alexey
2008-01-01
Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space charge tune shift. This condition specifies a relatively small area of parameters which, however, is the most interesting for practical applications. The Landau damping rate and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of chromatic and octupole tune spreads.
Nonlocal analysis of finite-beam-driven instabilities
Serizawa, Y.; Dum, C. T.
1992-01-01
The fully kinetic integral eigenmode equation in wave-number space is used to describe the nonlocal behavior of electrostatic waves in an electron-beam plasma, which are studied in the low-temperature-beam regime and the warm-beam regime. The case of strongly magnetized electrons and unmagnetized ions, which corresponds to the waves in a frequency range from the lower-hybrid to the electron plasma frequency, is examined. Three wave modes are found. The first group consists of modes that have dispersive properties similar to the uniform, infinite beam-plasma system. Depending on the beam width, the growth rates are strongly reduced. The second group, surface modes, are localized at the periphery of the beam region and are less unstable than the unstable modes of the first group. The third group represents natural oscillations of the background plasma. These modes are virtually unaffected by the beam.
Gary, S. P.; Tokar, R. L.
1985-01-01
The present investigation is concerned with the application of a second-order theory for electromagnetic instabilities in a collisionless plasma to two modes which resonate with hot ion beams. The application of the theory is strictly limited to the linear growth phase. However, the application of the theory may be extended to obtain a description of the beam at postsaturation if the wave-beam resonance is sufficiently broad in velocity space. Under the considered limitations, it is shown that, as in the cold beam case, the fluctuating fields do not gain appreciable momentum and that the primary exchange of momentum is between the beam and main component.
DEFF Research Database (Denmark)
Bergé, L.; Gouédard, C.; Schjødt-Eriksen, Jens;
2003-01-01
-Gaussian (SG) shapes relaxes the self-focusing (SF) attractor and triggers the formation of independent filaments. Analytical criteria for the mutual coalescence of filaments in the context of collapsing and saturating nonlinearities are proposed. Second, the influence of the polarization state on the...... separation distance for coalescence becomes larger, which slows down the production of uncorrelated filaments. Implications of these results in atmospheric propagation are finally discussed. (C) 2002 Elsevier Science B.V. All fights reserved....
Kinetic and collisional effects on the linear evolution of fast ignition relevant beam instabilities
International Nuclear Information System (INIS)
The fast ignition scheme will involve the generation and transport of a relativistic electron beam, which may be subject to a number of instabilities that act to inhibit energy transport. This study will address the effects of collisions and the initial electron beam distribution on the linear evolution of these instabilities for theoretical distributions including the relativistic waterbag, the relativistic Maxwellian (Juettner), and the saddle point (low temperature) approximation of the relativistic Maxwellian. It will then be shown that a more physical distribution obtained from a 2D explicit particle-in-cell simulation of the laser-plasma interaction can be best modeled with a Juettner distribution, but well-approximated with a relativistic waterbag distribution. In sum, for all distributions of interest, collisions were found to have the ability to both suppress and enhance growth for the filamentary instability, while they only suppress growth for the two-stream instability
Development of beam-plasma instability in systems for short-pulse microwave generation
International Nuclear Information System (INIS)
The development of conventional beam-plasma instability in a system penetrated by short electron bunches is considered. The fields induced by the bunches' edges increase exponentially and actually serve as initial perturbations for instability development. It is shown that superposition of the field induced by front and back edges results in a complicated configuration that can affect various aspects of operation of devices for short-pulse microwave generation, e.g. transient processes
Arc and filament heater current control system for 5 MW ion source of neutral beam injector for SST1
International Nuclear Information System (INIS)
This paper presents control system used in managing power system deployed on 1.7 MW neutral beam injector at 80 kV. Power system consists of 24 arc discharge current power supplies (120 V, 80 A, DC), 8 filament heater power supplies (200V, 10 A, 400 Hz, AC) and one highly regulated high voltage power supply (80 kV, 60ADC)
Institute of Scientific and Technical Information of China (English)
LIU Shi-Bing; CHEN Tao; CHEN Shi-Gang
2004-01-01
An essential dispersion relation,which can describe the dynamic properties of stimulated Raman scattering instability as a laser beam propagates through plasmas,is derived analytically.The development of growth mode,angle distribution,and temperature dependence of the instabilities are presented by solving this dispersion relation numerically.A significant dynamic characteristic has been revealed that the temperature increasing of the electron would result in redshift of scattered spectrum at high laser intensities.Furthermore,a novel modulational instability with double-peak temporal structure appears in a limited density region because of the coupling of scattered upshift and downshift waves.
Sausage instability in a proton-beam transport through wall-confined plasma channel
International Nuclear Information System (INIS)
An instability observed previously in a 800-keV of proton-beam transport through a wall-confined, z-discharged plasma channel (1-m long) has been identified as a sausage type from measurements made using an image converter campera. Clear evidence of the sausage instability has been obtained from the streak and framing photographs. When the instability grows with time, the wavelength tends to increase. The pinch velocity of the channel has also been measured in a parameter space, which gives reasonable agreement with the existing theory. (author)
High and low frequency instabilities driven by counter-streaming electron beams in space plasmas
International Nuclear Information System (INIS)
A four-component plasma composed of a drifting (parallel to ambient magnetic field) population of warm electrons, drifting (anti-parallel to ambient magnetic field) cool electrons, stationary hot electrons, and thermal ions is studied in an attempt to further our understanding of the excitation mechanisms of broadband electrostatic noise (BEN) in the Earth's magnetospheric regions such as the magnetosheath, plasmasphere, and plasma sheet boundary layer (PSBL). Using kinetic theory, beam-driven electrostatic instabilities such as the ion-acoustic, electron-acoustic instabilities are found to be supported in our multi-component model. The dependence of the instability growth rates and real frequencies on various plasma parameters such as beam speed, number density, temperature, and temperature anisotropy of the counter-streaming (relative to ambient magnetic field) cool electron beam are investigated. It is found that the number density of the anti-field aligned cool electron beam and drift speed play a central role in determining which instability is excited. Using plasma parameters which are closely correlated with the measurements made by the Cluster satellites in the PSBL region, we find that the electron-acoustic and ion-acoustic instabilities could account for the generation of BEN in this region
Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities
Stefan, V. Alexander
2011-04-01
The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.
Nie, Lin; Cheng, Jun; Xu, Hongbing; Huang, Yuan; Yan, Longwen; Ding, Xuantong; Xu, Min; Xu, Yuhong; Yao, Lianghua; Feng, Beibin; Zhu, Genliang; Liu, Wandong; Dong, Jiaqi; Yu, Deliang; Zhong, Wulv; Gao, Jinming; Chen, Chengyuan; Yang, Qingwei; Duan, Xuru
2016-02-01
On HL-2A, two different injections (supersonic molecular beam injection (SMBI) and pellet injection (PI)) are used to mitigate edge localized mode (ELM)-filament convective transport. The changes of their characteristics are studied in this paper. A high spatiotemporal resolution probe shows there are many similar phenomena, and the filament density amplitude and radial velocity are both suppressed. Our statistical results indicate that: the velocity suppression comes from the decrease of filament density and temperature; the transient particle and heat fluxes drop strongly; and long-range correlation along a magnetic flux surface also decreases, when the electron-ion collisionality increases significantly, which may have a role on the filament parallel current during ELM mitigation. supported by National Natural Science Foundation of China (Nos. 11075046, 10975049, 11375054, 11275060), the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB112008, 2013GB107000, 2013GB104002, 2014GB107000, 2014GB108000), and the China-Korean Joint Research Program (No. 2012DFG02230)
Recent studies of the electron cloud induced beam instability at the Los Alamos PSR
International Nuclear Information System (INIS)
Recent beam studies have focused on two aspects of the observed e-p instability at the Los Alamos Proton Storage Ring (PSR). Most recently it has been observed that a stable beam with the standard production bunch width (290 ns injected beam bunch width) will become e-p unstable when the bunch width is shortened to 200 ns or less. This was not the case years earlier when the ring RF operated at the exact 72.000 sub harmonic of the Linac bunch frequency. Experimental characteristics and possible explanations of this recent ''short pulse instability phenomenon'' will be presented. Other beam studies have focused on electron cloud generation, trapping and ejection from quadrupoles and are the focus of another talk. (auth)
Effect of the laser incoherence on some parametric instabilities
International Nuclear Information System (INIS)
This study is devoted to the laser finite band with effects on the stimulated Raman and Brillouin backscattering, and to the laser spatial incoherence upon the growth of the filamentation instability. The possible reduction of the latter instabilities initiated by a loss of beam coherence is more particularly investigated in the context of the intending Mega joule laser facility. (authors). 15 refs
Beam-plasma instabilities and their impact on D-D reactivity
Necas, Ales; Magee, R.; Tajima, T.; Nicks, B.; Seggebruch, M.; Garate, E.; Allfrey, I.; Valentine, T.; entire TAE Team
2015-11-01
The goal of the C-2U program is to achieve 5 +ms steady state FRC sustainment via beam injection. In support, we simulate possible beam driven instabilities that are non-destructive, but transfer energy from fast ions to the plasma, causing phase space bunching. Such a mechanism may explain an experimentally observed anomalous neutron signal (10-100 × greater than the predicted thermonuclear component and peaking between 1-2 ms, correlated with a 1 ms beam slowing down time), as other explanations have been eliminated (D in the beams, fast-thermal ion head-on collisions, and miscalculation of Ti). We propose that the hydrogen beam generates an energetic ion population that then drives collective modes in the plasma, giving rise to an instability and increased fusion rate. A two-body correlation function is employed to determine DD reactivity enhancements. The instability changes character from electrostatic (ES; phase velocity is 70% of the beam velocity) in the low beta edge to fully electromagnetic (EM; at magnetosonic speeds) in the core, with an associated reduction in growth rates. A 1D ES analytical dispersion relation will be compared with a 1D3V PIC code (full EM study only performed with PIC code). Results from simulations are consistent with the observed neutron yield.
International Nuclear Information System (INIS)
The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.
Energy Technology Data Exchange (ETDEWEB)
Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC
2012-05-30
The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.
Modulation instability of structured-light beams in negative-index metamaterials
Silahli, Salih Z; Litchinitser, Natalia M
2016-01-01
One of the most fundamental properties of isotropic negative-index metamaterials, namely opposite directionality of the Poynting vector and the wavevector, enable many novel linear and nonlinear regimes of light-matter interactions. Here, we predict distinct characteristics of azimuthal modulation instability of optical vortices with different topological charges in negative-index metamaterials with Kerr-type and saturable nonlinearity. We derive an analytical expression for the spatial modulation-instability gain for the Kerr-nonlinearity case and show that a specific condition relating the diffraction and the nonlinear lengths must be fulfilled for the azimuthal modulation instability to occur. Finally, we investigate the rotation of the necklace beams due to the transfer of orbital angular momentum of the generating vortex onto the movement of solitary necklace beams. We show that the direction of rotation is opposite in the positive- and negative-index materials.
International Nuclear Information System (INIS)
Properties of the multi-species electromagnetic Weibel and electrostatic two-stream instabilities are investigated for an intense ion beam propagating through background plasma. Assuming that the background plasma electrons provide complete charge and current neutralization, detailed linear stability properties are calculated within the framework of a macroscopic cold-fluid model for a wide range of system parameters
Energy Technology Data Exchange (ETDEWEB)
Berger, R.L.; Kaiser, T.B.; Lasinski, B.F. [and others
1996-06-01
Using the three-dimensional code (F3D), the authors compute the filamentation and backscattering of laser light. The results show that filamentation can be controlled and stimulated Brillouin backscattering (SBBS) can be reduced by using random phase plates (RPP) and small f-numbers or smoothing by spectral dispersion (SSD) with large bandwidth. An interesting result is that, for uniform plasmas, the SBBS amplification takes place over several laser axial coherence lengths (coherence length = speckle length).
Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications
Oeftiger, Adrian
2011-01-01
Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...
Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation
Energy Technology Data Exchange (ETDEWEB)
Mohanty, S.C., E-mail: scmohanty@nitrkl.ac.in [National Institute of Technology, Rourkela, Department of Mechanical Engineering, National Institute of Technology, Rourkela, Orissa 769008 (India); Dash, R.R., E-mail: rati_igit@yahoo.co.in [Indira Gandhi Institute of Technology, Sarang, Department of Mechanical Engineering, Indira Gandhi Institute of Technology, Sarang, Dist. Dhenkanal, Orissa 759146 (India); Rout, T., E-mail: troutwala@gmail.com [Indira Gandhi Institute of Technology, Sarang, Department of Mechanical Engineering, Indira Gandhi Institute of Technology, Sarang, Dist. Dhenkanal, Orissa 759146 (India)
2011-08-15
Highlights: > Winkler's elastic foundation enhances the stability of both FGO and FGSW beams with material properties distribution along the thickness as per power law and exponential law. > FGO beam with steel-rich bottom is more stable than a beam with aluminium-rich bottom for both the types of property distribution. > FGSW beam with the properties in FGM core varying as per power law becomes less stable with increase in core thickness. > Exponential variation of core properties enhances its stability with the increase in core thickness. - Abstract: This article presents an investigation of the dynamic stability of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam on Winkler's elastic foundation using finite element method. The material properties are assumed to follow both exponential and power law. It is found that the foundation enhances stability of the FGO beam for first three modes. The effect of distributions of material properties of the FGO beam on its parametric instability is investigated. It is found that the FGO beam with steel-rich bottom is more stable as compared to that with Al-rich bottom for all the three modes and for both the types of property distributions. The effect of property distribution on stability of FGSW beam with steel as bottom skin and alumina as top skin is also investigated. It is observed that the beam having properties in core according to exponential law is the most stable beam while the beam having properties in core as per power law with index 2.5 is the least stable beam. For an FGSW beam it is found that the increase in the thickness of FGM core makes the beam less stable when the properties in FGM vary as per power law whereas the stability of beam enhances with the increase of thickness of FGM core when the properties vary according to exponential law.
Parametric instability of a functionally graded Timoshenko beam on Winkler's elastic foundation
International Nuclear Information System (INIS)
Highlights: → Winkler's elastic foundation enhances the stability of both FGO and FGSW beams with material properties distribution along the thickness as per power law and exponential law. → FGO beam with steel-rich bottom is more stable than a beam with aluminium-rich bottom for both the types of property distribution. → FGSW beam with the properties in FGM core varying as per power law becomes less stable with increase in core thickness. → Exponential variation of core properties enhances its stability with the increase in core thickness. - Abstract: This article presents an investigation of the dynamic stability of functionally graded ordinary (FGO) beam and functionally graded sandwich (FGSW) beam on Winkler's elastic foundation using finite element method. The material properties are assumed to follow both exponential and power law. It is found that the foundation enhances stability of the FGO beam for first three modes. The effect of distributions of material properties of the FGO beam on its parametric instability is investigated. It is found that the FGO beam with steel-rich bottom is more stable as compared to that with Al-rich bottom for all the three modes and for both the types of property distributions. The effect of property distribution on stability of FGSW beam with steel as bottom skin and alumina as top skin is also investigated. It is observed that the beam having properties in core according to exponential law is the most stable beam while the beam having properties in core as per power law with index 2.5 is the least stable beam. For an FGSW beam it is found that the increase in the thickness of FGM core makes the beam less stable when the properties in FGM vary as per power law whereas the stability of beam enhances with the increase of thickness of FGM core when the properties vary according to exponential law.
Conical emission from laser filaments and higher-order Kerr effect in air.
Béjot, P; Kasparian, J
2011-12-15
We numerically investigate the conical emission (CE) from ultrashort laser filaments, both considering and disregarding the higher-order Kerr effect (HOKE). While the consideration of HOKE has almost no influence on the predicted CE from collimated beams, differences arise for tightly focused beams. This difference is attributed to the different relative contributions of the nonlinear focus and of the modulational instability over the whole filament length. PMID:22179892
Elastic instability in ion-beam-irradiated magnesium aluminate spinel
Energy Technology Data Exchange (ETDEWEB)
Devanathan, R.; Yu, N.; Sickafus, K.E.; Nastasi, M. [Los Alamos Laboratory (United States). Materials Science and Technology Division; Grimsditch, M.; Okamoto, P.R. [Argonne National Laboratory (United States).Materials Science Division
1997-12-01
We present the first observation of an irradiation-induced instability in the shear modulus of MgAl{sub 2}O{sub 4} spinel. Brillouin scattering was used to determine the elastic constant C{sub 44} following 400 keV Xe{sup 2+} irradiation of single-crystal spinel at 100 K. The corresponding structural changes were determined using electron microscopy. The results confirm a two-step transformation to the amorphous state through an intermediate metastable crystalline phase. The shear elastic constant decreases by about 35% upon amorphization. This low-temperature radiation response, which is in contrast with the radiation resistance observed at elevated temperatures, is discussed in terms of the ability of spinel to accommodate cation disorder and the free-energy difference between the liquid and solid states. (author).
Elastic instability in ion-beam-irradiated magnesium aluminate spinel
International Nuclear Information System (INIS)
We present the first observation of an irradiation-induced instability in the shear modulus of MgAl2O4 spinel. Brillouin scattering was used to determine the elastic constant C44 following 400 keV Xe2+ irradiation of single-crystal spinel at 100 K. The corresponding structural changes were determined using electron microscopy. The results confirm a two-step transformation to the amorphous state through an intermediate metastable crystalline phase. The shear elastic constant decreases by about 35% upon amorphization. This low-temperature radiation response, which is in contrast with the radiation resistance observed at elevated temperatures, is discussed in terms of the ability of spinel to accommodate cation disorder and the free-energy difference between the liquid and solid states. (author)
Analysis of electron current instability in E-beam writer
Czech Academy of Sciences Publication Activity Database
Bok, Jan; Horáček, Miroslav; Král, Stanislav; Kolařík, Vladimír; Matějka, František
Ostrava : TANGER Ltd, 2012, s. 295-299. ISBN 978-80-87294-32-1. [NANOCON 2012. International Conference /4./. Brno (CZ), 23.10.2012-25.10.2012] R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020118; GA MPO FR-TI1/576 Institutional support: RVO:68081731 Keywords : electron beam * current measurement * current drift and noise * fourier analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Hierarchy of instabilities for two counter-streaming magnetized pair beams
Bret, Antoine
2016-01-01
The instabilities triggered when two counter-streaming pair beams collide are analyzed. A guiding magnetic field is accounting for, while both beams are considered identical and cold. The instability analysis is conducted over the full \\textbf{k}-spectrum, allowing to derive the hierarchy map of the dominant unstable modes, in terms of the initial beams energy $\\gamma_0$ and a magnetic field strength parameter $\\Omega_B$. Four different regions of the $(\\Omega_B,\\gamma_0)$ phase space are identified, each one governed by a different kind of mode. The analysis also unravels the existence of a "triple point", where 3 different modes grow exactly the same rate. A number of analytical expressions can be derived, either for the modes growth-rates, or for the frontiers between the 4 regions.
Parametric instabilities produced by a relativistic electron beam in a plasma
International Nuclear Information System (INIS)
The parametric instability driven by the primary spectrum of the hydrodynamic two-stream instability produced by a relativistic electron beam in a plasma is investigated. The saturated level of the primary wave electric field is determined by electron trapping in the potential well of the wave or by the quasilinear beam relaxation process. After saturation, the primary wave collapses by way of the oscillating two-stream instability. The cases of the strong and weak primary electric field in comparison with the thermal energy of a plasma are considered. For a strong field the growth rates of the parametric instability and plasma heating due to the latter are found. Ion heating is not significant in comparison with electron heating (approximately as the cube root of the mass ratio). In a weak field the parametric oscillating two-stream spectrum of saturation is found. In the one-dimensional case this spectrum of electric field energy fluctuations varies as k-2 if the fluctuation field exceeds the threshold pump electric field for the oscillating two-stream instability. For the weak field plasma heating rate is found. Since the energy transfer is via Landau damping, the particle heating is characterized by the formation of high-energy tails on the distribution function. (Auth.)
International Nuclear Information System (INIS)
This report addresses the propagation of an intense laser beam in a unmagnetized plasma, which is relevant for both the inertial confinement fusion (ICF) and the ultra-high intensity (UHI) pulses. The width and the irradiance of the laser pulses are respectively: (0.1-10) nanosecond and (1013-1016) W/cm2 for the ICF context and (0.1-1) picosecond and in excess of 1018 W/cm2 for the UHI context. The nonlinear mechanisms for beam self-focusing and filamentation, induced by both the ponderomotive expelling of charged particles and the relativistic increase of the electron mass, are specified studied. Part I deals with the theoretical aspects and part II is concerned with the results of two-dimensional simulations. The results have been obtained within the framework of the paraxial approximation and the stationary response of the plasma. The large set of scenarios that characterize the behavior of Gaussian beam and a modulated beam is presented; a synthetic overview of the previous theoretical works is also provided. The interplay of two crossing beams is discussed. This report will be a help to improve the uniformity of the laser irradiation in the ICF context and to channel a very intense laser beam over large distance in the UHI context. (authors). 53 refs., 11 figs., 3 tabs
Microstructure of erosion spots on the surface interacting with filamented beam plasma
Rantsev-Kartinov, Valentin A
2009-01-01
The fine structure of micron-sized erosion spots within coaxial rings of 10-100 micron diameter, observed in the Mather type plasma focus, is analyzed. The topological similarity of this structuring to that of electric current filaments, observed in the Filippov type plasma foci and straight Z-pinches, is shown. The possibility of interpreting this structuring in terms of the formerly suggested hypothesis for long-lived electric current filament formation, due to electrodynamic aggregation of nanodust in electric discharges, is discussed.
Blistering of viscoelastic filaments
Sattler, R; Wagner, C
2007-01-01
When a dilute polymer solution experiences capillary thinning, it forms an almost uniformly cylindrical thread, which we study experimentally. In the last stages of thinning, when polymers have become fully stretched, the filament becomes prone to instabilities, of which we describe two: A novel "breathing" instability, originating from the edge of the filament, and a sinusoidal instability in the interior, which ultimately gives rise to a "blistering" pattern of beads on the filament. We describe the linear instability with a spatial resolution of 80 nm in the disturbance amplitude. For sufficiently high polymer concentrations, the filament eventually separates out into a "solid" phase of entangled polymers, connected by fluid beads. A solid polymer fiber of about 100 nanometer thickness remains, which is essentially permanent.
Single-beam measurements of LHC instability threshold in terms of octupole current
Mounet, N; Buffat, X; Burov, A; Hemelsoet, G; Metral, E; Papotti, G; Pieloni, T; Pojer, M; Salvant, B; Trad, G
2012-01-01
This note summarizes two machine development (MD) studies aimed at determining the octupole current needed in the LHC in order to stabilize all headtail instabilities at 4TeV/c, before and after the squeeze, with tight collimator settings, and when a single beam (beam 2) at maximum intensity (1380 bunches, 2.1 1014 protons) is present in the machine. The MDs followed the normal physics operation procedure, at the notable exception that a single beam was used, the other beam containing only one non-colliding nominal bunch. Octupole current (with negative polarity in the focusing octupoles and the opposite in the defocusing ones) was decreased by small steps until the instability threshold was reached. This was performed in two distinct MDs, one before the squeeze and the other after it, testing also several chromaticity values and the effect of the transverse damper in the latter case. Octupole thresholds are shown in each case studied, as well as the rise times of the instabilities observed.
Indirect self-modulation instability measurement concept for the AWAKE proton beam
Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.
2016-09-01
AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.
Modulation instability of an intense laser beam in an unmagnetized electron–positron–ion plasma
Indian Academy of Sciences (India)
San Qiu Liu; Wei Tang; Xiao Qing Li
2012-03-01
The modulation instability of an intense circularly polarized laser beam propagating in an unmagnetized, cold electron–positron–ion plasma is investigated. Adopting a generalized Karpman method, a three-dimensional nonlinear equation is shown to govern the laser ﬁeld. Then the conditions for modulation instability and the temporal growth rate are obtained analytically. In order to compare with the usual electron–ion plasmas, the effect of positron concentration is considered. It is found that the increase in positron-to-electron density ratio shifts the instability region towards higher vertical wave numbers but does not cause displacement along the parallel wave number direction, and the growth rate increases as the positron-to-electron density ratio increases.
Keyhole depth instability in case of CW CO2 laser beam welding of mild steel
Indian Academy of Sciences (India)
N Kumar; S Dash; A K Tyagi; Baldev Raj
2010-10-01
The study of keyhole (KH) instability in deep penetration laser beam welding (LBW) is essential to understand welding process and appearance of weld seam defects. The main cause of keyhole collapse is the instability in KH dynamics during the LBW process. This is mainly due to the surface tension forces associated with the KH collapse and the stabilizing action of vapour pressure. A deep penetration high power CW CO2 laser was used to generate KH in mild steel (MS) in two different welding conditions i.e. ambient atmospheric welding (AAW) and under water welding (UWW). KH, formed in case of under water welding, was deeper and narrower than keyhole formed in ambient and atmospheric condition. The number and dimensions of irregular humps increased in case of ambient and under water condition due to larger and rapid keyhole collapse also studied. The thermocapillary convection is considered to explain KH instability, which in turn gives rise to irregular humps.
The development and interaction of instabilities in intense relativistic electron beams
Kurkin, S. A.; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E.
2015-12-01
We report on the physical mechanisms of development, coexistence and interaction of Pierce-Bursian and diocotron instabilities in the non-neutral relativistic electron beam (REB) in the classic vircator. The analytical and numerical analysis is provided by means of 3D electromagnetic simulation. We conducted an extensive study of characteristic regimes of REB dynamics determined by the instabilities development. As a result, a regime map has been obtained. It demonstrates sequential switching of the REB dynamics from the regime with N = 1 to the regime with N = 7 electron bunches in the azimuth direction with the beam current growth for the different external magnetic fields. The numerical analysis of bunch equilibrium states has identified the physical causes responsible for the REB regime switchings.
Modulation instability of structured-light beams in negative-index metamaterials
Silahli, Salih Z.; Walasik, Wiktor; Litchinitser, Natalia M.
2016-05-01
One of the most fundamental properties of isotropic negative-index metamaterials (NIMs), namely opposite directionality of the Poynting vector and the wavevector, enable many novel linear and nonlinear regimes of light–matter interactions. Here, we predict distinct characteristics of azimuthal modulation instability (MI) of optical vortices with different topological charges in NIMs with Kerr-type and saturable nonlinearity. We derive an analytical expression for the spatial modulation-instability gain for the Kerr-nonlinearity case and show that a specific condition relating the diffraction and the nonlinear lengths must be fulfilled for the azimuthal MI to occur. Finally, we investigate the rotation of the necklace beams due to the transfer of orbital angular momentum of the generating vortex on the movement of solitary necklace beams. We show that the direction of rotation is opposite in positive- and negative-index materials.
Electron-cloud instabilities and beam-induced multipacting in the LHC and in the VLHC
International Nuclear Information System (INIS)
In the beam pipe of the Large Hadron Collider (LHC), photoemission and secondary emission give rise to a quasi-stationary electron cloud, which is established after a few buncn passages. The response of this electron cloud to a transversely displaced bunch resembles a short-range wakefield and can cause a fast instability. In additoin, beam-induced multipacting of the electrons may lead to an enhanced gas desorption and an associated pressure increase. In this paper the authors report preliminary simulation results of the electron-cloud build-up both in a dipole magnet and in a straight section of the LHC at top energy. The effective wakefield created by the electron cloud translates into an instability rise time of about 40 ms horizontally and 500 ms vertically. This rise time is not much larger than that of the resistive-wall instability at injection energy. Similar simulation studies show that the instability rise time for the proposed Very Large Hadron Collider (VLHC) is about 3--4 s in both trasnverse planes. The smaller growth rate in the VLHC, as compared with the LHC, is primarily due to the much lower bunch population
Instability of a Bogie Moving on a Flexibly Supported Timoshenko Beam
VERICHEV, S. N.; METRIKINE, A. V.
2002-06-01
The stability of vibration of a bogie uniformly moving along a Timoshenko beam on a viscoelastic foundation has been studied. The bogie has been modelled by a rigid bar of a finite length on two identical supports. Each support consists of a spring and a dashpot connected in parallel. The upper ends of the supports are attached to the bar, whilst the lower ends are mounted onto concentrated masses through which the supports interact with the beam. It is assumed that the masses and the beam are always in contact. It is shown that when the velocity of the bogie exceeds the minimum phase velocity of waves in the beam, the vibration of the system may become unstable. The instability region is found in the space of the system parameters with the help of the D-decomposition method and the principle of the argument. An extended analysis of the effect of the bogie parameters on the model stability has been carried out.
Energy Technology Data Exchange (ETDEWEB)
de Maria,R.; Fox, J. D.; Hofle, W.; Kotzian, G.; Rumolo, G.; Salvant, B.; Wehrle, U.
2009-05-25
We present the performance and limitations of the SPS exponential coupler [1] for transverse instability measurements with LHC type beam. Data were acquired in 2008 in the SPS in the time domain with a bandwidth of up to 2.5 GHz. The data were filtered to extract the time evolution of transverse oscillations within the less than 5 ns long LHC type bunches. We describe the data filtering techniques and show the limitations of the pick-up due to propagating modes.
International Nuclear Information System (INIS)
A super collider transverse feedback system designed to suppress injection errors, emittance growth due to external noises, and beam instabilities is considered. It is supposed that the feedback system should consist of two circuits: an injection damper operating just after injection and a super damper. To damp the emittance growth, the superdamper has to operate with the ultimate decrement close to the revolution frequency. The physics of such a feedback system and its main limitations are discussed. 9 refs.; 21 figs.; 1 tab
Proton-beam propagation through wall-confined plasma channel stabilized against sausage instability
International Nuclear Information System (INIS)
Experimental results are presented of proton-beam (energy ∼ 650 keV) propagation through wall-confined plasma channel that is stabilized against sausage instability by an externally-applied longitudinal magnetic field. Significant improvement of beam-propagation efficiency has been obtained of ∼ 70 % compared with the previous experiment of ∼ 55 % without the magnetic field. The propagation can also be available up to ∼ 30 % even in a non-propagation region in a non-stabilized channel. (author)
Two-stream sausage and hollowing instabilities in high-intensity particle beams
International Nuclear Information System (INIS)
Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically by making use of the Vlasov-Maxwell equations in the smooth-focusing approximation. The eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to determine the dispersion relation describing collective stability properties. Stability properties for the sausage and hollowing modes, characterized by radial mode numbers n=1 and n=2, respectively, are investigated, and the dispersion relations are obtained for the complex eigenfrequency ω in terms of the axial wavenumber k and other system parameters. The eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the perturbations exist only inside the beam. Therefore, the location of the conducting wall does not have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the same order of magnitude as that of the hose (dipole-mode) instability. Therefore, it is concluded that the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam propagation when a background component of electrons is presented
Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam
Turner, M; Biskup, B; Burger, S; Gschwendtner, E; Lotov, K V; Mazzoni, S; Vincke, H
2015-01-01
AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 mm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defo...
International Nuclear Information System (INIS)
The aim of the paper is numerical simulation of the dynamics of the ion hose instability of a relativistic electron beam (REB), propagated along a piecewise-rectilinear plasma channel, consisting of two rectilinear sections. A numerical technique has been developed which permits to determine the REB and plasma channel parameters, ensuring damping the ion hose instability of the REB. 4 refs.; 2 figs
Observations and control of beam instabilities due to higher order modes in Indus-2
International Nuclear Information System (INIS)
In a synchrotron radiation source (SRS), the interaction between electron beam spectra and Higher Order Modes (HOMs) of RF cavities may give rise to coupled bunch instabilities. These instabilities may limit beam current and beam lifetime. Indus-2 SRS has four RF cavities equipped with precision temperature controller of cooling system and Higher Order Mode Frequency Shifter (HOMFS) to avoid harmful HOMs. Offline (i.e. without beam) and Online (i.e. with beam) measurements, observations and analysis of HOMs have been performed. Some of the Longitudinal modes such as L1 (∼ 950 MHz), L3 (∼ 1432 MHz), L4 (∼ 1521 MHz), L5 (∼1628 MHz) were observed to be quite prominent at specific operating conditions. Based on these studies, harmful HOMs were identified and suitable methods were evolved to avoid these HOMs. Experiments were performed to achieve high beam current in Indus-2. The precision chiller temperatures and HOMFS positions were set as per theoretical estimates and were further optimized in fine steps during experiments. With the optimized settings, beam current around 200 mA at Injection energy (550 MeV) and 157 mA at 2.5 GeV has been successfully achieved. At these settings of RF cavity water temperature and HOMFS, harmful HOMs were within safe limits during regular operation of Indus-2 at 2.5 GeV/100 mA in user mode for more than one year. In this paper, important observations, analysis and experiments to avoid harmful HOMs of RF cavities are presented. (author)
International Nuclear Information System (INIS)
Several hypotheses have been proposed to explain bunched beam instabilities under increasing intensity. In fact, the cause of these instabilities can be used to generate a very high quality beam. Total coherent synchrotron radiation brings the bunches to plasma density by self-consistent supercooling in the three bunch dimensions i.e. by reduction of energy dispersion. Maximal density and minimal residual instabilities can be controlled by feedback loops. Thus, more efficient machines can be made available, opening new possibilities in many fields
Investigation of Static and Dynamic Pull-in Instability in a FGP Micro-Beam
Rezaei Kivi, Araz; Azizi, Saber; Marzbanrad, Javad
2015-12-01
In this paper, static and dynamic behavior of a fully clamped functionally graded piezoelectric micro-beam, subjected to simultaneous electrostatic and piezoelectric actuations is investigated. The micro-beam is composed of silicon and PZ4 as a piezoelectric material. Applying DC piezoelectric voltage results in the generation of an axial force and as a result the equivalent bending stiffness of the micro-beam changes. The tunability of the bending stiffness due to piezoelectric actuation is used to stabilize the pull-in instability. The nonlinear governing equation of the motion is derived using Hamiltonian principle and discretized to a single degree of freedom system using Galerkin method. The static and dynamic pull-in voltages corresponding to various piezoelectric voltages are determined. The ratio of the static to dynamic pull-in voltages is in good agreement with those of the literature.
Beam instability during high-current heavy-ion beam transport
International Nuclear Information System (INIS)
In driver system for heavy ion inertial fusion, beam dynamics is investigated by particle-in-cell simulations during final beam bunching. The particle simulations predict that the beam is transported with the localized transverse charge distribution induced by the strong space charge effect. The calculation results also show that the emittance growth during the longitudinal bunch compression for various particle distributions at the initial conditions and with two types of transverse focusing model, which are a continuous focusing and an alternating gradient focusing lattice configurations. (author)
AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo
2016-01-01
Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...
International Nuclear Information System (INIS)
Using data from two vertical charge-exchange detectors on the Poloidal Divertor Experiment (PDX), we have identified a set of conditions for which loss of beam ions inward in major radius is observed during the fishbone instability. Previously, it was reported that beam ions were lost only to the outside of the PDX tokamak
International Nuclear Information System (INIS)
Investigated is the stabilization of an electron beam instability due to the process of nonlinear conversion of the Langmuir oscillations into ion-acoustic ones at scattering on plasma electrons. The scheme of an experimental installation is presented. Magnetic field of a mirror configuration has been developed by a system of coils. Field strength in the centre of the magnetic mirror amounts 2 kOe, strength in the mirrors being 8 kOe. The parameters of the electron beam are as follows: current of 10 A, energy of 40 keV, diameter of the beam in the magnetic mirror centre of 2.0 cm. Plasma injector of a hydride-titanium type has been placed in the region of the magnetic mirror. A hydrogen plasma jet with the mean concentration of (5-7)x1012cm-3 has been injected. Observed is the effect of beam stabilization in a turbulent plasma of a direct discharge, in a multi-flow plasma formed at the injector operation in a periodical regime, and with the highest efficiency at the oncoming injection of two plasma bunches. It is noted that, as far as the generation of a high level of sound turbulence does not exhibit any technological difficulties, the results obtained are noteworthy for the problem on beam transport in a plasma
Time structure of the particle beam source and current sheath filamentation in the plasma focus
International Nuclear Information System (INIS)
In previous work the authors have described a method for determining the energy spectrum N(E) of the ion beam emitted from a localized (point) source in the plasma focus pinch. In systematic applications the time structure of the beam source (dN/dt) is assumed to be the same as that of the x-ray localized source recorded from scintillation detector signal with a ≅ 2-5 ns time resolution [the spectrum is derived from the ion time of flight ΔtΓE/sup -1/2/; Δt from the conditions x(t)xMax N/Max x = N(t + Δt) on x-ray signal (x) and particle signal N]. The energy spectrum with a high resolution (ΔE ≤ 0.0 l E) from an alternative method - i.e. from magnetic analyzer data - is essentially the same as that from time of flight. This confirms that the time structure of the ion beam source in the high energy region (E > 0.3 MeV) fits the x-ray (and electron beam) source structure. At any specific time tau (i.e., within a sufficiently small time interval δt during the emission time ≅ 5-50 ns of the beam) the beam is emitted with an amplitude N(E) which is sharply peaked at a specific value of the energy E = E(tau). A correlation of the filamentary structure of the x-ray source with a filamentary structure of the ion source can also be established on a space scale of ≤ 10μm
Effect of Ion Cyclotron Acceleration on Frequency Chirping Beam-Driven Instabilities in NSTX
International Nuclear Information System (INIS)
The fast-ion distribution function in the National Spherical Torus Experiment (NSTX) is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including TAE modes, 50-100∼kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼3 MW) harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the effective collision frequency. Steady-frequency TAE modes excited early in the discharge are affected by the HHFW heating but there is no evidence that the chirping of 20-100 kHz modes is suppressed. (author)
Coherent instability of the heavy ion beam in the storage ring
International Nuclear Information System (INIS)
The storage ring as the final part of a driver for heavy ion fusion is required to provide heavy ions (A asymptotically equals 200) with energy of 5 -- 10 GeV and such a high intensity as 1 -- 6 x 1015 ions/pulse. So as to raise the number of ions which can be accumulated in a ring, singlly charged heavy ion is used for its relatively smaller incoherent space charge force compared with higher charge states. The intensity limit due to incoherent space charge force is 0.7 -- 1.4 x 1015 ions for U1+. Much more severe limits exist due to coherent motion of heavy ion beams (0.8 -- 2 x 1013 for longitudinal motion and 0.9 -- 1.1 x 1012 for transverse motion), because of the relatively lower velocity of the accumulated ions. It seems unrealistic to use a lot of rings in order to operate below such intensity limits of the above instability. Therefore the number of the storage rings is constrained within a reasonable value (3 -- 7) and the possibility of compressing the bunches of heavy ion beams before the instability grows fatally large is studied. (author)
Energy Technology Data Exchange (ETDEWEB)
McFerran, John J.; Luiten, Andre N. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley 6009, W.A. (Australia)
2010-02-15
We demonstrate a means of increasing the signal-to-noise ratio in a Ramsey-Borde interferometer with spatially separated oscillatory fields on a thermal atomic beam. The {sup 1}S{sub 0}{r_reversible}{sup 3}P{sub 1} intercombination line in neutral {sup 40}Ca is used as a frequency discriminator, with an extended cavity diode laser at 423 nm probing the ground state population after a Ramsey-Borde sequence of 657 nm light-field interactions with the atoms. Evaluation of the instability of the Ca frequency reference is carried out by comparison with (i) a hydrogen-maser and (ii) a cryogenic sapphire oscillator. In the latter case the Ca reference exhibits a square-root {Lambda} variance of 9.2x10{sup -14} at 1 s and 2.0x10{sup -14} at 64 s. This is an order-of-magnitude improvement for optical beam frequency references, to our knowledge. The shot noise of the readout fluorescence produces a limiting square-root {Lambda} variance of 7x10{sup -14}/{radical}({tau}), highlighting the potential for improvement. This work demonstrates the feasibility of a portable frequency reference in the optical domain with 10{sup -14} range frequency instability.
Characterization of beam-driven instabilities and current redistribution in MST plasmas
Parke, E.
2015-11-01
A unique, high-rep-rate (>10 kHz) Thomson scattering diagnostic and a high-bandwidth FIR interferometer-polarimeter on MST have enabled characterization of beam-driven instabilities and magnetic equilibrium changes observed during high power (1 MW) neutral beam injection (NBI). While NBI leads to negligible net current drive, an increase in on-axis current density observed through Faraday rotation is offset by a reduction in mid-radius current. Identification of the phase flip in temperature fluctuations associated with tearing modes provides a sensitive measure of rational surface locations. This technique strongly constrains the safety factor for equilibrium reconstruction and provides a powerful new tool for measuring the equilibrium magnetic field. For example, the n = 6 temperature structure is observed to shift inward 1.1 +/- 0.6 cm, with an estimated reduction of q0 by 5%. This is consistent with a mid-radius reduction in current, and together the Faraday rotation and Thomson scattering measurements corroborate an inductive redistribution of current that compares well with TRANSP/MSTFit predictions. Interpreting tearing mode temperature structures in the RFP remains challenging; the effects of multiple, closely-spaced tearing modes on the mode phase measurement require further verification. In addition to equilibrium changes, previous work has shown that the large fast ion population drives instabilities at higher frequencies near the Alfvén continuum. Recent observations reveal a new instability at much lower frequency (~7 kHz) with strongly chirping behavior. It participates in extensive avalanches of the higher frequency energetic particle and Alfvénic modes to drive enhanced fast ion transport. Internal structures measured from Te and ne fluctuations, their dependence on the safety factor, as well as frequency scaling motivate speculation about mode identity. Work supported by U.S. DOE.
Instability of a train of oscillators moving along a beam on a viscoelastic foundation
Mazilu, Traian
2013-09-01
The paper focuses on the theory of the vibration instability in the train of oscillators uniformly moving along an Euler-Bernoulli beam on a viscoelastic foundation, caused by the anomalous Doppler waves excited in the beam. This theory may be applied to the high-speed trains when the speed exceeds the minimum phase velocity of the elastic waves that they induce in the track. Each oscillator has two masses connected to a system Kelvin-Voigt representing a single wheel of the train and the corresponding suspended mass. The Euler-Bernoulli beam on viscoelastic foundation models the track, including the rail bending stiffness, the inertia of the track and the subgrade viscoelasticity. The wheel/rail Hertzian contact and the possibility of the contact loss are accounted for. The analysis of the dynamic behaviour of the train of oscillators has two distinct sections. For the former one, the linear critical velocity is calculated starting from the roots of the characteristic equation by applying either the D-decomposition method or an iterative one. For the latter one, the nonlinear stability based on the bifurcation theory is analysed. To this end, the nonlinear equations of motion are solved via a new form of the Green's functions method. The above theory has been applied to the particular case of two oscillators moving along a beam on viscoelastic foundation, to point out the instability behaviour of a bogie. The result of the bifurcation analysis is that the oscillators/beam system exhibits a sub-critical bifurcation. The critical velocity of the system is given by the value of the nonlinear critical velocity. As long as the velocity is within the range between the nonlinear and linear critical velocities, the system motion can have two stable behaviours depending on the initial perturbation: the equilibrium points when the perturbation is sufficiently low or, alternatively, an asymmetric limit cycle as periodic attractor. When the velocity of the two oscillators is
International Nuclear Information System (INIS)
The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10–4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument
Directory of Open Access Journals (Sweden)
T. Grydeland
2004-04-01
-electron two-stream mechanism favoured by many authors is an unlikely candidate to explain the observations. The video data has helped establish a clear correlation between the enhanced echoes and auroral activity, on sub-second time scales, showing a threshold connection between the auroral intensity and the triggering of the radar enhancements. It appears that the up- and down-shifted enhanced echoes correlate with fine auroral structures in different ways.
Key words. Ionosphere (auroral ionosphere; plasma waves and instabilities – Radio science (interferometry
A coupled bunch instability due to beam-photoelectron interactions in KEKB-LER
Energy Technology Data Exchange (ETDEWEB)
Ohmi, Kazuhito [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
LER of KEKB is designed to storage the positron beam of 2.6 A with multibunch operation. Nb = 3.3 x 10{sup 10} positrons are filled in a bunch and the bunch passes every 2ns through a beam chamber. The photoelectron instability may be serious for KEKB-LER. We consider a motion of photoelectrons produced by a bunch with a computer simulation technic. A cylindrical chamber with a diameter of 10 cm was used as a model chamber. About 15 times of the photoelectrons were produced by a bunch. The wake force was calculated for the loading bunches with displacements of 0.5 mm and 1 mm. The wake characteristics seems to be caused by the trapped electrons kicked by the loading bunch. The wake was saturated with the loading displacement of 0.5 mm. We obtained a growth rate by the wake force. It is very high rate, 2500s{sup -1} which exceeds damping rates of various mechanism, radiation, head-tail and feedback. Perhaps it is essential to remove the photoelectrons around the positron beam explicitly. If we apply magnetic field fo about 20 G, the growth rate will be reduced. (S.Y.)
Terzić, Balša; Bassi, Gabriele
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009); PRABFM1098-440210.1103/PhysRevSTAB.12.080704G. Bassi and B. Terzić, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043], designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code [G. Bassi, J. A. Ellison, K. Heinemann, and R. Warnock, Phys. Rev. ST Accel. Beams 12, 080704 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.080704], and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
International Nuclear Information System (INIS)
In this paper we discuss representations of charge particle densities in particle-in-cell simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2D code of Bassi et al. (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)G. Bassi and B. Terzic, in Proceedings of the 23rd Particle Accelerator Conference, Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009), TH5PFP043), designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform; and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into the CSR code (G. Bassi, J.A. Ellison, K. Heinemann and R. Warnock Phys. Rev. ST Accel. Beams 12 080704 (2009)), and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Directory of Open Access Journals (Sweden)
S. Patel
2011-08-01
Full Text Available Using the general loss-cone distribution function electromagnetic ion cyclotron (EMIC instability affected by up going ion beam has been studied by investigating the trajectories of charged particles. The plasma consisting of resonant and non-resonant particles has been considered. It is assumed that the resonant particles participate in energy exchange with the wave, whereas non-resonant particles support the oscillatory motion of the wave. The effect of ion beam velocity on the dispersion relation, growth rate, parallel and perpendicular resonant energy of the EMIC wave with general loss-cone distribution function in hot anisotropic plasma is described by particle aspect approach. The effect of beam anisotropy and beam density on electromagnetic ion cyclotron instabilities is investigated. Growth length is derived for EMIC waves in hot anisotropic plasma. It is found that the effect of the ion beam is to reduce the energy of transversely heated ions, whereas the thermal anisotropy of the background plasma acts as a source of free energy for the EMIC wave and enhances the growth rate. It is observed that ion beam velocity opposite to the wave propagation and its density reduces the growth rate and enhance the reduction in perpendicularly heated ions energy. The effect of ion beam anisotropy on EMIC wave is also discussed. These results are determined for auroral acceleration region. It is also found that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of an up flowing ion beam.
Progress towards numerical and experimental simulations of fusion relevant beam instabilities
King, M.; Bryson, R.; Ronald, K.; Cairns, R. A.; McConville, S. L.; Speirs, D. C.; Phelps, A. D. R.; Bingham, R.; Gillespie, K. M.; Cross, A. W.; Vorgul, I.; Trines, R.
2014-01-01
In certain plasmas, non-thermal electron distributions can produce instabilities. These instabilities may be useful or potentially disruptive. Therefore the study of these instabilities is of importance in a variety of fields including fusion science and astrophysics. Following on from previous work conducted at the University of Strathclyde on the cyclotron resonance maser instability that was relevant to astrophysical radiowave generation, further instabilities are being investigated. Parti...
International Nuclear Information System (INIS)
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
Energy Technology Data Exchange (ETDEWEB)
Balsa Terzic, Gabriele Bassi
2011-07-01
In this paper we discuss representations of charge particle densities in particle-in-cell (PIC) simulations, analyze the sources and profiles of the intrinsic numerical noise, and present efficient methods for their removal. We devise two alternative estimation methods for charged particle distribution which represent significant improvement over the Monte Carlo cosine expansion used in the 2d code of Bassi, designed to simulate coherent synchrotron radiation (CSR) in charged particle beams. The improvement is achieved by employing an alternative beam density estimation to the Monte Carlo cosine expansion. The representation is first binned onto a finite grid, after which two grid-based methods are employed to approximate particle distributions: (i) truncated fast cosine transform (TFCT); and (ii) thresholded wavelet transform (TWT). We demonstrate that these alternative methods represent a staggering upgrade over the original Monte Carlo cosine expansion in terms of efficiency, while the TWT approximation also provides an appreciable improvement in accuracy. The improvement in accuracy comes from a judicious removal of the numerical noise enabled by the wavelet formulation. The TWT method is then integrated into Bassi's CSR code, and benchmarked against the original version. We show that the new density estimation method provides a superior performance in terms of efficiency and spatial resolution, thus enabling high-fidelity simulations of CSR effects, including microbunching instability.
International Nuclear Information System (INIS)
Either bunched or coasting beam in a synchrotron may exhibit microwave instability of the momentum spread is small. A useful physical picture is that beam particles are captured in buckets generated by the beam image current flowing in the longitudinal coupling impedance. Qualitatively, trapping and auto-deceleration occur when the height of the buckets exceed the FWHM energy spread of the beam. Microwave instability implies in addition that the coupling impedance is largest at several times the rf frequency and that the decay of the wakefield is fast enough that bunches do not affect each other. The parameters used in this paper are influenced by the Fermilab Main Ring and design of the Main Injector. The numerical modeling uses standard features of the code ESME. In most of the reported simulations 2 · 104 macroparticles and 32 values of n separated by 1113 provide the current spectrum. Microwave instability may be an intensity limitation during parts of the acceleration cycle where the beam is debunched or loosely bunched, perhaps at injection or high duty factor extraction. Probably of more general importance is the time near transition when the spread in circulation frequency is sharply reduced, i.e., when η ∼ 0. Concrete examples are given in this report
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
Fedele, R; Lisak, M
2005-01-01
A hydrodynamical description of coherent instabilities that take place in the longitudinal dynamics of a charged-particle coasting beam in a high-energy accelerating machine is presented. This is done in the framework of the Madelung fluid picture provided by the Thermal Wave Model. The well known coherent instability charts in the complex plane of the longitudinal coupling impedance for monochromatic beams are recovered. The results are also interpreted in terms of the deterministic approach to modulational instability analysis usually given for monochromatic large amplitude wave train propagation governed by the nonlinear Schr\\"odinger equation. The instability analysis is then extended to a non-monochromatic coasting beam with a given thermal equilibrium distribution, thought as a statistical ensemble of monochromatic incoherent coasting beams ("white" beam). In this hydrodynamical framework, the phenomenon of Landau damping is predicted without using any kinetic equation governing the phase space evolutio...
Stefan, V.
2007-11-01
I propose utilization of two cone-guided relativistic laser beams in antiparallel interaction with the fusion pellet as a novel approach for the suppression of Weibel instabilities in the core of advanced fast ignition pellets.ootnotetextM. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M.D. Perry, Phys. Plasmas 1 (5), 1626 (1994). The propagation of generated suprathermal electron beam toward the core may lead to the appearance of colossal (˜10MG), small scale (L˜velocity of light/local electron plasma frequencyootnotetextV. Stefan, Suppression of Weibel Instabilities by High-Harmonic Electron Bernstein Modes in Advanced Fast Ignition Laser Fusion Pellets.APS-2006. October 30-November 3, 2006; Philadelphia, Pennsylvania. magnetic fields. This would suppress the transport of magnetic fields into the core of the pellet and may eliminate the difficulties in the nonlinear-relativistic treatment of magnetized core plasma.
Sarri, Gianluca; Cecchetti, Carlo; Jung, R; P. Hobbs; James, S.; Lockyear, J.; Stevenson, R. M.; Doria, Domenico; Hoarty, D.J.; Willi, O.; Borghesi, Marco
2011-01-01
The onset of filamentation, following the interaction of a relatively long (tau(L) similar or equal to 1 ns) and intense (I-L similar or equal to 5 x 10(14) W/cm(2)) laser pulse with a neopentane filled gas bag target, has been experimentally studied via the proton radiography technique, in conditions of direct relevance to the indirect drive inertial confinement fusion scheme. The density gradients associated with filamentation onset have been spatially resolved yielding direct and unambiguo...
Transverse modes and instabilities of a bunched beam with space charge and resistive wall impedance
Energy Technology Data Exchange (ETDEWEB)
Balbekov, V.; /Fermilab
2011-11-01
Transverse instability of a bunch in a ring accelerator is considered with space charge and wakefield taken into account. It is assumed that space charge tune shift significantly exceeds the synchrotron tune. Bunch spectrum, instability growth rate, and effects of chromaticity are studied with different bunch and wake forms. Fast instability caused by coupling of transverse modes is studied in detail. It is shown that, for monotonic wakes, the transverse mode coupling instability is possible only with a certain sign of the wake. Its threshold and growth rate are calculated precisely over a wide range of parameters.
International Nuclear Information System (INIS)
The problem of ion cyclotron instabilities driven by the high power neutral beam injection is investigated for the conditions of the W VII-A stellarator by means of linear stability analysis. On the basis of only collisional (classical) slowing down, beam ion distribution functions are calculated by means of Monte Carlo simulation. In this report, various cases are considered: Transient beam ion distributions (i) immediately after switch on the neutral beam injection and (ii) after half of an average slowing down time; stationary beam ion distributions (iii) for confinement properties strongly improved by radial electric fields, transport and fast orbit losses are neglected for these situations, and (iv) for worse confinement properties for which the average beam ion confinement time is of the order of the average slowing down time. Furthermore, the distribution functions of the ions originating from the neutral beam injection are estimated for the early phase of the discharges with low temperatures and for the later phase with maximum ion temperatures. (orig.)
International Nuclear Information System (INIS)
Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation
The effect of a laser beam displacement on parametric oscillatory instabilities for Advanced LIGO
International Nuclear Information System (INIS)
The arm cavities of real gravitational wave detectors can show small deviations like a tilt or a spatial shift between the cavity mirrors. These deviations lead to a separation of the optical mode centres with respect to the mirror's centre. In this Letter we perform the computation of parametric instable modes considering the described displacement. We further analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer for the case of a displaced arm cavity. Our results reveal an additional number of optical and elastic mode combinations due to a displacement that can give rise to the undesirable effect of parametric oscillatory instability. -- Highlights: → We analyse the possibility of parametric oscillatory instability in the Advanced LIGO interferometer. → We perform the computation of parametric instable modes considering the mirror displacement. → Our results reveal an additional number of optical and elastic mode unstable combinations.
Deng, Mingge; Grinberg, Leopold; Caswell, Bruce
2015-01-01
We investigate the dynamics of a single inextensible elastic filament subject to anisotropic friction in a viscous stagnation-point flow, by employing both a continuum model represented by Langevin type stochastic partial differential equations (SPDEs) and a Dissipative Particle Dynamics (DPD) method. Unlike previous works1, the filament is free to rotate and the tension along the filament is determined by the local inextensible constraint. The kinematics of the filament is recorded and studied with normal modes analysis. The results show that the filament displays an instability induced by negative tension, which is analogous to Euler buckling of a beam. Symmetry breaking of normal modes dynamics and stretch-coil transitions are observed above the threshold of the buckling instability point. Furthermore, both temporal and spatial noise are amplified resulting from the interaction of thermal fluctuations and nonlinear filament dynamics. Specifically, the spatial noise is amplified with even normal modes being excited due to symmetry breaking, while the temporal noise is amplified with increasing time correlation length and variance. PMID:26023834
Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.
2009-11-01
With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.
Necklace Beam Generation in Nonlinear Colloidal Engineered Media
Silahli, Salih Z; Litchinitser, Natalia M
2015-01-01
Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, and rogue waves. However, practical realization of these phenomena in the majority of available nonlinear media still relies on high-intensity optical beams. Here, we analytically and numerically show the possibility of necklace beam generation originating from low-intensity spatial modulational instability of vortex beams in engineered soft-matter nonlinear media.
Effect of the crab waist and of the micro-beta on the beam-beam instability
International Nuclear Information System (INIS)
We calculate the luminosity and the strengths of the beam-beam resonances for colliders with large horizontal crossing angles. Achievable luminosities of such colliders can reach high values provided that the number of particles in colliding beams can be increased while the vertical β-function can be decreased till the mini-beta range. The crab waist option of the optics in the interaction region decreases (or, even vanishes) the strengths of two-dimensional betatron weak-strong beam-beam resonances and of their synchro-betatron satellites provided that β-functions at the interaction point can be decreased till the micro-beta range. This can help to increase the achievable value of the collider luminosity.
Energy Technology Data Exchange (ETDEWEB)
Blue, Brent Edward; /SLAC /UCLA
2005-10-10
In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.
International Nuclear Information System (INIS)
The stability of current-carrying plasma channels, which have been proposed for transporting intense ion beams from the diodes to the target in LIB-fusion devices, is discussed. The growth rate of the most dangerous surface mode, that is, the axisymmetric sausage instabilities, are examined for plasma channels with or without radial fluid motion. The growth rate of the channel with radial fluid motion is shown to be far smaller than that of the channel with no fluid motion. It is concluded that a stable plasma channel can be formed by radial fluid motion. (author)
Filippov, Boris
2011-01-01
Solar filaments show the position of large scale polarity inversion lines and are used for the reconstruction of large-scale solar magnetic field structure on the basis of H{\\alpha} synoptic charts for the periods when magnetographic measurements were not available. Sometimes crossing filaments are seen in H{\\alpha} filtergrams. We analyze daily H{\\alpha} filtergrams from the archive of Big Bear Solar Observatory for the period of 1999-2003 to find crossing and interacting filaments. A number of examples are presented and filament patterns are compared with photospheric magnetic field distributions. We have found that all crossing filaments reveal quadrupolar magnetic configurations of the photospheric field and presume the presence of null points in the corona.
International Nuclear Information System (INIS)
Propagation-dominant instabilities and chaos were found under so-called good-cavity conditions in an axially pumped solid-state laser operated near the 1/3-degenerate cavity configuration that had not previously been studied numerically. By using the generalized Huygens integral together with rate equations, we obtained a V-shaped configuration that depends on a quasi-periodic threshold. We call the propagation dominant because the laser behaves as a conservative system governed by beam propagation. Although it had previously been predicted that chaos would be impossible under nearly degenerate conditions, we have recognized that the laser is transformed into chaos as a result of the interplay of beam propagation and gain dynamics as the cavity is tuned close to degeneracy. Copyright 2001 Optical Society of America
Study of an instability of the PEP-II positron beam (Ohmi effect and Multipactoring)
Energy Technology Data Exchange (ETDEWEB)
Heifets, S.A. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
The processes defining the density distribution of the photoelectrons are quite complicated. In this study, a simplified model of the instability was used to get a quick estimate of the growth rate of the instability and the relative importance of the parameters, as has been done in Ohmi`s paper. The production rate and dynamics of the photoelectrons are studied for the PEP-II parameters. The growth rate of the transverse instability driven by the primary photoelectrons is of the order of 0.7 msec for the PEP-II parameters. The multipactoring at resonance currents cannot produce large electron density due to the final energy spread caused by the finite bunch length and the intrinsic energy spread of the secondary electrons. Production of the secondary electrons may lead to large average densities. The ion can be produced in electron collisions with the residual gas with density of the order of the electron density. (G.K.)
Energy Technology Data Exchange (ETDEWEB)
W W,Heidbrink; E,Ruskov; E D,Fredrickson; N,Gorelenkov; S S,Medley; H L,Berk; R W,Harvey
2006-09-01
The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ~2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50–100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10–20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (≤3MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.
Energy Technology Data Exchange (ETDEWEB)
Heidbrink, W W [University of California, Irvine, California (United States); Ruskov, E [University of California, Irvine, California (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gorelenkov, N [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Medley, S S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Berk, H L [University of Texas, Austin, Texas (United States); Harvey, R W [CompX, Del Mar, California (United States)
2006-09-15
The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at {approx}2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power ({approx}<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.
Alesini, D; Biscari, C; Ghigo, A; Corsini, R
2011-01-01
In the CTF3 (CLIC test facility 3) run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increase...
Kline, J. L.; Montgomery, D. S.; Yin, L.; Flippo, K. A.; Albright, B. J.; Johnson, R. P.; Shimada, T.; Rose, H. A.; Rousseaux, C.; Tassin, V.; Baton, S. D.; Amiranoff, F.; Hardin, R. A.
2008-11-01
Short pulse laser plasma interaction experiments using diffraction limited beams provide an excellent platform to investigate the fundamental physics of Stimulated Raman (SRS) and Stimulated Brillouin (SBS) Scattering. Detailed understanding of these laser plasma instabilities impacts the current inertial confinement fusion ignition designs and could potentially impact fast ignition when higher energy lasers are used with longer pulse durations ( > 1 kJ and > 1 ps). Using short laser pulses, experiments can be modeled over the entire interaction time of the laser using PIC codes to validate our understanding. Experiments have been conducted at the Trident laser and the LULI to investigate SRS near the threshold of the instability using 527 and 1064 nm laser light respectively with 1.5 -- 3 ps pulses. In the case of both experiments, the interaction beam was focused into a pre-ionized He gasjet plasma. Measurements of the reflectivity as a function of intensity and k?D were completed at the Trident laser. At LULI, a 300 fs Thomson scattering probe is used to directly measure the density fluctuations of the driven electron plasma and ion acoustic waves. Details of the experimental results will be presented.
Kolberg, U.; Schlickeiser, R.; Yoon, P. H.
2016-02-01
Highly relativistic electron-positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.
International Nuclear Information System (INIS)
Results are presented from an active experiment on the injection of charged particle beams into the ionospheric plasma. The experiment was carried out in 1992 onboard the Intercosmos-25 satellite and the Magion-3 daughter satellite (APEX). A specific feature of this experiment was that both the ion and electron beams were injected upward, in the same direction along the magnetic field. The most interesting results are the excitation of HF and VLF-LF waves and the generation of fast charged particle flows, which were recorded on both satellites
International Nuclear Information System (INIS)
Within the framework of the thermal wave model (TWM), a quantum-like description of longitudinal coherent instabilities of high-energy charged-particle beams in the presence of non-negligible resistive part of the coupling impedance is presented. It is shown that, similarly to previous quantum-like investigations in which only a purely reactive impedance was considered, the longitudinal coherent instability can be described in terms of a modulational instability associated with the nonlinear Schroedinger equation (NLSE) also in the present case. In addition, by using the Wigner transform to carry out the analysis in phase-space, the role of Landau damping is considered in connection with the above instability, showing that TWM is capable of reproducing all the results of the conventional theory of the coherent instability as well as of predicting new results (in particular, the possible existence of a quantum-like Landau damping), connected with the crucial role of thermal noise introduced by the emittance in the resonance condition between waves and particles in the beam. This new result generalizes the present conventional theory of the longitudinal coherent instability and may be related to the very recent new phenomena observed in the context of nonlinear collective particle beam dynamics
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1996-01-01
We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate...
Beam dynamics and longitudinal instabilities in heavy ion fusion induction linacs
International Nuclear Information System (INIS)
An induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls
Elasto-Plastic Instability of Restrained Beam-Columns Made of High-Strength Steel
Tawa, Hideo; MORINO, Shosuke; Kawaguchi, Jun; Yamamoto, Shinya; 田和, 英夫; 森野, 捷輔; 川口, 淳; 山本, 真也
1994-01-01
L-shaped steel frames consisting of an elastic beam and a column were tested under a constant vertical load and varying horizontal load, with the objective to investigate the load-displacement characteristics of beam-columns made of high-strength steel, which were restrained by the beam. The paper presents the test results of specimens failing due to combined effects of lateral-torsional buckling, local buckling and P∆ moment caused by excessive in-plane displacement, and discusses the load-d...
Unwinding motion of a twisted active region filament
Energy Technology Data Exchange (ETDEWEB)
Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)
2014-12-10
To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.
Nonlinear physics and energetic particle transport features of the beam-plasma instability
Carlevaro, Nakia; Montani, Giovanni; Zonca, Fulvio
2015-01-01
In this paper, we study transport features of a one-dimensional beam-plasma system in the presence of multiple resonances. As a model description of the general problem of a warm energetic particle beam, we assume $n$ cold supra-thermal beams and investigate the self-consistent evolution in the presence of the complete spectrum of nearly degenerate Langmuir modes. A qualitative transport estimation is obtained by computing the Lagrangian Coherent Structures of the system on given temporal scales. This leads to the splitting of the phase space into regions where the local transport processes are relatively faster. The general theoretical framework is applied to the case of the nonlinear dynamics of two cold beams, for which numerical simulation results are illustrated and analyzed.
Nonlinear physics and energetic particle transport features of the beam-plasma instability
Carlevaro, Nakia; Falessi, Matteo V.; Montani, Giovanni; Zonca, Fulvio
2015-10-01
> In this paper we study transport features of a one-dimensional beam-plasma system in the presence of multiple resonances. As a model description of the general problem of a warm energetic particle beam, we assume cold supra-thermal beams and investigate the self-consistent evolution in the presence of the complete spectrum of nearly degenerate Langmuir modes. A qualitative transport estimation is obtained by computing the Lagrangian Coherent Structures of the system on given temporal scales. This leads to the splitting of the phase space into regions where the local transport processes are relatively faster. The general theoretical framework is applied to the case of the nonlinear dynamics of two cold beams, for which numerical simulation results are illustrated and analysed.
International Nuclear Information System (INIS)
An ultra-relativistic charged particle bunch moving through a resonator cavity leaves behind a wake field that will affect subsequent bunches (if the bunch is not ultra-relativistic, the wake field will not be exclusively behind it). If the initial bunch enters the cavity off-axis, it will produce a transverse wake field that can then kick later bunches off the axis. Thus, even bunches that were initially traveling on axis could be displaced and, in turn, produce their own transverse wake fields, affecting following bunches. The offsets obtained by bunches could increase along the bunch train, leading to the so-called multi-bunch beam break-up instability [1]. The purpose of our investigation is to see whether such instability will occur in the superconducting, 1.3 GHz, 2.5GeV linac (see Table 1) planned for the Berkeley future light source (BFLS). We assume an initial steady-state situation established for machine operation; i.e. a continuous process where every bunch follows the same trajectory through the linac, with only small deviations from the axis of the rf structures. We will look at a possible instability arising from a bunch having a small deviation from the established trajectory. Such a deviation would produce a wake field that is slightly different from the one produced by the bunches following the established trajectory. This could lead to subsequent bunches deviating further from the established trajectory. We will assume the deviations are small (at first) and so the difference in the wake field caused by a bunch not traveling along the established trajectory is well approximated by a long-range transverse dipole wake. We are concerned only with deviations from the established trajectory; thus, in our models, a transverse position of zero corresponds to the bunch traveling along the established trajectory. Under this assumption, only the additional long-range transverse dipole wake remains in our models
1D3V PIC simulation of propagation of relativistic electron beam in an inhomogeneous plasma
Shukla, Chandrashekhar; Patel, Kartik
2015-01-01
A recent experimental observation has shown efficient transport of Mega Ampere of electron currents through aligned carbon nanotube arrays [Phys. Rev Letts. 108, 235005 (2012)]. The result was subsequently interpreted on the basis of suppression of the filamentation instability in an inhomogeneous plasma [Phys. Plasmas 21, 012108 (2014)]. This inhomogeneity forms as a result of the ionization of the carbon nanotubes. In the present work a full 1D3V Particle-in-Cell (PIC) simulations have been carried out for the propagation of relativistic electron beams (REB) through an inhomogeneous background plasma. The suppression of the filamentation instability, responsible for beam divergence, is shown. The simulation also confirms that in the nonlinear regime too the REB propagation is better when it propagates through a plasma whose density is inhomogeneous transverse to the beam. The role of inhomogeneity scale length, its amplitude and the transverse beam temperature etc., in the suppression of the instability is ...
International Nuclear Information System (INIS)
The amplitude modulation of ion-acoustic waves is investigated in an unmagnetized plasma containing positive ions, negative ions, and electrons obeying a kappa-type distribution that is penetrated by a positive ion beam. By considering dissipative mechanisms, including ionization, negative-positive ion recombination, and electron attachment, we introduce a comprehensive model for the plasma with the effects of sources and sinks. Via reductive perturbation theory, the modified nonlinear Schrödinger equation with a dissipative term is derived to govern the dynamics of the modulated waves. The effect of the plasma parameters on the modulation instability criterion for the modified nonlinear Schrödinger equation is numerically investigated in detail. Within the unstable region, first- and second-order dissipative ion-acoustic rogue waves are present. The effect of the plasma parameters on the characteristics of the dissipative rogue waves is also discussed
Runaway Electron Beam Instability in Slide-Away Discharges in the HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
CHEN Zhong-Yong; WAN Bao-Nian; LING Bi-Li; GAO Xiang; DU Qin; TI Ang; LIN Shi-Yao; S. Sajjad; HT-7 Team
2007-01-01
Slide-away discharges are achieved by decreasing the plasma density or ramping down the plasma current in runaway discharges in the HT-7 tokamak. In the case of plasma current ramp down, the ratio of the electron plasma frequency to the electron cyclotron frequency is higher than in the stationary pulses when the discharge goes into a slide-away regime. The instability regime is characterized by relaxations in the electron cyclotron emission due to relativistic anomalous Doppler effect which transfers energy from parallel to perpendicular motion. The triggering of relativistic anomalous Doppler effect at higher density by ramping down of plasma current may provide a alternative runaway energy control scenario.
Energy Technology Data Exchange (ETDEWEB)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru [The department for Applied Physics, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation); Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shose, 1784, Sofia (Bulgaria); Technology Centre of Electron Beam and Plasma Technologies and Techniques, 68-70 Vrania, ap.10, Banishora,1309, Sofia (Bulgaria); Belenkiy, V. Ya., E-mail: mtf@pstu.ru; Varushkin, S. V., E-mail: stepan.varushkin@mail.ru [The department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Perm, 614990 (Russian Federation)
2014-04-15
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.
Interaction of light filaments in air
Institute of Scientific and Technical Information of China (English)
Xi Ting-Ting; Lu Xin; Hao Zuo-Qiang; Me Yuan-yuan; Zhang Jie
2009-01-01
This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crcssing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.
International Nuclear Information System (INIS)
Effect of multiple Coulomb scattering and of longitudinal external magnetic field on development of resistive sausage instability of relativistic electron beam propagating within ohmic gas and plasma medium was studied. The mentioned factors were shown to reduce essentially amplitude of sausage mode
Multiple filamentation Ti:Sapphire-laser pulses in water
Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Kabanov, A. M.; Kuchinskaya, O. I.; Mayor, A. Yu.; Matvienko, G. G.; Petrov, A. V.; Sokolova, E. B.
2015-11-01
The results of experimental studies of the spatial characteristics of multiple filamentation terawatt femtosecond Ti:Salaser in water are presented. With an increase in initial power laser pulses increases the number of filaments, the length of the field is increased filamentation and reducing the length of the filaments have been shown. The distribution of the filaments in the longitudinal direction of the field of multiple filamentation has a maximum cross-sectional filament is shifted from the center to the periphery of the beam at the end region of filamentation. The minimum diameter of the beam on the track corresponds to the position of the maximum number of filaments. After the point of maximum impulse essentially loses energy in the initial direction of propagation. Upon reaching the pulse power 2 104 Pcr of multiple filamentation area is formed of a hollow cone, the apex directed to the radiation source.
International Nuclear Information System (INIS)
The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium
Particle beam pellet fusion. Final report, November 1, 1976--January 31, 1979
International Nuclear Information System (INIS)
A model was developed for the propagation of a focussed ion beam through the gas that may exist in the target chamber of a reactor. The model contains the effects of beam ion stripping, background plasma generation by the beam ions, and electron avalanching in the electric fields produced by the ion pulse. Charge and partial current neutralization, together with stability conditions and the effects of preionization have been investigated, with most recent emphasis being on the role of filamentation instabilities
Laser beam deflection in nonlinearly steepened flow profiles
International Nuclear Information System (INIS)
A simple model is presented for laser beam deflection by nonlinear induced profile changes near the sonic point in an expanding plasma. The deflection angle scales as a weak power of the laser intensity, since the flow is resonantly perturbed. A significant deflection can occur even in the absence of filamentation which, however, can further enhance the deflection angle. Improved calculations of filamentation in flowing plasmas require consideration of these self-consistent modifications of the zeroth-order state, which can act to stabilize the instability. LASNEX calculations are used to illustrate the self-consistent profile changes and beam deflection. (Author)
Czech Academy of Sciences Publication Activity Database
Komárek, Jiří; Komárková, J.; Kling, H.
San Diego: Academic Press pro Elsevier Science, 2003 - (Wehr, J.; Sheath, R.), s. 117-196 ISBN 0-12-741550-5 R&D Projects: GA AV ČR KSK6005114 Keywords : filamentous cyanobacteria * freshwater algae * North America Subject RIV: EF - Botanics
International Nuclear Information System (INIS)
Ion beam induced epitaxy of amorphous Si layers onto left-angle 100 right-angle substrates has been investigated by varying the As concentration. At As concentrations below 4x1018/cm3 no rate effect is observed. In the intermediate regime, between 4x1018/cm3 and 2x1021/cm3, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2x1021/cm3, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of ∼6x1021/cm3, twins are observed to form
On the viability of the single wave model for the beam plasma instability
Carlevaro, Nakia; Terzani, Davide
2016-01-01
We analyze the interaction of a cold fast electron beam with a thermalized plasma, in the presence of many Langmuir modes. The work aims at characterizing the deviation of the system behavior from the single mode approximation, both with respect to a consistent spectral analysis of the most unstable mode harmonics and to the presence of a dense spectrum, containing linearly unstable and stable modes. We demonstrate how, on the one hand, the total energy fraction adsorbed by the harmonics is negligible at all; and, on the other hand, the additional Langmuir modes can be excite via an avalanche mechanism, responsible for a transport in the particle velocity space. In particular, we show that the spectral broadening outlines a universal shape and the distribution function, associated to the avalanche mechanism, has an asymptotic plateau, differently from the coherent structures characterizing the single wave model.
Energy Technology Data Exchange (ETDEWEB)
Priolo, F.; Rimini, E. (Dipartimento di Fisica, Corso Italia 57, I-95129 Catania, Italy (IT)); Spinella, C. (Istituto di Metodologie e Tecnologie per la Microelettronica, CNR, Catania, (IT)); Ferla, G. (SGS-Thomson, Stradale Primosole 50, I-95100 Catania, (IT))
1990-01-01
Ion beam induced epitaxy of amorphous Si layers onto {l angle}100{r angle} substrates has been investigated by varying the As concentration. At As concentrations below 4{times}10{sup 18}/cm{sup 3} no rate effect is observed. In the intermediate regime, between 4{times}10{sup 18}/cm{sup 3} and 2{times}10{sup 21}/cm{sup 3}, the growth rate increases linearly with the logarithm of As concentration and reaches a value about a factor of 2 higher than that of intrinsic Si. At concentrations above 2{times}10{sup 21}/cm{sup 3}, the epitaxy experiences a sudden, severe retardation. Finally, at a concentration of {similar to}6{times}10{sup 21}/cm{sup 3}, twins are observed to form.
Towards filament free semiconductor lasers
DEFF Research Database (Denmark)
McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.;
2000-01-01
We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....
Towards filament free semiconductor lasers
DEFF Research Database (Denmark)
McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.; Mullane, Mark; Houlihan, John; O'Neill, Eamonn; Moloney, Jerome V.; Indik, Robert A.
We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....
International Nuclear Information System (INIS)
Spectroscopic measurements are reported of the plasma formed inside a cathode having a ferroelectric source incorporated in it. The measurements were performed during generation of a high-frequency modulated electron beam in a planar diode with the above cathode. A qualitative model is suggested, which is based on fast periodic appearance of anomalous plasma resistance. The latter is supposed to be due to generation of ion-acoustic instability
International Nuclear Information System (INIS)
The x-ray pinhole camera diagnostics on the Advanced Photon Source (APS) storage ring have recorded an effective transverse beam size instability during operations with a sextuplet plus 22 singlets fill pattern. These instabilities were not observed with the sextuplet plus 25 triplets fill pattern that has been the standard fill pattern in FY'98. The instability threshold is at 82-85 mA with positrons. The features include an increased average (few seconds) transverse size both horizontally and vertically for stored currents above the threshold with a correlated effect on the beam lifetime. The horizontal transverse emittance is 25-30% larger at 100 mA than below the threshold. There is a related horizontal beam centroid motion as well, but this does not explain the vertical size change nor the lifetime effect. Complementary data were also taken with the diagnostic undulator, and a similar threshold effect on divergence was observed. The cross-comparison of the data and possible mechanisms is presented
Final beam transport in the reactor chamber
International Nuclear Information System (INIS)
The beam transport in heavy ion fusion (HIF) accelerators is discussed. The qualitative features of transport effects are presented. The basic transport effects associated with HIF beam are space charge effects, atomic physics effects, zero-order plasma effects, and plasma instabilities. In the case of HIF, very high intensity of HIF beam is required, and its own electric repulsion does not keep the beam converging. The number of beams required for supplying the demand power at a target can be estimated. The beam charge deposited on a target pellet produces electrostatic potential, and the electrostatic repulsion prevents the beam to reach on the target. The upper limit of the gas pressure is determined by small angle Coulomb scattering. Since unneutralized beam has the pinching force, the electrostatic kink mode (wiggle mode) should be considered in the pressure region where beam neutralization does not occur. Two-stream instability, filamentation instability and self-pinched transport are considered. As a conclusion of this paper, the new first choice for HIF transport is to use ballistic transport in moderate vacuum. (Kato, T.)
Rupture and recoil of bent-core liquid crystal filaments.
Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A
2016-05-25
The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824
Experimental study of a three dimensional cylinder-filament system
Brosse, Nicolas; Lundell, Fredrik; Bagheri, Shervin
2015-01-01
This experimental study reports on the behavior of a filament attached to the rear of a three- dimensional cylinder. The axis of the cylinder is placed normal to a uniform incoming flow and the filament is free to move in the cylinder wake. The mean position of the filament is studied as a function of the filament length L. It is found that for long (L/D > 6.5, where D is the cylinder diameter) and short (L/D < 2) filaments the mean position of the filament tends to align with the incoming flow, whereas for intermediate filament lengths (2 < L/D < 6.5) the filament lies down on the cylinder and tends to align with the cylinder axis. The underlying mechanism of the bifurcations are discussed and related to buckling and inverted-pendulum-like instabilities.
Dynamics of filament formation in a Kerr medium
International Nuclear Information System (INIS)
We have studied the large-scale beam breakup and filamentation of femtosecond pulses in a Kerr medium. We have experimentally monitored the formation of stable light filaments, conical emission, and interactions between filaments. Three major stages lead to the formation of stable light filaments: First the beam breaks up into a pattern of connected lines (constellation), then filaments form on the constellations, and finally the filaments release a fraction of their energy through conical emission. We observed a phase transition to a faster filamentation rate at the onset of conical emission. We attribute this to the interaction of conical emissions with the constellation which creates additional filaments. Numerical simulations show good agreement with the experimental results
Localized Rayleigh Instability in Evaporation Fronts
Diamant, Haim; Agam, Oded
2009-01-01
A qualitatively different manifestation of the Rayleigh instability is demonstrated, where, instead of the usual extended undulations and breakup of the liquid into many droplets, the instability is localized, leading to an isolated narrowing of the liquid filament. The localized instability, caused by a nonuniform curvature of the liquid domain, plays a key role in the evaporation of thin liquid films off solid surfaces.
Failure and nonfailure of fluid filaments in extension
DEFF Research Database (Denmark)
Hassager, Ole; Kolte, Mette Irene; Renardy, Michael
fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain of...
Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E
2016-06-01
Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host. PMID:27337469
Endocytosis in filamentous fungi
Kalkman, Edward R I C
2007-01-01
Endocytosis is little understood in filamentous fungi. For some time it has been controversial as to whether endocytosis occurs in filamentous fungi. A comparative genomics analysis between Saccharomyces cerevisiae and 10 genomes of filamentous fungal species showed that filamentous fungi possess complex endocytic machineries. The use of the endocytic marker dye FM4-64, and various vesicle trafficking inhibitors revealed many similarities between endocytosis in the filamentous ...
Failure and nonfailure of fluid filaments in extension
DEFF Research Database (Denmark)
Hassager, Ole; Kolte, Mette Irene; Renardy, Michael
The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain of...... the elastic instability....
Laser-plasma interaction with an adaptive optics wavefront-corrected laser beam
International Nuclear Information System (INIS)
The propagation of an intense laser beam trough a preformed plasma is of particular interest in order to achieve laser inertial confinement fusion. Experiments carried out with a near-diffraction limited laser beam, producing a single hot spot interacting with the plasma, delivered new results, presented in this Ph.D. dissertation. In particular the first experimental observation of the filament instability confirms the numerous theoretical and numerical studies on the subject. Beam spreading and filament-ion thresholds are studied thanks to near-field and far-field images, with respect to laser intensity, time and space, and plasma transverse velocity. Same diagnostics have been applied to the stimulated Brillouin scattered light, enabling the first observation of the transverse Brillouin activity in the plasma. (author)
Energy Technology Data Exchange (ETDEWEB)
Roth, Andre
2012-12-15
At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.
Multiple Filamentation of Laser Pulses in a Glass
Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.
2016-03-01
Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.
Ivanov, S V
1981-01-01
Collective effects in the acceleration and storage of particles have recently attracted considerable interest. The authors discuss the theory of the longitudinal multipole instabilities of coupled modes of a bunched beam. Up to now, there has been no electrodynamic calculation of the excitation of the resonant elements around the beam, so that only impedances of a simple resonator type are used (the variations in the longitudinal component of the electric field on the resonator axis are not taken into account). Furthermore, and particularly significantly, elements of a waveguide nature have been ignored (the accelerating systems of the CERN SPS synchrotron in the working frequency band are examples of such elements). The authors' intention is to correct these deficiencies of the theory. (7 refs).
Necklace beam generation in nonlinear colloidal engineered media.
Silahli, Salih Z; Walasik, Wiktor; Litchinitser, Natalia M
2015-12-15
Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity. PMID:26670494
International Nuclear Information System (INIS)
It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)
The hydrodynamic stability of gaseous cosmic filaments
Birnboim, Yuval; Zinger, Elad
2016-01-01
Virial shocks at edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted towards the center of the respective halo, filament or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between $10^{11}-10^{13}M_\\odot Mpc^{-1}.$ Using a simplified toy model, we then show that these filaments will likely feed halos with $10^{10}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{13}M_{\\odot}$ at redshift $z=3$, as well as $10^{12}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{15}M_{\\odot}$ at $z=0$. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filam...
Filamentous Fungi Fermentation
DEFF Research Database (Denmark)
Nørregaard, Anders; Stocks, Stuart; Woodley, John;
2014-01-01
Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...
Modulational instability and spontaneous pattern formation with incoherent white light
International Nuclear Information System (INIS)
Full Text:One of the most fundamentals phenomena in nonlinear dynamics is the spontaneous formation of ordered structures, known as pattern formation or Modulational instability. Essentially, modulational instability is a process in which a spatially homogeneous state of a nonlinear system is becoming unstable and small spatial perturbations with a specific periodicity are enhanced through the nonlinearity, until diffraction, dispersion or diffusion counterbalances the effect and a regular pattern is formed. In optics, modulational instability has been reported in many materials with diverse nonlinearities; however, until recently, pattern formation in nonlinear optical systems was studied with frilly coherent light. Several years ago a new concept was introduced, when spontaneous pattern formation was predicted and demonstrated to occur with quasi-monochromatic spatially incoherent beams. Here we report the first experimental observation of pattern formation with incoherent white light. We demonstrate that spatially and temporally incoherent beam, emanating from an incandescent light bulb and propagating in nonlinear medium, spontaneously break up to produce an ordered structure of 10-micron-thick filaments. We show that in this process, where all colors interact with each other, the whole temporal spectrum is collectively becoming unstable at a common threshold value of the nonlinearity and all wavelengths (temporal frequencies) ''lock'' to a single periodic pattern. Furthermore, we show that the spectrum of the pattern self-adjusts as the beam propagates in the nonlinear medium so that the contrast of the pattern is higher at shorter wavelengths, as predicted by our theoretical model
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574
Kaganovich, I D
2015-01-01
This paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. The approximate expression for this growth rate is $\\gamma \\approx (1/13)\\omega_{pe}(n_{b}/n_{p})(L\\omega_{pe}/v_{b})\\ln (L\\omega_{pe}/v_{b})[ 1-0.18\\cos ( L\\omega_{pe}/v_{b}+{\\pi }/{2}) ]$, where $\\omega_{pe}$ is the electron plasma frequency, $n_{b}$ and $n_{p}$ are the beam and the plasma densities, respectively, $v_{b}$ is the beam velocity, and $L$ is the plasma width. The frequency, wave number and the spatial and temporal growth rates as functions of the plasma size exhibit band structure.
Filament propagation length of femtosecond pulses with different transverse modes
Kaya, N; Kaya, G; Strohaber, J; Kolomenskii, A A; Schuessler, H A
2014-01-01
We experimentally studied intense femtosecond pulse filamentation and propagation in water for Gaussian, Laguerre-Gaussian, and Bessel-Gaussian incident beams. These different transverse modes for incident laser pulses were created from an initial Gaussian beam by using a computer generated hologram technique. We found that the length of the filament induced by the Bessel-Gaussian incident beam was longer than that for the other transverse modes under the conditions of the same peak intensity, pulse duration, and the size of the central part of the beam. To better understand the Bessel-Gaussian beam propagation, we performed a more detailed study of the filament length as a function of the number of radial modal lobes. The length increased with the number of lobes, implying that the radial modal lobes serve as an energy reservoir for the filament formed by the central intensity peak.
Instabilities in astrophysical jets
International Nuclear Information System (INIS)
Instabilities in astrophysical jets are studied in the nonlinear regime by performing 2D numerical classical gasdynamical calculations. The instabilities which arise from unsteadiness in output from the central engine feeding the jets, and those which arise from a beam in a turbulent surrounding are studied. An extra power output an order of magnitude higher than is normally delivered by the engine over a time equal to (nozzle length)/(sound velocity at centre) causes a nonlinear Kelvin-Helmholtz instability in the jet walls. Constrictions move outwards, but the jet structure is left untouched. A beam in turbulent surroundings produces internal shocks over distances of a few beam widths. If viscosity is present the throughput of material is hampered on time scales of a few beam radius sound travel times. The implications are discussed. (Auth.)
Solar Features - Prominences and Filaments - Filaments
National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)
Pressure effects on the femtosecond laser filamentation
Qi, Xiexing; Ma, Cunliang; Lin, Wenbin
2016-01-01
We investigate the pressure effects on the propagation of the laser pulse with wavelength of 800 nm by numerical simulations. We consider the effects on the on-axis intensity, the beam radius and the energy of the filament, as well as the on-axis density of plasma. Numerical results show that when the pressures increase, the length, radius and energy of the light filament become shorter, narrower and lower, respectively. Moreover, we find that the length and the radius of filament are approximately inversely proportional to the pressure and the square root of pressure, respectively, and the pulse with shorter duration is easier to be affected by the pressure. We also obtain the conclusion that the plasma is not necessary to generate the filament in gases in various pressures, as stated by Béjot et al. [1] for the case of standard atmosphere pressure.
Ion beam transport and focus for LMF using an achromatic solenoidal lens system
International Nuclear Information System (INIS)
The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF
High brightness semiconductor lasers with reduced filamentation
DEFF Research Database (Denmark)
McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.; Houlihan, John; Mullane, Mark; O'Neill, Eamonn
High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...
High brightness semiconductor lasers with reduced filamentation
DEFF Research Database (Denmark)
McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;
1999-01-01
High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...
Reduced filamentation in high power semiconductor lasers
DEFF Research Database (Denmark)
Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter
1999-01-01
High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations in...... the optical field causes spatial hole-burning and thus filamentation. To reduce filamentation we propose a new, relatively simple design based on inhomogeneous pumping in which the injected current has a gradual transverse profile. We confirm the improved laser performance theoretically and...
Weibel, Two-Stream, Filamentation, Oblique, Bell, Buneman... which one grows faster ?
Bret, A
2009-01-01
Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full 3D dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the Filamentation (Weibel), Two-Stream, Buneman, Bell instabilities (and more) is thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameters phase space, t...
Dadonaite, Bernadeta; Vijyakrishnan, Swetha; Fodor, Ervin; Bhella, David; Hutchinson, Edward C.
2016-01-01
Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summaris...
Gradient catastrophe and flutter in vortex filament dynamics
Konopelchenko, B G
2011-01-01
Gradient catastrophe and flutter instability in the motion of vortex filament within the localized induction approximation are analyzed. It is shown that the origin if this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes motion of filament with slow varying curvature and torsion. Geometrically this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlev\\'e-I equation.
Gradient catastrophe and flutter in vortex filament dynamics
International Nuclear Information System (INIS)
Gradient catastrophe and flutter instability in the motion of a vortex filament within the localized induction approximation are analyzed. It is shown that the origin of this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes the motion of a filament with slow varying curvature and torsion. Geometrically, this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve-I equation. (fast track communication)
Gradient catastrophe and flutter in vortex filament dynamics
Energy Technology Data Exchange (ETDEWEB)
Konopelchenko, B G [Dipartimento di Fisica, Universita del Salento and INFN, Sezione di Lecce, 73100 Lecce (Italy); Ortenzi, G, E-mail: giovanni.ortenzi@unimib.it [Dipartimento di Matematica Pura ed Applicazioni, Universita di Milano Bicocca, 20125 Milano (Italy)
2011-10-28
Gradient catastrophe and flutter instability in the motion of a vortex filament within the localized induction approximation are analyzed. It is shown that the origin of this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes the motion of a filament with slow varying curvature and torsion. Geometrically, this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve-I equation. (fast track communication)
Experimental study of a three-dimensional cylinder-filament system
Brosse, Nicolas; Finmo, Carl; Lundell, Fredrik; Bagheri, Shervin
2015-06-01
This experimental study reports on the behavior of a filament attached to the rear of a three-dimensional cylinder. The axis of the cylinder is placed normal to a uniform incoming flow, and the filament is free to move in the cylinder wake. The mean position of the filament is studied as a function of the filament length L. It is found that for long ( L/ D 6.5, where D is the cylinder diameter) and short ( L/ D 2) filaments, the mean position of the filament tends to align with the incoming flow, whereas for intermediate filament lengths (2 L/ D 6.5), the filament lies down on the cylinder and tends to align with the cylinder axis. The underlying mechanism of the bifurcations is discussed and related to buckling and inverted-pendulum-like instabilities.
Institute of Scientific and Technical Information of China (English)
K. Toi; K. Narihara; K. Tanaka; T. Tokuzawa; H. Yamada; Q. Yang; LHD experimental group; S. Ohdachi; S. Yamamoto; S. Sakakibara; K. Y. Watanabe; N. Nakajima; X. Ding; J. Li; S. Morita
2004-01-01
MHD stability of the Large Helical Device (LHD) plasmas produced with intense neutral beam injection is experimentally studied. When the steep pressure gradient near the edge is produced through L-H transition or linear density ramp experiment, interchange-like MHD modes whose rational surface is located very close to the last closed flux surface are strongly excited in a certain discharge condition and affect the plasma transport appreciably. In NBI-heated energetic ion loss, but also trigger the formation of internal and edge transport barriers.
Covert connection of filaments
Filippov, Boris
2015-01-01
We analyse the relationship between two near filaments, which do not show any connection in H-alpha images but reveal close magnetic connectivity during filament activations in Extreme Ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory} (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120 deg. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3-D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux ro...
Ruiz, Michael J.; Perkins, James
2016-05-01
We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.
Mackenzie's Demon with instabilities
International Nuclear Information System (INIS)
MacKenzie's Maxwell Demon, consisting of positively biased thin wires, heats plasma electrons without significantly affecting the plasma potential. Experiments were performed on the Maxwell Demon in a multi-dipole confined filament discharge. It is shown that given adequate bias, the Demon reduces a bi-Maxwellian electron distribution function to a single Maxwellian electron distribution function. It is shown that a small planar electrode can perform identical heating as the Demon, provided that the electrode has the area of approximately three times the Demon's conductive surface area. The instability that limits the Demon's operation is investigated. Time-resolved measurements of changes in global electron temperature, plasma density and plasma potential within a cycle of the instability are considered. It is found that the Demon's instability is a repeating pulsed anode spot. Density measurements indicate that the frequency of the instability is dependent on plasma production and loss rates. The neutral pressure dependence of the anode spot instability is measured and modeled for the first time. (paper)
Taming contact line instability for pattern formation
Deblais, A.; Harich, R.; Colin, A.; Kellay, H.
2016-08-01
Coating surfaces with different fluids is prone to instability producing inhomogeneous films and patterns. The contact line between the coating fluid and the surface to be coated is host to different instabilities, limiting the use of a variety of coating techniques. Here we take advantage of the instability of a receding contact line towards cusp and droplet formation to produce linear patterns of variable spacings. We stabilize the instability of the cusps towards droplet formation by using polymer solutions that inhibit this secondary instability and give rise to long slender cylindrical filaments. We vary the speed of deposition to change the spacing between these filaments. The combination of the two gives rise to linear patterns into which different colloidal particles can be embedded, long DNA molecules can be stretched and particles filtered by size. The technique is therefore suitable to prepare anisotropic structures with variable properties.
Modifications of the laser beam coherence inertial confinement fusion plasmas
International Nuclear Information System (INIS)
Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)
The general dispersion relation of induced streaming instabilities in quantum outflow systems
Energy Technology Data Exchange (ETDEWEB)
Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A. [Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)
2015-11-15
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.
The general dispersion relation of induced streaming instabilities in quantum outflow systems
International Nuclear Information System (INIS)
In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields
Transverse modulational instability of collinear waves
International Nuclear Information System (INIS)
The transverse modulational instability, or filamentation, of two collinear waves is investigated using a coupled nonlinear Schro at sign;udinger-equation model. For infinite media it is shown that the presence of the second laser field increases the growth rate of the instability and decreases the scale length of the most unstable filaments. Systems of two copropagating waves are shown to be convectively unstable and systems of two counterpropagating waves are shown to be absolutely unstable, even when the ratio of backward- to forward-wave intensity is small. For two counterpropagating waves in finite media, the threshold intensities for the absolute instability depend only weakly on the ratio of wave intensities. The general theory is applied to the pondermotive filamentation of two light waves in homogeneous plasma
Summary of longitudinal instabilities workshop
International Nuclear Information System (INIS)
A five-day ISABELLE workshop on longitudinal instabilities was held at BNL, August 9--13, 1976. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber. A discussion is given of the mechanism governing the instability, and calculations as well as measurements of the longitudinal coupling impedances in the ISABELLE rings are described
Biophysics of filament length regulation by molecular motors
Kuan, Hui-Shun; Betterton, M. D.
2013-06-01
Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.
Femtosecond Laser Filamentation
Chin, See Leang
2010-01-01
Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...
... Risk Factors Is shoulder instability the same as shoulder dislocation? No. The signs of dislocation and instability might ... the same to you--weakness and pain. However, dislocation occurs when your shoulder goes completely out of place. The shoulder ligaments ...
Quadrantids filaments modeling
Rosaev, Alex
2012-01-01
Numeric integration of orbits of particles along mean orbit of Quadrantid meteor stream is done at time span 20000 years. Orbits are subdivided on several classes by their evolution type. A very complex dynamical behavior is detected. About 20% of modeled particles escape stream: this fact point on that stream cannot be long-live and have a source within 5000 years. After that, Quadrantid filaments dynamics are studied. By comparison of different authors data, 7 independent filaments are sele...
Modulation Instability of Non-paraxial Beams for Self-Focusing Kerr Media%自聚焦克尔类电介质中非傍轴光束调制非稳的研究
Institute of Scientific and Technical Information of China (English)
冯敏; 薛云; 卫青; 施解龙
2004-01-01
Propagation stability of non-paraxial beam in nonlinear Kerr media is investigated with a linear stability method. Both theoretical analysis and numerical simulation show that modulation instability(MI) gain spectrum has three different distribution features determined by the times of incident power p0 and the non-paraxial parameter a. Furthermore, the corresponding criterion is put forward to distinguish the three different distributions.
Dynamics of wave fronts and filaments in anisotropic cardiac tissue
Dierckx, Hans J F M
2015-01-01
The heartbeat is mediated between cardiac cells by waves of electrical depolarisation. During cardiac arrhythmias, electrical activity was found to be organised in scroll waves which rotate around a dynamical filament curve. In this thesis, a curved-space approach is used to mathematically capture anisotropy of wave propagation. We derive for the first time the covariant laws of motion for traveling wave fronts and scroll wave filaments in anisotropic excitable media such as cardiac tissue. We show that locally varying anisotropy yields non-zero Riemann tensor components, which may alter the stability of scroll wave filaments. The instability of scroll wave filaments has been linked to transition from ventricular tachycardia to fibrillation.
International Nuclear Information System (INIS)
In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)
Filament power regulator for thermal ionization mass spectrometry
International Nuclear Information System (INIS)
A device has been developed that will control the filament temperature in a thermal ionization mass spectrometer. The arrangement is superior to past methods to control this critical parameter. The operating principle lies in the feature of filament power control as contrasted with the formerly used voltage or current controls. Reproducibility and stability of ion beams showed great improvement. The mass spectrometer was developed to analyze for parts-per-billion concentrations of uranium in water samples
Measurements of fast transition instability in RHIC
Energy Technology Data Exchange (ETDEWEB)
Ptitsyn, V.; Blaskiewicz, M.; Fischer, W.; Lee, R.; Zhang, S.Y.
2010-05-23
A fast transition instability presents a limiting factor for ion beam intensity in RHIC. Several pieces of evidence show that electron clouds play an important role in establishing the threshold of this instability. In RHIC Runs8 the measurements of the instability, using a button BPM, were done in order to observe details of the instability development on the scale over hundreds and thousands turns. The paper presents and discusses the results of those measurements in time and frequency domains.
Modes of storage ring coherent instabilities
International Nuclear Information System (INIS)
Longitudinal impedance in a beam and various modes of longitudinal coherent instabilities are discussed. The coasting beam coherent instability, microwave instability, and single-bunch longitudinal coherent instabilities are considered. The Vlasov equation is formulated, and a method of solving it is developed. The synchrotron modes are treated, which take the possible bunch shape distortion fully into consideration. A method of treating the synchrotron mode coupling in the case of a small bunch is discussed which takes advantage of the fact that only a few of the synchrotron modes can contribute in such a case. The effect of many bunches on the coherent motion of the beam and the longitudinal symmetric coupled bunch modes are discussed. The transverse impedance is then introduced, and the transverse coasting beam instability is discussed. Various bunched beam instabilities are discussed, including both single bunch instabilities and coupled bunch instabilities. The Vlasov equation for transverse as well as longitudinal motion of particles is introduced as well as a method of solving it within a linear approximation. Head-tail modes and short bunch instabilities and strong coupling instabilities in the long bunch case are covered
Nonparametric Filament Estimation
Genovese, Christopher R; verdinelli, Isabella; Wasserman, Larry
2010-01-01
We develop nonparametric methods for estimating filamentary structure from planar point process data and find the minimax lower bound for this problem. We show that, under weak conditions, the filaments have a simple geometric representation as the medial axis of the data distribution's support. Our methods convert an estimator of the support's boundary into an estimator of the filaments. We find the rates of convergence of our estimators and show that when using an optimal boundary estimator, they achieve the minimax rate. Our work can be regarded as providing a solution to the manifold learning problem as well as being a new approach to principal curve estimation.
Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.
1995-01-01
The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.
Smith, Matthew V; Sekiya, Jon K
2010-06-01
Hip instability is becoming a more commonly recognized source of pain and disability in patients. Traumatic causes of hip instability are often clear. Appropriate treatment includes immediate reduction, early surgery for acetabular rim fractures greater than 25% or incarcerated fragments in the joint, and close follow-up to monitor for avascular necrosis. Late surgical intervention may be necessary for residual symptomatic hip instability. Atraumatic causes of hip instability include repetitive external rotation with axial loading, generalized ligamentous laxity, and collagen disorders like Ehlers-Danlos. Symptoms caused by atraumatic hip instability often have an insidious onset. Patients may have a wide array of hip symptoms while demonstrating only subtle findings suggestive of capsular laxity. Traction views of the affected hip can be helpful in diagnosing hip instability. Open and arthroscopic techniques can be used to treat capsular laxity. We describe an arthroscopic anterior hip capsular plication using a suture technique. PMID:20473129
Lens tilting effect on filamentation and filament-induced fluorescence
Kamali, Y.; Sun, Q.; Daigle, J.-F.; Azarm, A.; Bernhardt, J.; Chin, S. L.
2009-03-01
In filament-induced fluorescence spectroscopy, we experimentally found that if the lens used for the creation and localization of filament is tilted, the signal to noise ratio of spectral measurement increases. Further study shows that with lens tilting, astigmatism occurs and the filament is split into shorter parts. In turn the shortening of filament reduces the generation of white light which is the major 'noise' source of the spectra.
Branching of keratin intermediate filaments.
Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward
2016-06-01
Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023
Positrusion Filament Recycling System Project
National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers...
Solar Features - Prominences and Filaments
National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...
Cryopreservation of Filamentous Fungi
Czech Academy of Sciences Publication Activity Database
Homolka, Ladislav
New York: Nova Science Publishers, Inc, 2013 - (Colvert, A.; Coty, H.), s. 1-66 ISBN 978-1-62618-474-9 R&D Projects: GA ČR GAP504/12/0709 Institutional support: RVO:61388971 Keywords : cryopreservation * filamentous fungi Subject RIV: EE - Microbiology, Virology
Instability of liquid crystal elastomers
An, Ning; Li, Meie; Zhou, Jinxiong
2016-01-01
Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.
Energy Technology Data Exchange (ETDEWEB)
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
Experimental studies on beam-plasma interaction
International Nuclear Information System (INIS)
Beam-handling technology has reached now at such a level as to enable highly controlled experiments of beam-plasma interaction. Varieties of hypotheses and suppositions about the beam propagation and interaction in space plasma can be proved and often be corrected by examining the specific processes in laboratory plasma. The experiments performed in this way by the author are briefed: ion beam instability in unmagnetized plasma; ion beam instability perpendicular to magnetic field; and electron beam instability. (Mori, K.)
White-light filaments induced by diffraction effects.
Cook, K; Kar, A; Lamb, R A
2005-03-21
The effect of beam spatial profile on self-focusing has been investigated. A circular aperture is used to create a Fresnel diffraction pattern. It is shown that self-focusing (a pre-requisite for filament formation) occurs in the presence of the aperture but that no formation is observed when the aperture is removed, even though the beam has higher power well above the threshold for critical power. An analytical solution to the Huygens-Fresnel diffraction integral shows that the axial intensity oscillates between maxima and minima as the distance from the aperture increases and that filament formation coincides with the presence of an axial maximum. PMID:19495086
Summary of longitudinal instabilities workshop
Energy Technology Data Exchange (ETDEWEB)
Chasman, R.
1976-01-01
A five-day ISABELLE workshop on longitudinal instabilities was held at Brookhaven, August 9-13, 1976. About a dozen outside accelerator experts, both from Europe and the U.S.A., joined the local staff for discussions of longitudinal instabilities in ISABELLE. An agenda of talks was scheduled for the first day of the workshop. Later during the week, a presentation was given on the subject ''A more rigorous treatment of Landau damping in longitudinal beam instabilities''. A few progress meetings were held in which disagreements regarding calculations of coupling impedances were clarified. A summary session was held on the last day. Heavy emphasis was put on single bunched beam instabilities in the microwave region extending above the cut-off frequency of the ISABELLE vacuum chamber.
International Nuclear Information System (INIS)
This thesis deals with the role of an inertial plasma response produced by laser pulses in self-focusing regime. This phenomenon is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses and excites various ionization channels for femtosecond pulses. We start by deriving the propagation equations accounting for filamentation due to optical Kerr effect and stimulated Brillouin scattering in the presence of a dynamical plasma response. Then, we present numerical results on the nonlinear propagation of large-scaled laser beams. These results validate the anti-Brillouin system adopted on the MegaJoule laser (LMJ). Next, we present numerical and theoretical results on filamentation of nanosecond light pulses operating in the ultraviolet and infrared range in fused silica. Emphasis is put on the action of a dynamical plasma response. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistationary balance breaks up through modulational instabilities induced by plasma feedback on the pump wave. We show that phase modulations suppress both stimulated Brillouin scattering and plasma instabilities. Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Secondly, we compare the filamentation dynamics in silica and KDP crystal. The ionization model for KDP crystals takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power for self-focusing. (author)
Solid friction between soft filaments
Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir
2015-01-01
Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...
A multimode description of the non-linear evolution of modulational instabilities in plasmas
International Nuclear Information System (INIS)
A general discussion of modulational instabilities in plasmas is given. The basic mechanism is a four wave interaction and examples include the langmuir modulational instability, the oscillating two-stream instability and the filamentation of laser light in plasmas. General equations for the modulation of finite amplitude, high frequency waves in unmagnetised plasmas are given. The stability properties of the linearised equations are briefly discussed and the conservation relations of the fully nonlinear equations are obtained. The filamentation of an electromagnetic wave in a plasma is discussed in more detail. Exact analytic solutions of the fully nonlinear equations are obtained, and the resulting filamentation length compared with experiment. (author)
Filament heater current modulation for increased filament lifetime
International Nuclear Information System (INIS)
The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed
Dynamics of large femtosecond filament arrays: possibilities, limitations, and trade-offs
Walasik, Wiktor
2015-01-01
Stable propagation of large, multifilament arrays over long distances in air paves new ways for microwave-radiation manipulation. Although, the dynamics of a single or a few filaments was discussed in some of the previous studies, we show that the stability of large plasma filament arrays is significantly more complicated and is constrained by several trade-offs. Here, we analyze the stability properties of rectangular arrays as a function of four parameters: relative phase of the generating beams, number of filaments, separation between them, and initial power. We find that arrays with alternating phase of filaments are more stable than similar arrays with all beams in phase. Additionally, we show that increasing the size of an array increases its stability, and that a proper choice of the beam separation and the initial power has to be made in order to obtain a dense and regular array of filaments.
Different approaches to modeling the LANSCE H- ion source filament performance
Draganic, I. N.; O'Hara, J. F.; Rybarcyk, L. J.
2016-02-01
An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H- surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K-2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz-120 Hz.
Different approaches to modeling the LANSCE H− ion source filament performance
International Nuclear Information System (INIS)
An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H− surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K–2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz–120 Hz
Different approaches to modeling the LANSCE H{sup −} ion source filament performance
Energy Technology Data Exchange (ETDEWEB)
Draganic, I. N., E-mail: draganic@lanl.gov; O’Hara, J. F.; Rybarcyk, L. J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-02-15
An overview of different approaches to modeling of hot tungsten filament performance in the Los Alamos Neutron Science Center (LANSCE) H{sup −} surface converter ion source is presented. The most critical components in this negative ion source are two specially shaped wire filaments heated up to the working temperature range of 2600 K–2700 K during normal beam production. In order to prevent catastrophic filament failures (creation of hot spots, wire breaking, excessive filament deflection towards source body, etc.) and to improve understanding of the material erosion processes, we have simulated the filament performance using three different models: a semi-empirical model, a thermal finite-element analysis model, and an analytical model. Results of all three models were compared with data taken during LANSCE beam production. The models were used to support the recent successful transition from the beam pulse repetition rate of 60 Hz–120 Hz.
Joly, Laurent; Chassaing, Patrick; Chapin, Vincent; Reinaud, Jean; Micallef, J; Suarez, Juan; Bretonnet, L
2003-01-01
1. Introduction - Illustrative examples from experiments and simulations 2. The baroclinic torque in high Froude number flows, its organization, scale and order of magnitude 3. Stability of the inhomogeneous mixing-layer 4. Transition of the inhomogeneous mixing-layer and the 2D secondary baroclinic instability 5. The strain field of 2D light jets 6. Transition to three-dimensionality in light jets and the question of side-jets 7. Baroclinic instability of heavy vortices and...
Energy Technology Data Exchange (ETDEWEB)
Schmitt, R.; Froehner, S.; Coblenz, G.; Christopoulos, G. [Institut fuer Diagnostische und Interventionelle Radiologie, Herz- und Gefaessklinik GmbH, Bad Neustadt an der Saale (Germany)
2006-10-15
This review addresses the pathoanatomical basics as well as the clinical and radiological presentation of instability patterns of the wrist. Carpal instability mostly follows an injury; however, other diseases, like CPPD arthropathy, can be associated. Instability occurs either if the carpus is unable to sustain physiologic loads (''dyskinetics'') or suffers from abnormal motion of its bones during movement (''dyskinematics''). In the classification of carpal instability, dissociative subcategories (located within proximal carpal row) are differentiated from non-dissociative subcategories (present between the carpal rows) and combined patterns. It is essential to note that the unstable wrist initially does not cause relevant signs in standard radiograms, therefore being ''occult'' for the radiologic assessment. This paper emphasizes the high utility of kinematographic studies, contrast-enhanced magnetic resonance imaging (MRI) and MR arthrography for detecting these predynamic and dynamic instability stages. Later in the natural history of carpal instability, static malalignment of the wrist and osteoarthritis will develop, both being associated with significant morbidity and disability. To prevent individual and socio-economic implications, the handsurgeon or orthopedist, as well as the radiologist, is challenged for early and precise diagnosis. (orig.)
Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.
1980-01-01
A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.
Filament Identification through Mathematical Morphology
Koch, Eric W
2015-01-01
We present a new algorithm for detecting filamentary structure FilFinder. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FilFinder identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where dat...
Institute of Scientific and Technical Information of China (English)
谭燕秋; 马立荣
2013-01-01
Tests have been carried out to study the mechanical property when the negative bending region of combination of steel-concrete composite box beams is under compression.This paper emphasizes the discussion of the computation model of the local stability when box beams is under compression.By comparing the local stability of box beams when under compression with the box beams which is welding studs,pouring concrete slab of certain thickness,this paper is to provide the reference for the optimization design of the bottom slabs of the negative bending region of combination of steel-concrete composite box beams.Results showed that cast-in-place concrete slab in compression state can effectively prevent the occurrence of local buckling instability ; it can reduce the stress of the concrete slab and improve the negative bending region of concrete beams of the ultimate bearing capacity.%针对钢-混凝土组合箱梁负弯矩区底板在受压状态下的力学性能,建立箱梁底板在受压作用下的局部稳定性计算模型.通过对一般箱梁底板在受压作用下的局部稳定性计算和对箱梁底板焊接栓钉并浇筑一定厚度的混凝土板的局部稳定性的计算进行对比分析.结果表明:在受压状态下现浇混凝土板可以有效防止发生局部屈曲失稳,降低箱梁底板的应力,提高弯矩区混凝土梁的极限承载能力.
Soliton on thin vortex filament
International Nuclear Information System (INIS)
Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)
International Nuclear Information System (INIS)
Shoulder instability is a common clinical feature leading to recurrent pain and limitated range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging. (orig.)
Transverse Instabilities in the Fermilab Recycler
Energy Technology Data Exchange (ETDEWEB)
Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.
Transverse Instabilities in the FERMILAB Recycler
Prost, L R; Shemyakin, A; Bhat, C M; Crisp, J; Eddy, N
2012-01-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.
Filament free electron gun and ISU generator
International Nuclear Information System (INIS)
Electron Beam Curing consists of the use of accelerated electrons for the creation of chemical reactions such as polymerisation cross linking or grafting. Electron guns use thermal emission to produce electrons before accelerating them towards the products to be cured. In the range of energy from 150 kV to 300 kV, A.I.D. has developed a new machine that is more adapted to industrial uses. A filament free system that is more reliable, tougher and easier to maintain than conventional systems, is described. The ISU (Induction Spire Unique) high voltage generator is also described briefly. (U.K.)
Solar Filament Extraction and Characterizing
Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.
2010-05-01
This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).
Chaperonin filaments: The archael cytoskeleton
Energy Technology Data Exchange (ETDEWEB)
Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.
1997-08-01
Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.
Effects of filament geometry on the arc efficiency of a high-intensity He+ ion source.
Kobuchi, T; Kisaki, M; Shinto, K; Okamoto, A; Kitajima, S; Sasao, M; Tsumori, K; Kaneko, O; Sakakita, H; Kiyama, S; Hirano, Y; Wada, M
2008-10-01
A strongly focusing high-intensity He(+) ion source equipped with three concave electrodes has been designed and constructed as the beam source for a high-energy He(0) neutral beam probe system to diagnose fusion-produced alpha particles in thermonuclear fusion plasmas. The reduction of heat load onto the concave extraction electrodes is particularly important for a long pulse operation, as the heat load deforms the electrodes and thus the beam focal length. The effects on the arc efficiency (beam current/arc power) of the ion source due to the discharge filament structure (straight-type and L-shape-type filaments), size (filament diameters of 2 and 1.5 mm), number, and the locations have been studied. Choice of the appropriate filament structure improved the arc efficiency by 17%. PMID:19044629
Comparison of instability theory with simulation results
International Nuclear Information System (INIS)
The results of a quantitative comparison between linear instability theory and simulation results for a third order charge fluctuation mode in a quadrupole - focused beam are summarized. The theory is found to provide a good account of the initial instability exhibited by the simulation computations
International Nuclear Information System (INIS)
Numerical simulations of the temporal evolution of laser light filamentation and stimulated Brillouin forward scattering (SBFS) in plasmas, under conditions that are relevant to laser fusion, are presented and analyzed. Long term unsteady behavior of filaments is observed to be the norm. Temporal and spatial incoherence due to filamentation and SBFS are impressed upon time-independent incident laser beams. The bandwidth and angular divergence imposed upon the beam increase with the strength of the interaction. In addition, the spectrum of the transmitted light is redshifted by an amount that increases with the interaction strength. Spectral analysis of the transmitted light reveals that SBFS plays a role in the generation of the observed temporal incoherence. Incident beams with some spatial incoherence but no temporal smoothing are compared to those with ab initio temporal beam smoothing (TBS). Under typical conditions, TBS beams will undergo far less angular and spectral spreading and far less SBFS than unsmoothed beams
Large scale filaments associated with Milky Way spiral arms
Wang, Ke; Ginsburg, Adam; Walmsley, C Malcolm; Molinari, Sergio; Schisano, Eugenio
2015-01-01
The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments, including 6 identified from a pilot search field plus 3 from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)$\\times10^4 \\, M_\\odot$, and beam-averaged ($28"$, or 0.4-0.7 pc) peak H$_2$ column densities of (1.7-9.3)$\\times 10^{22} \\, \\rm{cm^{-2}}$. The bulk of the filaments are relatively cold (17-21 K), whi...
RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION
International Nuclear Information System (INIS)
Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.
Supergranular-scale magnetic flux emergence beneath an unstable filament
Palacios, J.; Cid, C.; Guerrero, A.; Saiz, E.; Cerrato, Y.
2015-11-01
Aims: Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. Methods: We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 Å sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. Results: This flux emergence happened very close to a filament barb that was very active in mass motion, as seen in 304 Å images. The observed flux emergence exhibited hectogauss values. The flux emergence extent appeared just beneath the filament, and the filament rose during the following hours. The emergence acquired a size of 33'' in ~12 h, about ~0.16 km s-1. The rate of signed magnetic flux is around 2 × 1017 Mx min-1 for each polarity. We have also studied the eruption speed, size, and dynamics. The mean velocity of the rising filament during the ~40 min previous to the flare is 115 ± 5 km s-1, and the subsequent acceleration in this period is 0.049 ± 0.001 km s-2. Conclusions: We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergence takes place in the photospheric level below the filament. Reconnection occurs underneath the filament between the dipped lines that support the filament and the supergranular emergence. The very smooth ascent is probably caused by this emergence and torus instability
Studies on electron cloud instability in BEPCⅡ
Institute of Scientific and Technical Information of China (English)
LIU Yu-Dong; YUE Jun-Hui; WANG Na
2009-01-01
Electron Cloud Instability has been studied in the operation of BEPC.The BEPC Ⅱ began the commissioning in November 2006 and the positron beam current has reached 500 mA.Because of such a high beam current,some instabilities such as ECI,bunch lengthening et al,have appeared during the operation.The experimental investigation on ECI during the commissioning of BEPC Ⅱ will be reported in this paper.
Analysis of microscopic instability for rotating LIB
International Nuclear Information System (INIS)
The instability of a neutral hollow beam is investigated within the framework of the Vlasov-Maxwell equations. It is assumed that the hollow beam is thin with the radial thickness a which is much smaller than the major radius R0, and that the equilibrium beam charge is neutralized by the background electron charge. The stability analysis is carried out for perturbations about the beam equilibrium distribution function fsub(b)0. The detailed instability properties are calculated for a variety of system parameters. (author)
The propagation dynamics of ultraviolet light filament with Rayleigh scattering in air
Institute of Scientific and Technical Information of China (English)
Zhang Hua
2005-01-01
In this paper we present for the first time the effects of Rayleigh scattering on the long distance propagation of ultraviolet (UV) light filament in air based on the stationary analysis. The simulation results show that the effects of Rayleigh scattering on the propagation of UV laser filaments may not be ignored. These influences are slightly dependent on the laser wavelength. We also compare the UV filament propagations at different input powers in the presence and the absence of the Rayleigh scattering and discuss the mechanisms of power loss and beam defocusing.In the absence of Rayleigh scattering, the filament propagation is determined by the oscillating behaviour of the beam size. In the presence of the scattering, the propagation lengths of filament are close to each other at different initial powers and determined by the Rayleigh scattering.
Resonantly enhanced filamentation in gases
Doussot, J; Billard, F; Béjot, P; Faucher, O
2016-01-01
In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses.
Schrijver, C J; Kliem, B; Toeroek, T; Title, A M
2007-01-01
We examine the early phases of two near-limb filament destabilization involved in coronal mass ejections on 16 June and 27 July 2005, using high-resolution, high-cadence observations made with the Transition Region and Coronal Explorer (TRACE), complemented by coronagraphic observations by Mauna Loa and the SOlar and Heliospheric Observatory (SOHO). The filaments' heights above the solar limb in their rapid-acceleration phases are best characterized by a height dependence h(t) ~ t^m with m near, or slightly above, 3 for both events. Such profiles are incompatible with published results for breakout, MHD-instability, and catastrophe models. We show numerical simulations of the torus instability that approximate this height evolution in case a substantial initial velocity perturbation is applied to the developing instability. We argue that the sensitivity of magnetic instabilities to initial and boundary conditions requires higher fidelity modeling of all proposed mechanisms if observations of rise profiles are...
Instabilities in the transient response of muscle
Vilfan, A; Vilfan, Andrej; Duke, Thomas
2003-01-01
We investigate the isometric transient response of muscle using a quantitative stochastic model of the actomyosin cycle based on the swinging lever-arm hypothesis. We first consider a single pair of filaments, and show that when values of parameters such as the lever-arm displacement and the crossbridge elasticity are chosen to provide effective energy transduction, the T2 curve (the tension recovered immediately after a step displacement) displays a region of negative slope. If filament compliance and the discrete nature of the binding sites are taken into account, the negative slope is diminished, but not eliminated. This implies that there is an instability in the dynamics of individual half-sarcomeres. However, when the symmetric nature of whole sarcomeres is taken into account, filament rearrangement becomes important during the transient: as tension is recovered, some half-sarcomeres lengthen while others shorten. This leads to a flat T2 curve, as observed experimentally. In addition, we investigate the...
The link between CMEs, filaments and filament channels
Directory of Open Access Journals (Sweden)
S. F. Martin
2008-10-01
Full Text Available We present a broad concept for the build-up to eruptive solar events which needs to be tested in future observational and theoretical research. In this concept an eruptive solar event consists of a coronal mass ejection, a filament eruption, a cavity around the filament, and a flare. In our picture, the initial energy source must be external to this eruptive system but also feed into it. Among all eruptive events the common denominator is a filament channel with canceling magnetic fields along a primary polarity reversal boundary. We find that magnetic reconnection at or close to the photosphere is the only interpretation of canceling fields to date that is consistent with observations of filament channels. This reconnection serves to transfer magnetic flux from the photosphere into the chromosphere and corona along polarity reversal boundaries and concurrently initiates the building of a filament channel. Magnetic flux, in excess of that needed to sustain the filament channel, goes into building a filament magnetic field that is always aligned with the polarity reversal boundary and the channel magnetic field. The filament magnetic field remains separated from overarching coronal magnetic fields by the magnetic field of the cavity. The magnetic flux being transported upward from the photosphere/chromosphere carries streams of plasma into the corona along the filament magnetic field. However, the flowing and counterstreaming filament mass also slowly drains out of the field and thereby leaves behind new strands of cavity magnetic field with little or no associated mass. When the build-up of magnetic pressure in the filament and cavity magnetic fields exceeds that of the overlying coronal loops, the coronal loops, the filament and the cavity together begin an observable slow rise which can last a few hours to many days before rapid onset and ejection with a solar flare. We suggest that this process can be accelerated by any number of external
Implications of the PSR instability for the SNS
International Nuclear Information System (INIS)
The Los Alamos Proton Storage Ring suffers from a violent, high frequency, transverse instability at high beam current. The Spallation Neutron Source will be similar to the PSR and one must insure that the PSR instability will not keep SNS from reaching its design goal. Efforts toward understanding the instability are described
Pearson, Christopher; Bowen, Leon; Lee, Myung Won; Fisher, Alison L.; Linton, Katherine E.; Bryce, Martin R.; Petty, Michael C.
2013-01-01
We report on the mechanism of operation of organic thin film resistive memory architectures based on an ambipolar compound consisting of oxadiazole, carbazole, and fluorene units. Cross-sections of the devices have been imaged by electron microscopy both before and after applying a voltage. The micrographs reveal the growth of filaments, with diameters of 50 nm–100 nm, on the metal cathode. We suggest that these are formed by the drift of aluminium ions from the anode and are responsible for the observed switching and negative differential resistance phenomena in the memory devices.
Stefan, V. Alexander
2010-11-01
I propose a laser burnt-through cone for the suppression, (elimination), of plasma instabilities in fast ignition pellets.ootnotetextM. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M.D. Perry, Phys. Plasmas 1 (5), 1626 (1994).^,ootnotetextV. Alexander Stefan, Bulletin APS-DPP, 2006;2007. Laser-REB, relativistic electron beam, hybridootnotetextV. Alexander Stefan, Nonlinear Electromagnetic Radiation Plasma Interactions, (S-U-Press, 2008). may prove to be, (if the burnt-through laser intensity is 20% of the total intensity), an effective tool for the control of variety of plasma instabilities, in particular for instabilities leading to the generation of colossal B-fields: Weibel instabilities and filamentation of the REB. In the latter case, (B-fields due to ∇n x ∇T mechanism), laser radiation, (φo, ko), ``breaks'' the unstable waves, k ˜ k0 (φpe/φo), through the Kolmogorovootnotetext A. N. Kolmogorov, Doklady Academii. Nauk SSSR, 30, 301, (1941). cascades into shorter wavelengths, transferring the energy into a nonlinear Landau damping domain. The stabilization take place on the time scale ˜REB propagation length/ion acoustic velocity.
Activity Cycle of Solar Filaments
Indian Academy of Sciences (India)
K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su
2007-06-01
Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).
Instability investigation for storage mode
International Nuclear Information System (INIS)
The Amsterdam Pulse Stretcher (AmPS) will be used in storage mode for internal target (IT) physics. It demands the beam lifetime at least at the order of half an hour and the stored beam current of 200 mA. Bunched beam instabilities have been observed in many storage rings. The low-Q broadband impedance drives the single-bunch instability. The single bunch treshold and the equilibrium bunch length as the function of energies, RF voltages, and RF frequencies are investigated. The code ZAP has been used for investigating the stability thresholds for AmPS in storage mode. This note presents the simulation results. They gave useful information for choosing the RF parameters of AmPS. (author). 3 refs.. 6 figs.. 3 tabs
Modulation Instability in Biased Photorefractive-Photovoltaic Crystals
Institute of Scientific and Technical Information of China (English)
LU Ke-Qing; ZHAO Wei; YANG Yan-Long; SUN Chuan-Dong; GAO Hong-Wen; LI Jin-Ping; ZHANG Yan-Peng
2004-01-01
@@ We show the modulation instability of broad optical beams in biased photorefractive-photovoltaic crystals under steady-state conditions. This modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam intensity to that of the dark irradiance. Under appropriate conditions, this modulation instability growth rate is the modulation instability growth rate studied previously in biased photorefractive-nonphotovoltaic crystals, and the modulation instability growth rate in open- and closed-circuit photorefractive-photovoltaic crystals can be predicted.
Wakefields and Instabilities in Linear Accelerators
Ferrario, M; Palumbo, L
2014-01-01
When a charged particle travels across the vacuum chamber of an accelerator, it induces electromagnetic fields, which are left mainly behind the generating particle. These electromagnetic fields act back on the beam and influence its motion. Such an interaction of the beam with its surro undings results in beam energy losses, alters the shape of the bunches, and shifts the betatron and synchrotron frequencies. At high beam current the fields can even lead to instabilities, thus limiting the performance of the accelerator in terms of beam quality and current intensity. We discuss in this lecture the general features of the electromagnetic fields, introducing the concepts of wakefields and giving a few simple examples in cylindrical geometry. We then show the effect of the wakefields on the dynamics of a beam in a linac, dealing in particular with the beam breakup instability and how to cure it.
Beam halo in high-intensity beams
International Nuclear Information System (INIS)
In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam
International Nuclear Information System (INIS)
Full Text: Recently, the self-focusing dynamics of high-power, ultrashort laser pulses has attracted significant attention, particularly for the case in which high-power pulses propagate in air. The resulting long-distance filamentation behavior has been exploited for remote sensing in the atmosphere. The dynamic balance between Kerr self-focusing and defocusing due to plasma generation may be affected by the laser beam noise, inducing multiple filamentation (MF). We will describe our investigations on control of beam breakup into multiple filaments and methods for generation of a single filament. The experiments were carried using both .low. and .high. quality beams. We also investigated the power scaling for the beam collapse and demonstrate that the difference in the collapse dynamics between .low-power (PcriiPiiPMF) and .high-power (PiiPMF) beams is due to the effect of input beam noise. The uncontrolled beam collapse to a large number of filament results in randomly distributed filamentation. This feature makes the measurements of any single filament characteristics very difficult. Recently we proposed a new scheme for multiple filament stabilization by introducing astigmatism to the beam using a tilted lens. Thus, we can reduce the number of filaments and arrange the spatial pattern, making the task of measuring a single filament plausible. In this presentation we present the st report on measuring of phenomena directly related to the electron density of a single filament and its dynamics along the propagation axis, at high powers (PiiPcr). Using an electrical discharge probe we measured the variation in the net transverse electron density of a single filament. We have used this method to determine the length of the plasma filament, and to observe the dynamics of the created plasma channel. Our group was also studying both theoretically and experimentally a simple approach for control of propagation distance. We used a double-lens system, in which the
INSIGHTS INTO FILAMENT ERUPTION ONSET FROM SOLAR DYNAMICS OBSERVATORY OBSERVATIONS
International Nuclear Information System (INIS)
We examine the buildup to and onset of an active region filament confined eruption of 2010 May 12, using EUV imaging data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight magnetic data from the SDO Helioseismic and Magnetic Imager. Over the hour preceding eruption the filament undergoes a slow rise averaging ∼3 km s-1, with a step-like trajectory. Accompanying a final rise step ∼20 minutes prior to eruption is a transient preflare brightening, occurring on loops rooted near the site where magnetic field had canceled over the previous 20 hr. Flow-type motions of the filament are relatively smooth with speeds ∼50 km s-1 prior to the preflare brightening and appear more helical, with speeds ∼50-100 km s-1, after that brightening. After a final plateau in the filament's rise, its rapid eruption begins, and concurrently an outer shell 'cocoon' of the filament material increases in emission in hot EUV lines, consistent with heating in a newly formed magnetic flux rope. The main flare brightenings start ∼5 minutes after eruption onset. The main flare arcade begins between the legs of an envelope-arcade loop that is nearly orthogonal to the filament, suggesting that the flare results from reconnection among the legs of that loop. This progress of events is broadly consistent with flux cancellation leading to formation of a helical flux rope that subsequently erupts due to onset of a magnetic instability and/or runaway tether cutting.
Laser-Induced Hydrodynamic Instability of Fluid Interfaces
Casner, Alexis; Delville, Jean-Pierre
2003-04-01
We report on a new class of electromagnetically driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid microjet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability mechanism is experimentally demonstrated. It simply relies on total reflection of light at the deformed interface whose condition provides the universal scaling relation for the onset PS of the instability.
Core and filament formation in magnetized, self-gravitating isothermal layers
International Nuclear Information System (INIS)
We examine the role of the gravitational instability in an isothermal, self-gravitating layer threaded by magnetic fields on the formation of filaments and dense cores. Using a numerical simulation, we follow the non-linear evolution of a perturbed equilibrium layer. The linear evolution of such a layer is described in the analytic work of Nagai et al. We find that filaments and dense cores form simultaneously. Depending on the initial magnetic field, the resulting filaments form either a spiderweb-like network (for weak magnetic fields) or a network of parallel filaments aligned perpendicular to the magnetic field lines (for strong magnetic fields). Although the filaments are radially collapsing, the density profile of their central region (up to the thermal scale height) can be approximated by a hydrodynamical equilibrium density structure. Thus, the magnetic field does not play a significant role in setting the density distribution of the filaments. The density distribution outside of the central region deviates from the equilibrium. The radial column density distribution is then flatter than the expected power law of r –4 and similar to filament profiles observed with Herschel. Our results do not explain the near constant filament width of ∼0.1pc. However, our model does not include turbulent motions. It is expected that the accretion-driven amplification of these turbulent motions provides additional support within the filaments against gravitational collapse. Finally, we interpret the filamentary network of the massive star forming complex G14.225-0.506 in terms of the gravitational instability model and find that the properties of the complex are consistent with being formed out of an unstable layer threaded by a strong, parallel magnetic field.
Geints, Yu. E.; Zemlyanov, A. A.
2016-06-01
Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.
Energy Technology Data Exchange (ETDEWEB)
Grech, M
2007-06-15
Inertial confinement fusion by laser requires smoothed laser beam with well-controlled coherence properties. Such beams are made of many randomly distributed intensity maxima: the so-called speckles. As the laser beam propagates through plasma its temporal and spatial coherence can be reduced. This phenomenon is called plasma induced smoothing. For high laser intensities, instabilities developing independently inside the speckles are responsible for the coherence loss. At lower intensities, only collective effects, involving many speckles, can lead to induced smoothing. This thesis is a theoretical, numerical and experimental study of these mechanisms. Accounting for the partially incoherent behavior of the laser beams requires the use of statistical description of the laser-plasma interaction. A model is developed for the multiple scattering of the laser light on the self-induced density perturbations that is responsible for a spreading of the temporal and spatial spectra of the transmitted light. It also serves as a strong seed for the instability of forward stimulated Brillouin scattering that induces both, angular spreading and red-shift of the transmitted light. A statistical model is developed for this instability. A criterion is obtained that gives a laser power (below the critical power for filamentation) above which the instability growth is important. Numerical simulations with the interaction code PARAX and an experiment performed on the ALISE laser facility confirm the importance of these forward scattering mechanisms in the modification of the laser coherence properties. (author)
Laser Filament Induced Water Condensation
Kasparian J.; Webe K.; Vogel A; Petit Y.; Lüder J.; Hao Z.Q.; Rohwetter P.; Petrarca M.; Stelmaszczyk K.; Henin S.; Wöste L.; Wolf J.-P.
2013-01-01
At relative humidities above 70%, femtosecond laser filaments generate aerosol particles and water droplets in the atmosphere. The water vapour condensation and droplet stabilization are assured by soluble species produced in the laser plasma.
Comparative study of evaporation using DC and AC filament electron guns
Lahiri, Sutanwi; Sahu, G. K.; Baruah, S.; Jana, B.; Dixit, A. R.; Bhardwaj, R. L.; Das, R. C.; Kalra, R.; Kaushik, V.; Majumder, A.; Mohapatra, S.; Dikshit, B.; Mishra, K. K.; Bhatia, M. S.; Bapat, A. V.; Mago, V. K.; Thakur, K. B.; Das, A. K.; Gantayet, L. M.
2012-11-01
Electron beam assisted physical vapour deposition (EB-PVD) and purification of metal by repeated melting using electron guns is a well-established technique in industrial metallurgy. Strip electron gun is considered a cost effective alternative to multiple pencil guns for handling of large size substrates. In the electron guns, the thermionic emission of the electrons from a filament is achieved by using AC or DC filament heating. A study of their relative merits and demerits was conducted for the both types of electron guns. Due to finite length of the filament, the magnetic field generated around the filament by heating current drops down towards ends. The DC filament heating results in electron beam with a comet shape having high power density hot spot at one end with low power density tails. With AC filament heating, electron beam oscillates with the frequency as that of heating current. The study of vapour flux distribution using DC gun revealed that highly directional vapour evolution takes place from a smaller hot spot whereas with AC gun vapour evolution occurs from an oscillatory 2D-evaporating source. The vapour deposit on substrate indicated that evaporation using DC gun caused splashing and granular deposit due to volumetric melting and evaporation from the ingot. This is contrary to the AC filament heating wherein quiet evaporation was observed due to surface melting and evaporation. The experimental results are critically reviewed to decide the configuration of electron guns for large-scale evaporation.
Comparative study of evaporation using DC and AC filament electron guns
International Nuclear Information System (INIS)
Electron beam assisted physical vapour deposition (EB-PVD) and purification of metal by repeated melting using electron guns is a well-established technique in industrial metallurgy. Strip electron gun is considered a cost effective alternative to multiple pencil guns for handling of large size substrates. In the electron guns, the thermionic emission of the electrons from a filament is achieved by using AC or DC filament heating. A study of their relative merits and demerits was conducted for the both types of electron guns. Due to finite length of the filament, the magnetic field generated around the filament by heating current drops down towards ends. The DC filament heating results in electron beam with a comet shape having high power density hot spot at one end with low power density tails. With AC filament heating, electron beam oscillates with the frequency as that of heating current. The study of vapour flux distribution using DC gun revealed that highly directional vapour evolution takes place from a smaller hot spot whereas with AC gun vapour evolution occurs from an oscillatory 2D-evaporating source. The vapour deposit on substrate indicated that evaporation using DC gun caused splashing and granular deposit due to volumetric melting and evaporation from the ingot. This is contrary to the AC filament heating wherein quiet evaporation was observed due to surface melting and evaporation. The experimental results are critically reviewed to decide the configuration of electron guns for large-scale evaporation.
Formation and disruption of Alfvenic filaments in Hall magnetohydrodynamics
International Nuclear Information System (INIS)
In magnetohydrodynamics with Hall effect (Hall-MHD), weakly nonlinear quasimonochromatic dispersive Alfven waves propagating along an ambient magnetic field can develop to transverse instabilities leading to the formation of intense magnetic filaments. This phenomenon, described as a transverse collapse within the asymptotic approach provided by the nonlinear Schroedinger equation for the pump envelope, was also reproduced by spectral direct numerical simulations of the Hall-MHD system. We address here the dynamics at longer times, using a finite difference scheme with adaptive mesh refinement to reproduce a strong filamentation regime, supplemented by a shock capturing scheme in the final phase of the simulations. We observe a strong distortion of the early time cylindrical filaments, associated with flattening and twisting of the structures and the transition from nonlinear waves to a hydrodynamic regime, characterized by intense current sheets and a strong acceleration of the plasma. A configuration where the intensity of the magnetic filaments saturates while the velocity field is still growing is also identified in the spectral simulation of a regime with moderate scale separation
Microcyle Conidiation in Filamentous Fungi
Jung, Boknam; Kim, Soyeon; Lee, Jungkwan
2014-01-01
The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without formi...
Particles trajectories in Weibel magnetic filaments with a flow-aligned magnetic field
Bret, Antoine
2016-01-01
For a Weibel shock to form, two plasma shells have to collide and trigger the Weibel instability. At saturation, this instability generates in the overlapping region magnetic filaments with peak field $B_f$. In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this results still holds in the presence of an external magnetic field $B_0$, provided it is not too high. Yet, for $B_0 \\gtrsim B_f/2$, the filaments become unable to stop any particle, regardless of its initially velocity.
Observations of CO in the eastern filaments of NGC 1275
Salomé, P; Combes, F; Pety, J; Downes, D; Edge, A C; Fabian, A C
2008-01-01
We recently found extended CO(2-1) emission from cold molecular gas embedded in the network of Halpha filaments surrounding the galaxy NGC 1275 (Salome et al. 2006). We now present CO(2-1) interferometer maps of the eastern filaments, at high spatial and spectral resolutions. The cold molecular gas is detected by the Plateau de Bure Interferometer along the eastern filaments over an extent of 15'', or with a projected length of 5kpc. In our 2.5'' beam, the main CO filament is mostly unresolved along its minor axis. The multiple peaks along the CO filaments and the low values of the observed CO brightness temperatures imply further unresolved structures that may be giant molecular clouds. These clouds have very narrow line-width emission lines (~30 km/s). The CO emission is optically thick. It very likely traces cold clouds bound under their own self-gravity that may be falling back in the gravitational potential well of the galaxy. Such a picture would agree with current models of ``positive feedback'' in whi...
Jarnac, Amélie; Durand, Magali; Houard, Aurélien; Liu, Yi; Prade, Bernard; Richardson, Martin; Mysyrowicz, André
2014-01-01
We demonstrate spatiotemporal cleaning of a femtosecond laser pulse impinging on two counterpropagating filaments in air. The retroreflected signal essentially has a perfect beam profile. Prepulses present in the incident pulse are also efficiently removed. The performance of the “filament mirror” is explained by a plasma-mediated wave mixing process that can be viewed as a transient three-dimensional hologram.
Single-Species Weibel Instability of Radiationless Plasma
Borodachev, L V
2009-01-01
A Particle-in-Cell (PIC) numerical simulation of the electron Weibel instability is applied in a frame of Darwin (radiationless) approximation of the self-consistent fields of sparse plasma. As a result, we were able to supplement the classical picture of the instability and, in particular, to obtain the dependency of the basic characteristics (the time of development and the maximum field energy) of the thermal anisotropy parameter, to trace the dynamic restructuring of current filaments accompanying the nonlinear stage of the instability and to trace in detail the evolution of the initial anisotropy of the electron component of plasma.
Thermal modulational instability in laser-produced plasmas
International Nuclear Information System (INIS)
In this paper, the authors have investigated the effect of nonlocal electron heat transport on the modulational instability of intense electromagnetic waves in laser produced plasmas. For this purpose, they have considered the combined effect of the usual ponderomotive force and the inverse-bremsstrahlung of radiation causing electron pressure perturbations. It is found that a reduction in the electron thermal conductivity can result in larger temperature modulations, driving larger density perturbations and enhancing the modulational/filamentation instabilities. In conclusion, they stress that the present investigation complements the authors current understanding of the stimulated scattering instabilities associated with any intense electromagnetic wave that is employed for the inertial confinement fusion
Institute of Scientific and Technical Information of China (English)
Duan Zuo-Liang; Chen Jian-Ping; Li Ru-Xin; Lin Li-Huang; Xu Zhi-Zhan
2004-01-01
We report the experiments on the optical breakdown and filamentation of femtosecond laser pulses propagating in air at a kHz repetition rate and with several hundreds micro-joule-energy. A 10m-long filament and its breakup and merging at the nonlinear focal region produced by modulational instability of femtosecond laser pulses in air are observed. A simple model based on the nonlinear Schrodinger equation coupled with multiphoton ionization law is presented to explain the several experimental results.
Transverse dynamics of dispersive Alfven waves. I. Direct numerical evidence of filamentation
International Nuclear Information System (INIS)
The three-dimensional dynamics of a small-amplitude monochromatic Alfven wave propagating along an ambient magnetic field is simulated by direct numerical integration of the Hall-magnetohydrodynamics equations. As predicted by the two-dimensional nonlinear Schroedinger equation or by more general amplitude equations retaining the coupling to low-frequency magnetosonic waves, the transverse instability of the pump leads to wave collapse and formation of intense magnetic filaments, in spite of the presence of competing, possibly linearly dominant, instabilities that in some instances distort the above structures. In computational boxes, including a large number of pump wavelengths, an early arrest of the collapse is possible under the effect of quasi-transverse instabilities that drive magnetosonic waves and also prescribe the directions of the filaments
Miller, Mark S; Tanner, Bertrand C. W.; Lori R. Nyland; Vigoreaux, Jim O.
2010-01-01
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanica...
Boolean gates on actin filaments
Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew
2016-01-01
Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.
Droplets engulfing on a filament
Wu, Xiang-Fa; Yu, Meng; Zhou, Zhengping; Bedarkar, Amol; Zhao, Youhao
2014-03-01
Two immiscible droplets wetting on a filament may assume engulfing, partial-engulfing, or non-engulfing morphology that depends on the wetting behavior and geometries of the resulting droplet-on-filament system. This paper studies the wetting behavior of two immiscible droplets contacting and sitting symmetrically on a straight filament. A set of ordinary differential equations (ODEs) is formulated for determining the wetting morphology of the droplet-on-filament system. In the limiting case of engulfing or non-engulfing, the morphology of the droplet-on-filament system is determined in explicit form. In the case of partial-engulfing, surface finite element method is further employed for determining the wetting morphology, surface energy, and internal pressures of droplets of the system. Numerical scaling study is performed to explore their dependencies upon the wetting properties and geometries of the system. The study can be applicable for analysis and design of textiles with tailorable wetting properties and development of novel multifunctional fibrous materials for environmental protection such as oil-spill sorption, etc.
Masson-Laborde, Paul-Edouard; Hueller, Stefan; Pesme, Denis; Loiseau, Pascal; Labaune, Christine; Bandulet, Heidi
2008-11-01
The mechanism explaining the low level of Stimulated Brillouin Scattering observed in laser-plasma experiments with monospeckle laser beams, carried out at the LULI facility, is studied by means of numerical simulations. For the regime where the beam power is well above the self-focusing critical power, simulations carried out with the codes Harmony2D and HERA-ILP (in 2D and 3D geometry respectively), show time-averaged reflectivities of the order of only a few percent. Because of self-focusing and the filament resonant instability, SBS takes only place in self-focused hot spots located in the low-density front part of the plasma. The shortened hot spot sizes and the steepened flow-profile dramatically reduce SBS. This scenario may also applies to the most intense laser hot spots in a spatially smoothed laser beam.
On the relationship between ELM filaments and solar flares
International Nuclear Information System (INIS)
Both solar flares and edge localised modes (ELMs) involve magnetised plasma eruptions which sporadically eject field-aligned filamentary structures into the surrounding, low density envelope: the far scrape-off layer (SOL) in the case of the tokamak and interplanetary space in the case of the sun. The erupting filamentary structures display many similarities and have been occasionally compared in the popular and specialist literatures. In this contribution, the dynamical evolution of solar flares and ELM filaments is separately reviewed, after which the relationship between the two phenomena is examined. In particular, four families of dynamical theories of ELM filament evolution, classified according to the electric field ordering and the absence/presence of magnetic reconnection at the X-point, are compared with experimental measurements on tokamaks. This comparison reveals that theories, which encompass the drift ordering, offer better overall agreement with ELM filament observations than their MHD ordered counterparts. Although MHD ordered dynamics can describe the linear and early non-linear phases of ELM evolution, they must be supplemented by drift ordered dynamics to capture the saturation phase of the instability and the evolution of filamentary structures in the SOL. In other words, an integrated model of the ELM must include finite gyro-radius terms, in particular gradient-B and curvature guiding centre drifts arising from non-uniformities in the magnetic field and diamagnetic drifts arising from non-uniformities in the thermodynamic variables. This is consistent with the observed resemblance between ELM filaments and turbulent eddies, or blobs, observed in the SOL during ohmic and low confinement mode (L-mode) operation. In contrast, the dynamical evolution of solar flares is shown to be predominantly MHD ordered, although drift ordered effects play a role in some aspects of solar flare physics, eg. magnetic reconnection. It is concluded that ELM
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
Energy Technology Data Exchange (ETDEWEB)
Dergachev, A A; Kandidov, V P; Shlenov, S A [Lomonosov Moscow State University, Faculty of Physics, Moscow (Russian Federation); Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2014-12-31
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
International Nuclear Information System (INIS)
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)
Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air
Dergachev, A. A.; Ionin, A. A.; Kandidov, V. P.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Shlenov, S. A.; Shustikova, A. P.
2014-12-01
We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis.
Observation of transverse instabilities in the FNAL 200 MeV Linac
Energy Technology Data Exchange (ETDEWEB)
McCrory, E.; Lee, G.; Webber, R.C.
1988-10-01
Using newly installed Beam Position Monitors in the downstream half of the FNAL Linac, we have observed significant transverse beam instabilities within the 30 ..mu..s beam pulse. We can affect the instability so that the peak-to-peak amplitude is as small as 0.5 mm or as large as 8 mm. The effect is largely due to a beam-plasma instability in the ten-meter 750-keV transport line. Other causes are being investigated. Using these instabilities as an analysis tool, the betatron amplitude of the beam has been reduced. 7 refs., 4 figs.
Temperature Controlled Filamentation in Argon Gas
Institute of Scientific and Technical Information of China (English)
CAO Shi-Ying; KONG Wei-Peng; SONG Zhen-Ming; QIN Yu; LI Ru-Xin; WANG Qing-Yue; ZHANG Zhi-Gang
2008-01-01
Temperature controlled filamentation is experimentally demonstrated in a temperature gradient gas-filled tube.The proper position of the tube is heated by a furnace and two ends of the tube are cooled by air. The experimental results show that multiple filaments are shrunken into a single fila.ment or no filament only by increasing the temperature at the beginning of the filament. This technique offers another degree of freedom of controlling the filamentation and opens a new way for intense monocycle pulse generation through gradient temperature in a noble gas.
Angle-resolved multioctave supercontinua from mid-infrared laser filaments.
Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Mitryukovsky, S I; Rozhko, M V; Pugžlys, A; Fedotov, A B; Panchenko, V Ya; Baltuška, A; Zheltikov, A M
2016-08-01
Angle-resolved spectral analysis of a multioctave high-energy supercontinuum output of mid-infrared laser filaments is shown to provide a powerful tool for understanding intricate physical scenarios behind laser-induced filamentation in the mid-infrared. The ellipticity of the mid-infrared driver beam breaks the axial symmetry of filamentation dynamics, offering a probe for a truly (3+1)-dimensional spatiotemporal evolution of mid-IR pulses in the filamentation regime. With optical harmonics up to the 15th order contributing to supercontinuum generation in such filaments alongside Kerr-type and ionization-induced nonlinearities, the output supercontinuum spectra span over five octaves from the mid-ultraviolet deep into the mid-infrared. Full (3+1)-dimensional field evolution analysis is needed for an adequate understanding of this regime of laser filamentation. Supercomputer simulations implementing such analysis articulate the critical importance of angle-resolved measurements for both descriptive and predictive power of filamentation modeling. Strong enhancement of ionization-induced blueshift is shown to offer new approaches in filamentation-assisted pulse compression, enabling the generation of high-power few- and single-cycle pulses in the mid-infrared. PMID:27472598
Microbunching Instability Modeling in the SPARX configurations
International Nuclear Information System (INIS)
The modeling of the microbunching instability has been carried out for the SPARX FEL accelerator, two configurations have been considered and compared: hybrid compression scheme (velocity bunching plus magnetic compressor) and purely magnetic. The effectiveness of a lattice tuning together with the use of a laser heather has been exploited to reduce the instability drawbacks on the electron beam quality. Analytical predictions and start to end simulation results are reported in this paper.
Weibel Filament Decay and Thermalization in Collisionless Shocks and Gamma-Ray Burst Afterglows
Milosavljevic, M; Milosavljevic, Milos; Nakar, Ehud
2006-01-01
Models for the synchrotron emission of gamma-ray burst afterglows suggest that the magnetic field is generated in the shock wave that forms as relativistic ejecta plow through the circum-burst medium. Transverse Weibel instability efficiently generates magnetic fields near equipartition with the post-shock energy density. The detailed saturated state of the instability, as seen in particle-in-cell simulations, consists of magnetically self-pinched current filaments. The filaments are parallel to the direction of propagation of the shock and are about a plasma skin depth in radius, forming a quasi--two-dimensional structure. We use a rudimentary analytical model to argue that the Weibel filaments are unstable to a kink-like mode, which destroys their quasi--two-dimensional structure. For wavelengths longer than than the skin depth, the instability grows at the rate equal to the speed of light divided by the wavelength. We calculate the transport of collisionless test particles in the filaments experiencing the...
Parametric instabilities in the LCGT arm cavity
Yamamoto, K.; Uchiyama, T.; Miyoki, S.; Ohashi, M.; Kuroda, K.; Numata, K.
2008-07-01
We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (USA). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta2O5) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.
Parametric instabilities in the LCGT arm cavity
Yamamoto, K; Miyoki, S; Ohashi, M; Kuroda, K; Numata, K
2008-01-01
We evaluated the parametric instabilities of LCGT (Japanese interferometric gravitational wave detector project) arm cavity. The number of unstable modes of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the strength of the instabilities of LCGT depends on the mirror curvature more weakly than that of Advanced LIGO, the requirement of the mirror curvature accuracy is easier to be achieved. The difference in the parametric instabilities between LCGT and Advanced LIGO is because of the thermal noise reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica mirrors with larger laser beams), which are the main strategies of the projects. Elastic Q reduction by the barrel surface (0.2 mm thickness Ta$_2$O$_5$) coating is effective to suppress instabilities in the LCGT arm cavity. Therefore, the cryogenic interferometer is a smart solution for the parametric instabilities in addition to thermal noise and thermal lensing.
Role of Intermediate Filaments in Vesicular Traffic
Directory of Open Access Journals (Sweden)
Azzurra Margiotta
2016-04-01
Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
Galactic cold cores. VII. Filament formation and evolution: Methods and observational constraints
Rivera-Ingraham, A.; Ristorcelli, I.; Juvela, M.; Montillaud, J.; Men'shchikov, A.; Malinen, J.; Pelkonen, V.-M.; Marston, A.; Martin, P. G.; Pagani, L.; Paladini, R.; Paradis, D.; Ysard, N.; Ward-Thompson, D.; Bernard, J.-P.; Marshall, D. J.; Montier, L.; Tóth, L. V.
2016-06-01
Context. The association of filaments with protostellar objects has made these structures a priority target in star formation studies. However, little is known about the link between filament properties and their local environment. Aims: The datasets from the Herschel Galactic Cold cores key programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can therefore be used to identify key physical parameters and quantify the role of the environment in the formation of supercritical filaments. These results are necessary to constrain theoretical models of filament formation and evolution. Methods: Filaments were extracted from fields at distance D< 500 pc with the getfilaments algorithm and characterised according to their column density profiles and intrinsic properties. Each profile was fitted with a beam-convolved Plummer-like function, and the filament structure was quantified based on the relative contributions from the filament "core", represented by a Gaussian, and "wing" component, dominated by the power-law behaviour of the Plummer-like function. These filament parameters were examined for populations associated with different background levels. Results: Filaments increase their core (Mline,core) and wing (Mline,wing) contributions while increasing their total linear mass density (Mline,tot). Both components appear to be linked to the local environment, with filaments in higher backgrounds having systematically more massive Mline,core and Mline,wing. This dependence on the environment supports an accretion-based model of filament evolution in the local neighbourhood (D ≤ 500 pc). Structures located in the highest backgrounds develop the highest central AV, Mline,core, and Mline,wing as Mline,tot increases with time, favoured by the local availability of material and the enhanced gravitational potential. Our results indicate that filaments acquiring a significantly
Shape Preserving Filament Enhancement Filtering
Wilkinson, Michael H.F.; Westenberg, Michel A.
2001-01-01
Morphological connected set filters for extraction of filamentous details from medical images are developed. The advantages of these filters are that they are shape preserving and do not amplify noise. Two approaches are compared: (i) multi-scale filtering (ii) single-step shape filtering using conn
Capillary thinning of polymeric filaments
DEFF Research Database (Denmark)
Kolte, Mette Irene; Szabo, Peter
1999-01-01
The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...
Capillary thinning of polymeric filaments
DEFF Research Database (Denmark)
Kolte, Mette Irene; Szabo, Peter; Hassager, Ole
The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...
Coherent Instabilities of ILC Damping Ring
Energy Technology Data Exchange (ETDEWEB)
Heifets, S.; Stupakov, G.; Bane, K.; /SLAC
2006-09-27
The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.
Large-scale Motion of Solar Filaments
Indian Academy of Sciences (India)
Pavel Ambrož; Alfred Schroll
2000-09-01
Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.
Strength of b3Sn intermetallic layers in bronze/niobium filaments composite material
International Nuclear Information System (INIS)
Tension tests have been used to estimate the strength of Nb3Sn intermetallic layer formed at the filament/matrix interface in the composite superconducting material, bronze(13 at.%Sn)/niobium filament. It is noted that the layer destruction starts with the formation of a group of cracks placed at a similar interval from each other, which are the reason for instability of sUperconducting properties in the composite system. The formula is given that connects the fracturing and superconducting properties, from which it follows that with the increase of layer thickness and its strength, the fracturing reduces, while superconducting properties improve
Laser-induced hydrodynamic instability of fluid interfaces
CASNER, ALEXIS; Delville, Jean-Pierre
2003-01-01
We report on a new class of electromagnetically-driven fluid interface instability. Using the optical radiation pressure of a cw laser to bend a very soft near-critical liquid-liquid interface, we show that it becomes unstable for sufficiently large beam power P, leading to the formation of a stationary beam-centered liquid micro-jet. We explore the behavior of the instability onset by tuning the interface softness with temperature and varying the size of the exciting beam. The instability me...
Instability Paths in the Kirchhoff-Plateau Problem
Giusteri, Giulio G.; Franceschini, Paolo; Fried, Eliot
2016-04-01
The Kirchhoff-Plateau problem concerns the equilibrium shapes of a system in which a flexible filament in the form of a closed loop is spanned by a soap film, with the filament being modeled as a Kirchhoff rod and the action of the spanning surface being solely due to surface tension. Adopting a variational approach, we define an energy associated with shape deformations of the system and then derive general equilibrium and (linear) stability conditions by considering the first and second variations of the energy functional. We analyze in detail the transition to instability of flat circular configurations, which are ground states for the system in the absence of surface tension, when the latter is progressively increased. Such a theoretical study is particularly useful here, since the many different perturbations that can lead to instability make it challenging to perform an exhaustive experimental investigation. We generalize previous results, since we allow the filament to possess a curved intrinsic shape and also to display anisotropic flexural properties (as happens when the cross section of the filament is noncircular). This is accomplished by using a rod energy which is familiar from the modeling of DNA filaments. We find that the presence of intrinsic curvature is necessary to obtain a first buckling mode which is not purely tangent to the spanning surface. We also elucidate the role of twisting buckling modes, which become relevant in the presence of flexural anisotropy.
Current-vortex filaments in magnetized plasmas
Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.; Westerhof, E.
1999-01-01
Current-vortex filament solutions to the two-fluid plasma equations that describe drift-Alfven waves are presented. Such filament systems are Hamiltonian. Integrable three and four filament systems are discussed in some detail. A wide variety of orbit topologies exists in the plasma case. Special at
Envelope instability as a source of diffusion
International Nuclear Information System (INIS)
Electron cooling increases the phase space density of the cooled particles up to a certain limit. This limit is normally characterized by a strong space charge tune shift, about 0.2-0.3. This tune shift is high enough to bring the cooled beam to the threshold of the envelope instability. The envelope instability can be in a kind of dynamic equilibrium with the cooling, keeping the cooled beam at a threshold with a high level of the coherent noise. This noise acts as a diffusion for the halo particles which puts a limit on the stored current
Envelope instability as a source of diffusion
Burov, A
2000-01-01
Electron cooling increases the phase space density of the cooled particles up to a certain limit. This limit is normally characterized by a strong space charge tune shift, about 0.2-0.3. This tune shift is high enough to bring the cooled beam to the threshold of the envelope instability. The envelope instability can be in a kind of dynamic equilibrium with the cooling, keeping the cooled beam at a threshold with a high level of the coherent noise. This noise acts as a diffusion for the halo particles which puts a limit on the stored current.
Spatial and temporal instabilities in high voltage power devices
Energy Technology Data Exchange (ETDEWEB)
Milady, Saeed
2010-01-29
Dynamic avalanche can occur during the turn-off process of high voltage bipolar devices, e.g. IGBTs and p{sup +}n{sup -}n{sup +} power diodes, that may result in spatial instabilities of the homogeneous current density distribution across the device and the formation of current filaments. Filaments may cause the destruction of the device, mainly because of the high local temperatures. The first part of this work is dedicated to the current filament behavior. The positive feedback mechanisms caused by the transient current flow through the gate capacitance of an IGBT operating under short circuit conditions may result in oscillations and temporal instabilities of the IGBT current. The oscillations may cause electromagnetic interference (EMI). Furthermore, the positive feedback mechanism may accelerate the over-heating of the device and result in a thermal run-away. This is the subject of the second part of this work. In the first part of this work using the device simulation results of power diodes the underlying physical mechanisms of the filament dynamic is investigated. Simulation results of diode structures with evenly distributed doping inhomogeneities show that, the filament motion gets smoother as the distance between the inhomogeneities decreases. Hopping to faraway inhomogeneities turns into the hopping to neighboring ones and finally a smooth motion. In homogeneous structures the slow inhibitory effect of the electron-hole plasma extraction and the fast activation, due to hole current flowing along the filament, result in a smooth filament motion. An analytical model for the filament velocity under isothermal conditions is presented that can reproduce the simulation data satisfactorily. The influence of the boundary conditions on the filament behavior is discussed. The positive beveled edge termination prohibits a long stay of the filament at the edge reducing the risk of filament pinning. Self-heating effects may turn the initially electrically triggered
Multiwavelength observation of a large-scale flux rope eruption above kinked mini-filament
Kumar, Pankaj
2014-01-01
We analyse multiwavelength observations of a western limb flare (C3.9) occurred in AR NOAA 111465 on 30 April 2012. The high resolution images recorded by SDO/AIA 304, 1600 \\AA\\ and Hinode/SOT H$\\alpha$ show the activation of a mini-filament (rising speed$\\sim$40 km s$^{-1}$) associated with kink instability and the onset of a C-class flare near the southern leg of the filament. The first magnetic reconnection occurred at one of the footpoints of the filament causing the breaking of its southern leg. The filament shows unwinding motion of the northern leg and apex in the counterclockwise direction and failed to erupt. A flux-rope (visible only in hot channels, i.e., AIA 131 and 94 \\AA\\ channels and Hinode/SXT) structure was appeared along the neutral line during the second magnetic reconnection taking place above the kinked filament. Formation of the RHESSI hard X-ray source (12-25 keV) above the kinked filament and simultaneous appearance of the hot 131 \\AA\\ loops associated with photospheric brightenings (A...
Unveiling a network of parallel filaments in the Infrared Dark Cloud G14.225-0.506
Busquet, Gemma; Palau, Aina; Liu, Hauyu Baobab; Sánchez-Monge, Álvaro; Estalella, Robert; Ho, Paul T P; de Gregorio-Monsalvo, Itziar; Pillai, Thushara; Wyrowski, Friedrich; Girart, Josep M; Santos, Fábio P; Franco, Gabriel A P
2012-01-01
We present the results of combined NH3(1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100m telescope of the Infrared Dark Cloud G14.225-0.506. The NH3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature Trot \\sim 25 K, non-thermal velocity dispersion ~1.1 km/s, and exhibit signs of star formation, while filaments appear to be more quiescent (Trot \\sim 11 K, non-thermal velocity dispersion ~0.6 km/s). Filaments are parallel in projection and distributed mainly along two directions, at PA \\sim 10 deg and 60 deg, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ~0.33 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the 'sausage'-type instability. The network of parallel filaments observed in G...
UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225–0.506
International Nuclear Information System (INIS)
We present the results of combined NH3 (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225–0.506. The NH3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature Trot ∼ 15 K, non-thermal velocity dispersion σNT ∼ 1 km s–1, and exhibit signs of star formation, while filaments appear to be more quiescent (Trot ∼ 11 K and σNT ∼ 0.6 km s–1). Filaments are parallel in projection and distributed mainly along two directions, at P.A. ∼ 10° and 60°, and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ∼0.33 ± 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the sausage-type instability. The network of parallel filaments observed in G14.225–0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.
UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506
Energy Technology Data Exchange (ETDEWEB)
Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)
2013-02-20
We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.
Métral, E
2011-01-01
Many collective effects were observed in 2010, first when the intensity per bunch was increased and subsequently when the number of bunches was pushed up and the bunch spacing was reduced. After a review of the LHC performance during the 2010 run, with a particular emphasis on impedances and related single-beam coherent instabilities, but mentioning also beam-beam and electron cloud issues, the potential of the LHC for 2011 will be discussed. More specifically, the maximum bunch/beam intensity and the maximum beam brightness the LHC should be able to swallow will be compared to what the injectors can provide.
Wykes, Sarka; Hardcastle, Martin J; Achterberg, Abraham; Jones, Thomas W; Jerjen, Helmut; Orru, Emanuela; Lazarian, Alex; Shimwell, Timothy W; Wise, Michael W; Kronberg, Philipp P
2014-01-01
We present results from imaging of the radio filaments in the southern giant lobe of Centaurus A using data from GMRT observations at 325 and 235 MHz, and outcomes from filament modelling. The observations reveal a rich filamentary structure, largely matching the morphology at 1.4 GHz. We find no clear connection of the filaments to the jet. We seek to constrain the nature and origin of the vertex and vortex filaments associated with the lobe and their role in high-energy particle acceleration. We deduce that these filaments are at most mildly overpressured with respect to the global lobe plasma showing no evidence of large-scale efficient Fermi I-type particle acceleration, and persist for ~ 2-3 Myr. We demonstrate that the dwarf galaxy KK 196 (AM 1318-444) cannot account for the features, and that surface plasma instabilities, the internal sausage mode and radiative instabilities are highly unlikely. An internal tearing instability and the kink mode are allowed within the observational and growth time const...
Microwave processing of ceramic oxide filaments
Energy Technology Data Exchange (ETDEWEB)
Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)
1995-05-01
The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.
Dynamics of 3D isolated thermal filaments
Walkden, N R; Militello, F; Omotani, J T
2016-01-01
Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.
Filamentation as primitive growth mode?
Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane
2015-12-01
Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.
Picosecond laser filamentation in air
Schmitt-Sody, Andreas; Bergé, L; Skupin, S; Polynkin, Pavel
2016-01-01
The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.
Broken detailed balance in active fluctuations of semiflexible filaments
Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Schmidt, Christoph F.; Broedersz, Chase P.
2015-03-01
Non-equilibrium microscopic force generation in cells often results in stochastic steady-state fluctuations. In the cell cytoskeleton, for example, cytoplasmic myosins can drive vigorous conformational fluctuations of actin filaments and microtubules. We here present an analytical and numerical analysis of randomly driven shape fluctuations of semiflexible filaments in a viscoelastic environment. To detect and quantify non-equilibrium dynamics, we focus on the breaking of detailed balance in a conformational phase space subtended by eigenmodes of the beam equation. Molecular dynamics simulations reveal a non-zero circulatory flux in phase space induced by motor activity. Furthermore, we derived an analytical expression of nonequilibrium mode correlations that allows us to predict temporal effects of active molecular motors.
Optical Beams in Nonlocal Nonlinear Media
DEFF Research Database (Denmark)
Królikowski, W.; Bang, Ole; Wyller, J.; Juul Rasmussen, Jens
We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons.......We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....
Limitation of the ECRIS performance by kinetic plasma instabilities (invited)
Tarvainen, Olli; Kalvas, Taneli; Koivisto, Hannu; Komppula, Jani; Kronholm, Risto; Laulainen, Janne; Izotov, I.; Mansfeld, D.; Skalyga, V.; Toivanen, V.; Machicoane, G.
2015-01-01
Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropic electron velocity distribution. The instabilities are associated with strong microwave emission and periodic bursts of energetic electrons escaping the magnetic confinement. The instabilities explain the periodic ms-scale oscillation of the extracted beam current observed with several high performance ECRISs and restrict the parameter space available for the optimization o...
Physical properties of interstellar filaments
Fischera, Joerg; Martin, Peter G.
2012-01-01
We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f_cyl of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f_cyl < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile ...
Lighting the universe with filaments.
Gao, Liang; Theuns, Tom
2007-09-14
The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies. PMID:17872439
The alignment of satellite galaxies and cosmic filaments: observations and simulations
Tempel, E; Kipper, R; Libeskind, N I
2015-01-01
The accretion of satellites onto central galaxies along vast cosmic filaments is an apparent outcome of the anisotropic collapse of structure in our Universe. Numerical work (based on gravitational dynamics of N-body simulations) indicates that satellites are beamed towards hosts along preferred directions imprinted by the velocity shear field. Here we use the Sloan Digital Sky Survey to observationally test this claim. We construct 3D filaments and sheets and examine the relative position of satellites galaxies. A statistically significant alignment between satellite galaxy position and filament axis is confirmed. We find a similar (but stronger) signal by examining satellites and filaments similarly identified in the Millennium simulation, semi-analytical galaxy catalogue. We also examine the dependence of the alignment strength on galaxy properties such as colour, magnitude and (relative) satellite magnitude, finding that the alignment is strongest for the reddest and brightest central and satellite galaxi...
Summary: electron-cloud effects and fast-ion instability
Furman, Miguel A.
2000-01-01
This is my summary of the talks on the electron-cloud effect and the fast-ion instability that were presented at the 8th ICFA Beam Dynamics Mini-Work shop on Two-Stream Instabilities in Particle Accelerators and Storage Rings},Santa Fe, NM, February 16--18, 2000.
Summary of workshop session F on electron-cloud instabilities
Zimmermann, Frank; Wolski, Andrzej
2004-01-01
We summarize Session F of the ECLOUD 04 workshop. This session was dedicated to beam instabilities driven by electron cloud. Specifically, we discuss the principal observations of electron-cloud instabilities, analytical models, simulation codes and the next steps that need to be taken to arrive at a predictive theory.
Stability and transient effects in nanosecond ultraviolet light filaments in air.
Niday, Thomas A; Wright, Ewan M; Kolesik, Miroslav; Moloney, Jerry V
2005-07-01
We investigate the transient behavior and stability of nanosecond duration ultraviolet pulses propagating in air. Both the transient behavior arising from the finite pulse duration and the modulational instability, are found to cause pulses to fragment over lengths on the scale of meters. We discuss the theoretical and experimental implications of the instability and transient effects for long duration pulse propagating in air and generating filaments. In particular, our results imply that continuous-wave models are very limited when used to predict dynamical properties of pulse propagation. PMID:16090118
Caesium and tungsten behaviour in the filamented arc driven Kamaboko-III negative ion source
International Nuclear Information System (INIS)
The ITER neutral beam injection is based on the acceleration and neutralization of negative deuterium ions. The target performance for the ITER beam source is to accelerate to 1 MeV a 40 A D- beam, with a current density of 200 A m-2, with pulse lengths of ≥1000 s. It was found that in long pulse operation the negative ion yield from the filamented Kamaboko III ion source (a model of ITER ion source) degrades in comparison with short pulse operation, <5 s. This could be linked to the behaviour of caesium (Cs), which is added to the source to increase its negative ion yield and tungsten (W) evaporated from filaments. Cs and W are co-adsorbed on the source walls and the plasma grid and the composition of this coating can vary during long pulse operation. The possible consequences of this changing surface on the negative ion production will be discussed. Tungsten filaments have a limited lifetime in the ion source and changing filaments and refilling of the Cs oven are the only scheduled maintenance events for the ITER injectors. These are complicated operations as the ITER injectors will be highly activated and all maintenance has to be carried out remotely. Therefore, increasing the filament lifetime and decreasing the Cs consumption are highly desirable. This paper presents results of relative measurements (including spectroscopic and chemical) of the W content of the Kamaboko-III source and reports relevant calculations on Cs consumption and W evaporation
Modulational instabilities of electromagnetic and electrostatic waves in plasmas
International Nuclear Information System (INIS)
A general discussion of modulational instabilities in plasmas is presented. It is shown that the basic mechanism is a four-wave interaction which tends to increase the wavenumber k of the wave in contrast to the usual three-wave decay or scattering processes which tend to reduce the k-spectrum of the waves. Examples include the Langmuir modulational instabilities, filamentation of both electrostatic and electromagnetic waves and the oscillating two stream instability. General equations for the modulation of finite amplitude, high frequency waves in unmagnetized plasmas are given. The stability properties of the linearised equations and the conservation relations of the nonlinear equations are obtained. Finally modulational instabilities relevant to beat wave studies are discussed. (orig.)
MD 754: Instability Threshold for Train with 25ns Spacing
Carver, Lee Robert; Biancacci, Nicolo; Iadarola, Giovanni; Levens, Tom; Metral, Elias; Salvant, Benoit; Wang, Na; CERN. Geneva. ATS Department
2016-01-01
Measurements made since the beginning of run II at 6.5 TeV have shown that there is a large discrepancy in the instability thresholds between single bunches and trains of 72 bunches with 25ns spacing, whereas the same result is expect for pure impedance-induced instabilities. One possible explanation is that the presence of electron cloud is affecting the beam stability. This MD will attempt to determine if electron cloud is the dominant mechanism affecting beam stability.
The dispersion equation of the induced Smith-Purcell instability
International Nuclear Information System (INIS)
The simplest model of a magnetized infinitely thin electron beam is considered. For the grating, where the depth of grooves is a small parameter, the dispersion equation of the induced Smith-Purcell instability was obtained. It was found that the condition of the Thompson or the Raman regimes of excitation does not depend on beam current but depends on the height of the beam above the grating surface. The growth rate of instability in both cases is proportional to the square root of the electron beam current.
A penny-shaped crack in a filament reinforced matrix. 1: The filament model
Erdogan, F.; Pacella, A. H.
1973-01-01
The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.
Study of Fast Instability in Fermilab Recycler
Energy Technology Data Exchange (ETDEWEB)
Antipov, Sergey [Chicago U.; Adamson, Philip [Fermilab; Nagaitsev, Sergei [Fermilab; Yang, Ming-Jen [Fermilab
2016-06-01
One of the factors which may limit the intensity in the Fermilab Recycler is a fast transverse instability. It develops within a hundred turns and, in certain conditions, may lead to a beam loss. Various peculiar features of the instability: its occurrence only above a certain intensity threshold, and only in horizontal plane, as well as the rate of the instability, suggest that its cause is electron cloud. We studied the phenomena by observing the dynamics of stable and unstable beam. We found that beam motion can be stabilized by a clearing bunch, which confirms the electron cloud nature of the instability. The findings suggest electron cloud trapping in Recycler combined function mag-nets. Bunch-by-bunch measurements of betatron tune show a tune shift towards the end of the bunch train and allow the estimation of the density of electron cloud and the rate of its build-up. The experimental results are in agreement with numerical simulations of electron cloud build-up and its interaction with the beam.
Systematics of shoulder instability
International Nuclear Information System (INIS)
Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to the causative factors as the pathogenesis of instability plays an important role with respect to treatment options. Instabilities are classified into traumatic and atraumatic instabilities as part of a multidirectional instability syndrome and into microtraumatic instabilities. For diagnostics plain radiographs (''trauma series'') are performed to document shoulder dislocation and its successful repositioning. Direct magnetic resonance (MR) arthrography is the most important imaging modality for delineation of the different injury patterns of the labral-ligamentous complex and bony structures. Monocontrast computed tomography (CT) arthrography with the use of multidetector CT scanners represents an alternative imaging modality; however, MR imaging should be preferred in the work-up of shoulder instabilities due to the mostly younger age of patients. (orig.)
Evaluating shoulder instability treatment
Linde, J. A.
2016-01-01
Shoulder instability common occurs. When treated nonoperatively, the resulting societal costs based on health care utilization and productivity losses are significant. Shoulder function can be evaluated using patient reported outcome measurements (PROMs). For shoulder instability, these include the Western Ontario Shoulder Instability index (WOSI) and the Oxford Shoulder Instability Score (OSIS). When translated and validated for the dutch population, both have good measurment properties. Sco...
Earnings instability and tenure
Cappellari, Lorenzo; Leonardi, Marco
2007-01-01
We study the effect of tenure on earnings instability in Italy using two alternative estimation strategies. First we use a descriptive measure of earnings instability and fixed effects regressions. Second, we develop a formal model of earnings dynamics distinguishing permanent from transitory earnings, and exploit variation of tenure and instability over time and across birth cohorts in estimation. We use the two approaches also to evaluate earnings instability associated with temporary contr...
Easy, Luke; Omotani, John; Dudson, Benjamin; Havlíčková, Eva; Tamain, Patrick; Naulin, Volker; Nielsen, Anders H
2014-01-01
This paper presents simulations of isolated 3D filaments in a slab geometry obtained using a 3D reduced fluid code. First, systematic scans were performed to investigate how the dynamics of a filament are affected by its amplitude, perpendicular size and parallel extent. The perpendicular size of the filament was found to have a strong influence on its motions, as it determined the relative importance of parallel currents to polarisation and viscous currents, whilst drift-wave instabilities were observed if the initial amplitude of the blob was increased sufficiently. Next, the 3D simulations were compared to 2D simulations using different parallel closures; namely, the sheath dissipation closure, which neglects parallel gradients, and the vorticity advection closure, which neglects the influence of parallel currents. The vorticity advection closure was found to not replicate the 3D perpendicular dynamics and overestimated the initial radial acceleration of all the filaments studied. In contrast, a more satis...
Peeling Instability in the Pegasus ST
Bongard, M. W.; Barr, J. L.; Fonck, R. J.; Redd, A. J.; Schlossberg, D. J.
2011-10-01
Ohmic plasmas in PEGASUS are often initially unstable to peeling modes, an instability underlying deleterious edge localized mode (ELM) activity in fusion-grade plasmas. These edge-localized instabilities are observed under conditions of high parallel edge current density (J∥ ~ 0 . 1 MA/m2) and low magnetic field (B ~ 0 . 1 T) present at near-unity aspect ratio, corresponding to high peeling instability drive (~J∥ / B) . They generate electromagnetic MHD activity with low toroidal mode numbers n PEGASUS discharges permit time-resolved measurements of the edge current density profile Jedge using an insertable Hall probe. Peeling MHD fluctuation amplitudes scale strongly with measured J∥ / B , consistent with theory. Ideal stability analysis of Hall-constrained equilibrium reconstructions with DCON finds instability to peeling modes. Filaments form from an initial Jedge ``current-hole'' perturbation and carry currents ~100-250 A. Their radial trajectories feature transient acceleration due to magnetostatic repulsion followed by constant-velocity motion, consistent with models of ELM dynamics. Work supported by US DOE Grant DE-FG02-96ER54375.
Herr, W; Pieloni, T.
2016-01-01
One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.
Herr, W
2014-01-01
One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.
Helical Kink Instability in a Confined Solar Eruption
Hassanin, Alshaimaa
2016-01-01
A model for strongly writhing confined solar eruptions suggests an origin in the helical kink instability of a coronal flux rope which remains stable against the torus instability. This model is tested against the well observed filament eruption on 2002 May 27 in a parametric MHD simulation study which comprises all phases of the event. Good agreement with the essential observed properties is obtained. These include the confinement, terminal height, writhing, distortion, and dissolution of the filament, and the flare loops. The agreement is robust against variations in a representative range of parameter space. Careful comparisons with the observation data constrain the ratio of the external toroidal and poloidal field components to $B_\\mathrm{et}/B_\\mathrm{ep}\\approx1$ and the initial flux rope twist to $\\Phi\\approx4\\pi$. Different from ejective eruptions, two distinct phases of strong magnetic reconnection can occur. First, the erupting flux is cut by reconnection with overlying flux in the helical current ...
Simulation of current filamentation in a dc-driven planar gas discharge-semiconductor system
Energy Technology Data Exchange (ETDEWEB)
Mokrov, M S; Raizer, Yu P, E-mail: raizer@ipmnet.ru [Institute for Problems in Mechanics, Russian Academy of Science, Moscow 119526 (Russian Federation)
2011-10-26
We have performed a theoretical study of self-organized current filamentation in a dc-driven planar gas discharge-semiconductor system at very low currents and under cryogenic conditions. The discharge instability and the observed formation of current filaments are explained by a thermal mechanism, as proposed in our previous paper. We have found, for the first time, a stationary periodic current structure in a two-dimensional Cartesian geometry from first principles, by numerically solving the general system of continuity equations for ions and electrons, the Poisson equation for the electric field in the gas, together with the equation for gas temperature and the equation for electric field in the semiconductor. The space charge induced electric field redistribution, which usually leads to a discharge instability and is automatically included in the first three equations of the system, is practically absent at the very low currents considered, and thus it cannot be responsible for the discharge instability. This is why another mechanism of filamentation (thermal) should be considered. The calculated periodic current structure agrees with the hexagonal current pattern observed in the experiment, as well as with the periodic current structure found in the frame of the previously developed simple model. This serves as a corroboration of the fact that the thermal effect is essential for pattern formation under the conditions considered.
Simulation of current filamentation in a dc-driven planar gas discharge-semiconductor system
International Nuclear Information System (INIS)
We have performed a theoretical study of self-organized current filamentation in a dc-driven planar gas discharge-semiconductor system at very low currents and under cryogenic conditions. The discharge instability and the observed formation of current filaments are explained by a thermal mechanism, as proposed in our previous paper. We have found, for the first time, a stationary periodic current structure in a two-dimensional Cartesian geometry from first principles, by numerically solving the general system of continuity equations for ions and electrons, the Poisson equation for the electric field in the gas, together with the equation for gas temperature and the equation for electric field in the semiconductor. The space charge induced electric field redistribution, which usually leads to a discharge instability and is automatically included in the first three equations of the system, is practically absent at the very low currents considered, and thus it cannot be responsible for the discharge instability. This is why another mechanism of filamentation (thermal) should be considered. The calculated periodic current structure agrees with the hexagonal current pattern observed in the experiment, as well as with the periodic current structure found in the frame of the previously developed simple model. This serves as a corroboration of the fact that the thermal effect is essential for pattern formation under the conditions considered.
Femtosecond Laser Filamentation for Atmospheric Sensing
Directory of Open Access Journals (Sweden)
Huai Liang Xu
2010-12-01
Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.
Mechanical properties of branched actin filaments
Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette
2015-01-01
Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...
Collective instability of bunches due to uncaptured ions
International Nuclear Information System (INIS)
Ionization of the residual gas by the beam may result in numerous limitations on the operational performance of storage rings. The most dangerous are the resonant phenomena, which occur when produced ions are captured in the beam due to its space charge fields. Relevant instabilities may take place in the electron, or antiproton beam. If such a beam is bunched, the ions can be captured in the beam only in the case, when their oscillations in the beam field are stable. Over-focusing of the ions due to either a proper choice of the bunch intensity and the bunch to bunch distance, or missing of some amount of bunches providing an empty gap in the beam can help to pump ions out of the closed orbit and to eliminate these limitations. However, even in the case, when the ion oscillations in the beam are unstable, the ions leave the closed orbit during some finite time. Provided that this time is longer than the bunch to bunch period, the ions couple coherent oscillations of the beam bunches making those unstable. In particular, such an instability may take place both in the negatively charged and in the positively charged beams (protons, positrons). The long gap in the bunch train essentiality changes the nature of the instability, if the ions produced by last bunches are removed from the closed orbit prior to perturb the oscillations of the first bunch. Without such a feedback the instability becomes the beam break-up type with essentially non-exponential growth of the amplitudes of oscillations. It is important that any exponential decay will finally damp these unstable oscillations. In this report we present simplified calculations related to the collective multi-bunch instability due to uncaptured ions in positron, or electron bunches taking into account the gap in the beam. In the beam with a gap, the interaction of the bunches via uncaptured ions results in the beam break-up instability of the beam provided that ion is completely pumped out by the gap. This
How bio-filaments twist membranes.
Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael
2016-06-29
We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854
Recent observations of the formation of filaments
International Nuclear Information System (INIS)
Two examples of the formation of small filaments in H alpha are described and illustrated. In both cases, the formation is seen to be the spontaneous appearance of strands of absorbing mass that evolve from no previous structure. The initial development of the filaments appears to consist of the accumulation of these absorptive strands along approximately parallel paths in a channel between large-scale, opposite polarity magnetic fields on either side of the filaments. The strands exhibit continuous changes in shape and degree of absorption which can be due to successive condensations resulting in new strands, mass motions within the strands, and outflow of the mass from the strands. For at least several hours before the formation of both filaments, small-scale fragments of opposite polarity, line-of-sight magnetic flux adjacent to or immediately below the filaments, and at the ends of the filaments, were cancelling. This type of magnetic flux disappearance continued during the development of the filaments and is commonly observed in association with established filaments. Cancellation is interpreted as an important evolutionary change in the magnetic field that can lead to configurations suitable for the formation of filaments
Probing the Physical Structures of Dense Filaments
Li, Di
2015-08-01
Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.
Methods for modeling cytoskeletal and DNA filaments
International Nuclear Information System (INIS)
This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities. (topical review)
Chaperonin filaments: The archaeal cytoskeleton?
Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.
1997-01-01
Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246
Rarefaction solitons initiated by sheath instability
Energy Technology Data Exchange (ETDEWEB)
Levko, Dmitry [Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-09-15
The instability of the cathode sheath initiated by the cold energetic electron beam is studied by the one-dimensional fluid model. Numerical simulations show the generation of travelling rarefaction solitons at the cathode. It is obtained that the parameters of these solitons strongly depend on the parameters of electron beam. The “stretched” variables are derived using the small-amplitude analysis. These variables are used in order to obtain the Korteweg-de Vries equation describing the propagation of the rarefaction solitons through the plasma with cold energetic electron beam.
Feedback techniques and SPS Ecloud instabilities - design estimates
Energy Technology Data Exchange (ETDEWEB)
Fox,J.D.; Mastorides, T.; Ndabashimiye, G.; Rivetta, C.; Van Winkle, D.; Byrd, J.; Vay, J-L.; Hofle, W.; Rumolo, G.; de Maria, R.
2009-05-04
The SPS at high intensities exhibits transverse single-bunch instabilities with signatures consistent with an Ecloud driven instability. While the SPS has a coupled-bunch transverse feedback system, control of Ecloud driven motion requires a much wider control bandwidth capable of sensing and controlling motion within each bunched beam. This paper draws beam dynamics data from the measurements and simulations of this SPS instability, and estimates system requirements for a feedback system with 2-4 GS/sec. sampling rates to damp Ecloud-driven transverse motion in the SPS at intensities desired for high-current LHC operation.
An exact linear dispersion relation for CRM instability
International Nuclear Information System (INIS)
An exact self-consistent linear dispersion relation of a large orbit electron beam including two principles of cyclotron emission with oscillation frequencies above and below the relativistic electron frequency is derived and analyzed numerically for the first time in the literature. The two principles are cyclotron resonance maser (CRM) instability and Cherenkov instability in the azimuthal direction. Self-consistency in the formulation and inclusion of proper boundary conditions have removed the unphysical instability existing for infinitely large kz observed in conventional dispersion relations of CRM instability.
Microcyle conidiation in filamentous fungi.
Jung, Boknam; Kim, Soyeon; Lee, Jungkwan
2014-03-01
The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation. PMID:24808726
Fundamental beam-beam limit from head-on interaction in the Large Hadron Collider
Ohmi, Kazuhito; Zimmermann, Frank
2015-12-01
The beam-beam limit at hadron colliders manifests itself in the form of degraded luminosity lifetime and/or reduced beam lifetime. In particular, for increasing beam intensity, the nonlinear beam-beam force causes incoherent emittance growth, while the (linear) coupling force between the two colliding beams can result in coherent beam-beam instabilities. These phenomena may be enhanced (or suppressed) by lattice errors, external noise, and other perturbations. We investigate the luminosity degradation caused both by incoherent emittance growth and by coherent beam-beam instability. The resulting beam-beam limit for an ideal machine and the of question how it is affected by some of the aforementioned errors are discussed in theory and simulation.
A Statistical Study of Solar Filament Eruptions
Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal
2016-05-01
Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”
Voronin, A. A.; Panchenko, V. Ya; Zheltikov, A. M.
2016-06-01
High-intensity ultrashort laser pulses propagating in gas media or in condensed matter undergo complex nonlinear spatiotemporal evolution where temporal transformations of optical field waveforms are strongly coupled to an intricate beam dynamics and ultrafast field-induced ionization processes. At the level of laser peak powers orders of magnitude above the critical power of self-focusing, the beam exhibits modulation instabilities, producing random field hot spots and breaking up into multiple noise-seeded filaments. This problem is described by a (3 + 1)-dimensional nonlinear field evolution equation, which needs to be solved jointly with the equation for ultrafast ionization of a medium. Analysis of this problem, which is equivalent to solving a billion-dimensional evolution problem, is only possible by means of supercomputer simulations augmented with coordinated big-data processing of large volumes of information acquired through theory-guiding experiments and supercomputations. Here, we review the main challenges of supercomputations and big-data processing encountered in strong-field ultrafast optical physics and discuss strategies to confront these challenges.
Lower hybrid parametric instabilities: Nonuniform pump waves and tokamak applications
International Nuclear Information System (INIS)
Electrostatic lower hybrid ''pump'' waves are often launched into tokamak plasmas by structures (e.g., waveguides) whose dimensions are considerably smaller than characteristic plasma sizes. Such waves propagate in well-defined resonance cones and give rise to parametric instabilities driven by electron E x B velocities. The finite size of the resonance cone region determines the threshold for both convective quasi-mode decay instabilities and absolute instabilities. The excitation of absolute instabilities depends on whether a traveling or standing wave pump model is used; traveling wave pumps require the daughter waves to have a definite frequency shift. Altogether, parametric instabilities driven by E x B velocities occur for threshold fields significantly below the threshold for filamentation instabilities driven by pondermotive forces. Applications to tokamak heating show that nonlinear effects set in when a certain power-per-wave-launching port is exceeded. For sufficiently high powers, these instabilities will occur in the low-density edge region of a tokamak. They are characterized by a daughter wave frequency 10% below the pump wave frequency, in agreement with experimental observations
BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM
Energy Technology Data Exchange (ETDEWEB)
Kunz, Matthew W.; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Bogdanovic, Tamara; Reynolds, Christopher S., E-mail: kunz@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: tamarab@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.
Buoyancy Instabilities in a Weakly Collisional Intracluster Medium
Kunz, Matthew W.; Bogdanović, Tamara; Reynolds, Christopher S.; Stone, James M.
2012-08-01
The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few× 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.
Shoulder instability; Schulterinstabilitaeten
Energy Technology Data Exchange (ETDEWEB)
Kreitner, Karl-Friedrich [Mainiz Univ. (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie
2014-06-15
In the shoulder, the advantages of range of motion are traded for the disadvantages of vulnerability to injury and the development of instability. Shoulder instability and the lesion it produces represent one of the main causes of shoulder discomfort and pain. Shoulder instability is defined as a symptomatic abnormal motion of the humeral head relative to the glenoid during active shoulder motion. Glenohumeral instabilities are classified according to their causative factors as the pathogenesis of instability plays an important role with respect to treatment options: instabilities are classified in traumatic and atraumatic instabilities as part of a multidirectional instability syndrome, and in microtraumatic instabilities. Plain radiographs ('trauma series') are performed to document shoulder dislocation and its successful reposition. Direct MR arthrography is the most important imaging modality for delineation the different injury patterns on the labral-ligamentous complex and bony structures. Monocontrast CT-arthrography with use of multidetector CT scanners may be an alternative imaging modality, however, regarding the younger patient age, MR imaging should be preferred in the diagnostic work-up of shoulder instabilities. (orig.)
A First Approach to Filament Dynamics
Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.
2010-01-01
Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…
Process for making silver metal filaments
Energy Technology Data Exchange (ETDEWEB)
Bamberger, C.E.
1998-04-01
This invention relates to a process for making filaments of metal compounds and more particularly to a process for making silver metal filaments. The United States Government has rights to this invention pursuant to Contract No. DE-AC05-8421400 with Lockheed Martin Energy Systems, Inc. awarded by the US Department of Energy.
Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac
International Nuclear Information System (INIS)
In this paper, we study a possible microbunching instability in the TESLA Test Facility linac. A longitudinal space charge is found to be the main effect driving the instability. Analytical estimates show that initial perturbations of beam current in the range 0.5-1 mm are amplified by a factor of a few hundred when the beam passes two bunch compressors. A method to suppress the instability is discussed
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
Energy Technology Data Exchange (ETDEWEB)
Barminova, H. Y., E-mail: barminova@mephi.ru [National Research Nuclear University MEPhI, Kashirskoye sh. 31, Moscow 115409 (Russian Federation); Chikhachev, A. S. [State Scientific Center “All-Russian Electrotechnical Institute (VEI),” Krasnokazarmennaya St. 12, Moscow 111250 (Russian Federation)
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Quantifying protein diffusion and capture on filaments
Reithmann, Emanuel; Frey, Erwin
2015-01-01
The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.
Solar Filaments as Tracers of Subsurface Processes
Indian Academy of Sciences (India)
D. M. Rust
2000-09-01
Solar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields' sources in the photo-sphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.
Joint instability and osteoarthritis.
Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi
2015-01-01
Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184
Particles trajectories in magnetic filaments
Energy Technology Data Exchange (ETDEWEB)
Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)
2015-07-15
The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.
Filamentous Growth in Eremothecium Fungi
DEFF Research Database (Denmark)
Oskarsson, Therese
, this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....
Particles trajectories in magnetic filaments
Bret, Antoine
2015-01-01
The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.
Natural colorants from filamentous fungi.
Torres, Fábio Aurélio Esteves; Zaccarim, Bruna Regina; de Lencastre Novaes, Letícia Celia; Jozala, Angela Faustino; Santos, Carolina Alves Dos; Teixeira, Maria Francisca Simas; Santos-Ebinuma, Valéria Carvalho
2016-03-01
In the last years, there is a trend towards the replacement of synthetic colorants by natural ones, mainly due to the increase of consumer demand for natural products. The natural colorants are used to enhance the appearance of pharmaceutical products, food, and different materials, making them preferable or attractive. This review intends to provide and describe a comprehensive overview of the history of colorants, from prehistory to modern time, of their market and their applications, as well as of the most important aspects of the fermentation process to obtain natural colorants. Focus is given to colorants produced by filamentous fungal species, aiming to demonstrate the importance of these microorganisms and biocompounds, highlighting the production performance to get high yields and the aspects of conclusion that should be taken into consideration in future studies about natural colorants. PMID:26780357
Modelling Financial Instability
Franklin Allen
2005-01-01
Financial instability can have large adverse effects on an economy. One major cause of instability is asset price bubbles. This paper starts by considering how such bubbles can arise due to the expansion of money and credit. The ways in which subsequent financial instability occurs are then discussed. Banking crises can arise due to panics or as a result of the business cycle. Contagion and financial fragility can cause small disturbances to have large effects. Finally, policy issues are touc...
Dynamics of explosive instability
International Nuclear Information System (INIS)
It was shown that in general case explosive instability dynamics should be described as four wave interaction. The main difference from three wave interaction is that this dynamics may not contain explosive instability. Besides it may by irregular. If the characteristics of one of the wave is closed to one of the interacting wave and they are connected linearly then explosive instability may be suppressed.
Electron drift instability in storage rings with electron cooling
Burov, A
2000-01-01
Transverse drift mobility of the cooling electrons allows them to respond to the transverse offset of the cooled beam. This electron dipole feedback introduces imaginary parts in transverse collective modes of the cooled beam. The sign of these imaginary parts is found to be dependent on the charge sign of the cooled particles, giving a coherent damping for protons and instability for antiprotons. A coupling between the transverse degrees of freedom of the stored cooled beam changes the result, causing an instability for any sign of the charge. For typical low-energy cooler parameters, these growth/damping times are found to be in the region 0.1-10 s.
Electron drift instability in storage rings with electron cooling
International Nuclear Information System (INIS)
Transverse drift mobility of the cooling electrons allows them to respond to the transverse offset of the cooled beam. This electron dipole feedback introduces imaginary parts in transverse collective modes of the cooled beam. The sign of these imaginary parts is found to be dependent on the charge sign of the cooled particles, giving a coherent damping for protons and instability for antiprotons. A coupling between the transverse degrees of freedom of the stored cooled beam changes the result, causing an instability for any sign of the charge. For typical low-energy cooler parameters, these growth/damping times are found to be in the region 0.1-10 s
Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels
Li, Ting; Zhang, Jun; Ji, Haisheng
2015-06-01
We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.
PEP-X IMPEDANCE AND INSTABILITY CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
Bane, K.L.F.; Lee, L.-Q.; Ng, C.; Stupakov, G.; au Wang, L.; Xiao, L.; /SLAC
2010-08-25
PEP-X, a next generation, ring-based light source is designed to run with beams of high current and low emittance. Important parameters are: energy 4.5 GeV, circumference 2.2 km, beam current 1.5 A, and horizontal and vertical emittances, 185 pm by 8 pm. In such a machine it is important that impedance driven instabilities not degrade the beam quality. In this report they study the strength of the impedance and its effects in PEP-X. For the present, lacking a detailed knowledge of the vacuum chamber shape, they create a straw man design comprising important vacuum chamber objects to be found in the ring, for which they then compute the wake functions. From the wake functions they generate an impedance budget and a pseudo-Green function wake representing the entire ring, which they, in turn, use for performing microwave instability calculations. In this report they, in addition, consider in PEP-X the transverse mode-coupling, multi-bunch transverse, and beam-ion instabilities.
Automatic Detect and Trace of Solar Filaments
Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang
We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating
The Viscoelastic End Plate Instability in the Stretch of Concentrated Polymer Solutions
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Longin, Pierre-Yves; Bach, Anders; Hassager, Ole
2001-01-01
The axis symmetry breaking meniscus instability that occurs under certain conditions at the endplates in the transient filament stretching apparatus is investigated experimentally and with numerical simulations. We use a 12 wt% solution of high molecular weight PS as a model fluid for polymeric...
Simulations of longitudinal beam dynamics of space-charge dominated beams for heavy ion fusion
International Nuclear Information System (INIS)
The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a open-quotes resistive wallclose quotes instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted
Solar filament eruptions and their physical role in triggering CMEs
Schmieder, Brigitte
2012-07-01
CMEs are due to physical phenomena that drive both, eruptions and flares in active regions. Eruptions/CMEs must be driven from initially force-free current-carrying magnetic field. Twisted flux ropes, sigmoids, current lanes and pattern in photospheric current maps show a clear evidence of currents parallel to the magnetic field. Eruptions occur starting from equilibriums , which have reached some instability threshold. Boundary motions related to magnetic flux emergence and shearing favour the increase of coronal currents leading to the large flares. On the other hand, during the rising solar cycle phase, filament eruptions are characterized by a gradual (slow) and weak acceleration and therefore not accompanied by significant flaring. The gradual acceleration is due to a rather shallow profile of the overlying magnetic field. As the solar cycle is progressing, the magnetic field increases and stronger flares may occur due to the diffusion of the magnetic field, then reducing the magnetic tension. The basic driving mechanism is the torus instability or loss of equilibrium in both types of eruptions.
Optical Filaments and Gas Dynamics in Air
Yeak, Jeremy
Until now, the propagation dynamics of intense ultrashort laser pulses leading to optical filamentation in air has only been investigated in the frame of a dynamic balance between linear diffraction, Kerr self-focusing and plasma defocusing. This has led to the development of different theories surrounding the generation and persistence of optical filaments propagating over many Rayleigh lengths in air. These theories include wave-guiding model, moving focus model, dynamic spatial replenishment model and conical wave model. However, these models fail to capture the gas dynamics that arise from optical filaments interacting with air. In this work, we demonstrate that initial conditions are critical to the formation of optical filaments through the use of an aerodynamic window. Filament characteristics in air, such as spectral broadening, electrical conductivity and fluorescence, are measured and presented. Using these as diagnostic tools, we also show that the optical filamentation of ultrashort laser pulses can be enhanced at high repetition rates because of the thermal response of air, resulting from the interaction of each laser pulse with the modified atmospheric density distribution left behind by the preceding pulse. This is explained by the sudden deposition of energy by a filament in the air which generates a cylindrical shock wave, leaving behind a column of rarefied air. This low-density region persists for an extended period and can materially affect the propagation dynamics of an ensuing pulse that follows before the low-density region has relaxed sufficiently to ambient conditions. By further increasing the repetition rate, the onset of ionization is shifted downstream and the spectral continuum displays a stronger broadening on both sides of the original pulse spectrum. This gas dynamic interaction regime of filamentation can be utilized to enhance the length and spectral width of filaments for remote sensing and long range laser-induced high voltage
Spectral instability of cylindrical reduced MHD in low-β plasma
International Nuclear Information System (INIS)
We study the spectral stability of the ideal reduced magnetohydrodynamics (RMHD) of a low-β, incompressible plasma. Since experimental results showed the existence of vorticity in a tokamak or RFP, we introduce the unperturbed vorticity to the linearized RMHD equations. The effect of vorticity shifts the range of the Alfven continuum and the criterion for the kink instability. Analysis of Alfven continuum exhibits instability at the center of the Alfven continuum. Kelvin-Helmholtz instability also arises caused by variation of the profiles of vorticity and current. We show the criteria for constant current and step function vorticity profile case and for vortex-current filament case. (author)
Automatic filament warm-up controller
Mccluskey, J.; Daeges, J.
1979-01-01
As part of the unattended operations objective of the Deep Space Network deep space stations, this filament controller serves as a step between manual operation of the station and complete computer control. Formerly, the operator was required to devote five to fifteen minutes of his time just to properly warm up the filaments on the klystrons of the high power transmitters. The filament controller reduces the operator's duty to a one-step command and is future-compatible with various forms of computer control.
System Applies Polymer Powder To Filament Tow
Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.
1993-01-01
Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.
Instability in evolutionary games.
Directory of Open Access Journals (Sweden)
Zimo Yang
Full Text Available BACKGROUND: Phenomena of instability are widely observed in many dissimilar systems, with punctuated equilibrium in biological evolution and economic crises being noticeable examples. Recent studies suggested that such instabilities, quantified by the abrupt changes of the composition of individuals, could result within the framework of a collection of individuals interacting through the prisoner's dilemma and incorporating three mechanisms: (i imitation and mutation, (ii preferred selection on successful individuals, and (iii networking effects. METHODOLOGY/PRINCIPAL FINDINGS: We study the importance of each mechanism using simplified models. The models are studied numerically and analytically via rate equations and mean-field approximation. It is shown that imitation and mutation alone can lead to the instability on the number of cooperators, and preferred selection modifies the instability in an asymmetric way. The co-evolution of network topology and game dynamics is not necessary to the occurrence of instability and the network topology is found to have almost no impact on instability if new links are added in a global manner. The results are valid in both the contexts of the snowdrift game and prisoner's dilemma. CONCLUSIONS/SIGNIFICANCE: The imitation and mutation mechanism, which gives a heterogeneous rate of change in the system's composition, is the dominating reason of the instability on the number of cooperators. The effects of payoffs and network topology are relatively insignificant. Our work refines the understanding on the driving forces of system instability.
Genomic instability following irradiation
Energy Technology Data Exchange (ETDEWEB)
Hacker-Klom, U.B.; Goehde, W. [Inst. fuer Strahlenbiologie, Muenster Univ. (Germany)
2001-07-01
Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)
Genomic instability following irradiation
International Nuclear Information System (INIS)
Ionising irradiation may induce genomic instability. The broad spectrum of stress reactions in eukaryontic cells to irradiation complicates the discovery of cellular targets and pathways inducing genomic instability. Irradiation may initiate genomic instability by deletion of genes controlling stability, by induction of genes stimulating instability and/or by activating endogeneous cellular viruses. Alternatively or additionally it is discussed that the initiation of genomic instability may be a consequence of radiation or other agents independently of DNA damage implying non nuclear targets, e.g. signal cascades. As a further mechanism possibly involved our own results may suggest radiation-induced changes in chromatin structure. Once initiated the process of genomic instability probably is perpetuated by endogeneous processes necessary for proliferation. Genomic instability may be a cause or a consequence of the neoplastic phenotype. As a conclusion from the data available up to now a new interpretation of low level radiation effects for radiation protection and in radiotherapy appears useful. The detection of the molecular mechanisms of genomic instability will be important in this context and may contribute to a better understanding of phenomenons occurring at low doses <10 cSv which are not well understood up to now. (orig.)
Power supply design for the filament of the high-voltage electron accelerator
Zhang, Lige; Yang, Lei; Yang, Jun; Huang, Jiang; Liu, Kaifeng; Zuo, Chen
2015-12-01
The filament is a key component for the electron emission in the high-voltage electron accelerator. In order to guarantee the stability of the beam intensity and ensure the proper functioning for the power supply in the airtight steel barrel, an efficient filament power supply under accurate control is required. The paper, based on the dual-switch forward converter and synchronous rectification technology, puts forward a prototype of power supply design for the filament of the high-voltage accelerator. The simulation is conducted with MATLAB-Simulink on the main topology and the control method. Loss analysis and thermal analysis are evaluated using the FEA method. Tests show that in this prototype, the accuracy of current control is higher than 97.5%, and the efficiency of the power supply reaches 87.8% when the output current is 40 A.
Transverse "Monopole" Instability Driven by Electron Cloud?
Benedetto, Elena; Zimmermann, Frank; Ohmi, K; Papaphilippou, Y; Rumolo, Giovanni
2003-01-01
We simulate the long-term emittance growth of a proton beam due to an electron cloud of moderate density. This emittance growth is sometimes characterized by a rapid blow up of the bunch tail, and it appears to be different from the strong head-tail instability, which is observed at higher electron densities. We study whether this instability can occur in the absence of transverse dipole motion along the bunch, and its sensitivity to various simulation parameters, such as the number of beam-electron interaction points (IPs) and the phase advances between them. Using a frozen-potential model, we compute tune footprints, which reveal the resonances contributing to the incoherent part of the emittance growth.
Control of Coherent Instabilities by Linear Coupling
Cappi, R; Möhl, D
2001-01-01
One of the main challenges in the design of high-energy colliders is the very high luminosity necessary to provide significant event rates. This imposes strong constraints to achieve and preserve beams of high brightness, i.e. intensity to emittance ratio, all along the injector chain. Amongst the phenomena that can blow up and even destroy the beam are transverse coherent instabilities. Two methods are widely used to damp these instabilities. The first one is Landau damping by non-linearities. The second consists in using an electronic feedback system. However, non-linearities are harmful to single-particle motion due to resonance phenomena, and powerful wideband feedback systems are expensive. It is shown in this paper that linear coupling is a further method that can be used to damp transverse coherent instabilities. The theory of collective motion is outlined, including the coupling of instability rise and damping rates, chromaticity and Landau damping. Experimental results obtained at the CERN PS are rep...
Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?
Hao, Q; Fang, C; Chen, P F; Cao, W
2015-01-01
We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have ...
Energy Technology Data Exchange (ETDEWEB)
Stupakov, Gennady
2001-04-02
A dispersion relation for a microwave instability of a coasting beam is derived from the Vlasov-Fokker-Plank equation which takes into account the effects of synchrotron damping and quantum fluctuations. This derivation generalizes the standard analysis of the beam stability in which the discussion and damping are usually neglected. Our results are also applicable for a bunched beam when the wavelength of the instability is much smaller than the bunch length.
Filament overwrapped motor case technology
Compton, Joel P.
1993-11-01
Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.
International Nuclear Information System (INIS)
In ICF, the understanding of laser plasma scattering processes is essential for laser target coupling and in controlling the symmetry of indirect drive implosions. The existing Nova Full Aperture Backscatter Station (FABS) has been useful in understanding laser plasma instabilities occurring in hohlraums by measuring the quantity, spectral distribution and near-field spatial distributions of Brillouin and more recently Raman backscatter. Equally important is an understanding of the farfield spatial intensity distribution which provides information on density, temperature and velocity gradient distributions, and which affect capsule implosion symmetry in hohlraums. Such information could potentially help in understanding processes such as filamentation and saturation mechanism. This paper describes a broad-band, color-corrected far-field imager and associated diagnostics capable of imaging the source of scattered light to better than 25 microm resolution. The imager can either image Brillouin or Raman backscatter through the Nova beam 7 focusing lens or be used like a microscope to image side scatter from other beams
Space Propagation of Instabilities in Zakharov Equations
Metivier, Guy
2007-01-01
39 p International audience In this paper we study an initial boundary value problem for Zakharov's equations, describing the space propagation of a laser beam entering in a plasma. We prove a strong instability result and prove that the mathematical problem is ill-posed in Sobolev spaces. We also show that it is well posed in spaces of analytic functions. Several consequences for the physical consistency of the model are discussed.
CSR instability in a Bunch Compressor
International Nuclear Information System (INIS)
The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and finite emittance of the beam. Numerical solution of this equation for the LCLS bunch compressor gives the amplification factor for different wavelengths of the beam microbunching