Tutorial on beam-based feedback systems for linacs
Energy Technology Data Exchange (ETDEWEB)
Hendrickson, L.; Allison, S.; Gromme, T.; Grossberg, P.; Himel, T.; Krauter, K.; MacKenzie, R.; Ross, M.; Sass, R.; Shoaee, H.
1994-08-01
A generalized fast feedback system stabilizes beams in the SLC. It performs measurements and modifies actuator settings to control beam states such as position, angle, energy and intensity on a pulse to pulse basis. An adaptive cascade feature allows communication between a series of linac loops, avoiding overcorrection problems. The system is based on the state space formalism of digital control theory. Due to the database-driven design, new loops are added without requiring software modifications. Recent enhancements support the monitoring and control of nonlinear states such as beam phase using excitation techniques. In over three years of operation, the feedback system has grown from its original eight loops to more than fifty loops, and it has been invaluable in stabilizing the machine.
Commissioning and Initial Performance of the LHC Beam-Based Feedback Systems
Boccardi, A; Calvo Giraldo, E; Denz, R; Gasior, M; Gonzalez, JL; Jackson, S; Jensen, LK; Jones, OR; King, Q; Kruk, G; Lamont, M; Page, S; Steinhagen, RJ; Wenninger, J
2010-01-01
The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the initial feedback design assumptions
Feedback control and beam diagnostic algorithms for a multiprocessor DSP system
Energy Technology Data Exchange (ETDEWEB)
Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S. [Stanford Linear Accelerator Center, P.O. Box 4349, Stanford, California 94309 (United States); Drago, A. [INFN---Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati (Roma) (Italy); Stover, G. [Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94563 (United States)
1997-01-01
The multibunch longitudinal feedback system developed for use by PEP-II, ALS, and DA{Phi}NE uses a parallel array of digital signal processors (DSPs) to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations, and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320k samples of data collected in one beam transient measurement are discussed and our solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion (used to quantify growth and damping rates of instabilities), and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL. {copyright} {ital 1997 American Institute of Physics.}
Feedback control and beam diagnostic algorithms for a multiprocessor DSP system
Energy Technology Data Exchange (ETDEWEB)
Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Drago, A. [INFN, Roma (Italy). Lab. Nazionali di Frascati; Stover, G. [Lawrence Berkeley Lab., CA (United States)
1996-09-01
The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DA{Phi}NE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL.
The beam energy feedback system for Beijing electron positron collider II linac.
Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X
2017-03-01
A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.
Energy Technology Data Exchange (ETDEWEB)
Teytelman, Dmitry
2000-03-30
A bunch-by-bunch longitudinal feedback system has been designed and built to control coupled-bunch instabilities in the PEP-II machine. A prototype system has been installed at the Advanced Light Source at LBNL. Programmable DSPs allow longitudinal feedback processing in conjunction with data acquisition or instrumentation algorithms. Here the authors describe techniques developed for different beam and system diagnostics, such as measurements of the modal growth and damping rates and measurements of the bunch-by-bunch currents. Results from the Advanced Light Source are presented to illustrate these techniques.
Implement and commissioning of the beam energy feedback system in BEPCII linac
Wang, Shaozhe; Liu, Rong; Huang, Xuefang; Qian, Lei
2016-01-01
In order to ensure the beam quality and meet the requirements introduced by the BEPCII storage ring, the beam energy feedback system has been developed at the exit of the linac. This paper describes the implementation and commissioning of this system in detail. The energy feedback system consists of an energy measurement unit, an application software and an execution unit. In order to ensure the real-time monitoring and adjustment of beam energy, we need to introduce a non-interceptive type of online beam energy measurement method which is on the first try in China and the effective mechanism of energy adjustment to achieve this goal. The adjustment of energy is achieved by adjusting the output microwave phase of the RF power source station. The system was put into operation in March 16th, 2016 and achieved the desired results. It can effectively eliminate the low point of the injection rate caused by the fluctuation of the beam center energy and has played an important role in maintaining a high constant inj...
Fuzzy logic based feedback control system for laser beam pointing stabilization.
Singh, Ranjeet; Patel, Kiran; Govindarajan, J; Kumar, Ajai
2010-09-20
This paper reports a fuzzy logic based feedback control system for beam pointing stabilization of a high-power nanosecond Nd:YAG laser operating at 30 Hz. This is achieved by generating the correcting signal for each consequent pulse from the error in the pointing position of the previous laser pulse. We have successfully achieved a reduction of beam position fluctuation from ±60 to ±5.0 μrad without the focusing optics and ±0.9 μrad with focusing optics.
Sayed, Mostafa M.
2014-11-01
Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing an unlicensed secondary user (SU) to share the spectrum with a licensed primary user (PU) under acceptable interference levels to the primary receiver (PU-Rx). In this paper, we consider a secondary link composed of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx). The secondary link is allowed to share the spectrum with a primary network composed of multiple PUs communicating over distinct frequency spectra with a primary base station. We develop a transmission scheme where the SU-Tx initially broadcasts a set of random beams over all the available primary spectra for which the PU-Rx sends back the index of the spectrum with the minimum interference level, as well as information that describes the interference value, for each beam. Based on the feedback information on the PU-Rx, the SU-Tx adapts the transmitted beams and then resends the new beams over the best primary spectrum for each beam to the SU-Rx. The SU-Rx selects the beam that maximizes the received signal-to-interference-plus-noise ratio (SINR) to be used in transmission over the next frame. We consider three cases for the level of feedback information describing the interference level. In the first case, the interference level is described by both its magnitude and phase; in the second case, only the magnitude is considered; and in the third case, we focus on a q-bit description of its magnitude. In the latter case, we propose a technique to find the optimal quantizer thresholds in a mean-square-error sense. We also develop a statistical analysis for the SINR statistics and the capacity and bit error rate of the secondary link and present numerical results that study the impact of the different system parameters.
Nonlinear feedback control of Timoshenko beam
Institute of Scientific and Technical Information of China (English)
冯德兴; 张维弢
1995-01-01
This note is concerned with nonlinear boundary feedback control of a Timoshenko beam. Under some nonlinear boundary feedback control, first the nonlinear semigroup theory is used to show the existence and uniqueness of solution for the corresponding closed loop system. Then by using the Lyapunov method, it is proved that the vibration of the beam under the proposed control action decays in a negative power of time t as t→.
Energy Technology Data Exchange (ETDEWEB)
Roth, Andre
2012-12-15
At the Electron Stretcher Facility ELSA an upgrade of the internal beam current up to 200 mA would be desirable in order to increase the intensity of the extracted electron beam for the future experimental hadron physics program. However, such an upgrade is mainly limited by the excitation of coherent beam instabilities in the stretcher ring. As active counteraction, broadband bunch-by-bunch feedback-systems for the longitudinal, as well as for both transverse planes were installed. After detection of the motion of each of the 27 4 stored bunches via beam position monitors, the systems determine independent correction signals for each bunch using digital signal processors. The amplified correction signals are applied to the beam by means of broadband longitudinal and transverse kicker structures. The detailed setup, the commissioning procedure and measurement results of the damping performance of the systems are presented. In addition, the operation of the longitudinal system during the fast energy ramp of 4 GeV/s from 1.2 GeV to 3.2 GeV is investigated.
Lonza, M
2014-01-01
Coupled-bunch instabilities excited by the interaction of the particle beam with its surroundings can seriously limit the performance of circular particle accelerators. These instabilities can be cured by the use of active feedback systems based on sensors capable of detecting the unwanted beam motion and actuators that apply the feedback correction to the beam. Advances in electronic technology now allow the implementation of feedback loops using programmable digital systems. Besides important advantages in terms of flexibility and reproducibility, digital systems open the way to the use of novel diagnostic tools and additional features. We first introduce coupled-bunch instabilities, analysing the equation of motion of charged particles and the different modes of oscillation of a multi-bunch beam, showing how they can be observed and measured. Different types of feedback systems will then be presented as examples of real implementations that belong to the history of multi-bunch feedback systems. The main co...
LHC beam stability and feedback control
Energy Technology Data Exchange (ETDEWEB)
Steinhagen, Ralph
2007-07-20
This report presents the stability and the control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The aim of this report is to contribute to a safe and reliable LHC commissioning and machine operation. The first part of the analysis gives an estimate of the expected sources of orbit and energy perturbations that can be grouped into environmental sources, machine-inherent sources and machine element failures: the slowest perturbation due to ground motion, tides, temperature fluctuations of the tunnel and other environmental influences are described in this report by a propagation model that is both qualitatively and quantitatively supported by geophone and beam motion measurements at LEP and other CERN accelerators. The second part of this analysis deals with the control of the two LHC beams' orbit and energy through automated feedback systems. Based on the reading of the more than 1056 beam position monitors (BPMs) that are distributed over the machine, a central global feedback controller calculates new deflection strengths for the more than 1060 orbit corrector magnets (CODs) that are suitable to correct the orbit and momentum around their references. this report provides an analysis of the BPMs and CODs involved in the orbit and energy feedback. The BPMs are based on a wide-band time normaliser circuit that converts the transverse beam position reading of each individual particle bunch into two laser pulses that are separated by a time delay and transmitted through optical fibres to an acquisition card that converts the delay signals into a digital position. A simple error model has been tested and compared to the measurement accuracy of LHC type BPMs, obtained through beam-based measurements in the SPS. The average beam position is controlled through 1060 superconducting and individually powered corrector dipole magnets. The proposed correction in 'time-domain' consists of a
Feedback systems for linear colliders
Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G
1999-01-01
Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...
Social Security Administration — The Policy Feedback System (PFS) is a web application developed by the Office of Disability Policy Management Information (ODPMI) team that gathers empirical data...
KEKB beam instrumentation systems
Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.
2003-02-01
For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.
Institute of Scientific and Technical Information of China (English)
2001-01-01
High-current proton beams have attractive features for possible breakthrough applications, especially for accelerator-driven radioactive-clean nuclear power systems (ADS), which make nuclear energy systems safer, cleaner, cheaper, and therefore more practical. However, beam halo-chaos in ADS has become one of the key technical issues because it can cause excessive radio-activation from the accelerators and significantly limits the industrial applications of the new accelerators.Some general engineering methods for chaos control have been developed, but they generally
Tracking control of a flexible beam by nonlinear boundary feedback
Directory of Open Access Journals (Sweden)
Bao-Zhu Guo
1995-01-01
Full Text Available This paper is concerned with tracking control of a dynamic model consisting of a flexible beam rotated by a motor in a horizontal plane at the one end and a tip body rigidly attached at the free end. The well-posedness of the closed loop systems considering the dissipative nonlinear boundary feedback is discussed and the asymptotic stability about difference energy of the hybrid system is also investigated.
BOUNDARY FEEDBACK STABILIZATION OF NONUNIFORM TIMOSHENKO BEAM WITH A TIPLOAD
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The boundary stabilization problem of a Timoshenko beam attached with a mass at one end is studied. First, with linear boundary force feedback and moment control simultaneously at the end attached with the load, the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t -- oo. Then, some counterexamples are given to show that, in other cases, the corresponding closed loop system is, in general, not stable asymtotically, let alone exponentially.
BOUNDARY FEEDBACK STABILIZATION OF NONUNIFORM TIMOSHENKO BEAM WITH A TIPLOAD
Institute of Scientific and Technical Information of China (English)
YANQINGXU; FENGDEXING
2001-01-01
The boundary stabilization problem of a Timoshenko beam attached with a mass at one end is studied. First, with linear boundary force feedback and moment control simultaneously at the end attached with the load, the energy corresponding to the closed loop system is proven to be exponentially convergent to zero as time t→∞. Then, some counterexamples are given to show that, in other cases, the corresponding closed loop system is, in general, not stable asymtotically, let alone exponentially.
Suppression of beam halo-chaos using nonlinear feedback discrete control method
Fang Jin Qing; Chen Guan Rong; Luo Xiao Shu; Weng Jia Qiang
2002-01-01
Based on nonlinear feedback control method, wavelet-based feedback controller as a especial nonlinear feedback function is designed for controlling beam halo-chaos in high-current accelerators of driven clean nuclear power system. PIC simulations show that suppression of beam halo-chaos are realized effectively after discrete control of wavelet-based feed-back is applied to five kinds of the initial proton beam distributions, respectively. The beam halo strength factor is quickly reduced to zero, and other statistical physical quantities of beam halo-chaos are more than doubly reduced. These performed PIC simulation results demonstrate that the developed methods are very effective for control of beam halo-chaos. Potential application of the beam halo-chaos control methods is discussed finally
Feedback control of quantum system
Institute of Scientific and Technical Information of China (English)
DONG Dao-yi; CHEN Zong-hai; ZHANG Chen-bin; CHEN Chun-lin
2006-01-01
Feedback is a significant strategy for the control of quantum system.Information acquisition is the greatest difficulty in quantum feedback applications.After discussing several basic methods for information acquisition,we review three kinds of quantum feedback control strategies:quantum feedback control with measurement,coherent quantum feedback,and quantum feedback control based on cloning and recognition.The first feedback strategy can effectively acquire information,but it destroys the coherence in feedback loop.On the contrary,coherent quantum feedback does not destroy the coherence,but the capability of information acquisition is limited.However,the third feedback scheme gives a compromise between information acquisition and measurement disturbance.
STABILIZATION OF VIBRATING BEAM BY VELOCITY FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A flexible structure consisting of a Euler-Bernoulli beam with co-located sensors and actuators is considered.The control is a shear force in proportion to velocity.It is known that uniform exponential stability can be achieved with velocity feedback.A sensitivity asymptotic analysis of the system's eigenvalues and eigenfunctions is set up.The authors prove that,for K1 ∈ [0,+∞),all of the generalized eigenvectors of A form a Riesz basis of H.It is also proved that the optimal exponential decay rate can be obtained from the spectrum of the system for 0 ＜ Kl ＜ +∞.
Controlling Beam Halo-Chaos via Time-Delayed Feedback
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; WENG Jia-Qiang; ZHU Lun-Wu; LUO Xiao-Shu
2004-01-01
The study of controlling high-current proton beam halo-chaos has become a key concerned issue for many important applications. In this paper, time-delayed feedback control method is proposed for beam halo-chaos. Particle in cell simulation results show that the method is very effective and has some advantages for high-current beam experiments and engineering.
Energy Technology Data Exchange (ETDEWEB)
Tobiyama, M.; Kikutani, E. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
Design and the present status of the bunch by bunch feedback systems for KEKB rings are shown. The detection of the bunch oscillation are made with the phase detection for longitudinal plane, the AM/PM method for transverse plane. Two GHz component of the bunch signal which is extracted with an analog FIR filter is used for the detection. Hardware two-tap FIR filter systems to shift the phase of the oscillation by 90deg will be used for the longitudinal signal processing. The same system will be used with no filtering but with only digital delay for transverse system. The candidate for the kicker and the required maximum power are also estimated. (author)
Muraoka, Ryo; Nakanishi, Tetsuya
2017-02-01
A feedback control of the spill structure for the slow beam extraction from the medical synchrotron using a fast quadruple and radio frequency (RF)-knockout (QAR method) is studied to obtain the designed spill structure. In addition the feed-forward control is used so that the feedback control is performed effectively. In this extraction method, the spill of several ms are extracted continuously with an interval time of less than 1 ms. Beam simulation showed that a flat spill structure was effectively obtained with feed-forward and feedback control system as well as a step-wise structure which is useful for the shortening of an irradiation time in a spot scanning operation. The effect of current ripples from main quadruple magnet's power supplies could be also reduced with the feedback control application.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
Institute of Scientific and Technical Information of China (English)
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Experimental study of delayed positive feedback control for a flexible beam
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing ...
PEP-II RF feedback system simulation
Energy Technology Data Exchange (ETDEWEB)
Tighe, R. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
A model containing the fundamental impedance of the PEP-II cavity along with the longitudinal beam dynamics and RF feedback system components is in use. It is prepared in a format allowing time-domain as well as frequency-domain analysis and full graphics capability. Matlab and Simulink are control system design and analysis programs (widely available) with many built-in tools. The model allows the use of compiled C-code modules for compute intensive portions. We desire to represent as nearly as possible the components of the feedback system including all delays, sample rates and applicable nonlinearities. (author)
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
Institute of Scientific and Technical Information of China (English)
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
Feedback control of optical beam spatial profiles using thermal lensing
Liu, Zhanwei; Arain, Muzammil A; Williams, Luke; Mueller, Guido; Tanner, David B; Reitze, David H
2013-01-01
A method for active control of the spatial profile of a laser beam using adaptive thermal lensing is described. A segmented electrical heater was used to generate thermal gradients across a transmissive optical element, resulting in a controllable thermal lens. The segmented heater also allows the generation of cylindrical lenses, and provides the capability to steer the beam in both horizontal and vertical planes. Using this device as an actuator, a feedback control loop was developed to stabilize the beam size and position.
Effect of horizontal fast electron beam position feedback on the performance of ESRF beamlines
Pascarelli, S
2001-01-01
ESRF is a state of the art third generation synchrotron light source optimized to produce very bright and collimated hard X-ray beams using insertion devices. Instabilities of the electron beam, resulting in source point transverse displacements, spoil these outstanding beam qualities. At the beginning of operation a fast active feedback system was installed to damp the transverse motion of the electron beam in the vertical plane. Recently it became evident that also the relatively smaller horizontal instabilities may have specific detrimental effects on the operation of particularly sensitive beamlines. The dispersive XAS beamline (ID24) was the first to benefit from the activation of a local horizontal feedback. Optimized to perform time-resolved studies and high-pressure experiments, its operation was strongly perturbed. This paper briefly describes the work carried out to identify and solve these problems, presenting the outcome of the implementation of a fast orbit feedback on this beamline.
Feedback Control of Vibrations in a Micromachined Cantilever Beam with Electrostatic Actuators
Wang, P. K. C.
1998-06-01
The problem of feedback control of vibrations in a micromachined cantilever beam with nonlinear electrostatic actuators is considered. Various forms of nonlinear feedback controls depending on localized spatial averages of the beam velocity and displacement near the beam tip are derived by considering the time rate-of-change of the total energy of the beam. The physical implementation of the derived feedback controls is discussed briefly. The dynamic behaviour of the beam with the derived feedback controls is determined by computer simulation.
Balanced bridge feedback control system
Lurie, Boris J. (Inventor)
1990-01-01
In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.
On boundary feedback stabilization of Timoshenko beam with rotor inertia at the tip
Institute of Scientific and Technical Information of China (English)
Qingxu YAN; Li WAN; Dexing FENG
2004-01-01
The feedback stabilization problem of a nonuniform Timoshenko beam system with rotor inertia at the tip of the beam is studied.First,as a special kind of linear boundary force feedback and moment control is applied to the beam's tip,the strict mathematical treatment,a suitable state Hilbert space is chosen,and the well-poseness of the corresponding closed loop system is proved by using the semigroup theory of bounded linear operators.Then the energy corresponding to the closed loop system is shown to be exponentially stable.Finally,in the special case of uniform beam,some sufficient and necessary conditions for the corresponding closed loop system to be asymptotically stable are derived.
Energy-Spread-Feedback System for the KEKB Injector Linac
Satoh, Masanori; Suwada, Tsuyoshi
2005-01-01
New energy-spread feedback system using nondestructive energy-spread monitors have been developed in order to control and stabilize the energy spreads of single-bunch electron and positron beams in the KEKB injector linac. The well-controlled feedback systems of the injector linac are successfully working in dairy operation not only for keeping the injection rate higher along with the beam-orbit and energy feedback systems but also for reducing a background level to the high-energy B-factory experiment. The energy spreads of the injection beams are well stabilized within 0.2%, 0.5% and 0.3% for the electron beam, the positron beam, and the high-current primary electron beam for positron production, respectively, through the energy-spread feedback system under the nominal operation condition. In this paper, we will report in detail the energy-spread feedback system using the nondestructive energy-spread monitors with multi-strip-line electrodes and their performance in the KEKB operation.
Energy Technology Data Exchange (ETDEWEB)
Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.
1997-09-01
The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.
Logistic systems with linear feedback
Son, Leonid; Shulgin, Dmitry; Ogluzdina, Olga
2016-08-01
A wide variety of systems may be described by specific dependence, which is known as logistic curve, or S-curve, between the internal characteristic and the external parameter. Linear feedback between these two values may be suggested for a wide set of systems also. In present paper, we suggest a bifurcation behavior for systems with both features, and discuss it for two cases, which are the Ising magnet in external field, and the development of manufacturing enterprise.
Stabilization of Nonuniform Euler-Bernoulli Beam with Locally Distributed Feedbacks
Institute of Scientific and Technical Information of China (English)
Xian-bing CAO; Qing-xu YAN
2012-01-01
In this article,we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks.Firstly,using the semi-group theory,we establish the well-posedness of the associated closed loop system.Then by proving the uniqueness of the solution of a related ordinary differential equations,we derive the asymptotic stability of the closed loop system. Finally,by means of the piecewise frequency domain multiplier method,we prove that the corresponding closed loop system can be exponentially stabilized by only one of the two distributed feedback controls proposed in this paper.
Probabilistic models for feedback systems.
Energy Technology Data Exchange (ETDEWEB)
Grace, Matthew D.; Boggs, Paul T.
2011-02-01
In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.
DESIGN AND PERFORMANCE OF INTRA-TRAIN FEEDBACK SYSTEMS AT ATF2
Resta-Lopez, J
2009-01-01
The major goals of the final focus test beam line facility ATF2 are to provide electron beams with a few tens of nanometer beam sizes and beam stability control at the nanometer level. In order to achieve such a level of stability beam-based feedback systems are necessary at different timescales to correct static and dynamic effects. In particular, we present the design of intra-train feedback systems to correct the impact of fast jitter sources. We study a bunchto- bunch feedback system installed in the extraction line to combat the ring extraction transverse jitters. In addition, we design a bunch-to-bunch feedback system at the interaction point for correction of position jitter due to the fast vibration of the magnets in the final focus. Optimum feedback software algorithms are discussed and simulation results are presented.
A prototype fast feedback system for energy lock at CEBAF
Energy Technology Data Exchange (ETDEWEB)
Chowdhary, M.; Krafft, G.A.; Shoaee, H.; Simrock, S.N.; Watson, W.A.
1995-12-31
The beam energy at CEBAF must be controlled accurately against phase and gradient fluctuations in RF cavities in order to achieve a 2.5 {times} 10{sup {minus}5} relative energy spread. A prototype fast feedback system based on the concepts of Modern Control Theory has been implemented in the CEBAF control system to function as an energy lock. Measurements performed during the pulsed mode operations indicate presence of noise components at 4 Hz and 12 Hz on beam energy. This fast feedback prototype operates at 60 Hz rate and is integrated with EPICS. This paper describes the implementation of the fast feedback prototype, and operational experience with this system at CEBAF. 5 refs., 3 figs.
LHC Transverse Feedback System First Results of Commissionning
Zhabitsky, V M; Lebedev, N I; Makarov, A A; Pilyar, N V; Rabtsun, S V; Smolkov, R A; Baudrenghien, P; Höfle, Wolfgang; Killing, F; Kojevnikov, I; Kotzian, G; Louwerse, R; Montesinos, E; Rossi, V; Schokker, M; Thepenier, E; Valuch, D
2008-01-01
A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise the high intensity beam against coupled bunch transverse instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The LHC Damper can also be used as means of exciting transverse oscillations for the purposes of abort gap cleaning and tune measurement. The LHC Damper includes 4 feedback systems on 2 circulating beams (in other words one feedback system per beam and plane). Every feedback system consists of 4 electrostatic kickers, 4 push-pull wide band power amplifiers, 8 preamplifiers, two digital processing units and 2 beam position monitors with low-level electronics. The power and low-level subsystem layout is described along with first results from the commissioning of 16 power amplifiers and 16 electrostatic kickers located in the LHC tunnel. The achieved performance is compared with earlier predictions ...
Multimedia Feedback Systems for Engineering
Energy Technology Data Exchange (ETDEWEB)
Gladwell, S.; Gottlieb, E.J.; McDonald, M.J.; Slutter, C.L.
1998-12-15
The World Wide Web has become a key tool for information sharing. Engineers and scientists are finding that the web is especially suited to publishing the graphical, multi-layered information that is typical of their work. Web pages are easier to distribute than hardcopy. Web movies have become more accessible, in many offices, than videos. Good VRML viewing software, bundled with most new PCs, has sufficient power to support many engineering needs. In addition to publishing information science and engineering has an important tradition of peer and customer review. Reports, drawings and graphs are typically printed, distributed, reviewed, marked up, and returned to the author. Adding review comments to paper is easy. When, however, the information is in electronic form, this ease of review goes away. It's hard to write on videos. It's even harder to write comments on animated 3D models. These feedback limitations reduce the value of the information overall. Fortunately, the web can also be a useful tool for collecting peer and customer review information. When properly formed, web reports, movies, and 3D animations can be readily linked to review notes. This paper describes three multimedia feed-back systems that Sandia National Laboratories has developed to tap that potential. Each system allows people to make context-sensitive comments about specific web content and electronically ties the comments back to the web content being referenced. The fuel system ties comments to specific web pages, the second system ties the comments to specific frames of digital movies, and the third ties the comments to specific times and viewpoints within 3D animations. In addition to the technologies, this paper describes how they are being used to support intelligent machine systems design at Sandia.
FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM
Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance
Beam Synchronous Timing Systems
Peters, A
2003-01-01
For many beam diagnostics purposes beam synchronous timing systems are needed in addition to the timing systems supplied by the control systems of the different accelerators. The demands and techniques of different accelerator facilities will be discussed along the following aspects: Bunch and macro pulse synchronous timing systems Solutions for different time scales from ps to ms Coupling to the RF and control systems of the different accelerators Electronics for the beam synchronous timing systems: parameters, techniques, controlling Use of industrial products for bunch synchronous timing systems, e.g. function generators Distribution of the timing signals: electronically via cables, optically via fibres or wireless Coupling to and use of timing standards: IRIG-B, GPS, ? The participants should present and describe solutions from their facilities with some transparencies as a starting point for the discussion.
Directory of Open Access Journals (Sweden)
Ting Zhang
2014-01-01
Full Text Available This paper presents various experimental verifications for the theoretical analysis results of vibration suppression to a smart flexible beam bonded with a piezoelectric actuator by a velocity feedback controller and an extended state observer (ESO. During the state feedback control (SFC design process for the smart flexible beam with the pole placement theory, in the state feedback gain matrix, the velocity feedback gain is much more than the displacement feedback gain. For the difference between the velocity feedback gain and the displacement feedback gain, a modified velocity feedback controller is applied based on a dynamical model with the Hamilton principle to the smart beam. In addition, the feedback velocity is attained with the extended state observer and the displacement is acquired by the foil gauge on the root of the smart flexible beam. The control voltage is calculated by the designed velocity feedback gain multiplied by the feedback velocity. Through some experiment verifications for simulation results, it is indicated that the suppressed amplitude of free vibration is up to 62.13% while the attenuated magnitude of its velocity is up to 61.31%. Therefore, it is demonstrated that the modified velocity feedback control with the extended state observer is feasible to reduce free vibration.
Feedback linearization of piecewise linear systems
Camlibel, Kanat; Ustoglu, Ilker
2005-01-01
One of the classical problems of nonlinear systems and control theory is feedback linearization. Its obvious motivation is that one can utilize linear control theory if the nonlinear system at hand is linearizable by feedback. This problem is well-understood for the smooth nonlinear systems. In the
ON FEEDBACK CONTROL OF DELAYED CHAOTIC SYSTEM
Institute of Scientific and Technical Information of China (English)
李丽香; 彭海朋; 卢辉斌; 关新平
2001-01-01
In this paper two different types of feedback control technique are discussed: the standard feedback control and the time-delay feedback control which have been successfully used in many control systems. In order to understand to what extent the two different types of control technique are useful in delayed chaotic systems, some analytic stabilization conditions for chaos control from the two types of control technique are derived based on Lyapunov stabilization arguments. Similarly, we discuss the tracking problem by applying the time-delay feedback control. Finally, numerical examples are provided.
Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons
AUTHOR|(SzGeCERN)752526
2015-01-01
The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.
Tomizawa, H; Dewa, H; Hanaki, H; Kobayashi, T; Mizuno, A; Suzuki, S; Taniuchi, T; Yanagida, K
2004-01-01
The ideal spatial and temporal profiles of a shot-by-shot single laser pulse are essential to suppress the emittance growth of the electron beam from a photo-cathode rf gun. We have been developing highly qualified UV-laser pulse as a light source of the rf gun for an injector candidate of future light sources. The gun cavity is a single-cell pillbox, and the copper inner wall is used as a photo cathode. The electron beam was accelerated up to 4.1 MeV at the maximum electric field on the cathode surface of 175 MV/m. For emittance compensation, two solenoid coils were used. As the first test run, with a microlens array as a simple spatial shaper, we obtained a minimum emittance value of 2 π·mm·mrad with a beam energy of 3.1 MeV, holding its charge to 0.1 nC/bunch. In the next test run, we prepared a deformable mirror for spatial shaping, and a spatial light modulator based on fused-silica plates for temporal shaping. We applied the both adaptive optics to automatically shape the bot...
Orbit correction algorithm for SSRF fast orbit feedback system
Institute of Scientific and Technical Information of China (English)
LIU Ming; YIN Chongxian; LIU Dekang
2009-01-01
A fast orbit feedback system is designed at SSRF to suppress beam orbit disturbance within sub-micron in the bandwidth up to 100 Hz.The SVD (Singular value decomposition) algorithm is applied to calculate the inverse response matrix in global orbit correction.The number of singular eigenvalues will influence orbit noise suppression and corrector strengths.The method to choose singular eigenvalue rejection threshold is studied in this paper,and the simulation and experiment results are also presented.
Augmenting Environmental Interaction in Audio Feedback Systems
Directory of Open Access Journals (Sweden)
Seunghun Kim
2016-04-01
Full Text Available Audio feedback is defined as a positive feedback of acoustic signals where an audio input and output form a loop, and may be utilized artistically. This article presents new context-based controls over audio feedback, leading to the generation of desired sonic behaviors by enriching the influence of existing acoustic information such as room response and ambient noise. This ecological approach to audio feedback emphasizes mutual sonic interaction between signal processing and the acoustic environment. Mappings from analyses of the received signal to signal-processing parameters are designed to emphasize this specificity as an aesthetic goal. Our feedback system presents four types of mappings: approximate analyses of room reverberation to tempo-scale characteristics, ambient noise to amplitude and two different approximations of resonances to timbre. These mappings are validated computationally and evaluated experimentally in different acoustic conditions.
Numerical Approximation and Error Analysis for the Timoshenko Beam Equations with Boundary Feedback
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, the numerical approximation of a Timoshenko beam with boundary feedback is considered. We derived a linearized three-level difference scheme on uniform meshes by the method of reduction of order for a Timoshenko beam with boundary feedback. It is proved that the scheme is uniquely solvable, unconditionally stable and second order convergent in L∞ norm by using the discrete energy method.A numerical example is presented to verify the theoretical results.
Target and orbit feedback simulations of a muSR beam line at BNL
Energy Technology Data Exchange (ETDEWEB)
MacKay, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-07-28
Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ^{+} should be about 40 kHz/mm^{2}. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss the desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.
Beam Instrument Development System
Energy Technology Data Exchange (ETDEWEB)
2016-01-08
Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.
A tracking system with space virtual feedback
Institute of Scientific and Technical Information of China (English)
Zheng MAO; Xiaojun QU; Fuling WEI; Yali WANG
2008-01-01
In this paper,a tracking system with space virtual feedback(SVF)is presented.The whole tracking system is closed by the space virtual feedback line that is the line of sight(LOS),but the parts in the system,such as the tracking subsystem and the servo subsystem.are in the state of open-loop.Because the SVF tracking model is used.the correcting loops can be removed in this system architecture.So the tracking speed and accuracy of the system are greatly improved.
On utilizing delayed feedback for active-multimode vibration control of cantilever beams
Alhazza, Khaled A.; Nayfeh, Ali H.; Daqaq, Mohammed F.
2009-01-01
We present a single-input single-output multimode delayed-feedback control methodology to mitigate the free vibrations of a flexible cantilever beam. For the purpose of controller design and stability analysis, we consider a reduced-order model consisting of the first n vibration modes. The temporal variation of these modes is represented by a set of nonlinearly coupled ordinary-differential equations that capture the evolving dynamics of the beam. Considering a linearized version of these equations, we derive a set of analytical conditions that are solved numerically to assess the stability of the closed-loop system. To verify these conditions, we characterize the stability boundaries using the first two vibration modes and compare them to damping contours obtained by long-time integration of the full nonlinear equations of motion. Simulations show excellent agreement between both approaches. We analyze the effect of the size and location of the piezoelectric patch and the location of the sensor on the stability of the response. We show that the stability boundaries are highly dependent on these parameters. Finally, we implement the controller on a cantilever beam for different controller gain-delay combinations and assess the performance using time histories of the beam response. Numerical simulations clearly demonstrate the controller ability to mitigate vibrations emanating from multiple modes simultaneously.
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-01-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources. PMID:28287175
Beam shaping in high-power broad-area quantum cascade lasers using optical feedback
Ferré, Simon; Jumpertz, Louise; Carras, Mathieu; Ferreira, Robson; Grillot, Frédéric
2017-03-01
Broad-area quantum cascade lasers with high output powers are highly desirable sources for various applications including infrared countermeasures. However, such structures suffer from strongly deteriorated beam quality due to multimode behavior, diffraction of light and self-focusing. Quantum cascade lasers presenting high performances in terms of power and heat-load dissipation are reported and their response to a nonlinear control based on optical feedback is studied. Applying optical feedback enables to efficiently tailor its near-field beam profile. The different cavity modes are sequentially excited by shifting the feedback mirror angle. Further control of the near-field profile is demonstrated using spatial filtering. The impact of an inhomogeneous gain as well as the influence of the cavity width are investigated. Compared to existing technologies, that are complex and costly, beam shaping with optical feedback is a more flexible solution to obtain high-quality mid-infrared sources.
REGULARIZATION OF SINGULAR SYSTEMS BY OUTPUT FEEDBACK
Institute of Scientific and Technical Information of China (English)
De-lin Chu; Da-yong Cai
2000-01-01
Problem of regularization of a singular system by derivative and proportional output feedback is studied. Necessary and sufficient conditions are obtained under which a singular system can be regularized into a closed-loop system that is regular and of index at most one. The reduced form is given that can easily explore the system properties as well as the feedback to be determined. The main results of the present paper are based on orthogonal transformations. Therefore, they can be implemented by numerically stable ways.
Partial Feedback Linearization on a Harmonically Excited Beam with One-Sided Spring
HEERTJES, M. F.; VAN DE MOLENGRAFT, M. J. G.; NIJMEIJER, H.
1999-12-01
Partial feedback linearization is applied to a harmonically excited beam with one-sided spring to reduce vibration amplitudes while keeping the control effort small. Vibration amplitudes are reduced by globally stabilizing the small amplitude 1-periodic solution which is one of the coexisting solutions. As the 1-periodic solution represents a natural solution of the uncontrolled system, no control effort will be needed once the system vibrates in the 1-periodic response. To control the multi-degree-of-freedom (d.o.f.) beam system to the 1-periodic solution, only one actuator is used that controls one (d.o.f.). The behaviour of the other d.o.f.s is eventually described by the zero dynamics. Whether these d.o.f.s converge to the 1-periodic solution depends on the stability of the zero dynamics. The global asymptotic stability of the non-autonomous zero dynamics can be partially determined by a frequency domain technique known as the circle criterion. However, the circle criterion does not guarantee stability at all actuator positions along the beam
Developing 360 degree feedback system for KINS
Energy Technology Data Exchange (ETDEWEB)
Han, In Soo; Cheon, B. M.; Kim, T. H.; Ryu, J. H. [Chungman National Univ., Daejeon (Korea, Republic of)
2003-12-15
This project aims to investigate the feasibility of a 360 degree feedback systems for KINS and to design guiding rules and structures in implementing that systems. Literature survey, environmental analysis and questionnaire survey were made to ensure that 360 degree feedback is the right tool to improve performance in KINS. That review leads to conclusion that more readiness and careful feasibility review are needed before implementation of 360 degree feedback in KINS. Further the project suggests some guiding rules that can be helpful for successful implementation of that system in KINS. Those include : start with development, experiment with one department, tie it to a clear organization's goal, train everyone involve, make sure to try that system in an atmosphere of trust.
Transverse Feedback System For The Cooler Synchrotron COSY-Jülich - First Results
Kamerdzhiev, V; Mohos, I
2003-01-01
The cooler synchrotron COSY delivers unpolarized and polarized protons and deuterons in the momentum range 300 MeV/c up to 3.65 GeV/c. Electron cooling at injection level and stochastic cooling covering the range from 1.5 GeV/c up to maximum momentum are available to prepare high precision beams for internal as well as for external experiments in hadron physics. In case of electron cooled beam the intensity is limited by transverse instabilities. The major losses are due to the vertical coherent beam oscillations. To damp these instabilities a transverse feedback system is under construction. First results with a simple feedback system are presented. Due to the feedback system operation the intensity and lifetime of the electron cooled proton beam at injection energy could be significantly increased. Measurements in frequency and time domain illustrate the performance of the system.
Diversity in School Performance Feedback Systems
Verhaeghe, Goedele; Schildkamp, Kim; Luyten, Hans; Valcke, Martin
2015-01-01
As data-based decision making is receiving increased attention in education, more and more school performance feedback systems (SPFSs) are being developed and used worldwide. These systems provide schools with data on their functioning. However, little research is available on the characteristics of the different SPFSs. Therefore, this study…
Feedback control system for walking in man.
Petrofsky, J S; Phillips, C A; Heaton, H H
1984-01-01
A computer control stimulation system is described which has been successfully tested by allowing a paraplegic subject to stand and walk through closed loop control. This system is a Z80 microprocessor system with eight channels of analog to digital and 16 channels of digital to analog control. Programming is written in CPM and works quite successfully for maintaining lower body postural control in paraplegics. Further expansion of this system would enable a feedback control system for multidirectional walking in man.
COMMISSIONING OF THE DIGITAL TRANSVERSE BUNCH-BY-BUNCH FEEDBACK SYSTEM FOR THE TLS.
Energy Technology Data Exchange (ETDEWEB)
HU, K.H.; KUO, C.H.; CHOU, P.J.; LEE, D.; HSU, S.Y.; CHEN, J.; WANG, C.J.; HSU, K.T.; KOBAYASHI, K.; NAKAMURA, T.; CHAO, A.W.; WENG, W.T.
2006-06-26
Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even beam loss. Feedback systems are used to suppress multi-bunch instabilities associated with the resistive wall of the beam ducts, cavity-like structures, and trapped ions. A new digital transverse bunch-by-bunch feedback system has recently been commissioned at the Taiwan Light Source, and has replaced the previous analog system. The new system has the advantages that it enlarges the tune acceptance and improves damping for transverse instability at high currents, such that top-up operation is achieved. After a coupled-bunch transverse instability was suppressed, more than 350 mA was successfully stored during preliminary commissioning. In this new system, a single feedback loop simultaneously suppresses both horizontal and vertical multi-bunch instabilities. Investigating the characteristics of the feedback loop and further improving the system performances are the next short-term goals. The feedback system employs the latest generation of field-programmable gate array (FPGA) processor to process bunch signals. Memory has been installed to capture up to 250 msec of bunch oscillation signal, considering system diagnostics suitable to support various beam physics studies.
Novel Reduced-Feedback Wireless Communication Systems
Shaqfeh, Mohammad Obaidah
2011-11-20
Modern communication systems apply channel-aware adaptive transmission techniques and dynamic resource allocation in order to exploit the peak conditions of the fading wireless links and to enable significant performance gains. However, conveying the channel state information among the users’ mobile terminals into the access points of the network consumes a significant portion of the scarce air-link resources and depletes the battery resources of the mobile terminals rapidly. Despite its evident drawbacks, the channel information feedback cannot be eliminated in modern wireless networks because blind communication technologies cannot support the ever-increasing transmission rates and high quality of experience demands of current ubiquitous services. Developing new transmission technologies with reduced-feedback requirements is sought. Network operators will benefit from releasing the bandwidth resources reserved for the feedback communications and the clients will enjoy the extended battery life of their mobile devices. The main technical challenge is to preserve the prospected transmission rates over the network despite decreasing the channel information feedback significantly. This is a noteworthy research theme especially that there is no mature theory for feedback communication in the existing literature despite the growing number of publications about the topic in the last few years. More research efforts are needed to characterize the trade-off between the achievable rate and the required channel information and to design new reduced-feedback schemes that can be flexibly controlled based on the operator preferences. Such schemes can be then introduced into the standardization bodies for consideration in next generation broadband systems. We have recently contributed to this field and published several journal and conference papers. We are the pioneers to propose a novel reduced-feedback opportunistic scheduling scheme that combines many desired features
Zhabitsky, V M; Kotzian, G
2009-01-01
The stability of a beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processor in the feedback loop between BPM and DK ensures the adjustment of the phase advance and the correction of the time of flight for optimum damping. Digital FIR (finite impulse response) and IIR (infinite impulse response) filters are used commonly for the signal processing. A notch filter with zeros at the revolution frequency is required to remove the closed orbit content of the signal and correct for the imperfect electric centre of the BPM. Further processing is required to adjust for the betatron phase advance between ...
Wearable feedback systems for rehabilitation
Marci Carl; Sung Michael; Pentland Alex
2005-01-01
Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communicat...
Feedback linearization application for LLRF control system
Energy Technology Data Exchange (ETDEWEB)
Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.
1999-06-01
The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.
Feedback linearization application for LLRF control system
Energy Technology Data Exchange (ETDEWEB)
Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.
1998-12-31
The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of the LLRF control system for LEDA. The authors propose a control law which is based on exact feedback linearization coupled with gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that is due to harmonics of the high voltage power supply and achieves tracking of desired set points. Also, they propose an estimator of the ripple and its time derivative and the estimates based feedback linearization controller.
Mining Feedback in Ranking and Recommendation Systems
Zhuang, Ziming
2009-01-01
The amount of online information has grown exponentially over the past few decades, and users become more and more dependent on ranking and recommendation systems to address their information seeking needs. The advance in information technologies has enabled users to provide feedback on the utilities of the underlying ranking and recommendation…
Transversality for Cyclic Negative Feedback Systems
2014-01-01
Transversality of stable and unstable manifolds of hyperbolic periodic trajectories is proved for monotone cyclic systems with negative feedback. Such systems in general are not in the category of monotone dynamical systems in the sense of Hirsch. Our main tool utilized in the proofs is the so-called cone of high rank. We further show that stable and unstable manifolds between a hyperbolic equilibrium and a hyperbolic periodic trajectory, or between two hyperbolic equilibria with different di...
Robust synchronization of chaotic systems via feedback
Energy Technology Data Exchange (ETDEWEB)
Femat, Ricardo [IPICYT, San Luis Potosi (Mexico). Dept. de Matematicas Aplicadas; Solis-Perales, Gualberto [Universidad de Guadalajara, Centro Univ. de Ciencias Exactas e Ingenierias (Mexico). Div. de Electronica y Computacion
2008-07-01
This volume includes the results derived during last ten years about both suppression and synchronization of chaotic -continuous time- systems. Along this time, the concept was to study how the intrinsic properties of dynamical systems can be exploited to suppress and to synchronize the chaotic behaviour and what synchronization phenomena can be found under feedback interconnection. A compilation of these findings is described in this book. This book shows a perspective on synchronization of chaotic systems. (orig.)
Wearable feedback systems for rehabilitation
Directory of Open Access Journals (Sweden)
Marci Carl
2005-06-01
Full Text Available Abstract In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.
Wearable feedback systems for rehabilitation.
Sung, Michael; Marci, Carl; Pentland, Alex
2005-06-29
In this paper we describe LiveNet, a flexible wearable platform intended for long-term ambulatory health monitoring with real-time data streaming and context classification. Based on the MIT Wearable Computing Group's distributed mobile system architecture, LiveNet is a stable, accessible system that combines inexpensive, commodity hardware; a flexible sensor/peripheral interconnection bus; and a powerful, light-weight distributed sensing, classification, and inter-process communications software architecture to facilitate the development of distributed real-time multi-modal and context-aware applications. LiveNet is able to continuously monitor a wide range of physiological signals together with the user's activity and context, to develop a personalized, data-rich health profile of a user over time. We demonstrate the power and functionality of this platform by describing a number of health monitoring applications using the LiveNet system in a variety of clinical studies that are underway. Initial evaluations of these pilot experiments demonstrate the potential of using the LiveNet system for real-world applications in rehabilitation medicine.
Dynamic axial stabilization of counterpropagating beam-traps with feedback control
DEFF Research Database (Denmark)
Tauro, Sandeep; Bañas, Andrew Rafael; Palima, Darwin;
2010-01-01
Optical trapping in a counter-propagating (CP) beam-geometry provides unique advantages in terms of working distance, aberration requirements and intensity hotspots. However, its axial performance is governed by the wave propagation of the opposing beams, which can limit the practical geometries....... Advanced implementation of this feedback-driven approach can help make CP-trapping resistant to a host of perturbations such as laser fluctuations, mechanical vibrations and other distortions emphasizing its experimental versatility....
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
Energy Technology Data Exchange (ETDEWEB)
Wang, Haipeng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Guo, Jiquan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Rimmer, Robert A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wang, Shaoheng [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability. We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.
Institute of Scientific and Technical Information of China (English)
闫庆旭; 侯瑞鸿; 冯德兴; 齐剑冷
2005-01-01
In this article, we study the locally distributed feedback stabilization problem of a nonuniform Euler-Bernoulli beam. Firstly, using the semi-group theory, we establish the wellposedness of the associated closed loop system. Then by proving the uniqueness of the solution to a related ordinary differential equation, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise multiplier method, we prove that, by either one distributed force feedback or a distributed moment feedback control, the closed loop system can be exponentially stabilized.
Controlling the Beam Halo-Chaos via Wavelet-Based Feedback Periodically
Institute of Scientific and Technical Information of China (English)
2001-01-01
In our recent work, worth mentioning in particular is the wavelet-based feedback controller, which works much better than the others for controlling the proton beam haio-chaos, where the master wavelet function isor, in a simplified form,and generalized form:(1)(2)(3)where a and b are scaling and translation constants, respectively. C is a selected constant. The
The CMS Beam Halo Monitor Detector System
Stifter, Kelly
2015-01-01
A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. Here, I present the detector...
The CMS Beam Halo Monitor Detector System
Stifter, Kelly Marie
2015-01-01
A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to supress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will descri...
The CMS Beam Halo Monitor Detector System
CMS Collaboration
2015-01-01
A new Beam Halo Monitor (BHM) detector system has been installed in the CMS cavern to measure the machine-induced background (MIB) from the LHC. This background originates from interactions of the LHC beam halo with the final set of collimators before the CMS experiment and from beam gas interactions. The BHM detector uses the directional nature of Cherenkov radiation and event timing to select particles coming from the direction of the beam and to suppress those originating from the interaction point. It consists of 40 quartz rods, placed on each side of the CMS detector, coupled to UV sensitive PMTs. For each bunch crossing the PMT signal is digitized by a charge integrating ASIC and the arrival time of the signal is recorded. The data are processed in real time to yield a precise measurement of per-bunch-crossing background rate. This measurement is made available to CMS and the LHC, to provide real-time feedback on the beam quality and to improve the efficiency of data taking. In this talk we will describ...
Simulations of the TESLA Linear Collider with a Fast Feedback System
Schulte, Daniel; White, G
2003-01-01
The tolerances on the beams as they collide at the interaction point of the TESLA linear collider are very tight due to the nano-metre scale final vertical bunch spot sizes. Ground motion causes the beams to increase in emittance and drift out of collision leading to dramatic degradation of luminosity performance. To combat this, both slow orbit and fast intra-train feedback systems will be used. The design of these feedback systems depends critically on how component misalignment effects the beam throughout the whole accelerator. A simulation has been set up to study in detail the accelerator performance under such conditions by merging the codes of PLACET, MERLIN and GUINEA-PIG together with Simulink code to model feedback systems, all under a Matlab environment.
SPLinac Computer Simulations of SC Linac RF Systems with Beam
Tückmantel, Joachim
2001-01-01
The beam in a proton linac is very sensitive to field perturbations in the cavities. Therefore a simulation program was written modeling longitudinal beam dynamics in a realistic composite linac RF system. Fast RF vector sum feedback loops control several cavities with b-dependent transit time factors driven by one transmitter. Modeling of feedback loops covers limited transmitter power and bandwidth and possible loop-delay. Vector sum calibration errors, power splitting errors and scatter in the coupling strength to the cavities are optional as well as beam loading of the pulsing beam. Different modes of mechanical cavity perturbations including Lorentz force detuning can be chosen. A multitude of phase-space representation of bunches as well as RF quantity plots are available, most of them can be assembled as a movie, showing the system dynamics in 'real time'.
Energy Technology Data Exchange (ETDEWEB)
Resta-Lopez, J; Burrows, P N; Christian, G, E-mail: j.restalopez@physics.ox.ac.u [John Adams Institute for Accelerator Science, Oxford University, Oxford, OX1 3RH (United Kingdom)
2010-09-15
To achieve the design luminosity at future linear colliders, control of beam stability at the sub-nanometre level at the interaction point will be necessary. Any source of beam motion which results in relative vertical offsets of the two beams at the interaction point may significantly reduce the luminosity from the nominal value. Beam-based intra-train feedback systems located in the interaction region are foreseen to correct the relative beam-beam offset and thus to steer the two beams into collision. These feedback systems must be capable of acting within the bunch train. In addition, these feedback systems might considerably help to relax the tight stability tolerances required for the final doublet magnets. For the Compact Linear Collider (CLIC), the extremely short nominal bunch spacing (0.5 ns) and very short nominal pulse duration (156 ns) make the intra-train feedback implementation technically very challenging. In this paper the conceptual design of an intra-train feedback system for the CLIC interaction point is described. Results of luminosity performance simulations are presented and discussed for different scenarios of ground motion. We also show how the intra-train feedback system can help to relax the very tight tolerances of the vertical vibration on the CLIC final doublet quadrupoles.
Front-end signal analysis of the transverse feedback system for SSRF
Institute of Scientific and Technical Information of China (English)
HAN Lifeng; YUAN Renxian; YU Luyang; YE Kairong
2008-01-01
Multi-bunch instabilities degrade beam quality through increased beam emittance, energy spread and even cause beam loss. A feedback system is used to suppress multi-bunch instabilities associated with resistive wall of the beam ducts, cavity-like structures, and trapped ions. A digital TFS (Transverse Feedback System) is in construction at the SSRF (Shanghai Synchrotron Radiation Facility), which is based on the latest generation of FPGA (Field Programmable Gate Array) processor. Before we get such FPGA digital board, investigation and simulation of the front-end were done in the first place. The signal flow was analyzed by SystemView. Construction and optimization of the entire system is our next goal.
Assessing biosphere feedbacks on Earth System Processes
McElwain, Jennifer
2016-04-01
The evolution and ecology of plant life has been shaped by the direct and indirect influence of plate tectonics. Climatic change and environmental upheaval associated with the emplacement of large igneous provinces have triggered biosphere level ecological change, physiological modification and pulses of both extinction and origination. This talk will investigate the influence of large scale changes in atmospheric composition on plant ecophysiology at key intervals of the Phanerozoic. Furthermore, I will assess the extent to which plant ecophysiological response can in turn feedback on earth system processes such as the global hydrological cycle and biogeochemical cycling of nitrogen and carbon. Palaeo-atmosphere simulation experiments, palaeobotanical data and recent historical (last 50 years) data-model comparison will be used to address the extent to which plant physiological responses to atmospheric CO2 can modulate global climate change via biosphere level feedback.
Electrostatic ion beam scanning system
Energy Technology Data Exchange (ETDEWEB)
Harper, G.C.; Curtis, W.D.
1978-04-01
An electrostatic scanning system has been designed and built to uniformly implant a 1 cm/sup 2/ sample with a charged particle beam. The full angular scan capability for a 2 MeV beam is 0.5 degrees at 6 kV p-p. The design of the system is extremely simple so it is very compact, easy to operate, and has shown very good reliability.
Lectures in feedback design for multivariable systems
Isidori, Alberto
2017-01-01
This book focuses on methods that relate, in one form or another, to the “small-gain theorem”. It is aimed at readers who are interested in learning methods for the design of feedback laws for linear and nonlinear multivariable systems in the presence of model uncertainties. With worked examples throughout, it includes both introductory material and more advanced topics. Divided into two parts, the first covers relevant aspects of linear-systems theory, the second, nonlinear theory. In order to deepen readers’ understanding, simpler single-input–single-output systems generally precede treatment of more complex multi-input–multi-output (MIMO) systems and linear systems precede nonlinear systems. This approach is used throughout, including in the final chapters, which explain the latest advanced ideas governing the stabilization, regulation, and tracking of nonlinear MIMO systems. Two major design problems are considered, both in the presence of model uncertainties: asymptotic stabilization with a “...
Feedback system design with an uncertain plant
Milich, D.; Valavani, L.; Athans, M.
1986-01-01
A method is developed to design a fixed-parameter compensator for a linear, time-invariant, SISO (single-input single-output) plant model characterized by significant structured, as well as unstructured, uncertainty. The controller minimizes the H(infinity) norm of the worst-case sensitivity function over the operating band and the resulting feedback system exhibits robust stability and robust performance. It is conjectured that such a robust nonadaptive control design technique can be used on-line in an adaptive control system.
Theoretical Limits of Damping Attainable by Smart Beams with Rate Feedback
Balakrishnan, A. V.
1997-01-01
Using a generally accepted model we present a comprehensive analysis (within the page limitation) of an Euler- Bernoulli beam with PZT sensor-actuator and pure rate feedback. The emphasis is on the root locus - the dependence of the attainable damping on the feedback gain. There is a critical value of the gain beyond which the damping decreases to zero. We construct the time-domain response using semigroup theory, and show that the eigenfunctions form a Riesz basis, leading to a 'modal' expansion.
Synchronization between two different chaotic systems with nonlinear feedback control
Institute of Scientific and Technical Information of China (English)
Lü Ling; Guo Zhi-An; Zhang Chao
2007-01-01
This paper presents chaos synchronization between two different chaotic systems by using a nonlinear controller, in which the nonlinear functions of the system are used as a nonlinear feedback term. The feedback controller is designed on the basis of stability theory, and the area of feedback gain is determined. The artificial simulation results show that this control method is commendably effective and feasible.
Beam Cleaning and Collimation Systems
Redaelli, S
2016-01-01
Collimation systems in particle accelerators are designed to dispose of unavoidable losses safely and efficiently during beam operation. Different roles are required for different types of accelerator. The present state of the art in beam collimation is exemplified in high-intensity, high-energy superconducting hadron colliders, like the CERN Large Hadron Collider (LHC), where stored beam energies reach levels up to several orders of magnitude higher than the tiny energies required to quench cold magnets. Collimation systems are essential systems for the daily operation of these modern machines. In this document, the design of a multistage collimation system is reviewed, taking the LHC as an example case study. In this case, unprecedented cleaning performance has been achieved, together with a system complexity comparable to no other accelerator. Aspects related to collimator design and operational challenges of large collimation systems are also addressed.
Velocity Feedback Control of a Mechatronics System
Directory of Open Access Journals (Sweden)
Ayman A. Aly
2013-07-01
Full Text Available Increasing demands in performance and quality make drive systems fundamental parts in the progressive automation of industrial process. The analysis and design of Mechatronics systems are often based on linear or linearized models which may not accurately represent the servo system characteristics when the system is subject to inputs of large amplitude. The impact of the nonlinearities of the dynamic system and its stability needs to be clarified.The objective of this paper is to present a nonlinear mathematical model which allows studying and analysis of the dynamic characteristic of an electro hydraulic position control servo. The angular displacement response of motor shaft due to large amplitude step input is obtained by applying velocity feedback control strategy. The simulation results are found to be in agreement with the experimental data that were generated under similar conditions.
Mrňa, L.; Šarbort, M.; Řeřucha, Š.; Jedlička, P.
This paper presents a novel method for optimization and feedback control of laser welding process. It is based on frequency analysis of the light emitted during the process and adaptive shaping of the laser beam achieved by an active optical element. Experimentally observed correlations between the focal properties of the laser beam, the weld depth and the frequency characteristics of the light emissions, which form the basis of the method, are discussed in detail. The functionality and the high efficiency of the method are demonstrated for a variety of welding parameters settings usually used in industrial practice.
Institute of Scientific and Technical Information of China (English)
司守奎
2000-01-01
The stabilization of the Timoshenko equation of a nonuniform beam with locally dis-tributed feedbacks is considered. It is proved that the system is exponentially stabilizable. The frequency domain method and the multiplier technique are applied.
Quantum feedback in a weakly driven cavity QED system
Reiner, J. E.; Smith, W. P.; Orozco, L. A.; Wiseman, H. M.; Gambetta, Jay
2004-08-01
Quantum feedback in strongly coupled systems can probe a regime where one quantum of excitation is a large fluctuation. We present theoretical and experimental studies of quantum feedback in an optical cavity QED system. The time evolution of the conditional state, following a photodetection, can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured in a new steady state and then released. The feedback protocol requires resonance operation, and proper amplitude and delay for the change in the drive. We demonstrate the successful use of feedback in the suppression of the vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return to steady state. The feedback works only because we have an entangled quantum system, rather than an analogous correlated classical system.
The ELENA Beam Diagnostics Systems
Tranquille, G
2013-01-01
The Extra Low ENergy Antiproton ring (ELENA) to be built at CERN is aimed at substantially increasing the number of antiprotons to the low energy antiproton physics community. It will be a small machine which will decelerate low intensity beams (<4x107) from 5.3 MeV to 100 keV and will be equipped with an electron cooler to avoid beam losses during the deceleration and to significantly reduce beam phase space at extraction. To measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and all the way to the experiments, many systems will be needed to ensure that the desired beam characteristics are obtained. Particular attention needs to be paid to the performance of the electron cooler which depends on reliable instrumentation in order to efficiently cool the antiprotons. This contribution will present the different monitors that have been proposed to measure the various beam parameters as well as some of the developments going on to further improve th...
Downlink transmission in multi-carrier systems with reduced feedback
DEFF Research Database (Denmark)
Wang, Yuanye; Pedersen, Klaus; Sørensen, Troels Bundgaard
2010-01-01
in this paper we address the problem of reducing the feedback for the downlink transmission in multi-carrier systems. In these systems multiple Component Carriers (CCs) are aggregated together to form a wide spectrum. Consequently, a large feedback overhead is required to report the channel quality...... information over such a wide bandwidth. We first generalize two existing feedback reduction techniques, and then propose a new one. These techniques use different feedback schemes across the CCs, or allow some CCs to be un-reported, for the purpose of reducing the amount of feedback. Performance...
Marciante, John Robert
1997-10-01
In an effort to improve the performance of high-power semiconductor lasers to meet the demands of applications, this thesis contains work studying the issues which limit their performance: beam filamentation and spatial feedback effects. Through computer simulations, we investigate the role of three nonlinear mechanisms which can lead to filamentation, and determine the stability boundaries of the material parameters for which the device will not exhibit filamentary tendencies. We use an analytic theory to verify these findings, and to predict the spatio- temporal nature of the filaments through an analytic expression for the gain, in which contributions of the various mechanisms can clearly be seen. We experimentally verify the spatio-temporal characteristics of the filaments, discover effects of the stripe width and transitions to chaos, and discuss how to compare the relative severity of filamentation among different devices. We propose a new method of controlling filamentation using below-bandgap semiconductor nonlinearities. With simulations, we determine under what conditions this imposed nonlinearity can counteract the carrier-induced self-focusing inside the active region. We fabricate a prototype device using new epitaxial layers containing the below-bandgap nonlinearities, and compare the performance of these new devices to a control set. In studying the spatial effects of optical feedback, we use Fresnel diffraction theory to derive an expression for the field that is reflected back into the laser. This result is applied to our computer model and used to explore the effects of feedback on narrow-stripe, broad- area, and tapered-stripe semiconductor lasers. Re- examining feedback in narrow-stripe devices through experiments and analytic theory, we investigate the coupling effects between the narrow waveguide and the feedback field, and the changes in the operating characteristics of the laser due to this coupling. We experimentally examine the beam
Institute of Scientific and Technical Information of China (English)
FANG Jin-Qing; LUO Xiao-Shu; HUANG Guo-Xian
2006-01-01
Subject of the halo-chaos control in beam transport networks (channels) has become a key concerned issue for many important applications of high-current proton beam since 1990'. In this paper, the magnetic field adaptive control based on the neuralnetwork with time-delayed feedback is proposed for suppressing beam halo-chaos in the beam transport network with periodic focusing channels. The envelope radius of high-current proton beam is controlled to reach the matched beam radius by suitably selecting the control structure and parameter of the neural network, adjusting the delayed-time and control coefficient of the neural network.
The output feedback control for uncertain nonholonomic systems
Institute of Scientific and Technical Information of China (English)
Qiangde WANG; Chunling WEI; Siying ZHANG
2006-01-01
This paper considers the problems of almost asymptotic stabilization and global asymptotic regulation (GAR) by output feedback for a class of uncertain nonholonomic systems. By combining the nonsmooth change of coordinates and output feedback domination design together, we construct a simple linear time-varying output feedback controller, which can universally stabilize a whole family of uncertain nonholonomic systems. The simulation demonstrates the effectiveness of the proposed controller.
Renting, Nienke; Gans, Rijk O. B.; Borleffs, Jan C. C.; Van Der Wal, Martha A.; Jaarsma, A. Debbie C.; Cohen-Schotanus, Janke
2016-01-01
Introduction: Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed w
Proton beam therapy control system
Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana
2008-07-08
A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.
KTeV beam systems design report
Energy Technology Data Exchange (ETDEWEB)
Bocean, V.; Childress, S.; Coleman, R. [and others
1997-09-01
The primary and secondary beams for the KTeV experiments E799-II and E832 are discussed. The specifications are presented and justified. The technical details of the implementation of the primary beam transport and stability are detailed. The target, beam dump, and radiation safety issues are discussed. The details of the collimation system for the pair of secondary beams are presented.
Feedback control design for discrete-time piecewise affine systems
Institute of Scientific and Technical Information of China (English)
XU Jun; XIE Li-hua
2007-01-01
This paper investigates the design of state feedback and dynamic output feedback stabilizing controllers for discrete-time piecewise affine (PWA) systems. The main objective is to derive design methods that will incorporate the partition information of the PWA systems so as to reduce the design conservatism embedded in existing design methods. We first introduce a transformation that converts the feedback control design problem into a bilinear matrix inequality (BMI) problem. Then, two iterative algorithms are proposed to compute the feedback controllers characterized by the BMI. Several simulation examples are given to demonstrate the advantages of the proposed design.
Design of output feedback controller for a unified chaotic system
Institute of Scientific and Technical Information of China (English)
Li Wen-Lin; Chen Xiu-Qin; Shen Zhi-Ping
2008-01-01
In this paper,the synchronization of a unified chaotic system is investigated by the use of output feedback controllers;a two-input single-output feedback controller and single-input single-output feedback controller are presented to synchronize the unified chaotic system when the states are not all measurable.Compared with the existing results,the controllers designed in this paper have some advantages such as small feedback gain,simple structure and less conservation.Finally,numerical simulations results are provided to demonstrate the validity and effectiveness of the proposed method.
A waveguide overloaded cavity kicker for the HLS II longitudinal feedback system
Li, Wubin; Sun, Baogen; Wu, Fangfang; Xu, Wei; Lu, Ping; Yang, Yongliang
2013-01-01
In the upgrade project of Hefei Light Source (HLS II), a new digital longitudinal bunch-by-bunch feedback system will be developed to suppress the coupled bunch instabilities in the storage ring effectively. We design a new waveguide overloaded cavity longitudinal feedback kicker as the feedback actuator. The beam pipe of the kicker is racetrack shape so as to avoid a transition part to the octagonal vacuum chamber. The central frequency and the bandwidth of the kicker have been simulated and optimized to achieve design goals by the HFSS code. The higher shunt impedance can be obtained by using a nose cone to reduce the feedback power requirement. Before the kicker cavity was installed in the storage ring, a variety of measurements were carried out to check its performance. All these results of simulation and measurement are presented.
Direct laser additive fabrication system with image feedback control
Energy Technology Data Exchange (ETDEWEB)
Griffith, Michelle L. (Albuquerque, NM); Hofmeister, William H. (Nashville, TN); Knorovsky, Gerald A. (Albuquerque, NM); MacCallum, Danny O. (Edgewood, NM); Schlienger, M. Eric (Albuquerque, NM); Smugeresky, John E. (Pleasanton, CA)
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
Richardson, Barbara K
2004-12-01
The emergency department provides a rich environment for diverse patient encounters, rapid clinical decision making, and opportunities to hone procedural skills. Well-prepared faculty can utilize this environment to teach residents and medical students and gain institutional recognition for their incomparable role and teamwork. Giving effective feedback is an essential skill for all teaching faculty. Feedback is ongoing appraisal of performance based on direct observation aimed at changing or sustaining a behavior. Tips from the literature and the author's experience are reviewed to provide formats for feedback, review of objectives, and elements of professionalism and how to deal with poorly performing students. Although the following examples pertain to medical student education, these techniques are applicable to the education of all adult learners, including residents and colleagues. Specific examples of redirection and reflection are offered, and pitfalls are reviewed. Suggestions for streamlining verbal and written feedback and obtaining feedback from others in a fast-paced environment are given. Ideas for further individual and group faculty development are presented.
Li, K S B; Rumolo, G; Cesaratto, J; Dusatko, J; Fox, J; Pivi, M; Pollock, K; Rivetta, C; Turgut, O
2013-01-01
As part of the LHC Injector Upgrade (LIU) Project [1], a wideband feedback system is under study for mitigation of coherent single bunch instabilities. This type of system may provide a generic way of shifting the instability threshold to regions that are currently inaccessible, thus, boosting the brightness of future beams. To study the effectiveness of such systems, a numerical model has been developed that constitutes a realistic feedback system including real transfer functions for pickup and kicker, realistic N-tap FIR and IIR filters as well as noise and saturation effects. Simulations of SPS cases have been performed with HEADTAIL to evaluate the feedback effectiveness in the presence of transverse mode coupling and electron clouds. Some results are presented addressing bandwidth limitations and amplifier power requirements.
Geometric Structures of Stable Time-Variant State Feedback Systems
Institute of Scientific and Technical Information of China (English)
ZHONG Feng-wei; SUN Hua-fei; ZHANG Zhen-ning
2007-01-01
A new technique for considering the stabilizing time-variant state feedback gains is proposed from the viewpoint of information geometry. First, parametrization of the set of all stabilizing time-variant state feedback gains is given. Moreover, a diffeomorphic structure between the set of stabilizing time-variant state feedback gains and the Cartesian product of positive definite matrix and skew symmetric matrix satisfying certain algebraic conditions is constructed. Furth ermore, an immersion and some results about the eigenvalue locations of stable state feedback systems are derived.
Fast digital transverse feedback system for bunch train operation in CESR
Energy Technology Data Exchange (ETDEWEB)
Rogers, J.T.; Billing, M.G.; Dobbins, J.A. [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies] [and others
1996-08-01
We have developed a time domain transverse feedback system with the high bandwidth needed to control transverse instabilities when the CESR e{sup +}e{sup -} collider is filled with trains of closely spaced bunches. This system is based on parallel digital processors and a stripline driver. It is capable of acting on arbitrary patterns of bunches having a minimum spacing of 14 ns. Several simplifying features have been introduced. A single shorted stripline kicker driven by one power amplifier is used to control both counter-rotating beams. The desired feedback phase is achieved by sampling the bunch position at a single location on two independently selectable beam revolutions. The system adapts to changes in the betatron tune, bunch pattern, or desired damping rate through the loading of new parameters into the digital processors via the CESR control system. The feedback system also functions as a fast gated bunch current monitor. Both vertical and horizontal loops are now used in CESR operation. The measured betatron damping rates with the transverse feedback system in operation are in agreement with the analytical prediction and a computer simulation developed in connection with this work. (author)
Energy Technology Data Exchange (ETDEWEB)
Wu, W.Z., E-mail: wwz@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Kim, Y. [Department of Physics, Idaho State University, Pocatello, ID 83209-8288 (United States); Li, J.Y. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Teytelman, D. [Dimtel, Inc., San Jose, CA 95124 (United States); Busch, M.; Wang, P.; Swift, G. [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Park, I.S.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of); Wu, Y.K., E-mail: wu@fel.duke.ed [Department of Physics, Duke University, Durham, NC 27708-0305 (United States); DFELL, Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)
2011-03-11
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530{Omega}. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
Minimal-Inversion Feedforward-And-Feedback Control System
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
Nonlinear feedback synchronization of hyperchaos in higher dimensional systems
Institute of Scientific and Technical Information of China (English)
FangJin－Qing; AliMK
1997-01-01
Nonlinear feedback functional method is presented to realize synchronization of hyperchaos in higher dimensional systems,New nonlinear feedback functions and superpositions of linear and nonlinear feedback functions are also introduced to synchronize hyperchaos.The robustness of the method based on the flexibility of choices of feedback functions is discussed.By coupling well-known chaotic or chaotic-hyperchaotic systems in low-dimensional systems,such as Lorenz system,Van der Pol oscillator,Duffing oscillator and Roessler system,ten dimensional hyperchaotic systems are formed as the model systems.It can be found that there is not any noticeable difference in synchronization based on the numbers of positive Lyapunov exponents and of dimensions.
A New Kicker for the TLS Longitudinal Feedback System
Lau, Wai-Keung; Dehler, Micha; Hsu, Kuo-Tung; Hsu, San-Yuang; Jung Chou Ping; Wei Chen, Cheng; Yang Chen Huan; Yang Tze Te
2005-01-01
A new longitudinal kicker that is modified from the Swiss Light Source (SLS) design to fit into the TLS storage ring. It will be served as the actuator in the longitudinal multi-bunch feedback control loop. Beam coupling impedance has been calculated by Gdfidl with a PC cluster. Previous to the installation of this new kicker, bench measurement has been performed in the laboratory to characterize this new kicker. The experimental setups for bandwidth and coaxial wire measurement of longitudinal coupling impedance and their corresponding test results will be reported. As a cross check, bead-pull measurement has also been done to verify the beam coupling measurement by coaxial wire method at the kicker center frequency. Longitudinal field profile of the accelerating mode along the beam path has also been mapped. High order cavity modes of the kicker have also been observed and their effects on the beam are evaluated.
Truncated predictor feedback for time-delay systems
Zhou, Bin
2014-01-01
This book provides a systematic approach to the design of predictor based controllers for (time-varying) linear systems with either (time-varying) input or state delays. Differently from those traditional predictor based controllers, which are infinite-dimensional static feedback laws and may cause difficulties in their practical implementation, this book develops a truncated predictor feedback (TPF) which involves only finite dimensional static state feedback. Features and topics: A novel approach referred to as truncated predictor feedback for the stabilization of (time-varying) time-delay systems in both the continuous-time setting and the discrete-time setting is built systematically Semi-global and global stabilization problems of linear time-delay systems subject to either magnitude saturation or energy constraints are solved in a systematic manner Both stabilization of a single system and consensus of a group of systems (multi-agent systems) are treated in a unified manner by applying the truncated pre...
Corresponding Angle Feedback in an innovative weighted transportation system
Dong, Chuanfei; Ma, Xu
2010-05-01
The optimal information feedback has a significant effect on many socioeconomic systems like stock market and traffic systems aiming to make full use of resources. In this Letter, we study dynamics of traffic flow with real-time information. The influence of a feedback strategy named Corresponding Angle Feedback Strategy (CAFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.
Analysis of DSP-based longitudinal feedback system: Trials at SPEAR and ALS
Energy Technology Data Exchange (ETDEWEB)
Hindi, H.; Eisen, N.; Fox, J.; Linscott, I.; Oxoby, G.; Sapozhnikov, L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Serio, M. [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati
1993-04-01
Recently a single-channel prototype of the proposed PEP-II longitudinal feedback system was successfully demonstrated at SPEAR and ALS on single-bunch beams. The phase oscillations are detected via a wide-band pick up. The feedback signal is then computed using a digital signal processor (DSP) and applied to the beam by phase modulating the rf. We analyze results in the frequency- and the time-domain and show how the closed-loop transfer functions can be obtained rigorously by proper modeling of the various components of this hybrid continuous/digital system. The technique of downsampling was used in the experiments to reduce the number of computations and allowed the use of the same digital hardware on both machines.
Institute of Scientific and Technical Information of China (English)
Zhouping Su; Zhicheng Ji; Lizhi Que; Zhuowei Zhu
2012-01-01
In this letter,we demonstrate coherent beam combination of laser diode array using the external Talbot cavity with double feedback.The double feedback elements consist of grating and high-reflection plane mirror.Compared with single high-reflection plane mirror feedback,the external Talbot cavity with double feedback reduce the number of interference strips in the far-field pattern and narrow spectral line-width of the laser diode array.The results indicate that the application of the external Talbot cavity with double feedback produces a clear far-field interference pattern.In addition,line-width is reduced to 0.15 nm full-width at half-maximum (FWHM).
Secondo, R; Venturini, M; Fox, J D; Rivetta, C H; Höfle, W
2011-01-01
Transverse Single-Bunch Instabilities due to Electron Cloud effect are limiting the operation at high current of the SPS at CERN. Recently a high-bandwidth Feedback System has been proposed as a possible solution to stabilize the beam and is currently under study. We analyze the dynamics of the bunch actively damped with a simple model of the Feedback in the macro-particle code WARP, in order to investigate the limitations of the System such as the minimum amount of power required to maintain stability. We discuss the feedback model, report on simulation results and present our plans for further development of the numerical model.
Spiral kicker for the beam abort system
Energy Technology Data Exchange (ETDEWEB)
Martin, R.L.
1983-01-01
A brief study was carried out to determine the feasibility of a special kicker to produce a damped spiral beam at the beam dump for the beam abort system. There appears to be no problem with realizing this concept at a reasonably low cost.
Weighted congestion coefficient feedback in intelligent transportation systems
Dong, Chuan-Fei; Ma, Xu; Wang, Bing-Hong
2010-03-01
In traffic systems, a reasonable information feedback can improve road capacity. In this Letter, we study dynamics of traffic flow with real-time information. And the influence of a feedback strategy named Weighted Congestion Coefficient Feedback Strategy (WCCFS) is introduced, based on a two-route scenario in which dynamic information can be generated and displayed on the board to guide road users to make a choice. Our model incorporates the effects of adaptability into the cellular automaton models of traffic flow and simulation results adopting this optimal information feedback strategy have demonstrated high efficiency in controlling spatial distribution of traffic patterns compared with the other three information feedback strategies, i.e., vehicle number and flux.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results sh...
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
Zia, O.; Bhattacharya, P. K.; Singh, J.; Brock, T.
1994-08-01
A novel optoelectronic filter voltage-tunable characteristics has been developed and implemented in a multiquantum well waveguide device. By virtue of the quantum-confined Stark effect, the refractive index in quantum wells at the periphery of a guiding region can be given a periodicity in the guiding direction by application of a bias on an electron-beam patterned Schottky grating atop the guide. If the period of the Schottky grating and associated index profile satisfies the Bragg condition, as in a resonant distributed feedback structure, band-reject filtering results. Aftering the bias on the Schottky grating changes the refractive index in the wells, thereby providing tunability of the wavelength at which Bragg diffraction occurs.
Feedback Systems: An Introduction for Scientists and Engineers
Åström, Karl Johan; Murray, Richard M.
2008-01-01
This book provides an introduction to the basic principles and tools for the design and analysis of feedback systems. It is intended to serve a diverse audience of scientists and engineers who are interested in understanding and utilizing feedback in physical, biological, information and social systems.We have attempted to keep the mathematical prerequisites to a minimum while being careful not to sacrifice rigor in the process. We have also attempted to make use of examples from a variety of...
State feedback design for singularly perturbed system using unified approach
Institute of Scientific and Technical Information of China (English)
Chenxiao CAI; Yun ZOU; Duanjin ZHANG
2004-01-01
The state feedback design for singularly perturbed systems described in Delta operator is considered.The composite state feedback controller for slow and fast subsystems is designed by using the direct method.The obtained results can bring previous conclusions of continuous and discrete time systems into the unified Delta framework.A simulation example is presented to demonstrate the validity and efficiency of the design.
A simple electron-beam lithography system
DEFF Research Database (Denmark)
Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter
2005-01-01
A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit of the...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....
BEAM CONTAINMENT SYSTEM FOR NSLS-II
Energy Technology Data Exchange (ETDEWEB)
Kramer, S.L.; Casey, W.; Job, P.K.
2010-05-23
The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of {le} 10% full beam. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause excessive radiation levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (and potentially to measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.
A microbeam slit system for high beam currents
Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.
2015-04-01
A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.
Predictor feedback for delay systems implementations and approximations
Karafyllis, Iasson
2017-01-01
This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems’ nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book’s core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (b...
Behavioral System Feedback Measurement Failure: Sweeping Quality under the Rug
Mihalic, Maria T.; Ludwig, Timothy D.
2009-01-01
Behavioral Systems rely on valid measurement systems to manage processes and feedback and to deliver contingencies. An examination of measurement system components designed to track customer service quality of furniture delivery drivers revealed the measurement system failed to capture information it was designed to measure. A reason for this…
Time-delay identification for vibration systems with multiple feedback
Sun, Yi-Qiang; Jin, Meng-Shi; Song, Han-Wen; Xu, Jian
2016-12-01
An approach for time-delay identification is proposed in multiple-degree-of-freedom (MDOF) linear systems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteristics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay identification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the "frequencies" of the oscillation curve, the time-delays can be obtained from the "frequencies" of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Time-delay identification for vibration systems with multiple feedback
Institute of Scientific and Technical Information of China (English)
Yi-Qiang Sun; Meng-Shi Jin; Han-Wen Song; Jian Xu
2016-01-01
An approach for time-delay identification is pro-posed in multiple-degree-of-freedom (MDOF) linear sys-tems with multiple feedback. The applicability of the approach is discussed in detail. Based on the characteris-tics of frequency domain in feedback controlled system with multiple time-delays, this paper proposes a time-delay iden-tification approach, which is based on the pseudo impedance function of reference point. Treating feedback time-delays as the“frequencies”of the oscillation curve, the time-delays can be obtained from the“frequencies”of the curve. Numerical simulation is conducted to validate the proposed approach. The application scope of the approach is discussed with regard to different forms of feedback.
Optimal nonlinear feedback control of quasi-Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
朱位秋; 应祖光
1999-01-01
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
Tracking control of chaotic dynamical systems with feedback linearization
Institute of Scientific and Technical Information of China (English)
QI Dong-lian; MA Guo-jin
2005-01-01
A new method was proposed for tracking the desired output of chaotic dynamical system using the feedback linearization and nonlinear extended statement observer method. The feedback linearization was used to convert the nonlinear chaotic system into linear system. The extended Luenberger-like statements observer was designed to reconstructing and observing the unmeasured statements when the tracking controller was designed. By this way, the chaotic system could be forced to track variable desired output, which could be a time variant function or an equilibrium points.Taken the Lorenz chaotic system as example, the simulation results show the validity of the conclusion and effectiveness of the algorithm.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Yamamoto, Naoki
2014-10-01
To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Are there rapid feedback effects on Approximate Number System acuity?
Lindskog, Marcus; Winman, Anders; Juslin, Peter
2013-01-01
Humans are believed to be equipped with an Approximate Number System (ANS) that supports non-symbolic representations of numerical magnitude. Correlations between individual measures of the precision of the ANS and mathematical ability have raised the question of whether the precision can be improved by feedback training. A study (DeWind and Brannon, 2012) reported improvement in discrimination precision occurring within 600-700 trials of feedback, suggesting ANS malleability with rapidly improving acuity in response to feedback. We tried to replicate the rapid improvement in a control group design, while controlling for the use of perceptual cues. The results indicate no learning effects, but a minor constant advantage for the feedback group. The measures of motivation suggest that feedback has a positive effect on motivation and that the difference in discrimination is due to the greater motivation of participants with feedback. These results suggest that at least for adults the number sense may not respond to feedback in the short-term.
Are there rapid feedback effects on Approximate Number System acuity?
Directory of Open Access Journals (Sweden)
Marcus eLindskog
2013-06-01
Full Text Available Humans are believed to be equipped with an Approximate Number System (ANS that supports non-symbolic representations of numerical magnitude. Correlations between individual measures of the precision of the ANS and mathematical ability have raised the question of whether the precision can be improved by feedback training. A study (DeWind & Brannon, 2012 reported improvement in discrimination precision occurring within 600-700 trials of feedback, suggesting ANS malleability with rapidly improving acuity in response to feedback. We tried to replicate the rapid improvement in a control group design, while controlling for the use of perceptual cues. The results indicate no learning effects, but a minor constant advantage for the feedback group. The measures of motivation suggest that feedback has a positive effect on motivation and that the difference in discrimination is due to the greater motivation of participants with feedback. These results suggest that at least for adults the number sense may not respond to feedback in the short-term.
Feedback Control of a Class of Nonholonomic Hamiltonian Systems
DEFF Research Database (Denmark)
Sørensen, Mathias Jesper
Feedback control of nonholonomic systems has always been problematic due to the nonholonomic constraints that limit the space of possible system velocities. This property is very basic, and Brockett proved that a nonholonomic system cannot be asymptotically stabilized by a time-invariant smooth...... turns out to be useful when stabilizing the nonholonomic system. If the system is properly actuated it is possible to asymptotically stabilize the primary part of the configuration coordinates via a passive energy shaping and damping injecting feedback. The feedback is smooth and time...... of the closed loop system some extensions are provided: integral action for asymptotic stabilization under the influence of disturbances, and an adaptive damping scheme ensuring that the robot travels at a predefined speed when tracking a path. Both of these extensions are defined in the framework...
Implementing a Measurement Feedback System: A Tale of Two Sites.
Bickman, Leonard; Douglas, Susan R; De Andrade, Ana Regina Vides; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly
2016-05-01
A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11-18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth's, clinician's or caregiver's data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians' ratings of youth symptom severity on the SFSS. A dose-response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians' questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment.
Disturbance Attenuation State-Feedback Control for Uncertain Interconnected Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems viastate feedback. This class of systems are described by a state space model, which contains unknown nonlinear interactionand time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach wedesign state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the inter-connected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate theresults.
A computational procedure for multibody systems including flexible beam dynamics
Downer, J. D.; Park, K. C.; Chiou, J. C.
1990-01-01
A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. The flexible beams are modeled using a fully nonlinear theory which accounts for both finite rotations and large deformations. The present formulation incorporates physical measures of conjugate Cauchy stress and covariant strain increments. As a consequence, the beam model can easily be interfaced with real-time strain measurements and feedback control systems. A distinct feature of the present work is the computational preservation of total energy for undamped systems; this is obtained via an objective strain increment/stress update procedure combined with an energy-conserving time integration algorithm which contains an accurate update of angular orientations. The procedure is demonstrated via several example problems.
CONTROL CHAOS IN TRANSITION SYSTEM USING SAMPLED-DATA FEEDBACK
Institute of Scientific and Technical Information of China (English)
陆君安; 谢进; 吕金虎; 陈士华
2003-01-01
The method for controlling chaotic transition system was investigated using sampled-data. The output of chaotic transition system was sampled at a given sampling rate,then the sampled output was used by a feedbacks subsystem to construct a control signal for controlling chaotic transition system to the origin. Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.
Global feedback control for pattern-forming systems.
Stanton, L G; Golovin, A A
2007-09-01
Global feedback control of pattern formation in a wide class of systems described by the Swift-Hohenberg (SH) equation is investigated theoretically, by means of stability analysis and numerical simulations. Two cases are considered: (i) feedback control of the competition between hexagon and roll patterns described by a supercritical SH equation, and (ii) the use of feedback control to suppress the blowup in a system described by a subcritical SH equation. In case (i), it is shown that feedback control can change the hexagon and roll stability regions in the parameter space as well as cause a transition from up to down hexagons and stabilize a skewed (mixed-mode) hexagonal pattern. In case (ii), it is demonstrated that feedback control can suppress blowup and lead to the formation of spatially localized patterns in the weakly nonlinear regime. The effects of a delayed feedback are also investigated for both cases, and it is shown that delay can induce temporal oscillations as well as blowup.
BEAM COUPLING PHENOMENA IN FAST KICKER SYSTEMS.
Energy Technology Data Exchange (ETDEWEB)
ZHANG,W.; AHRENS,L.A.; GLENN,J.; SANDBERG,J.; TSOUPAS,N.
2001-06-18
Beam coupling phenomena have been observed in most fast kicker systems through out Brookhaven Collider-Accelerator complex. With ever-higher beam intensity, the signature of the beam becomes increasingly recognizable. The beam coupling at high intensity produced additional heat dissipation in high voltage modulator, thyratron grids, thyratron driver circuit sufficient to damage some components, and causes trigger instability. In this paper, we will present our observations, basic coupling mode analysis, relevance to the magnet structures, issues related to the existing high voltage modulators, and considerations of the future design of the fast kicker systems.
Energy Technology Data Exchange (ETDEWEB)
Ur, Calin Alexandru, E-mail: calin.ur@eli-np.ro [Extreme Light Infrastructure, IFIN-HH, Magurele-Bucharest (Romania)
2015-02-24
The Gamma Beam System of ELI-NP will produce brilliant, quasi-monochromatic gamma-ray beams via Inverse Compton Scattering of short laser pulses on relativistic electron beam pulses. The scattered radiation is Doppler upshifted by more than 1,000,000 times and is forward focused in a narrow, polarized, tunable, laser-like beam. The gamma-ray beam at ELI-NP will be characterized by large spectral density of about 10{sup 4} photons/s/eV, narrow bandwidth (< 0.5%) and tunable energy from 200 keV up to about 20 MeV. The Gamma Beam System is a state-of-the-art equipment employing techniques and technologies at the limits of the present-day's knowledge.
Dynamical behaviour of Liu system with time delayed feedback
Institute of Scientific and Technical Information of China (English)
Qian Qin; Wang Lin; Ni Qiao
2008-01-01
This paper investigates the dynamical behaviour of the Liu system with time delayed feedback.Two typical situations are considered and the effect of time-delay parameter on the dynamics of the system is discussed.It is shown that the Liu system with time delayed feedback may exhibit interesting and extremely rich dynamical behaviour.The evolution of the dynamics is shown to be complex with varying time-delay parameter.Moreover,the strange attractor like 'wormhole' is detected via numerical simulations.
Output feedback controller design for uncertain piecewise linear systems
Institute of Scientific and Technical Information of China (English)
Jianxiong ZHANG; Wansheng TANG
2007-01-01
This paper proposes output feedback controller design methods for uncertain piecewise linear systems based on piecewise quadratic Lyapunov function. The α-stability of closed-loop systems is also considered. It is shown that the output feedback controller design procedure of uncertain piecewise linear systems with α-stability constraint can be cast as solving a set of bilinear matrix inequalities (BMIs). The BMIs problem in this paper can be solved iteratively as a set of two convex optimization problems involving linear matrix inequalities (LMIs) which can be solved numerically efficiently. A numerical example shows the effectiveness of the proposed methods.
Automatic Thermal Control System with Temperature Difference or Derivation Feedback
Directory of Open Access Journals (Sweden)
Darina Matiskova
2016-02-01
Full Text Available Automatic thermal control systems seem to be non-linear systems with thermal inertias and time delay. A controller is also non-linear because its information and power signals are limited. The application of methods that are available to on-linear systems together with computer simulation and mathematical modelling creates a possibility to acquire important information about the researched system. This paper provides a new look at the heated system model and also designs the structure of the thermal system with temperature derivation feedback. The designed system was simulated by using a special software in Turbo Pascal. Time responses of this system are compared to responses of a conventional thermal system. The thermal system with temperature derivation feedback provides better transients, better quality of regulation and better dynamical properties.
Feedback Control Systems Loop Shaping Design with Practical Considerations
Kopsakis, George
2007-01-01
This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.
Design and Simulation of PMSM Feedback Linearization Control System
Directory of Open Access Journals (Sweden)
SONG Xiao-jing
2013-01-01
Full Text Available With the theory of AC adjustable speed as well as a new control theory research is unceasingly thorough, the permanent magnet synchronous motor control system requires high precision of control and high reliability of the occasion, access to a wide range of applications, in the modern AC motor has play a decisive role position. Based on the deep research on the feedback linearization technique based on, by choosing appropriate state transformation and control transform, PMSM model input output linearization, and the design of the feedback linearization controller, realized PMSM decoupling control based on Matlab, and PMSM feedback linearization control system simulation. The simulation results show that, the system in a certain range of speed than the traditional PI controller has better control performance, but to the parameter variation has strong sensitivity. It also determines the direction for future research.
Asymptotically optimal feedback control for a system of linear oscillators
Ovseevich, Alexander; Fedorov, Aleksey
2013-12-01
We consider problem of damping of an arbitrary number of linear oscillators under common bounded control. We are looking for a feedback control steering the system to the equilibrium. The obtained control is asymptotically optimal: the ratio of motion time to zero with this control to the minimum one is close to 1, if the initial energy of the system is large.
ON THE ALMOST PERIODIC KOLMOGOROV COMPETITIVE SYSTEMS WITH FEEDBACK CONTROLS
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
In this paper, we consider an almost periodic multi-species Kolmogorov type com-petitive system with feedback controls. Applying Schauder's fixed point theorem, a criterion on the existence of the positive almost periodic solution to the system is obtained. Our results improve and generalize some existing conclusions.
Event-triggered output feedback control for distributed networked systems.
Mahmoud, Magdi S; Sabih, Muhammad; Elshafei, Moustafa
2016-01-01
This paper addresses the problem of output-feedback communication and control with event-triggered framework in the context of distributed networked control systems. The design problem of the event-triggered output-feedback control is proposed as a linear matrix inequality (LMI) feasibility problem. The scheme is developed for the distributed system where only partial states are available. In this scheme, a subsystem uses local observers and share its information to its neighbors only when the subsystem's local error exceeds a specified threshold. The developed method is illustrated by using a coupled cart example from the literature.
Transfer Function Model of Multirate Feedback Control Systems
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the suitably defined multivariable version of Krancoperators and the extended input and output vectors, the multirate sampling plant is transformed to a equivalent time invariant single rate one, then the transfer function model of the multivariable multirate sampling plant is obtained. By combining this plant model with the time invariant description of the multirate controller in terms of extended vectors, the closed-loop transfer function model of the multirate feedback control system can be determinated. This transfer function model has a very simple structure, and can be used as a basis for the analysis and synthesis of the multirate sampling feedback control systems in the frequency domain.
Output Feedback Adaptive Stabilization of Uncertain Nonholonomic Systems
Directory of Open Access Journals (Sweden)
Yuanyuan Wu
2014-01-01
Full Text Available This paper investigates the problem of output feedback adaptive stabilization control design for a class of nonholonomic chained systems with uncertainties, involving virtual control coefficients, unknown nonlinear parameters, and unknown time delays. The objective is to design a robust nonlinear output-feedback switching controller, which can guarantee the stabilization of the closed loop systems. An observer and an estimator are employed for states and parameters estimates, respectively. A constructive controller design procedure is proposed by applying input-state scaling transformation, parameter separation technique, and backstepping recursive approach. Simulation results are provided to show the effectiveness of the proposed method.
Vibrations and stability of complex beam systems
Stojanović, Vladimir
2015-01-01
This book reports on solved problems concerning vibrations and stability of complex beam systems. The complexity of a system is considered from two points of view: the complexity originating from the nature of the structure, in the case of two or more elastically connected beams; and the complexity derived from the dynamic behavior of the system, in the case of a damaged single beam, resulting from the harm done to its simple structure. Furthermore, the book describes the analytical derivation of equations of two or more elastically connected beams, using four different theories (Euler, Rayleigh, Timoshenko and Reddy-Bickford). It also reports on a new, improved p-version of the finite element method for geometrically nonlinear vibrations. The new method provides more accurate approximations of solutions, while also allowing us to analyze geometrically nonlinear vibrations. The book describes the appearance of longitudinal vibrations of damaged clamped-clamped beams as a result of discontinuity (damage). It...
Global Stability in Dynamical Systems with Multiple Feedback Mechanisms
DEFF Research Database (Denmark)
Andersen, Morten; Vinther, Frank; Ottesen, Johnny T.
2016-01-01
. This is a bounded set with non-negative elements where solutions cannot escape. All solutions are shown to converge to a “minimal” trapping region. 2) At least one fixed point exists. 3) Sufficient criteria for a unique fixed point are formulated. One case where this is fulfilled is when the feedbacks are negative.......A class of n-dimensional ODEs with up to n feedbacks from the n’th variable is analysed. The feedbacks are represented by non-specific, bounded, non-negative C1 functions. The main result is the formulation and proof of an easily applicable criterion for existence of a globally stable fixed point...... of the system. The proof relies on the contraction mapping theorem. Applications of this type of systems are numerous in biology, e.g., models of the hypothalamic-pituitary-adrenal axis and testosterone secretion. Some results important for modelling are: 1) Existence of an attractive trapping region...
Opportunistic Scheduling and Beamforming for MIMO-OFDMA Downlink Systems with Reduced Feedback
Pun, Man-On; Poor, H Vincent
2008-01-01
Opportunistic scheduling and beamforming schemes with reduced feedback are proposed for MIMO-OFDMA downlink systems. Unlike the conventional beamforming schemes in which beamforming is implemented solely by the base station (BS) in a per-subcarrier fashion, the proposed schemes take advantages of a novel channel decomposition technique to perform beamforming jointly by the BS and the mobile terminal (MT). The resulting beamforming schemes allow the BS to employ only {\\em one} beamforming matrix (BFM) to form beams for {\\em all} subcarriers while each MT completes the beamforming task for each subcarrier locally. Consequently, for a MIMO-OFDMA system with $Q$ subcarriers, the proposed opportunistic scheduling and beamforming schemes require only one BFM index and $Q$ supportable throughputs to be returned from each MT to the BS, in contrast to $Q$ BFM indices and $Q$ supportable throughputs required by the conventional schemes. The advantage of the proposed schemes becomes more evident when a further feedback ...
Decentralized-feedback pole placement of linear systems
Wang, X.; Martin, C. F.; Gilliam, D.; Byrnes, C. I.
1992-01-01
A projectile product spaces model is used to analyze decentralized systems. The degree of the pole placement map is computed. The conditions under which the degree is odd are also given. Twin lift systems are studied. It is proved that the poles of a twin lift system can be assigned to any values by local static and local dynamic feedback laws if and only if the system is jointly controllable.
Strong chaos without butterfly effect in dynamical systems with feedback
Boffetta, G; Vulpiani, A; Boffetta, Guido; Paladin, Giovanni; Vulpiani, Angelo
1995-01-01
We discuss the predictability of a conservative system that drives a chaotic system with positive maximum Lyapunov exponent \\lambda_0, such as the erratic motion of an asteroid in the gravitational field of two bodies of much larger mass. We consider the case where in absence of feedback (restricted model), the driving system is regular and completely predictable. A small feedback of strength \\epsilon still allows a good forecasting in the driving system up to a very long time T_p \\sim \\epsilon^{-\\alpha}, where \\alpha depends on the details of the system. The most interesting situation happens when the Lyapunov exponent of the total system is strongly chaotic with \\lambda_{tot} \\approx \\lambda_0 , practically independent of \\epsilon. Therefore an exponential amplification of a small incertitude on the initial conditions in the driving system for any \\epsilon \
Feedback Improvement in Automatic Program Evaluation Systems
Skupas, Bronius
2010-01-01
Automatic program evaluation is a way to assess source program files. These techniques are used in learning management environments, programming exams and contest systems. However, use of automated program evaluation encounters problems: some evaluations are not clear for the students and the system messages do not show reasons for lost points.…
Institute of Scientific and Technical Information of China (English)
阎庆旭; 冯德兴
2003-01-01
The boundary feedback consol problem for a nonuniform Timoshenko beam with a load at one end was stud-ied. First, a boundary feedback control scheme was proposed, and the well-posedness of the corresponding closed loop systemwas established. Then by using the multiplier method, it was proved that the closed loop system was exponentially stable if twoboundary feedback controls were applied simultaneously to the beam's tip where the load was carried.%对于一端具负载的非均质Timoshenko梁,研究了其边界反馈镇定问题.首先提出了一种边界反馈控制方案,建立了相应的闭环系统的适定性.然后利用乘子法证明了,当两个边界反馈控制同时作用于梁的负载端时,闭环系统是指数稳定的.
Performance of the ATLAS Beam Diagnostic Systems
Macek, B; The ATLAS collaboration
2010-01-01
The beam diagnostic system of the ATLAS detector comprises two diamond sensor based devices. The innovative Beam Conditions Monitor (BCM) is aimed at resolving background from collision particles by sub-ns time-of-flight measurement. The Beam Loss Monitor (BLM) is a clone of the LHC machine BLM system, replacing ionization chambers with diamond sensors. BCM uses 16 1x1 cm2 0.5 mm thick polycrystalline chemical vapor deposition (pCVD) diamond sensors arranged in 8 positions at a radius r ≈ 55 mm, ~1.9 m up- and down-stream the interaction point. Time measurements at 2.56 GHz sampling rate are performed to distinguish between collision and shower particles from beam incidents. A FPGA-based readout system performs real-time data analysis and interfaces the results to ATLAS and the LHC beam permit system. The diamond sensors, the detector modules and their readout system are described. Results of performance with LHC beams of increasing energy and intensity including timing separation of collisions from beam re...
Non-Linear Dynamic Deformation of a Piezothermoelastic Laminate with Feedback Control System
Directory of Open Access Journals (Sweden)
Masayuki Ishihara
2014-03-01
Full Text Available We study the control of free vibration with large amplitude in a piezothermoelastic laminated beam subjected to a uniform temperature with a feedback control system. The analytical model is the symmetrically cross-ply laminated beam composed of the elastic and piezoelectric layers. On the basis of the von Kármán strain and the classical laminate theory, the governing equations for the dynamic behavior are derived. The dynamic behavior is detected by the electric current in the sensor layer through the direct piezoelectric effect. The electric voltage with the magnitude of the current multiplied by the gain is applied to the actuator layer to constitute a feedback control system. The governing equations are reduced by the Galerkin method to a Liénard equation with respect to the representative deflection, and the equation is found to be dependent on the gain and the configuration of the actuator. By introducing the Liénard's phase plane, the equation is analyzed geometrically, and the essential characteristics of the beam and stabilization of the dynamic deformation are demonstrated.
Swing Damping for Helicopter Slung Load Systems using Delayed Feedback
DEFF Research Database (Denmark)
Bisgaard, Morten; la Cour-Harbo, Anders; Bendtsen, Jan Dimon
2009-01-01
This paper presents the design and verification of a swing reducing controller for helicopter slung load systems using intentional delayed feedback. It is intended for augmenting a trajectory tracking helicopter controller and thereby improving the slung load handing capabilities for autonomous h...
State-feedback control of LPV sampled-data systems
Directory of Open Access Journals (Sweden)
K. Tan
2000-01-01
norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Directory of Open Access Journals (Sweden)
Jinxiang Dong
2008-07-01
Full Text Available There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting crosslayer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An eventdriven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN.
Constructing a Multimedia Mobile Classroom Using a Novel Feedback System
Huang, Wen-Chen; Chen, Ching-Wen; Weng, Richard
2015-01-01
In the conventional classroom, many obstacles hinder interaction between an instructor and students, such as limited class hours, fixed seating, and inadequate time for meetings after class. This work develops a novel multimedia mobile classroom feedback system (MMCFS) that instantly displays students' responses, such as class-related questions or…
On the stabilization of bilinear systems via constant feedback
Luesink, Rob; Nijmeijer, Henk
1989-01-01
We study the problem of stabilization of a bilinear system via a constant feedback. The question reduces to an eigenvalue problem on the pencil A+α0B of two matrices. Using the idea of simultaneous triangularization of the matrices involved, some easily checkable conditions for the solvability of th
A Chinese Interactive Feedback System for a Virtual Campus
Chen, Jui-Fa; Lin, Wei-Chuan; Jian, Chih-Yu; Hung, Ching-Chung
2008-01-01
Considering the popularity of the Internet, an automatic interactive feedback system for Elearning websites is becoming increasingly desirable. However, computers still have problems understanding natural languages, especially the Chinese language, firstly because the Chinese language has no space to segment lexical entries (its segmentation…
Interference-aware random beam selection for spectrum sharing systems
Abdallah, Mohamed M.
2012-09-01
Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing secondary unlicensed networks to share the spectrum with primary licensed networks under acceptable interference levels to the primary users. In this paper, we develop interference-aware random beam selection schemes that provide enhanced throughput for the secondary link under the condition that the interference observed at the primary link is within a predetermined acceptable value. For a secondary transmitter equipped with multiple antennas, our schemes select a random beam, among a set of power- optimized orthogonal random beams, that maximizes the capacity of the secondary link while satisfying the interference constraint at the primary receiver for different levels of feedback information describing the interference level at the primary receiver. For the proposed schemes, we develop a statistical analysis for the signal-to-noise and interference ratio (SINR) statistics as well as the capacity of the secondary link. Finally, we present numerical results that study the effect of system parameters including number of beams and the maximum transmission power on the capacity of the secondary link attained using the proposed schemes. © 2012 IEEE.
Bifurcation Analysis of a Discrete Logistic System with Feedback Control
Institute of Scientific and Technical Information of China (English)
WU Dai-yong
2015-01-01
The paper studies the dynamical behaviors of a discrete Logistic system with feedback control. The system undergoes Flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the system, such as the period-doubling bifurcation in periods 2, 4, 8 and 16, and quasi-periodic orbits and chaotic sets.
Chaotic motion in nonlinear feedback systems
Energy Technology Data Exchange (ETDEWEB)
Baillieul, J. (Scientific Systems, Inc., Cambridge, MA); Brockett, R.W.; Washburn, R.B.
1980-11-01
New criteria are found which imply the existence of chaos in R/sup n/. These differ significantly from criteria previously reported in the mathematics literature, and in fact our methods apply to a class of systems which do not satisfy the hypotheses of the usual theorems on chaos in R/sup n/. The results are stated in such a way as to preserve the flavor of many well-known frequency-domain stability techniques. The results provide easily verifiable criteria for the existence of chaos in systems which are of dimension greater than one.
Implementation of integral feedback control in biological systems.
Somvanshi, Pramod R; Patel, Anilkumar K; Bhartiya, Sharad; Venkatesh, K V
2015-01-01
Integral control design ensures that a key variable in a system is tightly maintained within acceptable levels. This approach has been widely used in engineering systems to ensure offset free operation in the presence of perturbations. Several biological systems employ such an integral control design to regulate cellular processes. An integral control design motif requires a negative feedback and an integrating process in the network loop. This review describes several biological systems, ranging from bacteria to higher organisms in which the presence of integral control principle has been hypothesized. The review highlights that in addition to the negative feedback, occurrence of zero-order kinetics in the process is a key element to realize the integral control strategy. Although the integral control motif is common to these systems, the mechanisms involved in achieving it are highly specific and can be incorporated at the level of signaling, metabolism, or at the phenotypic levels.
Mitigation of ground motion effects via feedback systems in the Compact Linear Collider
Pfingstner, Jürgen; Schmickler, Hermann; Schulte, Daniel
The Compact Linear Collider (CLIC) is a future multi-TeV electron positron collider, which is currently being designed at CERN. To achieve its ambitious goals, CLIC has to produce particle beams of the highest quality, which makes the accelerator very sensitive to ground motion. Four mitigation methods have been foreseen by the CLIC design group to cope with the feasibility issue of ground motion. This thesis is concerned with the design of one of these mitigation methods, named linac feedback (L-FB), but also with the simultaneous simulation and validation of all mitigation methods. Additionally, a technique to improve the quality of the indispensable system knowledge has been developed. The L-FB suppresses beam oscillations along the accelerator. Its design is based on the decoupling of the overall accelerator system into independent channels. For each channel an individual compensator is found with the help of a semi- automatic control synthesis procedure. This technique allows the designer to incorporate ...
Iterative feedback tuning of uncertain state space systems
Directory of Open Access Journals (Sweden)
J. K. Huusom
2010-09-01
Full Text Available Iterative Feedback Tuning is a purely data driven tuning algorithm for optimizing control parameters based on closed loop data. The algorithm is designed to produce an unbiased estimate of the performance cost function gradient for iteratively improving the control parameters to achieve optimal loop performance. This tuning method has been developed for systems based on a transfer function representation. This paper presents a state feedback control system with a state observer and its transfer function equivalent in terms of input output dynamics. It is shown how the parameters in the closed loop state space system can be tuned by Iterative Feedback Tuning utilizing this equivalent representation. A simulation example illustrates that the tuning converges to the known analytical solution for the feedback control gain and to the Kalman gain in the state observer. In case of parametric uncertainty, different choices of tuning parameters are investigated. It is shown that the data driven tuning method produces optimal performance for convex problems when it is the model parameter estimates in the observer that are tuned.
Low energy beam transport system developments
Energy Technology Data Exchange (ETDEWEB)
Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)
2015-04-08
For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.
Chatterjee, Monish R.; Almehmadi, Fares S.
2015-01-01
Secure information encryption via acousto-optic (AO) chaos with profiled optical beams indicates substantially better performance in terms of system robustness. This paper examines encryption of static and time-varying (video) images onto AO chaotic carriers using Gaussian-profile beams with diffracted data numerically generated using transfer functions. The use of profiled beams leads to considerable improvement in the encrypted signal. While static image encryption exhibits parameter tolerances within about +/-10% for uniform optical beams, profiled beams reduce the tolerance to less than 1%, thereby vastly improving both the overall security of the transmitted information as well as the quality of the image retrieval.
Modeling mutual feedback between users and recommender systems
Zeng, An; Medo, Matus; Zhang, Yi-Cheng
2015-01-01
Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy.
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
Output Feedback Control for a Class of Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
Keylan Alimhan; Hiroshi Inaba
2006-01-01
This paper studies the global stabilization problem by an output controller for a family of uncertain nonlinear systems satisfying some relaxed triangular-type conditions and with dynamics which may not be exactly known. Using a feedback domination design method, we explicitly construct a dynamic output compensator which globally stabilizes such an uncertain nonlinear system. The usefulness of our result is illustrated with an example.
The LHC beam loss monitoring system commissioning for 2010
Zamantzas, C; Chery, C; Effinger, E; Emery, J; Grishin, S; Hajdu, C F; Holzer, E B; Jackson, S; Kurfuerst, C; Marsili, A; Nordt, A; Sapinski, M; Tissier, R; Venturini, G G
2010-01-01
The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from approximately 4’000 monitors, and has nearly 3 million configurable parameters. This paper will discuss its performance and ability to provide the expected measurements, the problems encountered and necessary improvements, the adequacy of related software and databases, and in general its readiness and suitability for 3.5 TeV operation.
The CERN Beam Interlock System: Principle and Operational Experience
Puccio, B; Kwiatkowski, M; Romera Ramirez, I; Todd, B
2010-01-01
A complex Machine Protection System has been designed to protect the LHC machine from an accidental release of the beam energy, with about 20 subsystems providing status information to the Beam Interlock System that is the backbone of machine protection. Only if the subsystems are in the correct state for beam operation, the Beam Interlock System receives a status flag and beam can be injected into LHC (Large Hadron Collider). The Beam Interlock System also relays commands from the connected subsystems in case of failure for triggering the LHC Beam Dumping System. To maintain the required level of safety of the Beam Interlock System, the performance of the key components is verified before every fill of the machine and validated after every emergency beam dump before beam operation is allowed to continue. This includes all critical paths, starting from the inputs from connected systems triggering a beam dump request, followed by the correct interruption and propagation sequence of the two redundant beam permi...
Li, Yongming; Tong, Shaocheng
2016-03-16
This paper proposes an fuzzy adaptive output-feedback stabilization control method for nonstrict feedback uncertain switched nonlinear systems. The controlled system contains unmeasured states and unknown nonlinearities. First, a switched state observer is constructed in order to estimate the unmeasured states. Second, a variable separation approach is introduced to solve the problem of nonstrict feedback. Third, fuzzy logic systems are utilized to identify the unknown uncertainties, and an adaptive fuzzy output feedback stabilization controller is set up by exploiting the backstepping design principle. At last, by applying the average dwell time method and Lyapunov stability theory, it is proven that all the signals in the closed-loop switched system are bounded, and the system output converges to a small neighborhood of the origin. Two examples are given to further show the effectiveness of the proposed switched control approach.
Stability of constant gain systems with vector feedback
Vonpragenau, G. L.
1978-01-01
The state space, the controllability, and the observability concepts are discussed in connection with the proposed stability analysis which permits drastic dimensional reductions for a vector feedback problem. Any constant gain system's stability can thus be analyzed in the frequency domain with a single Nyquist plot. The analysis considers the total system with all loops closed, a disturbance vector as input, and the feedback vector as output. All constant gain systems are shown to be decomposable into stable subsystems where the degree of the decomposition determines the dimensions. The maximum decomposition results in the state-space approach which is the limit case. The method is demonstrated with the stability analysis of the pogo phenomenon, an oscillatory interaction between the propulsion and the structure of a space vehicle. This problem, with eigenvalues over a hundred, was drastically but rigorously reduced to a stability analysis of a 4x4 matrix.
Design of Telerobotic Drilling Control System with Haptic Feedback
Directory of Open Access Journals (Sweden)
Faraz Shah
2013-01-01
system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.
Beam trip diagnostic system at SSRF
Institute of Scientific and Technical Information of China (English)
HOU Hongtao; ZHAO Shenjie; LUO Chen; ZHAO Yubin; ZHANG Zhigang; FENG Ziqiang; MAO Dongqing; LIU Jianfei
2009-01-01
In this paper we report the design and realization of beam trip diagnostic system at Shanghai Synchrotron Radiation Facility (SSRF).The system can find out the first fault signal in the key operation signals related to the RF system by analyzing the time sequence,also it can decide which trips occurs first among the three superconducting RF stations.All the states of monitored signals in a time period ahead and behind beam trip are recorded.The results are compared with those from other diagnostic tools at SSRF.The work is of help in improving reliability of the superconducting RF system and stability of the storage ring operation.
Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System
Directory of Open Access Journals (Sweden)
Wen-Qing Zhang
2013-01-01
Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.
Optimal decay rate of vibrating beam equations controlled by combined boundary feedback forces
Institute of Scientific and Technical Information of China (English)
于景元; 李胜家; 王耀庭; 粱展东
1999-01-01
The optimal decay rate problem is considered for boundary control system modeling by a flexible structure consisting of a Eular-Bernoulli beam. Controls are a bending moment in proportion to angular velocity and a shear force in proportion to velocity. A sensitivity asymptotic analysis of the system’ s eigenvalues and eigenfunctions is set up. It is proved that, for every 0
Institute of Scientific and Technical Information of China (English)
Ruiquan LIN; Fuwen YANG; Renchong PENG
2009-01-01
Considering that the controller feedback gain and the observer gain are of additive norm-bounded variations, a design method of observer-based H-infinity output feedback controller for uncertain Delta operator systems is proposed in this paper. A sufficient condition of such controllers is presented in linear matrix inequality (LMI) forms. A numerical example is then given to illustrate the effectiveness of this method, that is, the obtained controller guarantees the closed-loop system asymptotically stable and the expected H-infinity performance even if the controller feedback gain and the observer gain are varied.
Design of Magnetic Flux Feedback Controller in Hybrid Suspension System
Directory of Open Access Journals (Sweden)
Wenqing Zhang
2013-01-01
Full Text Available Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.
Parameterized design of nonlinear feedback controllers for servo positioning systems
Institute of Scientific and Technical Information of China (English)
Cheng Guoyang; Jin Wenguang
2006-01-01
To achieve fast, smooth and accurate set point tracking in servo positioning systems, a parameterized design of nonlinear feedback controllers is presented, based on a so-called composite nonlinear feedback (CNF) control technique. The controller designed here consists of a linear feedback part and a nonlinear part. The linear part is responsible for stability and fast response of the closed-loop system. The nonlinear part serves to increase the damping ratio of closed-loop poles as the controlled output approaches the target reference. The CNF control brings together the good points of both the small and the large damping ratio cases, by continuously scheduling the damping ratio of the dominant closed-loop poles and thus has the capability for superior transient performance, i.e. a fast output response with low overshoot. In the presence of constant disturbances, an integral action is included so as to remove the static bias. An explicitly parameterized controller is derived for servo positioning systems characterized by second-order model. Practical application in a micro hard disk drive servo system is then presented, together with some discussion of the rationale and characteristics of such design. Simulation and experimental results demonstrate the effectiveness of this control design methodology.
State-feedback control of LPV sampled-data systems
Directory of Open Access Journals (Sweden)
Tan K.
2000-01-01
Full Text Available In this paper, we address the analysis and the state-feedback synthesis problems for linear parameter-varying (LPV sampled-data control systems. We assume that the state-space data of the plant and the sampling interval depend on parameters that are measurable in real-time and vary in a compact set with bounded variation rates. We explore criteria such as the stability, the energy-to-energy gain (induced L 2 norm and the energy-to-peak gain (induced L 2 -to- L ∞ norm of such sampled-data LPV systems using parameter-dependent Lyapunov functions. Based on these analysis results, the sampled-data state-feedback control synthesis problems are examined. Both analysis and synthesis conditions are formulated in terms of linear matrix inequalities that can be solved via efficient interior-point algorithms.
On Output Feedback Multiobjective Control for Singularly Perturbed Systems
Directory of Open Access Journals (Sweden)
Mehdi Ghasem Moghadam
2011-01-01
Full Text Available A new design procedure for a robust 2 and ∞ control of continuous-time singularly perturbed systems via dynamic output feedback is presented. By formulating all objectives in terms of a common Lyapunov function, the controller will be designed through solving a set of inequalities. Therefore, a dynamic output feedback controller is developed such that ∞ and 2 performance of the resulting closed-loop system is less than or equal to some prescribed value. Also, ∞ and 2 performance for a given upperbound of singular perturbation parameter ∈(0,∗] are guaranteed. It is shown that the -dependent controller is well defined for any ∈(0,∗] and can be reduced to an -independent one so long as is sufficiently small. Finally, numerical simulations are provided to validate the proposed controller. Numerical simulations coincide with the theoretical analysis.
Speed of Last Vehicle Feedback Strategy in Intelligent Transportation Systems
Chen, Bokui; Chen, Mengsu; Zhang, Ziling; Xie, Yanbo; Wang, Binghong
Traffic jam has become a big problem in the development of economy. How to effectively improve the road capacity is becoming the key problem in the research of traffic flow. As the core part of the next generation intelligent transportation systems, the feedback strategy has attracted much attention. In recent years, researchers have proposed many effective strategies. In this paper, a strategy called speed of last vehicle feedback strategy is introduced, and simulated in a two-route scenario with one exit. Result shows that compared with other strategies, this strategy has certain advantages on average flux — a criteria describing traffic capacity of traffic systems. More importantly, the implementation of this strategy is very simple.
Digital bunch-by-bunch transverse feedback system at SSRF
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In order to suppress multi-bunch couple instabilities caused by transverse impedance, a bunch-by-bunch transverse feedback system based on a FPGA digital processor is commissioned at SSRF storage ring. The RF front end has two COD pre-rejected attenuators for increasing the system arrangement and signal noise ratio, and the 3*RF Local signal comes from the BPM’s sum signal using a FIR filter for avoiding the effect of longitudinal oscillation. The digital processor receives the coupled horizontal and vertical oscillation signals in the base band and transforms the coupled signals to the horizontal and vertical feedback signals with two series double-zeroes FIR filters. A matlab GUI is applied for producing the FIR coefficients when the tune is shifted. The horizontal and vertical Kickers have a special design for increasing the shunt impedance. Then the multi-bunch instabilities are suppressed respectively and the minimum damping time is about 0.4 ms.
Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order
2008-01-01
The problem of local feedback equivalence for 1-dimensional control systems of the 1-st order is considered. The algebra of differential invariants and criteria for the feedback equivalence for regular control systems are found.
System and method of designing models in a feedback loop
Energy Technology Data Exchange (ETDEWEB)
Gosink, Luke C.; Pulsipher, Trenton C.; Sego, Landon H.
2017-02-14
A method and system for designing models is disclosed. The method includes selecting a plurality of models for modeling a common event of interest. The method further includes aggregating the results of the models and analyzing each model compared to the aggregate result to obtain comparative information. The method also includes providing the information back to the plurality of models to design more accurate models through a feedback loop.
Lazy global feedbacks for quantized nonlinear event systems
Jerg, Stefan
2012-01-01
We consider nonlinear event systems with quantized state information and design a globally stabilizing controller from which only the minimal required number of control value changes along the feedback trajectory to a given initial condition is transmitted to the plant. In addition, we present a non-optimal heuristic approach which might reduce the number of control value changes and requires a lower computational effort. The constructions are illustrated by two numerical examples.
Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong
2015-09-01
In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.
Development of a Digital Control for the Phase Contrast Imaging Alignment Feedback System
Hirata, M.; Marinoni, A.; Rost, J. C.; Davis, E. M.; Porkolab, M.
2016-10-01
The Phase Contrast Imaging diagnostic is an internal reference interferometer that images density fluctuations on a 32-element linear detector array. Since proper operation of the system requires accurate alignment of a CO2 laser beam on a phase plate, beam motion due to vibrations of the DIII-D vessel need to be compensated up to 1 kHz. The feedback network controlling the steering mirrors currently uses a linear analog controller, but a digital controller can provide improved stability performance and flexibility. A prototype was developed using an Arduino Due, a low-cost microcontroller, to assess performance capabilities. Digital control parameters will be developed based on the measured frequency and phase response of the physical components. Finally, testing of the digital feedback system and the required revisions will be done to achieve successful performance. This upgrade to the linear analog controller is expected to be used routinely on similar diagnostics in fusion devices, especially in view of restricted access to the machine hall. Work supported in part by the US Department of Energy under DE-FG02-94ER54235, DE-FC02-04ER54698, and the Science Undergraduate Laboratory Internships Program (SULI).
Towards a Transverse Feedback System and Damper for the SPS in the LHC Era
Höfle, Wolfgang
1997-01-01
The SPS will serve as injector for the LHC, accelerating up to 4 x 10^13 protons per cycle from 26 GeV/c to 450 GeV/c. The transverse feedback system (damper) is essential for keeping the transverse emittance blowup within the limits fixed for the LHC injector chain. The fast filamentation requires rapid damping of any injection errors. Injection errors are the combined result of steering errors and ripples on the magnet power supplies in the transfer line as well as from the PS extraction kicker and the SPS injection kicker. Besides damping injection oscillations the damper will also provide transverse feedback to stabilise the beam against the resistive wall coupled bunch instability. The required bandwidth, kick strength and power bandwidth (rise time) were discussed during the 1996 Montreux "Workshop on High Brightness Beams for Large Hadron Colliders" in the working group on "Active Emittance Control". In the present report the requirements for the damper are summarised and the development of a system to...
Simulation of wavefront reconstruction in beam reshaping system for rectangular laser beam
Zhou, Qiong; Liu, Wenguang; Jiang, Zongfu
2014-05-01
A new method to calculating the wavefront of slap laser is studied in this paper. The method is based on the ray trace theory of geometrical optics. By using the Zemax simulation software and Matlab calculation software, the wavefront of rectangular beam in beam reshaping system is reconstructed. Firstly, with the x- and y-slope measurement of reshaping beam the direction cosine of wavefront can be calculated. Then, the inverse beam path of beam reshaping system is built by using Zemax simulation software and the direction cosine of rectangular beam can be given, too. Finally, Southwell zonal model is used to reconstruct the wavefront of rectangular beam in computer simulation. Once the wavefront is received, the aberration of laser can be eliminated by using the proper configuration of beam reshaping system. It is shown that this method to reconstruct the wavefront of rectangular beam can evidently reduce the negative influence of additional aberration induced by beam reshaping system.
The Beam Inhibit System for TTF II
Nölle, D; Neumann, R; Pugachov, D; Wittenburg, K; Wendt, M; Werner, M; Schlarb, H; Staack, M
2003-01-01
The new generation of light sources based on SASE Free-Electron-Lasers driven by LINACs operate with electron beams with high beam currents and duty cycles. This is especially true for the superconducting machines like TTF II and the X-RAY FEL, under construction or planning at DESY. Elaborate fast protections systems are required not only to protect the machine from electron beams hitting and destroying the vacuum chamber, but also to prevent the machine from running at high loss levels, dangerous for components like the FEL undulator. This paper will give an overview over the different protection systems currently under construction for TTF II. The very fast systems, based on transmission measurements and distributed loss detection monitors, will be described in detail. This description will include the fast electronics to collect and to transmit the different interlock signals.
Microseconds-scale magnetic actuators system for plasma feedback stabilization
Kogan, K.; Be'ery, I.; Seemann, O.
2016-10-01
Many magnetic confinement machines use active feedback stabilization with magnetic actuators. We present a novel magnetic actuators system with a response time much faster than previous ones, making it capable of coping with the fast plasma instabilities. The system achieved a response time of 3 μs with maximal current of 500 A in a coil with inductance of 5.2 μH. The system is based on commercial solid-state switches and FPGA state machine, making it easily scalable to higher currents or higher inductivity.
Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse Dynamics
Institute of Scientific and Technical Information of China (English)
Xin Yu; Na Duan
2009-01-01
This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.
State Feedback with Memory for Constrained Switched Positive Linear Systems
Directory of Open Access Journals (Sweden)
Jinjin Liu
2015-04-01
Full Text Available In this paper, the stabilization problem in switched linear systems with time-varying delay under constrained state and control is investigated. The synthesis of bounded state-feedback controllers with memory ensures that a closed-loop state is positive and stable. Firstly, synthesis with a sign-restricted (nonnegative and negative control is considered for general switched systems; then, the stabilization issue under bounded controls including the asymmetrically bounded controls and states constraints are addressed. In addition, the results are extended to systems with interval and polytopic uncertainties. All the proposed conditions are solvable in term of linear programming. Numerical examples illustrate the applicability of the results.
Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System
Energy Technology Data Exchange (ETDEWEB)
Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC
2008-02-01
Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.
Apertures in the LHC Beam Dump System and Beam Losses During Beam Abort
Kramer, T; Gyr, M; Koschik, A; Uythoven, J; Weiler, T
2008-01-01
The LHC beam dumping system (LBDS) is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of $3 \\mu$s is foreseen to avoid sweeping particles through the LHC ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines. MAD-X tracking studies have been made to investigate the impact of particles swept through the aperture due to extraction kicker failures or the presence of particles within the abort gap. The issue of failures during beam abort is a major concern for machine protection as well as a critical factor for safe operation of the experiments and their detectors.
LHC Transverse Feedback System and its Hardware Commissioning
Baudrenghien, P; Höfle, Wolfgang; Killing, F; Kojevnikov, I; Kotzian, G; Lebedev, N I; Louwerse, R; Makarov, A A; Montesinos, E; Rabtsun, S V; Rossi, V; Schokker, M; Thepenier, E; Valuch, D; Zhabitsky, V
2008-01-01
A powerful transverse feedback system ("Damper") has been installed in LHC. It will stabilise coupled bunch instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The transverse damper can also be used as an exciter for purposes of abort gap cleaning or tune measurement. The power and lowlevel systems layouts are described along with results from the hardware commissioning. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control.
A new hyperchaotic system and its linear feedback control
Institute of Scientific and Technical Information of China (English)
Cai Guo-Liang; Zheng-Song; TianLi-Xin
2008-01-01
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system,studies some of its basic dynamical properties,such as the hyperchaotic attractor,Lyapunov exponents,bifurcation diagram and the hyperchaotic attractor evolving into periodic,quasi-periodic dynamical behaviours by varying parameter k.Furthermore,effective linear feedback control method is used to suppress hyperchaes to unstable equilibrium,periodic orbits and quasi-periodic orbits.Numerical simulations are presented to show these results.
Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang
2013-01-01
Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.
Wu, De-Yun; Hu, Chun-Dong; Sheng, Peng; Zhao, Yuan-Zhe; Zhang, Xiao-Dan; Cui, Qing-Long
2013-10-01
Neutral beam injector is one of the main plasma heating and plasma current driving methods for experimental advanced superconducting tokomaks (EAST). In order to realize visual operation of EAST neutral beam injector's control system (NBICS), main control console (MCC) is developed to work as the human-machine interface between the NBICS and physical operator. It can meet the requirements of visual control of NBICS by providing a user graphic interface. With the specific algorithms, the setup of power supply sequence is relatively independent and simple. Displaying the real-time feedback of the subsystems provides a reference for operators to monitor the status of the system. The MCC software runs on a Windows system and uses C++ language code while using client/server (C/S) mode, multithreading and cyclic redundancy check technology. The experimental results have proved that MCC provides a stability and reliability operation of NBICS and works as an effective man-machine interface at the same time.
Feedback Linearization Controller for a Wind Energy Power System
Directory of Open Access Journals (Sweden)
Muthana Alrifai
2016-09-01
Full Text Available This paper deals with the control of a doubly-fed induction generator (DFIG-based variable speed wind turbine power system. A system of eight ordinary differential equations is used to model the wind energy conversion system. The generator has a wound rotor type with back-to-back three-phase power converter bridges between its rotor and the grid; it is modeled using the direct-quadrature rotating reference frame with aligned stator flux. An input-state feedback linearization controller is proposed for the wind energy power system. The controller guarantees that the states of the system track the desired states. Simulation results are presented to validate the proposed control scheme. Moreover, further simulation results are shown to investigate the robustness of the proposed control scheme to changes in some of the parameters of the system.
Feedback Requirements for SASE-FELs
Energy Technology Data Exchange (ETDEWEB)
Loos, Henrik; /SLAC
2012-07-06
The operation of a Self Amplified Spontaneous Emission (SASE) Free Electron Lasers (FEL) at soft and hard X-ray wavelengths driven by a high brightness electron beam imposes strong requirements on the stability of the accelerator and feedback systems are necessary to both guarantee saturation of the SASE process as well as a stable photon beam for user experiments. Diagnostics for the relevant transverse and longitudinal beam parameters are presented and various examples of feedback systems for bunches with low repetition rate as well as systems for intra bunch train feedbacks are discussed.
Status of the CLIC Beam Delivery System
Tomás, R; Resta López, J; Rumolo, G; Schulte, D; Schuler, P; Bolzon, B; Brunetti, L; Brunetti, L; Geffroy, N; Jeremie, A; Seryi, A; Angal-Kalinin, D; Jackson, F
2010-01-01
The CLIC Beam Delivery System (BDS) is experiencing the careful revision from a large number of world wide experts. This was particularly enhanced by the successful CLIC’08 workshop held at CERN. Numerous new ideas, improvements and critical points are arising, establishing the path towards the Conceptual Design Report by 2010.
A feedback control system for high-fidelity digital microfluidics.
Shih, Steve C C; Fobel, Ryan; Kumar, Paresh; Wheeler, Aaron R
2011-02-07
Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity between driving voltage and actuation); however, in real systems, droplets are sometimes observed to resist movement onto particular electrodes. Here, we implement a sensing and feedback control system in which all droplet movements are monitored, such that when a movement failure is observed, additional driving voltages can be applied until the droplet completes the desired operation. The new system was evaluated for a series of liquids including water, methanol, and cell culture medium containing fetal bovine serum, and feedback control was observed to result in dramatic improvements in droplet actuation fidelity and velocity. The utility of the new system was validated by implementing an enzyme kinetics assay with continuous mixing. The new platform for digital microfluidics is simple and inexpensive and thus should be useful for scientists and engineers who are developing automated analysis platforms.
Energy Technology Data Exchange (ETDEWEB)
CAMERON,P.; CERNIGLIA,P.; CONNOLLY,R.; CUPOLO,J.; DAWSON,W.C.; DEGEN,C.; DELLAPENNA,A.; DELONG,J.; DREES,A.; HUHN,A.; KESSELMAN,M.; MARUSIC,A.; OERTER,B.; MEAD,J.; SCHULTHEISS,C.; SIKORA,R.; VAN ZEIJTS,J.
2001-06-18
Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001.
The Permanence in a Single Species Nonautonomous System with Delays and Feedback Control
2010-01-01
We consider a single species nonautonomous system with delays and feedback control. A general criterion on the permanence for all positive solutions is established. The results show that the feedback control does not influence the permanence of species.
Collisionless relaxation in beam-plasma systems
Energy Technology Data Exchange (ETDEWEB)
Backhaus, Ekaterina Yu. [Univ. of California, Berkeley, CA (United States)
2001-01-01
This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show
Ion beam pulse radiolysis system at HIMAC
Energy Technology Data Exchange (ETDEWEB)
Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.
1997-03-01
An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)
Baudrenghien, P
2005-01-01
The high intensity regime is reached when the voltage induced by the beam in the RF cavities is of an amplitude comparable to the desired accelerating voltage. In steady state this beam loading can be compensated by providing extra RF power. Transient beam loading occurs at injection or in the presence of a beam intensity that is not uniform around the ring. The transients are periodic at the revolution frequency. Without correction transient beam loading can be very harmful: The stable phase and bucket area will not be equal for all bunches. Strong beam loading often goes in pair with longitudinal instabilities because the RF cavities are a large contributor to the total ring impedance. The low level systems that reduce the effect of the transient beam loading will also increase the threshold intensity of the longitudinal instability caused by the cavity impedance at the fundamental RF frequency. Four classic methods are presented here: Feedforward, RF feedback, long delay feedback and bunch by bunch feedbac...
Lan, Zhihao
2014-01-01
We have identified a novel phase stability mechanism from the intracavity field-induced self-organization of a fast-moving molecular beam into travelling molecular packets in the bad cavity regime, which is then used to decelerate the molecular packets by feedback-controlled time-varying laser pumps to the cavity. We first applied the linear stability analysis to derive an expression for this self-organization in the adiabatic limit and show that the self-organization of the beam leads to the formation of travelling molecular packets, which in turn function as a dynamic Bragg grating, thus modulating periodically the intracavity field by superradiant scattering of the pump photons. The modulation encodes the position information of the molecular packets into the output of the intracavity field instantaneously. We then applied time-varying laser pumps that are automatically switched by the output of the intracavity field to slow down the molecular packets via a feedback mechanism and found that most of the mol...
Implementation of EPICS based Control System for Radioisotope Beam line
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)
2015-10-15
Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.
Development of the beam extraction synchronization system at the Fermilab Booster
Energy Technology Data Exchange (ETDEWEB)
Seiya, K.; Chaurize, S.; Drennan, C.C.; Pellico, W.; Sullivan, T.; Triplett, A.K.; Waller, A.M.
2015-11-01
The new beam extraction synchronization control system called “Magnetic Cogging” was developed at the Fermilab Booster and it replaces a system called “RF Cogging” as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×10{sup 17} protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.
Development of KSTAR Neutral Beam Heating System
Energy Technology Data Exchange (ETDEWEB)
Oh, B. H.; Song, W. S.; Yoon, B. J. (and others)
2007-10-15
The prototype components of a neutral beam injection (NBI) system have been developed for the KSTAR, and a capability of the manufactured components has been tested. High power ion source, acceleration power supply, other ion source power supplies, neutralizer, bending magnet for ion beam separation, calorimeter, and cryo-sorption pump have been developed by using the domestic technologies and tested for a neutral beam injection of 8 MW per beamline with a pulse duration of 300 seconds. The developed components have been continuously upgraded to achieve the design requirements. The development technology of high power and long pulse neutral beam injection system has been proved with the achievement of 5.2 MW output for a short pulse length and 1.6 MW output for a pulse length of 300 seconds. Using these development technologies, the domestic NB technology has been stabilized under the development of high power ion source, NB beamline components, high voltage and current power supplies, NB diagnostics, NB system operation and control.
Wittenburg, Kay
1994-06-01
The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.
On the minimax feedback control of uncertain dynamic systems.
Bertsekas, D. P.; Rhodes, I. B.
1971-01-01
In this paper the problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.
Iterative Feedback Tuning in Fuzzy Control Systems. Theory and Applications
Directory of Open Access Journals (Sweden)
Stefan Preitl
2006-07-01
Full Text Available The paper deals with both theoretical and application aspects concerningIterative Feedback Tuning (IFT algorithms in the design of a class of fuzzy controlsystems employing Mamdani-type PI-fuzzy controllers. The presentation is focused on twodegree-of-freedom fuzzy control system structures resulting in one design method. Thestability analysis approach based on Popov’s hyperstability theory solves the convergenceproblems associated to IFT algorithms. The suggested design method is validated by realtimeexperimental results for a fuzzy controlled nonlinear DC drive-type laboratoryequipment.
Multi source feedback based performance appraisal system using Fuzzy logic decision support system
Directory of Open Access Journals (Sweden)
G.Meenakshi
2012-03-01
Full Text Available In Multi-Source Feedback or 360 Degree Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 360-Degree Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 360-degree feedback appraisal process describes a human resource methodology that is frequently used for both employee appraisal and employee development. Used in employee performance appraisals, the 360-degree feedback methodology is differentiated from traditional, top-down appraisalmethods in which the supervisor responsible for the appraisal provides the majority of the data. Instead it seeks to use information gained from other sources to provide a fuller picture of employees’ performances. Similarly, when this technique used in employee development it augments employees’ perceptions of training needs with those of the people with whom they interact. The 360-degree feedback based appraisal is a comprehensive method where in the feedback about the employee comes from all the sources that come into contact with the employee on his/her job. The respondents for an employee can be her/his peers, managers, subordinates team members, customers, suppliers and vendors. Hence anyone who comes into contact with the employee, the 360 degree appraisal has four components that include self-appraisal, superior’s appraisal, subordinate’s appraisal student’s appraisal and peer’s appraisal .The proposed system is an attempt to implement the 360 degree feedback based appraisal system in academics especially engineering colleges.
Realistic RF system and Beam Simulation in Real Time for a Synchrotron
Tückmantel, Joachim
2001-01-01
Due to heavy beam loading with gaps in the LHC beams, RF and beam are intimately linked to a complex system with fast transients where the RF loops and their limitations play a decisive role. Such a system is difficult to assess with analytical methods. To learn about overall system stability and for the definition of RF components to be built it is essential to understand the complete system long before the machine really exists. Therefore the author has written a general purpose real time simulation program and applied it to model the LHC machine with its beam pattern and complete double RF system. The latter is equipped with fast RF vector feedback loops having loop delay, transmitter power limitation and limited amplifier bandwidth as well as including one-turn-delay feedback and longitudinal batch injection damping. The development of all RF and beam quantities can be displayed graphically turn by turn. These frames can be assembled to a realistic multi-trace scope movie.
Fast Electronics for the Dafne Transverse Feedback Systems
Drago, A; Serio, M
2001-01-01
Transverse feedback systems for controlling the vertical coupled-bunch instabilities in the positron and electron main rings are installed at DAFNE. They started to be operative respectively from June and September 2000. For the horizontal plane, similar systems have been installed in summer 2001 with less kicker power. Design specifications and the basic system concepts are presented. Real time bunch-by-bunch offset correction is implemented using digital signal processors and dual-port RAM's. Fast analog to digital sampling is performed at the maximum bunch frequency (368 MHz). The system manages at full speed a continuous flow of 8-bits data and it has the capability to invert the sign or put to zero the output for any combination of bunches. A conversion from digital to analog produces the output correcting signal.
Fast Electronics for the Dafne Transverse Feedback Systems
Drago, Alessandro
Transverse feedback systems for controlling the vertical coupled-bunch instabilities in the positron and electron main rings are installed at DAFNE. They started to be operative respectively from June and September 2000. For the horizontal plane, similar systems have been installed in summer 2001 with less kicker power. Design specifications and the basic system concepts are presented. Real time bunch-by-bunch offset correction is implemented using digital signal processors and dual-port RAM's. Fast analog to digital sampling is performed at the maximum bunch frequency (368 MHz). The system manages at full speed a continuous flow of 8-bits data and it has the capability to invert the sign or put to zero the output for any combination of bunches. A conversion from digital to analog produces the output correcting signal.
State feedback control of switched linear systems: An LMI approach
Montagner, V. F.; Leite, V. J. S.; Oliveira, R. C. L. F.; Peres, P. L. D.
2006-10-01
This paper addresses the problem of state feedback control of continuous-time switched linear systems with arbitrary switching rules. A quadratic Lyapunov function with a common matrix is used to derive a stabilizing switching control strategy that guarantees: (i) the assignment of all the eigenvalues of each linear subsystem inside a chosen circle in the left-hand half of the complex plane; (ii) a minimum disturbance attenuation level for the closed-loop switched system. The proposed design conditions are given in terms of linear matrix inequalities that encompass previous results based on quadratic stability conditions with fixed control gains. Although the quadratic stability based on a fixed Lyapunov matrix has been widely used in robust control design, the use of this condition to provide a convex design method for switching feedback gains has not been fully investigated. Numerical examples show that the switching control strategy can cope with more stringent design specifications than the fixed gain strategy, being useful to improve the performance of this class of systems.
Laser beam shaping and packaging system
Luo, Daxin; Zhao, Baiqin
2012-10-01
This paper presents a semiconductor laser beam shaping system, that can collimate the irradiance profile effectively and package the laser diode(LD) at the same time. Due to the semiconductor LD is a kind of line source, a particular ellipsoidal lens is designed after both the fast-axis and the slow-axis of the laser beam analyzed. Geometrical optics analysis based on the ray tracing method is done and the formulas to calculate the shape of the lens are given. Both the theoretical and experimental result show that the laser beam system works effectively; the divergence angle is reduced to less than 0.5 degree in the fast-axial direction and 1.8 degree in the slow-axial direction. In addition, it is the same process that makes the laser beam shaper and packages the LD by using epoxy resin, which simplifies the manufacturing process and reduces the LD volume greatly. Because of the advantages of small volume, low-cost, high rigidity and easy fabrication, the shaper is of great value in the field of semiconductor LD applications.
Gamp, Alexander
2013-01-01
We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
Almehmadi, Fares S.; Chatterjee, Monish R.
2014-12-01
Using intensity feedback, the closed-loop behavior of an acousto-optic hybrid device under profiled beam propagation has been recently shown to exhibit wider chaotic bands potentially leading to an increase in both the dynamic range and sensitivity to key parameters that characterize the encryption. In this work, a detailed examination is carried out vis-à-vis the robustness of the encryption/decryption process relative to parameter mismatch for both analog and pulse code modulation signals, and bit error rate (BER) curves are used to examine the impact of additive white noise. The simulations with profiled input beams are shown to produce a stronger encryption key (i.e., much lower parametric tolerance thresholds) relative to simulations with uniform plane wave input beams. In each case, it is shown that the tolerance for key parameters drops by factors ranging from 10 to 20 times below those for uniform plane wave propagation. Results are shown to be at consistently lower tolerances for secure transmission of analog and digital signals using parameter tolerance measures, as well as BER performance measures for digital signals. These results hold out the promise for considerably greater information transmission security for such a system.
Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)
Weisbrich, R.; Perley, R.; Howes, H.
1977-01-01
The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.
Output feedback trajectory stabilization of the uncertainty DC servomechanism system.
Aguilar-Ibañez, Carlos; Garrido-Moctezuma, Ruben; Davila, Jorge
2012-11-01
This work proposes a solution for the output feedback trajectory-tracking problem in the case of an uncertain DC servomechanism system. The system consists of a pendulum actuated by a DC motor and subject to a time-varying bounded disturbance. The control law consists of a Proportional Derivative controller and an uncertain estimator that allows compensating the effects of the unknown bounded perturbation. Because the motor velocity state is not available from measurements, a second-order sliding-mode observer permits the estimation of this variable in finite time. This last feature allows applying the Separation Principle. The convergence analysis is carried out by means of the Lyapunov method. Results obtained from numerical simulations and experiments in a laboratory prototype show the performance of the closed loop system.
Robust adaptive output feedback control of nonlinearly parameterized systems
Institute of Scientific and Technical Information of China (English)
LIU Yusheng; LI Xingyuan
2007-01-01
The ideas of adaptive nonlinear damping and changing supply functions were used to counteract the effects of parameter and nonlinear uncertainties,unmodeled dynamics and unknown bounded disturbances.The high-gain observer was used to estimate the state of the system.A robust adaptive output feedback control scheme was proposed for nonlinearly parameterized systems represented by inputoutput models.The scheme does not need to estimate the unknown parameters nor add a dynamical signal to dominate the effects of unmodeled dynamics.It is proven that the proposed control scheme guarantees that all the variables in the closed-loop system are bounded and the mean-square tracking error can be made arbitrarily small by choosing some design parameters appropriately.Simulation results have illustrated the effectiveness of the proposed robust adaptive control scheme.
Hybrid laser-beam-shaping system for rotatable dual beams with long depth of focus
Chou, Fu-Lung; Chen, Cheng-Huan; Lin, Yu-Chung; Lin, Mao-Chi
2016-08-01
A laser processing system consisting of two diffractive elements and one refractive element is proposed enabling a Gaussian laser beam to be transformed into two beams with a depth of focus of up to 150 µm and focal spot smaller than 5 µm. For specific laser processing, the two beams are rotatable when the beam-splitting diffractive element is rotated. The overall system is versatile for laser cutting and drilling.
Real-Time System Supervision for the LHC Beam Loss Monitoring System at CERN
Zamantzas, C; Effinger, E; Emery, J; Jackson, S
2014-01-01
The strategy for machine protection and quench prevention of the Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is mainly based on the Beam Loss Monitoring (BLM) system. The LHC BLM system is one of the most complex and large instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver feedback of the losses to the control room as well as to several systems for their setup and analysis. In order to augment the dependability of the system several layers of supervision has been implemented internally and externally to the system. This paper describes the different methods employed to achieve the expected availability and system fault detection.
Indexing system for optical beam steering
Sullivan, Mark T.; Cannon, David M.; Debra, Daniel B.; Young, Jeffrey A.; Mansfield, Joseph A.; Carmichael, Roger E.; Lissol, Peter S.; Pryor, G. M.; Miklosy, Les G.; Lee, Jeffrey H.
1990-01-01
This paper describes the design and testing of an indexing system for optical-beam steering. The cryogenic beam-steering mechanism is a 360-degree rotation device capable of discrete, high-precision alignment positions. It uses low-precision components for its rough alignment and kinematic design to meet its stringent repeatability and stability requirements (of about 5 arcsec). The principal advantages of this design include a decoupling of the low-precision, large angular motion from the high-precision alignment, and a power-off alignment position that potentially extends the life or hold time of cryogenic systems. An alternate design, which takes advantage of these attributes while reducing overall motion, is also presented. Preliminary test results show the kinematic mount capable of sub-arc second repeatability.
Energy Technology Data Exchange (ETDEWEB)
Hoener, Markus
2015-07-01
At the 1.5-GeV synchrotron radiation source DELTA, operated by the TU Dortmund University, intensive synchrotron radiation in the spectral range from hard X-rays to THz radiation is generated by the circular deflection of highly relativistic electron bunches. Interacting with the vacuum chamber wall, the electron bunches create electric fields, which can act back on subsequent bunches. With increasing beam current, the excitation is enhanced so that the electron beam is unstable, which means that the electron bunches oscillate longitudinally or transversely relative to their reference position. The oscillations reduce the quality of the synchrotron radiation and limit the maximum storable beam current. Within the scope of this thesis, the beam instabilities at the storage ring were systematically investigated. A digital bunch-by-bunch feedback system was installed and commissioned, which allows to detect and digitize the position of each electron bunch at each turn. Based on the input signal, a correction signal is calculated in order to suppress transverse and longitudinal oscillation of the bunches. In addition, it is possible to excite dedicated bunches. The systematic excitation of all coupled-bunch modes allowed for the first time to determine the damping rates of all 192 eigenmodes of the electron beam. The current dependence of the damping rates was investigated and an instability threshold was found. Besides the investigation of multibunch instabilities, single-bunch instabilities are discussed. In addition, the acquisition unit of the digital feedback system can be triggered on external events. This was used to investigate the injection process and beam losses. It was shown that the transverse feedback system increases the injection efficiency. Another aspect of this thesis is the improvement of the signal quality of ultrashort coherent synchrotron radiation pulses, which are generated by the short-pulse facility at DELTA. The short-pulse facility is based
Accelerating of Image Retrieval in CBIR System with Relevance Feedback
Directory of Open Access Journals (Sweden)
Radosavljević Vladan
2007-01-01
Full Text Available Content-based image retrieval (CBIR system with relevance feedback, which uses the algorithm for feature-vector (FV dimension reduction, is described. Feature-vector reduction (FVR exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the "curse of dimensionality" is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90% is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.
Accelerating of Image Retrieval in CBIR System with Relevance Feedback
Directory of Open Access Journals (Sweden)
Branimir Reljin
2007-01-01
Full Text Available Content-based image retrieval (CBIR system with relevance feedback, which uses the algorithm for feature-vector (FV dimension reduction, is described. Feature-vector reduction (FVR exploits the clustering of FV components for a given query. Clustering is based on the comparison of magnitudes of FV components of a query. Instead of all FV components describing color, line directions, and texture, only their representative members describing FV clusters are used for retrieval. In this way, the “curse of dimensionality” is bypassed since redundant components of a query FV are rejected. It was shown that about one tenth of total FV components (i.e., the reduction of 90% is sufficient for retrieval, without significant degradation of accuracy. Consequently, the retrieving process is accelerated. Moreover, even better balancing between color and line/texture features is obtained. The efficiency of FVR CBIR system was tested over TRECVid 2006 and Corel 60 K datasets.
Dynamic Intelligent Feedback Scheduling in Networked Control Systems
Directory of Open Access Journals (Sweden)
Hui-ying Chen
2013-01-01
Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.
Dynamical output feedback stabilization for neutral systems with mixed delays
Institute of Scientific and Technical Information of China (English)
Wei QIAN; Guo-jiang SHEN; You-xian SUN
2008-01-01
This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays.The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems.Based on the model transformation of neutral type,the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion.Then,through the controller parameterization and some matrix transformation techniques,the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs),and the desired controller is explicitly formulated.A numerical example is given to illustrate the effectiveness of the proposed method.
Feedback Reduction in Uplink MIMO OFDM Systems by Chunk Optimization
Directory of Open Access Journals (Sweden)
Arogyaswami Paulraj
2008-01-01
Full Text Available The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station decides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feedback overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quantization of the precoding matrices are addressed.
Laser Soldering of Rat Skin Using a Controlled Feedback System
Directory of Open Access Journals (Sweden)
Mohammad Sadegh Nourbakhsh
2009-03-01
Full Text Available Introduction: Laser tissue soldering using albumin and indocyanine green dye (ICG is an effective technique utilized in various surgical procedures. The purpose of this study was to perform laser soldering of rat skin under a feedback control system and compare the results with those obtained using standard sutures. Material and Methods: Skin incisions were made over eight rats’ dorsa, which were subsequently closed using different wound closure interventions in two groups: (a using a temperature controlled infrared detector or (b by suture. Tensile strengths were measured at 2, 5, 7 and 10 days post-incision. Histological examination was performed at the time of sacrifice. Results: Tensile strength results showed that during the initial days following the incisions, the tensile strengths of the sutured samples were greater than the laser samples. However, 10 days after the incisions, the tensile strengths of the laser soldered incisions were higher than the sutured cuts. Histopathological examination showed a preferred wound healing response in the soldered skin compared with the control samples. The healing indices of the laser soldered repairs (426 were significantly better than the control samples (340.5. Conclusion: Tissue feedback control of temperature and optical changes in laser soldering of skin leads to a higher tensile strength and better histological results and hence this method may be considered as an alternative to standard suturing.
Integration of a force feedback joystick with a VR system
Energy Technology Data Exchange (ETDEWEB)
Castro, A.C. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione
1999-07-01
The report shows the result carried out at the Robotics and Information Systems Division of ENEA (National Agency for New Technology, Energy and the Environment) in the Casaccia Centre (Rome). The study presents an approach to the problem of integrating force feedback with a complete real-time virtual environment system: in particular bulky computations for graphics or simulation require a decoupling of the haptic servo loop from the main application loop if high-quality forces are to be obtained. The control system has been developed for the force-feedback joystick Impulse 2000, from Immersion Co., and the integration of it to a virtual environment is presented here. Technical issues related to the development of control architectures for Internet-based exchange of haptic information, in a stable way are discussed. [Italian] Il presente rapporto descrive il lavoro eseguito nella divisione robotica e informatica del dipartimento innovazione dell'ENEA del centro ricerche della Casaccia (Roma): il sistema di controllo del dispositivo con ritorno di forza in un sistema RV (real-time virtual environment system) ed illustra l'approccio a questa problematica ed in particolare la lentezza di esecuzione del ciclo di calcoli per la resa delle immagini da parte del sistema grafico e del ciclio per la simulazione della dinamica di sistema. Viene descritto il sistema di controllo per il joystick con ritorno di forza Impulse 2000 (Immersion Co.) e la sua integrazione ad un ambiente virtuale. Sono inoltre discusse le problematiche connesse allo sviluppo di sistemi che consentano lo scambio dell'informazione tattile attraverso Internet.
LHC beam dumping system Extraction channel layout and acceptance
Goddard, B; Uythoven, J; Veness, R; Weterings, W
2003-01-01
The LHC beam dumping system must safely abort the LHC beams under all conditions, including those resulting from abnormal behaviour of machine elements or subsystems of the beam dumping system itself. The extraction channels must provide sufficient aperture both for the circulating and extracted beams, over the whole energy range and under various beam parameters. These requirements impose tight constraints on the tolerances of various extraction channel components, and also on the allowed range of beam positions in the region of these components. Operation of the beam dumping system under various fault states has been considered, and the resulting apertures calculated. After describing briefly the beam dumping system and the extraction channel geometry, the various assumptions made in the analysis are presented, before deriving tolerance limits for the relevant equipment and beam parameters.
Institute of Scientific and Technical Information of China (English)
Mario Ferianis; Enrico Allaria; Eugenio Ferrari; Giulio Gaio; Giuseppe Penco; Fabio Rossi; Marco Veronese
2016-01-01
FERMI, the seeded free electron laser(FEL) in operation in Italy, is providing the User Community with unique fully coherent radiation, in the wavelength range 100–4 nm. FERMI is the first FEL fully synchronized by means of optical fibers. The optical timing system ensures an ultra-stable phase reference to its distributed clients. Several femtosecond longitudinal diagnostics verify the achieved performance; the bunch length monitor(BLM) and the bunch arrival monitor(BAM) will be presented in this paper. Feedback systems play a crucial role to guarantee the needed longterm electron beam stability. A real-time infrastructure allows shot-to-shot communication between front-end computers and the servers. Orbit feedbacks are useful in machine tuning, whereas longitudinal feedbacks control electron energy,compression and arrival time. A flexible software framework allows a rapid implementation of heterogeneous multiinput–multi-output(MIMO) longitudinal loops simply by selecting the appropriate sensors and actuators.
Active Beam Shaping System and Method Using Sequential Deformable Mirrors
Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)
2015-01-01
An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.
Electron beam stability and beam peak to peak motion data for NSLS X-Ray storage ring
Energy Technology Data Exchange (ETDEWEB)
Singh, O.
1993-07-01
In the past two years, a significant reduction in electron beam motion has been achieved at the NSLS X-Ray storage ring. The implementation of global analog orbit feedbacks, based on a harmonics correction scheme, has reduced the beam motion globally. Implementation of six local analog feedback systems has reduced the beam motion even further at the corresponding beam line straight sections. This paper presents beam motion measurements, showing the improvement due to the feedback systems. Beam motion is measured using a spectrum analyzer and data is presented at various frequencies, where peaks were observed. Finally, some of the beam motion sources are discussed.
Design of CMS Beam Halo Monitor system
AUTHOR|(CDS)2078842
2015-01-01
A fast and directional monitoring system for the CMS experiment is designed to provide an online, bunch-by-bunch measurement of beam background induced by beam halo interactions, separately for each beam. The background detection is based on Cherenkov radiation produced in synthetic fused silica read out by a fast, UV sensitive photomultiplier tube. Twenty detector units per end will be azimuthally distributed around the rotating shielding of CMS, covering ~408 cm2 at 20.6m from the interaction point, at a radius of ~180 cm. The directional and fast response of the system allows the discrimination of the background particles from the dominant flux in the cavern induced by pp collision debris, produced within the 25 ns bunch spacing. A robust multi-layered shielding will enclose each detector unit to protect the photomultiplier tube from the magnetic field and to eliminate the occupancy from low energy particles. The design of the front-end units is validated by experimental results. An overview of the new sy...
The LHC Beam Dumping System Trigger Synchronisation and Distribution System
Antoine, A; Voumard, N
2005-01-01
Two LHC beam dumping systems (LBDS) will fast-extract the counter-rotating beams safely from the LHC collider during setting-up of the accelerator, at the end of a physics run and in case of emergencies. They consist of 15 fast pulsed magnets per ring for beam extraction from the accelerator combined with 10 fast pulsed magnets for horizontal and vertical beam dilution. Dump requests will come from 3 different sources: the machine protection system for emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These spontaneously issued dump requests will be synchronised with the 3 Âµs beam abort gap within a fail-safe trigger synchronisation unit (TSU) based on a digital phase lock loop (DPLL) locked on the beam revolution frequency with a maximum phase error of 40 ns. Afterwards, the synchronised trigger pulse will be distributed to the fast pulsed magnet high voltage generators through a redundant fault tolerant trigger distribution system based on the...
Switched steerable multiple beam antenna system
Iwasaki, Richard S. (Inventor)
1988-01-01
A steerable multibeam five element cross-feed cluster antenna system is described. The feed power is divided into five branches. Each branch includes a switching network comprised of a plurality of time delay elements each individually controlled by a respective electromagnetic latching switch. Frequency independent individual two-dimensional beam steering at intermediate (IF) scanning frequencies is thereby provided wherein discrete incremental time delays are introduced by the switching networks into each branch and the signals recombined thereafter to form each beam. The electromagnetic latched switching reduces power consumption and permits higher power switching and reciprocal coincident tranmsit and receive operation. Frequency independence due to incremental time delay switching permits coincident reciprocal operation and steering for transmit-receive signal paths carrying different transmit-receive frequencies. Diagonal quarter wave plates in the waveguides alter polarization from the circular to orthogonal linear to provide transmitter-receiver isolation.
Efficiency of feedbacks for suppression of transverse instabilities of bunched beams
Burov, Alexey
2016-08-01
Which gain and phase have to be set for a bunch-by-bunch transverse damper, and at which chromaticity is it better to stay? These questions are considered for three models: the two-particle model with possible quadrupole wake, the author's nested head-tail (NHT) model with the broadband impedance, and the NHT with the LHC impedance model. Details of 2D areas of stability in the chromaticity-intensity and chromaticity-gain planes and possibilities to use them are discussed. It is shown that resistive feedbacks may generate asymmetry of the tune shift distribution, which requires positively-shifted stability diagrams.
Status of Beam Diagnostic Systems for the PEFP
Park Jang Ho; Choi Byung Ho; Ha Hwang Woon; Han, Sang-Hyo; Park, Sung-Ju; Woon Parc, Yong; Yun Huang Jung
2005-01-01
A proton linear accelerator is currently the construction at the KAERI (Korea Atomic Research Institute) to the PEFP (Proton Engineering Frontier Project) in Korea. We are accomplished the technique development of beam diagnostic system to be currently the construction. We treat beam diagnostics for the high power proton linear accelerator. Prototype beam position & phase monitor (BPPM) electronics was made and tested successfully in one of the beam diagnostic systems. The beam position monitor pickup electrode is a capacitive type (electrostatic type) which has a button form. Button form electrode, in common use around electron synchrotrons and storage rings, are a variant of the electrode with small button form (e.g., sub mm diameter). However, we are designed button form electrode to measure beam position of proton beam. The BCM (Beam Current Monitor) is developed Tuned CT (Current Transformer) for collaborate with Bergoz Instruments. This paper describes the status of beam diagnostic systems for the P...
LINEAR ACTIVE STRUCTURES AND MODES (Ⅱ)--DISCRETE SYSTEMS AND BEAMS
Institute of Scientific and Technical Information of China (English)
王永刚; 龚靖; 张景绘
2004-01-01
The basic concepts about the active structures and some attributes of the modes were presented in paper "Liner Active Structures and Modes ( Ⅰ ) ". The characteristics of the active discrete systems and active beams were discussed, especially, the stability of the active structures and the orthogonality of the eigenvectors. The notes about modes were portrayed by a model of a seven-storeyed building with sensors and actuators. The concept of the adjoint active structure was extended from the discrete systems to the beams that were the representations of the continuous structures. Two types of beams with different placements of the measuring and actuating systems were discussed in detail. One is the beam with the discrete sensors and actuators, and the other is the beam with distributed sensor and actuator function. The orthogonality conditions were derived with the modal shapes of the active beam and its adjoint active beam. An example shows that the variation of eigenvalues with feedback amplitude for the homo-configuration and non-homo-configuration active structures.
High Power Diode Lasers with External Feedback: Overview and Prospects
DEFF Research Database (Denmark)
Chi, Mingjun; Petersen, Paul Michael
2012-01-01
In summary, different external-cavity feedback techniques to improve the spatial beam quality and narrow the linewidth of the output beam from both BALs and TDLs are presented. Broad-area diode laser system with external-cavity feedback around 800 nm can produce several Watts of output power...
Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam
Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith
2005-01-01
A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.
Protection and Diagnostic Systems for High Intensity Beams
Jensen, L; Vismara, Giuseppe
2000-01-01
This paper presents a summary of the facilities for beam interlocks and diagnostics to protect the CERN SPS machine. An overview of the existing systems is given, which are based on beam loss and beam current monitors and large beam position excursion in the horizontal plane. The later system mainly protects the system against a failure of the transverse damping system. The design for a new large excursion interlock for both transverse planes is also presented in some detail. For this system a digital approach is being taken to allow post-mortem analysis of the behaviour of the beam prior to the activation of the interlock.
A hypertext system that learns from user feedback
Mathe, Nathalie
1994-01-01
Retrieving specific information from large amounts of documentation is not an easy task. It could be facilitated if information relevant in the current problem solving context could be automatically supplied to the user. As a first step towards this goal, we have developed an intelligent hypertext system called CID (Computer Integrated Documentation). Besides providing an hypertext interface for browsing large documents, the CID system automatically acquires and reuses the context in which previous searches were appropriate. This mechanism utilizes on-line user information requirements and relevance feedback either to reinforce current indexing in case of success or to generate new knowledge in case of failure. Thus, the user continually augments and refines the intelligence of the retrieval system. This allows the CID system to provide helpful responses, based on previous usage of the documentation, and to improve its performance over time. We successfully tested the CID system with users of the Space Station Freedom requirements documents. We are currently extending CID to other application domains (Space Shuttle operations documents, airplane maintenance manuals, and on-line training). We are also exploring the potential commercialization of this technique.
Linear Feedback Synchronization Used in the Three-Dimensional Duffing System
Directory of Open Access Journals (Sweden)
Jian-qun Han
2015-01-01
Full Text Available It has been realized that synchronization using linear feedback control method is efficient compared to nonlinear feedback control method due to the less computational complexity and the synchronization error. For the problem of feedback synchronization of Duffing chaotic system, in the paper, we firstly established three-dimensional Duffing system by method of variable decomposition and, then, studied the synchronization of Duffing chaotic system and designed the control law based on linear feedback control and Lyapunov stability theory. It is proved theoretically that the two identical integer order chaotic systems are synchronized analytically and numerically.
Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred
2016-01-01
In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.
Energy Technology Data Exchange (ETDEWEB)
Raaberg, Martin; Velut, Stephane; Bari, Siavosh Amanat
2010-10-15
The project goal is to evaluate and describe how Iterative Feedback Tuning (IFT) can be used to tune controllers in the typical control loops in heat- and power plants. There are only a few practical studies carried out for IFT and they are not really relevant for power and heat processes. It is the practical problems in implementing the IFT and the result of trimming that is the focus of this project. The project will start with theoretical studies of the IFT-method, then realization and simple simulations in scilab. The IFT equations are then implemented in Freelance 2000, an ABB control system, for practical tests on a SISO- and a MIMO-process. By performing reproducible experiments on the process and analyze the results IFT can adjust the controller parameters to minimize a cost function that represents the control goal. The project selected for SISO experiments a pressure controller in an oil transportation system. By controlling the valve position of a control valve for the reversal to the supply tank, the pressure in the oil transport system is regulated. A disturbance in oil pressure can be achieved by changing the position of a valve that lets oil through to the day tank. The selected MIMO-process is a pre-heater in a degassing process. In this process, a valve on the secondary side is utilized to control the flow in the secondary system. A valve on the primary side is utilized to control the district heating water flow through the heat exchanger to control the temperature on the secondary side. An increased secondary flow increases the heat demand and thus requiring an increase in primary flow to maintain the secondary side outlet temperature. This is the cross-coupling responsible for why it is an advantage to consider the process as multi-variable. Using the IFT method, the two original PID-controllers and a feed-forward controller is tuned simultaneously. IFT-method was difficult to implement but worked well in both simulations and in real processes
Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong
2010-06-01
For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.
User Driven Feedback Control System driven using CAN Protocol
Directory of Open Access Journals (Sweden)
Ankita Goyal
2013-09-01
Full Text Available -Industrial automation is a sector having vast possibilities for major improvements. The system described in this paper consists of a console master computer (CMC which will monitor various physical nodes usually found in a large industry. The proposed work analyzes the capability of CAN networking which includes data traffic management. The CMC is designed using MATLAB 7.12; the CAN networking is supported using the Vehicular Network Toolbox. The proposed system using CAN has the advantages of being simple in its design which contributes to the overall low cost. The novelty of the work lies in the low cost approach, and fails safe methodology of CAN communication. The proposed system is capable of sending and receiving signals with the additional benefit of feedback mechanism .The proposed work is implementable in any industry with the cost advantage of CAN interface. The proposed work can be used as a cheaper and robust alternative to native technologies like PLC (Programmable Logic Controller. Moreover, the CAN network system is immune from the electrical interferences.
Implementation and Tuning of an Optical Tweezers Force-Clamp Feedback System.
Bugiel, Michael; Jannasch, Anita; Schäffer, Erik
2017-01-01
Feedback systems can be used to control the value of a system variable. In optical tweezers, active feedback is often implemented to either keep the position or tension applied to a single biomolecule constant. Here, we describe the implementation of the latter: an optical force-clamp setup that can be used to study the motion of processive molecular motors under a constant load. We describe the basics of a software-implemented proportional-integral-derivative (PID) controller, how to tune it, and how to determine its optimal feedback rate. Limitations, possible feed-forward applications, and extensions into two- and three-dimensional optical force clamps are discussed. The feedback is ultimately limited by thermal fluctuations and the compliance of the involved molecules. To investigate a particular mechanical process, understanding the basics and limitations of the feedback system will be helpful for choosing the proper feedback hardware, for optimizing the system parameters, and for the design of the experiment.
Beam-Forming Concentrating Solar Thermal Array Power Systems
Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)
2016-01-01
The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.
Evaluation of an optical beam-position-monitor system with closed-loop steering capabilities
Bissen, Mark; Rogers, Greg; Wood, William; Eisert, Dave; Kleman, K. J.; Winter, William; Höchst, Hartmut
1994-08-01
Imaging the synchrotron source profile onto the entrance slit of a monochromator provides a stable and reproducible energy calibration which is independent of the absolute position and drift of the electron beam. Potential electron-beam motions occurring during a fill result in a loss of flux through the beamline. We have implemented two independent beam position monitors which can be used as sensors to steer the vertical entrance mirror in order to maintain a maximum flux through a spherical grating varied line-spacing monochromator beamline. The system consists of a slotted plate photodiode which intercepts 2 mrad of synchrotron radiation next to the entrance mirror and a detector utilizing the photocurrents generated at the jaws of the entrance-slit assembly. Both monitors have a wide linear response range with a vertical position resolution of beam position monitors allows an easy check on the mechanical and thermal stability of the entrance optical system as well as on the reproducibility and long-term fluctuations of the electron-beam source during user shifts. We will discuss the performance of the optical beam-position-monitor system and its implementation as a sensor in a closed-loop feedback system to maintain maximum flux through the beamline.
The Performance of the Beam Conditions and Radiation Monitoring System of CMS
Dabrowski, Anne
2011-01-01
The Beam Conditions and Radiation Monitoring System (BRM), is installed in CMS to protect the CMS detector from high beam losses and to provide feedback to the LHC and CMS on the beam conditions. The primary detector sub-systems are based on either single crystal diamond sensors (BCM1F) for particle counting with nanosecond resolution or on polycrystalline diamonds (BCM2; BCM1L) for integrated signal current measurements. Beam scintillation counters (BSC) are also used during low luminosity running. The detectors have radiation hard front-end electronics and are read out independently of the CMS central data acquisition and are online whenever there is beam in the LHC machine. The various sub-systems exploit different time resolutions and position locations to be able to monitor the beam induced backgrounds and the flux of particles produced during collisions. This paper describes the CMS BRM system and the complementary aspects of the installed BRM sub-detectors to measure both single particle count rates a...
Wang, Chongwen; Yu, Xiao; Lan, Weiyao
2014-10-01
To improve transient performance of output response, this paper applies composite nonlinear feedback (CNF) control technique to investigate semi-global output regulation problems for linear systems with input saturation. Based on a linear state feedback control law for a semi-global output regulation problem, a state feedback CNF control law is constructed by adding a nonlinear feedback part. The extra nonlinear feedback part can be applied to improve the transient performance of the closed-loop system. Moreover, an observer is designed to construct an output feedback CNF control law that also solves the semi-global output regulation problem. The sufficient solvability condition of the semi-global output regulation problem by CNF control is the same as that by linear control, but the CNF control technique can improve the transient performance. The effectiveness of the proposed method is illustrated by a disturbance rejection problem of a translational oscillator with rotational actuator system.
Adaptive optimisation of a generalised beam shaping system
DEFF Research Database (Denmark)
Kenny, F.; Choi, F. S.; Glückstad, Jesper
2015-01-01
filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images...
The Beam Energy Tracking System of the LHC Beam Dumping System
Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R
2005-01-01
The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...
Stabilization of nonlinear sandwich systems via state feedback-Discrete-time systems
Wang, Xu; Stoorvogel, Anton A.; Saberi, Ali; Grip, H°avard Fjær; Sannuti, Peddapullaiah
2011-01-01
A recent paper (IEEE Trans. Aut. Contr. 2010; 55(9):2156–2160) considered stabilization of a class of continuous-time nonlinear sandwich systems via state feedback. This paper is a discrete-time counterpart of it. The class of nonlinear sandwich systems consists of saturation elements sandwiched bet
Present status of the electron beam diagnostics system of the PLS-II linac
Choi, Jae-Young; Kim, Changbum; Kim, Mungyung; Kim, Dotae; Kim, Jae Myung; Lee, Eunhee; Kim, Ghyung Hwa; Shin, Seunghwan; Huang, Jung Yun
2015-02-01
The PLS-II, the upgraded PLS (Pohang Light Source), has been providing users with photon beams in the top-up mode since March 2013. The requirements for the PLS-II linac to achieve the top-up injection are very demanding because it is a full energy injector with a very limited energy margin. One of the requirements is to ensure high injection efficiency in order to minimize the beam loss at the storage ring injection point and the experimental hall during injection because loss leads to a high radiation level in the experimental hall. The energy stability and energy spread of the accelerated electron beam are fundamental parameters to monitor and manage for high injection efficiency. An energy feedback system consisting of a stripline-type beam position monitor and the last klystron was implemented. To diagnose the injected beam's energy and energy spread in real time during top-up mode injection, we installed an optical transition radiation (OTR) monitor system upstream of the beam transport line (BTL) after the first bending magnet. The energy and the energy spread ranges can be controlled with a horizontal slit installed after the OTR monitor. The vertical beam size of the accelerated beam must be decreased for efficient injection because the electron beam is injected into the storage ring with many in-vacuum undulators of small gaps. For this purpose, two vertical slits were installed in the BTL region. We will describe mainly those instruments closely related to top-up operation, though other beam diagnostic instruments have been used since PLS.
Analysis, Design, and Evaluation of Acoustic Feedback Cancellation Systems for Hearing Aids
DEFF Research Database (Denmark)
Guo, Meng
2013-01-01
application that whereas the traditional and stateof- the-art acoustic feedback cancellation systems fail with significant sound distortions and howling as consequences, the new probe noise approach is able to remove feedback artifacts caused by the feedback path change in no more than a few hundred......Acoustic feedback problems occur when the output loudspeaker signal of an audio system is partly returned to the input microphone via an acoustic coupling through the air. This problem often causes significant performance degradations in applications such as public address systems and hearing aids....... In the worst case, the audio system becomes unstable and howling occurs. In this work, first we analyze a general multiple microphone audio processing system, where a cancellation system using adaptive filters is used to cancel the effect of acoustic feedback. We introduce and derive an accurate approximation...
Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.
Alaei, Parham; Spezi, Emiliano
2012-11-08
The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.
The beam delivery modeling and error sources analysis of beam stabilization system for lithography
Wang, Jun; Huang, Lihua; Hou, Liying; He, Guojun; Ren, Bingqiang; Zeng, Aijun; Huang, Huijie
2013-12-01
Beam stabilization system is one of the most important units for lithography, which can accomplish displacement and pointing detection and control and includes beam measurement unit(BMU) and beam steering unit(BSU). Our group has set up a beam stabilization system and verified preliminarily beam stabilization algorithm of precise control beam position and angle. In the article, we establish beam delivery mathematic model and analyze the system inherent error. This shows that the reason why image rotation effect arises at the output plane of beam stabilization is the fast steering mirror (FSM) rotation of BSU in the process of beam stabilization. Two FSMs rotation around 45o axis of FSM make the most contribution to image rotation which rotates 1.414 mrad as two FSMs rotation angle difference changes 1 mrad. It is found that error sources include three key points: FSM accuracy; measurement noise and beam translation by passing through of beam splitters changing as the ambient temperature changing. FSM accuracy leads to the maximum 13.2μm displacement error and 24.49μrad angle error. Measurement inaccuracy as a result of 5μm measurement noise results in the maximum 0.126mm displacement error and 57.2μrad angle error. Beam translation errors can be negligible if temperature is unchanged. We have achieved beam stability of about 15.5μrad for angle and 28μm for displacement (both 1σ) after correcting 2mm initial displacement deviation and 5mrad initial angle deviation with regard to the system rebuilt due to practical requirements.
Hennen, B.A.; Westerhof, E.; Nuij, Pwjm; M.R. de Baar,; Steinbuch, M.
2012-01-01
Suppression of tearing modes is essential for the operation of tokamaks. This paper describes the design and simulation of a tearing mode suppression feedback control system for the TEXTOR tokamak. The two main control tasks of this feedback control system are the radial alignment of electron cyclot
PERMANENCE OF A DISCRETE SINGLE SPECIES SYSTEM WITH DELAYS AND FEEDBACK CONTROL
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,a discrete single species system with time delays and feedback control is considered.Sufficient conditions which guarantee the permanence of all positive solutions to this discrete system are obtained.The results show that the feedback control is harmless for the permanence of the species.
A class of standard mechanical system with force feedback in the port-Hamiltonian framework
Muñoz-Arias, Mauricio; Scherpen, Jacquelien M A; Dirksz, Daniel A.
2012-01-01
In this paper we show force feedback and position control of a class of standard mechanical system in the port-Hamiltonian framework. Furthermore, we show how to derive an extended port-Hamiltonian system with structure preservation which can be used for force feedback purposes besides providing the
Stabilization of three-dimensional chaotic systems via single state feedback controller
Energy Technology Data Exchange (ETDEWEB)
Yu Wenguang, E-mail: smilewgyu@163.co [School of Statistics and Mathematics, Shandong Economic University, Jinan 250014 (China)
2010-03-29
This Letter investigates the stabilization of three-dimensional chaotic systems, and proposes a novel simple adaptive-feedback controller for chaos control. In comparison with previous methods, the present controller which only contains single state feedback, to our knowledge, is the simplest control scheme for controlling the three-dimensional chaotic system. The results are validated using numerical simulations.
Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon
2016-01-01
In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…
Multi-transmission-line-beam interactive system
Energy Technology Data Exchange (ETDEWEB)
Figotin, Alexander; Reyes, Guillermo [Department of Mathematics, University of California at Irvine, Irvine, California 92697-3875 (United States)
2013-11-15
We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube due to J. R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes.
Synthesis of dissipative output feedback controllers. Application to mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Johannessen, Erling Aarsand
1997-12-31
This thesis presents new results on the synthesis of linear controllers with passivity, or more general, dissipativity properties. These methods may be applied to obtain more accurate control over mechanical systems and in the control of chemical processes that involve dissipative subsystems. The thesis presents two different approaches for synthesis of dissipative controllers: (1) A method that exploits the Riccati equation solution to the state space formulation of the H{sub {infinity}} control problem is investigated, illustrated by synthesising a controller for damping of flexible modes in a beam. (2) A more general method for dissipative control synthesis is developed that retains the well-known techniques of loop-shaping and frequency weighting in H{sub {infinity}}. A method is also presented for controller synthesis directly from frequency response data. 82 refs., 34 figs., 3 tabs.
On a new time-delayed feedback control of chaotic systems
Energy Technology Data Exchange (ETDEWEB)
Tian Lixin [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)], E-mail: tianlx@ujs.edu.cn; Xu Jun; Sun Mei; Li Xiuming [Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China)
2009-01-30
In this paper, using the idea of the successive dislocation feedback method, a new time-delayed feedback control method called the successive dislocation time-delayed feedback control (SDTDFC) is designed. Firstly, the idea of SDTDFC is introduced. Then some analytic sufficient conditions of the chaos control from the SDTDFC approach are derived for stabilization. Finally, some established results are further clarified via a case study of the Lorenz system with the numerical simulations.
ITER neutral beam system US conceptual design
Energy Technology Data Exchange (ETDEWEB)
Purgalis, P.
1990-09-01
In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D{sup {minus}} source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus.
Time-delay feedback control in a delayed dynamical chaos system and its applications
Institute of Scientific and Technical Information of China (English)
Ye Zhi-Yong; Yang Guang; Deng Cun-Bing
2011-01-01
The feedback control of a delayed dynamical system, which also includes various chaotic systems with time delays, is investigated. On the basis of stability analysis of a nonautonomons system with delays, some simple yet less conservative criteria are obtained for feedback control in a delayed dynamical system. Finally, the theoretical result is applied to a typical class of chaotic Lorenz system and Chua circuit with delays. Numerical simulations are also given to verify the theoretical results.
Feedback threshold with guaranteed QoS in multiuser OFDM systems
Institute of Scientific and Technical Information of China (English)
YANG Rui-zhe; YUAN Chao-wei; TENG Ying-lei; ZHANG Yan-hua
2009-01-01
A threshold setting scheme is proposed based on the resource management and limited feedback theory in multiuser orthogonal frequency division multiplexing (OFDM) systems. In adaptive resource allocation, the factors denoting the quality of service (QoS) and fairness are both considered as the user weight. From the aspect of feedback outage probability, the proposed algorithm sets the threshold for each user related to its weight, which brings enough feedback to the user with greater weight. Analysis and simulation results show that, compared with the threshold ignoring weights, the proposed scheme has much lower feedback load while with better QoS.
Hardware and Initial Beam Commissioning of the LHC RF Systems
Linnecar, T; Arnaudon, L; Baudrenghien, P; Bohl, T; Brunner, O; Butterworth, A; Ciapala, Edmond; Dubouchet, F; Ferreira-Bento, J; Glenat, D; Hagmann, G; Höfle, Wolfgang; Julie, C; Killing, F; Kotzian, G; Landre, D; Louwerse, R; Maesen, P; Martinez-Yanez, P; Molendijk, J; Montesinos, E; Nicou, C; Noirjean, J; Papotti, G; Pashnin, A; Pechaud, G; Pradier, J; Rossi, V; Sanchez-Quesada, J; Schokker, M; Shaposhnikova, E; Sorokoletev, R; Stellfeld, D; Tückmantel, Joachim; Valuch, D; Wehrle, U; Weierud, F
2008-01-01
Hardware commissioning of the LHC RF Systems, the ACS Superconducting RF systems, ADT Transverse Dampers and APWL Wideband Longitudinal Monitors, started in late 2007 and was completed in time for the first LHC beams in 2008. The RF inter-machine synchroni-sation systems were in place and operational for the LHC synchronization tests in August 2008. The very first beams through IP4 were observed on the RF monitors and beam 2 was captured on 11th September. Measurements with beam on the damper systems were also pos-sible, preparing the way for closing the damper loop with beam. Major milestones during commissioning the ACS and ADT systems and results obtained during first capture tests are presented. Preparatory work for acceleration and multi-bunch operation is described as are the beam tests foreseen for 2009.
Laser Micro-beam Manipulation System for Cells
Institute of Scientific and Technical Information of China (English)
孟祥旺; 李岩; 张书练; 张志诚; 赵南明
2002-01-01
This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.
Husemann, B; Bennert, V N; Manieri, V; Woo, J -H; Kakkad, D
2015-01-01
Enormous observational effort has been made to constrain the energetics of AGN feedback by mapping the kinematics of the ionized gas on kpc scale with integral-field spectroscopy. Here, we investigate how the observed kinematics and inferred energetics are affected by beam smearing of a bright unresolved NLR due to seeing effects. We analysed optical IFU spectroscopy of a sample of twelve luminous unobscured QSOs (0.4
Application of Feedback Linearization Method in Airplane Automatic Landing Control System
Institute of Scientific and Technical Information of China (English)
Wang Xiaoyan; Feng Jiang; Feng Xiujuan; Wu Junqin
2004-01-01
Summarizes the I/O feedback linearization about MIMO system, and applies it to nonlinear control equation of airplane. And also designs the tracing control laws for airplane longitudinal automatic landing control system.
Output regulation problem for discrete-time linear time-delay systems by output feedback control
Institute of Scientific and Technical Information of China (English)
Yamin YAN; Jie HUANG
2016-01-01
In this paper, we study the output regulation problem of discrete linear time-delay systems by output feedback control. We have established some results parallel to those for the output regulation problem of continuous linear time-delay systems.
Development of a focused ion beam micromachining system
Energy Technology Data Exchange (ETDEWEB)
Pellerin, J.G.; Griffis, D.; Russell, P.E.
1988-12-01
Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.
Distributed User Selection in Network MIMO Systems with Limited Feedback
Elkhalil, Khalil
2015-09-06
We propose a distributed user selection strategy in a network MIMO setting with M base stations serving K users. Each base station is equipped with L antennas, where LM ≪ K. The conventional selection strategy is based on a well known technique called semi-orthogonal user selection when the zero-forcing beamforming (ZFBF) is adopted. Such technique, however, requires perfect channel state information at the transmitter (CSIT), which might not be available or need large feedback overhead. This paper proposes an alternative distributed user selection technique where each user sets a timer that is inversely proportional to his channel quality indicator (CQI), as a means to reduce the feedback overhead. The proposed strategy allows only the user with the highest CQI to respond with a feedback. Such technique, however, remains collision free only if the transmission time is shorter than the difference between the strongest user timer and the second strongest user timer. To overcome the situation of longer transmission times, the paper proposes another feedback strategy that is based on the theory of compressive sensing, where collision is allowed and all users encode their feedback information and send it back to the base-stations simultaneously. The paper shows that the problem can be formulated as a block sparse recovery problem which is agnostic on the transmission time, which makes it a good alternative to the timer approach when collision is dominant.
Real-time system for studies of the effects of acoustic feedback on animal vocalizations.
Directory of Open Access Journals (Sweden)
Mike eSkocik
2013-01-01
Full Text Available Studies of behavioral and neural responses to distorted auditory feedback can help shed light on the neural mechanisms of animal vocalizations. We describe an apparatus for generating real-time acoustic feedback. The system can very rapidly detect acoustic features in a song and output acoustic signals if the detected features match the desired acoustic template. The system uses spectrogram-based detection of acoustic elements. It is low-cost and can be programmed for a variety of behavioral experiments requiring acoustic feedback or neural stimulation. We use the system to study the effects of acoustic feedback on birds' vocalizations and demonstrate that such an acoustic feedback can cause both immediate and long-term changes to birds’ songs.
A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life
Sherblom, Stephen A.
2015-01-01
This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…
Market factors feedback system of the pilot program of the Energy Extension Service
Energy Technology Data Exchange (ETDEWEB)
None
1978-04-01
The market factors feedback system of the pilot program of the Energy Extension Service are described. The description contains the plans of the 10 pilot EES states and the DOE for operating the system between December 1977 and March 1979. Chapter one contains the planned scope of the market factors feedback system during the pilot program: the target audiences, program services, likely topics of market factors feedback, and energy decision makers. Chapter two presents how the market factors feedback system will operate over the pilot program period. Chapter three summarizes the roles and functions of DOE/EXT in supporting state EES market factors feedback operations and in evaluating the program. There are three appendices. Appendix A contains the market factors feedback plans of the pilot EES states. Appendix B describes how DOE/EXT will work with national-level energy decision makers on market factors feedback received from state EESs. Appendix C is the design for the formal evaluation of the market factors feedback component of the pilot EES program. (MCW)
Permanence of a Single Species System with Distributed Time Delay and Feedback Control
Directory of Open Access Journals (Sweden)
Yali Shen
2012-01-01
Full Text Available We study the permanence of a classofsingle species system with distributed time delay and feedback controls. General criteria on permanence are established in this paper. A very important fact is found in our results; that is, the feedback control is harmless to the permanence of species.
Arbitrarily low sensitivity (ALS) in linear distributed systems using pointwise linear feedback
Kelemen, Matei; Kennai, Yakar; Horowitz, Isaac
1990-01-01
The sensitivity problem is defined for feedback systems with plants described by linear partial differential operators having constant coefficients, in a bounded one-dimensional domain. there are also finitely many observation points and finitely many lumped feedback loops, and a finite number of di
Energy Technology Data Exchange (ETDEWEB)
Wang Jing [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: wjnotice@gmail.com; Gao Jinfeng [School of Electrical Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ma Xikui [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)
2007-10-01
This Letter presents a novel cross active backstepping design method for synchronization control of cross-strict feedback hyperchaotic system, in which the ordinary backstepping design is unavailable. The proposed control method, combining backstepping design and active control approach, extends the application of backstepping technique in chaos control. Based on this method, different combinations of controllers can be designed to meet the needs of different applications. The proposed method is applied to achieve chaos synchronization of two identical cross-strict feedback hyperchaotic systems. Also it is used to implement synchronization between cross-strict feedback hyperchaotic system and Roessler hyperchaotic system. Numerical examples illustrate the validity of the control method.
Multi-electron beam system for high resolution electron beam induced deposition
Van Bruggen, M.J.
2008-01-01
The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structure
Effect of biased feedback on motor imagery learning in BCI-teleoperation system
Directory of Open Access Journals (Sweden)
Maryam eAlimardani
2014-04-01
Full Text Available Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users’ BC performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects’ performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects’ BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects’ online performance, evaluation of brain activity patterns revealed that subjects’ self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects’ motor imagery skills.
Tranceiver Design using Linear Precoding in a Multiuser MIMO System with Limited Feedback
Islam, Muhammad Nazmul
2010-01-01
We investigate quantization and feedback of channel state information in a multiuser (MU) multiple input multiple output (MIMO) system. Each user may receive multiple data streams. Our design minimizes the sum mean squared error (SMSE) while accounting for the imperfections in channel state information (CSI) at the transmitter. This paper makes three contributions: first, we provide an end-to-end SMSE transceiver design that incorporates receiver combining, feedback policy and transmit precoder design with channel uncertainty. This enables the proposed transceiver to outperform the previously derived limited feedback MU linear transceivers. Second, we remove dimensionality constraints on the MIMO system, for the scenario with multiple data streams per user, using a combination of maximum expected signal combining (MESC) and minimum MSE receiver. This makes the feedback of each user independent of the others and the resulting feedback overhead scales linearly with the number of data streams instead of the numb...
A Selfish Linear Precoding Strategy for Downlink Two-User MIMO Systems Using Limited Rate Feedback
Directory of Open Access Journals (Sweden)
Lei Lv
2013-07-01
Full Text Available This letter proposes a limited feedback-based selfish linear precoding (SLP strategy for downlink two-user MIMO systems. In the proposed strategy, each user selfishly chooses the other user’s precoding matrix which minimizes its capacity loss. The proposed SLP strategy has two advantages comparing with traditional linear precoding strategies. First, SLP improves the system capacity by resisting interference more effectively. Second, the computing complexity of transmitter is reduced since the base station needs not to calculate precoding matrix. Simulation results verify the effectiveness of SLP on system capacity improvement comparing to limited feedback block diagonalization (LFBD algorithm, especially when feedback bits are insufficient.
Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control
Energy Technology Data Exchange (ETDEWEB)
Lei Youming [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)]. E-mail: leiyouming@nwpu.edu.cn; Xu Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Shen Jianwei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)
2007-01-15
In this paper, we apply the simple adaptive-feedback control scheme to synchronize a class of chaotic non-autonomous systems. Based on the invariance principle of differential equations, some generic sufficient conditions for global asymptotic synchronization are obtained. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to completely synchronize two identical systems and simple to implement in practice. As illustrative examples, synchronization of two parametrically excited chaotic pendulums and that of two 4D new systems are considered here. Numerical simulations show the proposed method is effective and robust against the effect of noise.
ℋ∞ constant gain state feedback stabilization of stochastic hybrid systems with Wiener process
Directory of Open Access Journals (Sweden)
E. K. Boukas
2004-01-01
Full Text Available This paper considers the stabilization problem of the class of continuous-time linear stochastic hybrid systems with Wiener process. The ℋ∞ state feedback stabilization problem is treated. A state feedback controller with constant gain that does not require access to the system mode is designed. LMI-based conditions are developed to design the state feedback controller with constant gain that stochastically stabilizes the studied class of systems and, at the same time, achieve the disturbance rejection of a desired level. The minimum disturbance rejection is also determined. Numerical examples are given to show the usefulness of the proposed results.
Laser Beam Duct Pressure Controller System.
the axial flow of a conditioning gas within the laser beam duct, by matching the time rate of change of the pressure of the flowing conditioning gas...to the time rate of change of the pressure in the cavity of an operably associated laser beam turret.
Kramer, Thomas
2011-01-01
The LHC accelerates proton beams to a momentum of up to 7 TeV/c. At this energy level and with nominal beam intensity the stored energy of 360 MJ per beam is sufficient to melt 500 kg of copper. In addition up to 10 GJ are stored within the LHC magnet system at top energy. It is obvious that such a machine needs well designed safety and protection systems. The LHC Beam Dump System (LBDS) is such a system and one of the most critical once concerning machine protection and safe operation. It is used to dispose of high intensity beams between 450 GeV and 7 TeV and is thus designed to fast extract beam in a loss free way and to transfer it to an external absorber. For each ring systems of 15 horizontal fast kicker magnets (MKD), 15 vertically deflecting magnetic septa (MSD) and 10 diluter kicker magnets (MKB) are installed. This thesis is concerned with the analysis of the LBDS performance under normal operating parameters as well as under abnormal conditions like in the event of asynchronous beam abort or missin...
Feedback control of water supply in an NFT growing system
Gieling, Th.H.; Janssen, H.J.J.; Vries, de H.C.; Loef, P.
2001-01-01
The paper explores a concept of irrigation control, where the supply of nutrient solution is controlled without the use of predictive uptake models but rather by the use of a direct feedback of a drain flow measurement. This concept proves to be a viable approach. Results are presented, showing the
Time-Delay Systems with Band-Limited Feedback
2005-08-01
used as generators of chaos in applications such as communication, chaos control , and ranging. As an example, such devices are studied as a signal...tions [Lukin, 1997; Myneni, 2001]. Furthermore, time delayed feedback is used in the chaos control scheme known as time-delay autosynchronization
Ultrashort pulse laser microsurgery system with plasma luminescence feedback control
Energy Technology Data Exchange (ETDEWEB)
Kim, B.M.; Feit, M.D.; Rubenchik, A.M.; Gold, D.M.; Darrow, C.B.; Da Silva, L.B.
1997-11-10
Plasma luminescence spectroscopy was used for precise ablation of bone tissue during ultrashort pulse laser (USPL) micro-spinal surgery. Strong contrast of the luminescence spectra between bone marrow and spinal cord provided the real time feedback control so that only bone tissue can be selectively ablated while preserving the spinal cord.
Affective feedback in a tutoring system for procedural tasks
Heylen, D.K.J.; Vissers, M.; Akker, op den H.J.A.; Nijholt, A.; André, E.; Dybkjaer, L.; Minker, W.; Heisterkamp, P.
2004-01-01
We discuss the affective aspects of tutoring dialogues in an ITS -called INES- that helps students to practice nursing tasks using a haptic device and a virtual environment. Special attention is paid to affective control in the tutoring process by means of selecting the appropriate feedback, taking
Judges in judo conform to the referee because of the reactive feedback system.
Boen, Filip; Ginis, Pieter; Smits, Tim
2013-01-01
This experiment tested whether the conformism observed among panels of judges in aesthetic sports also occurs among judges in judo. Similar to aesthetic sports, judo judging relies upon a form of open feedback. However, in judo, this system is reactive (i.e. two judges have to publicly 'correct' the score given by the higher-status referee), whereas it is active in aesthetic sports (i.e. judges with equal status report their score simultaneously and can use the feedback about the scores of their colleagues for evaluating later performances). In order to test whether such reactive open-feedback system leads to conformism among judges in judo, we designed an experiment in which this feedback was manipulated. Participants were 20 certified Flemish judges, who had to score two sets of 11 ambiguous video sequences that are used during formation and training of judo judges: one set with feedback about the referee's score and one set without feedback. The results revealed that when participants knew the referee's score, their scores were significantly more in line with this score than when they did not know this score. More specifically, for both sets of sequences at least 10% less deviations from the referee were observed when participants were given feedback about the score of the referee. These results suggest that preventable conformism can occur in typical judo judging, that is with reactive open feedback.
Interpolating sliding mode observer for a ball and beam system
Luai Hammadih, Mohammad; Hosani, Khalifa Al; Boiko, Igor
2016-09-01
A principle of interpolating sliding mode observer is introduced in this paper. The observer incorporates multiple linear observers through interpolation of multiple estimates, which is treated as a type of adaptation. The principle is then applied to the ball and beam system for observation of the slope of the beam from the measurement of the ball position. The linearised model of the ball and beam system using multiple linearisation points is developed. The observer dynamics implemented in Matlab/Simulink Real Time Workshop environment. Experiments conducted on the ball and beam experimental setup demonstrate excellent performance of the designed novel interpolating (adaptive) observer.
Fast ion beam-plasma interaction system.
Breun, R A; Ferron, J R
1979-07-01
A device has been constructed for the study of the interaction between a fast ion beam and a target plasma of separately controllable parameters. The beam of either hydrogen or helium ions has an energy of 1-4 keV and a total current of 0.5-2 A. The beam energy and beam current can be varied separately. The ion source plasma is created by a pulsed (0.2-10-ms pulse length) discharge in neutral gas at up to 3 x 10(-3) Torr. The neutrals are pulsed into the source chamber, allowing the neutral pressure in the target region to remain less than 5 x 10(-5) Torr at a 2-Hz repetition rate. The creation of the source plasma can be described by a simple set of equations which predict optimum source design parameters. The target plasma is also produced by a pulsed discharge. Between the target and source chambers the beam is neutralized by electrons drawn from a set of hot filaments. Currently under study is an unstable wave in a field-free plasma excited when the beam velocity is nearly equal to the target electron thermal velocity (v(beam) approximately 3.5 x 10(7) cm/s, Te = 0.5 eV).
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Optimization of beam transformation system for laser-diode bars.
Yu, Junhong; Guo, Linhui; Wu, Hualing; Wang, Zhao; Gao, Songxin; Wu, Deyong
2016-08-22
An optimized beam transformation system (BTS) is proposed to improve the beam quality of laser-diode bars. Through this optimized design, the deterioration of beam quality after the BTS can be significantly reduced. Both the simulation and experimental results demonstrate that the optimized system enables the beam quality of a mini-bar (9 emitters) approximately equal to 5.0 mm × 3.6 mrad in the fast-axis and slow-axis. After beam shaping by the optimized BTS, the laser-diode beam can be coupled into a 100 μm core, 0.15 numerical aperture (NA) fiber with an output power of over 100 W and an electric-optical efficiency of 46.8%.
Collected abstracts on particle beam diagnostic systems
Energy Technology Data Exchange (ETDEWEB)
Hickok, R.L.
1979-01-01
This report contains a compilation of abstracts on work related to particle beam diagnostics for high temperature plasmas. The abstracts were gathered in early 1978 and represent the status of the various programs as of that date. It is not suggested that this is a comprehensive list of all the work that is going on in the development of particle beam diagnostics, but it does provide a representative view of the work in this field. For example, no abstracts were received from the U.S.S.R. even though they have considerable activity in particle beam diagnostics.
H∞ State Feedback Delay-dependent Control for Discrete Systems with Multi-time-delay
Institute of Scientific and Technical Information of China (English)
Bai-Da Qu
2005-01-01
In this paper,H∞ state feedback control with delay information for discrete systems with multi-time-delay is discussed. Making use of linear matrix inequality (LMI) approach, a time-delay-dependent criterion for a discrete system with multi-time-delay to satisfy H∞ performance indices is induced, and then a strategy for H∞ state feedback control with delay values for plant with multi-time-delay is obtained. By solving corresponding LMI, a delay-dependent state feedback controller satisfying H∞ performance indices is designed. Finally, a simulation example demonstrates the validity of the proposed approach.
Feedback stabilization of the Cahn-Hilliard type system for phase separation
Barbu, Viorel; Colli, Pierluigi; Gilardi, Gianni; Marinoschi, Gabriela
2017-02-01
This article is concerned with the internal feedback stabilization of the phase field system of Cahn-Hilliard type, modeling the phase separation in a binary mixture. Under suitable assumptions on an arbitrarily fixed stationary solution, we construct via spectral separation arguments a feedback controller having its support in an arbitrary open subset of the space domain, such that the closed loop nonlinear system exponentially reaches the prescribed stationary solution. This feedback controller has a finite dimensional structure in the state space of solutions. In particular, every constant stationary solution is admissible.
Directory of Open Access Journals (Sweden)
Antfolk Christian
2010-09-01
Full Text Available Abstract Background The users of today's commercial prosthetic hands are not given any conscious sensory feedback. To overcome this deficiency in prosthetic hands we have recently proposed a sensory feedback system utilising a "tactile display" on the remaining amputation residual limb acting as man-machine interface. Our system uses the recorded pressure in a hand prosthesis and feeds back this pressure onto the forearm skin. Here we describe the design and technical solution of the sensory feedback system aimed at hand prostheses for trans-radial/humeral amputees. Critical parameters for the sensory feedback system were investigated. Methods A sensory feedback system consisting of five actuators, control electronics and a test application running on a computer has been designed and built. Firstly, we investigate which force levels were applied to the forearm skin of the user while operating the sensory feedback system. Secondly, we study if the proposed system could be used together with a myoelectric control system. The displacement of the skin caused by the sensory feedback system would generate artefacts in the recorded myoelectric signals. Accordingly, EMG recordings were performed and an analysis of the these are included. The sensory feedback system was also preliminarily evaluated in a laboratory setting on two healthy non-amputated test subjects with a computer generating the stimuli, with regards to spatial resolution and force discrimination. Results We showed that the sensory feedback system generated approximately proportional force to the angle of control. The system can be used together with a myoelectric system as the artefacts, generated by the actuators, were easily removed using a simple filter. Furthermore, the application of the system on two test subjects showed that they were able to discriminate tactile sensation with regards to spatial resolution and level of force. Conclusions The results of these initial experiments
All-Optical WDM Buffer System Realized by NOLM and Feedback Loop Structure
Institute of Scientific and Technical Information of China (English)
Seungwoo Yi; Kyeong-Mo Yoon; Yong-Gi Lee; Jinseob Eom
2003-01-01
We propose an all-optical WDM buffer for optical packet switching system, which consists of NOLM and feedback loop. The proposed structure provides more than 40 turn buffering and nice output of buffered data when selected by control signal.
Feedback control in a general almost periodic discrete system of plankton allelopathy.
Yin, Wenshuang
2014-01-01
We study the properties of almost periodic solutions for a general discrete system of plankton allelopathy with feedback controls and establish a theorem on the uniformly asymptotic stability of almost periodic solutions.
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
In this paper, we consider the general nonautonomous single-species Kolmogorov type system with delay and feedback controls. Sufficient conditions for the permanence of species are established. Our results generalize some known results.
Performance Studies of the SPS Beam Dump System for HL-LHC Beams
Velotti, FM; Bracco, C; Carlier, E; Cerutti, F; Cornelis, K; Ducimetiere, L; Goddard, B; Kain, V; Losito, R; Maglioni, C; Meddahi, M; Pasdeloup, F; Senaj, V; Steele, GE
2014-01-01
The Super Proton Synchrotron (SPS) beam dump system is a concern for the planned High Luminosity LHC (HL-LHC) operation. The system has initially been designed for very different beam parameters compared to those which will reign after the completion of the LHC injectors upgrade, when the SPS will have to operate with unprecedented beam brightness. This paper describes the relevant operational and failure modes of the dump system together with the expected beam loading levels. Tracking studies are presented, considering both normal operation and failure scenarios, with particular attention to the location and level of proton losses. First FLUKA investigations and thermo-mechanical analysis of the high-energy absorber block are described.
Data acquisition system for KOMAC beam monitoring using EPICS middleware
Song, Young-Gi
2015-10-01
The beam diagnostics instrument used to measure the beam properties is one of the important devices for the 100-MeV proton linear accelerator of the KOrea Multi-purpose Accelerator Complex (KOMAC). A data acquisition system (DAQ) is required to collect the output beam signals conditioned in the analog front-end circuitry of a beam loss monitor (BLM) and a beam position monitor (BPM). The electrical beam signal must be digitized, and the sampling has to be synchronized to a global timing system that produces a pulse signal for the pulsed beam operation. The digitized data must be accessible by the experimental physics and industrial control system (EPICS)-based control system, which manages all accelerator control. An input output controller (IOC), which runs Linux on a central process unit (CPU) module with a peripheral component interconnect (PCI) express-based Analog-to-digital converter (ADC) card, has been adopted to satisfy the requirements. An associated Linux driver and EPICS device support module have also been developed. The IOC meets the requirements, and the development and maintenance of software for the IOC is very efficient. In this paper, the details of the DAQ system for the BLM and the BPM with the introduction of the KOMAC beam-diagnostics devices, along with the performance, are described.
Monitoring system experiments on beam loss at SSRF injector
Cai, Jun; Xia, XiaoBin; Xu, XunJiang; Liu, Xin; Xu, JiaQiang; Wang, GuangHong; Zeng, Ming
2011-12-01
Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.
Monitoring system experiments on beam loss at SSRF injector
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Experiments on beam loss by using beam loss monitoring (BLM) system were carried out at Shanghai Synchrotron Radiation Facility (SSRF) injector. This system used highly sensitive and current-integrated Si-photodiode detectors and an Ethernet data acquisition (DAQ) system. The experimental results demonstrate that the Si-photodiode detectors are a useful tool that provides dynamic information on beam loss and investigates problems of machine operation. It also shows that the Si-photodiode BLM system is suitable for pulse-radiation of high-energy accelerators.
Effect of crosstalk on combined beam characteristics in spectral beam combining systems
Yang, Lei; Wu, Zhen; Zhong, Zheqiang; Zhang, Bin
2017-02-01
In a spectral beam combining (SBC) system, crosstalk always happens because stray lights are inevitable due to fabrication errors of optical components and 'smile' effect of laser arrays. Two kinds of crosstalk, including the crosstalk generated between two adjacent emitters of the laser array (ad-crosstalk) and that generated between two non-adjacent emitters (non-ad-crosstalk), have been analyzed. The equivalent light of the crosstalk model has been proposed, and the propagation model of the SBC system with the crosstalk has been built up. On this basis, influences of above two kinds of the crosstalk on the combined beam have been numerically simulated and discussed in detail. The results show that the wavelength composition of the combined beam varies evidently owing to the existence of the crosstalk. With the increasing of the crosstalk intensity, the beam quality of the combined beam degrades, and the side lobes of intensity distribution of the combined beam become more and more obvious. Furthermore, the influence of the non-ad-crosstalk on the beam quality is more serious than that of the ad-crosstalk.
Raul, P R; Dwivedula, R V; Pagilla, P R
2016-07-01
The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed.
The Superconducting Magnets of the ILC Beam Delivery System
Energy Technology Data Exchange (ETDEWEB)
Parker, B.; Anerella, M.; Escallier, J.; He, P.; Jain, A.; Marone, A.; /Brookhaven; Nosochkov, Y.; Seryi, Andrei; /SLAC
2007-09-28
The ILC Beam Delivery System (BDS) uses a variety of superconducting magnets to maximize luminosity and minimize background. Compact final focus quadrupoles with multifunction correction coils focus incoming beams to few nanometer spot sizes while focusing outgoing disrupted beams into a separate extraction beam line. Anti-solenoids mitigate effects from overlapping focusing and the detector solenoid field. Far from the interaction point (IP) strong octupoles help minimize IP backgrounds. A low-field but very large aperture dipole is integrated with the detector solenoid to reduce backgrounds from beamstrahlung pairs generated at the IP. Physics requirements and magnetic design solutions for the BDS superconducting magnets are reviewed in this paper.
Status of ITER neutral beam cell remote handling system
Sykes, N; Choi, C-H; Crofts, O; Crowe, R; Damiani, C; Delavalle, S; Meredith, L; Mindham, T; Raimbach, J; Tesini, A; Van Uffelen, M
2013-01-01
The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.
Status of ITER neutral beam cell remote handling system
Energy Technology Data Exchange (ETDEWEB)
Sykes, N., E-mail: nick.sykes@ccfe.ac.uk [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Belcher, C. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Choi, C.-H. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Crofts, O. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Crowe, R. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Damiani, C. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain); Delavalle, S.; Meredith, L. [Oxford Technologies Ltd, Abingdon OX14 1RJ (United Kingdom); Mindham, T.; Raimbach, J. [CCFE. Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Tesini, A. [ITER Organisation, CS90 046, 13067 St. Paul les Durance Cedex (France); Van Uffelen, M. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral-B3, E-08019 Barcelona (Spain)
2013-10-15
The ITER neutral beam cell will contain up to three heating neutral beams and one diagnostic neutral beam, and four upper ports. Though manual maintenance work is envisaged within the cell, when containment is breached, or the radiological protection is removed the maintenance must be conducted remotely. This maintenance constitutes the removal and replacement of line replaceable units, and their transport to and from a cask docked to the cell. A design of the remote handling system has been prepared to concept level which this paper describes including the development of a beam line transporter, beam source remote handling equipment, upper port remote handling equipment and equipment for the maintenance of the neutral shield. This equipment has been developed complete the planned maintenance tasks for the components of the neutral beam cell and to have inherent flexibility to enable as yet unforeseen tasks and recovery operations to be performed.
Computers and the design of ion beam optical systems
White, Nicholas R.
Advances in microcomputers have made it possible to maintain a library of advanced ion optical programs which can be used on inexpensive computer hardware, which are suitable for the design of a variety of ion beam systems including ion implanters, giving excellent results. This paper describes in outline the steps typically involved in designing a complete ion beam system for materials modification applications. Two computer programs are described which, although based largely on algorithms which have been in use for many years, make possible detailed beam optical calculations using microcomputers, specifically the IBM PC. OPTICIAN is an interactive first-order program for tracing beam envelopes through complex optical systems. SORCERY is a versatile program for solving Laplace's and Poisson's equations by finite difference methods using successive over-relaxation. Ion and electron trajectories can be traced through these potential fields, and plots of beam emittance obtained.
Wave Propagation in an Ion Beam-Plasma System
DEFF Research Database (Denmark)
Jensen, T. D.; Michelsen, Poul; Juul Rasmussen, Jens
1979-01-01
The spatial evolution of a velocity- or density-modulated ion beam is calculated for stable and unstable ion beam plasma systems, using the linearized Vlasov-Poisson equations. The propagation properties are found to be strongly dependent on the form of modulation. In the case of velocity...
Pfordresher, Peter Q; Mantell, James T
2012-01-01
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems.
Yang, Zhan; Wang, Yaqiong; Yang, Bin; Li, Guanghui; Chen, Tao; Nakajima, Masahiro; Sun, Lining; Fukuda, Toshio
2016-01-01
Carbon nanotubes (CNT) have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs) and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM). Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ) individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis). Manipulators are actuated by picomotors with better than 30 nm linear resolution and <1 micro-rad rotary resolution. Four vertically installed AFM cantilevers (the axis of the cantilever tip is vertical to the axis of electronic beam of SEM) served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H) notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system. PMID:27649180
Yang, Zhan; Wang, Yaqiong; Yang, Bin; Li, Guanghui; Chen, Tao; Nakajima, Masahiro; Sun, Lining; Fukuda, Toshio
2016-09-14
Carbon nanotubes (CNT) have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs) and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM). Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ) individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis). Manipulators are actuated by picomotors with better than 30 nm linear resolution and <1 micro-rad rotary resolution. Four vertically installed AFM cantilevers (the axis of the cantilever tip is vertical to the axis of electronic beam of SEM) served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H) notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system.
Directory of Open Access Journals (Sweden)
Zhan Yang
2016-09-01
Full Text Available Carbon nanotubes (CNT have been developed in recent decades for nanodevices such as nanoradios, nanogenerators, carbon nanotube field effect transistors (CNTFETs and so on, indicating that the application of CNTs for nanoscale electronics may play a key role in the development of nanotechnology. Nanorobotics manipulation systems are a promising method for nanodevice construction and assembly. For the purpose of constructing three-dimensional CNTFETs, a nanorobotics manipulation system with 16 DOFs was developed for nanomanipulation of nanometer-scale objects inside the specimen chamber of a scanning electron microscope (SEM. Nanorobotics manipulators are assembled into four units with four DOFs (X-Y-Z-θ individually. The rotational one is actuated by a picomotor. That means a manipulator has four DOFs including three linear motions in the X, Y, Z directions and a 360-degree rotational one (X-Y-Z-θ stage, θ is along the direction rotating with X or Y axis. Manipulators are actuated by picomotors with better than 30 nm linear resolution and <1 micro-rad rotary resolution. Four vertically installed AFM cantilevers (the axis of the cantilever tip is vertical to the axis of electronic beam of SEM served as the end-effectors to facilitate the real-time observation of the operations. A series of kinematic derivations of these four manipulators based on the Denavit-Hartenberg (D-H notation were established. The common working space of the end-effectors is 2.78 mm by 4.39 mm by 6 mm. The manipulation strategy and vision feedback control for multi-manipulators operating inside the SEM chamber were been discussed. Finally, application of the designed nanorobotics manipulation system by successfully testing of the pickup-and-place manipulation of an individual CNT onto four probes was described. The experimental results have shown that carbon nanotubes can be successfully picked up with this nanorobotics manipulation system.
Multi-electron beam system for high resolution electron beam induced deposition
Van Bruggen, M.J.
2008-01-01
The development of a multi-electron beam system is described which is dedicated for electron beam induced deposition (EBID) with sub-10 nm resolution. EBID is a promising mask-less nanolithography technique which has the potential to become a viable technique for the fabrication of 20-2 nm structures after 2013, as described by the International Technology Roadmap for Semiconductors (ITRS), or can be used for rapid prototyping in research applications. The key point is to combine the throughp...
Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System
Jorgenson, Philip C. E.; Loh, Ching Y.
2004-01-01
The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.
Linear Feedback Analysis of Cardiovascular System using Seismocardiogram
Directory of Open Access Journals (Sweden)
Marcel Jiřina
2005-01-01
Full Text Available The paper deals with an analysis of relationship between heart rate described by a sequence of cardiac interbeat intervals and mechanical activity of heart represented by a sequence of systolic forces. Both the quantities were determined from seismocardiograms recorded from healthy subjects under two different experimental conditions. The method of the linear feedback baroreflex approach originally developed in [1], [2] and [3] was applied for the analysis. Different character of obtained results in comparison to those described in [1], [2] or [3], is explained by differences between frequency properties of the recorded sequences of the systolic forces and values of systolic blood pressure.
Energy Technology Data Exchange (ETDEWEB)
Fox, John
2012-07-10
A 4.2 GS/sec. beam excitation system with accelerator synchronization and power stages is described. The system is capable of playing unique samples (32 samples/bunch) for 15,000 turns on selected bunch(es) in the SPS in syn- chronism with the injection and acceleration cycle. The purpose of the system is to excite internal modes of single-bunch vertical motion, and study the bunch dynamics in the presence of developing Electron cloud or TMCI effects. The system includes a synchronized master oscillator, SPS timing functions, an FPGA based arbitrary waveform generator, 4.2 GS/sec. D/A system and four 80W 20-1000 MHz amplifiers driving a tapered stripline pickup/kicker. A software GUI allows specification of various modulation signals, selection of bunches and turns to excite, while a remote control interface allows simple control/monitoring of the RF power stages located in the tunnel. The successful use of this system for SPS MD measurements in 2011 is a vital proof-of-principle for wideband feedback using similar functions to correct the beam motion.
Beam Position and Phase Monitor - Wire Mapping System
Energy Technology Data Exchange (ETDEWEB)
Watkins, Heath A [Los Alamos National Laboratory; Shurter, Robert B. [Los Alamos National Laboratory; Gilpatrick, John D. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory
2012-04-10
The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.
Lithium beam diagnostic system on the COMPASS tokamak
Energy Technology Data Exchange (ETDEWEB)
Anda, G.; Bencze, A. [Wigner – RCP, HAS, Budapest (Hungary); Berta, M., E-mail: bertam@sze.hu [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Hacek, P. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)
2016-10-15
Highlights: • Li-beam diagnostic system on the COMPASS tokamak is an improved and compact system to allow testing of Atomic Beam Probe. • The possibility to measure background corrected density profiles on the few microseconds time scale. • First Li-beam diagnostic system with recirculating neutralizer. • The system includes the redesigned ion source with longer lifetime. - Abstract: An improved lithium beam based beam emission spectroscopy system – installed on COMPASS tokamak – is described. The beam energy enhanced up to 120 keV for Atomic Beam Probe measurement. The size of the ion source is doubled, using a newly developed thermionic heater instead of the conventionally used heating (tungsten or molybdenum) filament. The neutralizer is also improved. It produces the same sodium vapor in a cell but minimize the loss condensing the vapor on a cold surface which is led back (in fluid state) into the sodium oven. This way we call it recirculating neutralizer. The observation system consists of a CCD camera and an avalanche photodiode array.
Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems With Time Delay.
Zhao, Xudong; Yang, Haijiao; Karimi, Hamid Reza; Zhu, Yanzheng
2016-06-01
In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main contributions of this paper lie in that the systems under consideration are more general, and an effective design procedure of output-feedback controller is developed for the considered systems, which is more applicable in practice. Simulation results demonstrate the efficiency of the proposed algorithm.
A practical nonlinear controller for levitation system with magnetic flux feedback
Institute of Scientific and Technical Information of China (English)
李金辉; 李杰
2016-01-01
This work proposes a practical nonlinear controller for the MIMO levitation system. Firstly, the mathematical model of levitation modules is developed and the advantages of the control scheme with magnetic flux feedback are analyzed when compared with the current feedback. Then, a backstepping controller with magnetic flux feedback based on the mathematical model of levitation module is developed. To obtain magnetic flux signals for full-size maglev system, a physical method with induction coils installed to winding of the electromagnet is developed. Furthermore, to avoid its hardware addition, a novel conception of virtual magnetic flux feedback is proposed. To demonstrate the feasibility of the proposed controller, the nonlinear dynamic model of full-size maglev train with quintessential details is developed. Based on the nonlinear model, the numerical comparisons and related experimental validations are carried out. Finally, results illustrating closed-loop performance are provided.
Delayed feedback control of unstable steady states in fractional-order chaotic systems
Gjurchinovski, Aleksandar; Urumov, Viktor
2010-01-01
We study the possibility to stabilize unstable steady states in chaotic fractional-order dynamical systems by the time-delayed feedback method with both constant and time-varying delays. By performing a linear stability analysis in the constant delay case, we establish the parameter ranges for successful stabilization of unstable equilibria in the plane parametrizad by the feedback gain and the time delay. An insight into the control mechanism is gained by analyzing the characteristic equation of the controlled system, showing that the control scheme fails to control unstable equilibria having an odd number of positive real eigenvalues. It is shown numerically that delayed feedback control with a variable time-delay significantly enlarges the stability region of the steady states in comparison to the classical time-delayed feedback scheme with a constant delay.
Energy Technology Data Exchange (ETDEWEB)
Ezura, Eizi; Yoshimoto, Shin-ichi; Akai, Kazunori [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
This paper describes the present status of the RF feedback development for the KEK B-Factory (KEKB). A preliminary experiment concerning the RF feedback using a parallel comb-filter was performed through a choke-mode cavity and a klystron. The RF feedback has been tested using the beam of the TRISTAN Main Ring, and has proved to be effective in damping the beam instability. (author)
Adaptive output feedback control of a class of uncertain nonlinear systems with unknown time delays
Guan, Wei
2012-04-01
This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.
Beam Current Measurement and Adjustment System on AMS
Institute of Scientific and Technical Information of China (English)
WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan
2003-01-01
The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.
Frend, Chauncey; Boyles, Michael
2015-03-01
This paper describes an environmental feedback device (EFD) control system aimed at simplifying the VR development cycle. Programmable Immersive Peripheral Environmental System (PIPES) affords VR developers a custom approach to programming and controlling EFD behaviors while relaxing the required knowledge and expertise of electronic systems. PIPES has been implemented for the Unity engine and features EFD control using the Arduino integrated development environment. PIPES was installed and tested on two VR systems, a large format CAVE system and an Oculus Rift HMD system. A photocell based end-to-end latency experiment was conducted to measure latency within the system. This work extends previously unpublished prototypes of a similar design. Development and experiments described in this paper are part of the VR community goal to understand and apply environment effects to VEs that ultimately add to users' perceived presence.
Li, Zhifu; Hu, Yueming; Li, Di
2016-08-01
For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.
Institute of Scientific and Technical Information of China (English)
Pengnian CHEN; Huashu QIN; Shengwei MEI
2005-01-01
This paper deals with the problems of bifurcation suppression and bifurcation suppression with stability of nonlinear systems. Necessary conditions and sufficient conditions for bifurcation suppression via dynamic output feedback are presented;Sufficient conditions for bifurcation suppression with stability via dynamic output feedback are obtained. As an application, a dynamic compensator, which guarantees that the bifurcation point of rotating stall in axial flow compressors is stably suppressed, is constructed.
Capture and release of a conditional state of a cavity QED system by quantum feedback.
Smith, W P; Reiner, J E; Orozco, L A; Kuhr, S; Wiseman, H M
2002-09-23
Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return.
Poisoned Feedback: The Impact of Malicious Users in Closed-Loop Multiuser MIMO Systems
Mukherjee, Amitav
2010-01-01
Accurate channel state information (CSI) at the transmitter is critical for maximizing spectral efficiency on the downlink of multi-antenna networks. In this work we analyze a novel form of physical layer attacks on such closed-loop wireless networks. Specifically, this paper considers the impact of deliberately inaccurate feedback by malicious users in a multiuser multicast system. Numerical results demonstrate the significant degradation in performance of closed-loop transmission schemes due to intentional feedback of false CSI by adversarial users.
Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Schaphoff, Sibyll; Sitch, Stephen
2004-11-01
Biological and physical processes in the Arctic system operate at various temporal and spatial scales to impact large-scale feedbacks and interactions with the earth system. There are four main potential feedback mechanisms between the impacts of climate change on the Arctic and the global climate system: albedo, greenhouse gas emissions or uptake by ecosystems, greenhouse gas emissions from methane hydrates, and increased freshwater fluxes that could affect the thermohaline circulation. All these feedbacks are controlled to some extent by changes in ecosystem distribution and character and particularly by large-scale movement of vegetation zones. Indications from a few, full annual measurements of CO2 fluxes are that currently the source areas exceed sink areas in geographical distribution. The little available information on CH4 sources indicates that emissions at the landscape level are of great importance for the total greenhouse balance of the circumpolar North. Energy and water balances of Arctic landscapes are also important feedback mechanisms in a changing climate. Increasing density and spatial expansion of vegetation will cause a lowering of the albedo and more energy to be absorbed on the ground. This effect is likely to exceed the negative feedback of increased C sequestration in greater primary productivity resulting from the displacements of areas of polar desert by tundra, and areas of tundra by forest. The degradation of permafrost has complex consequences for trace gas dynamics. In areas of discontinuous permafrost, warming, will lead to a complete loss of the permafrost. Depending on local hydrological conditions this may in turn lead to a wetting or drying of the environment with subsequent implications for greenhouse gas fluxes. Overall, the complex interactions between processes contributing to feedbacks, variability over time and space in these processes, and insufficient data have generated considerable uncertainties in estimating the net
Adaptive optimisation of a generalised phase contrast beam shaping system
Kenny, F.; Choi, F. S.; Glückstad, J.; Booth, M. J.
2015-05-01
The generalised phase contrast (GPC) method provides versatile and efficient light shaping for a range of applications. We have implemented a generalised phase contrast system that used two passes on a single spatial light modulator (SLM). Both the pupil phase distribution and the phase contrast filter were generated by the SLM. This provided extra flexibility and control over the parameters of the system including the phase step magnitude, shape, radius and position of the filter. A feedback method for the on-line optimisation of these properties was also developed. Using feedback from images of the generated light field, it was possible to dynamically adjust the phase filter parameters to provide optimum contrast.
Variable-delay feedback control of unstable steady states in retarded time-delayed systems
Gjurchinovski, Aleksandar; 10.1103/PhysRevE.81.016209
2010-01-01
We study the stability of unstable steady states in scalar retarded time-delayed systems subjected to a variable-delay feedback control. The important aspect of such a control problem is that time-delayed systems are already infinite-dimensional before the delayed feedback control is turned on. When the frequency of the modulation is large compared to the system's dynamics, the analytic approach consists of relating the stability properties of the resulting variable-delay system with those of an analogous distributed delay system. Otherwise, the stability domains are obtained by a numerical integration of the linearized variable-delay system. The analysis shows that the control domains are significantly larger than those in the usual time-delayed feedback control, and that the complexity of the domain structure depends on the form and the frequency of the delay modulation.
LHC Beam Loss Monitoring System Verification Applications
Dehning, B; Zamantzas, C; Jackson, S
2011-01-01
The LHC Beam Loss Monitoring (BLM) system is one of the most complex instrumentation systems deployed in the LHC. In addition to protecting the collider, the system also needs to provide a means of diagnosing machine faults and deliver a feedback of losses to the control room as well as to several systems for their setup and analysis. It has to transmit and process signals from almost 4’000 monitors, and has nearly 3 million configurable parameters. The system was designed with reliability and availability in mind. The specified operation and the fail-safety standards must be guaranteed for the system to perform its function in preventing superconductive magnet destruction caused by particle flux. Maintaining the expected reliability requires extensive testing and verification. In this paper we report our most recent addit...
Dielectric Collimators for Linear Collider Beam Delivery System
Kanareykin, A; Baturin, S; Tomás, R
2011-01-01
The current status of ILC and CLIC concepts require additional research on wakefield reduction in the collimator sections. New materials and new geometries have been considered recently*. Dielectric collimators for the CLIC Beam Delivery System have been discussed with a view to minimize the BDS collimation wakefields**. Dielectric collimator concepts for the linear collider are presented in this paper; cylindrical and planar collimators for the CLIC parameters have been considered, and simulations to minimize the beam impedance have been performed. The prototype collimator system is planned to be fabricated and experimentally tested at Facilities for Accelerator Science and Experimental Test Beams (FACET) at SLAC.
CAVITY BEAM POSITION MONITOR SYSTEM FOR ATF2
Boogert, S T; Cullinan, F; Joshi, N; Lyapin, A; Aryshev, A; Honda, Y; Naito, T; Terunuma, N; Urakara, J; Heo, A; Kim, E-S; Kim, Y I; McCormick, D; Frisch, J; Nelson, J; Smith, T; White, G R
2011-01-01
The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 41 high resolution C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitisers. In addition 4 high resolution BPMs have been recently installed at the interaction point, we briefly describe the first operational experience of these cavities in the ATF2 beam-line. The current status of the overall BPM system is also described, with a focus on operational techniques and performance.
A Programmable Beam Shaping System for Tailoring the Profile of High Fluence Laser Beams
Energy Technology Data Exchange (ETDEWEB)
Heebner, J; Borden, M; Miller, P; Stolz, C; Suratwala, T; Wegner, P; Hermann, M; Henesian, M; Haynam, C; Hunter, S; Christensen, K; Wong, N; Seppala, L; Brunton, G; Tse, E; Awwal, A; Franks, M; Marley, E; Williams, K; Scanlan, M; Budge, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J
2010-11-10
Customized spatial light modulators have been designed and fabricated for use as precision beam shaping devices in fusion class laser systems. By inserting this device in a low-fluence relay plane upstream of the amplifier chain, 'blocker' obscurations can be programmed into the beam profile to shadow small isolated flaws on downstream optical components that might otherwise limit the system operating energy. In this two stage system, 1920 x 1080 bitmap images are first imprinted on incoherent, 470 nm address beams via pixilated liquid crystal on silicon (LCoS) modulators. To realize defined masking functions with smooth apodized shapes and no pixelization artifacts, address beam images are projected onto custom fabricated optically-addressable light valves. Each valve consists of a large, single pixel liquid cell in series with a photoconductive Bismuth silicon Oxide (BSO) crystal. The BSO crystal enables bright and dark regions of the address image to locally control the voltage supplied to the liquid crystal layer which in turn modulates the amplitude of the coherent beams at 1053 nm. Valves as large as 24 mm x 36 mm have been fabricated with low wavefront distortion (<0.5 waves) and antireflection coatings for high transmission (>90%) and etalon suppression to avoid spectral and temporal ripple. This device in combination with a flaw inspection system and optic registration strategy represents a new approach for extending the operational lifetime of high fluence laser optics.
LHC Beam Instrumentation: Beam Profile Measurements (2/3)
CERN. Geneva
2014-01-01
The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.
Wang, Ronghao; Xing, Jianchun; Li, Juelong; Xiang, Zhengrong
2016-10-01
This paper studies the problem of stabilising a sampled-data switched linear system by quantised feedback asynchronously switched controllers. The idea of a quantised feedback asynchronously switched control strategy originates in earlier work reflecting actual system characteristic of switching and quantising, respectively. A quantised scheme is designed depending on switching time using dynamic quantiser. When sampling time, system switching time and controller switching time are all not uniform, the proposed switching controllers guarantee the system to be finite-time stable by a piecewise Lyapunov function and the average dwell-time method. Simulation examples are provided to show the effectiveness of the developed results.
Chaotifying a stable linear controllable system by single input state feedback
Institute of Scientific and Technical Information of China (English)
Wu Zheng-Mao; Lu Jun-Guo; Xie Jian-Ying
2007-01-01
In this paper, an approach for chaotifying a stable controllable linear system via single input state-feedback is presented. The overflow function of the system states is designed as the feedback controller, which can make the fixed point of the closed-loop system to be a snap-back repeller, thereby yields chaotic dynamics. Based on the Marotto theorem, it proves theoretically that the closed-loop system is chaotic in the sense of Li and Yorke. Finally, the simulation results are used to illustrate the effectiveness of the proposed method.
Chaos control for the family of Roessler systems using feedback controllers
Energy Technology Data Exchange (ETDEWEB)
Liao Xiaoxin [Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Yu Pei [Department of Applied Mathematics, University of Western Ontario, London, Ont., N6A 5B7 (Canada)]. E-mail: pyu@pyu1.apmaths.uwo.ca
2006-07-15
This paper presents a new method for controlling chaos in several classical chaotic Roessler systems using feedback control strategy. In particular, for an arbitrarily given equilibrium point of a Roessler system, we design explicit and simple feedback control laws by which the equilibrium point is globally and exponentially stabilized. Six typical Roessler systems are studied, and explicit formulas are derived for estimating the convergence rate of these systems. Numerical examples are presented to illustrate the theoretical results. A mistake has been found in the existing literature, and a correct result is given.
Signatures of Biogeomorphic Feedbacks in Salt-Marsh Systems
D'Alpaos, Andrea; Marani, Marco
2015-04-01
Salt-marsh ecosystems which play a large role in the bio-geomorphological evolution of intertidal areas. Dense stands of halophytic vegetations which populate salt marshes largely control the dynamics of these ecosystems influencing marsh hydrodynamics and sediment transport through enhanced flow resistance and settling, and direct particle capture by plant stems. Moreover, plants are also known to increase vertical accretion through direct organic accretion. Field evidence and the results of biomorphodynamic models indeed show that the interplay between physical and biological processes generates some striking biological and morphological patterns at different scales. One such pattern, vegetation zonation, consists in a mosaic of vegetation patches, of approximately uniform composition, displaying sharp transitions in the presence of extremely small topographic gradients. Here we develop a two-dimensional model which describes the mutual interaction and adjustment between tidal flows, sediment transport and morphology mediated by vegetation influence. The model allows us describe the coupled evolution of marsh platforms and channel networks cutting through them. A number of different scenarios were modelled to analyze the changes induced in bio-geomorphic patterns by plants with different characteristics, within marshes characterized by different drainage densities, or subjected to changing environmental forcing such as rates of relative sea level rise and sediment supply. Model results emphasize that zonation patterns are a signature of bio-geomorphic feedbacks with vegetation acting as a landscape constructor which feeds back on, directly alters, and contributes to shape tidal environments. In addition, model results show that biogeomorphic feedbacks critically affect the response and the resilience of salt-marsh landscapes to changes in the environmental forcing.
Directory of Open Access Journals (Sweden)
T. H. S. Abdelaziz
2005-01-01
Full Text Available In this paper we introduce a complete parametric approach for solving the problem of eigenstructure assignment via state-derivative feedback for linear systems. This problem is always solvable for any controllable systems iff the open-loop system matrix is nonsingular. In this work, two parametric solutions to the feedback gain matrix are introduced that describe the available degrees of freedom offered by the state-derivative feedback in selecting the associated eigenvectors from an admissible class. These freedoms can be utilized to improve robustness of the closed-loop system. Accordingly, the sensitivity of the assigned eigenvalues to perturbations in the system and gain matrix is minimized. Numerical examples are included to show the effectiveness of the proposed approach.
Chorpita, Bruce F; Daleiden, Eric L; Bernstein, Adam D
2016-05-01
We select and comment on concepts and examples from the target articles in this special issue on measurement feedback systems, placing them in the context of some of our own insights and ideas about measurement feedback systems, and where those systems lie at the intersection of technology and decision making. We contend that, connected to the many implementation challenges relevant to many new technologies, there are fundamental design challenges that await a more elaborate specification of the clinical information and decision models that underlie these systems. Candidate features of such models are discussed, which include referencing multiple evidence bases, facilitating observed and expected value comparisons, fostering collaboration, and allowing translation across multiple ontological systems. We call for a new metaphor for these technologies that goes beyond measurement feedback and encourages a deeper consideration of the increasingly complex clinical decision models needed to manage the uncertainty of delivering clinical care.
Upgrade of plasma density feedback control system in HT-7 tokamak
Institute of Scientific and Technical Information of China (English)
ZHAO Da-Zheng; LUO Jia-Rong; LI Gang; JI Zhen-Shan; WANG Feng
2004-01-01
The HT-7 is a superconducting tokamak in China used to make researches on the controlled nuclear fusion as a national project for the fusion research. The plasma density feedback control subsystem is the one of the subsystems of the distributed control system in HT-7 tokamak (HT7DCS). The main function of the subsystem is to control the plasma density on real-time. For this reason, the real-time capability and good stability are the most significant factors, which will influence the control results. Since the former plasma density feedback control system (FPDFCS) based on Windows operation system could not fulfill such requirements well, a new subsystem has to be developed. The paper describes the upgrade of the plasma density feedback control system (UPDFCS), based on the dual operation system (Windows and Linux), in detail.
Robust control of a class of non-affine nonlinear systems by state and output feedback
Institute of Scientific and Technical Information of China (English)
陈贞丰; 章云
2014-01-01
Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers:the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded (UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.
Feedback quality and environmentally friendly use of domestic central heating systems.
Sauer, J; Schmeink, C; Wastell, D G
2007-06-01
The study examined the influence of system-embedded feedback on user behaviour during the environmentally friendly operation of a central heating system. A PC-based simulation, called CHESS, was developed to model the critical features of a central heating system. After having received 30 min of training on the simulation task, 60 participants worked on a series of operational scenarios under different levels of system feedback. In addition to the collection of various performance measures (e.g. energy consumption, energy wastage), a range of user variables was collected (e.g. environmental concern). As hypothesized, the results showed that increased feedback resulted in improved environmentally friendly performance and, more importantly, the specific feedback indicator influenced the type of strategy used to improve human - machine system performance. A major implication is that system designers need to develop feedback indicators that are chiefly influenced by user behaviour and are largely immune to factors that are beyond the user's control (e.g. weather conditions).
Beam Transfer Systems for the LAGUNA-LBNO Long Baseline Neutrino Beam from the CERN SPS
Goddard, B; Efthymiopoulos, I; Papaphilippou, Y; Parfenova, A
2013-01-01
For the Long Baseline neutrino facility under study at CERN (LAGUNA-LBNO) it is initially planned to extract a 400 GeV beam from the second long straight section in the SPS into the existing transfer channel TT20 leading to the North Area experimental zone, to a new target aligned with a far detector at a distance of 2300 km [1]. In a second phase a new High-Power Proton Synchrotron (HPPS) accelerator is proposed, to give a 2 MW beam at about 50 GeV on the same target. In this paper the required beam transfer systems are outlined, including the new sections of transfer line between the Superconducting Proton Linac (SPL), HP-PS and SPS, and from the SPS to the target, and also the injection and extraction systems in the long straight section of the HPPS. The feasibility of a 4 GeV H- injection system is discussed.
Beam Tracking in Switched-Beam Antenna System for V2V Communication
Directory of Open Access Journals (Sweden)
Settawit Poochaya
2016-01-01
Full Text Available This paper presents the proposed switched beam antenna system for V2V communication including optimum antenna half power beamwidth determination in urban road environments. SQP optimization method is selected for the computation of optimum antenna half power beamwidth. In addition, beam tracking algorithm is applied to guarantee the best beam selection with maximum RSSI. The results present the success of the proposed system with the increasing of V2V performance metrics. Also, V2V data dissemination via the proposed system introduces the enhancement of V2V link in terms of RSSI, PER, BER, Tsafe, and Rsafe. The results indicate the improvement of V2V link reliability. Consequently, the road safety is improved.
Tracking control and synchronization of chaotic systems based upon sampled-data feedback
Institute of Scientific and Technical Information of China (English)
陈士华; 刘杰; 谢进; 陆君安
2002-01-01
A novel tracking control and synchronization method is proposed based upon sampled-data feedback. This methodcan make a chaotic system approach any desired smooth orbit and synchronize the driving system and the responsesystem, both in the same structure and in diverse structures. Finally, a numerical simulation with a Lorenz system isprovided for the purpose of illustration and verification.
Evaluation of State-of-the-Art Acoustic Feedback Cancellation Systems for Hearing Aids
DEFF Research Database (Denmark)
Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper
2013-01-01
This research evaluates four state-of-the-art acoustic feedback cancellation systems in hearing aids in terms of the cancellation performance, sound quality degradation, and computational complexity. The authors compared a traditional full-band system to a system with a prediction error method...
Araújo, José M.; Dórea, Carlos E. T.; Gonçalves, Luiz M. G.; Datta, Biswa N.
2016-08-01
This paper presents a comparative study of sensitivity to parameter variation in two feedback techniques applied in second-order linear systems: state feedback technique and the less conventional state derivative feedback technique. The former uses information on displacements and velocities whereas the latter uses velocities and accelerations. Several contributions on the problem of partial or full eigenvalue/eigenstructure assignment using the state feedback technique are presented in the literature. Recently, some interesting possibilities, such as solving the regularization problem in singular mass second-order systems, are approached using state derivative feedback. In this work, a general equivalence between state feedback and state derivative feedback is first established. Then, figures of merit on the resulting perturbed spectrum are proposed in order to assess the sensitivity of the closed-loop system to variations on the system matrices. Numerical examples are presented to support the obtained results.
Design of an optimal output feedback control system with modal insensitivity
Raman, K. V.; Calise, A. J.
1984-01-01
This paper deals with the design of an output feedback controller which results in selected modal insensitivity, and at the same time optimizes a quadratic performance index representative of desired system performance for nominal plant parameter values. The approach taken here is to characterize the class of attainable eigenvectors for a given set of eigenvalues (distinct or non-distinct) which lie in a subspace called the 'Modal Insensitivity Subspace'. A constraint is established on the feedback matrix which results in modal insensitivity. Necessary conditions for optimality subject to the constraint on the feedback matrix are given. This forms the basis for a numerical algorithm to compute the optimal feedback gain which analyzed for convergence. To illustrate the procedure, a design is carried out using the lateral dynamics of an L-1011 aircraft.
Beam forming system modernization at the MMF linac proton injector
Derbilov, V I; Nikulin, E S; Frolov, O T
2001-01-01
The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.
Invited article: Digital beam-forming imaging riometer systems.
Honary, Farideh; Marple, Steve R; Barratt, Keith; Chapman, Peter; Grill, Martin; Nielsen, Erling
2011-03-01
The design and operation of a new generation of digital imaging riometer systems developed by Lancaster University are presented. In the heart of the digital imaging riometer is a field-programmable gate array (FPGA), which is used for the digital signal processing and digital beam forming, completely replacing the analog Butler matrices which have been used in previous designs. The reconfigurable nature of the FPGA has been exploited to produce tools for remote system testing and diagnosis which have proven extremely useful for operation in remote locations such as the Arctic and Antarctic. Different FPGA programs enable different instrument configurations, including a 4 × 4 antenna filled array (producing 4 × 4 beams), an 8 × 8 antenna filled array (producing 7 × 7 beams), and a Mills cross system utilizing 63 antennas producing 556 usable beams. The concept of using a Mills cross antenna array for riometry has been successfully demonstrated for the first time. The digital beam forming has been validated by comparing the received signal power from cosmic radio sources with results predicted from the theoretical beam radiation pattern. The performances of four digital imaging riometer systems are compared against each other and a traditional imaging riometer utilizing analog Butler matrices. The comparison shows that digital imaging riometer systems, with independent receivers for each antenna, can obtain much better measurement precision for filled arrays or much higher spatial resolution for the Mills cross configuration when compared to existing imaging riometer systems.
Laser beam riding guided system principle and design research
Qu, Zhou; Jin, Yi; Xu, Zhou; Xing, Hao
2016-01-01
With the development of science and technology, precision-strike weapons has been considered to be important for winning victory in military field. Laser guidance is a major method to execute precision-strike in modern warfare. At present, the problems of primary stage of Laser guidance has been solved with endeavors of countries. Several technical aspects of laser-beam riding guided system have been mature, such as atmosphere penetration of laser beam, clutter inhibition on ground, laser irradiator, encoding and decoding of laser beam. Further, laser beam quality, equal output power and atmospheric transmission properties are qualified for warfare situation. Riding guidance instrument is a crucial element of Laser-beam riding guided system, and is also a vital element of airborne, vehicle-mounted and individual weapon. The optical system mainly consist of sighting module and laser-beam guided module. Photoelectric detector is the most important sensing device of seeker, and also the key to acquire the coordinate information of target space. Currently, in consideration of the 1.06 u m of wavelength applied in all the semi-active laser guided weapons systems, lithium drifting silicon photodiode which is sensitive to 1.06 u m of wavelength is used in photoelectric detector. Compared to Solid and gas laser, diode laser has many merits such as small volume, simple construction, light weight, long life, low lost and easy modulation. This article introduced the composition and operating principle of Laser-beam riding guided system based on 980 nm diode laser, and made a analysis of key technology; for instance, laser irradiator, modulating disk of component, laser zooming system. Through the use of laser diode, Laser-beam riding guided system is likely to have smaller shape and very light.
Directory of Open Access Journals (Sweden)
Ameet.D.Shah
2014-03-01
Full Text Available In Multi-user Feedback support system or 3600 Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 3600 Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 3600 feedback based appraisal is a comprehensive method where in the feedback about the employee comes from all the sources that come into contact with the employee on his/her job. The respondents for an employee can be her/his peers, managers, subordinates team members, customers, suppliers and vendors. Hence anyone who comes into contact with the employee, the 3600 appraisal has four components that include self-appraisal, superior’s appraisal, subordinate’s appraisal student’s appraisal and peer’s appraisal.
Simulation of ion beam extraction and focusing system
Institute of Scientific and Technical Information of China (English)
B.A.Soliman; M.M.Abdelrahman; A.G.Helal; F.W.Abdelsalam
2011-01-01
The characteristics of ion beam extraction and focused to a volume as small as possible were investigated with the aid of computer code SIMION 3D version 7.This has been used to evaluate the extraction characteristics(accel-decel system)to generate an ion beam with low beam emittance and high brightness.The simulation process can provide a good study for optimizing the extraction and focusing system of the ion beam without any losses and transported to the required target.Also,a study of a simulation model for the extraction system of the ion source was used to describe the possible plasma boundary curvatures during the ion extraction that may be affected by the change in an extraction potential with a constant plasma density meniscus.
Directory of Open Access Journals (Sweden)
M. Grus
2015-08-01
Full Text Available Since Topographical Key Register has become an open data the amount of users increased enormously. The highest grow was in the private users group. The increasing number of users and their growing demand for high actuality of the topographic data sets motivates the Dutch Kadaster to innovate and improve the Topographical Key Register (BRT. One of the initiatives was to provide a voluntary geographical information project aiming at providing a user-friendly feedback system adjusted to all kinds of user groups. The feedback system is a compulsory element of the Topographical Key Register in the Netherlands. The Dutch Kadaster is obliged to deliver a feedback system and the key-users are obliged to use it. The aim of the feedback system is to improve the quality and stimulate the usage of the data. The results of the pilot shows that the user-friendly and open to everyone feedback system contributes enormously to improve the quality of the topographic dataset.
Impact of Feedback Channel on Measured MIMO Systems and Its Lower Bound
Institute of Scientific and Technical Information of China (English)
ZHANGDuo; WEIGuo; ZHUJinkang
2005-01-01
A lower bound of the rate in feedback channel from a receiver to a transmitter is presented for measured Multiple-input-multiple-output (MIMO) systems based on the formulae of the open-loop and the closedloop MIMO capacity, under the assumptions of quasi-static block-fading MIMO channel, independent nondispersive fading between each transmit and receive antenna, sampling with the period equal to the reciprocal of the signal bandwidth at the receiver, and zero feedback delay. Through Monte Carlo simulations~ we numerically validate the existence of the lower bound and show numerical results of the bound for system design. Also, we conclude that, the Signal-to-noise ratio (SNR) impacts little on the lower bound of the feedback rate for low antenna numbers, a closed-loop system with a feedback rate less than the lower bound is worse than a open-loop system, and the lower bound remains small with respect to the increase of antenna number for low SNRs. Finally, it is shown that the lower bound of the feedback rate and the conclusions are applicable to practical closed-loop MIMO systems.
Institute of Scientific and Technical Information of China (English)
Lu Jun-Guo
2006-01-01
This paper proposes a new, simple and yet applicable output feedback synchronization theorem for a large class of chaotic systems. We take a linear combination of drive system state variables as a scale-driving signal. It is proved that synchronization between the drive and the response systems can be obtained via a simple linear output error feedback control. The linear feedback gain is a function of a free parameter. The approach is illustrated using the Rossler hyperchaotic systems and Chua's chaotic oscillators.
ON LIMITATIONS OF THE SAMPLED-DATA FEEDBACK FOR NONPARAMETRIC DYNAMICAL SYSTEMS
Institute of Scientific and Technical Information of China (English)
XUE Feng; GUO Lei
2002-01-01
In this paper, we study a basic class of first order sampled-data control systems with unknown nonlinear structure and with sampling rate not necessarily fast enough,aiming at understanding the capability and limitations of the sampled-data feedback. We show that if the unknown nonlinear function has a linear growth rate with its "slope"(denoted by L) being a measure of the "size" of uncertainty, then the sampling rate should not exceed 1/L multiplied by a constant (≈ 7.53) for the system to be globally stabilizable by the sampled-data feedback. If, however, the unknown nonlinear function has a growth rate faster than linear, and if the system is disturbed by noises modeled as the standard Brownian motion, then an example is given, showing that the corresponding sampled-data system is not stabilizable by the sampled-data feedback in general, no matter how fast the sampling rate is.
Winner-take-all selection in a neural system with delayed feedback
Brandt, Sebastian F
2007-01-01
We consider the effects of temporal delay in a neural feedback system with excitation and inhibition. The topology of our model system reflects the anatomy of the avian isthmic circuitry, a feedback structure found in all classes of vertebrates. We show that the system is capable of performing a `winner-take-all' selection rule for certain combinations of excitatory and inhibitory feedback. In particular, we show that when the time delays are sufficiently large a system with local inhibition and global excitation can function as a `winner-take-all' network and exhibit oscillatory dynamics. We demonstrate how the origin of the oscillations can be attributed to the finite delays through a linear stability analysis.
Output-back fuzzy logic systems and equivalence with feedback neural networks
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new idea, output-back fuzzy logic systems, is proposed. It is proved that output-back fuzzy logic systems must be equivalent to feedback neural networks. After the notion of generalized fuzzy logic systems is defined, which contains at least a typical fuzzy logic system and an output-back fuzzy logic system, one important conclusion is drawn that generalized fuzzy logic systems are almost equivalent to neural networks.
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Robust output feedback H-infinity control and filtering for uncertain linear systems
Chang, Xiao-Heng
2014-01-01
"Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.
Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.
Yu, Wen
2015-07-01
Passivity method is very effective to analyze large-scale nonlinear systems with strong nonlinearities. However, when most parts of the nonlinear system are unknown, the published neural passivity methods are not suitable for feedback stability. In this brief, we propose a novel sliding mode learning algorithm and sliding mode feedback passivity control. We prove that for a wide class of unknown nonlinear systems, this neural sliding mode control can passify and stabilize them. This passivity method is validated with a simulation and real experiment tests.
Institute of Scientific and Technical Information of China (English)
LIU Yungang; ZHANG Jifeng
2004-01-01
A minimal-order observer and output-feedback stabilization control are given for single-input multi-output stochastic nonlinear systems with unobservable states, unmodelled dynamics and stochastic disturbances. Based on the observer designed, the estimates of all observable states of the system are given, and the convergence of the estimation errors are analyzed. In addition, by using the integrator backstepping approach,an output-feedback stabilization control is constructively designed, and sufficient conditions are obtained under which the closed-loop system is asymptotically stable in the large or bounded in probability, respectively.
AN M/M/1/N FEEDBACK QUEUING SYSTEM WITH REVERSE BALKING
Directory of Open Access Journals (Sweden)
Rakesh Kumar
2015-06-01
Full Text Available In this paper we develop an M/M/1/N feedback queuing system with reverse balking. Reverse balking is a type of customer behavior according to which an arriving customer joins a system with high probability if he encounters large system size and vice-versa. This behavior of a customer can be observed in many businesses such as investment. Feedback customer in queuing literature refers to a customer who is unsatisfied with incomplete, partial or unsatisfactory service. We derive the steady-state solution of the model and obtain some important measures of performance. Sensitivity analysis of the model is also performed with respect to the parameters involved.
The use of differential pressure feedback in an automatic flight control system
Levy, D. W.; Roskam, J.; Finn, P. D.
1982-01-01
A feasibility study has been performed to evaluate the performance of a system whereby a control surface is positioned with differential pressure as the feedback variable. Analogous to a position command system, the control surface is commanded to move until a certain differential pressure is achieved at a given point on the surface. Frequency response tests and theoretical considerations indicate that the pressure feedback transfer function is first order, with a break frequency up to 50 rad/sec. There exist applications to the outer loops of flight control systems as well. Stability augmentation, gust alleviation, and stall prevention appear to be possible by feeding back differential pressure across lifting and control surfaces.
Institute of Scientific and Technical Information of China (English)
阎庆旭; 陈振国; 冯德兴
2003-01-01
The stabilization problem of a nonuniform Timoshenko beam system with coupled locally distributed feedback is studied. First, based on the criterion of the asymptotical stability of bounded C0 semigroups, it is shown that the energy corresponding to the closed loop system is asymptotically stable. Then, by virtue of frequency domain multiplier method, it is proved that the closed loop system is exponentially stable.%研究了非均质Timoshenko梁在局部耦合反馈下的指数稳定性. 首先利用有界C0-半群渐近稳定性判据,证明了闭环系统是渐近稳定的,然后用频域乘子方法证明了闭环系统也是指数稳定的.
Gamp, A
2011-01-01
We begin by giving a description of the rf generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, rf feedback, and feed-forward are described. Examples of digital rf phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.
Directory of Open Access Journals (Sweden)
Lanmei Cong
2015-01-01
Full Text Available A multiobject holographic feedback (MOHF control method for studying the nonlinear differential algebraic (NDA system is proposed. In this method, the nonlinear control law is designed in a homeomorphous linear space by means of constructing the multiobject equations (MOEq which is in accord with Brunovsky normal form. The objective functions of MOEq are considered to be the errors between the output functions and their references. The relative degree for algebraic system is defined that is key to connecting the nonlinear and the linear control laws. Pole assignment method is addressed for the stability domain of this MOHF control. Since there is no any approximation, the MOHF control is effective in governing the dynamic performance stably both to the small and major disturbance. The application in single machine infinite system (SMIS shows that this approach is effective in the improvement of stable and transient stability for power system on the disturbance of active power or three-phase short circuit fault.
Beam hardening correction for a cone-beam CT system and its effect on spatial resolution
Institute of Scientific and Technical Information of China (English)
ZHAO Wei; WEI Long; YU Zhong-Qiang; FU Guo-Tao; SUN Cui-Li; WANG Yan-Fang; WEI Cun-Feng; CAO Da-Quan; QUE Jie-Min; TANG Xiao; SHI Rong-Jian
2011-01-01
In this paper,we present a beam hardening correction (BHC) method in three-dimension space for a cone-beam computed tomography (CBCT) system in a mono-material case and investigate its effect on the spatial resolution.Due to the polychromatic character of the X-ray spectrum used,cupping and streak artifacts called beam hardening artifacts arise in the reconstructed CT images,causing reduced image quality.In addition,enhanced edges are introduced in the reconstructed CT images because of the beam hardening effect.The spatial resolution of the CBCT system is calculated from the edge response function (ERF) on different planes in space.Thus,in the CT images with beam hardening artifacts,enhanced ERFs will be extracted to calculate the modulation transfer function (MTF),obtaining a better spatial resolution that deviates from the real value.Reasonable spatial resolution can be obtained after reducing the artifacts.The 10％ MTF value and the full width at half maximum (FWHM) of the point spread function with and without BHC are presented.
Mean Velocity Prediction Information Feedback Strategy in Two-Route Systems under ATIS
Directory of Open Access Journals (Sweden)
Jianqiang Wang
2015-02-01
Full Text Available Feedback contents of previous information feedback strategies in advanced traveler information systems are almost real-time traffic information. Compared with real-time information, prediction traffic information obtained by a reliable and effective prediction algorithm has many undisputable advantages. In prediction information environment, a traveler is prone to making a more rational route-choice. For these considerations, a mean velocity prediction information feedback strategy (MVPFS is presented. The approach adopts the autoregressive-integrated moving average model (ARIMA to forecast short-term traffic flow. Furthermore, prediction results of mean velocity are taken as feedback contents and displayed on a variable message sign to guide travelers' route-choice. Meanwhile, discrete choice model (Logit model is selected to imitate more appropriately travelers' route-choice behavior. In order to investigate the performance of MVPFS, a cellular automaton model with ARIMA is adopted to simulate a two-route scenario. The simulation shows that such innovative prediction feedback strategy is feasible and efficient. Even more importantly, this study demonstrates the excellence of prediction feedback ideology.
Terrestrial biogeochemical feedbacks in the climate system: from past to future
Energy Technology Data Exchange (ETDEWEB)
Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T
2010-01-05
The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.
Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics
Directory of Open Access Journals (Sweden)
W. Zhang
2014-05-01
Full Text Available Continued warming of the Arctic will likely accelerate terrestrial carbon (C cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation
Development of pulsed positron beam line with compact pulsing system
Energy Technology Data Exchange (ETDEWEB)
Maekawa, Masaki, E-mail: maekawa.masaki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Kawasuso, Atsuo [Advanced Science Research Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)
2012-01-01
We have developed a pulsed slow positron beam with a pulse width of less than 200 ps and a period of 25 ns. The beam apparatus is composed of a Munich-type pre-buncher, a chopper and a buncher. Instead of the conventional RF cavity, a simple double-cylinder electrode is used for the buncher. The beam will be used for positron lifetime measurements. The time resolution of the whole system including lifetime measurement circuits is 250 ps, which is adequate for studying semiconductors and metals.
Radiation Shielding Design for ISOL System Beam Line
Institute of Scientific and Technical Information of China (English)
WANG; Feng; QIN; Jiu-chang
2013-01-01
The beam line of the ISOL system passes through the shielding wall and connects the HI-13 tandem accelerator.Neutron produced by tandem accelerator will affect the area of BRIF through the beam line.To protect the staff in BRIF area from radiation a shielding design of the beam line is carried out.The neutron source in the vault of tandem accelerator is the H.E Faraday cup of HI-13 tandem accelerator as showed in Fig.1.The Faraday cup is consisted of 1 mm molybdenum sheet and 10 mm
On the functional diversity of dynamical behaviour in genetic and metabolic feedback systems
Directory of Open Access Journals (Sweden)
Kulasiri Don
2009-05-01
Full Text Available Abstract Background Feedback regulation plays crucial roles in the robust control and maintenance of many cellular systems. Negative feedbacks are found to underline both stable and unstable, often oscillatory, behaviours. We explore the dynamical characteristics of systems with single as well as coupled negative feedback loops using a combined approach of analytical and numerical techniques. Particularly, we emphasise how the loop's characterising factors (strength and cooperativity levels affect system dynamics and how individual loops interact in the coupled-loop systems. Results We develop an analytical bifurcation analysis based on the stability and the Routh- Hurwitz theorem for a common negative feedback system and a variety of its variants. We demonstrate that different combinations of the feedback strengths of individual loops give rise to different dynamical behaviours. Moreover, incorporating more negative feedback loops always tend to enhance system stability. We show that two mechanisms, in addition to the lengthening of pathway, can lower the Hill coefficient to a biologically plausible level required for sustained oscillations. These include loops coupling and end-product utilisation. We find that the degradation rates solely affect the threshold Hill coefficient for sustained oscillation, while the synthesis rates have more significant roles in determining the threshold feedback strength. Unbalancing the degradation rates between the system species is found as a way to improve stability. Conclusion The analytical methods and insights presented in this study demonstrate that reallocation of the feedback loop may or may not make the system more stable; the specific effect is determined by the degradation rates of the newly inhibited molecular species. As the loop moves closer to the end of the pathway, the minimum Hill coefficient for oscillation is reduced. Furthermore, under general (unequal values of the degradation rates
Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik
2008-07-01
Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.
Energy Technology Data Exchange (ETDEWEB)
Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David
2011-09-01
This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.
The Construction of Plasma Density Feedback Control System on J-TEXT Tokamak
Ke, Xin; Chen, Zhipeng; Ba, Weigang; Shu, Shuangbao; Gao, Li; Zhang, Ming; Zhuang, Ge
2016-02-01
The plasma density feedback control system (PDFCS) has been established on the Joint Texas Experimental Tokamak (J-TEXT) for meeting the need for an accurate plasma density in physical experiments. It consists of a density measurement subsystem, a feedback control subsystem and a gas puffing subsystem. According to the characteristic of the gas puffing system, a voltage amplitude control mode has been applied in the feedback control strategy, which is accomplished by the proportion, integral and differential (PID) controller. In this system, the quantity calibration of gas injection, adjusted responding to the change of the density signal, has been carried out. Some experimental results are shown and discussed. supported by the National Magnetic Confinement Fusion Science Program (Nos. 2014GB103001 and 2013GB106001) and National Natural Science Foundation of China (Nos. 11305070 and 11105028)
Optical manipulation with two beam traps in microfluidic polymer systems
DEFF Research Database (Denmark)
Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl;
2015-01-01
An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...... in the microfluidic chip or with optical fibers mounted in the chip....
Institute of Scientific and Technical Information of China (English)
Jia Li-Xin; Dai Hao; Hui Meng
2010-01-01
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems.Based on Lyapunov stability theory and numerical differentiation，a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems.Numerical simulation results are presented to illustrate the effectiveness of this method.
Theory and Applications of Discontinuous State Feedback Generating Chaos for Linear Systems
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Dan; WANG Zhen; ZHAO Pin-Dong
2008-01-01
We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state.This method is checked with some examples of numeric simulation.A constructive theorem is proposed for generalized synchronization related to the above chaotic system.
Stabilization of sandwich non-linear systems with low-and-high gain feedback design
Stoorvogel, Anton A.; Wang, Xu; Saberi, Ali; Sannuti, Peddapullaiah
2010-01-01
In this paper, we consider the problems of semi- global and global internal stabilization of a class of sandwich systems consisting of two linear systems with a saturation element in between. We develop here low-and-high gain and scheduled low-and-high gain state feedback design methodolo- gies to s
The Optimal Linear Quadratic Feedback State Regulator Problem for Index One Descriptor Systems
Engwerda, J.C.; Salmah, Y.; Wijayanti, I.E.
2008-01-01
In this note we present both necessary and sufficient conditions for the existence of a linear static state feedback controller if the system is described by an index one descriptor system. A priori no definiteness restrictions are made w.r.t. the quadratic performance criterium. It is shown that in
Impact of feedback torque level on perceived comfort and control in steer-by-wire systems
Anand, S.; Terken, J.; Hogema, J.H.; Martens, J.B.
2012-01-01
Steer-by-Wire systems enable designers to offer completely personalized steering feel to drivers, unlike existing steering systems that offer limited or no personalization. In this paper we focus on feedback torque level, a significant factor for steering feel. Earlier studies indicate that the pref
Stabilizing equilibrium by linear feedback control for controlling chaos in Chen system
Energy Technology Data Exchange (ETDEWEB)
Costa, V A [Departamento de Ciencias Basicas, Facultad de IngenierIa (UNLP), La Plata (Argentina); Gonzalez, G A, E-mail: vacosta@ing.unlp.edu.ar, E-mail: ggonzal@fi.ub.ar [Departamento de Matematica, Facultad de Ingenieria (UBA), Buenos Aires (Argentina)
2011-03-01
Stabilization of a chaotic system in one of its unstable equilibrium points by applying small perturbations is studied. A two-stage control strategy based on linear feedback control is applied. Improvement of system performance is addressed by exploiting the ergodicity of the original dynamics and using Lyapunov stability results for control design. Extension to the not complete observability case is also analyzed.
PERMANENCE AND GLOBAL STABILITY OF A FEEDBACK CONTROL SYSTEM WITH DELAYS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper considers a feedback control systems of differential equations with delays. By applying the differential inequality theorem, sufficient conditions for the permanence of the system are obtained. Also, by constructing a suitable Lyapunov functional, a criterion for the global stability of the model is obtained.
Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems
Venkatraman, Aneesh; Ortega, Romeo; Sarras, Ioannis; Schaft, Arjan van der
2010-01-01
The problems of speed observation and position feedback stabilization of mechanical systems are addressed in this paper. Our interest is centered on systems that can be rendered linear in the velocities via a (partial) change of coordinates. It is shown that the class is fully characterized by the s
FORMAS--Feedback to Oral Reading Analysis System. Training Manual. Manual No. 5085.
Hoffman, J. V.; And Others
The Feedback to Oral Reading Miscue Analysis System (FORMAS) is a low-inference coding system developed to characterize verbal interaction between teacher and students during oral reading instruction. The six lessons presented in this manual are designed to teach the use of FORMAS in approximately ten hours. Each of the lessons deals with one of…
Design of bounded feedback controls for linear dynamical systems by using common Lyapunov functions
Institute of Scientific and Technical Information of China (English)
Igor; Ananievskii; Nickolai; Anokhin; Alexander; Ovseevich
2011-01-01
For a linear dynamical system,we address the problem of devising a bounded feedback control,which brings the system to the origin in finite time.The construction is based on the notion of a common Lyapunov function.It is shown that the constructed control remains effective in the presence of small perturbations.
Energy Technology Data Exchange (ETDEWEB)
Shim, D.S. [Chung-Ang University, Seoul (Korea, Republic of)
1998-04-01
We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H{infinity} control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system. (author). 9 refs.
Directory of Open Access Journals (Sweden)
A.M. Elnaggar
2016-01-01
Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.
Optimal control of nonlinear continuous-time systems in strict-feedback form.
Zargarzadeh, Hassan; Dierks, Travis; Jagannathan, Sarangapani
2015-10-01
This paper proposes a novel optimal tracking control scheme for nonlinear continuous-time systems in strict-feedback form with uncertain dynamics. The optimal tracking problem is transformed into an equivalent optimal regulation problem through a feedforward adaptive control input that is generated by modifying the standard backstepping technique. Subsequently, a neural network-based optimal control scheme is introduced to estimate the cost, or value function, over an infinite horizon for the resulting nonlinear continuous-time systems in affine form when the internal dynamics are unknown. The estimated cost function is then used to obtain the optimal feedback control input; therefore, the overall optimal control input for the nonlinear continuous-time system in strict-feedback form includes the feedforward plus the optimal feedback terms. It is shown that the estimated cost function minimizes the Hamilton-Jacobi-Bellman estimation error in a forward-in-time manner without using any value or policy iterations. Finally, optimal output feedback control is introduced through the design of a suitable observer. Lyapunov theory is utilized to show the overall stability of the proposed schemes without requiring an initial admissible controller. Simulation examples are provided to validate the theoretical results.
Upgrade of Beam Energy Measurement System at BEPC-II
Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A
2015-01-01
The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.
Observer-based output feedback control of discrete-time linear systems with input and output delays
Zhou, Bin
2014-11-01
In this paper, we study observer-based output feedback control of discrete-time linear systems with both multiple input and output delays. By generalising our recently developed truncated predictor feedback approach for state feedback stabilisation of discrete-time time-delay systems to the design of observer-based output feedback, two types of observer-based output feedback controllers, one being memory and the other memoryless, are constructed. Both full-order and reduced-order observer-based controllers are established in both the memory and memoryless schemes. It is shown that the separation principle holds for the memory observer-based output feedback controllers, but does not hold for the memoryless ones. We further show that the proposed observer-based output feedback controllers solve both the l2 and l∞ semi-global stabilisation problems. A numerical example is given to illustrate the effectiveness of the proposed approaches.
Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi
2015-02-01
With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.
Wang, Dongming
2012-10-01
This article provides algebraic settings of the stability criteria of Nyquist and Popov and the circle criterion for closed-loop linear control systems with linear or nonlinear feedback whose transfer functions are rational ones with integer coefficients. The proposed settings make use of algebraic methods of parametric curve implicitisation, real root isolation, symbolic integration and quantifier elimination and allow one to derive exact stability conditions for feedback control systems with symbolic computation. An example is presented to illustrate the algebraic approach and its effectiveness. Some numerical stability results obtained previously are confirmed.
Directory of Open Access Journals (Sweden)
Huimei Jia
2013-01-01
Full Text Available This paper is concerned with the issues of passivity analysis and dynamic output feedback (DOF passive control for uncertain switched stochastic systems with time-varying delay via multiple storage functions (MSFs method. Firstly, based on the MSFs method, a sufficient condition for the existence of the passivity of the underlying system is established in terms of linear matrix inequalities (LMIs. Furthermore, the problem of dynamic output feedback passive control is investigated. Based on the obtained passivity condition, a sufficient condition for the existence of the desired switched passive controller is derived. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Global adaptive output feedback control for a class of nonlinear time-delay systems.
Zhai, Jun-yong; Zha, Wen-ting
2014-01-01
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.
Time-Delayed Feedback Control in a Single-Mode Laser System
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The effects of time-delayed feedback control in a single-mode laser system is investigated. Using the small time delay approximation, the analytic expression of the stationary probability distribution function of the laser field is obtaincd. The mean, normalized variance and skewness of the steady-state laser intensity are calculated. It is found that the time-delayed feedback control can suppress the intensity fluctuation of the laser system. The numerical simulations are in good agreement with the approximate analytic results.
Design and Simulation of a Feedback Control System for a Steel Plate Storage
Institute of Scientific and Technical Information of China (English)
Torben; Feld; Holmgaard; Kristensen; Hans; Holm; Jesper; Hansen
2002-01-01
A discrete event heuristic feedback control system fo r a steel plate storage at Odense Steel Shipyard Ltd is developed and implemente d in a computer-based simulation model. The plant is subject to stochastic dist urbances. The control system is able to handle this stochastic behaviour bec ause of the feedback design. The present simulation results indicate that a bene fit in the range of 30%～40% is reachable by modifying the plant. Plant description The steel plate storage is located at Odense Steel ...
Phase-locked laser diode interferometer: high-speed feedback control system.
Suzuki, T; Sasaki, O; Higuchi, K; Maruyama, T
1991-09-01
We have previously proposed a phase-locked laser diode interferometer. In that previous interferometer, however, there was substantial room for improvement in the reduction of measurement time. This reduction is achieved by using a different process for generation of the feedback signal in which the output of a chargecoupled device image sensor is used effectively. We analyze the feedback control system of the interferometer as a discrete-time system and discuss the characteristics of the interferometer. It is shown that the measurement time is much shorter than that of the interferometer proposed previously.
Energy Technology Data Exchange (ETDEWEB)
Sabahi, Kamel; Teshnehlab, Mohammad; Shoorhedeli, Mahdi Aliyari [Department of Electrical Engineering, K.N. Toosi University of Technology, Intelligent System Lab, Tehran (Iran)
2009-04-15
In this study, a new adaptive controller based on modified feedback error learning (FEL) approaches is proposed for load frequency control (LFC) problem. The FEL strategy consists of intelligent and conventional controllers in feedforward and feedback paths, respectively. In this strategy, a conventional feedback controller (CFC), i.e. proportional, integral and derivative (PID) controller, is essential to guarantee global asymptotic stability of the overall system; and an intelligent feedforward controller (INFC) is adopted to learn the inverse of the controlled system. Therefore, when the INFC learns the inverse of controlled system, the tracking of reference signal is done properly. Generally, the CFC is designed at nominal operating conditions of the system and, therefore, fails to provide the best control performance as well as global stability over a wide range of changes in the operating conditions of the system. So, in this study a supervised controller (SC), a lookup table based controller, is addressed for tuning of the CFC. During abrupt changes of the power system parameters, the SC adjusts the PID parameters according to these operating conditions. Moreover, for improving the performance of overall system, a recurrent fuzzy neural network (RFNN) is adopted in INFC instead of the conventional neural network, which was used in past studies. The proposed FEL controller has been compared with the conventional feedback error learning controller (CFEL) and the PID controller through some performance indices. (author)
Chevron beam dump for ITER edge Thomson scattering system.
Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K
2013-10-01
This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.
Chevron beam dump for ITER edge Thomson scattering system
Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.
2013-10-01
This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.
Energy Technology Data Exchange (ETDEWEB)
Okubo, S. [Yamagata Univ. (Japan)
1998-11-30
The design method for stabilization of nonlinear systems by direct feedback without using evaluation function is shown. This method is a very important controlling method which is the basis for nonlinear system control, and it is expected to be applied to very wide fields. It is made clear that numerical solution is not possible because the number of equations exceeds that of variables in the extended Lyapunov equation which becomes an equation for the design. There is no concept of pole of linear system in nonlinear systems although stabilization of nonlinear system is natural extension of stabilization of linear system in case of using Lyapunov function. Numerical difficulty is avoided by the use of genetic algorithm in the design calculation, and strict designing with finite degree becomes possible as a result. This method can design strictly nonlinear feedback control law of bounded power degree to stabilize globally nonlinear system of odd highest degree polynomial. The effectiveness of this system is shown an instance of numerical calculation. 5 refs., 6 figs.
Directory of Open Access Journals (Sweden)
S. C. Dekker
2010-04-01
Full Text Available Terrestrial vegetation influences climate by modifying the radiative-, momentum-, and hydrologic-balance. This paper contributes to the ongoing debate on the question whether positive biogeophysical feedbacks between vegetation and climate may lead to multiple equilibria in vegetation and climate and consequent abrupt regime shifts. Several modelling studies argue that vegetation-climate feedbacks at local to regional scales could be strong enough to establish multiple states in the climate system. An Earth Model of Intermediate Complexity, PlaSim, is used to investigate the resilience of the climate system to vegetation disturbance at regional to global scales. We hypothesize that by starting with two extreme initialisations of biomass, positive vegetation-climate feedbacks will keep the vegetation-atmosphere system within different attraction domains. Indeed, model integrations starting from different initial biomass distributions diverged to clearly distinct climate-vegetation states in terms of abiotic (precipitation and temperature and biotic (biomass variables. Moreover, we found that between these states there are several other steady states which depend on the scale of perturbation. From here global susceptibility maps were made showing regions of low and high resilience. The model results suggest that mainly the boreal and monsoon regions have low resiliences, i.e. instable biomass equilibria, with positive vegetation-climate feedbacks in which the biomass induced by a perturbation is further enforced. The perturbation did not only influence single vegetation-climate cell interactions but also caused changes in spatial patterns of atmospheric circulation due to neighbouring cells constituting in spatial vegetation-climate feedbacks. Large perturbations could trigger an abrupt shift of the system towards another steady state. Although the model setup used in our simulation is rather simple, our results stress that the coupling of
H{sup {infinity}} State Feedback Control for Generalized Continuous/Discrete Time Delay System
Energy Technology Data Exchange (ETDEWEB)
Kim, J.H.; Lee, S.K.; Park, H.B. [Kyungpook National University, Taegu (Korea, Republic of); Jeung, E.T. [Changwon National University, Changwon (Korea, Republic of)
1998-04-01
In this paper, we consider the problem of designing H{sup {infinity}} state feedback controller for the generalized time delay systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H{sup {infinity}} state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The proposed controller design method can be extended into the problem of robust H{sup {infinity}} state feedback controller design method easily. (author). 15 refs.
A weighted mean velocity feedback strategy in intelligent two-route traffic systems
Institute of Scientific and Technical Information of China (English)
Xiang Zheng-Tao; Xiong Li
2013-01-01
Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy (WMVFS) is proposed,which is not sensitive to the precision of global position system (GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios (symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.
Quantized Feedback Control Software Synthesis from System Level Formal Specifications
Mari, Federico; Salvo, Ivano; Tronci, Enrico
2011-01-01
Many Embedded Systems are indeed Software Based Control Systems (SBCSs), that is control systems whose controller consists of control software running on a microcontroller device. This motivates investigation on Formal Model Based Design approaches for automatic synthesis of SBCS control software. We present an algorithm, along with a tool QKS implementing it, that from a formal model (as a Discrete Time Linear Hybrid System, DTLHS) of the controlled system (plant), implementation specifications (that is, number of bits in the Analog-to-Digital, AD, conversion) and System Level Formal Specifications (that is, safety and liveness requirements for the closed loop system) returns correct-by-construction control software that has a Worst Case Execution Time (WCET) linear in the number of AD bits and meets the given specifications. We show feasibility of our approach by presenting experimental results on using it to synthesize control software for a buck DC-DC converter, a widely used mixed-mode analog circuit.
Instruction, Feedback and Biometrics: The User Interface for Fingerprint Authentication Systems
Riley, Chris; Johnson, Graham; McCracken, Heather; Al-Saffar, Ahmed
Biometric authentication is the process of establishing an individual’s identity through measurable characteristics of their behaviour, anatomy or physiology. Biometric technologies, such as fingerprint systems, are increasingly being used in a diverse range of contexts from immigration control, to banking and personal computing. As is often the case with emerging technologies, the usability aspects of system design have received less attention than technical aspects. Fingerprint systems pose a number of challenges for users and past research has identified issues with correct finger placement, system feedback and instruction. This paper describes the development of an interface for fingerprint systems using an iterative, participative design approach. During this process, several different methods for the presentation of instruction and feedback were identified. The different types of instruction and feedback were tested in a study involving 82 participants. The results showed that feedback had a statistically significant effect on overall system performance, but instruction did not. The design recommendations emerging from this study, and the use of participatory design in this context, are discussed.
Research of a New 6-Dof Force Feedback Hand Controller System
Directory of Open Access Journals (Sweden)
Xin Gao
2014-01-01
Full Text Available The field of teleoperation with force telepresence has expanded its scope to include manipulation at different scales and in virtual worlds, and the key component of which is force feedback hand controller. This paper presents a novel force feedback hand controller system, including a 3-dof translational and 3-dof rotational hand controllers, respectively, to implement position and posture teleoperation of the robot end effector. The 3-dof translational hand controller adopts innovative three-axes decoupling structure based on the linear motor; the 3-dof rotational hand controller adopts serial mechanism based on three-axes intersecting at one point, improving its overall stiffness. Based on the kinematics, statics, and dynamics analyses for two platforms separately, the system applies big closed-loop force control method based on the zero force/torque, improving the feedback force/torque accuracy effectively. Experimental results show that self-developed 6-dof force feedback hand controller has good mechanical properties. The translational hand controller has the following advantages: simple kinematics solver, fast dynamic response, and better than 0.05 mm accuracy of three-axis end positioning, while the advantages of the rotational hand controller are wide turning space, larger than 1 Nm feedback, greater than 180 degrees of operating space of three axes, respectively, and high operation precision.
Libera Electron Beam Position Processor
Ursic, Rok
2005-01-01
Libera is a product family delivering unprecedented possibilities for either building powerful single station solutions or architecting complex feedback systems in the field of accelerator instrumentation and controls. This paper presents functionality and field performance of its first member, the electron beam position processor. It offers superior performance with multiple measurement channels delivering simultaneously position measurements in digital format with MHz kHz and Hz bandwidths. This all-in-one product, facilitating pulsed and CW measurements, is much more than simply a high performance beam position measuring device delivering micrometer level reproducibility with sub-micrometer resolution. Rich connectivity options and innate processing power make it a powerful feedback building block. By interconnecting multiple Libera electron beam position processors one can build a low-latency high throughput orbit feedback system without adding additional hardware. Libera electron beam position processor ...
A new beam diagnostic system for the MASHA setup
Motycak, S.; Rodin, A. M.; Novoselov, A. S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yuchimchuk, S. A.; Komarov, A. B.; Kamas, D.
2016-09-01
A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).
Lee, Cynthia; Cheung, William Kwok Wai; Wong, Kelvin Chi Kuen; Lee, Fion Sau Ling
2013-01-01
This article is an effort to add to computer-assisted language learning by extending a study on an essay critiquing system (ECS) feedback to secondary school language learners' writing. The study compared two groups of participants' performance, namely the treatment group which received both the system feedback and teacher feedback (i.e., blended…
USING RANDOM PROPORTIONAL PULSE FEEDBACK OF SYSTEM VARIABLES TO CONTROL CHAOS AND HYPERCHAOS
Institute of Scientific and Technical Information of China (English)
LUO XIAO-SHU; WANG BING-HONG; GAO YUAN; JIANG FENG
2001-01-01
A method that allows one to control chaotic and hyperchaotic systems by a random proportional pulse feedback of system variables is proposed. This method is illustrated with the Rossler chaotic and the complex Lorenz-Harken hyperchaotic systems, and a better control result is obtained. The advantage of this method is that just one perturbed system variable is enough to obtain a stabilized periodic orbit.
Measurements of Beam Ion Loss from the Compact Helical System
Energy Technology Data Exchange (ETDEWEB)
D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan
2010-02-03
Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.
Rapid cycling medical synchrotron and beam delivery system
Peggs, Stephen G.; Brennan, J. Michael; Tuozzolo, Joseph E.; Zaltsman, Alexander
2008-10-07
A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.
Beam Diagnostics Systems For The National Ignition Facility
Demaret, R D; Bliss, E S; Gates, A J; Severyn, J R
2001-01-01
The National Ignition Facility laser focuses 1.8 Mega-joules of ultraviolet light (wavelength 351 nano-meters) from 192 beams into a 600-micro-meter-diameter volume. Effective use of this output in target experiments requires that the power output from all the beams match within 8% over their entire 20-nanosecond waveform. The scope of NIF beam diagnostics systems necessary to accomplish this task is unprecedented for laser facilities. Each beam line contains 110 major optical components distributed over a 510 meter path, and diagnostic tolerances for beam measurement are demanding. Total laser pulse energy is measured with 2.8% precision, and the inter-beam temporal variation of pulse power is measured with 4% precision. These measurement goals are achieved through use of approximately 160 sensor packages that measure the energy at five locations and power at 3 locations along each beamline using 335 photodiodes, 215 calorimeters and 36 digitizers. Successful operation of such a system requires a high level ...
The LEP RF Trip and Beam Loss Diagnostics System
Arnaudon, L; Beetham, G; Ciapala, Edmond; Juillard, J C; Olsen, R
2002-01-01
During the last years of operation the number of operationally independent RF stations distributed around LEP reached a total of 40. A serious difficulty when running at high energy and high beam intensities was to establish cause and effect in beam loss situations, where the trip of any single RF station would result in beam loss, rapidly producing further multiple RF station trips. For the last year of operation a fast post-mortem diagnostics system was developed to allow precise time-stamping of RF unit trips and beam intensity changes. The system was based on eight local DSP controlled fast acquisition and event recording units, one in each RF sector, connected to critical RF control signals and fast beam intensity monitors and synchronised by GPS. The acquisition units were armed and synchronised at the start of each fill. At the end of the fill the local time-stamped RF trip and beam intensity change history tables were recovered, events ordered and the results stored in a database for subsequent analys...
Directory of Open Access Journals (Sweden)
Gao Dexin
2012-10-01
Full Text Available This paper concentrates on the solution of state feedback exact linearization zero steady-state error optimal control problem for nonlinear systems affected by external disturbances. Firstly, the nonlinear system model with external disturbances is converted to quasi-linear system model by differential homeomorphism. Using Internal Model Optional Control (IMOC, the disturbances compensator is designed, which exactly offset the impact of external disturbances on the system. Taking the system and the disturbances compensator in series, a new augmented system is obtained. Then the zero steady-state error optimal control problem is transformed into the optimal regulator design problem of an augmented system, and the optimal static error feedback control law is designed according to the different quadratic performance index. At last, the simulation results show the effectiveness of the method.
Stabilization of generalized fractional order chaotic systems using state feedback control
Energy Technology Data Exchange (ETDEWEB)
Ahmad, Wajdi M. E-mail: wajdi@sharjah.ac.ae; El-Khazali, Reyad E-mail: khazali@ece.ac.ae; Al-Assaf, Yousef E-mail: yassaf@aus.ac.ae
2004-10-01
In this paper, we address the problem of chaos control of three types of fractional order systems using simple state feedback gains. Electronic chaotic oscillators, mechanical 'jerk' systems, and the Chen system are investigated when they assume generalized fractional orders. We design the static gains to place the eigenvalues of the system Jacobian matrices in a stable region whose boundaries are determined by the orders of the fractional derivatives. We numerically demonstrate the effectiveness of the controller in eliminating the chaotic behavior from the state trajectories, and driving the states to the nearest equilibrium point in the basin of attraction. For the recently introduced Chen system, in particular, we demonstrate that with a proper choice of model parameters, chaotic behavior is preserved when the system order becomes fractional. Both state and output feedback controllers are then designed to stabilize a generalized fractional order Chen system.
Output Feedback Controller Design with Symbolic Observers for Cyber-physical Systems
Directory of Open Access Journals (Sweden)
Masashi Mizoguchi
2016-12-01
Full Text Available In this paper, we design a symbolic output feedback controller of a cyber-physical system (CPS. The physical plant is modeled by an infinite transition system. We consider the situation that a finite abstracted system of the physical plant, called a c-abstracted system, is given. There exists an approximate alternating simulation relation from the c-abstracted system to the physical plant. A desired behavior of the c-abstracted system is also given, and we have a symbolic state feedback controller of the physical plant. We consider the case where some states of the plant are not measured. Then, to estimate the states with abstracted outputs measured by sensors, we introduce a finite abstracted system of the physical plant, called an o-abstracted system, such that there exists an approximate simulation relation. The relation guarantees that an observer designed based on the state of the o-abstracted system estimates the current state of the plant. We construct a symbolic output feedback controller by composing these systems. By a relation-based approach, we proved that the controlled system approximately exhibits the desired behavior.
X-ray cone beam CT system calibration
Sire, Pascal; Rizo, Philippe; Martin, M.
1993-12-01
Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.
Summary of impedance issues and beam instabilities
Zimmermann, Frank
2016-01-01
This paper summarizes the session on impedance issues and beam instabilities at the ICFA workshop on future circular electron-positron factories “eeFACT2016” [1] held at the Cockcroft Institute, Daresbury, from 24 to 27 October 2016. This session also covered active beam stabilization by feedback systems. Beam-beam effects and coherent beambeam instabilities were addressed separately and, therefore, are not included here.
Sliding Mode Reference Coordination of Constrained Feedback Systems
Alejandro Vignoni; Fabricio Garelli; Jesús Picó
2013-01-01
This paper addresses the problem of coordinating dynamical systems with possibly different dynamics (e.g., linear and nonlinear, different orders, constraints, etc.) to achieve some desired collective behavior under the constraints and capabilities of each system. To this end, we develop a new methodology based on reference conditioning techniques using geometric set invariance and sliding mode control: the sliding mode reference coordination (SMRCoord). The main idea is to coordinate the sys...
Active Nonlinear Feedback Control for Aerospace Systems. Processor
1990-12-01
Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply Existence of a Linear Stabilizing Control ," IEEE Trans...799-802, 1985. 13. I. R. Petersen, "Quadratic Stabilizability of Uncertain Linear Systems: Existence of a Nonlinear Stabilizing Control Does Not Imply...Existence of a Linear Stabilizing Control ," IEEE Trans. Autom. Contr., Vol. AC-30, pp. 291-293, 1985. 14. B. R. Barmish and A. R. Galimidi
OUTPUT FEEDBACK CONTROL FOR MIMO NONLINEAR SYSTEMS WITH EXOGENOUS SIGNALS
Institute of Scientific and Technical Information of China (English)
Ying ZHOU; Yuqiang WU
2006-01-01
The paper addresses the global output tracking of a class of multi-input multi-output(MIMO) nonlinear systems affected by disturbances, which are generated by a known exosystem. An adaptive controller is designed based on the proposed observer and the backstepping approach to asymptotically track arbitrary reference signal and to guarantee the boundedness of all the signals in the closed loop system. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.
Institute of Scientific and Technical Information of China (English)
潘子刚; 刘允刚; 施颂椒
2001-01-01
In this paper, we study the problem of output feedback stabilization for stochastic nonlinear systems. We consider a class of stochastic nonlinear systems in observer canonical form with stable zero-dynamics. We introduce a sequence of state transformations that transform the system into a lower triangular structure that is amenable for integrator backstepping design. Then we design the output-feedback controller and prove that the closed-loop system is bounded in probability. Furthermore, when the disturbance vector field vanishes at the origin, the closed-loop system is asymptotically stable in the large. With special care, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.
High-performance laser power feedback control system for cold atom physics
Institute of Scientific and Technical Information of China (English)
Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen
2011-01-01
@@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.
Enhancement of mobility in an interacting colloidal system under feedback control.
Gernert, Robert; Klapp, Sabine H L
2015-08-01
Feedback control schemes are a promising way to manipulate transport properties of driven colloidal suspensions. In the present article, we suggest a feedback scheme to enhance the collective transport of colloidal particles with repulsive interactions through a one-dimensional tilted washboard potential. The control is modeled by a harmonic confining potential, mimicking an optical "trap," with the center of this trap moving with the (instantaneous) mean particle position. Our theoretical analysis is based on the Smoluchowski equation combined with dynamical density functional theory for systems with hard-core or ultrasoft (Gaussian) interactions. For either type of interaction, we find that the feedback control can lead to an enhancement of the mobility by several orders of magnitude relative to the uncontrolled case. The largest effects occur for intermediate stiffness of the trap and large particle numbers. Moreover, in some regions of the parameter space the feedback control induces oscillations of the mean velocity. Finally, we show that the enhancement of mobility is robust against a small time delay in implementing the feedback control.
On the M/G/1 queueing system with multiclass customers and fixed feedback
Institute of Scientific and Technical Information of China (English)
ZHANG Qi-zhi
2008-01-01
The M/G/1 queueing system with multiclass customer arrivals, fixed feedback, and first come first served policy is considered, where different classes of customers have different arrival rates, service-time distributions, and feedback numbers. The joint probability generation function of queue size of each class and the Laplace-Stieltjes transform of the total sojourn time of a customer in each class are presented, which extended the results obtained by Choi B D. The mean queue size of each class and mean total sojourn time of a customer in each class are obtained with this result. The results can be used in computer and communication networks for their performance analysis.
Directory of Open Access Journals (Sweden)
Heli Hu
2014-01-01
Full Text Available The design of the dynamic output feedback H∞ control for uncertain interconnected systems of neutral type is investigated. In the framework of Lyapunov stability theory, a mathematical technique dealing with the nonlinearity on certain matrix variables is developed to obtain the solvability conditions for the anticipated controller. Based on the corresponding LMIs, the anticipated gains for dynamic output feedback can be achieved by solving some algebraic equations. Also, the norm of the transfer function from the disturbance input to the controlled output is less than the given index. A numerical example and the simulation results are given to show the effectiveness of the proposed method.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In the paper,we investigate the problem of finding a piecewise output feedback control law for an uncertain affine system such that the resulting closed-loop output satisfies a desired linear temporal logic (LTL) specification.A two-level hierarchical approach is proposed to solve the problem in a triangularized output space.In the lower level,we explore whether there exists a robust output feedback control law to make the output starting in a simplex either remains in it or leaves via a specific facet.In t...
Directory of Open Access Journals (Sweden)
Shuiqing Yu
2013-01-01
Full Text Available This paper investigates the dynamic output feedback control for nonlinear networked control systems with both random packet dropout and random delay. Random packet dropout and random delay are modeled as two independent random variables. An observer-based dynamic output feedback controller is designed based upon the Lyapunov theory. The quantitative relationship of the dropout rate, transition probability matrix, and nonlinear level is derived by solving a set of linear matrix inequalities. Finally, an example is presented to illustrate the effectiveness of the proposed method.
Analysis of the traffic running cost in a two-route system with feedback strategy
Tang, Tie-Qiao; Yu, Qiang; Liu, Kai
2017-01-01
In this paper, we apply the FVD (full velocity difference) model to study the influences of MVFS (mean velocity feedback strategy) and NVFS (the number of vehicles feedback strategy) on each vehicle's running cost and each route's total cost in a two-route system from the numerical perspective. The numerical results illustrate that MFVS and NVFS have significant effects on each vehicle's running cost and each route's total cost, and that the impacts, each vehicle's running cost and each route's total cost are related to the gap of each vehicle's departure time at the origin.
Global stabilizer of a general class of feedback nonlinear systems and its exponential convergence
Institute of Scientific and Technical Information of China (English)
Runing MA; Jundi DIAN
2005-01-01
We discuss the global stabilization procedure which renders a general class of feedback nonlinear systems exponential convergent. Our stabilizer consists of a nested saturation function, which is a nonlinear combination of satrration functions. Here we prove the exponential convergence of the stabilizer for the first time and give numerical examples to illustrate the efficiency of the result given above.
Approaching Error-Free Customer Satisfaction through Process Change and Feedback Systems
Berglund, Kristin M.; Ludwig, Timothy D.
2009-01-01
Employee-based errors result in quality defects that can often impact customer satisfaction. This study examined the effects of a process change and feedback system intervention on error rates of 3 teams of retail furniture distribution warehouse workers. Archival records of error codes were analyzed and aggregated as the measure of quality. The…
Positive Periodic Solutions of Cooperative Systems with Delays and Feedback Controls
Directory of Open Access Journals (Sweden)
Tursuneli Niyaz
2013-01-01
Full Text Available This paper studies a class of periodic n species cooperative Lotka-Volterra systems with continuous time delays and feedback controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new sufficient conditions on the existence of positive periodic solutions are established.
Effectiveness of Feedback for Enhancing English Pronunciation in an ASR-Based CALL System
Wang, Y.-H.; Young, S. S.-C.
2015-01-01
This paper presents a study on implementing the ASR-based CALL (computer-assisted language learning based upon automatic speech recognition) system embedded with both formative and summative feedback approaches and using implicit and explicit strategies to enhance adult and young learners' English pronunciation. Two groups of learners including 18…
A new algorithm for pole assignment of single-input linear systems using state feedback
Institute of Scientific and Technical Information of China (English)
QIAN Jiang; CHENG Mingsong; XU Shufang
2005-01-01
In this paper we present a new algorithm for the single-input pole assignment problem using state feedback. This algorithm is based on the Schur decomposition of the closed-loop system matrix, and the numerically stable unitary transformations are used whenever possible, and hence it is numerically reliable.The good numerical behavior of this algorithm is also illustrated by numerical examples.
Robust Admissibilization of Descriptor Systems by Static Output-Feedback: An LMI Approach
Directory of Open Access Journals (Sweden)
M. Chaabane
2011-01-01
static output-feedback is studied in this paper and an approach to solve it is proposed. For this, sufficient conditions are derived for the closed-loop system to be admissible (i.e., stable, regular, and impulse-free. These conditions are expressed in terms of a strict Linear Matrix Inequality (LMI; so they are tractable using numerical computations. The proposed controller design methodology is based on two steps: the first is dedicated to synthesizing a classical state-feedback controller, which is used as the initial value for the second step, which uses an LMI problem to obtain static output-feedback controllers that give admissibility. Finally, a numerical example is given to illustrate the results.
Optimal feedback control of linear quantum systems in the presence of thermal noise
Genoni, Marco G.; Mancini, Stefano; Serafini, Alessio
2013-04-01
We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to nonclassical stationary states by feedback loops based on weak measurements and conditioned linear driving. We derive general analytical upper bounds for the single-mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the optimal continuous measurements conditioning the feedback loop is high enough. We also consider the performance of feedback strategies based on homodyne detection and show that, at variance with the optimal measurements, it degrades with increasing temperature.
Simulation of feedback instability in the coupled magnetosphere-ionosphere system
Hasegawa, Hiroki; Ohno, Nobuaki; Sato, Tetsuya
2010-08-01
Quiet auroral arcs formation has been investigated theoretically and numerically in a self-consistent dynamic way. By using a three-dimensional magneto-hydro-dynamics simulation of a dipole magnetosphere-ionosphere coupling system, it is shown that multiple longitudinally striated structures of the ionospheric plasma density and the field-aligned current are formed, resulting from nonlinear feedback instability. The areas where these structures appear are consistent with the prediction by the integrated feedback theory that includes the effects of the spatially non-uniform electric field and non-uniform plasma density. Effects of the difference of the field line lengths between the ionosphere and the magnetospheric equator over the auroral latitudes are also discussed on the feedback instability.
Infinite-Dimensional Feedback Systems: The Circle Criterion and Input-to-State Stability
2008-01-01
An input-to-state stability theory, which subsumes results of circle criterion type, is developed in the context of a class of infinite-dimensional systems. The generic system is of Lur’e type: a feedback interconnection of a well-posed infinite-dimensional linear system and a nonlinearity. The class of nonlinearities is subject to a (generalized) sector condition and contains, as particular subclasses, both static nonlinearities and hysteresis operators of Preisach type.
Delay-dependent state feedback robust stabilization for uncertain singular time-delay systems
Institute of Scientific and Technical Information of China (English)
Gao Huanli; Xu Bugong
2008-01-01
The problem of robust stabilization for uncertain singular time-delay systems is studied.First,a new delay-dependent asymptotic stability criteria for normal singular time-delay systems is given,which is less conservative.Using this result,the problem of state feedback robust stabilization for uncertain singular time-delay systems is discussed.Finally,two examples are given to illustrate the effectiveness of the results.
Recovery of systems with a linear filter and nonlinear delay feedback in periodic regimes.
Ponomarenko, V I; Prokhorov, M D
2008-12-01
We propose a set of methods for the estimation of the parameters of time-delay systems with a linear filter and nonlinear delay feedback performing periodic oscillations. The methods are based on an analysis of the system response to regular external perturbations and are valid only for systems whose dynamics can be perturbed. The efficiency of the methods is illustrated using both numerical and experimental data.
A Versatile Beam Loss Monitoring System for CLIC
Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten
2016-01-01
The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...
Understanding Beam Alignment in a Coherent Lidar System
Prasad, Narasimha S.; Roychoudhari, Chandrasekhar
2015-01-01
Optical beam alignment in a coherent lidar (or ladar) receiver system plays a critical role in optimizing its performance. Optical alignment in a coherent lidar system dictates the wavefront curvature (phase front) and Poynting vector) matching of the local oscillator beam with the incoming receiver beam on a detector. However, this alignment is often not easy to achieve and is rarely perfect. Furthermore, optical fibers are being increasingly used in coherent lidar system receivers for transporting radiation to achieve architectural elegance. Single mode fibers also require stringent mode matching for efficient light coupling. The detector response characteristics vary with the misalignment of the two pointing vectors. Misalignment can lead to increase in DC current. Also, a lens in front of the detector may exasperate phase front and Poynting vector mismatch. Non-Interaction of Waves, or the NIW property indicates the light beams do not interfere by themselves in the absence of detecting dipoles. In this paper, we will analyze the extent of misalignment on the detector specifications using pointing vectors of mixing beams in light of the NIW property.
The control system for the LEP beam dump
Energy Technology Data Exchange (ETDEWEB)
Carlier, E. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Aimar, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Bretin, J.L. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Marchand, A. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Mertens, V. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland)); Verhagen, H. (CERN, SL Division, CH-1211 Geneva 23 (Switzerland))
1994-12-15
A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))
Robust adaptive dynamic programming and feedback stabilization of nonlinear systems.
Jiang, Yu; Jiang, Zhong-Ping
2014-05-01
This paper studies the robust optimal control design for a class of uncertain nonlinear systems from a perspective of robust adaptive dynamic programming (RADP). The objective is to fill up a gap in the past literature of adaptive dynamic programming (ADP) where dynamic uncertainties or unmodeled dynamics are not addressed. A key strategy is to integrate tools from modern nonlinear control theory, such as the robust redesign and the backstepping techniques as well as the nonlinear small-gain theorem, with the theory of ADP. The proposed RADP methodology can be viewed as an extension of ADP to uncertain nonlinear systems. Practical learning algorithms are developed in this paper, and have been applied to the controller design problems for a jet engine and a one-machine power system.
Multiuser Beamforming with Limited Feedback for FDD Massive MIMO Systems
Directory of Open Access Journals (Sweden)
Senyao Zheng
2016-01-01
Full Text Available This paper discusses the multiuser beamforming in FDD massive MIMO systems. It first introduces the feature of FDD massive MIMO systems to implement multiuser beamforming schemes. After that, considering the realistic implementation of multiuser beamforming scheme in FDD massive MIMO systems, it introduces the knowledge of channel quantization. In the main part of the paper, we introduce two traditional multiuser beamforming schemes and analyse their merits and demerits. Based on these, we propose a novel multiuser beamforming scheme to flexibly combine the merits of the traditional beamforming schemes. In the final part of the paper, we give some simulation results to compare the beamforming schemes mentioned in the paper. These simulation results show the superiority of the proposed beamforming scheme.
Influence of perturbative phase noise on active coherent polarization beam combining system.
Ma, Pengfei; Zhou, Pu; Wang, Xiaolin; Ma, Yanxing; Su, Rongtao; Liu, Zejin
2013-12-02
In this manuscript, the influence of perturbative phase noise on active coherent polarization beam combining (CPBC) system is studied theoretically and experimentally. By employing a photo-detector to obtain phase error signal for feedback loop, actively coherent polarization beam combining of two 20 W-level single mode polarization-maintained (PM) fiber amplifiers are demonstrated with more than 94% combining efficiency. Then the influence of perturbative phase noise on active CPBC system is illustrated by incorporating a simulated phase noise signal in one of the two amplifiers. Experimental results show that the combining efficiency of the CPBC system is susceptible to the frequency or amplitude of the perturbative phase noise. In order to ensure the combining efficiency of the unit of CPBC system higher than 90%, the competence of our active phase control module for high power operation is discussed, which suggests that it could be worked at 100s W power level. The relationship between residual phase noise of the active controller and the normalized voltage signal of the photo-detector is developed and validated experimentally. Experimental results correspond exactly with the theoretically analyzed combining efficiency. Our method offers a useful approach to estimate the influence of phase noise on CPBC system.
Nonlinear System Design: Adaptive Feedback Linearization with Unmodeled Dynamics
1991-09-30
First, we address severe restrictions of the two currently available types of the regulation problem . In Section 11 we characterize the schemes: the...existence of such a Lyapunov II. THE CLASS OF NONLINEAR SYSTEMS function cannot be aserned a priori. fa . The adaptive regulation problem will first be
Adaptive Fuzzy Tracking Control for a Class of MIMO Nonlinear Systems in Nonstrict-Feedback Form.
Chen, Bing; Lin, Chong; Liu, Xiaoping; Liu, Kefu
2015-12-01
This paper focuses on the problem of fuzzy adaptive control for a class of multiinput and multioutput (MIMO) nonlinear systems in nonstrict-feedback form, which contains the strict-feedback form as a special case. By the condition of variable partition, a new fuzzy adaptive backstepping is proposed for such a class of nonlinear MIMO systems. The suggested fuzzy adaptive controller guarantees that the proposed control scheme can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking errors eventually converge to a small neighborhood around the origin. The main advantage of this paper is that a control approach is systematically derived for nonlinear systems with strong interconnected terms which are the functions of all states of the whole system. Simulation results further illustrate the effectiveness of the suggested approach.
Herber, R. F. M.; Pieters, H. J.; Roelofsen, A. M.; Van Deijck, W.
A new pyrometric temperature feedback control system for ETA-AAS is introduced which controls the entire temperature range needed for analysis. The system consists of a single infrared sensitive detector and independent feedback control circuitry for the three separate heating stages of a Varian CRA 63 or CRA 90 power supply to which it was added. The temperature region covered by the system encompassed from 300 to 3300 K. The precision of the temperature control amounts to ±20 K at 330 K., ±5 K at 700 K and ±2 K at 2300 K. In order to test the performance of the system, lead in blood and cadmium in urine were determined. Substantial improvements as compared to the conventional system were obtained with respect to optimization of the temperature program, precision and sensitivity. Patent pending.
Multi source feedback based performance appraisal system using Fuzzy logic decision support system
Meenakshi, G
2012-01-01
In Multi-Source Feedback or 360 Degree Feedback, data on the performance of an individual are collected systematically from a number of stakeholders and are used for improving performance. The 360-Degree Feedback approach provides a consistent management philosophy meeting the criterion outlined previously. The 360-degree feedback appraisal process describes a human resource methodology that is frequently used for both employee appraisal and employee development. Used in employee performance appraisals, the 360-degree feedback methodology is differentiated from traditional, top-down appraisal methods in which the supervisor responsible for the appraisal provides the majority of the data. Instead it seeks to use information gained from other sources to provide a fuller picture of employees' performances. Similarly, when this technique used in employee development it augments employees' perceptions of training needs with those of the people with whom they interact. The 360-degree feedback based appraisal is a c...
BACKWARD WELLPOSEDNESS OF NONUNIFORM TIMOSHENKO BEAM EQUATION
Institute of Scientific and Technical Information of China (English)
司守奎
2001-01-01
In this paper,we consider the Timoshenko equation of a nonuniform beam,with clamped boundary condition at one end and with feedback controls at the other end.It is proved that the system is backward wellposedness when the feedback controls are weak enough.