WorldWideScience

Sample records for beam factory project

  1. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  2. RI beam factory project at RIKEN

    International Nuclear Information System (INIS)

    The RI Beam Factory is being proposed at RIKEN, which is a project to construct two superconducting ring cyclotrons (SRC-4 and SRC-6), experimental storage rings (MUSES) and experimental facilities. Heavy ions are to be accelerated to energies of up to 400 AMeV for light nuclei and 150 AMeV for the heaviest nuclei by the SRC-6 and up to 1400 AMeV in the MUSES. Wide varieties of radioactive nuclear beams are to be supplied as secondary beams. Electrons, stable nuclei, and highly charged ions in addition to radioactive nuclei can be stored in the storage rings. The MUSES provides various collision methods, such as colliding, merging, and internal target modes. A few of the selected new nuclear-physics opportunities are discussed briefly. (author)

  3. The MUSES project at the RIKEN RI beam factory

    International Nuclear Information System (INIS)

    At RIKEN, the Radio Isotope Beam Factory, RIBF is proposed as an expansion of the existing heavy ion accelerators. A new type experiments facility, MUSES (multi-use experimental storage rings), is planned for this RI beam factory. It consists of an accumulator cooler ring (ACR), a booster synchrotron ring (BSR) with an ijnector electron linac and double storage rings (DSR). This MUSES will be installed downstream from the Superconducting Ring Cyclotron (SRC) and RI separator, Big-RIPS. The DSR permits various types of unique colliding experiments; ion-ion merging or collisions; collisions of electron and ion (stable or RI) beams and collisions of RI with high brilliant X-rays from an undulator. The ACR serves for the accumulation and cooling of RI beams and for atomic and molecular physics with cooler electron beams. The BSR works solely for the acceleration of ion and electron beams. In the present paper, the basic concept of the MUSES accelerator are descibed emphasizing the case of electron-RI collisions at the DSR

  4. RIKEN radioactive isotope beam factory project – Present status and perspectives

    Indian Academy of Sciences (India)

    H Sakurai

    2010-08-01

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis is given to the present status and future plans of new devices.

  5. Longitudinal Beam Stability in the SUPER B-FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A.; /SLAC; Zobov, M.; /Frascati

    2009-07-06

    We give an overview of wake fields and impedances in a proposed Super B project, which is based on extremely low emittance beams colliding at a large angle with a crab waist transformation. Understanding the effects that wake fields have on the beam is critical for a successful machine operation. We use our combined experience from the operation of the SLAC B-factory and DA{Phi}NE {Phi}-factory to eliminate strong HOM sources and minimize the chamber impedance in the Super B design. Based on a detailed study of the wake fields in this design we have developed a quasi-Green's function for the entire ring that is used to study bunch lengthening and beam stability. In particular, we check the stability threshold using numerical solutions of the Fokker-Plank equation. We also make a comparison of numerical simulations with the bunch lengthening data in the B- factory.

  6. Intense muon beams and neutrino factories

    International Nuclear Information System (INIS)

    High intensity muon sources are needed in exploring neutrino factories, lepton flavor violating muon processes, and lower energy experiments as the stepping phase towards building higher energy μ+μ- colliders. We present a brief overview, sketch of a neutrino source, and an example of a muon storage ring at BNL with detector(s) at Fermilab, Sudan, etc. Physics with low energy neutrino beams based on muon storage rings (μSR) and conventional Horn Facilities are described and compared. CP violation Asymmetries and a new Statistical Figure of Merit to be used for comparison is given. Improvements in the sensitivity of low energy experiments to study Flavor changing neutral currents are also included

  7. Frontiers of particle beams: Factories with e+e- rings

    International Nuclear Information System (INIS)

    The present volume is the proceedings of the latest of these joint schools, held in Benalmadena, Spain. This course dealt with the design and development of high performance ''factories'' using e+e- colliders. Topics covered were: physics motivation, overall design of factories and their detectors, high luminosity injection, short bunches, instabilities, feedback, beam-beam interaction, lattice and interaction-region design, special schemes, RF, vacuum, ion clearing and background. See hints under the relevant topics. (orig.)

  8. Collection and acceleration of muons for the neutrino factory project

    International Nuclear Information System (INIS)

    The neutrino factory project is an international cooperation project of a complex of accelerators aimed at the production of an intense flow of neutrinos from the decay of a muon beam. After an introduction to this project and a general presentation of the accelerator complex, this research thesis reports transmission investigations performed on a quadric-polar muon collecting canal, recalls the concepts of dynamic beam in a circular accelerator, and describes and comments the different types of Fixed Field Alternating Gradient (FFAG) accelerators considered for the acceleration of muons. It discusses the development of the Zgoubi's corpuscular optics code in terms of trajectory tracing method for FFAG accelerators. Finally, it reports and comments results of a numerical simulation of beam dynamics performed on muon FFAG accelerators

  9. Software Development Factories, the Project Management Perspective

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2012-01-01

    Full Text Available In a software factory, the applications are developed in the same way Henri Ford started manufacturing cars. In such a way, a customized solution could be obtained within a reasonable budget and within the foreseen timeframe. This development method offers a flexible solution that can be readapted rapidly and automatically to the changing business needs, so the Project Management becomes a real challenge.

  10. Measurement of Pionic 121Sn atoms at the RI beam factory

    International Nuclear Information System (INIS)

    We have measured the energy spectrum of pionic 121Sn atoms by missing-mass spectroscopy of the 122Sn(d, 3He) reaction near the π − emission threshold. The measurement serves as a pilot experiment for high precision systematic spectroscopy of deeply bound pionic atoms in a new pionic Atom Factory project (piAF) at the RI beam factory (RIBF) of RIKEN. The status of the analysis is reported.

  11. Beam finding algorithms at the interaction point of B factories

    International Nuclear Information System (INIS)

    We review existing methods to bring beams in collision in circular machines, and examine collision alignment strategies proposed for e+e-B-factories. The two-ring feature of such machines, while imposing more stringent demands on beam control, also opens up new diagnostic possibilities

  12. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    Energy Technology Data Exchange (ETDEWEB)

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  13. The B-factory project at KEK

    International Nuclear Information System (INIS)

    The B-Factory project at KEK aims to construct an accelerator complex to detect the CP-violation effect of B-mesons. It is a two-ring electron-positron collider of 3.5 x 8 GeV in the existing TRISTAN tunnel. The design peak luminosity is 1034 cm-2s-1, which will be realized in two steps: from a small-angle collision with a luminosity of 2 x 1033 cm-2s-1 to a large-angle crab-crossing scheme with the final luminosity of 1034 cm-2s-1. (orig.)

  14. The neutrino factory and beta beam experiments and development

    Energy Technology Data Exchange (ETDEWEB)

    Albright, C.; Barger, V.; Beacom, J.F.; Berg, J.S.; Black, E.; Blondel, A.; Bogacz, S.; Brice, S.; Caspi, S.; Chou, W.; Cummings, M.; Fernow, R.; Finley, D.; Gallardo,; Geer, S.; Gomez-Cadenas, J.J.; Goodman, M.; Harris, D.; Huber, Patrick; Jansson, A.; Johnstone, C.; /Fermilab /Wisconsin U., Madison /Brookhaven /IIT, Chicago /Geneva U.

    2004-11-01

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here.

  15. Beam-Loading Compensation for Super B-Factories

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, D.; /SLAC

    2005-12-14

    Super B-factory designs under consideration expect to reach luminosities in the 10{sup 35}-10{sup 36} range. The dramatic luminosity increase relative to the existing B-factories is achieved, in part, by raising the beam currents stored in the electron and positron rings. For such machines to succeed it is necessary to consider in the RF system design not only the gap voltage and beam power, but also the beam loading effects. The main effects are the synchronous phase transients due to the uneven ring filling patterns and the longitudinal coupled-bunch instabilities driven by the fundamental impedance of the RF cavities. A systematic approach to predicting such effects and for optimizing the RF system design will be presented. Existing as well as promising new techniques for reducing the effects of heavy beam loading will be described and illustrated with examples from the PEP-II and the KEKB.

  16. Beam transport of PF (Positron Factory) 2.5-GeV linac

    International Nuclear Information System (INIS)

    The beam transport is one of the most important problems in the linac to be used as the injector for the B-FACTORY accelerators. A basic problem of the beam transport is how to correct transport parameters immediately when a klystron becomes off. This is studied with the PF (Positron Factory) 2.5-GeV linac. (author)

  17. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.; Lopez-Pavon, J.; Rigolin, S.; Mondal, N.; Palladino, V.; Filthaut, F.; Albright, C.; de Gouvea, A.; Kuno, Y.; Nagashima, Y.; Mezzetto, M.; Lola, S.; Langacker, P.; Baldini, A.; Nunokawa, H.; Meloni, D.; Diaz, M.; King, S. F.; Zuber, K.; Akeroyd, A. G.; Grossman, Y.; Farzan, Y.; Tobe, K.; Aoki, Mayumi; Murayama, H.; Kitazawa, N.; Yasuda, O.; Petcov, S.; Romanino, A.; Chimenti, P.; Vacchi, A.; Smirnov, A. Yu; Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.; Harrison, P. F.; Lunardini, C.; Nelson, J. K.; Barger, V.; Everett, L.; Huber, P.; Winter, W.; Fetscher, W.; van der Schaaf, A.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams

  18. Green Project System Design of Machine Process Factory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers' work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members' endeavor of task group, we have finished the total plan of green project system and some other ...

  19. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  20. B-factory via conversion of 1-TeV electron beams into 1-TeV photon beams

    International Nuclear Information System (INIS)

    This paper reports on the study of CP violation and rare decays of beauty particles which are pressing problems in high-energy physics. It is known that one should analyze beauty decays of at least the order of 108 or 199. Thus, numerous proposals for beauty factories are being discussed now, although some of these projects are likely to supply much smaller numbers of beauty events. At the same time, at present several projects, such as CLIC (Cern Linear Collider), expect to build linear e+e- colliders with beam energies up to 1 TeV. The aim of this work is to show that the possibility exists of using the unique features of the discussed teraelectron volt electron linacs to obtain a facility for the production of beauty via photoproduction of nuclei. Unique features of high-energy photoproduction are as follows. The rather large fraction (∼2 x 10-4) of events with beauty at Eγ ∼ 1 TeV. Beauty particles are produced with about equally large momenta ∼0.05 Eγ and at rather large transverse momenta p t ∼ mb. The following scheme can be envisioned. The 1-TeV electron beam is Compton scattered off a low-energy (∼ 1-eV) laser pulse. The laser photons are thus converted into a highly collimated beam of energy Eγ ∼ Ee, directed along the electron's original line of motion. Such schemes to produce high-energy photon beams have been discussed. These 1-TeV photons are subsequently scattered onto a nuclear target to produce b bar b pairs

  1. Performance of the biogas project in Ziyang sugar factory

    Energy Technology Data Exchange (ETDEWEB)

    Dezhao He [Chengdu Biogas Research Inst., Chengdu (China)

    2000-07-01

    Located in Houjiaping town, Ziyang county, Ziyang Sugar Factory was installed in 1958 as a state enterprise, which mainly processes sugar cane to produce sugar. Sideline products include alcohol and paper. Nowadays, its daily capacity of sugar cane extraction is 1,000 tons and potable alcohol production is 15 - 20 tons. Its annual output value is 25 million Yuan. This plant is one of the backbones in Sichuan sugar cane processing enterprises. The biogas project of the Ziyang Sugar Factory was one of the large biogas installations in China, completed during the Seventh Five-year Plan. The distillery wastewater (slops) from the alcoholic fermentation process of starch (fresh potato, dry potato, kernel and Chinese sorghum) and sugar molasses as substrates is disposed of. The slop has a low pH, a high organic concentration, a high content of suspended solids, a dark colour and a high temperature. Its daily discharge quantity is 200 tons corresponding to 2/3 of total wastewater in that plant. It is a serious source of water pollution when it is directly discharged into Tuojiang River. Therefore, due to its high concentration of polluting substances, anaerobic treatment of distillery wastewater has been decided. This is the first case of wastewater treatment in Nudging city. The construction of this biogas installation started in July 1987. On November 25, 1988, the digester began to produce biogas. Up to now, the digesters have properly operated for more than one year. Besides its use as daily household fuel for the 810 employees, biogas is also supplied to the plant cafeteria as cooking fuel and to some production purposes within the plant, which has achieved obvious economic benefits. The designed capacity of daily biogas production for this biogas plant is 3,000 - 4,000 m{sup 3}. (orig.)

  2. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  3. The SuperB factory, physics potential and project status

    Directory of Open Access Journals (Sweden)

    Wiechczynski Jaroslaw

    2012-12-01

    Full Text Available The SuperB project is an international enterprise aiming at the construction of the high-luminosity asymmetric beam energy electron-positron accelerator, which would be located in the area of Rome. It would exploit several novel features allowing to achieve an unprecedented luminosities and to collect almost a hundred times more data than the current generation of ”B factories”. As for the leptonic colliders, it will maintain a clean, low-background experimental environment that is crucial for numerous measurements on the field of high energy physics

  4. Isobar Electroproduction as a Background from Interaction of Beams with Residual Gas at $\\phi$-Factories

    OpenAIRE

    Achasov, M. N.; Achasov, N. N.; Golubev, V. B.; Serednyakov, S. I.

    1996-01-01

    It is shown that when beams interact with a residual gas at $\\phi$-factories the reaction of the electroproduction of the $\\Delta (1232)$ isobar proceeds vigorously. The isobar decay gives $\\sim 10^7$ pions during an effective year of $10^7$ s per meter of a residual gas. These pions are emitted largely across the beam axis and have a resonance energy distribution with a peak nearby 265 MeV of a width close to 120 MeV in the isobar rest system. There are presented formulae for the distributio...

  5. An EXAFS spectrometer on beam line 10B at the Photon Factory

    International Nuclear Information System (INIS)

    An EXAFS spectrometer installed on the beam line 10B at the Photon Factory is designed to cover the photon energy between 4 and 30 keV. Utilizing either a channel-cut or two flat silicon crystals as a monochromator, a beam intensity between 108 and 109 photons/sec is obtained at 9 keV with a resolution of 1 eV. The performance of the spectrometer, such as a signal-to-noise ratio or an energy resolution is demonstrated with examples of K edge absorption spectra of bromine, germanium, gallium arsenide, and zinc selenide. (author)

  6. Beam position monitoring and feedback steering system at the photon factory

    International Nuclear Information System (INIS)

    A version of the beam steering servo system was used to vertically position and stabilize the synchrotron radiation beam at the Photon Factory. System components included a photon beam position monitor located 12 m from the bend magnet source point, a servo controller containing frequency compensation and gain circuits, and a 3-magnet orbital bump steering system. Two types of position monitor, one an ion chamber and the other on in-vacuum device, were used in the system. Vertical beam position noise spectra obtained from these monitors showed predominant peaks occurring at 14.5 Hz, 50 Hz, and at several other frequencies in the 1 to 100 Hz range. The closed-loop system was able to reduce low frequency positional offsets (< 0.1 Hz) by a factor of 1000, and the 14.5 Hz oscillation by a factor of 6

  7. Construction of the SCRIT electron scattering facility at the RIKEN RI Beam Factory

    Science.gov (United States)

    Wakasugi, M.; Ohnishi, T.; Wang, S.; Miyashita, Y.; Adachi, T.; Amagai, T.; Enokizono, A.; Enomoto, A.; Haraguchi, Y.; Hara, M.; Hori, T.; Ichikawa, S.; Kikuchi, T.; Kitazawa, R.; Koizumi, K.; Kurita, K.; Miyamoto, T.; Ogawara, R.; Shimakura, Y.; Takehara, H.; Tamae, T.; Tamaki, S.; Togasaki, M.; Yamaguchi, T.; Yanagi, K.; Suda, T.

    2013-12-01

    The SCRIT electron scattering facility, aiming at electron scattering off short-lived unstable nuclei, has been constructed at the RIKEN RI Beam Factory. This facility consists of a racetrack microtron (RTM), an electron storage ring (SR2) equipped with the SCRIT system, and a low-energy RI separator (ERIS). SCRIT (self-confining radioactive isotope ion targeting) is a novel technique to form internal targets in an electron storage ring. Experiments for evaluating performance of the SCRIT system have been carried out using the stable 133Cs1+ beam and the 132Xe1+ beam supplied from ERIS. Target ions were successfully trapped in the SCRIT system with 90% efficiency at a 250 mA electron beam current, and luminosity exceeding 1026/(cm2 s) was maintained for more than 1 s. Electrons elastically scattered from the target ions were successfully measured. Applicability of the SCRIT system to electron scattering for unstable nuclei has been established in experiments.

  8. Status of the Tau-Charm Factory Project and aspects of the detector design

    International Nuclear Information System (INIS)

    This paper reviews the status of the Tau-Charm Factory Project being proposed for construction in Spain. The paper also reviews characteristics of the detector design, and the issues surrounding the present choices of technologies

  9. Projection, Search, and Optimality in Fractional Factorial Experiments

    OpenAIRE

    Zheng, Zongpeng

    2014-01-01

    We propose a general Up-Down method to search for efficient 2^m fractional factorial designs in fitting a class of models when the number of factors is m, and the number of runs is n. The orthogonal array designs exist for some specific values of n. The orthogonal array designs are optimal under the resolution assumptions. The proposed Up-Down method searches for efficient designs having the number of runs in between two values of n for orthogonal array designs satisfying a resolution assumpt...

  10. Factorial analysis of cluster-SIMS depth profiling using metal-cluster-complex ion beams

    International Nuclear Information System (INIS)

    A Ir4(CO)7+ primary ion beam, at energies from 2.5 keV to 10 keV, was used to profile boron-delta layers in Si to investigate the influences of atomic mixing and surface roughness on the degradation of depth resolution. Factorial analyses using the mixing-roughness-information (MRI) model indicated that the influence of the mixing increased as beam energy was reduced below 5 keV in the case of oxygen flooding. It was confirmed that the magnitude of the MRI surface roughness was different from that of the AFM surface roughness. The discrepancy in the magnitude of roughness was examined by considering the difference in sputtering depth as well as the definition of the MRI surface roughness

  11. Identification and Separation of Radioactive Isotope Beams by the BigRIPS Separator at the RIKEN RI Beam Factory

    CERN Document Server

    Fukuda, N; Ohnishi, T; Inabe, N; Takeda, H; Kameda, D; Suzuki, H

    2013-01-01

    We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator, RI beams are identified by their atomic number Z and mass-to-charge ratio A/Q which are deduced from the measurements of time of flight (TOF), magnetic rigidity (Brho) and energy loss (delta-E), and delivered as tagged RI beams to a variety of experiments including secondary reaction measurements. High A/Q resolution is an essential requirement for this scheme, because the charge state Q of RI beams has to be identified at RIBF energies such as 200-300 MeV/nucleon. By precisely determining the Brho and TOF values, we have achieved relative A/Q resolution as good as 0.034% (root-mean-square value). The achieved A/Q resolution is high enough to clearly identify the charge state Q in the Z versus A/Q particle identification plot, where fully-stripped and hydrogen-lik...

  12. X-ray beam stabilization at BL-17A, the protein microcrystallography beamline of the Photon Factory

    International Nuclear Information System (INIS)

    BL-17A is a new structural biology beamline at the Photon Factory, dedicated to protein crystallography of microcrystals. Here the X-ray beam stabilization techniques used at BL-17A are described. BL-17A is a new structural biology beamline at the Photon Factory, Japan. The high-brilliance beam, derived from the new short-gap undulator (SGU-17), allows for unique protein crystallographic experiments such as data collection from microcrystals and structural determination using softer X-rays. However, microcrystal experiments require robust beam stability during data collection and minor fluctuations could not be ignored. Initially, significant beam instability was observed at BL-17A. The causes of the beam instability were investigated and its various sources identified. Subsequently, several effective countermeasures have been implemented, and the fluctuation of the beam intensity successfully suppressed to within 1%. Here the instability reduction techniques used at BL-17A are presented

  13. Calibration of the beam-position monitor system for the SLAC PEP-II B factory

    International Nuclear Information System (INIS)

    The Beam-Position Monitors (BPM) for the PEP-II B Factory consist of four 1.5-cm diameter button style pickups mounted on the diagonals of the quadrupole vacuum chambers. Before installation of the vacuum chambers in the quadrupole assemblies, the electrical center of the BPMs is measured with respect to the mechanical center in a calibration test stand. In this paper the calibration test stand is described and the precision and accuracy of the calibrations are presented. After installation of the quadrupole assemblies in the PEP-II tunnel, the passive attenuation for each channel of the system is measured to preserve the accuracy of the calibration. Finally, the active electronics includes an onboard calibrator. Results for these portions of the calibration are presented

  14. The B-meson factory project at Paul Scherrer Institute

    International Nuclear Information System (INIS)

    This paper proposes the construction of an electron-positron collider with a design luminosity of more than 1033 cm-2s-1 at center-of-mass energies around 10 GeV. This machine will allow precise measurements of the properties of the heavy flavor particles, that is, τ-leptons, c-, and b-quarks. The collider design is based on an multibunch double storage ring with two interaction regions with zero-degree beam-crossing angle. The collider has the option of an asymmetric collision mode (4 GeV vs. 7 GeV) for CP violation studies of B-mesons at the Υ (4S) resonance and for Bs-bar Bs mixing

  15. Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory

    International Nuclear Information System (INIS)

    Highlights: • In-flight particle identification of RI beams developed for BigRIPS separator. • Atomic number Z and mass-to-charge ratio A/Q are deduced by the TOF-Bρ-ΔE. • Precise determinations of Bρ and TOF with trajectory reconstruction and slew correction, respectively. • The achieved A/Q resolution is high enough to clearly identify the charge state. • Thorough removal of background events improves the reliability of identification. -- Abstract: We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator, RI beams are identified by their atomic number Z and mass-to-charge ratio A/Q which are deduced from the measurements of time of flight (TOF), magnetic rigidity (Bρ) and energy loss (ΔE), and delivered as tagged RI beams to a variety of experiments including secondary reaction measurements. High A/Q resolution is an essential requirement for this scheme, because the charge state Q of RI beams has to be identified at RIBF energies such as 200–300 MeV/nucleon. By precisely determining the Bρ and TOF values, we have achieved relative A/Q resolution as good as 0.034% (root-mean-square value). The achieved A/Q resolution is high enough to clearly identify the charge state Q in the Z versus A/Q particle identification plot, where fully-stripped and hydrogen-like peaks are very closely located. The precise Bρ determination is achieved by refined particle trajectory reconstruction, while a slew correction is performed to precisely determine the TOF value. Furthermore background events are thoroughly removed to improve reliability of the particle identification. In the present paper we present the details of the particle identification scheme in the BigRIPS separator. The isotope separation in the BigRIPS separator is also briefly introduced

  16. Study relating to an e+e- storage ring of very high luminosity, with and without monochromatization of the beams (for the Tau-Charm Factory)

    International Nuclear Information System (INIS)

    When two e+e- beams collide the effective luminosity is reduced due to the finite energy spread of each beam. If a scheme is used to separate the particle orbits, at the interaction point, with respect to their energy deviation, and with opposite polarities for the two beams, then a positron with energy (E+ΔE) will collide an electron with energy (E-ΔE). This allows an increase of the effective luminosity following a reduction of the energy spread in the CM. This original idea, though it was known since a long time, has never been experienced on existing machines. Since more recently, new e+e- circular colliders are being envisaged at energies already covered, but with design luminosities 2 or 3 orders of magnitude above past performances. These projects are called ''Factories'', and namely ''Tau-Charm Factory'' with 2.0 GeV beam energy and a luminosity of 1033 cm-2 s-1 is being considered in Europe. Its performances can be enhanced using a monochromatization scheme, as described above. However the lack of past experience suggests to design the machine in such a way that a back up standard mode of operation is included from the beginning. The present study deals with optics developments which allow the two modes of operation within the same geometrical machine configuration. The corresponding lattices are called ''versatile''. (orig.)

  17. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  18. 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities

    CERN Document Server

    2015-01-01

    These proceedings present the written contributions from participants of the 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities (NUFACT 2014) that was held at the University of Glasgow (Glasgow, Scotland, United Kingdom) from 25-30 August 2014. This edition of the NUFACT annual meetings, which started in 1999, consisted of 24 plenary and 92 parallel talks and various poster sessions, with the participation of 124 delegates. Furthermore, the International Neutrino Summer School 2014 was held from 10-22 August 2014 at St Andrews, Scotland, in the two weeks before NUFACT 2014. It was intended for young scientists with an interest in neutrino physics in such a way that they would be able to participate and contribute to the NUFACT workshop as well. The objectives of the NUFACT workshops are to review progress on different studies for future accelerator-based neutrino oscillation facilities, with the goal to discover the mass hierarchy of neutrinos, CP violation in the leptonic s...

  19. Evaluation of Health Consequences of Air Pollution Induced by Beam Rolling Mills Factory (Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2014-10-01

    Full Text Available The increases in air pollution over the metropolitan cities are a threat to human health and environment. An attempt has been made to evaluate the health consequences of indoor air pollution induced by Beam Rolling Mills Factory at Ahwaz (Iran. A questionnaire was prepared to obtain information on health of 481 workers, out of which 200 each were selected from exposed and non-exposed category by stratified randomized method. Fisher exact test and chi-square test were used to calculate the values. The study concludes that more than 80% of the workers have high exposure risk to diseases. Analysis of the health impacts reveals that exposed workers are more prone to various diseases as compared to the non-exposed workers. It is also observed that exposure to air pollutants might be the causative factor for various diseases among the smokers but also nonsmoking workers. The analysis also reveals that there is higher relative risk in occupational fatigue and cardio-vascular disease. Further, the study found that percentage of workers having various diseases is much higher in the indoor environment as compared to the outdoor environment

  20. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  1. Mission critical operation archiving system using a database for synchrotron radiation beam lines at the Photon Factory

    International Nuclear Information System (INIS)

    The mission critical operation archiving system has been designed and built using the Oracle database for the twenty-two synchrotron radiation beam lines at the 2.5 GeV positron storage ring at the Photon Factory, where X-ray/VUV synchrotron radiation experiments are simultaneously carried out. When any one of beam lines is malfunctioning, neither injecting the 2.5 GeV beam into the storage ring nor operation of the ring is allowed due to the radiation safety reason. The system is designed for critical operation of the synchrotron radiation beam lines to provide a quick recovery from a failure, allowing a long term operation. The system has real-time capability to automatically store the database with all possible operational events of all vacuum valves/shutters and safety interlock signals, and all static operational data, including the pressures of the beam lines and the storage ring, and related operational data which represent the physical behaviors of the beam lines. By retrieving any combination of operational data, the system allows to reproduce the physical behaviors that have occurred in the beam lines. The total number of items to be inspected by the system is over 40 million in order to obtain a correlation between the faulty component and other physical components that suggests the cause of the failure. With the aid of the system, the operator at the control room can easily determine the faulty component, and recover the accelerator component. (author)

  2. Results of calculations on the beam deflection due to the 1 MHz chopper for the Kaon factory

    International Nuclear Information System (INIS)

    Deflection of 1 GeV/c H- beam bunches to be eliminated by the 1 MHz chopper, for the proposed Kaon factory at TRIUMF, will be provided by an electric field between a set of deflector plates. Deflection rise time is a function of beam transit time through the deflector plates and the rise time of the stored voltage pulse. This paper presents the results of time-domain mathematical simulations to assess the relationship between the above quantities: the results of these simulations allow an accurate determination of the required rise-time of the stored voltage pulse. The representation of the deflector plates is modified so that linear displacement of the beam, as well as angular deflection, may be assessed. Simulations have also been performed to assess the attenuating effect of the deflector plates upon both angular deflection and linear displacement of the H- beam caused by voltage ripple. A measured voltage pulse is simulated as driving the deflector plates, and beam deflection is predicted. (Author) 12 refs., 3 figs

  3. Wilson Prize Lecture: The Novosibirsk Tau/Charm Factory Project: prospect/status

    Science.gov (United States)

    Skrinsky, Alexander

    2002-04-01

    For a long time at the Budker Institute of Nuclear Physics, we develop step-by-step our electron-electron and electron-positron colliders. Now, the VEPP-4M collider (total energy up to 11 GeV), with a special emphasis on Two-Photon hadron physics, is in operation. The new VEPP-2000 collider, as direct extension of our VEPP-2M collider (which finished its very productive life in 2000) to the energy up to 2 GeV total, should start its commissioning phase in 2002. But our main goal in the field (for quite a few years already) is development and construction of Tau/Charm Factory (VEPP-5 collider). There are 3 main modes of operation foreseen: Maximal luminosity - up to 1 \\cdot 10^34 cm-2 sec-1. For reaching of this ambitious goal we intend to use ``round beam'' approach. The approach will be used and studied at VEPP-2000. Longitudinally polarized collisions (proposed and proved theoretically in Novosibirsk still in 1969) with luminosity 1 \\cdot 10^33 cm-2 sec-1. High monochromaticity option (down to few 10 of keV). Now the new injector complex, which would produce intense low emittance bunches of positrons and electrons (for VEPP-5, VEPP-4M and VEPP-2000 efficient operation) is nearing completion. Fraction of the VEPP-5 tunnel is constructed. We hope, when the VEPP-5 collider would become closer to completion, to attract international collaborators to use unique features of our Tau/Charm Factory.

  4. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    In this report e+e- colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  5. B factory via conversion of 1 TeV electron beams into 1 TeV photon beams

    International Nuclear Information System (INIS)

    We derive formulae which describe the interaction of laser beams with electron beams. Specializing to the case of 1 TeV electron beams from the future generation of electron linear accelerators, we calculate the production rate of backscattered 1 TeV photons, and using these photons, we show that it is possible to organize the photoproduction of beauty particles so as to measure 109b bar b pairs per year. This should be adequate to study rare decays and CP violation in B meson decay. 9 refs., 1 fig

  6. Control of Beam Losses in the Front End for the Neutrino Factory

    International Nuclear Information System (INIS)

    In the Neutrino Factory and Muon Collider, muons are produced by firing high energy protons onto a target to produce pions. The pions decay to muons which are then accelerated. This method of pion production results in significant background from protons and electrons, which may result in heat deposition on superconducting materials and activation of the machine preventing manual handling. In this paper we discuss the design of a secondary particle handling system. The system comprises a solenoidal chicane that filters high momentum particles, followed by a proton absorber that reduces the energy of all particles, resulting in the rejection of low energy protons that pass through the solenoid chicane. We detail the design and optimization of the system and its integration with the rest of the muon front end.

  7. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    CERN Document Server

    Adli, Erik; Gessner, Spencer J; Hogan, Mark J; Raubenheimer, Tor; An, Weiming; Joshi, Chan; Mori, Warren

    2013-01-01

    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small...

  8. KAON factories

    International Nuclear Information System (INIS)

    Proposals for high intensity proton synchrotrons (typically providing 100 μA (6 x 1014 p/s)) at 30 GeV have been made in Canada, Europe, Japan, the USA and the USSR. These beams would be roughly 100 times more intense than those available now and would yield equivalent increases in the fluxes of secondary particles (kaons, pions, muons, antiprotons, hyperons and neutrinos) - or cleaner beams for a smaller increase in flux. The ability to investigate rare processes on the precision frontier opens new avenues to fundamental questions in both particle and nuclear physics, complementary to traditional approaches via the energy frontier. The demand for higher currents has led to novel features in many of the accelerator designs: asymmetric magnet cycles, avoidance of transition crossing, separate collector and stretcher rings, three-dimensional beam painting at injection, bucket-to-bucket beam transfer, perpendicular biassing of microwave ferrite in the rf tuners, the use of Siberian Snakes to preserve polarization, and the addition of a pre-septum to make slow extraction >99.8% efficient. Other characteristic features include rapid cycling rates, booster stages, H- injection, low impedance enclosures, powerful feedback systems for control of beam instabilities and beam loading, and local collimation systems for handling beam loss. This paper reviews the general features of kaon factory accelerator design and the status of the various proposals

  9. Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories

    CERN Document Server

    Sievers, P

    2000-01-01

    The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means.

  10. A tau -- charm -- factory at Argonne

    International Nuclear Information System (INIS)

    Depending on the beam energy setting, the τ -- charm -- factory will be optimized to study physics with τ leptons, with charmed mesons, or with charmonium states. This report gives a short overview of the physics of these topics. Also discussed are the detectors and the costs associated with this project

  11. Pulse width control at 106 pulses/sec and 15 kV for the KAON factory beam chopper

    International Nuclear Information System (INIS)

    A beam chopper is required in the transfer line between the 1 GeV/c TRIUMF cyclotron and the Accumulator ring of the pro-posed 30 GeV/c KAON Factory synchrotrons. The beam chopper must generate pulses with a magnitude of at l-t 9.5 kV, with rise and fall times of less than 38 ns, at a repetition rate of 106 pulses per second, and at a 100% duty cycle. Precise control of grid timing aid voltage is required at the driver tetrode to achieve deflector kick pulse widths of 48 ns and 92 ns while maintaining an interpulse and flattop ripple at less than ±10% of the deflector kick magnitude. Results of measurements are presented where all of the design criteria have been met, for the first time, over a wide range of pulse widths with sub-nanosecond precision. Rise and fall times of 18 ns to 31 ns have been achieved on 15 kV pulses at 0.93 x 106 pulses per second continuous operation. (author) 10 refs., 9 figs., 1 tab

  12. Crab Waist Collision Studies for e+e- Factories

    OpenAIRE

    M. ZobovINFN LNF; P. RaimondiINFN LNF; D. ShatilovIYF, Novosibirsk; K. OhmiKEK

    2008-01-01

    Numerical simulations have shown that the recently proposed "crab waist" scheme of beam-beam collisions can substantially boost the luminosity of existing and future electron-positron colliders. In this paper we describe the crab waist concept and discuss potential advantages that such a scheme can provide. We also present the results of beam-beam simulations for the two currently proposed projects based on the crab waist scheme: the DAFNE upgrade and the Super B-factory pro...

  13. THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    The Palomar Transient Factory (PTF) Orion project is one of the experiments within the broader PTF survey, a systematic automated exploration of the sky for optical transients. Taking advantage of the wide (3.05 x 2.03) field of view available using the PTF camera installed at the Palomar 48 inch telescope, 40 nights were dedicated in 2009 December to 2010 January to perform continuous high-cadence differential photometry on a single field containing the young (7-10 Myr) 25 Ori association. Little is known empirically about the formation of planets at these young ages, and the primary motivation for the project is to search for planets around young stars in this region. The unique data set also provides for much ancillary science. In this first paper, we describe the survey and the data reduction pipeline, and present some initial results from an inspection of the most clearly varying stars relating to two of the ancillary science objectives: detection of eclipsing binaries and young stellar objects. We find 82 new eclipsing binary systems, 9 of which are good candidate 25 Ori or Orion OB1a association members. Of these, two are potential young W UMa type systems. We report on the possible low-mass (M-dwarf primary) eclipsing systems in the sample, which include six of the candidate young systems. Forty-five of the binary systems are close (mainly contact) systems, and one of these shows an orbital period among the shortest known for W UMa binaries, at 0.2156509 ± 0.0000071 days, with flat-bottomed primary eclipses, and a derived distance that appears consistent with membership in the general Orion association. One of the candidate young systems presents an unusual light curve, perhaps representing a semi-detached binary system with an inflated low-mass primary or a star with a warped disk, and may represent an additional young Orion member. Finally, we identify 14 probable new classical T-Tauri stars in our data, along with one previously known (CVSO 35) and one

  14. Review of kaon factory proposals

    International Nuclear Information System (INIS)

    Nuclear physics issues and particle physics issues for a kaon factory are discussed. Kaon factory accelerator proposals are then considered. Secondary beam considerations are covered and hardware development for a kaon factory is discussed. The prospects for construction are presented. 9 refs., 12 figs., 2 tabs

  15. Results of a neutrino oscillation experiment performed at a meson factory beam-stop

    International Nuclear Information System (INIS)

    This document describes a neutrino oscillation experiment performed at the Los Alamos Meson Physics Facility. The oscillation mode searched for is /bar /nu///sub μ/ → /bar /nu///sub e/. The first chapter is a review of the known properties of the neutrino and a description of the phenomenon of neutrino oscillation. Previous experimental limits on this unobserved phenomenon are also given. The second chapter describes the experimental apparatus used by the E645 experiment to detect neutrinos produced in the LAMPF beam stop. The salient features of the detector are its large mass (20 tons of CH2), its fine segmentation (to allow good particle tracking), good energy resolution, its recording of the history both before and after tracks appear in the detector, an active cosmic-ray anticoincidence shield, and 2000 gm/cm2 of passive cosmic-ray shielding. It is located 26.8 m from the neutrino source, which has a mean neutrino energy of 40 MeV. The third chapter details the reduction of the 1.3 million event data sample to a 49 event sample of neutrino candidates. Principle backgrounds are Michel electrons from stopping cosmic-ray muons and protons from np elastic scattering by cosmic-ray neutrons. The fourth chapter explains how background levels from neutrino-nuclear scattering are predicted. The result of a maximum-likelihood analysis reveals no evidence for oscillation. 90% confidence levels are set at δm2 = .10 eV2 for large mixing and sin2(2θ) = .014 for large δm2. 82 refs., 18 figs., 55 tabs

  16. International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facilities

    International Nuclear Information System (INIS)

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the δ-θ13 parameter space.

  17. Design of a transverse feedback system against multi bunch beam oscillation due to impedance in the KEK B-factory rings

    International Nuclear Information System (INIS)

    In future B-factories, many bunches will be circulated in their rings, and thus making the bunch spacing to become very short compared with that of the present collider machines. The impedance of the rings may cause many coupled bunch beam oscillations. One possibility to damp these multi-bunch oscillations is to install an active oscillation feedback damper system. This paper discusses the transverse feedback system. (author)

  18. Neutrino factory near detector

    OpenAIRE

    Bogomilov, M.; Y. Karadzhov; Matev, R.; Tsenov, R.; Laing, A.; F.J.P. Soler

    2013-01-01

    The neutrino factory is a facility for future precision studies of neutrino oscillations. A so-called near detector is essential for reaching the required precision for a neutrino oscillation analysis. The main task of the near detector is to measure the flux of the neutrino beam. Such a high intensity neutrino source like a neutrino factory provides also the opportunity for precision studies of various neutrino interaction processes in the near detector. We discuss the design concepts of suc...

  19. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  20. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben;

    2012-01-01

    The involvement of Aalborg University in the EU project BEAMING will be presented. BEAMING deals with telepresence including multiple modalities; vision, haptics and audio, of which the latter is of main interest here. The setup consists of two types of locations: The Destination, where the Locals....... The Visitor is represented as a robot with a loudspeaker....

  1. Review of Kaon Factories

    International Nuclear Information System (INIS)

    A brief motivation, from the particle physics point of view, is given for a Kaon Factory. The facility requires a rapid cycling, multi GeV synchrotron, operating in fixed target geometry. The generic components of such a facility are discussed. The candidate Kaon Factory proposals are recalled, and their status reported. In conclusion, a more detailed presentation is made of the proposed Canadian KAON Factory at TRIUMF, and some of the findings of the recent Project Definition Study are presented. (author) 17 refs.; 4 figs.; 1 tab

  2. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  3. Projected beam irradiation at low latitudes using Meteonorm database

    DEFF Research Database (Denmark)

    Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn

    2009-01-01

    The quantitative analysis of beam radiation received on a solar concentrator may be understood by evaluating the projected solar height angle or profile angle along the north-south vertical plane. This means that all the sunrays projected along the north-south vertical plane will be intercepted b...

  4. A novel extension of the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections.

    Science.gov (United States)

    Chen, Guang-Hong; Leng, Shuai; Mistretta, Charles A

    2005-03-01

    The general goal of this paper is to extend the parallel-beam projection-slice theorem to divergent fan-beam and cone-beam projections without rebinning the divergent fan-beam and cone-beam projections into parallel-beam projections directly. The basic idea is to establish a novel link between the local Fourier transform of the projection data and the Fourier transform of the image object. Analogous to the two- and three-dimensional parallel-beam cases, the measured projection data are backprojected along the projection direction and then a local Fourier transform is taken for the backprojected data array. However, due to the loss of the shift invariance of the image object in a single view of the divergent-beam projections, the measured projection data is weighted by a distance dependent weight w(r) before the local Fourier transform is performed. The variable r in the weighting function w(r) is the distance from the backprojected point to the x-ray source position. It is shown that a special choice of the weighting function, w(r)=1/r, will facilitate the calculations and a simple relation can be established between the Fourier transform of the image function and the local Fourier transform of the 1/r-weighted backprojection data array. Unlike the parallel-beam cases, a one-to-one correspondence does not exist for a local Fourier transform of the backprojected data array and a single line in the two-dimensional (2D) case or a single slice in the 3D case of the Fourier transform of the image function. However, the Fourier space of the image object can be built up after the local Fourier transforms of the 1/r-weighted backprojection data arrays are shifted and then summed in a laboratory frame. Thus the established relations Eq. (27) and Eq. (29) between the Fourier space of the image object and the Fourier transforms of the backprojected data arrays can be viewed as a generalized projection-slice theorem for divergent fan-beam and cone-beam projections. Once the

  5. Isobar separator for radioactive nuclear beams project

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Nolen, J.A.

    1995-08-01

    In order to produce pure beams of radioactive products emanating from the production target/ion source system, both mass and isobar separation is required. A preliminary mass separation with a resolution {triangle}M/M of approximately 10{sup -3} will select the proper mass beam. An isobar separator is needed because the masses of adjacent isobars are usually quite close, especially for beams near stability. In general, a mass resolution of 5 x 10{sup -5} is needed for isobar separation in the A < 120 region, while a resolution of 3 x 10{sup -5} or better is needed for heavier masses. Magnets are used to obtain mass separation. However, in addition to having mass dispersion properties, magnets also have an equal energy dispersion. This means that an energy variation in the beam cannot be distinguished from a mass difference. This is important because ions emerge from the ion source having a small ({approximately} 10{sup -5} - 10{sup -4}) energy spread. In order to make the system respond only to mass differences, it must be made energy dispersion. This is normally accomplished by using a combination of electric and magnetic fields. The most convenient way of doing this is to use an electric deflection following the magnet separator. A preliminary isobar separator which achieves a mass resolution of 2.7 x 10{sup -5} is shown in Figure I-38. It uses two large 60{degrees} bending magnets to obtain a mass dispersion of 140 mm/%, and four electric dipoles with bending angles of 39{degrees} to cancel the energy dispersion. Sextupole and octupole correction elements are used to reduce the geometrical aberrations.

  6. Procurement of Beams in Multiple D&B Bridge Projects

    Directory of Open Access Journals (Sweden)

    CT. Ramanathan

    2010-06-01

    Full Text Available Selected infrastructure development projects are being implemented by Design and Build (D&B pocurement system in Sabah (East Malaysia by the Public Works Department (PWD. In the first phase 45 bridge replacement projects were awarded in 5 packages. These simultaneous multiple Bridge projects are for the development of the backward areas and hence their timely completion is utmost important. Procurement and production of bridge beams have been the critical element of construction in these rural areas and no researches has been reported on various aspects of procurement of the bridge beams in multiple D&B projects. The aspects of procurement researched in this work include the determination of a common beam element for the ease of procurement and the optimization of the construction methodology, the finalization and purchasing plate dimensions to suite the manufacturer's production range, the delivery of materials, the planning and monitoring of fabrication, the preparation and assembly, and the erection and launching of beams. The beams are optimized using element optimization techniques. The most important problems in fabricating steel girders were in planning and scheduling of materials for the fabrication and the fabrication process. Findings in all the aspects of production of steel girders are highlighted through a case study of six long span bridges at various locations in Sabah. Solutions drawn from lessons learnt which minimize wastages, and aids in timely completion of beams in multiple bridge construction are discussed.

  7. Physics at neutrino factories

    CERN Document Server

    Peach, Kenneth J

    2001-01-01

    There is increasing interest in using intense neutrino beams from a high-energy muon storage ring-the Neutrino Factory-to make precise measurements of the lepton mixing matrix, including the T-violating phase, as well as a diverse programme of other physics.

  8. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  9. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  10. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  11. Proceedings of the meeting on the planning of the computer control and data processing system in the photon factory project

    International Nuclear Information System (INIS)

    In the photon factory for synchrotron radiation experiments, a computer control and data processing system is required for efficient utilization of the factory. Reports made in the meeting oriented as above are presented individually, reflecting various aspects of joint-use computer system and its technological advances. (Mori, K.)

  12. Slime Factory.

    Science.gov (United States)

    Fowler, Marilyn L.

    1992-01-01

    Describes a classroom activity using slime, a colloid: it behaves like both a solid and liquid. Explains how slime can be produced from guar gum. An activity where students work in teams and become a slime factory is presented. (PR)

  13. Assessment of air pollution and its effects on the health status of the workers in beam rolling mills factory (Iran National Steel Industrial Group from Ahvaz-Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2009-01-01

    Full Text Available Background: Air pollutants of iron- and steel-making operations have historically been an environmental and health hazard. These pollutants include gaseous substances such as sulfur oxide, nitrogen dioxide, and carbon monoxide. The Iran National Steel Industrial Group beam rolling mills factory has two production lines viz. line 630 and line 650, with different beam production capabilities and is capable of producing different types of beams. Materials and Methods: A retrospective cross-sectional study on 400 workers in different exposure levels to environmental pollution was performed during 2005 to determine the mean value of respirable particulate matter (RPM concentrations and its effects on the health status of workers. To elicit information regarding the health status of the worker, the National Institute for Occupational Safety and Health standard questionnaire was used. Fisher′s exact test was performed to assess the relative risk (RR of exposure to air pollution on cardiovascular diseases, chest tightness, cough, difficulty in retention, i.e. loss of memory, tension, occupational fatigue, and occupational stress in exposed workers. Results: There was significant difference in RPM pollution level between two product lines. The RR of exposure to air pollution on cardiovascular diseases, chest tightness, cough, difficulty in retention, i.e. loss of memory, tension, occupational fatigue, and occupational stress in exposed workers were 2.78, 2.44, 2.15, 1.92, 1.57, 3.90, and 2.09, respectively.

  14. Project BEAMS, 1986-1987. OEA Evaluation Report.

    Science.gov (United States)

    Scorza, Margaret H.; And Others

    Under Title VII funding, Project BEAMS (Bilingual Education for Achievement in Mathematics and Science) provided educational and support activities to 214 gifted students of limited English proficiency (LEP) in three Brooklyn high schools. The program gave students of Spanish, Haitian, Chinese, Korean, Middle Eastern, and various European…

  15. Low-energy radioactive nuclear beam project at INS

    International Nuclear Information System (INIS)

    The present status of the Institute for Nuclear Study of the University of Tokyo (INS) radioactive nuclear beam project is reported. The capability of the facility and possible experiments are also discussed, including research programs of nuclear physics, nuclear astrophysics, and material science. (authors). 6 refs., 5 figs., 1 tab

  16. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  17. Perspectives for Muon Colliders and Neutrino Factories

    CERN Document Server

    Bonesini, M

    2016-01-01

    High brilliance muon beams are needed for future facilities such as a Neutrino Factory, an Higgs-factory or a multi-TeV Muon Collider. The R&D path involves many aspects, of which cooling of the incoming muon beams is essential.

  18. Projecting light beams with 3D waveguide arrays

    CERN Document Server

    Crespi, Andrea

    2016-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase pa...

  19. Progress of the intense positron beam project EPOS

    International Nuclear Information System (INIS)

    EPOS (the ELBE POsitron Source) is a running project to build an intense, bunched positron beam for materials research. It makes use of the bunched electron beam of the ELBE radiation source (Electron Linac with high Brilliance and low Emittance) at the Research Centre Dresden-Rossendorf (40 MeV, 1 mA). ELBE has unique timing properties, the bunch length is <5 ps and the repetition time is 77 ns. In contrast to other Linacs made for Free Electron Lasers (e.g., TTF at DESY, Hamburg), ELBE can be operated in full cw-mode, i.e., with an uninterrupted sequence of bunches. The article continues an earlier publication. It concentrates on details of the timing system and describes issues of radiation protection

  20. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  1. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 109 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  2. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  3. Modelling of the laser beam propagation in the Silva project

    International Nuclear Information System (INIS)

    The full text of publication follows. The AVLIS process is a general process for converting a feed stream into a product stream in which a selected set of isotopes has been enriched or depleted by a laser beam. At CEA (French atomic energy commission), the process has been applied to the enrichment of uranium for light water nuclear reactor fuel and designed as the SILVA Project. This process is based on the selective multistep photoionization of the uranium vapour stream. The uranium vapor is produced by an electron bombardment and expands upwards in vacuum. Tunable laser frequencies are generated in a dye laser system that is pumped by copper vapor lasers. The laser light illuminates the atomic vapor near the surface of an ion extractor. Ions of the resonant isotope (235) are then extracted and separated from neutrals (mainly composed of 238 isotope). For modelling a large scale situation, it is necessary to take into account the propagation of laser beams into a vapor composed of two isotopes: 238U (99,3%) and 235U (0,7%). This laser beam propagation takes place over a kilometer range in these conditions. The presence of the non resonant isotope (238 isotope) can induce some important change in the characteristics of the laser beam during the propagation. Spatial, temporal, and spectral effects are expected and can be observed. The resolution of Schroedinger and Maxwell equations with classical explicit numerical schemes leads to a prohibitive calculation time. An original code (PRODIGE) with optimized numerical schemes and parallelization technique has been developed in order to describe accurately the SILVA situation. This code is able to perform a propagation calculation over a kilometer range with a 60 h calculation time and 256 processors on the TERA computer. (authors)

  4. Charged Particle Optics in Circular Higgs Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  5. La neutrino factory del CERN e i problemi radiologici dell'annesso proton driver

    CERN Document Server

    Bressan, Beatrice Alessandra

    2001-01-01

    The thesis, La Neutrino Factory del CERN e i problemi radiologici dell’annesso proton driver (CERN Neutrino Factory and the radiological problems of the annex proton driver), deals with the new particle accelerators for the post LHC (Large Hadron Collider) era. The first part of the work describes these innovative accelerators with particular emphasis on the muon collider which, producing μ+/μ− collisions in the 100 GeV energy range, should explore deeply the Higgs Boson physics. The second part of the thesis describes the three-step scenario proposed for the muon accelerators: Neutrino Factory, Higgs Factory and a collider with TeV C.M. energy. The third chapter explains how a Neutrino Factory works. In a Neutrino Factory the neutrino beam is generated by high-energy muons decaying in a storage ring. The muons are produced by pions generated in a target bombarded by an intense proton beam. In the CERN project, the proton beam is produced by a super conducting LINAC (with 75 Hz frequency and 2.2 GeV ene...

  6. B factory collider designs and future plans

    International Nuclear Information System (INIS)

    Typical parameters of B factory colliders are presented, along with their justification. Design challenges that arise from these parameter choices are indicated. These challenges appear in both the physics design of the collider and its technological implementation. An overview of the three active B factory projects (PEP-II, KEK-B, and the CESR upgrade) is briefly given, and technical approaches adopted by the projects to deal with the design challenges are outlined. Project status and plans for the various B factory projects are also indicated. Because the problems faced by the designers of B factories are closely related to those that will be faced in the design of a Tau-Charm Factory (τcF), the solutions adopted by the B factory designers can in many cases be carried over to the τcF essentially unchanged. copyright 1996 American Institute of Physics

  7. Beam dynamics simulations and measurements at the Project X Test Facility

    International Nuclear Information System (INIS)

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  8. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  9. The B-Factory and the Big Bang

    International Nuclear Information System (INIS)

    A B-Factory, a virtual open-quotes time machineclose quotes back to the early moments of the Big Bang that created the universe, is not under construction at the Stanford Linear Accelerator Center (SLAC). The $300 million project to produce copious amounts of B mesons is a combined effort of SLAC, Lawrence Berkeley National Laboratory, and Lawrence Livermore National Laboratory. Scheduled for completion in early 1999, the facility will be one of the flagships of the US high-energy physics program. Nearly 200 Laboratory specialists, representing a broad range of disciplines, are contributing to the B-Factory effort. The B-Factory's two underground rings, each 2,200 meters (a mile and a half) in circumference, will generate B mesons by colliding electron and positrons (antimatter counterpart of electrons) at near the speed of light. A key feature of this collider is the fact that electrons and positrons will circulate and collide with unequal (or open-quotes asymmetricclose quotes) energies so that scientists can to better explore the particles generated in the collisions. In helping to design and manufacture many of the major components and detector systems for the B-Factory's twin particle beam rings and its three-story-tall detector, Lawrence Livermore is strengthening its reputation as a center of excellence for accelerator science and technology. In addition, many LLNL capabilities brought to bear on the technical challenges of the B-Factory are enhancing the Laboratory's efforts for the DOE Stockpile Stewardship Program

  10. Possibilities for reduction of transverse projected emittances by partial removal of transverse to longitudinal beam correlations

    CERN Document Server

    Balandin, V; Golubeva, N

    2014-01-01

    We show that if in the particle beam there are linear correlations between energy of particles and their transverse positions and momenta (linear beam dispersions), then the transverse projected emittances always can be reduced by letting the beam to pass through magnetostatic system with specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice dispersions required for that are completely defined by the values of the beam dispersions and the beam rms energy spread and are independent from any other second-order central beam moments. Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear correlations between longitudinal positions of particles and their transverse coordinates (linear beam tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the transverse projected emittances is not gu...

  11. Photon Factory activity report, 1991

    International Nuclear Information System (INIS)

    The Photon Factory is a national synchrotron radiation research facility affiliated with the National Laboratory for High Energy Physics located in Tsukuba Science City. The Photon Factory consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV electron/positron storage ring, beam lines and experimental stations. All the facilities for synchrotron radiation research are open to scientists. A part of the accumulation ring of the TRISTAN main ring has been used as a synchrotron radiation source in the energy range from 5.8 to 6.5 GeV. The Photon Factory is composed of three divisions of Injector Linac, Light Source and Instrumentation. The researches of each divisions are reviewed, and the users' short reports are collected. The list of published papers with author index is also included in the publication. (K.I.) 233 refs

  12. The EB Factory Project. II. Validation with the Kepler Field in Preparation for K2 and TESS

    CERN Document Server

    Parvizi, Mahmoud; Stassun, Keivan G

    2014-01-01

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical "by eye" human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline - the Eclipsing Binary Factory (EBF) - that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler "Q3" Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ~2,600 EBs. When we require EB classification with at least 90% confidence, we find ...

  13. The EB factory project. II. Validation with the Kepler field in preparation for K2 and TESS

    International Nuclear Information System (INIS)

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ∼2600 EBs. When we require EB classification with ⩾90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.

  14. Pion beam development for the LAMPF biomedical project

    International Nuclear Information System (INIS)

    Common to both static and dynamic patient irradiations at the LAMPF linac is the problem of maintaining good quality control of beams form a secondary channel. A major contributor to therapy beam variation has been change in electron contamination due to the change in target geometry and proton beam steering. The electron variation problem is described and a solution is presented that has been realized as a result o a new target geometry that allows some control of the electron fraction

  15. Higgs factories

    CERN Document Server

    Telnov, V I

    2013-01-01

    Over the past two decades, the high energy physics community has been actively discussing and developing a number of post-LHC collider projects; however, none of them have been approved due to high costs and the uncertainty in post-LHC physics scenarios. There have been great expectations of rich new physics in the 0.1-1 TeV mass region: the Higgs boson (one or several), supersymmetry, or perhaps new particles from the dark-matter family. It has been the general consensus that the best machine for the detailed study of new physics to be discovered at the LHC would be an energy-frontier linear e+e- collider. Physicists held their breath waiting for the results from the LHC. In summer 2012, two LHC detectors, ATLAS and CMS, announced the discovery of a Higgs boson with the mass of 126 GeV and (still) nothing else. The absence of new physics in the region below 1 TeV has changed the post-LHC collider R&D priorities and triggered a zoo of project proposals for the precision study of the 126 GeV Higgs boson, p...

  16. Progress report on the Cornell cold neutron beam project

    International Nuclear Information System (INIS)

    A low-background subthermal neutron beam is to be obtained by a curved 13-m neutron guide to filter out fast neutrons and gamma rays from the core. To increase transmission through the guide, the neutrons entering it will come from a cold neutron source located within the graphite reflector in a 'piercing' beamport. To reduce ambient background, the exit of the guide will be in a separate room, well isolated from other experiments. The novel features of the design are the choice of moderator and the method of cooling. The cold source will consist of mesitylene, which is quite satisfactory as a cold moderator and does not have the potential hazards of liquid hydrogen or solid methane. It will be cooled to 40K or below by copper cold fingers connected to a cryogenic refrigerator outside the reactor shielding, a method that greatly simplifies operation and maintenance and avoids problems associated with circulating cryogenic fluids within the beamport. Before undertaking final design of the facility, low-power trials were conducted in November 1988 using a cold chamber from an earlier project in an extensively modified source-and-beamplug assembly with a short 5-meter guide. The neutronic behaviour of the source and guide was within expected values but unacceptably large nuclear heating effects were observed. Subsequent analysis and neutron and gamma-ray flux measurements showed that gamma-ray heating was the dominant cause. This report describes the measurement and analysis of the nuclear heating and the required redesign work, which has concentrated on two related problems: (1) reduction of gamma-ray heating by shielding and by suitable downsizing and placement of components and (2) optimization of the size and shape of the mesitylene chamber

  17. Projection imaging of photon beams using Čerenkov-excited fluorescence

    OpenAIRE

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H.A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in...

  18. Construction and measurement techniques for the APS LEUTL project RF beam position monitors

    International Nuclear Information System (INIS)

    The design, construction, and assembly procedure of 24 rf beam position monitors used in the Advanced Photon Source low-energy undulator test line and linear accelerator (linac) are described. Beam stability as well as beam positioning capabilities are essential to the LEUTL project. A design objective of the LEUTL facility is to achieve better than 1- microm resolution. The highest care was used in the mechanical fabrication and assembly of the BPM units. The latest experimental results using these BPMs are presented

  19. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections

    OpenAIRE

    Rodrigo, José A.; Alieva, Tatiana; Cámara, Alejando; Martínez Matos, Ó.; Cheben, Pavell; Calvo, María L.

    2011-01-01

    In this work, we propose a robust and versatile approach for the characterization of the complex field amplitude of holographically generated coherent-scalar paraxial beams. For this purpose we apply an iterative algorithm that allows recovering the phase of the generated beam from the measurement of its Wigner distribution projections. Its performance is analyzed for beams of different symmetry: Laguerre-Gaussian, Hermite- Gaussian and spiral ones, which are obtained experimentally by a comp...

  20. Full data consistency conditions for cone-beam projections with sources on a plane

    International Nuclear Information System (INIS)

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. (paper)

  1. Full data consistency conditions for cone-beam projections with sources on a plane.

    Science.gov (United States)

    Clackdoyle, Rolf; Desbat, Laurent

    2013-12-01

    Cone-beam consistency conditions (also known as range conditions) are mathematical relationships between different cone-beam projections, and they therefore describe the redundancy or overlap of information between projections. These redundancies have often been exploited for applications in image reconstruction. In this work we describe new consistency conditions for cone-beam projections whose source positions lie on a plane. A further restriction is that the target object must not intersect this plane. The conditions require that moments of the cone-beam projections be polynomial functions of the source positions, with some additional constraints on the coefficients of the polynomials. A precise description of the consistency conditions is that the four parameters of the cone-beam projections (two for the detector, two for the source position) can be expressed with just three variables, using a certain formulation involving homogeneous polynomials. The main contribution of this work is our demonstration that these conditions are not only necessary, but also sufficient. Thus the consistency conditions completely characterize all redundancies, so no other independent conditions are possible and in this sense the conditions are full. The idea of the proof is to use the known consistency conditions for 3D parallel projections, and to then apply a 1996 theorem of Edholm and Danielsson that links parallel to cone-beam projections. The consistency conditions are illustrated with a simulation example. PMID:24240245

  2. The TRIUMF KAON Factory

    International Nuclear Information System (INIS)

    The TRIUMF KAON Factory is designed to produce beams of kaons, antiprotons, other hadrons and neutrinos 100 times more intense, or cleaner, than are available now, for a broad range of experiments in particle and nuclear physics. This will require a 100 μA beam of 30 GeV protons, to be produced by an interleaved sequence of two fast-cycling synchrotrons and three storage rings, with the existing TRIUMF H- cyclotron as injector. An $11-million preconstruction study has enabled the overall design to be reviewed and prototypes of various accelerator components to be built and evaluated. Environmental, industrial and economic impact studies have also been completed. Payment of one-third of the total cost of $708 million (Canadian) has been approved by the government of British Columbia; a further third is expected from international sources, on the basis of inter-governmental consultations. A decision on the final third is expected from the government of Canada before the end of 1990. (Author) (15 refs., 7 figs.)

  3. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF

    Science.gov (United States)

    Barquest, B. R.; Bale, J. C.; Dilling, J.; Gwinner, G.; Kanungo, R.; Krücken, R.; Pearson, M. R.

    2016-06-01

    A new radiofrequency quadrupole (RFQ) based ion beam cooler and buncher is under development for the CANadian Rare-isotope facility with Electron Beam ion source (CANREB) project at TRIUMF. The CANREB project requires an RFQ buncher that will efficiently accept continuous beams of rare isotopes from either the Advanced Rare IsotopE Laboratory (ARIEL) or Isotope Separator and ACcelerator (ISAC) target by way of a high resolution magnetic spectrometer, with energies up to 60 keV and deliver bunched beams to an electron beam ion source (EBIS) for charge breeding. The energy of the bunched beam delivered to the EBIS will be adjustable to match the requirements of the existing post acceleration infrastructure. The CANREB RFQ incorporates design considerations to facilitate ease of use over a wide range of ion masses, and is intended to accommodate incident beam rates as high as 108 pps, delivering beam bunches at 100 Hz. An overview of the CANREB RFQ design concept will be presented, informed by results from both ion optical simulations as well as commissioning efforts with other beam cooler and buncher devices. Simulation results indicate that the design is well suited to deliver high quality bunched beams with high efficiency with as many as 106 ions per bunch.

  4. Photon Factory activity report, 1995

    International Nuclear Information System (INIS)

    The Photon Factory at the National Laboratory for High Energy Physics is a national facility for scientific research utilizing synchrotron radiation. Although the Photon Factory operator the linear injector, two light sources including the 2.5 GeV storage ring and the 6.5 GeV TRISTAN accumulation Ring as well as a major fraction of their beamlines and experimental station. This report is covered the period from October 1994 to September 1995. The total number of proposals by this PAC was 399 in 1995. Facility development projects currently in progress include the following, TRISTAN Super Light Facility (TSLF) project, VUV-FEL project, KEKB project and Slow-positron Source. This report contents outline of the Photon Factory, introduction, scientific disciplines, electronic properties of condensed matters, atomic and molecular science, X-ray imaging, radiobiology using synchrotron radiation, structural properties of condensed matters, structural properties of solid surfaces and adsorbates, structure and function of proteins, theoretical researches, experimental facilities, beamlines, new instrumentation, AR Upgrade, collaborations, projects, user's short reports, list of published papers 1994/95. (S.Y.)

  5. Photon Factory activity report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Photon Factory at the National Laboratory for High Energy Physics is a national facility for scientific research utilizing synchrotron radiation. Although the Photon Factory operator the linear injector, two light sources including the 2.5 GeV storage ring and the 6.5 GeV TRISTAN accumulation Ring as well as a major fraction of their beamlines and experimental station. This report is covered the period from October 1994 to September 1995. The total number of proposals by this PAC was 399 in 1995. Facility development projects currently in progress include the following, TRISTAN Super Light Facility (TSLF) project, VUV-FEL project, KEKB project and Slow-positron Source. This report contents outline of the Photon Factory, introduction, scientific disciplines, electronic properties of condensed matters, atomic and molecular science, X-ray imaging, radiobiology using synchrotron radiation, structural properties of condensed matters, structural properties of solid surfaces and adsorbates, structure and function of proteins, theoretical researches, experimental facilities, beamlines, new instrumentation, AR Upgrade, collaborations, projects, user`s short reports, list of published papers 1994/95. (S.Y.)

  6. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT

    International Nuclear Information System (INIS)

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized 3He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem

  7. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  8. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  9. Photon Factory activity report, 1988

    International Nuclear Information System (INIS)

    Since the foundation of Photon Factory a decade age, it has played an important role as a unique synchrotron X-ray radiation source in Japan. Installation of various insertion devices, storage of intense positron beam and reduction of beam emittance were the substantial achievements in the last several years. The exploitation of the TRISTAN Accumulation Ring as a synchrotron radiation source has paved the way for a new potential of development. All these activities have brought about the increase of beamlines and the expansion of scientific fronts. Third International Conference on Synchrotron Radiation Instrumentation held in Tsukuba was one of the most highlighted events for the facility. In coming years, it is intended to open new research fields using the promising single bunch beam and circularly polarized wiggler radiation. The TRISTAN Main Ring also will be applied to synchrotron radiation research. The Photon Factory in a national synchrotron radiation research facility affiliated to the National Laboratory for High Energy Physics, and it consists of a 2.5 GeV electron linac, a 2.5 GeV storage ring as a synchrotron light source, beam lines and experimental stations. The operation, improvement and development in respective departments are reported. (Kako, I.)

  10. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  11. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  12. Managing the Real-time Behaviour of a Particle Beam Factory The CERN Proton Synchrotron Complex and its Timing System Principles

    CERN Document Server

    Bau, J C; Lewis, J; Philippe, J

    1998-01-01

    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed a...

  13. Beam-cooling methods in the NICA project

    Science.gov (United States)

    Kostromin, S. A.; Meshkov, I. N.; Sidorin, A. O.; Smirnov, A. V.; Trubnikov, G. V.; Shurkhno, N.

    2012-07-01

    The Nuclotron-based Ion Collider Facility (NICA) is a new accelerator complex under construction at the Joint Institute for Nuclear Research (JINR) for experiments with colliding beams of heavy ions up to gold at energies as high as 4.5 × 4.5 GeV/u aimed at studying hot and dense strongly interacting nuclear matter and searching for possible indications of the mixed phase state and critical points of phase transitions. This facility comprises an ion source of the electron-string type, a 3-MeV/u linear accelerator, a 600-MeV/u superconducting booster synchrotron (Booster), a Nuclotron (upgraded superconducting synchrotron with a maximum energy of 4.5 GeV/u for ions with the charge-to-mass ratio Z/ A = 1/3), and a collider consisting of two vertically separated superconducting rings with an average luminosity of 1027 cm-2 s-1 in an energy range over 3.0 GeV/u. Beam cooling is supposed to be used in two NICA elements, the Booster, and the collider rings. The Booster is intended for the storage of 197Au31+ ions to an intensity of about 4 × 109 particles; their acceleration to the energy 600 MeV/u, which is sufficient for the complete stripping of nuclei (an increase in the injection energy and the charge state of ions makes the requirements for vacuum conditions in the Nuclotron less stringent); and the formation of the necessary beam emittance using the electron cooling system. Two independent beam-cooling systems, a stochastic one and an electron one, are supposed to be used in the collider. The parameters of the cooling systems, the optimum mode of operation for the collider, and the arrangement and design of the elements of the systems are discussed.

  14. On KEK B-Factory

    Science.gov (United States)

    Sugawara, H.

    2009-07-01

    There are two principles which the management of a research institute like KEK must respect when dealing with such big project as B-Factory. One is the scientific merit of the project and the other is the organizational consideration which includes financial, human, technical and historical elements. Ideally, the two principles are to be fully taken into account. But, in many cases, one or the other is only partially fulfilled due to unavoidable circumstances. The lack of flexibility to respond to all possible situations is more dangerous and may lead to a disaster as in the case of SSC. I will describe the process which lead to the successful construction, operation and physics presentations of KEK B-Factory following faithfully the official records.

  15. On KEK B-factory

    International Nuclear Information System (INIS)

    There are two principles which the management of a research institute like KEK must respect when dealing with such big project as B-Factory. One is the scientific merit of the project and the other is the organizational consideration which includes financial, human, technical and historical elements. Ideally, the two principles are to be fully taken into account. But, in many cases, one or the other is only partially fulfilled due to unavoidable circumstances. The lack of flexibility to respond to all possible situations is more dangerous and may lead to a disaster as in the case of SSC. I will describe the process which lead to the successful construction, operation and physics presentations of KEK B-Factory following faithfully the official records. (author)

  16. The DAE{\\delta}ALUS Project: Rationale and Beam Requirements

    CERN Document Server

    Alonso, Jose R

    2010-01-01

    Neutrino physics focuses on huge detectors deep underground. The Sanford Lab in South Dakota will build a 300 kiloton water-Cherenkov detector 1500 meters deep for muon neutrino oscillation studies of the mass hierarchy and CP violation. This will be used by the Long Baseline experiment (LBNE) detecting few GeV neutrinos from Fermilab, 1300 km away. The DAE{\\delta}ALUS Collaboration also plans several neutrino-production sites at closer distances up to 20 km from the 300 kT detector, producing muon antineutrinos from stopped pions. The complementarity with LBNE greatly enhances results, and enthusiasm is mounting to do both experiments. DAE{\\delta}ALUS needs 0.8-1 GeV accelerators with mA proton beams. Three sites at 1.5, 8 and 20 km from the 300 kT detector require several accelerators. The cost per machine must be below 1/10 of existing megawatt-class proton machines. Beyond high power and energy, beam parameters are modest. Challenges are reliability, control of beam loss and minimizing activation. Options...

  17. Photon Factory activity report, 1987

    International Nuclear Information System (INIS)

    The Photon Factory made great strides in 1987. The low emittance operation of the PF ring was achieved in March, and resulted favorably in the increase of brilliance from 2 to 20 times for all the beam lines with high beam stability. At the same time, the installation of inserted devices was under way for all available straight sections of the ring. A 54-pole wiggler-undulator has been commissioned at BL-16. The devices to be inserted in the near future are a multipole wiggler for BL-13, an undulator for BL-19, and an undulator for circular polarized radiation at BL-28. The construction of beam lines continued, and four new beam lines, BL-6, BL-9, BL-16 and BL-17, are now in operation, BL-13 and BL-19 are under construction, and BL-3, BL-5, BL-18, BL-20 and BL-28 are in the design stage. Since its inauguration with four beam lines in 1982, the Photon Factory has grown rapidly, and approaches the goal of operating the PF ring with positrons in full use of its 24 beam ports and the straight sections for inserted devices. The total operation time was limited to 3,000 hours by the budget for fiscal year 1987, and about 80 % of the operation hours were devoted to the experiments of users. The nearly perfect operation of the 400 m long linac has continued in 1987, and has supplied both electrons and positrons to the TRISTAN collision experiment. The light source of a 2.5 GeV electron storage ring was normally operated. (Kako, I.)

  18. A Far-Field Electro-Magnetic Tractor Beam Project

    Data.gov (United States)

    National Aeronautics and Space Administration — When the project began, our intention was to develop a more accurate model of the forces that could be obtained between experimentally demonstrate...

  19. Data Management System at the Photon Factory Macromolecular Crystallography Beamline

    International Nuclear Information System (INIS)

    Macromolecular crystallography is a very powerful tool to investigate three-dimensional structures of macromolecules at the atomic level, and is widely spread among structural biology researchers. Due to recent upgrades of the macromolecular crystallography beamlines at the Photon Factory, beamline throughput has improved, allowing more experiments to be conducted during a user's beam time. Although the number of beamlines has increased, so has the number of beam time applications. Consequently, both the experimental data from users' experiments and data derived from beamline operations have dramatically increased, causing difficulties in organizing these diverse and large amounts of data for the beamline operation staff and users. To overcome this problem, we have developed a data management system by introducing commercial middleware, which consists of a controller, database, and web servers. We have prepared several database projects using this system. Each project is dedicated to a certain aspect such as experimental results, beam time applications, beam time schedule, or beamline operation reports. Then we designed a scheme to link all the database projects.

  20. Concept of the ESO-VLT Project-Beam Combination

    Science.gov (United States)

    Merkle, F.

    The optical configuration of the VLT is based on a linear array of 4 independently mounted 8 m telescopes. They can be operated either independently or in various combination schemes. In the latter case the light collected with the unit telescopes is fed via beam combination optics to the combined focus. The coherent combination path opens long baseline interferometry with a resolution span of approx. 0.5 marcsec in the blue to approx. 30 marcsec at 20 μm wavelength in the case of a 150 m baseline.

  1. Design of the medium energy beam transport (MEBT) line for the rare ion beam project at VECC

    International Nuclear Information System (INIS)

    The design of a 24 m long MEBT line connecting the accelerator LINAC 3 with LINAC 4 of the VECC-RIB project is presented. The design goal is to achieve a optimal solution for the transport of heavy ion beams, emerging from LINAC 3 with the mean energy of 414 KeV/u and q/A ≥ 1/14 so that the beam is well matched both in transverse and longitudinal direction at the entry of the LINAC 4. A charge stripper is placed before LINAC 4 in order to achieve higher charge to mass ratio (q/A ≥ 1/7). The presence of the charge stripper requires that the alpha and beta parameters of the beam both in X and Y plane should be very small at the charge stripper so that emittance blow up is less. The restrictions of space in the site compel us to make the line about 14 m long before it can be bent in a 90 degree achromatic bend. As we are using a charge stripper, mass dispersion must be high at the intermediate focal point between the two dipole magnets of the achromatic bend to select the desired ion species for acceleration in the subsequent acceleration stages. This rather long length (∼ 24 m) of the beam line requires two rebunchers to match the beam longitudinally at the entry of the LINAC 4. In this paper, the step by step procedure of achieving various requirements, viz, minimization of alpha and beta at the stripper, achromatic bend with appreciable mass dispersion in between the bending magnets and beam matching at LINAC 4 could be effectively met. (author)

  2. Muon Colliders and Neutrino Factories

    CERN Document Server

    Kaplan, Daniel M

    2014-01-01

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  3. Investigation of respirable particulate matter pollutants on air-breathing zone workers in the Beam Rolling Mills Factory (Iran National Steel Industrial Group, Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2008-01-01

    Full Text Available Workers of iron and steel factories are exposed to a wide range of pollutants depending on the particular process, the materials involved, the effectiveness of monitoring and the control measures. Adverse effects are determined by the physical state and propensities of the pollutant involved, the intensity and duration of the exposure, the extent of pollutant accumulation in the body and the sensitivity of the individual to its effects. The main aim of this study is to assess the levels of the indoor respirable particulate matter (RPM and to compare the health condition of exposed workers, with nonexposed employees group. Line 630 has only one furnace of 40 tons and line 650 has two furnaces of 20 and 40 tons capacity due to which the mean of the RPM concentrations in the breathing zone was significantly different ( P < 0.05 in line 650 but not in line 630 as compared with National Institute for Occupational Safety and Hygiene′s (3 mg/m 3 . The average of the RPM concentrations in production line 650 is higher than that of production line 630, with the 95% confidence interval in saw cabin station number 1 of production line 650.

  4. Photon Factory activity report, 1990

    International Nuclear Information System (INIS)

    The Photon Factory has grown at a considerable rate, and 600 experiments are carried out in 1991, while the number of users is now 2300 including about 500 from industrial sectors. The use of synchrotron radiation increased from fundamental research to industrial development. The development at the Photon Factory is supported by the capability of the accelerators. At present, the 2.5 GeV PF ring is operated with positrons at the initial beam current of 350 mA. The total operation time was 3500 hours in the fiscal year 1990. The development of an avalanche mode photodiode, the observation of quantum beat in the experiment of nuclear Bragg scattering, the measurement of photo-electron and photo-ion spectroscopy were carried out. The conversion of TRISTAN main ring to an ultrahigh brilliance and high coherence source is planned for the future. The annual PF Symposium was held, and Professor H. Winick gave the lecture 'Ultrahigh brightness and coherent radiation from large storage rings'. In this report, the outline of the Photon Factory and the activities in Divisions of Injector Linac, Light Source and Instrumentation are described. (K.I.)

  5. A simplified approach for the generation of projection data for cone beam geometry

    Indian Academy of Sciences (India)

    Tushar Roy; P S Sarkar; Amar Sinha

    2011-04-01

    To test a developed reconstruction algorithm for cone beam geometry, whether it is transmission or emission tomography, one needs projection data. Generally, mathematical phantoms are generated in three dimensions and the projection for all rotation angles is calculated. For non-symmetric objects, the process is cumbersome and computation intensive. This paper describes a simple methodology for the generation of projection data for cone beam geometry for both transmission and emission tomographies by knowing the object’s attenuation and/or source spatial distribution details as input. The object details such as internal geometrical distribution are nowhere involved in the projection data calculation. This simple approach uses the pixilated object matrix values in terms of the matrix indices and spatial geometrical coordinates. The projection data of some typical phantoms (generated using this approach) are reconstructed using standard FDK algorithm and Novikov’s inversion formula. Correlation between the original and reconstructed images has been calculated to compare the image quality.

  6. Vietnam Project For Production Of Radioactive Beam Based On ISOL Technique With The Dalat Reactor

    International Nuclear Information System (INIS)

    The presence in Vietnam of Dalat nuclear reactor dedicated to fundamental studies is a unique opportunity to produce Radioactive Ion (RI) Beams with the fission of a 235U induced by the thermal neutrons produced by the reactor. We propose to produce RI beams at the Dalat nuclear reactor using ISOL (Isotope Separation On-Line) technique. This project should be a unique opportunity for Vietnamese nuclear physics community to use its own facilities to produce RI beams for studying nuclear physics at an international level. (author)

  7. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    sorted data set. The common method of choice for reconstructing the 3D volume is the Feldkamp-Davis-Kress algorithm [2], however this method suffers from serious artefacts when the sample number of projections is too low which can happen due to phase binning. Iterative methods based on solving the...

  8. Impact of polarized e{sup -} and e{sup +} beams at a future linear collider and a Z-factory. Pt. II. Physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    Polarization of both beams at a future Linear Collider would be ideal for facing both expected and unforeseen challenges in searches for new physics: fixing the chirality of the couplings and enabling the higher precision for the polarization measurement itself as well as for polarization-dependent observables, it provides a powerful tool for studying new physics at the future Linear Collider, such as discovering new particles, analyzing signals model-independently and resolving precisely the underlying model. Techniques and engineering designs for a polarized-positron source are well advanced. Potential constraints concerning luminosity, commissioning and operating issues appear to be under control. This article mainly treats with the impact of polarized beams on physics beyond the Standard Model. (orig.)

  9. Railways Factory in Resita

    Directory of Open Access Journals (Sweden)

    Cornel Iacob-Mare

    2013-09-01

    Full Text Available This paper proposes an exemption Analysis railway factory in Resita impressed having experience and also provide some technical characteristics of freight wagons representative technology, used to transport products made in factories in ReşiŃa.

  10. PCs in the factory

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication.PCs have become as essential to the factory environment as they are to the office environment. This in-depth report examines how specially adapted PCs and peripherals are being established in Factory Process Control and Reporting. The report covers: * Hardware and Software* Typical Applications* Implementation Issues* Case Studies and Real Applications

  11. Image reconstruction from fan-beam projections on less than a short scan

    International Nuclear Information System (INIS)

    This work is concerned with 2D image reconstruction from fan-beam projections. It is shown that exact and stable reconstruction of a given region-of-interest in the object does not require all lines passing through the object to be measured. Complete (non-truncated) fan-beam projections provide sufficient information for reconstruction when 'every line passing through the region-of-interest intersects the vertex path in a non-tangential way'. The practical implications of this condition are discussed and a new filtered-backprojection algorithm is derived for reconstruction. Experiments with computer-simulated data are performed to support the mathematical results. (author)

  12. Image reconstruction from fan-beam projections on less than a short scan.

    Science.gov (United States)

    Noo, Frédéric; Defrise, Michel; Clackdoyle, Rolf; Kudo, Hiroyuki

    2002-07-21

    This work is concerned with 2D image reconstruction from fan-beam projections. It is shown that exact and stable reconstruction of a given region-of-interest in the object does not require all lines passing through the object to be measured. Complete (non-truncated) fan-beam projections provide sufficient information for reconstruction when 'every line passing through the region-of-interest intersects the vertex path in a non-tangential way'. The practical implications of this condition are discussed and a new filtered-backprojection algorithm is derived for reconstruction. Experiments with computer-simulated data are performed to support the mathematical results. PMID:12171338

  13. Handbook factory planning and design

    CERN Document Server

    Wiendahl, Hans-Peter; Nyhuis, Peter

    2015-01-01

    This handbook introduces a methodical approach and pragmatic concept for the planning and design of changeable factories that act in strategic alliances to supply the ever-changing needs of the global market. In the first part, the change drivers of manufacturing enterprises and the resulting new challenges are considered in detail with focus on an appropriate change potential. The second part concerns the design of the production facilities and systems on the factory levels work place, section, building and site under functional, organisational, architectural and strategic aspects keeping in mind the environmental, health and safety aspects including corporate social responsibility. The third part is dedicated to the planning and design method that is based on a synergetic interaction of process and space. The accompanying project management of the planning and construction phase and the facility management for the effective utilization of the built premises close the book. -        Concise overview o...

  14. Pion production for neutrino factories and muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  15. The ADRIA project for high intensity radioactive beams production

    Energy Technology Data Exchange (ETDEWEB)

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B. (Laboratori Nazionali di Legnari, Legnaro (Italy)); Ruggiero, A.G. (Brookhaven National Lab., Upton, NY (United States)); Tecchio, L. (Turin Univ. (Italy) Istituto Nazionale di Fisica Nucleare, Turin (Italy))

    1992-01-01

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10[sup 12] ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10[sup 8] [divided by] 10[sup 9] ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  16. The ADRIA project for high intensity radioactive beams production

    Energy Technology Data Exchange (ETDEWEB)

    Bisoffi, G.; Cavenago, M.; Dainelli, A.; Facco, A.; Fortuna, G.; Lombardi, A.; Moisio, M.F.; Pisent, A.; Spolaore, P.; Tiveron, B. [Laboratori Nazionali di Legnari, Legnaro (Italy); Ruggiero, A.G. [Brookhaven National Lab., Upton, NY (United States); Tecchio, L. [Turin Univ. (Italy)]|[Istituto Nazionale di Fisica Nucleare, Turin (Italy)

    1992-12-31

    A proposal of an accelerator complex (ADRIA) for the Laboratori Nazionali di Legnaro (LNL) is described in this report. The main components of the complex are a Heavy Ion Injection system and two rings, a Booster and a Decelerator, both with a maximum rigidity of 22.25 Tm, connected by a Transfer Line where exotic proposal has two main goals consisting in the isotopes are produced and selected. The proposal has two main goals consisting in the acceleration of stable ion species up to kinetic energies of the order of few GeV/u, at a repetition rate of 10 Hz with intensities of about 10{sup 12} ions per second, for fixed target experiments in nuclear physics and for the production of fully stripped radioactive beams, using particle fragmentation method for nuclear spectroscopy experiments. Fragments are accumulated in the Decelerator, with intensities 10{sup 8} {divided_by} 10{sup 9} ions/s, cooled and delivered at the production energies or decelerated down to energies of few MeV/u, in proximity of the Coulomb barrier.

  17. The Nearby Supernova Factory

    CERN Document Server

    Wood-Vasey, W M; Lee Byung Cheol; Loken, S; Nugent, P; Perlmutter, S; Siegrist, J L; Wang, L; Antilogus, P; Astier, Pierre; Hardin, D; Pain, R; Copin, Y; Smadja, G; Gangler, E; Castera, A; Adam, G; Bacon, R; Lemonnier, J P; Pecontal, A; Pécontal, E; Kessler, R

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03

  18. A generalized reverse projection method for fan beam geometry under partially coherent illumination

    Science.gov (United States)

    Wu, Z.; Wang, Z. L.; Gao, K.; Zhang, K.; Ge, X.; Wang, D. J.; Wang, S. H.; Chen, J.; Pan, Z. Y.; Zhu, P. P.; Wu, Z. Y.

    2014-02-01

    In this paper, a generalized reverse projection (RP) method for grating-based fan beam phase contrast imaging is presented. Compared to the original RP method, rays rather than projection images are taken into account during the information extraction process. We also discuss the influence of partial coherence on the extracted information. Theoretical derivations and numerical simulations are performed to confirm the validity of the method.

  19. The radioactive ion beam project at VECC, Kolkata – A status report

    Indian Academy of Sciences (India)

    Alok Chakrabarti

    2002-12-01

    A project to build an ISOL-post accelerator type of radioactive ion beam (RIB) facility has been undertaken at VECC, Kolkata. The funding for the first phase of the project was approved in August 1997. This phase will be the R&D phase and will be completed by December 2003. The present status of development of the various sub-systems of the RIB facility will be discussed.

  20. P.I.A.F.E. project: production of highly charged particles for radioactive ion beams

    International Nuclear Information System (INIS)

    The transformation of a mono-charged ion beam into a multicharged ion beam is an important problem in the projects of radioactive beams acceleration. This transformation must be performed with the best possible efficiency and in the shortest possible time to avoid the loss of particles by radioactive degenerescence. A ionization method using an electron cyclotron resonance (ECR) source is proposed. It consists in the fast capture by the ECR plasma of the radioactive elements injected inside this source in the form of a mono-charged ion beam. This method gives good results (2 to 6% efficiency to move from the 1+ to the 9+ charge state) for the ionization of alkaline elements, rare and metallic gases, with fast times of response allowing the ionization of radioactive products with a lifetime inferior to 1 s. (J.S.)

  1. Towards energy transparent factories

    CERN Document Server

    Posselt, Gerrit

    2016-01-01

    This monograph provides a methodological approach for establishing demand-oriented levels of energy transparency of factories. The author presents a systematic indication of energy drivers and cost factors, taking into account the interdependencies between facility and production domains. Particular attention is given to energy flow metering and monitoring. Readers will also be provided with an in-depth description of a planning tool which allows for systematically deriving suitable metering points in complex factory environments. The target audience primarily comprises researchers and experts in the field of factory planning, but the book may also be beneficial for graduate students.

  2. Design of a support system for the vertical beam transfer lines of the ELENA project

    CERN Document Server

    Bozhkov, Kristiyan

    2016-01-01

    This report aims to present the design of a support system for the vertical beam transfer lines of the ELENA project. Two different designs can be found in this report. The mechanical strength and the structure performance of the support are analysed by a finite element model.

  3. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Akira Ozawa

    2001-08-01

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been done. Recently, nuclear structure for unstable nuclei has been paid much attention. In special, disappearance and appearance of magic numbers are discussed experimentally and theoretically. Thus, in this review, related experiments concerning disappearance and appearance of magic numbers are described. Finally, future project in RIKEN, RI-beam factory, is introduced briefly.

  4. Energy balance of a cheese factory and preliminary project for biogas production; Bilan energetique de la fromagerie et avant-projet d'installation de biogaz. Richard Bettex - 1487 Champtauroz (VD)

    Energy Technology Data Exchange (ETDEWEB)

    Membrez, Y. [Erep SA, Aclens (Switzerland); Wellinger, A. [Nova Energie GmbH, Aadorf (Switzerland); Bonjour, B. [Sorane SA, Lausanne (Switzerland)

    2002-07-01

    This report is a feasibility study for a biogas production unit adapted to a farm in Champtauroz in Switzerland, and a dual purpose power plant generating thermal and electric energy from the biogas according to the energy demand of the cheese factory attached to the farm. Typically 5*10{sup 5} m{sup 3} per year of biogas should be extracted from the manure of around 1,500 farm animals. The methane would be produced by a continuously operated digestor. The energy demand of the cheese factory, mainly thermal energy for the goat milk transformation process and electric power for the milk refrigeration, is measured in details and its annual profile is estimated. This demand is practically independent from the outdoor temperature as long as this temperature is higher than 10 {sup o}C. The report also includes a cost estimate for the whole project, functional schematics of the biogas production unit and of the power plant, and several diagrams displaying the heat and electric power demands of the cheese factory as a function of parameters like the cheese production and the quantity of refrigerated milk.

  5. Photon Factory Activity Report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Photon Factory Activity Report no.12 deals with our activities in the period from October 1993 through September 1994. We operate two light sources at the Photon Factory; the 2.5-GeV Photon Factory storage ring, which is a dedicated light source, and the 6.5-GeV TRISTAN Accumulation Ring, which is parasitically used as a light source. We keep more than seventy experimental stations at two facilities, and accept experiments primarily according to approval by the Program Advisory Committee. The number of proposals to the Photon Factory has been still growing. Three-hundred eighty two proposals were approved by the PAC in FY1994, which is an increase by thirteen percent compared to the previous year. Remarkable was growth in biology proposals, particularly proposals in protein crystallography. In FY 1994, we accepted approximately 20,000 man-days as general users, and almost ten percent of them were from abroad. We always open the facility to users, not only domestic but also international. Recently we have been concentrating our effort to upgrading of the light sources and reconstruction of the experimental stations to keep the Photon Factory an attractive research facility in the forthcoming years. We have already started a program of reducing the emittance of the 2.5-GeV storage ring, which now operates with an emittance of 110 nm-rad, to 27 nm-rad by modifying the lattice, with the goal of operation at the reduced emittance in the fall of 1997. We also have conceived of a conversion of the TRISTAN Accumulation Ring to a dedicated light source of high energies. The on-going TRISTAN project will terminate by the end of 1995, and the TRISTAN Main Ring will be converted to a new B-Factory. At this moment, the TRISTAN Accumulation Ring will be disused as the injector to the Main Ring, and conversion of the AR to a dedicated light source becomes possible. (J.P.N.)

  6. Photon Factory Activity Report, 1994

    International Nuclear Information System (INIS)

    Photon Factory Activity Report no.12 deals with our activities in the period from October 1993 through September 1994. We operate two light sources at the Photon Factory; the 2.5-GeV Photon Factory storage ring, which is a dedicated light source, and the 6.5-GeV TRISTAN Accumulation Ring, which is parasitically used as a light source. We keep more than seventy experimental stations at two facilities, and accept experiments primarily according to approval by the Program Advisory Committee. The number of proposals to the Photon Factory has been still growing. Three-hundred eighty two proposals were approved by the PAC in FY1994, which is an increase by thirteen percent compared to the previous year. Remarkable was growth in biology proposals, particularly proposals in protein crystallography. In FY 1994, we accepted approximately 20,000 man-days as general users, and almost ten percent of them were from abroad. We always open the facility to users, not only domestic but also international. Recently we have been concentrating our effort to upgrading of the light sources and reconstruction of the experimental stations to keep the Photon Factory an attractive research facility in the forthcoming years. We have already started a program of reducing the emittance of the 2.5-GeV storage ring, which now operates with an emittance of 110 nm-rad, to 27 nm-rad by modifying the lattice, with the goal of operation at the reduced emittance in the fall of 1997. We also have conceived of a conversion of the TRISTAN Accumulation Ring to a dedicated light source of high energies. The on-going TRISTAN project will terminate by the end of 1995, and the TRISTAN Main Ring will be converted to a new B-Factory. At this moment, the TRISTAN Accumulation Ring will be disused as the injector to the Main Ring, and conversion of the AR to a dedicated light source becomes possible. (J.P.N.)

  7. Maximum Autocorrelation Factorial Kriging

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.;

    2000-01-01

    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an...

  8. Generalized Factorial Moments

    International Nuclear Information System (INIS)

    It is shown that the method of eliminating the statistical fluctuations from event-by-event analysis proposed recently by Fu and Liu can be rewritten in a compact form involving the generalized factorial moments. (author)

  9. Virtual Factory Testbed

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Factory Testbed (VFT) is comprised of three physical facilities linked by a standalone network (VFNet). The three facilities are the Smart and Wireless...

  10. Target factory in perspective

    International Nuclear Information System (INIS)

    A target factory diagram has been constructed for an analysis of the shell coating process system in relation to target production. The number of deposition units needed to achieve the coating requirements will be a major target production operating cost

  11. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  12. Automotive factory network renewal

    OpenAIRE

    Scicluna, Christopher

    2012-01-01

    The aim of this applied thesis was to plan, implement, and study the upgrading the network infrastructure in Valmet Automotive Oy, specifically in its Uusikaupunki factory. Valmet Automotive is a Finnish automotive service provider, focusing on premium vehicles, convertible roof systems and electric vehicles. The objective was to plan and implement a networking infrastructure that could support the load of a factory in full-scale production, while ensuring near-constant availability. T...

  13. Apiary B-Factory separation scheme

    International Nuclear Information System (INIS)

    A magnetic beam-separation scheme for an asymmetric-energy B-Factory based on the SLAC electron-positron collider PEP is described that has the following properties: the beams collide head-on and are separated magnetically with sufficient clearance at the parasitic crossing points and at the septum, the magnets have large beam-stay-clear apertures, synchrotron radiation produces low detector backgrounds and acceptable heat loads, and the peak β-function values and contributions to the chromaticities in the IR quadrupoles are moderate. 8 figs., 2 tabs

  14. Job and Task Analysis project at Brookhaven National Laboratory's high flux beam reactor

    International Nuclear Information System (INIS)

    The presenter discussed the Job and Task Analysis (JTA) project conducted at Brookhaven National Laboratory's High Flux Beam Reactor (HFBR). The project's goal was to provide JTA guidelines for use by DOE contractors, then, using the guidelines conduct a JTA for the reactor operator and supervisor positions at the HFBR. Details of the job analysis and job description preparation as well as details of the task selection and task analysis were given. Post JTA improvements to the HFBR training programs were covered. The presentation concluded with a listing of the costs and impacts of the project

  15. The KAON Factory at TRIUMF

    International Nuclear Information System (INIS)

    The TRIUMF KAON Factory is designed to produce beams of kaons, antiprotons, other hadrons and neutrinos 100 times more intense, or cleaner, than are available now, for a broad range of particle and nuclear physics experiments. This will require a 100 μA beam of 30 GeV protons, to be produced by an interleaved sequence of two fast-cycling synchrotrons and three storage rings, with the existing TRIUMF H- cyclotron as injector. An $11-million preconstruction study has enabled the overall design to be reviewed and prototypes of various components to be built and evaluated -fast-cycling dipole and quadrupole magnets, a dual-frequency magnet power supply, ceramic beam pipes with internal rf shields, and rf cavity (using perpendicular bias), an extraction kicker, and rf beam chopper, and production targets. Environmental, industrial and economic impact studies have also been completed and the cost estimates and schedule updated. The total cost of $708 million (Canadian) will be shared equally between Canada, British Columbia and international contributors: the first two-thirds of this sum have already been approved and negotiations for the remainder are under way. 25 refs., 7 figs

  16. The KAON factory at TRIUMF

    International Nuclear Information System (INIS)

    The TRIUMF KAON Factory is designed to produce beams of kaons, antiprotons, other hadrons and neutrinos 100 times more intense, or cleaner, than are available now, for a broad range of particle and nuclear physics experiments. This will require a 100 μA beam of 30 GeV protons, to be produced by an interleaved sequence of two fast-cycling synchrotrons and three storage rings, with the existing TRIUMF H- cyclotron as injector. An $11-million pre-construction study has enabled the overall design to be reviewed and prototypes of various components to be built and evaluated: fast-cycling dipole and quadrupole magnets, a dual frequency magnet power supply, ceramic beam pipes with internal rf shields, an rf cavity (using perpendicular bias), an extraction kicker, an rf beam chopper, and production targets. Environmental, industrial and economic impact studies have also been completed and the cost estimates and schedule updated. The total cost of $708 million (Canadian) will be shared equally between Canada, British Columbia and international contributors; the first two-thirds of this sum have already been approved and negotiations for the remainder are under way. 26 refs., 6 figs

  17. Data consistency condition for truncated projections in fan-beam geometry.

    Science.gov (United States)

    Yu, Hengyong; Wang, Ge; Yang, Jiansheng; Pack, Jed D; Jiang, Ming; De Man, Bruno

    2015-01-01

    It is well known that CT projections are redundant. Over the past decades, significant efforts have been devoted to characterize the data redundancy in different aspects. Very recently, Clackdoyle and Desbat reported a new integral-type data consistency condition (DCC) for truncated 2D parallel-beam projections, which can be applied to a region inside a field of view (FOV) but outside of the convex hull of the compact support of an object. Inspired by their work, here we derive a more general condition for 2D fan-beam geometry with a general scanning trajectory. This extended DCC is verified with simulated projections of the Shepp-Logan phantom and a clinically collected sinogram. Then, we demonstrate an application of the proposed DCC. PMID:26409430

  18. Projection imaging of photon beams using Čerenkov-excited fluorescence

    Science.gov (United States)

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H. A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-02-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in a fast timeframe, potentially leading toward 3D tomographic beam profiling. Detailed analysis was carried out to optimize the imaging parameters in the experimental setup. The results demonstrate that the captured images are linear with delivered dose, independent of dose rate, and comparison of experimentally captured images to a reference dose distribution for a 4 × 4 cm2 6 MV x-ray photon beam yielded results with improved accuracy over a previous study which used direct imaging and Monte Carlo calibration of the Čerenkov emission itself. The agreement with the reference dose distribution was within 1-2% in the lateral direction, and ±3% in the depth direction. The study was restricted to single 2D image projection, with the eventual goal of creating full 3D profiles after tomographic reconstruction from multiple projections. Given the increasingly complex advances in radiation therapy, and the increased emphasis on patient-specific treatment plans, further refinement of the technique could prove to be an important tool for fast and robust QA of x-ray photon LINAC beams.

  19. Roseires Dam Heightening Project in Sudan Works of Pre-tensioned Pre-stressed Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    黄志敏

    2014-01-01

    Works of pre-tensioned and pre-stressed concrete beams at dam crest of Roseires Dam Heightening Project located on Nile Riv-er in the Country of Sudan was in a big quantity, complexity and tight completion time. For pre-tensioning operation, frame type pedestal was built. Strict work method statement and applicable work procedure were also developed to assure high work quality and timely completion. All these have become precious experience in the field of pre-tensioning and pre-stressing beams.

  20. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  1. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  2. Damped button electrode for B-Factory BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Obina, T.; Chin, Y.H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    A new concept of damping of resonances in a button electrode has been proposed and tested in the BPM system for the B-Factory project at KEK (KEKB). Since a very high current beam has to be stored in the machine, even a small resonance in the ring will result in losing a beam due to multi-bunch instabilities. In a conventional button electrode used in BPMs, a TE110 mode resonance can be trapped in the gap between the electrode and the vacuum chamber. In order to damp this mode, the diameter of the electrode has been chosen to be small to increase the resonance frequency and to radiate the power into the beam pipe. In addition, an asymmetric structure is applied to extract the EM energy of the TE110 mode into the coaxial cable as the propagating TEM mode which has no cut-off frequency. Results of the computer simulations and tests with cold models are reported. The quality factor of the TE110 mode was small enough due to the radiation into the beam pipe even in the conventional electrode and the mode coupling effect due to the asymmetric shape was significant on a cavity-like TE111 mode. (author)

  3. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections.

    Science.gov (United States)

    Rodrigo, José A; Alieva, Tatiana; Cámara, Alejandro; Martínez-Matos, O; Cheben, Pavel; Calvo, María L

    2011-03-28

    In this work, we propose a robust and versatile approach for the characterization of the complex field amplitude of holographically generated coherent-scalar paraxial beams. For this purpose we apply an iterative algorithm that allows recovering the phase of the generated beam from the measurement of its Wigner distribution projections. Its performance is analyzed for beams of different symmetry: Laguerre-Gaussian, Hermite-Gaussian and spiral ones, which are obtained experimentally by a computer generated hologram (CGH) implemented on a programmable spatial light modulator (SLM). Using the same method we also study the quality of their holographic recording on a highly efficient photopolymerizable glass. The proposed approach is useful for the creation of adaptive CGH that takes into account the peculiarities of the SLM, as well as for the quality control of the holographic data storage. PMID:21451630

  4. Conceptual design of a ring beauty factory

    International Nuclear Information System (INIS)

    This paper reports on the design of the B-meson factory with an expected luminosity of 1033-1034 cm-2s-1 in the energy range of 4.5-6.5 GeV per beam under consideration at the Novosibirsk Institute of Nuclear Physics. The facility will consist of two main parts: the injector and the B-meson factory itself. A 100 m linear electron accelerator to 10 GeV was chosen as an injector. Such a linac is the prototype of the linear collider VLEPP. The injector is expected to feed the B-factory with 1010 electrons and positrons per second directly on the experimental energy. The B-meson factory itself will be about 500 m double ring with combined insertions in the interaction region. In both rings up to 20 bunches will be operated simultaneously. The beams interact one with the other at one interaction point (IP) only. Besides the opportunity to operate with a great number of bunches, an enhancement in luminosity is supposed to be achieved due to mini-beta function that results from a strong bunch length decrease, as well as due to the monochromatization collision scheme

  5. Development of neutron beam projects at the University of Texas TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Recently, the UT-TRIGA research reactor was licensed and has become fully operational. This reactor, the first new US university reactor in 17 years, is the focus of a new reactor laboratory facility which is located on the Balcones Research Center at The University of Texas at Austin. The TRIGA Mark II reactor is licensed for 1.1 MW steady power operation, 3 dollar pulsing, and includes five beam ports. Various neutron beam-line projects have been assigned to each beam port. Neutron Depth Profiling (NDP) and the Texas Cold Neutron Source (TCNS) are close to completion and will be operational in the near future. The design of the NDP instrument has been completed, a target chamber has been built, and the thermal neutron collimator, detectors, data acquisition electronics, and data processing computers have been acquired. The target chamber accommodates wafers up to 12'' in diameter and provides remote positioning of these wafers. The design and construction of the TCNS has been completed. The TCNS consists of a moderator (mesitylene), a neon heat pipe, a cryogenic refrigerator, and neutron guide tubes. In addition, fission-fragment research (HIAWATHA), Neutron Capture Therapy, and Neutron Radiography are being pursued as projects for the other three beam ports. (author)

  6. Image reconstruction from fan-beam projections on less than a short scan

    Energy Technology Data Exchange (ETDEWEB)

    Noo, Frederic [Department of Radiology, University of Utah, Salt Lake City, UT (United States)]. E-mail: noo@doug.med.utah.edu; Clackdoyle, Rolf [Department of Radiology, University of Utah, Salt Lake City, UT (United States); Defrise, Michel [Division of Nuclear Medicine, Vrije Universiteit of Brussels, Brussels (Belgium); Kudo, Hiroyuki [Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba (Japan)

    2002-07-21

    This work is concerned with 2D image reconstruction from fan-beam projections. It is shown that exact and stable reconstruction of a given region-of-interest in the object does not require all lines passing through the object to be measured. Complete (non-truncated) fan-beam projections provide sufficient information for reconstruction when 'every line passing through the region-of-interest intersects the vertex path in a non-tangential way'. The practical implications of this condition are discussed and a new filtered-backprojection algorithm is derived for reconstruction. Experiments with computer-simulated data are performed to support the mathematical results. (author)

  7. Optimized design for the scattering with angular limitation in projection electron-beam lithography based electron projection system

    International Nuclear Information System (INIS)

    We investigate the design for a scattering with angular limitation in projection electron-beam lithography (SCALPEL) based electron projection system with a demagnification of -4. By a ''field-flip'' process we can construct a doublet in which the magnetic field has a flat feature in most of the optic column but opposite sign at two sides connected by a sharp transition region. Such a theoretical model can give a near zero chromatic aberration of rotation and much smaller field curvature and astigmatism. Compared with the conventional doublet, the total image blur caused by aberrations at 1/√(2) mm off-axis distance and 1.5 mrad semiangle aperture at the mask side is about only 24 nm for a column length of 400 mm. A shorter column, less than the current 400 mm, is also favored for further reducing the total aberration. These guarantee that we can choose a much larger aperture angle (compared with present 0.5 mrad) and beam current density in such a SCALPEL projection system to achieve higher throughput while still maintaining current resolution. A practical issue for possible magnetic lens design is also discussed. (c) 2000 American Vacuum Society

  8. The Smart Factory

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bilberg, Arne; Bogers, Marcel;

    2014-01-01

    Nowadays we live in a world, which a decade ago would only be described in the science fiction literature. More and more things become smart and both scientists and engineers strive for developing not only new and innovative devices, but also homes, factories, or even cities. Despite of continuous...... development, many of those concepts are still being just a vision of the future, which still needs a lot of effort to become true. This paper reviews the usage of adjective smart in respect to technology and with a special emphasis on the smart factory concept placement among contemporary studies. Due...... to a lack of a consensus of common understanding of this term, a unified definition is proposed. The conceptualization will not only refer to various smart factory visions reported in the literature, but also link the crucial characteristics of this emerging manufacturing concept to usual manufacturing...

  9. Electron positron factories

    International Nuclear Information System (INIS)

    In this paper, we will first indicate the key issues in designing a B-factory and a φ-factory, and illustrate the approaches that are being followed to address them. In general, reaching the B-factory parameter regime offers the most challenges, so we will emphasize it here. Then we will consider an extrapolation of our present understanding of collider performance and assess the maximum luminosity that could be anticipated. To reach extremely high luminosity, it may be necessary to consider possibilities beyond the scope of ''standard'' approaches to collider design; a few illustrative examples are outlined. For both the present designs and the extrapolated parameters, R ampersand D activities in a few key areas are required; these areas are discussed in this paper also

  10. Adaptive optical beam shaping for compensating projection-induced focus deformation

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2016-02-01

    Scanner-based applications are already widely used for the processing of surfaces, as they allow for highly dynamic deflection of the laser beam. Particularly, the processing of three-dimensional surfaces with laser radiation initiates the development of highly innovative manufacturing techniques. Unfortunately, the focused laser beam suffers from deformation caused by the involved projection mechanisms. The degree of deformation is field variant and depends on both the surface geometry and the working position of the laser beam. Depending on the process sensitivity, the deformation affects the process quality, which motivates a method of compensation. Current approaches are based on a local adaption of the laser power to maintain constant intensity within the interaction zone. For advanced manufacturing, this approach is insufficient, as the residual deformation of the initial circular laser spot is not taken into account. In this paper, an alternative approach is discussed. Additional beam-shaping devices are integrated between the laser source and the scanner, and allow for an in situ compensation to ensure a field-invariant circular focus spot within the interaction zone. Beyond the optical design, the approach is challenging with respect to the control theory's point of view, as both the beam deflection and the compensation have to be synchronized.

  11. A beam profiler and emittance meter for the SPES project at INFN-LNL

    International Nuclear Information System (INIS)

    SPES is a new facility under construction at LNL (Legnaro National Laboratory - Italy) whose aim is the production of radioactive ion beams that will be injected into the Linac ALPI. New beam diagnostics tools have been developed for the SPES project in the perspective of reusing them to upgrade the system currently in operation at LNL in the superconducting Linac ALPI. The goal is providing the SPES facility with an homogenous set of tools and a common user interface to support beam transport over the future accelerators complex. The emittance meter designed for SPES is based on 2 identical moveable slits (collimators) placed in front of a couple of horizontal and vertical grids. The slits have an aperture of 0.3 mm and the distance from the grids is 300 mm. By moving the collimators up and down (or right to left) it is possible to scan the whole beam area and evaluate the beam divergence by measuring the grid currents for different collimator's positions. A control software has been developed using EPICS as general framework

  12. Some TPC [Time Projection Chamber] measurements in an oxygen beam at the AGS

    International Nuclear Information System (INIS)

    The principal detector for AGS Experiment 810 is a Time Projection Chamber (TPC) in which it is intended to measure momenta and angles of a major fraction of the charged particles from each light ion collision. This report describes the results of a test of a prototype of the TPC in a beam of (14.6 /times/ 16 = 233.6 GeV/c) oxygen ions run in June of this year

  13. Simultaneous Hand-Eye-Workspace and Camera Calibration using Laser Beam Projection

    OpenAIRE

    Jwu-Sheng Hu; Yung-Jung Chang

    2014-01-01

    This work presents a novel calibration technique capable of simultaneously calibrating a camera’s intrinsic parameters and hand-eye-workspace relations. In addition to relaxing the requirement of a precise calibration reference to achieve manipulator accuracy, the proposed method functions when the hand is not in the view field of the eye. The calibration method uses a laser pointer mounted on the hand to project laser beams onto a planar object, which serves as the working plane. Collected l...

  14. Improving space heating in factory units

    Energy Technology Data Exchange (ETDEWEB)

    Haughey, Douglas (Building Research Establishment, Watford (United Kingdom)); Webster, Robert (Atkins (W.S.) Consultants Ltd. (United Kingdom))

    Results of a project to establish the energy efficiency of advance factory units (AFUs) are reported in this article. Space heating is shown to be a major component of both energy use and energy costs. Various methods of improving space heating are identified and outlined. (UK)

  15. Uniformity pattern and related criteria for two-level factorials

    Institute of Scientific and Technical Information of China (English)

    FANG; Kaitai; QIN; Hong

    2005-01-01

    In this paper,the study of projection properties of two-level factorials in view of geometry is reported.The concept of uniformity pattern is defined.Based on this new concept,criteria of uniformity resolution and minimum projection uniformity are proposed for comparing two-level factorials.Relationship between minimum projection uniformity and other criteria such as minimum aberration,generalized minimum aberration and orthogonality is made explict.This close relationship raises the hope of improving the connection between uniform design theory and factorial design theory.Our results provide a justification of orthogonality,minimum aberration,and generalized minimum aberration from a natural geometrical interpretation.

  16. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels. PMID:26247344

  17. Physics Performance of a Low-Luminosity Low Energy Neutrino Factory

    CERN Document Server

    Christensen, Eric; Huber, Patrick

    2013-01-01

    We investigate the minimal performance, in terms of beam luminosity and detector size, of a neutrino factory to achieve a competitive physics reach for the determination of the mass hierarchy and the discovery of leptonic CP violation. We find that a low luminosity of $10^{20}$ useful muon decays per year and 5\\,GeV muon energy aimed at a 10\\,kton magnetized liquid argon detector placed at 1300\\,km from the source provides a good starting point. This result relies on $\\theta_{13}$ being large and assumes that the so-called platinum channel can be used effectively. We find that such a minimal facility would perform significantly better than phase~I of the LBNE project and thus could constitute a reasonable step towards a full neutrino factory.

  18. B-factory storage ring design

    International Nuclear Information System (INIS)

    In the past few years a good deal of enthusiasm has arisen in the US, Europe and Asia for B-Factories. In these machines electrons and positrons are collided with center-of-mass energies at or near the Υ(4s) resonance, with unprecedented high luminosities, to produce copious fluxes of B-mesons. The object is to make high-precision studies of the CP non-conserving B decays. Various colliding-beam configurations have been suggested including both linear colliders and storage rings, but one scheme has emerged as generally preferable to the others. It is the asymmetric storage ring system-asymmetric in the sense that the two beam energies are markedly different and the center of mass is moving in the direction of the higher energy beam. With this arrangement the decaying B-mesons fly off from the interaction region in the same direction, and the time-order of their decays can be deduced from the locations of their decay vertices. These B-Factories present the accelerator builder with two main challenges: to achieve luminosity far beyond that attained in existing storage rings and to do it in the unexplored arena of unequal beam energies. Fortunately the means of meeting these challenges appear to be in hand on the basis of the present understanding of the accelerator physics of colliding-beam storage rings. The problems have been studied in several laboratories in Europe, Japan, the US and the USSR, and the solutions devised in those studies have converged in their general features. A B-Factory will consist of two separate storage rings with a common collision region; each ring will carry what it, by today's standards, high circulating beam currents, and as a consequence, the vacuum chambers will be very well-cooled and strongly vacuum-pumped; and mechanical designs of the interaction regions will be quite complicated, but also quite feasible

  19. Neutrino Factory Downstream Systems

    International Nuclear Information System (INIS)

    We describe the Neutrino Factory accelerator systems downstream from the target and capture area. These include the bunching and phase rotation, cooling, acceleration, and decay ring systems. We also briefly discuss the R and D program under way to develop these systems, and indicate areas where help from CERN would be invaluable.

  20. B-factories

    International Nuclear Information System (INIS)

    In this paper, the author summarizes the reasons for the choice of an assymetric B-factory based on storage rings, a facility that the author believes will be necessary for the full exploration of CP violation in B-meson decays

  1. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  2. Mobile concrete factory profiability analysis

    OpenAIRE

    Bajželj, Grega

    2009-01-01

    Diploma task deals with the preparation of concrete in the mobile and stationary concrete factory, transport of concrete and the comparison between the cost of preparation of concrete in the mobile and stationary concrete factory. Represented is the way of preparation of concrete in the mobile and stationary concrete factory. I conducted an analysis of the viability of mobile concrete factory, based on a comparison of the cost of preparation of concrete in the mobile and the cost of preparing...

  3. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    Science.gov (United States)

    Correll, Francis D.; Edsall, Douglas W.; DePooter, Katherine A.; Maskell, Nicholas D.; Vanhoy, Jeffrey R.

    2011-06-01

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  4. An Apparatus For Student Projects Using External-Beam PIXE And PIGE

    International Nuclear Information System (INIS)

    We recently installed a simple endstation at the Naval Academy Tandem Accelerator Laboratory to support student projects using external-beam PIXE and PIGE. It consists of a short, graphite-lined beamline extension with a thin window, an interlocked box that surrounds the target, detectors for x- and gamma rays, provision for flooding the target with helium gas, easily changed x-ray absorbers, and a compact video camera for monitoring the position of the beam spot. We used this system to measure the elemental composition of colonial-era architectural materials, principally bricks and mortar, from James Madison's Montpelier, the reconstructed Virginia estate of the fourth President of the United States. We describe the design and construction of the system, relate some of our experiences using it, and present some preliminary data from our investigations.

  5. Photo-fission for the production of radioactive beams ALTO project

    International Nuclear Information System (INIS)

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups

  6. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    Science.gov (United States)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  7. Superbeams versus Neutrino Factories

    CERN Document Server

    Huber, P; Winter, W; Huber, Patrick; Lindner, Manfred; Winter, Walter

    2002-01-01

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: For the superbeam, we take the first conceivable setup, namely the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potentia...

  8. Superbeams versus Neutrino Factories

    OpenAIRE

    Huber, Patrick; Lindner, Manfred; Winter, Walter

    2002-01-01

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, ...

  9. SLAC B Factory computing

    International Nuclear Information System (INIS)

    As part of the research and development program in preparation for a possible B Factory at SLAC, a group has been studying various aspects of HEP computing. In particular, the group is investigating the use of UNIX for all computing, from data acquisition, through analysis, and word processing. A summary of some of the results of this study will be given, along with some personal opinions on these topics

  10. Beauty-factories

    International Nuclear Information System (INIS)

    In recent years a number of proposals for B-factories, i.e. medium energy e+e- colliders with luminosities at the limit of what can be reasonably expected using the most modern techniques in accelerator physics have been made in various parts of the world. The principle of this new type of collider is described, the challenge it presents to accelerator physicists is detailed, the proposed solutions are presented and analyzed. (author) 11 refs.; 1 tab

  11. B-factory overview

    International Nuclear Information System (INIS)

    The organizers of this workshop tell the author that this overview paper should be a personal, biased view of where we are and where we are going in the B-factory endeavor. In this paper after a few words on the physics and on the detector, the author spends most of the author's time discussing the machine. The author ends with a parable, and a moral to be drawn from it

  12. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D. [Department of Oncology, Aarhus University Hospital, Nr Brogade 44, 8000 Aarhus C (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Sydney Medical School-Central, University of Sydney, NSW 2006 (Australia); Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2011-04-15

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  13. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    International Nuclear Information System (INIS)

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  14. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  15. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  16. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    International Nuclear Information System (INIS)

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with 6Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail

  17. From gene to structure: The protein factory of the NBICS Centre of Kurchatov Institute

    Energy Technology Data Exchange (ETDEWEB)

    Boyko, K. M.; Lipkin, A. V.; Popov, V. O., E-mail: vpopov@inbi.ras.ru; Kovalchuk, M. V. [NBICS Centre, National Research Centre ' Kurchatov Institute' (Russian Federation)

    2013-05-15

    The Protein Factory was established at the Centre for Nano, Bio, Info, Cognitive, and Social Sciences and Technologies (NBICS Centre) of the National Research Centre 'Kurchatov Institute' in 2010. The Protein Factory, together with the Centre for Synchrotron Radiation and Nanotechnology, promote research on structural biology. This paper presents the technology platforms developed at the Protein Factory and the facilities available for researchers. The main projects currently being performed at the Protein Factory are briefly described.

  18. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, Grant T; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-12-18

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising.

  19. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    International Nuclear Information System (INIS)

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising

  20. Utilizing assumption for project of stand for solid state targets activation on inner beams of AIC-144 cyclotron

    International Nuclear Information System (INIS)

    General assumptions for project of target activation stand at AIC-144 cyclotron are presented. The project predicts production of 67Ga, 111In, 201Tl, 139Ce, 88Y, 123I and 211At isotopes using various target backings. Directions concerning target cooling and beam parameters are also described

  1. Photon Factory activity report, 1989

    International Nuclear Information System (INIS)

    At the Photon Factory about 500 experiments are now running annually with about 50 experimental stations, the total operation time of the 2.5 GeV storage ring was 3400 hour in 1989, and the number of users was more than 2000, including 300 scientists from industry. This wide usage of synchrotron radiation has been supported by good performance of the accelerators. The positron beam current of the linac was increased for rapid injection (injection time: 20 min). The entire roof of the Light Source building was covered with thermal insulator (urethane-foam). This has greatly improved the beam stability of the ring. It has been operated at an initial ring current of 350 mA with a life time of 20 hours. Distinctive instrumentation at the Photon Factory has expanded to various fields such as angle-resolved ion-spectroscopy, dispersive EXAFS, trace impurity X-ray fluorescence analysis, plane-wave topography, structure analysis under high pressure, and imaging plates. Recently, experiments of protein structure analysis have been carried out extensively; Sakabe developed a new type of Weissenberg camera for protein crystallography, and about 50 experiments have been done for the past six months by a combination of Sakabe camera and imaging plates. The 2.5 GeV light source is now at an entrance of its harvest season. The TRISTAN Accumulation Ring has been used throughout this year in a time sharing basis with the TRISTAN experiment; twenty minutes for injection to TRISTAN Main Ring and 2 hours for SR experiment. The main subject has been magnetic Compton scattering with circularly polarized wiggler radiation. Such experiences enable us to expand our perspective for research in the following decade; we are investigating the possibility of operating the TRISTAN Main Ring at 6-8 GeV with 6000-pole undulaters, resulting in an extremely brilliant radiation source (Emittance: 0.1 nm·rad at 5 GeV with damping rings). (J.P.N.)

  2. Centers and centroids of the cone-beam projection of a ball.

    Science.gov (United States)

    Clackdoyle, R; Mennessier, C

    2011-12-01

    In geometric calibration of cone-beam (CB) scanners, point-like marker objects such as small balls are imaged to obtain positioning information from which the unknown geometric parameters are extracted. The procedure is sensitive to errors in the positioning information, and one source of error is a small bias which can occur in estimating the detector locations of the CB projections of the centers of the balls. We call these detector locations the center projections. In general, the CB projection of a ball of uniform density onto a flat detector forms an ellipse. Inside the ellipse lie the center projection M, the ellipse center C and the centroid G of the intensity values inside the ellipse. The center projection is invariably estimated from C or G which are much easier to extract directly from the data. In this work, we quantify the errors incurred in using C or G to estimate M. We prove mathematically that the points C, G, M and O are always distinct and lie on the major axis of the ellipse, where O is the detector origin, defined as the orthogonal projection of the cone vertex onto the detector. (The ellipse can only degenerate to a circle if the ball is along the direct line of sight to O, and in this case all four points coincide.) The points always lie in the same order: O, M, G, C which establishes that the centroid has less geometric bias than the ellipse center for estimating M. However, our numerical studies indicate that the centroid bias is only 20% less than the ellipse center bias so the benefit in using centroid estimates is not substantial. For the purposes of quantifying the bias in practice, we show that the ellipse center bias ||CM|| can be conveniently estimated by eA/(π ƒ(≈) where A is the area of the elliptical projection, e is the eccentricity of the ellipse and ƒ(≈) is an estimate of the focal length of the system. Finally, we discuss how these results are affected by physical factors such as beam hardening, and indicate extensions

  3. Centers and centroids of the cone-beam projection of a ball

    International Nuclear Information System (INIS)

    In geometric calibration of cone-beam (CB) scanners, point-like marker objects such as small balls are imaged to obtain positioning information from which the unknown geometric parameters are extracted. The procedure is sensitive to errors in the positioning information, and one source of error is a small bias which can occur in estimating the detector locations of the CB projections of the centers of the balls. We call these detector locations the center projections. In general, the CB projection of a ball of uniform density onto a flat detector forms an ellipse. Inside the ellipse lie the center projection M, the ellipse center C and the centroid G of the intensity values inside the ellipse. The center projection is invariably estimated from C or G which are much easier to extract directly from the data. In this work, we quantify the errors incurred in using C or G to estimate M. We prove mathematically that the points C, G, M and O are always distinct and lie on the major axis of the ellipse, where O is the detector origin, defined as the orthogonal projection of the cone vertex onto the detector. (The ellipse can only degenerate to a circle if the ball is along the direct line of sight to O, and in this case all four points coincide.) The points always lie in the same order: O, M, G, C which establishes that the centroid has less geometric bias than the ellipse center for estimating M. However, our numerical studies indicate that the centroid bias is only 20% less than the ellipse center bias so the benefit in using centroid estimates is not substantial. For the purposes of quantifying the bias in practice, we show that the ellipse center bias ||CM|| can be conveniently estimated by eA/(π f-tilde) where A is the area of the elliptical projection, e is the eccentricity of the ellipse and f-tilde is an estimate of the focal length of the system. Finally, we discuss how these results are affected by physical factors such as beam hardening, and indicate extensions

  4. B factory rf system design issues

    International Nuclear Information System (INIS)

    We discuss the issues of relevance to the design of a B factory RF system. First, the general parameter regime is outlined, and the reasons behind certain commonly made choices are indicated. This regime involves high beam currents, and many relatively short bunches. Next, the physics difficulties associated with coupled-bunch instabilities are described briefly. We then describe in general terms the alternative approaches taken by various B factory designers, the motivation for these choices, and the technical issues raised by them. Technical solutions have been proposed for both the room-temperature and the superconducting RF scenarios, and considerable R ampersand D is being carried out worldwide to confirm and optimize these solutions

  5. Deploying ImageFactory

    OpenAIRE

    Porecha, Parin; Fernandez Alvarez, Luis

    2014-01-01

    Abstract The common practice between OpenStack users is to manually install a base operating system, boot it up, install packages, add necessary configuration and then snapshot it for later use. Much of this can be automated using kickstart files, Puppet, etc. but it’s still a tedious process. That’s where Image Factory comes into play. It allows you to describe your virtual image (the operating system, architecture, installed packages, etc.) and have ...

  6. Influence of standing positions and beam projections on effective dose and eye lens dose of anaesthetists in interventional procedures.

    Science.gov (United States)

    Kong, Y; Struelens, L; Vanhavere, F; Vargas, C S; Schoonjans, W; Zhuo, W H

    2015-02-01

    More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection. PMID:24795393

  7. Influence of standing positions and beam projections on effective dose and eye lens dose of anaesthetists in interventional procedures

    International Nuclear Information System (INIS)

    More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection. (authors)

  8. Superbeams vs. neutrino factories

    International Nuclear Information System (INIS)

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: for the superbeam, we take the first conceivable setup, namely, the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potential to measure the small mixing angle sin22θ13, the sign of Δm231, and the leptonic CP phase δCP, which also implies that we compare the limitations of the different setups. We find interesting results, such as the complete loss of the sensitivity to the sign of Δm231 due to degeneracies in many cases

  9. Superbeams vs. neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Huber, P. E-mail: phuber@ph.tum.de; Lindner, M. E-mail: lindner@ph.tum.de; Winter, W. E-mail: wwinter@ph.tum.de

    2002-11-25

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: for the superbeam, we take the first conceivable setup, namely, the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potential to measure the small mixing angle sin{sup 2}2{theta}{sub 13}, the sign of {delta}m{sup 2}{sub 31}, and the leptonic CP phase {delta}{sub CP}, which also implies that we compare the limitations of the different setups. We find interesting results, such as the complete loss of the sensitivity to the sign of {delta}m{sup 2}{sub 31} due to degeneracies in many cases.

  10. Superbeams vs. neutrino factories

    Science.gov (United States)

    Huber, P.; Lindner, M.; Winter, W.

    2002-11-01

    We compare the physics potential of planned superbeams with the one of neutrino factories. Therefore, the experimental setups as well as the most relevant uncertainties and errors are considered on the same footing as much as possible. We use an improved analysis including the full parameter correlations, as well as statistical, systematical, and degeneracy errors. Especially, degeneracies have so far not been taken into account in a numerical analysis. We furthermore include external input, such as improved knowledge of the solar oscillation parameters from the KamLAND experiment. This allows us to determine the limiting uncertainties in all cases. For a specific comparison, we choose two representatives of each class: for the superbeam, we take the first conceivable setup, namely, the JHF to SuperKamiokande experiment, as well as, on a longer time scale, the JHF to HyperKamiokande experiment. For the neutrino factory, we choose an initially conceivable setup and an advanced machine. We determine the potential to measure the small mixing angle sin 22 θ13, the sign of Δm231, and the leptonic CP phase δCP, which also implies that we compare the limitations of the different setups. We find interesting results, such as the complete loss of the sensitivity to the sign of Δm231 due to degeneracies in many cases.

  11. Deciding WQO for factorial languages

    KAUST Repository

    Atminas, Aistis

    2013-04-05

    A language is factorial if it is closed under taking factors (i.e. contiguous subwords). Every factorial language can be described by an antidictionary, i.e. a minimal set of forbidden factors. We show that the problem of deciding whether a factorial language given by a finite antidictionary is well-quasi-ordered under the factor containment relation can be solved in polynomial time. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Augmented Reality based Factory Planning

    OpenAIRE

    Pentenrieder, Katharina

    2009-01-01

    Today’s factory planning relies on the methods and tools of the Digital Factory to meet shortened product life cycles and the resulting demand for fast and flexible reengineering. However, the Digital Factory and the real production plants are often not consistent, due to incomplete or missing digital data. Augmented Reality can serve as an intuitive interface here. The technology combines real and virtual information by integrating virtual planning data seamlessly with views of the real fact...

  13. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    International Nuclear Information System (INIS)

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  14. Caudocranial horizontal beam radiographic projection for evaluation of femoral fracture and osteotomy repair in dogs and cats

    International Nuclear Information System (INIS)

    A new radiographic projection of the femur was evaluated for use in the assessment of fracture or osteotomy repair in small animals. The view is obtained by directing the x-ray beam horizontally through the hind limb, from caudad to craniad, with the animal positioned in lateral recumbency, the hip flexed, and the stifle extended. Views obtained, using the new projection, were compared with the standard ventrodorsal views of the pelvis, with hind limbs extended. Osteotomy lines in the femoral shaft were significantly (P less than 0.01) more visible on the horizontal beam view. Significant difference was not evident in visibility of fracture lines between the 2 radiographic projections. The horizontal beam view was easily obtained, and equivalent to the standard ventrodorsal view for radiographic evaluation of femoral fracture and osteotomy repair

  15. A CLIC-Prototype Higgs Factory

    OpenAIRE

    Belusevic, Radoje; Higo, Toshiyasu

    2012-01-01

    We propose that a pair of electron linacs with high accelerating gradients and an optical FEL be built at an existing laboratory. The linacs would employ CLIC-type rf cavities and a klystron-based power source; a two-beam scheme could be implemented at a later stage. The proposed facility would serve primarily as an e+e-/gamma-gamma Higgs-boson factory. The rich set of final states in e+e- and gamma-gamma collisions would play an essential role in measuring the mass, spin, parity, two-photon ...

  16. Status of neutron beam facilities at HANARO and a thermal neutron guide project of KAERI

    International Nuclear Information System (INIS)

    After successful installation of cold neutron facilities at HANARO such as neutron guides, cold neutron source including cold neutron instruments, now 14 cold and thermal neutron spectrometers are operating, and 5 instruments are under commissioning. The neutron guides with complicated shapes placed in the beam plug and the main shutter also in the curved part were delivered by a guide provider but the rest guides such as the guides in the guide bunker and the guide hall area were fabricated by KAERI. All the guides are coated with M=2 supermirror having different cross-sections and curvatures were operating with a high performance, where 10 cold neutron spectrometers will open to outside users. For a planning of a new project called ‘thermal guide facilities development’, the neutron guide system design started late last year, which was carried out to optimize the layout of the instruments and to calculate the neutron flux at sample position. At this meeting, the simulation results of the thermal neutron guide beam lines, status of in-house neutron guide development and specifications of some instruments will be presented.

  17. New linac based free electron laser projects using bright electron beams

    International Nuclear Information System (INIS)

    Due to the progress of accelerator technology in recent years it is now possible to consider the construction of a Free Electron Laser (FEL) that provides coherent radiation at wavelengths very far below the visible. In this paper, various projects are mentioned which are under way to establish the Self-Amplified Spontaneous Emission (SASE) principle at very short photon wavelengths as well as multiple harmonic generation. The basic principles are briefly explained and the expected performance is discussed. With respect to linac technology, the key prerequisite for such single-pass, high-gain FELs is a high intensity, diffraction limited, electron beam to be generated and accelerated without degradation. Key components are RF guns with photocathodes, bunch compressors, and related diagnostics. Once proven in the micrometer to nanometer regime, the SASE FEL scheme is considered applicable down to Angstrom wavelengths. It is pointed out that this latter option is particularly of interest in context with the construction of a linear collider, which requires very similar beam parameters. (author)

  18. Robust Control Design for Vibration Isolation of an Electron Beam Projection Lithography System

    Science.gov (United States)

    Wang, Fu-Cheng; Hong, Min-Feng; Yen, Jia-Yush

    2010-06-01

    This paper describes vibration control for an electron beam projection lithography (EPL) system. Two kinds of disturbances should be considered for an EPL: load disturbances from the machine and ground disturbances from the environment. However, the suspension settings for insulating these two disturbances conflict with each other. Therefore, we propose a double-layer optical table and apply disturbance response decomposing (DRD) techniques to independently control the disturbances. We use a passive control structure to isolate the ground disturbances, and an active control structure to suppress load disturbances. In addition, symmetric transformation is applied to decouple a full optical table into bounce/pitch and roll/warp half-table models, which can be further decoupled into quarter-table models to simplify controller design. Finally, we apply robust control techniques to design active controllers. From both simulation and experimental results, the designed H∞ robust controllers are proven effective in reducing EPL system vibrations.

  19. Cone-beam reconstruction using the backprojection of locally filtered projections.

    Science.gov (United States)

    Pack, Jed D; Noo, Frédéric; Clackdoyle, Rolf

    2005-01-01

    This paper describes a flexible new methodology for accurate cone beam reconstruction with source positions on a curve (or set of curves). The inversion formulas employed by this methodology are based on first backprojecting a simple derivative in the projection space and then applying a Hilbert transform inversion in the image space. The local nature of the projection space filtering distinguishes this approach from conventional filtered-backprojection methods. This characteristic together with a degree of flexibility in choosing the direction of the Hilbert transform used for inversion offers two important features for the design of data acquisition geometries and reconstruction algorithms. First, the size of the detector necessary to acquire sufficient data for accurate reconstruction of a given region is often smaller than that required by previously documented approaches. In other words, more data truncation is allowed. Second, redundant data can be incorporated for the purpose of noise reduction. The validity of the inversion formulas along with the application of these two properties are illustrated with reconstructions from computer simulated data. In particular, in the helical cone beam geometry, it is shown that 1) intermittent transaxial truncation has no effect on the reconstruction in a central region which means that wider patients can be accommodated on existing scanners, and more importantly that radiation exposure can be reduced for region of interest imaging and 2) at maximum pitch the data outside the Tam-Danielsson window can be used to reduce image noise and thereby improve dose utilization. Furthermore, the degree of axial truncation tolerated by our approach for saddle trajectories is shown to be larger than that of previous methods. PMID:15638187

  20. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    International Nuclear Information System (INIS)

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  1. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  2. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  3. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  4. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  5. Study of the Low Momentum Compaction B-factory

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Novokhatski, A.; /SLAC

    2005-09-12

    For a given rf frequency, the quasi-isochronous lattice allows, in principle, to double the number of bunches compared with the nominal lattice. We explore such a possibility considering the beam stability and luminosity of the PEP-II B-factory.

  6. Tau physics and tau factories

    International Nuclear Information System (INIS)

    Substantial progress in tau lepton physics requires larger and cleaner samples of /tau/'s produced in e+e/sup minus/ → /tau/+/tau//sup minus/. Single-tagging of the /tau/ pair is crucial. Possibilities for such progress at particle factories are discussed with emphasis on the Tau-Charm Factory concept. 30 refs., 1 fig., 1 tab

  7. Tomographic mammography using a limited number of low-dose cone-beam projection images

    International Nuclear Information System (INIS)

    A method is described for using a limited number (typically 10-50) of low-dose radiographs to reconstruct the three-dimensional (3D) distribution of x-ray attenuation in the breast. The method uses x-ray cone-beam imaging, an electronic digital detector, and constrained nonlinear iterative computational techniques. Images are reconstructed with high resolution in two dimensions and lower resolution in the third dimension. The 3D distribution of attenuation that is projected into one image in conventional mammography can be separated into many layers (typically 30-80 1-mm-thick layers, depending on breast thickness), increasing the conspicuity of features that are often obscured by overlapping structure in a single-projection view. Schemes that record breast images at nonuniform angular increments, nonuniform image exposure, and nonuniform detector resolution are investigated in order to reduce the total x-ray exposure necessary to obtain diagnostically useful 3D reconstructions, and to improve the quality of the reconstructed images for a given exposure. The total patient radiation dose can be comparable to that used for a standard two-view mammogram. The method is illustrated with images from mastectomy specimens, a phantom, and human volunteers. The results show how image quality is affected by various data-collection protocols

  8. Development of computer assisted learning program using cone beam projection for head radiography

    International Nuclear Information System (INIS)

    We present a computer assisted learning (CAL) program to simulate head radiography. The program provides cone beam projections of a target volume, simulating three-dimensional computed tomography (CT) of a head phantom. The generated image is 512 x 512 x 512 pixels with each pixel 0.6 mm on a side. The imaging geometry, such as X-ray tube orientation and phantom orientation, can be varied. The graphical user interface (GUI) of the CAL program allows the study of the effects of varying the imaging geometry; each simulated projection image is shown quickly in an adjoining window. Simulated images with an assigned geometry were compared with the image obtained using the standard geometry in clinical use. The accuracy of the simulated image was verified through comparison with the image acquired using radiography of the head phantom, subsequently processed with a computed radiography system (CR image). Based on correlation coefficient analysis and visual assessment, it was concluded that the CAL program can satisfactorily simulate the CR image. Therefore, it should be useful for the training of head radiography. (author)

  9. Measurement of the orbital angular momentum density of Bessel beams by projection into a Laguerre-Gaussian basis.

    Science.gov (United States)

    Schulze, Christian; Dudley, Angela; Brüning, Robert; Duparré, Michael; Forbes, Andrew

    2014-09-10

    We present the measurement of the orbital angular momentum (OAM) density of Bessel beams and superpositions thereof by projection into a Laguerre-Gaussian basis. This projection is performed by an all-optical inner product measurement performed by correlation filters, from which the optical field can be retrieved in amplitude and phase. The derived OAM densities are compared to those obtained from previously stated azimuthal decomposition yielding consistent results. PMID:25321673

  10. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  11. Modern Beer Factory Interwoven in Urban Texture

    Directory of Open Access Journals (Sweden)

    Gjorgjevska Violeta

    2016-01-01

    Full Text Available The main idea of this research is to present a concept of integration of a beer factory in a new urban reality. Nowadays, modern development of industrial architecture enables beer factories to leave their typical locations in industrial zones and draw nearer to their customers. To design a modern industrial complex incorporating the ideas of the contemporary way of designing an industrial facility with a clear and indicative architectural expression of its hybrid character requires great skilfulness. Using a linear grid, the concept of this project will be developed in a composition consisting of several strips. This kind of structure creates a compositional equivalence from strip to strip, integrating the natural and the urban, the public and the private.

  12. TRIUMF KAON factory pre-construction study

    International Nuclear Information System (INIS)

    TRIUMF has been awarded $11M for a 1-year pre-construction engineering design and impact study of the KAON Factory. This will enable prototypes to be built of various components of the Booster ring - a fast-cycling dipole magnet, dual frequency magnet power supply, ceramic beam pipe, rf cavities (both parallel and perpendicular bias versions) and extraction kicker -and a rotating target for the 3 MW 30 GeV beam. Reviews are being carried out of racetrack designs for all five rings, of the shielding and remote handling requirements, and of the layout of the experimental areas. The design of the tunnels and buildings will be finalized, various impact studies carried out, and international involvement pursued further

  13. Crab cavity for the B-factories

    International Nuclear Information System (INIS)

    In order to realize the crab crossing scheme desired for B-factories, we have designed single cell superconducting crab cavities operating in TMI 10 mode. A coaxial beam pipe was attached to damp dangerous monopole and dipole parasitic modes. We designed two kinds of cell shape depending on the method to cure the unwanted polarization of TMI 10 mode; one is a round cell which will be slightly polarized and the other is an extremely polarized (squashed) cell. Necessary kick voltage can be obtained with the present technology of superconducting cavities. We have measured the coaxial beam pipe and a squashed crab cavity of one-third scale copper/aluminum model. The Q of all the dangerous monopole and dipole modes are damped to less than the order of 100, as was expected by calculations. High Q of the crabbing mode is also assured with a notch filter

  14. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    Science.gov (United States)

    Napoli, D. R.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calabretta, L.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A.; Gelain, F.; Giacchini, M.; Giacomazzi, P.; Gobbi, C.; Gramegna, F.; Gulmini, M.; Lollo, M.; Lombardi, A.; Maggiore, M.; Manzolaro, M.; Michinelli, R.; Modanese, P.; Moisio, M. F.; Monetti, A.; Mozzi, A.; Palmieri, A.; Pasquato, F.; Pedretti, D.; Pegoraro, R.; Pisent, A.; Poggi, M.; Pranovi, L.; Prete, G.; Roncolato, C.; Rossignoli, M.; Russo, A. D.; Sarchiapone, L.; Scarpa, D.; Silingardi, R.; Dobon, J. J. Valiente; Visentin, E.; Vivian, G.; Zafiropoulos, D.; Prete, G. F.

    2016-07-01

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  15. Layout considerations on the 25GeV/300kW beam dump of the XFEL project

    International Nuclear Information System (INIS)

    The European X-Ray Free Electron Laser (XFEL) project, which is currently under design at DESY, requires 3 beam dumps downstream of the accelerator. By means of energy deposition, temperature and mechanical stress calculations the layout of a solid edge cooled beam dump is presented. This dump is able to withstand a high cyclic impact, as induced by each subsequent bunch train of up to 2.5.1013 electrons in combination with a large amount of dissipated power density (∼1.8 kW/cm) coming from a beam with an average power of up to 300 kW at a variable energy up to 25 GeV. The cyclic impact is faced by using graphite as a core material in the dump and setting a lower limit for the incoming beam size at σbeam≥2 mm. Introducing a slow (not within the bunch train) circular beam sweep answers the question of heat extraction. Alternative layouts are investigated in order to avoid active beam sweeping. Unfortunately more severe risks and disadvantages are coming along with them. That is why theses solutions are not regarded as reliable alternatives and the dump design with beam sweeping is considered to be the baseline solution, for which a technical layout is under way. (orig.)

  16. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    Science.gov (United States)

    Caballero, J.; Hover, J.; Love, P.; Stewart, G. A.

    2012-12-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  17. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    International Nuclear Information System (INIS)

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  18. CEBAF [Continuous Electron Beam Accelerator Facility] design overview and project status

    International Nuclear Information System (INIS)

    This paper discusses the design and specifications of the Continuous Electron Beam Accelerator Facility. Beam performance objectives are discussed, as well as the recirculating linac concept, the injector, cavities, cryogenic system, beam transport and optics, rf system and construction progress. 19 refs., 10 figs

  19. Evolutionary algorithm for the neutrino factory front end design

    Energy Technology Data Exchange (ETDEWEB)

    Poklonskiy, Alexey A.; /Michigan State U.; Neuffer, David; /Fermilab

    2009-01-01

    The Neutrino Factory is an important tool in the long-term neutrino physics program. Substantial effort is put internationally into designing this facility in order to achieve desired performance within the allotted budget. This accelerator is a secondary beam machine: neutrinos are produced by means of the decay of muons. Muons, in turn, are produced by the decay of pions, produced by hitting the target by a beam of accelerated protons suitable for acceleration. Due to the physics of this process, extra conditioning of the pion beam coming from the target is needed in order to effectively perform subsequent acceleration. The subsystem of the Neutrino Factory that performs this conditioning is called Front End, its main performance characteristic is the number of the produced muons.

  20. Diagnostic accuracy of the detection of bone change using panoramic TMJ projection. Comparative study with limited cone-beam CT

    International Nuclear Information System (INIS)

    Panoramic temporoman joint (TMJ) projection is one of the alternative methods of conventional radiography, such as transcranial projection, for diagnosing temporomandibular joint disorder. There have been a few reports describing the diagnostic ability of this method. We evaluated the diagnostic accuracy of detecting bone change with panoramic TMJ projection. Fifty TMJs in 25 patients were examined. All TMJs were examined by panoramic TMJ projection (Hyper XF) and limited cone-beam CT (3D Accuitomo FPD; 3DX). Two observers evaluated the presence of bone change in the TMJ region using panoramic TMJ projection. One other observer evaluated the limited cone-beam CT for the presence and the pattern of bone changes in the TMJ region as the gold standard. Panoramic TMJ findings were evaluated with regard to sensitivity, specificity, and accuracy. Sensitivity, specificity and accuracy of the panoramic TMJ projection were 0.86, 0.76, and 0.82, respectively. These results and those of previous reports on other radiographic methods for TMJ suggest that panoramic TMJ projection is a useful method of screening for bone change due to TMJ disorder. (author)

  1. Simultaneous Hand-Eye-Workspace and Camera Calibration using Laser Beam Projection

    Directory of Open Access Journals (Sweden)

    Jwu-Sheng Hu

    2014-02-01

    Full Text Available This work presents a novel calibration technique capable of simultaneously calibrating a camera’s intrinsic parameters and hand-eye-workspace relations. In addition to relaxing the requirement of a precise calibration reference to achieve manipulator accuracy, the proposed method functions when the hand is not in the view field of the eye. The calibration method uses a laser pointer mounted on the hand to project laser beams onto a planar object, which serves as the working plane. Collected laser spot images must adhere to certain nonlinear constraints established by each hand pose and the corresponding plane-laser intersection. This work also introduces calibration methods for two cases using single and multiple planes. A multistage closed-form solution is derived and serves as the initial guess to the nonlinear optimization procedure that minimizes errors globally, allowing the proposed calibration method to function without manual intervention. The effectiveness of the proposed method is verified by comparison with existing hand-eye calibration methods via simulation and experiments using an industrial manipulator.

  2. Automated patient setup and gating using cone beam computed tomography projections

    Science.gov (United States)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  3. Photon factory activity report, 1993

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National Laboratory of High Energy Physics. First the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, synchrotron radiation facility at the Tristan accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.)

  4. General B factory design considerations

    International Nuclear Information System (INIS)

    We describe the general considerations that go into the design of an asymmetric B factory collider. Justification is given for the typical parameters of such a facility, and the physics and technology challenges that arise from these parameter choices are discussed. Cost and schedule issues for a B factory are discussed briefly. A summary of existing proposals is presented, noting their similarities and differences. (orig.)

  5. Atomic Energy (factories) rules: 1988

    International Nuclear Information System (INIS)

    These rules are made by the Central Government under the Factories Act, 1948 and extend to all factories engaged in carrying out the purposes of the Atomic Energy Act, 1962. The rules cover the requirements of inspecting staff, health aspects, personnel safety, personnel welfare, working hours, employment of young persons, special provisions in case of dangerous manufacturing processes or operations, supplemental rules for administrative aspects and special powers of competent authority. (M.G.B.)

  6. Photon factory activity report, 1992

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National laboratory of High Energy Physics. First, the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, the Tristan synchrotron radiation facility at the accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.) (435 refs.)

  7. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    International Nuclear Information System (INIS)

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σx, σy, σz) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize performance in clinical

  8. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  9. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  10. The Study of a European Neutrino Factory Complex

    CERN Document Server

    Gruber, P; Amand, J F; Autin, Bruno; Baldy, J L; Benedikt, Michael; Benett, R; Bernardon, A; Blondel, A; Bongardt, K; Cappi, R; Castellano, M G; Chiaveri, Enrico; Delahaye, J P; Densham, C J; Drumm, P V; Edgecocka, R; Fabich, A; Franchetti, Giuliano; Gareyte, Jacques; Garoby, R; Gastaldi, Ugo; Gerigk, F; Gilardoni, S S; Giovannozzi, Massimo; Hancock, S; Hanke, K; Haseroth, H; Hill, C; Hoffman, I; Holzer, B; Hübner, K; Jansson, A; Johnson, C D; Johnston, C; Küchler, D; Lettry, Jacques; Lindroos, M; Lombardi, A M; Martini, M; Migliorati, M; Méot, F; Métral, Elias; Möhl, D; Müller, A S; Neuffer, David V; Palumbo, L; Pasternak, J; Perrin, A; Pirkl, Werner; Poehler, M; Prior, C R; Ravn, H L; Rees, G; Riche, A; Russenschuck, Stephan; Ryne, Robert D; Schindl, Karlheinz; Schriber, Stanley O; Schönauer, Horst Otto; Scrivens, R; Senichev, Yu V; Sievers, P; Silari, Marco; Tazzioli, F; Ullrich, H M; Vassilopoulos, N; Verdier, A; Vretenar, Maurizio; Wenander, F; Wilson, Edmund J N; Wyss, C; Zimmermann, M F; Zisman, M S; Zucchelli, P

    2004-01-01

    The Neutrino Factory is a new concept for an accelerator that produces a high-intensity, high-energy beam of electron and muon neutrinos - the ultimate tool for neutrino oscillation studies and the only machine conceived up today that could help detect CP violation of leptons. The basic concept of the Neutrino Factory is the production of neutrinos from the decay of high-energy muons. Due to their short lifetime, these muons have to be accelerated very fast. Several new accelerator techniques, like a high-intenstiy proton linac, high-power targets, ionization cooling or recirculating muon linacs are required. This paper presents a snapshot of the accelerator design at CERN. Although some aspects of this European Neutrino Factory Scheme have been optimised for the CERN site, the basic principle is site-independent.

  11. Study of expected performance of the hard X-ray beam for the FEL-X project

    CERN Document Server

    Sei, N; Ohgaki, H; Mikado, T; Yasumoto, M; Ogawa, H

    2002-01-01

    We advance the FEL-X project and plan to install a new optical klystron for the infrared FELs within next year. The expected FEL gain at a wavelength of 10.6 mu m is over 2% with the present electron-beam qualities in the storage ring NIJI-IV. Infrared FELs based on the fundamental and higher harmonics from the new optical klystron will generate hard X-ray beams with an energy of 0.1-2 MeV by the FEL-Compton backscattering process. Conventional light sources cannot provide sufficient amounts of photons in this energy region. The expected yield of the hard X-ray beam is 10 sup 5 -10 sup 6 per second with an energy spread of 3%.

  12. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    CERN Document Server

    Caballero, J; The ATLAS collaboration; Love, P; Stewart, G

    2012-01-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment’s computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ’pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to retrieve a real payload to execute. The first generation of pilot factories were usually specific to a single VO, and were bound to the particular architecture of that VO’s distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new or improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is hig...

  13. Projection correlation based view interpolation for cone beam CT: primary fluence restoration in scatter measurement with a moving beam stop array

    International Nuclear Information System (INIS)

    Scatter correction is an open problem in x-ray cone beam (CB) CT. The measurement of scatter intensity with a moving beam stop array (BSA) is a promising technique that offers a low patient dose and accurate scatter measurement. However, when restoring the blocked primary fluence behind the BSA, spatial interpolation cannot well restore the high-frequency part, causing streaks in the reconstructed image. To address this problem, we deduce a projection correlation (PC) to utilize the redundancy (over-determined information) in neighbouring CB views. PC indicates that the main high-frequency information is contained in neighbouring angular projections, instead of the current projection itself, which provides a guiding principle that applies to high-frequency information restoration. On this basis, we present the projection correlation based view interpolation (PC-VI) algorithm; that it outperforms the use of only spatial interpolation is validated. The PC-VI based moving BSA method is developed. In this method, PC-VI is employed instead of spatial interpolation, and new moving modes are designed, which greatly improve the performance of the moving BSA method in terms of reliability and practicability. Evaluation is made on a high-resolution voxel-based human phantom realistically including the entire procedure of scatter measurement with a moving BSA, which is simulated by analytical ray-tracing plus Monte Carlo simulation with EGSnrc. With the proposed method, we get visually artefact-free images approaching the ideal correction. Compared with the spatial interpolation based method, the relative mean square error is reduced by a factor of 6.05-15.94 for different slices. PC-VI does well in CB redundancy mining; therefore, it has further potential in CBCT studies.

  14. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    International Nuclear Information System (INIS)

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking

  15. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  16. TRIUMF kaon factory as a potential neutron source

    International Nuclear Information System (INIS)

    TRIUMF is considering the construction of a kaon factory post-accelerator to take the present 100 μA proton beam (6x10sup(14) p/s) from 500 MeV to energies in the range of 15-30 GeV. This facility would produce secondary beams of kaons, antiprotons, neutrinos and other particles with an intensity of the order of 100 times present accelerators and would open up new fields in both nuclear and particle physics in the same way that the meson factories LAMPF, SIN and TRIUMF have done at sub-GeV energies. Although the production of neutron beams is not one of the prime motivations for constructing this facility, the high proton currents, in particular from the booster stage of acceleration, would make a unique spallation neutron source. This paper gives a brief report on the status of the kaon factory accelerator studies and describes the parameters of the proton beams which could be made available for neutron production

  17. Design and development of a radio frequency quadrupole linac postaccelerator for the Variable Energy Cyclotron Center rare ion beam project

    International Nuclear Information System (INIS)

    A four-rod type heavy-ion radio frequency quadrupole (RFQ) linac has been designed, constructed, and tested for the rare ion beam (RIB) facility project at VECC. Designed for cw operation, this RFQ is the first postaccelerator in the RIB beam line. It will accelerate A/q≤14 heavy ions coming from the ion source to the energy of around 100 keV/u for subsequent acceleration in a number of Interdigital H-Linac. Operating at a resonance frequency of 37.83 MHz, maximum intervane voltage of around 54 kV will be needed to achieve the final energy over a vane length of 3.12 m for a power loss of 35 kW. In the first beam tests, transmission efficiency of about 90% was measured at the QQ focus after the RFQ for O5+ beam. In this article the design of the RFQ including the effect of vane modulation on the rf characteristics and results of beam tests will be presented.

  18. Muon Acceleration Concepts for Future Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Slawomir Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  19. Photon factory accelerator status and activities

    International Nuclear Information System (INIS)

    The present report addresses the Photon Factory, a user-based facility for synchrotron-radiation research at the National Laboratory for High Energy Physics (KEK) in Japan. It consists of a 2.5 GeV storage ring and an electron-positron linac. Its construction started in 1978 and the accelerators were commissioned in 1982. The Photon Factory storage ring is a dedicated synchrotron-radiation source with a critical photon energy of 4 keV. There are 23 spaces in which front-ends (beamlines) can be installed for introducing synchrotron radiation into the experimental hall. Twenty front-ends are available for user experiments. The report particularly describes the status of the linac and the storage ring, focusing on major features of the linac operation and storage ring operation. The recent improvements are then outlined, focusing on positron beam injection and operation, improvement of the high-power pulsed klystron, monitor and control system, daily drift of the light axis, and operation of the new superconducting vertical wiggler. The accelerator activities are then described, centering on the test linac and a plan to use the TRISTAN MR as a synchrotron radiation source. (N.K.)

  20. Physics at a φ-factory

    International Nuclear Information System (INIS)

    The report first describes the space-time symmetries and their violations, and the experimental situation at a φ-factory. It then discusses the measurement of direct CP violation by determination of the Re(ε'/ε) in (neutral K) → ππ decays. Another discussion is then made stressing that the measurement of a double ratio formed from the four decay modes provides a complete cancellation of all systematic uncertainties. This would provide the first opportunity to test direct CP violation in the decay of charged particles at a theoretically interesting level. A direct measurement of T violation is then described. This also provides a measurement of the direct CPT violation parameter through the decay of Kι3. The availability of a tagged KS beam at a φ-factory should enable the violation of the as yet unseen CP violating decay KS → 3φ0. This would provide the first evidence of CP violation in KS decay at the 5σ level. A discussion is also made of the observation of CP violations in KS decays into semileptonic final states. A nonzero charge asymmetry could be detected with 3-4σ accuracy, providing both evidence for CP violation for a particle other than the KL and a measurement of the mass-matrix CPT violating parameter δ. (N.K.)

  1. Beam quality simulation of the Boeing photoinjector accelerator for the MCTD project

    Science.gov (United States)

    Takeda, Harunori; Davis, Keith; Delo, Lance

    1991-07-01

    We present a performance study of the photoinjector accelerator installed at Boeing Corp., Seattle, for the Modular Component Technology Development (MCTD) program. This 5 MeV injector operates at 433 MHz and is designed to produce a normalized emittance less than 100π mm mrad. This study was performed using the PARMELA simulation code. We study parametrically the dependence of the beam emittance on the magnetic fields produced by beam-guiding coils and by the gap coil located immediately after the first injector cavity. We also study the effect of phasing between cavities and the bunched electron beam. In addition to considering the parameters that determine the electron beam environment, we consider the space-charge effect on the bunched beam at higher charge.

  2. HIGHER LUMINOSITY B-FACTORIES

    International Nuclear Information System (INIS)

    The present B-factories PEP-II and KEKB have reached luminosities of 3-4 x 1033/cm2/s and delivered integrated luminosity at rates in excess of 4fb-1 per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 1034/cm2/s in a few years and with more aggressive improvements may reach luminosities of order 1035/cm2/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e+e- B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e+e-accelerators [3,4]. A luminosity approaching 1036 cm-2s-1 appears possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this accelerator will be qualitatively different from present e+e- colliders due to this continuous injection

  3. A method to determine the detector locations of the cone-beam projection of the balls’ centers

    Science.gov (United States)

    Deng, Lin; Xi, Xiaoqi; Li, Lei; Han, Yu; Yan, Bin

    2015-12-01

    In geometric calibration of cone-beam computed tomography (CBCT), sphere-like objects such as balls are widely imaged, the positioning information of which is obtained to determine the unknown geometric parameters. In this process, the accuracy of the detector location of CB projection of the center of the ball, which we call the center projection, is very important, since geometric calibration is sensitive to errors in the positioning information. Currently in almost all the geometric calibration using balls, the center projection is invariably estimated by the center of the support of the projection or the centroid of the intensity values inside the support approximately. Clackdoyle’s work indicates that the center projection is not always at the center of the support or the centroid of the intensity values inside, and has given a quantitative analysis of the maximum errors in evaluating the center projection by the centroid. In this paper, an exact method is proposed to calculate the center projection, utilizing both the detector location of the ellipse center and the two axis lengths of the ellipse. Numerical simulation results have demonstrated the precision and the robustness of the proposed method. Finally there are some comments on this work with non-uniform density balls, as well as the effect by the error occurred in the evaluation for the location of the orthogonal projection of the cone vertex onto the detector.

  4. A method to determine the detector locations of the cone-beam projection of the balls' centers.

    Science.gov (United States)

    Deng, Lin; Xi, Xiaoqi; Li, Lei; Han, Yu; Yan, Bin

    2015-12-21

    In geometric calibration of cone-beam computed tomography (CBCT), sphere-like objects such as balls are widely imaged, the positioning information of which is obtained to determine the unknown geometric parameters. In this process, the accuracy of the detector location of CB projection of the center of the ball, which we call the center projection, is very important, since geometric calibration is sensitive to errors in the positioning information. Currently in almost all the geometric calibration using balls, the center projection is invariably estimated by the center of the support of the projection or the centroid of the intensity values inside the support approximately. Clackdoyle's work indicates that the center projection is not always at the center of the support or the centroid of the intensity values inside, and has given a quantitative analysis of the maximum errors in evaluating the center projection by the centroid. In this paper, an exact method is proposed to calculate the center projection, utilizing both the detector location of the ellipse center and the two axis lengths of the ellipse. Numerical simulation results have demonstrated the precision and the robustness of the proposed method. Finally there are some comments on this work with non-uniform density balls, as well as the effect by the error occurred in the evaluation for the location of the orthogonal projection of the cone vertex onto the detector. PMID:26580684

  5. The Gamma Factory proposal for CERN

    CERN Document Server

    Krasny, Mieczyslaw Witold

    2015-01-01

    This year, 2015, marks the centenary of the publication of Einsteins Theory of General Relativity and it has been named the International Year of Light and light-based technologies by the UN General Assembly. It is thus timely to discuss the possibility of broadening the present CERN research program by including a new component based on a novel concept of the light source which could pave a way towards a multipurpose Gamma Factory. The proposed light source could be realized at CERN by using the infrastructure of the existing accelerators. It could push the intensity limits of the presently operating light-sources by at least 7 orders of magnitude, reaching the flux of the order of 10^17 photons/s, in the particularly interesting gamma-ray energy domain of 1 < Ephoton < 400 MeV. This domain is out of reach for the FEL-based light sources. The energy-tuned, quasi-monochromatic gamma beams, together with the gamma-beam-driven, high intensity secondary beams of polarized positrons, polarized muons, neutro...

  6. Photon factory: status of storage ring

    International Nuclear Information System (INIS)

    The 2.5 GeV electron storage ring at the Photon Factory is a dedicated synchrotron radiation source. The magnet system, composed of 28 bending magnets and 58 quadrupoles, is capable of raising energy up to 3 GeV by ramping after the beam is stacked. Injection is carried out in the multi-turn scheme at pulse times as long as 1 microsecond, a revolution time of 624 nanoseconds, and a rate of 1 Hz. Four 500 MHz RF cavities are situated in the straight section. Each cell is rated to dissipate 30 kW of RF power from an RF source consisting of two 180 kW klystrons. Out of 24 possible exit ports for synchrotron radiation, seven beam lines are operational and two more are in preparation. Each line is split into three or four branch lines, to each of which an experimental station is attached. The first beam was stored at the design energy in March 1982. Experiments in synchrotron radiation were begun in June. A superconducting vertical wiggler of 5 T and a permanent magnet undulator were successfully brought into operation in February 1983. This paper assesses the design and operating experience of the storage ring over its lifetime

  7. A CLIC-Prototype Higgs Factory

    CERN Document Server

    Belusevic, Radoje

    2012-01-01

    We propose that a pair of electron linacs with high accelerating gradients and an optical FEL be built at an existing laboratory. The linacs would employ CLIC-type rf cavities and a klystron-based power source; a two-beam scheme could be implemented at a later stage. The proposed facility would serve primarily as an e+e-/gamma-gamma Higgs-boson factory. The rich set of final states in e+e- and gamma-gamma collisions would play an essential role in measuring the mass, spin, parity, two-photon width and trilinear self-coupling of the Higgs-boson, as well as its couplings to fermions and gauge bosons. These quantities are difficult to determine with only one initial state. For some processes within and beyond the Standard Model, the required CM energy is considerably lower at the proposed facility than at an e+e- or proton collider.

  8. KEKB and PEP-II B Factories

    International Nuclear Information System (INIS)

    Two asymmetric B-Factories KEKB at KEK and PEP-II at SLAC are under construction, designed to study CP violation in the b-quark sector with a center of mass energy of 10.58 GeV. These two new accelerators are high luminosity two-ring two-energy e+e- colliders with one interaction point. There are many challenging accelerator physics and engineering issues associated with the high beam currents and high luminosities of these rings. The chosen solutions to these issues and the general parameters of the two rings are described in detail side-by-side. KEKB and PEP-II are well into the installation phase and are both scheduled to be completed in 1998. The particle physics programs are scheduled to start in 1999

  9. Alignment tools used to locate a wire and a laser beam in the VISA undulator project

    International Nuclear Information System (INIS)

    Within the framework of the LCLS (Linac Coherent Light Source), a small experiment VISA (Visual to Infrared SASE (Self Amplified Stimulated Emission) Amplifier) is being performed at Brookhaven National Laboratory. VISA consists of four wiggler segments, each 0.99 m long. The four segments are required to be aligned to the beam axis with an rms error less than 50 μm. This very demanding alignment is carried out in two steps. First the segments are fiducialized using a pulsed wire system. Then the wiggler segments are placed along a reference laser beam which coincides with the electron beam axis. In the wiggler segment fiducialization, a wire is stretched through a wiggler segment and a current pulse is sent down the wire. The deflection of the wire is monitored. The deflection gives information about the electron beam trajectory. The wire is moved until its x position, the coordinate without wire sag, is on the ideal beam trajectory. (The y position is obtained by rotating the wiggler 90 deg C.) Once the wire is on the ideal beam trajectory, the wire's location is measured relative to tooling balls on the wiggler segment. To locate the wire, a device was constructed which measures the wire position relative to tooling balls on the device. The device is called the wire finder. It will be discussed in this paper. To place the magnets along the reference laser beam, the position of the laser beam must be determined. A device which can locate the laser beam relative to tooling balls was constructed and is also discussed in this paper. This device is called the laser finder. With a total alignment error budget less than 50 μm, both the fiducialization and magnet placement must be performed with errors much smaller than 50 μm. It is desired to keep the errors from the wire finder and laser finder at the few μm level. (authors)

  10. Nucleolus: The ribosome factory

    Czech Academy of Sciences Publication Activity Database

    Cmarko, Dušan; Šmigová, J.; Minichová, L.; Popov, Alexey

    2008-01-01

    Roč. 23, č. 10 (2008), s. 1291-1298. ISSN 0213-3911 R&D Projects: GA ČR(CZ) GA304/06/1691 Grant ostatní: Wellcome Trust(XE) 075834/04/Z; GA MŠk(CZ) LC535; GA ČR(CZ) GA304/06/1662 Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleolus * nucleolar architecture * ribosome biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2008

  11. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  12. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    Science.gov (United States)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  13. 17th International Workshop on Neutrino Factories and Future Neutrino Facilities Search

    CERN Document Server

    2015-01-01

    NuFact15 is the seventeenth in a series that started in 1999 as an important yearly workshop with emphasis on future neutrino projects. This will be the first edition in Latin America, showing the scientific growth of this field. The main goals of the workshop are to review the progress on studies of future facilities able to improve on measurements of the properties of neutrinos and charged lepton flavor violation as well as new phenomena searches beyond the capabilities of presently planned experiments. Since such progress in the neutrino sector could require innovation in neutrino beams, the role of a neutrino factory within future HEP initiatives will be addressed. The workshops are not only international but also interdisciplinary in that experimenters, theorists and accelerator physicists from the Asian, American and European regions share expertise with the common goal of designing the next generation of experiments.

  14. Design and Factory Test of the e+/e- Frascati Linear Accelerator for DAFNE

    International Nuclear Information System (INIS)

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  15. A versatile expression vector system for mammalian cell factories

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Hansen, Bjarne Gram; Andersen, Mikael Rørdam; Mortensen, Uffe Hasbro

    The development of the field of mammalian cell factories requests fast and high-throughput methods which means high need for simpler and more efficient cloning techniques. This project applies the ligation-free USERTM (uracil-specific excision reagent) cloning technique to construct mammalian...... expression vectors with maximum flexibility....

  16. Optical Effects of Wakefields in the PEP-II Stanford Linear Accelerator Center B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Heifets, S.; Novokhatski, S.; Teytelman, D.; /SLAC

    2007-01-29

    Wakefields defining beam stability affect also the beam optics and beam properties in high current machines. In this paper we present observations and analysis of the optical effects in the PEP-II SLAC B-factory, which has the record in achievement of high electron and positron currents. We study the synchronous phase and the bunch length variation along the train of bunches, overall bunch lengthening and effects of the wakes on the tune and on the Twiss parameters. This analysis is being used in upgrades of PEP-II and may be applied to future B-factories and damping rings for Linear Colliders.

  17. A beauty factory using an SRF linac and a storage ring

    International Nuclear Information System (INIS)

    We present a brief review of accelerator facilities proposed for measuring CP violation in the B-meson system. In light of this comparison we discuss requirements for a B-factory using an e+ storage ring beam colliding with a superconducting RF linac e- beam to produce a luminosity of 1034 cm-2sec-1. 14 refs., 3 tabs

  18. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  19. Symposium Summary and Outlook: Twenty Years of Meson Factory Physics

    OpenAIRE

    Haxton, W. C.

    1997-01-01

    The opening of the meson factories twenty years ago provided nuclear physics with new beams, higher momentum transfers, and new opportunities for precision measurements. The resulting changes in nuclear physics were substantial, altering not only the range of physics issues identified with the field but also the manner and size of the collaborations that do nuclear physics. Inspired by the talks of this symposium, I discuss some of the accomplishments as well as some of the goals not yet reac...

  20. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  1. The SPES radioactive ion beam project of LNL: status and perspectives

    Science.gov (United States)

    de Angelis, Giacomo; Prete, G.; Andrigetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.

    2016-01-01

    A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 8 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.7 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.

  2. Multi-sheet surface rebinning methods for reconstruction from asymmetrically truncated cone beam projections: II. Axial deconvolution

    International Nuclear Information System (INIS)

    In airport baggage scanning it is desirable to have a system that can scan baggage moving at standard conveyor belt speeds. One way to achieve this is to use multiple electronically switched sources rather than a single source on a mechanically rotated gantry. In such a system placing the detectors opposite the sources would obstruct the beam, so they have to be offset (hence offset multi-source geometry). This results in asymmetrical axial truncation of the cone beam projections. As such projections do not constitute complete data in the sense of integral geometry, the standard cone beam reconstruction algorithms do not apply. In this series of papers we introduce a new family of rebinning methods for reconstruction from axially asymmetrically truncated cone beam projections. In the first paper we discussed the approximation of the data on the multi-sheet surface with the truncated projection data obtained from offset multi-source geometries. In this second paper we focus on the recovery of the volumetric image from the reconstruction of data rebinned to multi-sheet surfaces. Multi-sheet rebinning effects an implicit relation between the fan beam transforms on the individual sheets and the rebinned data. This relation in conjunction with the linearity of the ray transform allows us to formulate the deconvolution problem for the recovery of the volume from a stack of reconstructed images on multi-sheet surfaces. We discuss the errors in the right-hand side of the deconvolution problem (reconstruction on multi-sheet surfaces) resulting from rebinning approximation. We introduce convolution matrix models based on the distribution of the distances of the rays from the multi-sheet surface, which considerably improve the data model fit and in turn lead to a superior solution. Multiple strategies for solution of the deconvolution problem are discussed and an efficient and robust implementation is presented, which makes the method capable of real time reconstruction. We

  3. Jean Piaget: Images of a life and his factory.

    Science.gov (United States)

    Burman, Jeremy Trevelyan

    2012-08-01

    In this article, I use a new book about Jean Piaget to introduce a new historical method: examining "psychological factories." I also discuss some of the ways that "Great Men" are presented in the literature, as well as opportunities for new projects if one approaches the history of the discipline differently and examines the conditions that made that greatness possible. To that end, the article includes many details about Piaget that have never before been discussed in English. Attention is drawn, in particular, to Piaget's collaborators: the hundreds of workers at his factory in Geneva, many of whom were women. (PsycINFO Database Record (c) 2012 APA, all rights reserved). PMID:23397918

  4. SIMULATIONS OF A MUON LINAC FOR A NEUTRINO FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Beard, Alex Bogacz ,Slawomir Bogacz, Vasiliy Morozov, Yves Roblin

    2011-04-01

    The Neutrino Factory baseline design involves a complex chain of accelerators including a single-pass linac, two recirculating linacs and an FFAG. The first linac follows the capture and bunching section and accelerates the muons from about 244 to 900 MeV. It must accept a high emittance beam about 30 cm wide with a 10% energy spread. This linac uses counterwound, shielded superconducting solenoids and 201 MHz superconducting cavities. Simulations have been carried out using several codes including Zgoubi, OptiM, GPT, Elegant and G4beamline, both to determine the optics and to estimate the radiation loads on the elements due to beam loss and muon decay.

  5. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  6. Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC

    CERN Document Server

    Deile, Mario; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Salvant, Benoit; Valentino, Gianluca

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the lu...

  7. On the Physics Case of a Super Flavour Factory

    CERN Document Server

    Browder, T; Gershon, T; Hazumi, M; Hurth, Tobias; Okada, Y; Stocchi, A

    2008-01-01

    We summarize the physics case of a high-luminosity e+e- flavour factory collecting an integrated luminosity of 50-75 ab^(-1). Many New Physics sensitive measurements involving B and D mesons and tau leptons, unique to a Super Flavour Factory, can be performed with excellent sensitivity to new particles with masses up to ~100 (or even ~1000 TeV). Flavour- and CP-violating couplings of new particles that may be discovered at the LHC can be measured in most scenarios, even in unfavourable cases assuming minimal flavour violation. Together with the LHC, a Super Flavour Factory, following either the SuperKEKB or the SuperB proposal, could be soon starting the project of reconstructing the New Physics Lagrangian.

  8. Analysis of Interpersonal Communication Processes in Digital Factory Environments

    Science.gov (United States)

    Schütze, Jens; Baum, Heiko; Laue, Martin; Müller, Egon

    The paper outlines the scope of influence of digital factory on the interpersonal communication process and the exemplary description of them. On the basis of a brief description about the theoretical basic concepts of the digital factory occurs the illustration of communicative features in digital factory. Practical coherences of interpersonal communication from a human oriented view were analyzed in Volkswagen AG in Wolfsburg in a pilot project. A modeling method was developed within the process analysis. This method makes it possible to visualize interpersonal communication and its human oriented attribute in a technically focused workflow. Due to the results of a developed inquiry about communication analysis and process models of modeling methods it was possible to build the processes in a suitable way for humans and to obtain a positive implication on the communication processes.

  9. On the Physics Case of a Super Flavour Factory

    Energy Technology Data Exchange (ETDEWEB)

    Browder, T.; Ciuchini, M.; Gershon, T.; Hazumi, M.; Hurth, T.; Okada, Y.; Stocchi, A.; /Hawaii U. /INFN, Rome /Rome U. /Warwick U. /KEK, Tsukuba /CERN /SLAC /Tsukuba, Graduate U. Adv. Studies /Orsay, LAL /Orsay

    2007-11-07

    We summarize the physics case of a high-luminosity e{sup +}e{sup -} flavor factory collecting an integrated luminosity of 50 - 75 ab{sup -1}. Many New Physics sensitive measurements involving B and D mesons and {tau} leptons, unique to a Super Flavor Factory, can be performed with excellent sensitivity to new particles with masses up to {approx} 100 (or even {approx} 1000) TeV. Flavor- and CP-violating couplings of new particles that may be discovered at the LHC can be measured in most scenarios, even in unfavorable cases assuming minimal flavor violation. Together with the LHC, a Super Flavor Factory, following either the SuperKEKB or the SuperB proposal, could be soon starting the project of reconstructing the New Physics Lagrangian.

  10. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  11. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  12. Development of a fast traveling-wave beam chopper for the SNS project

    International Nuclear Information System (INIS)

    High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed

  13. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  14. A beam test of prototype time projection chamber using micro-pattern gas detectors at KEK

    Indian Academy of Sciences (India)

    Makoto Kobayashi; on behalf of part of the ILC{TPC Collaboration

    2007-12-01

    We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress and some of the preliminary results obtained with GEMs and MicroMEGAS are presented along with our interpretation. Also given is the extrapolation of the obtained spatial resolution to that of a large TPC expected as the central tracker of the ILC experiment.

  15. Literature in Focus Beta Beams: Neutrino Beams

    CERN Document Server

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  16. Ion pulse compressor and stretcher ring for linear meson factory

    International Nuclear Information System (INIS)

    The time structure of the accelerated H- beam of Moscow meson factory is defined by technical features of linear acceleration and inadequate to the demands of a considerable part of the physics program envisaged. A new type of a magnetic ring for ion pulse time structure transformation is proposed. The most essential operating modes are as follows: 1) the compression of every stored pulse up to the hundreds times; 2) slow ejection of every pulse over 10 ms. Multiturn charge-changing H- → H+ injection will be used for the effective storage. The magnetic ring is an isochronous one (γ = γ/sub tr/) for the pulse compression mode. Bunch beam structure is maintained without RF bunching system. The beam will be slowly ejected by the modified Piccioni method. The 99% ejection efficiency can be achieved, but the special azimutal distribution of a dispersion function is needed. The main beam dynamics features are shown together with the magnet ring configuration

  17. Ion pulse compressor and stretcher ring for linear meson factory

    International Nuclear Information System (INIS)

    The time structure of the accelerated H- beam of Moscow meson factory is defined by technical features of linear acceleration and inadequate to the demands of a considerable part of the physics program envisaged. A new type of a magnetic ring for ion pulse time structure transformation is proposed. The most essential operating modes are as follows: the compression of every stored pulse up to the hundreds times; slow ejection of every pulse over 10 ms. Multiturn chargechanging H-→H+ injection will be used for the effective storage. The magnetic ring is an isochronous one (ο = ο /SUB tr/ ) for the pulse compression mode. Bunch beam structure is maintained without RF bunching system. The beam will be slowly ejected by the modified Piccioni method. The 99% ejection efficiency can be achieved, but the special azimutal distribution of a dispersion function is needed. The main beam dynamics features are shown together with the magnet ring configuration

  18. Beam-beam diagnostics from closed-orbit distortion

    International Nuclear Information System (INIS)

    We study the applicability of beam-beam deflection techniques as a tuning tool for asymmetric B factories, focusing on PEP-II as an example. Assuming that the closed orbits of the two beams are separated vertically at the interaction point by a local orbit bump that is nominally closed, we calculate the residual beam orbit distortions due to the beam-beam interaction. Difference orbit measurements, performed at points conveniently distant from the interaction point (IP), provide distinct signatures that can be used to maintain the beams in collision and perform detailed optical diagnostics at the IP. A proposal to test this method experimentally at the TRISTAN ring is briefly discussed

  19. Proceedings of the RCNP cascade project workshop 'heavy ion secondary beam course'

    International Nuclear Information System (INIS)

    In the Research Center for Nuclear Physics (RCNP), Osaka University, as one of the experimental facilities utilizing the heavy ion beam from the ring cyclotron, the construction of the heavy ion secondary beam course has been in progress. This course can supply the unstable nuclei produced by a heavy ion reaction as a secondary beam, and is expected to become the powerful experimental facility for elucidating the condition of atomic nuclei in the extreme condition and their reaction mode. At present, the arrangement is advanced aiming at the utilization from the end of fiscal year 1991. Toward the start of joint utilization experiment, in order to examine the expected physics, concrete experimental plan and the preparation plan accompanying them, the workshop including the introduction of the course was held. On December 15, 1990, the workshop with the theme on the nuclear reaction by unstable nucleus beam was held, and on January 26, 1991, that with the theme on the spectroscopy of unstable nuclei was held. In each meeting, there were more than 20 participants. In this report, the gists of 18 papers are collected. (K.I.)

  20. External audit on output calibration for photon beams (Polish participation in pan-European Radiation Oncology Project for Assurance of Treatment Quality)

    International Nuclear Information System (INIS)

    TLD audit of photon beams in radiotherapy centres started in June 1994 within the frame of the EROPAQ project. All 55 photon beams in Polish departments have been checked and 18 beams rechecked in the centres , where deviations out of 3% were detected. Out of 55 beams checked in the first run, 87% were found within 3% acceptance limit and 13% showed deviations larger than 3%. No deviations out of 6% have been detected. The results of the national intercomparison for photon beams (90-92) compared to the results of the EROPAQ audit (94-95) show an improvement of the beam calibrations in Poland and illustrate the usefulness of external audits. (author). 15 refs, 3 figs, 3 tabs

  1. Technical Safety Requirement Violation at the High Flux Beam Reactor Decommissioning Project, Brookhaven, United States of America

    International Nuclear Information System (INIS)

    At Brookhaven National Laboratory (BNL) on 6 July 2009, a technical safety requirement (TSR) violation was declared at the high flux beam reactor (HFBR) project, which was a limited scope decontamination and decommissioning project associated with the permanently shutdown reactor. The violation extended from performing decommissioning activities within the facility under the incorrect mode. The draining of the spent fuel pool was performed in the warm standby mode when it should have been in the operation mode. The TSR was developed contrary to the United States Department of Energy (DOE) TSR guidance, which recommends that facility operations should only be carried out in the operation mode. The facility TSR allowed operations to be carried out in both modes. The HFBR operation mode focused on the removal of a small number of highly irradiated components with associated limited conditions of operation (LCO), while the warm standby mode focused on all other tasks in the facility and did not require entry into the LCO

  2. Summary of Kaon Factory Workshop

    International Nuclear Information System (INIS)

    Some highlights of the physics sessions of the Kaon Factory Workshop held in connection with the 8th International Conference on High-Energy Physics and Nuclear Structure in British Columbia in 1979 are presented. Particular emphasis is placed on the different investigations that can be carried out with kaons and antiprotons as opposed to pions and protons. Some data on K + 12C elastic scattering are shown. 3 figures

  3. The Prototype Active-Target Time-Projection Chamber used with TwinSol radioactive-ion beams

    Science.gov (United States)

    Ahn, T.; Bardayan, D. W.; Bazin, D.; Beceiro Novo, S.; Becchetti, F. D.; Bradt, J.; Brodeur, M.; Carpenter, L.; Chajecki, Z.; Cortesi, M.; Fritsch, A.; Hall, M. R.; Hall, O.; Jensen, L.; Kolata, J. J.; Lynch, W.; Mittig, W.; O'Malley, P.; Suzuki, D.

    2016-06-01

    The study of low-energy reactions with radioactive-ion beams has been greatly enhanced by the recent use of active-target detectors, which have high efficiency and low thresholds to detect low-energy charged-particle decays. Both of these features have been used in experiments with the Prototype Active-Target Time-Projection Chamber to study α -cluster structure in unstable nuclei and 3-body charged-particle decays after implantation. Predicted α -cluster structures in 14 C were probed using resonant α scattering and the nature of the 3- α breakup of the 02+ Hoyle state in 12 C after the beta decay of 12 N and 12 B was studied. These experiments used in-flight radioactive-ion beams that were produced using the dual superconducting solenoid magnets TwinSol at the University of Notre Dame. Preliminary results from these experiments as well as the development of future radioactive beams to be used in conjunction with the PAT-TPC are presented.

  4. Present status of the radioactive nuclear beam facility at KEK-Tanashi and the E-arena in the KEK-JAERI joint project

    CERN Document Server

    Miyatake, H; Ishiyama, H; Ishida, Y; Kawakami, H; Yoshikawa, N; Katayama, I; Tanaka, M H; Tojyo, E; Oyaizu, M; Arai, S; Tomizawa, S; Niki, K; Arakaki, Y; Okada, M; Takeda, Y; Wada, M; Strasser, P; Kubono, S; Nomura, T

    2002-01-01

    The performance of the RNB facility at KEK-Tanashi, which is a pilot facility for the E-arena in the KEK-JAERI joint project, is presented. The muonic X-ray spectroscopy of unstable nuclei by combining the RNB with muon-beam from the M-arena in the joint project is introduced.

  5. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  6. Design of a medium-energy beam-transport line with an anti-chopper for the JAERI/KEK project

    International Nuclear Information System (INIS)

    The medium-energy beam-transport line (MEBT) plays an important role in reducing beam loss in the JAERI/KEK project. A MEBT was designed two years ago, with good beam matching and lower beam loss. To further reduce beam loss during the transient time of the chopper to meet the new requirement from the DTL, a medium-energy beam-transport line with an anti-chopper has been designed. The 3.5 m long transport line consists of nine quadrupole magnets, three bunchers and four chopper/anti-chopper cavities. It accomplishes two tasks: matching the beam from the RFQ to the acceptance of the DTL and chopping the beam to produce gaps for injection into the rapid-cycling ring, which follows the linac. A RF Chopper and an anti-chopper have been adopted in the lattice, resulting in a clean chopping effect and no beam losses during the transient time. Details of the beam dynamics analysis are given

  7. Design of a medium-energy beam-transport line with an anti-chopper for the JAERI/KEK project

    International Nuclear Information System (INIS)

    The medium-energy beam-transport line (MEBT) plays an important role in reducing beam loss in the JAERI/KEK project. A MEBT was designed two years ago, with good beam matching and lower beam loss. To further reduce beam loss during the transient time of the chopper to meet the new requirement from the DTL, a medium-energy beam-transport line with an anti-chopper has been designed. The 3.5 m long transport line consists of nine quadrupole magnets, three bunchers and four chopper/anti-chopper cavities. It accomplishes two tasks: matching the beam from the RFQ to the acceptance of the DTL and chopping the beam to produce gaps for injection into the rapid-cycling ring, which follows the linac. An RF Chopper and an anti-chopper have been adopted in the lattice, resulting in a clean chopping effect, and no beam losses during the transient time. Details of the beam dynamics analysis are given. (author)

  8. Status of the TRIUMF KAON factory proposal

    International Nuclear Information System (INIS)

    Over the last year considerable progress has been achieved on both technical and political fronts. Hardware studies have continued on both magnet power supplies and on rf cavities - the latter work gaining an extra dimension from a recently-instituted formal collaboration with LAMPF. A racetrack-shaped lattice is being considered in conjunction with a three-element slow extraction system in an effort to reduce losses to the 0.1% level. British Columbia has agreed to fund the buildings and tunnels (Cdn $87M) and is making the KAON Factory its tope priority project with the Canadian federal government. A joint federal-provincial delegation has traveled abroad and found that a number of countries would consider significant contributions to the cost. Government approval contingent upon such contributions is anticipated later in 1988, together with preconstruction R and D funds

  9. Beam tube experiments and correlated research projects at the TRIGA reactor Vienna

    International Nuclear Information System (INIS)

    The four beam tubes and the thermal column at the TRIGA reactor Vienna were used intensively during the reporting period. Three of the beam tubes are mainly used for neutron spectroscopy such as small angle scattering, neutron interferometry and polarized neutrons where now investigations of magnetic structures in pulsed high magnetic fields (25 T) synchronized with the pulsed mode of the reactor have been started. The thermalizing column will be modified from the present cold neutron source to a comfortable neutron radiography installation which allows investigations of objects of a size up to 30 cm diameters. The thermal column is also used for neutron radiography and as a strong gamma source to investigate gamma irradiation effects on various materials such as glass fiber cables. In view of flexible utilization of the thermal column a movable shielding construction has been designed which is simple rolled away on the rails of the thermal column doors when access to the thermal column in necessary. (orig.)

  10. Project of an advanced ISOL facility for exotic beams at LNL

    International Nuclear Information System (INIS)

    In the framework of the European program to define a second generation Radioactive Ion Beam facility, LNL are proposing the construction in the next five-seven years of a specialized national facility for RIB originated by fission fragments produced by secondary neutrons. It consists on a two-accelerator ISOL-type facility to provide intense neutron-rich radioactive ion beams of highest quality, in the range of masses between 80 and 160. The conceptual design is based on a high intensity 50 MeV (100 kW) proton linac as driver and on the availability of the heavy-ion accelerator ALPI as post accelerator. The estimated neutron yield is 2x1014 n/s at 0 deg., high enough to satisfy the demand for an advanced RIB facility. An intense R and D program on different items is actually in progress in collaboration with other Laboratories and University groups and is moving in a European context

  11. RF Cavities For The Muon and Neutrino Factory Collaboration Study

    CERN Document Server

    Moretti, A; Jurgens, T G; Qian, Z; Wu, V

    2000-01-01

    A multi-laboratory collaboration is studying the feasibility of building a muon collider, the first phase of which maybe a neutrino factory. The phase space occupied by the muons is very large and needs to be cooled several orders of magnitude for either machine, 100,000 to 1 million for the collider and ten to 100 for the factory. Ionization cooling is the base line method for muon cooling. This scheme uses hydrogen absorbers and rf re-acceleration in a long series of magnetic focusing channels to cool the muons. At Fermilab two rf cavity types are under study to provide the required cooling rf re-acceleration, a 805 MHz high gradient cavity for the collider and a 201 MHz high gradient cavity for the neutrino factory. The 805 MHz cavity currently under going cold testing is a non-periodic pi-mode cavity with the iris openings shaped to follow the contour of the beam. The 201 MHz cavity uses hollow thin metal tubes over the beam aperture to terminate the field in a pill-box type mode to increase its shunt imp...

  12. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  13. Development and characterization of semiconductor materials by ion beams. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    This CRP was recommended by the Consultants meeting on Ion Beam Techniques Applied to Semiconductor and Related Advanced Materials, held in April 1997 in Vienna. The consultants proposed to have a CRP in the field of application of MeV ion beams for the development and characterization of semiconductor materials. The CRP was approved and a first RCM was held in Vienna between 2-5 June 1998, in order to stimulate ideas and to promote collaborations among CRP participants. The goals and practical outcomes of the CRP were defined and several specific topics were identified including: optoelectronic characterization of semiconductor materials and devices by ion microbeams, characterization of thin films, defect transformations in semiconductors, light element analysis. One important recommendation was that sample exchanges among different laboratories be strongly encouraged. The participants presented individual activities on their projects, all subjects of research were identified and linked with approved individual projects. Collaboration among the participants was discussed and established. Some modifications to work plans were adopted. As proposed during the first RCM, the final RCM was held at the Ruder Boskovic Institute, Zagreb, Croatia, between 25 and 29 September 2000, with the purpose of reviewing/discussing the results achieved during the course of the CRP and to prepare a draft of the final report and associated publication. This document contains summary of the CRP and ten individual reports presented by participants. Each of the reports has been indexed separately

  14. Multi-sheet surface rebinning methods for reconstruction from asymmetrically truncated cone beam projections: I. Approximation and optimality

    International Nuclear Information System (INIS)

    The mechanical motion of the gantry in conventional cone beam CT scanners restricts the speed of data acquisition in applications with near real time requirements. A possible resolution of this problem is to replace the moving source detector assembly with static parts that are electronically activated. An example of such a system is the Rapiscan Systems RTT80 real time tomography scanner, with a static ring of sources and axially offset static cylinder of detectors. A consequence of such a design is asymmetrical axial truncation of the cone beam projections resulting, in the sense of integral geometry, in severely incomplete data. In particular we collect data only in a fraction of the Tam–Danielsson window, hence the standard cone beam reconstruction techniques do not apply. In this work we propose a family of multi-sheet surface rebinning methods for reconstruction from such truncated projections. The proposed methods combine analytical and numerical ideas utilizing linearity of the ray transform to reconstruct data on multi-sheet surfaces, from which the volumetric image is obtained through deconvolution. In this first paper in the series, we discuss the rebinning to multi-sheet surfaces. In particular we concentrate on the underlying transforms on multi-sheet surfaces and their approximation with data collected by offset multi-source scanning geometries like the RTT. The optimal multi-sheet surface and the corresponding rebinning function are found as a solution of a variational problem. In the case of the quadratic objective, the variational problem for the optimal rebinning pair can be solved by a globally convergent iteration. Examples of optimal rebinning pairs are computed for different trajectories. We formulate the axial deconvolution problem for the recovery of the volumetric image from the reconstructions on multi-sheet surfaces. Efficient and stable solution of the deconvolution problem is the subject of the second paper in this series (Betcke and

  15. Circular Higgs Factories & Possible Long-Term Strategy

    CERN Document Server

    Zimmermann, F

    2013-01-01

    In 2012 two LHC experiments have discovered a new particle with a mass around 125 GeV, which appears to be the scalar Higgs boson of the Standard Model. To further examine this remarkable particle it could be produced in large numbers for precision studies by an e+e− collider operating near the ZH threshold at beam energies of 120 GeV, or, in the s-channel by a gamma-gamma collider with primary electron beam energies of 80 GeV, or by a high-energy electron-proton collider. In this talk I will discuss tentative design parameters, novel concepts and accelerator-physics challenges (1) for a high-luminosity lepton-hadron collider, bringing into collision a 60-GeV electron beam from an energy-recovery electron linac with one of the LHC hadron beams – LHeC –, (2) for a gamma-gamma Higgs-factory collider based on the reconfigured recirculating SC electron linac – SAPPHiRE – and (3) for a circular e+e− Higgs-factory collider in a new tunnel with a circumference of 80-100 km – TLEP. I will also discuss f...

  16. On-line separators for the Dubna Superheavy Element Factory

    Science.gov (United States)

    Popeko, A. G.

    2016-06-01

    The main goal of creation of a Superheavy Element Factory at the Flerov Laboratory of Nuclear Reactions (FLNR) is to sufficiently improve the efficiency of studies on heavy and superheavy nuclei. The factory will be based on a high-current DC-280 cyclotron. The use of beams with the intensity up to 6 ×1013 s-1 (10 pμA) requires effective separators providing high suppression of unwanted reaction products. Following the analysis of the kinematic characteristics of several hundreds of reactions, a conclusion was drawn that it is necessary to construct three separators optimized for specific tasks: a universal gas-filled separator for synthesis and study of the properties of heavy isotopes, a velocity filter for spectroscopic investigations, and a pre-separator for further chemical separation and precise mass measurements.

  17. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  18. KSU project: CRYEBIS for producing slow, bare, heavy-ion beams

    International Nuclear Information System (INIS)

    The design and construction of a cryogenic electron beam ion source is in progress at Kansas State University. In about two years this source should produce high yields of bare and few-electron argon ions with low kinetic energies (approx.keV--MeV). The design is similar to the latest French designs ]CRYEBIS II [J. Arianer, C. Goldstein, H. Laurent, and M. Malard, IEEE Trans. Nucl. Sci. NS-30, 2737 (1983)] and DIONE [B. Gastineau, J. Faure, and A. Courtois, Nucl. Instrum. Methods B9, 538 (1985)

  19. Physics and technology challenges of B anti B factories

    International Nuclear Information System (INIS)

    An e+e- collider designed to serve as a B factory requires a luminosity of 3 x 1033 cm-2 s-1 - a factor of 20 beyond that of the best present collider (the CESR ring) - and thus presents a considerable challenge to the accelerator builder. To optimize the experiment, it is necessary that the B bar B system have a moving center-of-mass, which implies different energies for the two beams (hence an asymmetric collider). This feature dictates that a two-ring configuration be used. Accelerator physics issues that arise in such a design are related to the need to tightly focus the beams to a vertical beta function on the order of 1 cm, to bring the beams from two different rings into collision and then cleanly separate them again, and to mask the detector region sufficiently to permit measurements with very large beam current passing through the interaction region. In addition, the process of optimizing the luminosity for asymmetric collisions breaks new ground. Because the luminosity is limited by the beam-beam interaction, any large improvement must come from considerably increasing both the beam current and the number of bunches in the ring. These choices place many demands on accelerator technology as well as accelerator physics. Vacuum systems must be designed to handle the thermal load from a multi-ampere beam of 8-9 GeV and to maintain an adequate running pressure (below 10 nTorr) in the face of a large gas load from synchrotron radiation induced photodesorption. An RF system capable of supporting the high beam currents must be developed. To reduce the growth of potentially strong multibunch instabilities, the cavity higher-order modes (HOMs) must be highly damped to Q≤70. Even with a well-optimized RF system, the high beam currents typically mean that wideband multibunch feedback systems (both longitudinal and transverse) are needed to maintain beam stability

  20. Project of an advanced ISOL facility for exotic beams at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Tecchio, L.B. E-mail: tecchio@lnl.infn.it; Andrighetto, A.; Cherubini, R.; Colautti, P.; Comunian, M.; Corradi, L.; Dainelli, A.; De Angelis, G.; De Poli, M.; Facco, A.; Fioretto, E.; Fortuna, G.; Jiyu, G.; Ming, R.; Montagnoli, G.; Moschini, G.; Pisent, A.; Poggi, M.; Porcellato, A.M.; Zafiropoulos, D.; Bak, P.; Kot, N.; Logatchev, P.; Shyankov, S.; Brandolini, F.; Signorini, C.; Clauser, T.; Lamanna, G.; Stagno, V.; Variale, V

    2002-04-22

    In the framework of the European program to define a second generation Radioactive Ion Beam facility, LNL are proposing the construction in the next five-seven years of a specialized national facility for RIB originated by fission fragments produced by secondary neutrons. It consists on a two-accelerator ISOL-type facility to provide intense neutron-rich radioactive ion beams of highest quality, in the range of masses between 80 and 160. The conceptual design is based on a high intensity 50 MeV (100 kW) proton linac as driver and on the availability of the heavy-ion accelerator ALPI as post accelerator. The estimated neutron yield is 2x10{sup 14} n/s at 0 deg., high enough to satisfy the demand for an advanced RIB facility. An intense R and D program on different items is actually in progress in collaboration with other Laboratories and University groups and is moving in a European context.

  1. Bunch-motion feedback for B-factories

    International Nuclear Information System (INIS)

    The colliding electron and positron beams in a B-factory must have average current of one ampere or more to produce the required luminosity. The high current interacts with structures in the beam tube to drive strong coupled-bunch (c.b.) instabilities. To suppress these instabilities requires negative feedback of the bunch motions. Beam impedances arising from strong rf cavity modes should first be reduced to make the required feedback damping rate practical and the cost economical. In what follows, control of transverse motions will be discussed first, then longitudinal. We shall use the parameters of the 3.1 GeV ring of PEP-II to illustrate the general requirements

  2. Análisis factorial

    OpenAIRE

    López-Roldán, Pedro; Fachelli, Sandra

    2015-01-01

    El análisis factorial es una de las técnicas de análisis multivariable más utilizada en la investigación en ciencias sociales. Su objetivo es el de reducir un conjunto de variables cuantitativas aleatorias (interrelacionadas) en un grupo de factores latentes (independientes), de tal manera que los factores siempre serán, en número, inferiores a las variables iniciales. El éxito de esta técnica queda garantizado en la medida que su resolución cumpla dos requisitos: el principio de parsimonia; ...

  3. Factorial moments of continuous order

    International Nuclear Information System (INIS)

    The normalized factorial moments Fq are continued to noninteger values of the order q, satisfying the condition that the statistical fluctuations remain filtered out. That is, for the Poisson distribution Fq=1 for all q. The continuation procedure is deisgned with phenomenology and data analysis in mind. Examples are given to show how Fq can be obtained for positive and negative values of q. With q being continuous, a multifractal analysis is made possible for multiplicity distributions that arise from self-similar dynamics. A step-by-step procedure of the method is summarized in the conclusion

  4. Physics at Super B Factory

    CERN Document Server

    Aushev, T; Bondar, A; Brodzicka, J; Browder, T E; Chang, P; Chao, Y; Chen, K F; Dalseno, J; Drutskoy, A; Enari, Y; Gershon, T; Golob, B; Goto, T; Handa, F; Hara, K; Hashimoto, S; Hayashii, H; Hazumi, M; Higuchi, T; Hisano, J; Hou, W S; Iijima, T; Ikado, K; Inami, K; Itoh, H; Itoh, R; Ishino, H; Katayama, N; Keum, Y Y; Kinoshita, K; Kou, E; Križan, P; Krokovny, P; Kurimoto, T; Kwon, Y; Limosani, A; Matsumoto, T; Morozumi, T; Nakahama, Y; Nakao, M; Nishida, S; Ohshima, T; Okada, Y; Okumura, K; Olsen, S L; Onogi, T; Pakhlova, G; Palka, H; Pakhlov, P; Poluektov, A; Recksiegel, S; Sagawa, H; Saigo, M; Sakai, Y; Sanda, A I; Schwanda, C; Schwartz, A; Senyo, K; Shimizu, Y; Shindou, T; Sinha, R; Starič, M; Sumisawa, K; Tanaka, M; Trabelsi, K; Urquijo, P; Ushiroda, Y; Won, E; Yamamoto, H; Yamauchi, M; Yoshikawa, T; Zupan, J

    2010-01-01

    This report presents the results of studies that investigate the physics reach at a Super $B$ factory, an asymmetric-energy $e^+e^-$ collider with a design luminosity of $8 \\times 10^{35}$ cm$^{-2}$s$^{-1}$, which is around 50 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented.

  5. Magnets for TRIUMF's KAON Factory

    International Nuclear Information System (INIS)

    The KAON Factory will require over 2,000 magnets to transport protons from the existing 500 Mev cyclotron through three storage rings and two synchrotrons and deliver them to the experimental area at 30 Gev. The magnet requirements are summarized and the results of measurements on prototypes for the 50 hgz Booster magnets re compared with design values. This paper will address three topics. The results of the authors prototype work, some of the more difficult design aspects of other magnets and the tolerances required to achieve production magnets uniform to ± 2 parts in 104

  6. Eficiency factory - Quo Vadis? Brief study; Effizienzfabrik - Quo Vadis? Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Katharina; Kleine, Oliver; Hirzel, Simon; Rhode, Clemens

    2012-11-15

    The demand for an enhanced resource efficiency and energy efficiency in production arises not only from a purely economic perspective, but also from environmental and social reasons. Nevertheless, the issue of resource efficiency did not gain the necessary attention at the corporate level. In 2009, the Federal Ministry of Education and Research (Berlin, Federal Republic of Germany) launched a program to develop resource-efficient production technologies in which 31 integrated research projects with the efficiency factory and a dedicated accompanying project are promoted immediately in order to improve the transfer of the results. The contribution under consideration reports on the performance of the efficiency factory as a transfer platform in the context of the funding priority and the research results achieved up to now.

  7. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  8. Feasibility study for an asymmetric B-factory at KEK

    International Nuclear Information System (INIS)

    In June, 1989, the study group for exploring the feasibility of B meson physics using an asymmetric energy accelerator was organized. This report is the summary of the results of the works that this study group carried out in nine months, and is the Japanese edition of the report of English edition 'Task Force Report on Asymmetric B-factory at KEK'. The activity plan of the study group was to make up the plan exceeding the preceding CLEO-2 experiment by utilizing the features of an asymmetric B-factory. Under this plan, the activities have been carried out by the study meetings twice every week on the physics side and once every two weeks on the accelerator side. Besides, in two study meetings held in October and December, 1989, several persons who have engaged in the research on B meson physics actually in foreign countries were invited, and the discussion was carried out. At present toward the materialization of the plan, the concrete investigation of accelerators and measuring instruments was begun. The significance of a B-factory and the construction project, the physics of a B-factory, the experimental method and the plan for an accelerator are reported. (K.I.)

  9. Physics at a Higgsino Factory

    CERN Document Server

    Baer, Howard; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2014-01-01

    Naturalness arguments applied to supersymmetric theories imply a spectrum containing four light higgsinos \\tz_{1,2} and \\tw_1^+- with masses ~ 100-300 GeV (the closer to M_Z the more natural). The compressed mass spectrum and associated low energy release from \\tw_1 and \\tz_2 three-body decay makes higgsinos difficult to detect at LHC14, while the other sparticles might be heavy, and possibly even beyond LHC14 reach. In contrast, the International Linear e^+e^- Collider (ILC) with \\sqrt{s}>2m(higgsino) would be a {\\it higgsino factory} in addition to a Higgs boson factory and would serve as a discovery machine for natural SUSY! In this case, both chargino and neutralino production %which give rise to distinct event topologies, occur at comparable rates, and lead to observable signals above SM backgrounds. We examine two benchmark cases, one just beyond the LHC8 reach with \\tw_1(\\tz_2)-\\tz_1 mass gap of 15 (21) GeV, and a second more difficult case beyond even the LHC14 reach, where the mass gap is just 10 GeV...

  10. Phase Velocity Analysis of Projected Wave Motion Along Oblique Radar Beams - A Numerical Study of Type-1 Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chi-Lon Fern

    2013-01-01

    Full Text Available The nonlinear features of type-1 radar echoes were studied by a two-dimensional (2D simulation of saturation the Farley-Buneman (FB wave. The behavior of this FB wave in a plane perpendicular to the _ magnetic field was simulated with a two-fluid code in which electron inertia was discounted while ion inertia was retained. It showed that the appearance of secondary waves propagating vertically and obliquely as the primary horizontal FB wave saturates. The secondary waves originating from nonlinear saturation process will construct the evolution of 2D modes which can be observed by oblique radar beams. We carried out the statistical analysis of projection phase velocities of 2D modes along oblique radar beam at different radar elevation angles. The result revealed that a likely density gradient effect of type-1 radar echoes for the wavelength dependence of phase velocity would appear at a larger radar elevation angle while short wavelength waves would approach isotropic speeds close to ion acoustic speed. This interesting result is primarily attributed to the spectral features of 2D modes.

  11. A Stationary Target for the CERN-Neutrino-Factory

    CERN Document Server

    Sievers, P

    2001-01-01

    As production target for Neutron Factories, free mercury jets with high axial velocity of about 20 m/s are being studied. For the CERN-Neutrino-Factory proposal with a 4 MW beam power, but with a relatively large beam size at 2.2 GeV/c and pulsed at 75 Hz, maximum energy deposition densities of below 20 J/g and average power densities of about 1 kW/g are expected. Therefore a study has been made which discusses the feasibility and limits of a confined, stationary target cooled by a liquid. It is proposed to use solid spheres of high density material with diameters in the millimeter range. These spheres are confined inside a Titanium container and cooled by an efficient water circuit. Alternatively, low density liquid metal cooling could be used. Dynamic response, as pressure pulses and vibrations are greatly reduced by the small size of the target granules in combination with a relatively long beam pulse with a duration of 3.3 ms. The open issue of the lifetime of such as structure and its fatigue limit at...

  12. Circular Higgs Factories: LEP3, TLEP and SAPPHiRE

    CERN Document Server

    Zimmermann, F

    2012-01-01

    In 2012 two LHC experiments have discovered a new particle with a mass around 125 GeV, which might be the scalar Higgs boson of the Standard Model. This particle could be produced in large numbers for precision studies by an e+e− collider operating near the ZH threshold at a beam energy of 120 GeV or, in the s-channel, by a gamma-gamma collider with primary electron beam energies of 80 GeV. In this seminar I discuss tentative design parameters, novel concepts and accelerator-physics challenges for two circular e+e− Higgs-factory colliders – LEP3 and TLEP – and for a gamma-gamma Higgs-factory collider based on a recirculating SC electron linac – SAPPHiRE. LEP3, installed in the existing 27-km LHC tunnel, and TLEP, in a new 80-km long tunnel, require – in addition to the collider ring – a fast cycling accelerator ring for quasi-continuous top-up injection to compensate the short beam lifetime due to radiative Bhabha scattering at luminosities above 1e34 cm-2s-1. In addition, a large momentum apert...

  13. Environmental assessment for the proposed B-Factory (Asymmetric Electron Positron Collider)

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This document presents the potential environmental consequences associated with the construction and operation of an Asymmetric Electron Positron Collider, also known as a B-Factory. DOE proposes to modify either the existing Positron-Electron Project at the Stanford Linear Accelerator Center (SLAC) or the Cornell Electron Storage Ring (CESR) at Cornell University. PEP and CESR provide the most technically promising and practical options for a B-Factory. A B-Factory can be constructed by modifying the existing facilities and with minor or no conventional construction. Details involved with the upgrade along with two alternatives to the proposed action are described.

  14. Neutrino-factory storage ring with multiple baselines

    CERN Document Server

    Cline, David B; Garren, A

    2001-01-01

    We designed a noble bow tie storage ring to provide neutrino beams for multiple neutrino detectors around the world with a baseline length of about 1000-9000 km. We present a preliminary lattice that could provide non-planar straight sections. We describe the amount of non-planarity of the third or fourth baseline and the space angles between the baselines and the local surface angles at possible site locations for neutrino factories and at the possible detector locations. We describe the detectors at the Gran Sasso Laboratory, Italy, and at the new laboratory at Carlsbad, NM.

  15. Measuring correlations in non-separable vector beams using projective measurements

    CERN Document Server

    Subramanian, Keerthan

    2016-01-01

    In quantum mechanics, two particles are said to be entangled if the composite wavefunction is non-separable. Separating the two particles and measuring their coincidences as was done in the Aspect experiment leads to a modulated correlation between the polarization states of the two particles. In this article we demonstrate a similar experiment to look at a system whose two degrees of freedom (DoF)- polarization and mode - are entangled, ie the system can be modelled as a non-separable function in the Hilbert space. We propose an interferometric method to perform projective measurements that leads to correlations as seen for entangled quantum particles.

  16. A magnet lattice for a tau-charm factory suitable for both standard scheme and monochromatization scheme

    International Nuclear Information System (INIS)

    A versatile magnet lattice for a tau-charm factory is considered in this report. The main feature of this lattice is the possibility to use it for both standard flat beam scheme and beam monochromatization scheme. The detailed description of the lattice is given. The restrictions following the compatibility of both schemes are discussed

  17. PROGRESS OF THE PEP-II B-FACTORY

    International Nuclear Information System (INIS)

    PEP-II is an e+e- B-Factory Collider located at SLAC operating at the Upsilon 4S resonance. PEP-II has delivered, over the past five years, an integrated luminosity to the BaBar detector of over 139 fb-1 and has reached a luminosity of 6.58 x 1036/cm2/s. Steady progress is being made in reaching higher luminosity. The goal over the next several years is to reach a luminosity of at least 2 x 1034/cm2/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, high RF beam loading, shorter bunches, lower betay*, interaction region operation, and coupling control. A view of the PEP-II tunnel is shown in Figure 1. The present parameters of the PEP-II B-Factory are shown in Table 1 compared to the design. The present peak luminosity is 219% of design and the best integrated luminosity per month is 7.4 fb-1 that is 225% of design. The best luminosity per month is shown in Figure 2. The integrated luminosity over a month is shown in Figure 3 and the total integrated luminosity in shown in Figure 4. The progress in luminosity has come from correcting the orbits, adding specific orbit bumps to correct coupling and dispersion issues, lowering the beta y* in the LER, and moving the fractional horizontal tunes in both rings to just above the half integer (<0.52)

  18. Isotope production for medical and technical use at Moscow Meson Factory Linac

    International Nuclear Information System (INIS)

    At the moment the Moscow Meson Factory Linac provides an average proton beam current up to 65 μA. The linac consists of a 26 degrees bending magnet and transport channel in order to extract the proton beam with an intermediate energy of 158.6 MeV to a facility for high level radioisotope production. Production of 82Sr, 109Cd, 22Na, 68Ge and other isotopes for medical and industrial applications is in progress now. The paper describes the isotope production facility including the beam channel, target equipment, beam tuning procedure as well as some methods, results and plans of the isotope production program. (author)

  19. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  20. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  1. A Tau-Charm Factory at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Seth, K.K. [Northwestern Univ., Evanston, IL (United States)

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  2. Interaction region considerations for a B-factory

    International Nuclear Information System (INIS)

    The goal of the project is to observe CP violation in the bar BB system. This machine is supposed to be a factory for high energy physics, not an R ampersand D project for accelerator physics. There are a number of interrelated design issues arising from the different desires of the detector and the machine, some of which are listed in this paper. A number of background and beampipe issues are mentioned. The emphasis is on calculations. Any satisfactory design will combine measurements on existing machines with calculations pertaining to the measurement conditions as well as to the proposed machine. 57 refs

  3. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  4. The TRIUMF KAON factory accelerators

    International Nuclear Information System (INIS)

    To accelerate a 100 μA proton beam from the TRIUMF H-cyclotron to 30 GeV a five-ring accelerator complex is proposed. Each accelerator is followed by a storage ring for time-matching - the cw cyclotron by the Accumulator, the 3 GeV 50 Hz Booster by the Collector, and the 30 GeV 10 Hz Driver by the Extender - the latter providing the slow-extracted beam for coincidence experiments. Under the current $11 million pre-construction study prototypes are being built of various components of the Booster ring - fast-cycling dipole and quadrupole magnets, a dual-frequency magnet power supply, ceramic beam pipes, rf cavities (both parallel and perpendicular bias versions) and an extraction kicker. In addition the lattice designs for all five rings and the shielding and remote handling requirements are being reviewed. These activities will allow construction to start in 1990

  5. Software factory techniques applied to Process Control at CERN

    CERN Multimedia

    Dutour, MD

    2007-01-01

    The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems) has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain and technical information seamlessly into deployable PLC (Programmable logic Controller) – SCADA (Supervisory Control And Data Acquisition) systems. This software factory delivers consistently high quality by reducing human error and repetitive tasks, and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to encapsulate and hide the PLC and SCADA target platforms, enabling the experts to focus on the business model rather than specific syntaxes and grammars. Based on industry standard software...

  6. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  7. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  8. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  9. Vacuum and beam pipe considerations. Pt.1, 2

    International Nuclear Information System (INIS)

    A high vacuum will be required in a KAON factory to reduce scattering, beam-induced multipactoring, beam neutralization, and beam-induced desorption. The TRIUMF KAON group has let contracts for the development of ceramic pipes with rf shields. Analysis of the effect of beam spill on the temperature of the ceramic pipe has been started

  10. 3–10 keV Xe+ ion beam machining of ultra low thermal expansion glasses for EUVL projection optics: Evaluation of surface roughness

    International Nuclear Information System (INIS)

    In order to obtain surface figure error of 0.15 nm rms and surface roughness (Rrms) of 0.12 nm rms for aspherical substrates in EUVL tools, ion beam figuring may be adopted to final surface figure error correction of aspherical substrates. During figure error correction, machined surface of the substrate becomes rougher than the pre-finished one. Therefore, we investigated the machined depth and ion energy dependences of Rrms (measured by an AFM) of substrates machined by 3–10 keV Xe+ ion beam, and compared them with the results obtained for Ar+ ion beam. Result shows that the Rrmss of CLEARCERAM®-Z, Zerodur® and ULE® substrates machined to the depth of 50 nm by 3–10 keV Xe+ ion beam at the normal ion incidence angle become approximately 0.25, 0.28 and 0.15 nm rms, respectively. Those values are larger than the pre-finished substrates (0.07–0.09 nm rms), but smaller than that (0.60 nm rms for CLEARCERAM®-Z, 0.61 nm rms for Zerodur® and 0.18 nm rms for ULE®) of the substrates machined by Ar+ ion beam. Moreover, the Rrmss merely increase with increasing ion energy. The Rrmss of the ULE® substrate machined by 3–10 keV Xe+ ion beam rapidly increase with increasing machined depth, then saturate at machined depth of 10–50 nm. The saturated values of the Rrmss are 0.12 and 0.15 nm rms for 3 and 10 keV Xe+ ion beam respectively. We suggest that the 3 keV Xe+ ion beam machining can be applicable for final shape correction of ULE® substrates for EUVL projection optics in association with considering further ultra smoothing process such as Si deposition or low energy ion beam smoothing.

  11. Patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse error-events and near misses: Introducing the ACCIRAD project

    International Nuclear Information System (INIS)

    In 2011 the European Commission launched a tender to develop guidelines for risk analysis of accidental and unintended exposures in external beam radiotherapy. This tender was awarded to a consortium of 6 institutions, including the ESTRO, in late 2011. The project, denominated “ACCIRAD”, recently finished the data collection phase. Data were collected by surveys administered in 38 European countries. Results indicate non-uniform implementation of event registration and classification, as well as incomplete or zero implementation of risk assessment and events analysis. Based on the survey results and analysis thereof, project leaders are currently drafting proposed guidelines entitled “Guidelines for patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse-error events and near misses”. The present article describes the aims and current status of the project, including results of the surveys

  12. The Experience Factory: Strategy and Practice

    Science.gov (United States)

    Basili, Victor R.; Caldiera, Gianluigi

    1995-01-01

    The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has recently reached the system and software industry. Although some concepts of quality management, originally developed for other product types, can be applied to software, its specificity as a product which is developed and not produced requires a special approach. This paper introduces a quality paradigm specifically tailored on the problem of the systems and software industry. Reuse of products, processes and experiences originating from the system life cycle is seen today as a feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality improvement is very often achieved by defining and developing an appropriate set of strategic capabilities and core competencies to support them. A strategic capability is, in this context, a corporate goal defined by the business position of the organization and implemented by key business processes. Strategic capabilities are supported by core competencies, which are aggregate technologies tailored to the specific needs of the organization in performing the needed business processes. Core competencies are non-transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection and development requires commitment, investment and leadership. The paradigm introduced in this paper for developing core competencies is the Quality Improvement Paradigm which consists of six steps: (1) Characterize the environment, (2) Set the goals, (3) Choose the process, (4) Execute the process, (5) Analyze the process data, and (6) Package experience. The process must be supported by a goal oriented approach to measurement and control, and an organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical organization distinct from the project organizations it supports. Its goal is development and support of core competencies

  13. Environmental Projects. Volume 17; Biological Assessment, Opinion, and New 34-Meter Beam-Waveguide Antenna (DSS 24) at Apollo Site

    Science.gov (United States)

    Bengelsdorf, Irving

    1996-01-01

    This report deals with the Biological Assessment, Biological Opinion and Final Report on the construction of a high- efficiency 34-meter, multifrequency beam-waveguide antenna at the Apollo Site of the Goldstone Deep Space Communications Complex, operated by JPL. According to the Endangered Species Act of 1973, a Biological Assessment must be conducted and a Biological Opinion, with terms and conditions, rendered (the Opinion by the U.S. Department of the Interior) before construction of any federal project that may affect endangered or threatened flora or fauna. After construction, a final report is filed with the Department. The desert tortoise, designated "threatened" by the U.S. Fish and Wildlife Service, and the Mojave ground squirrel and the Lane Mountain milk vetch, both designated "candidate threatened," required the reporting specified by the Act. The Assessment found no significant danger to the animal species if workers are educated about them. No stands of the plant species were observed in the surveyed construction area. The Department issued a Biological Opinion to safeguard the two animal species. The Service and the California Department of Fish and Game both issued a Biological Concurrence that JPL had satisfied all environmental criteria for preserving threatened species.

  14. Minimum secondary aberration fractional factorial split-plot designs in terms of consulting designs

    Institute of Scientific and Technical Information of China (English)

    Al; Mingyao; ZHANG; Runchu

    2006-01-01

    It is very powerful for constructing nearly saturated factorial designs to characterize fractional factorial (FF) designs through their consulting designs when the consulting designs are small. Mukerjee and Fang employed the projective geometry theory to find the secondary wordlength pattern of a regular symmetrical fractional factorial split-plot (FFSP) design in terms of its complementary subset, but not in a unified form. In this paper, based on the connection between factorial design theory and coding theory, we obtain some general and unified combinatorial identities that relate the secondary wordlength pattern of a regular symmetrical or mixed-level FFSP design to that of its consulting design. According to these identities, we further establish some general and unified rules for identifying minimum secondary aberration, symmetrical or mixed-level, FFSP designs through their consulting designs.

  15. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  16. Physics opportunities for a B Factory

    International Nuclear Information System (INIS)

    In the short time allotted for this talk it is not possible to review all the physics opportunities offered by a B Factory. I focus on the physics of CP Violation and the resulting tests of the Standard Model

  17. Patient doses in CT, dental cone beam CT and projection radiography in Finland, with emphasis on paediatric patients

    International Nuclear Information System (INIS)

    Diagnostic radiology represents the largest man-made contribution to population radiation doses in Europe. To be able to keep the diagnostic benefit versus radiation risk ratio as high as possible, it is important to understand the quantitative relationship between the patient radiation dose and the various factors which affect the dose, such as the scan parameters, scan mode, and patient size. Paediatric patients have a higher probability for late radiation effects, since longer life expectancy is combined with the higher radiation sensitivity of the developing organs. The experience with particular paediatric examinations may be very limited and paediatric acquisition protocols may not be optimised. The purpose of this thesis was to enhance and compare different dosimetric protocols, to promote the establishment of the paediatric diagnostic reference levels (DRLs), and to provide new data on patient doses for optimisation purposes in computed tomography (with new applications for dental imaging) and in paediatric radiography. Large variations in radiation exposure in paediatric skull, sinus, chest, pelvic and abdominal radiography examinations were discovered in patient dose surveys. There were variations between different hospitals and examination rooms, between different sized patients, and between imaging techniques; emphasising the need for harmonisation of the examination protocols. For computed tomography, a correction coefficient, which takes individual patient size into account in patient dosimetry, was created. The presented patient size correction method can be used for both adult and paediatric purposes. Dental cone beam CT scanners provided adequate image quality for dentomaxillofacial examinations while delivering considerably smaller effective doses to patient compared to the multi slice CT. However, large dose differences between cone beam scanners were not explained by differences in image quality, which indicated the lack of optimisation. For

  18. KEKB B-factory design report

    International Nuclear Information System (INIS)

    KEKB is an asymmetric electron-positron collider at 8 x 3.5 GeV which aims at providing electron-positron collision at the center of mass energy of 10.58 GeV. Its mission is to support high energy physics research programs on CP violation and other topics in B-meson decay. Its luminosity goal is 1034/cm2s. As the construction of the KEKB was approved as a five-year project by the Japanese government, it was begun formally in April, 1994. The low energy ring LER for positrons at 3.5 GeV and the high energy ring HER for electrons at 8 GeV will be built side by side in the existing TRISTAN tunnel with 3 km circumference, and the maximum use of the infrastructure of TRISTAN will be made. The KEKB has only one interaction point in the Tsukuba experimental hall, and the BELLE detector will be installed in this interaction region. The layout of the two rings is explained. In this report, the basic design, hardware systems, the construction schedule, physics requirement, machine parameters, beam-beam interaction, RF parameters, impedance and collective effects, lattice design, interaction region, RF system, magnet system, vacuum system, beam instrumentation, injection and accelerator control system are described. (K.I.)

  19. KEKB B-factory design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    KEKB is an asymmetric electron-positron collider at 8 x 3.5 GeV which aims at providing electron-positron collision at the center of mass energy of 10.58 GeV. Its mission is to support high energy physics research programs on CP violation and other topics in B-meson decay. Its luminosity goal is 10{sup 34}/cm{sup 2}s. As the construction of the KEKB was approved as a five-year project by the Japanese government, it was begun formally in April, 1994. The low energy ring LER for positrons at 3.5 GeV and the high energy ring HER for electrons at 8 GeV will be built side by side in the existing TRISTAN tunnel with 3 km circumference, and the maximum use of the infrastructure of TRISTAN will be made. The KEKB has only one interaction point in the Tsukuba experimental hall, and the BELLE detector will be installed in this interaction region. The layout of the two rings is explained. In this report, the basic design, hardware systems, the construction schedule, physics requirement, machine parameters, beam-beam interaction, RF parameters, impedance and collective effects, lattice design, interaction region, RF system, magnet system, vacuum system, beam instrumentation, injection and accelerator control system are described. (K.I.).

  20. The physics of the B factories

    CERN Document Server

    Bevan, A J; Mannel, Th; Prell, S; Yabsley, B D; Abe, K; Aihara, H; Anulli, F; Arnaud, N; Aushev, T; Beneke, M; Beringer, J; Bianchi, F; Bigi, I I; Bona, M; Brambilla, N; Brodzicka, J; Chang, P; Charles, M J; Cheng, C H; Cheng, H -Y; Chistov, R; Colangelo, P; Coleman, J P; Drutskoy, A; Druzhinin, V P; Eidelman, S; Eigen, G; Eisner, A M; Faccini, R; Flood, K T; Gambino, P; Gaz, A; Gradl, W; Hayashii, H; Higuchi, T; Hulsbergen, W D; Hurth, T; Iijima, T; Itoh, R; Jackson, P D; Kass, R; Kolomensky, Yu G; Kou, E; Križan, P; Kronfeld, A; Kumano, S; Kwon, Y J; Latham, T E; Leith, D W G S; Lüth, V; Martinez-Vidal, F; Meadows, B T; Mussa, R; Nakao, M; Nishida, S; Ocariz, J; Olsen, S L; Pakhlov, P; Pakhlova, G; Palano, A; Pich, A; Playfer, S; Poluektov, A; Porter, F C; Robertson, S H; Roney, J M; Roodman, A; Sakai, Y; Schwanda, C; Schwartz, A J; Seidl, R; Sekula, S J; Steinhauser, M; Sumisawa, K; Swanson, E S; Tackmann, F; Trabelsi, K; Uehara, S; Uno, S; van der Water, R; Vasseur, G; Verkerke, W; Waldi, R; Wang, M Z; Wilson, F F; Zupan, J; Zupanc, A; Adachi, I; Albert, J; Banerjee, Sw; Ben-Haim, E; Biassoni, P; Cahn, R N; Cartaro, C; Chauveau, J; Chen, C; Chiang, C C; Cowan, R; Dalseno, J; Davier, M; Davies, C; Dingfelder, J C; Echenard, B; Epifanov, D; Fulsom, B G; Gabareen, A M; Gary, J W; Godang, R; Graham, M T; Hafner, A; Hamilton, B; Hartmann, T; Hayasaka, K; Hearty, C; Iwasaki, Y; Khodjamirian, A; Kusaka, A; Kuzmin, A; Lafferty, G D; Lazzaro, A; Li, J; Lindemann, D; Long, O; Lusiani, A; Marchiori, G; Martinelli, M; Miyabayashi, K; Mizuk, R; Mohanty, G B; Muller, D R; Nakazawa, H; Ongmongkolkul, P; Pacetti, S; Palombo, F; Pedlar, T K; Piilonen, L E; Pilloni, A; Poireau, V; Prothmann, K; Pulliam, T; Rama, M; Ratcliff, B N; Roudeau, P; Schrenk, S; Schroeder, T; Schubert, K R; Shen, C P; Shwartz, B; Soffer, A; Solodov, E P; Somov, A; Starič, M; Stracka, S; Telnov, A V; Todyshev, K Yu; Tsuboyama, T; Uglov, T; Vinokurova, A; Walsh, J J; Watanabe, Y; Won, E; Wormser, G; Wright, D H; Ye, S; Zhang, C C; Abachi, S; Abashian, A; Abe, N; Abe, R; Abe, T; Abrams, G S; Adam, I; Adamczyk, K; Adametz, A; Adye, T; Agarwal, A; Ahmed, H; Ahmed, M; Ahmed, S; Ahn, B S; Ahn, H S; Aitchison, I J R; Akai, K; Akar, S; Akatsu, M; Akemoto, M; Akhmetshin, R; Akre, R; Alam, M S; Albert, J N; Aleksan, R; Alexander, J P; Alimonti, G; Allen, M T; Allison, J; Allmendinger, T; Alsmiller, J R G; Altenburg, D; Alwyn, K E; An, Q; Anderson, J; Andreassen, R; Andreotti, D; Andreotti, M; Andress, J C; Angelini, C; Anipko, D; Anjomshoaa, A; Anthony, P L; Antillon, E A; Antonioli, E; Aoki, K; Arguin, J F; A, K; Arisaka, K; Asai, K; Asai, M; Asano, Y; Asgeirsson, D J; Asner, D M; Aso, T; Aspinwall, M L; Aston, D; Atmacan, H; Aubert, B; Aulchenko, V; Ayad, R; Azemoon, T; Aziz, T; Azzolini, V; Azzopardi, D E; Baak, M A; Back, J J; Bagnasco, S; Bahinipati, S; Bailey, D S; Bailey, S; Bailly, P; van Bakel, N; Bakich, A M; Bala, A; Balagura, V; Baldini-Ferroli, R; Ban, Y; Banas, E; Band, H R; Banerjee, S; Baracchini, E; Barate, R; Barberio, E; Barbero, M; Bard, D J; Barillari, T; Barlow, N R; Barlow, R J; Barrett, M; Bartel, W; Bartelt, J; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Bay, A; Beaulieu, M; Bechtle, P; Beck, T W; Becker, J; Becla, J; Bedny, I; Behari, S; Behera, P K; Behn, E; Behr, L; Beigbeder, C; Beiline, D; Bell, R; Bellini, F; Bellis, M; Bellodi, G; Belous, K; Benayoun, M; Benelli, G; Benitez, J F; Benkebil, M; Berger, N; Bernabeu, J; Bernard, D; Bernet, R; Bernlochner, F U; Berryhill, J W; Bertsche, K; Besson, P; Best, D S; Bettarini, S; Bettoni, D; Bhardwaj, V; Bhimji, W; Bhuyan, B; Biagini, M E; Biasini, M; van Bibber, K; Biesiada, J; Bingham, I; Bionta, R M; Bischofberger, M; Bitenc, U; Bizjak, I; Blanc, F; Blaylock, G; Blinov, V E; Bloom, E; Bloom, P C; Blount, N L; Blouw, J; Bly, M; Blyth, S; Boeheim, C T; Bomben, M; Bondar, A; Bondioli, M; Bonneaud, G R; Bonvicini, G; Booke, M; Booth, J; Borean, C; Borgland, A W; Borsato, E; Bosi, F; Bosisio, L; Botov, A A; Bougher, J; Bouldin, K; Bourgeois, P; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyce, R F; Boyd, J T; Bozek, A; Bozzi, C; Bračko, M; Brandenburg, G; Brandt, T; Brau, B; Brau, J; Breon, A B; Breton, D; Brew, C; Briand, H; Bright-Thomas, P G; Brigljević, V; Britton, D I; Brochard, F; Broomer, B; Brose, J; Browder, T E; Brown, C L; Brown, C M; Brown, D N; Browne, M; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmueller, O L; Bünger, C; Bugg, W; Bukin, A D; Bula, R; Bulten, H; Burchat, P R; Burgess, W; Burke, J P; Button-Shafer, J; Buzykaev, A R; Buzzo, A; Cai, Y; Calabrese, R; Calcaterra, A; Calderini, G; Camanzi, B; Campagna, E; Campagnari, C; Capra, R; Carassiti, V; Carpinelli, M; Carroll, M; Casarosa, G; Casey, B C K; Cason, N M; Castelli, G; Cavallo, N; Cavoto, G; Cecchi, A; Cenci, R; Cerizza, G; Cervelli, A; Ceseracciu, A; Chai, X; Chaisanguanthum, K S

    2014-01-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  1. Physics and technology challenges of $B\\overline{B}$ factories

    CERN Document Server

    Zisman, Michael S.

    1992-01-01

    An e+e− collider designed to serve as a B factory requires a luminosity of 3 x 1033 cm−2 s−1—a factor of 15 beyond that of the best present collider (the CESR ring)—and thus presents a considerable challenge to the accelerator builder. To optimize the experiment, it is necessary that the BB¯ system have a moving center-of-mass, which implies different energies for the two beams (hence an “asymmetric” collider). This feature dictates that a two-ring configuration be used. Accelerator physics issues that arise in such a design are related to the need to tightly focus the beams to a vertical beta function on the order of 1 cm, to bring the beams from two different rings into collision and then cleanly separate them again, and to mask the detector region sufficiently to permit measurements with very large beam currents passing through the interaction region. In addition, the process of optimizing the luminosity for asymmetric collisions breaks new ground. Because the luminosity is limited by the b...

  2. Welding by laser beam

    International Nuclear Information System (INIS)

    A laser which does not require a vacuum and the beam from which can be projected over a distance without loss of power is sited outside a welding zone and the beam projected through a replaceable laser transparent window. The window is designed and shaped to facilitate access of the beam of workpiece items to be welded in containment. Either the workpiece or the laser beam may be moved during welding. (author)

  3. A Novel Prototype Model for Monitoring the Factories Remnants on Nile River

    Directory of Open Access Journals (Sweden)

    Sherif Kamel Hussein

    2015-03-01

    Full Text Available The environment faces too many issues including the water pollution problem in the Nile River. This problem could be solved by having a system provides the factory with the control and monitoring to be able to monitor and treat their water remnants according to the standards required by ministry of environment. This project will establish and design a new control system that could be used by factories for monitoring and controlling their remnants. The project based on using an interfacing device for facility management technology (eWON, and also Supervisory Control and Data Acquisition System (SCADA, that support General Packet Radio Service (GPRS for remote data connection.

  4. Effect of tau neutrino contribution to muon signals at neutrino factories

    CERN Document Server

    Indumathi, D

    2009-01-01

    We discuss precision measurements of the leading atmospheric parameters at a standard neutrino factory with a detector that is sensitive to muons alone. The oscillation of the muon- and electron neutrinos in the neutrino factory beam to tau neutrinos adds to the muon events sample (both right sign and wrong sign) via leptonic decays of the taus produced through charge-current interactions in the detector. In particular, we study how this affects a precision measurement of the atmospheric mixing parameters and the deviation of nu_mu nu_tau mixing from maximality. In spite of the enhancement of the number of events due to the additional tau contribution, the determination of the atmospheric mixing angle and the deviation from maximality will be poorer. We show that it is impossible to devise satisfactory cuts to remove this tau contamination. Neglect of these tau contributions will lead to an incorrect conclusion about the precision obtainable at such a neutrino factory.

  5. Tau physics prospects at a τ-charm factory

    International Nuclear Information System (INIS)

    The prospects for τ physics at a high-luminosity e+e-collider operating near τ+τ- threshold -a τ-charm factory- are described, and the current status of the project is summarized. Such experiments may offer the best prospects to find the underlying reason for the existence of three families, for which the Standard Model provides no explanation at present. There is no known difference between like-charge leptons (or quarks) of different families, except the value of their mass. The sensitivity to new physics is greatly increased by the relatively high mass of the τ. (R.P.) 37 refs., 17 figs., 8 tabs

  6. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Tianjin University, Tianjin, China 300072 (China); Gang, G. J. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  7. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σQ), electronic noise (σE), and view aliasing (σview). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (Nproj), dose (Dtot), and voxel size (bvox). Results: The results reveal a nonmonotonic relationship between image noise andNproj at fixed total dose: for the CBCT system considered, noise decreased with increasing Nproj due to reduction of view sampling effects in the regime Nproj proj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f β—and a general model of individual noise components (σQ, σE, and σview) demonstrated agreement with measurements over a broad range in Nproj, Dtot, and bvox. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeNproj ∼ 250–350, nearly an order of magnitude lower in Nproj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain (including nonidealities of

  8. PEP-II: An asymmetric B factory

    International Nuclear Information System (INIS)

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e+e- collider capable of achieving a luminosity of L = 3 x 1033 cm-2 s-1. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings

  9. VLBA Reveals Dust-Enshrouded "Supernova Factory"

    Science.gov (United States)

    2003-05-01

    Using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope, astronomers have discovered a newly-exploded star, or supernova, hidden deep in a dust-enshrouded "supernova factory" in a galaxy some 140 million light-years from Earth. "This supernova is likely to be part of a group of super star clusters that produce one such stellar explosion every two years," said James Ulvestad, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "We're extremely excited by the tremendous insights into star formation and the early Universe that we may gain by observing this 'supernova factory,'" he added. Ulvestad worked with Susan Neff of NASA's Goddard Space Flight Center in Greenbelt, MD, and Stacy Teng, a graduate student at the University of Maryland, on the project. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. "These super star clusters likely are forming in much the same way that globular clusters formed in the early Universe, and thus provide us with a unique opportunity to learn about how some of the first stars formed billions of years ago," Neff said. The cluster is in an object called Arp 299, a pair of colliding galaxies, where regions of vigorous star formation have been found in past observations. Since 1990, four other supernova explosions have been seen optically in Arp 299. Observations with the NSF's Very Large Array (VLA) earlier showed a region near the nucleus of one of the colliding galaxies which had all the earmarks of prolific star formation. The astronomers focused on this region, prosaically dubbed "Source A," with the VLBA and the NSF's Robert C. Byrd Green Bank Telescope in 2002, and found four objects in this dusty cloud that are likely young supernova remnants. When they observed the region again in February 2003, there was a new, fifth, object located only 7 light-years from one of the previously detected objects. More observations on April 30-May

  10. Ultrastructural study of transcription factories in mouse erythroblasts

    OpenAIRE

    Eskiw, Christopher H.; Fraser, Peter

    2011-01-01

    RNA polymerase II (RNAPII) transcription has been proposed to occur at transcription factories; nuclear focal accumulations of the active, phosphorylated forms of RNAPII. The low ratio of transcription factories to active genes and transcription units suggests that genes must share factories. Our previous analyses using light microscopy have indicated that multiple genes could share the same factory. Furthermore, we found that a small number of specialized transcription factories containing h...

  11. Development of a Reference Database for Ion Beam Analysis. Report of a Coordinated Research Project on Reference Database for Ion Beam Analysis

    International Nuclear Information System (INIS)

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and provide elemental depth profiles in surface layers of materials. The applications of such techniques are diverse and include environmental control, cultural heritage and conservation and fusion technologies. Their reliability and accuracy depends strongly on our knowledge of the nuclear reaction cross sections, and this publication describes the coordinated effort to measure, compile and evaluate cross section data relevant to these techniques and make these data available to the user community through a comprehensive online database. It includes detailed assessments of experimental cross sections as well as attempts to benchmark these data against appropriate integral measurements

  12. Perspectives on Higher Luminosity B-Factories

    International Nuclear Information System (INIS)

    The present B-factories PEP-II and KEKB have reached luminosities of 4-6 x 1033/cm2/s and delivered integrated luminosity at rates in excess of 6 fb-1 per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 1034/cm2/s in a few years and with more aggressive improvements may reach luminosities of order 4 x 1034/cm2/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e+e- B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e+e- accelerators [3,4]. A luminosity approaching 1036 cm-2s-1 may be possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this new accelerator will be qualitatively different from present e+e- colliders due to this continuous injection

  13. Analysis of scaled-factorial-moment data

    International Nuclear Information System (INIS)

    We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events

  14. Baby factories taint surrogacy in Nigeria.

    Science.gov (United States)

    Makinde, Olusesan Ayodeji; Makinde, Olufunmbi Olukemi; Olaleye, Olalekan; Brown, Brandon; Odimegwu, Clifford O

    2016-01-01

    The practice of reproductive medicine in Nigeria is facing new challenges with the proliferation of 'baby factories'. Baby factories are buildings, hospitals or orphanages that have been converted into places for young girls and women to give birth to children for sale on the black market, often to infertile couples, or into trafficking rings. This practice illegally provides outcomes (children) similar to surrogacy. While surrogacy has not been well accepted in this environment, the proliferation of baby factories further threatens its acceptance. The involvement of medical and allied health workers in the operation of baby factories raises ethical concerns. The lack of a properly defined legal framework and code of practice for surrogacy makes it difficult to prosecute baby factory owners, especially when they are health workers claiming to be providing services to clients. In this environment, surrogacy and other assisted reproductive techniques urgently require regulation in order to define when ethico-legal lines have been crossed in providing surrogacy or surrogacy-like services. PMID:26602942

  15. A Possible Hybrid Cooling Channel for a Neutrino Factory

    International Nuclear Information System (INIS)

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  16. Ring impedance and stored current for the photon factory

    International Nuclear Information System (INIS)

    The impedance of the Photon Factory ring is computed using estimates for individual vacuum chamber component impedances, and computer results for the impedance of the RF cavities. The total single-bunch loss impedance is expected to be about 2.5 MΩ at a bunch length of 2.0 cm. This is lower than the SPEAR impedance (per unit length of ring circumference) by about a factor of 5. Thus, the threshold current for single bunch instabilities which limit the beam current will probably be on the order of 150 - 200 mA. There should be no problem in reaching a stored current of 500 mA with 312 bunches. RF and beam parameters, such as stored current, klystron power, synchrotron radiation power, higher mode power, cavity power and reflected power are computed as a function of energy for two operating regions: at a constant beam current of 500 mA for lower energies where a klystron power of less than 650 kW is required, and at a constant klystron power of 650 kW at higher energies. Results are given for operation with and without a wiggler, and for both the single-bunch and 312-bunch modes. (author)

  17. Lattice Commissioning Strategy Simulation for the B Factory

    International Nuclear Information System (INIS)

    To prepare for the PEP-II turn on, we have studied one commissioning strategy with simulated lattice errors. Features such as difference and absolute orbit analysis and correction are discussed. To prepare for the commissioning of the PEP-II injection line and high energy ring (HER), we have developed a system for on-line orbit analysis by merging two existing codes: LEGO and RESOLVE. With the LEGO-RESOLVE system, we can study the problem of finding quadrupole alignment and beam position (BPM) offset errors with simulated data. We have increased the speed and versatility of the orbit analysis process by using a command file written in a script language designed specifically for RESOLVE. In addition, we have interfaced the LEGO-RESOLVE system to the control system of the B-Factory. In this paper, we describe online analysis features of the LEGO-RESOLVE system and present examples of practical applications.

  18. The Physics of the B Factories

    Science.gov (United States)

    Bevan, A. J.; Golob, B.; Mannel, Th.; Prell, S.; Yabsley, B. D.; Aihara, H.; Anulli, F.; Arnaud, N.; Aushev, T.; Beneke, M.; Beringer, J.; Bianchi, F.; Bigi, I. I.; Bona, M.; Brambilla, N.; Brodzicka, J.; Chang, P.; Charles, M. J.; Cheng, C. H.; Cheng, H.-Y.; Chistov, R.; Colangelo, P.; Coleman, J. P.; Drutskoy, A.; Druzhinin, V. P.; Eidelman, S.; Eigen, G.; Eisner, A. M.; Faccini, R.; Flood, K. T.; Gambino, P.; Gaz, A.; Gradl, W.; Hayashii, H.; Higuchi, T.; Hulsbergen, W. D.; Hurth, T.; Iijima, T.; Itoh, R.; Jackson, P. D.; Kass, R.; Kolomensky, Yu. G.; Kou, E.; Križan, P.; Kronfeld, A.; Kumano, S.; Kwon, Y. J.; Latham, T. E.; Leith, D. W. G. S.; Lüth, V.; Martinez-Vidal, F.; Meadows, B. T.; Mussa, R.; Nakao, M.; Nishida, S.; Ocariz, J.; Olsen, S. L.; Pakhlov, P.; Pakhlova, G.; Palano, A.; Pich, A.; Playfer, S.; Poluektov, A.; Porter, F. C.; Robertson, S. H.; Roney, J. M.; Roodman, A.; Sakai, Y.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Sekula, S. J.; Steinhauser, M.; Sumisawa, K.; Swanson, E. S.; Tackmann, F.; Trabelsi, K.; Uehara, S.; Uno, S.; van de Water, R.; Vasseur, G.; Verkerke, W.; Waldi, R.; Wang, M. Z.; Wilson, F. F.; Zupan, J.; Zupanc, A.; Adachi, I.; Albert, J.; Banerjee, Sw.; Bellis, M.; Ben-Haim, E.; Biassoni, P.; Cahn, R. N.; Cartaro, C.; Chauveau, J.; Chen, C.; Chiang, C. C.; Cowan, R.; Dalseno, J.; Davier, M.; Davies, C.; Dingfelder, J. C.; Echenard, B.; Epifanov, D.; Fulsom, B. G.; Gabareen, A. M.; Gary, J. W.; Godang, R.; Graham, M. T.; Hafner, A.; Hamilton, B.; Hartmann, T.; Hayasaka, K.; Hearty, C.; Iwasaki, Y.; Khodjamirian, A.; Kusaka, A.; Kuzmin, A.; Lafferty, G. D.; Lazzaro, A.; Li, J.; Lindemann, D.; Long, O.; Lusiani, A.; Marchiori, G.; Martinelli, M.; Miyabayashi, K.; Mizuk, R.; Mohanty, G. B.; Muller, D. R.; Nakazawa, H.; Ongmongkolkul, P.; Pacetti, S.; Palombo, F.; Pedlar, T. K.; Piilonen, L. E.; Pilloni, A.; Poireau, V.; Prothmann, K.; Pulliam, T.; Rama, M.; Ratcliff, B. N.; Roudeau, P.; Schrenk, S.; Schroeder, T.; Schubert, K. R.; Shen, C. P.; Shwartz, B.; Soffer, A.; Solodov, E. P.; Somov, A.; Starič, M.; Stracka, S.; Telnov, A. V.; Todyshev, K. Yu.; Tsuboyama, T.; Uglov, T.; Vinokurova, A.; Walsh, J. J.; Watanabe, Y.; Won, E.; Wormser, G.; Wright, D. H.; Ye, S.; Zhang, C. C.; Abachi, S.; Abashian, A.; Abe, K.; Abe, N.; Abe, R.; Abe, T.; Abrams, G. S.; Adam, I.; Adamczyk, K.; Adametz, A.; Adye, T.; Agarwal, A.; Ahmed, H.; Ahmed, M.; Ahmed, S.; Ahn, B. S.; Ahn, H. S.; Aitchison, I. J. R.; Akai, K.; Akar, S.; Akatsu, M.; Akemoto, M.; Akhmetshin, R.; Akre, R.; Alam, M. S.; Albert, J. N.; Aleksan, R.; Alexander, J. P.; Alimonti, G.; Allen, M. T.; Allison, J.; Allmendinger, T.; Alsmiller, J. R. G.; Altenburg, D.; Alwyn, K. E.; An, Q.; Anderson, J.; Andreassen, R.; Andreotti, D.; Andreotti, M.; Andress, J. C.; Angelini, C.; Anipko, D.; Anjomshoaa, A.; Anthony, P. L.; Antillon, E. A.; Antonioli, E.; Aoki, K.; Arguin, J. F.; Arinstein, K.; Arisaka, K.; Asai, K.; Asai, M.; Asano, Y.; Asgeirsson, D. J.; Asner, D. M.; Aso, T.; Aspinwall, M. L.; Aston, D.; Atmacan, H.; Aubert, B.; Aulchenko, V.; Ayad, R.; Azemoon, T.; Aziz, T.; Azzolini, V.; Azzopardi, D. E.; Baak, M. A.; Back, J. J.; Bagnasco, S.; Bahinipati, S.; Bailey, D. S.; Bailey, S.; Bailly, P.; van Bakel, N.; Bakich, A. M.; Bala, A.; Balagura, V.; Baldini-Ferroli, R.; Ban, Y.; Banas, E.; Band, H. R.; Banerjee, S.; Baracchini, E.; Barate, R.; Barberio, E.; Barbero, M.; Bard, D. J.; Barillari, T.; Barlow, N. R.; Barlow, R. J.; Barrett, M.; Bartel, W.; Bartelt, J.; Bartoldus, R.; Batignani, G.; Battaglia, M.; Bauer, J. M.; Bay, A.; Beaulieu, M.; Bechtle, P.; Beck, T. W.; Becker, J.; Becla, J.; Bedny, I.; Behari, S.; Behera, P. K.; Behn, E.; Behr, L.; Beigbeder, C.; Beiline, D.; Bell, R.; Bellini, F.; Bellodi, G.; Belous, K.; Benayoun, M.; Benelli, G.; Benitez, J. F.; Benkebil, M.; Berger, N.; Bernabeu, J.; Bernard, D.; Bernet, R.; Bernlochner, F. U.; Berryhill, J. W.; Bertsche, K.; Besson, P.; Best, D. S.; Bettarini, S.; Bettoni, D.; Bhardwaj, V.; Bhimji, W.; Bhuyan, B.; Biagini, M. E.; Biasini, M.; van Bibber, K.; Biesiada, J.; Bingham, I.; Bionta, R. M.; Bischofberger, M.; Bitenc, U.; Bizjak, I.; Blanc, F.; Blaylock, G.; Blinov, V. E.; Bloom, E.; Bloom, P. C.; Blount, N. L.; Blouw, J.; Bly, M.; Blyth, S.; Boeheim, C. T.; Bomben, M.; Bondar, A.; Bondioli, M.; Bonneaud, G. R.; Bonvicini, G.; Booke, M.; Booth, J.; Borean, C.; Borgland, A. W.; Borsato, E.; Bosi, F.; Bosisio, L.; Botov, A. A.; Bougher, J.; Bouldin, K.; Bourgeois, P.; Boutigny, D.; Bowerman, D. A.; Boyarski, A. M.; Boyce, R. F.; Boyd, J. T.; Bozek, A.; Bozzi, C.; Bračko, M.; Brandenburg, G.; Brandt, T.; Brau, B.; Brau, J.; Breon, A. B.; Breton, D.; Brew, C.; Briand, H.; Bright-Thomas, P. G.; Brigljević, V.; Britton, D. I.; Brochard, F.; Broomer, B.; Brose, J.

    2014-11-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

  19. Vacuum system of the high energy ring of an asymmetric B-factory based on PEP

    International Nuclear Information System (INIS)

    The multi-ampere currents required for high luminosity operation of an asymmetric B factory leads to extremely stressing requirements on a vacuum system suitable for maintaining long beam-gas lifetimes and acceptable background levels in the detector. We present the design for a Cu alloy vacuum chamber and its associated pumping system for the 9 GeV electron storage ring of the proposed B factory based on PEP. The excellent thermal and photo-desorption properties of Cu allows handling the high proton flux in a conventional, single chamber design with distributed ion pumps. The x-ray opacity of the Cu is sufficiently high that no additional lead shielding is necessary to protect the dipoles from the intense synchrotron radiation generated by the beam. The design allows chamber commissioning in <500 hr of operation. 5 refs., 3 figs., 2 tabs

  20. Robust and Optimum Fractional Factorial Designs

    OpenAIRE

    Huang, fu ze

    2010-01-01

    This thesis is devoted to the study of robust and optimum fractional factorial designs. We consider models that contain the general mean, main effects, and k two-factor interactions for 2m fractional factorial experiments. We define Si to be the set of all (1 × m) vectors, with elements 1 and -1 of weight i, where the weight of a vector is the number of nonzero elements in it. We present the robustness property of two classes of designs D={S0, S1, Sm-1, Sm} and D1={S0, S1, S2, Sm} with...

  1. Comparison of PSSE & PowerFactory

    OpenAIRE

    Karlsson, Björn

    2013-01-01

    In this thesis a comparison of PSSE (Power System Simulator for Engineering) fromSiemens and PowerFactory from DIgSILENT is done. The two tools can be used inmany ways to analyze power system stability and behavior. This thesis cover the useof load flow and dynamic stability simulation. Different modeling and definitions areused by the tools why differences in the results may occur. A network defined in PSSEcan be imported to PowerFactory. The thesis presents what is need to be consideredwhen...

  2. Factory Production Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    Science.gov (United States)

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on factory production occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include assemblers, blue collar worker…

  3. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  4. Particle production and energy deposition studies for the neutrino factory target station

    OpenAIRE

    Back, John L.; Densham, Chris; Edgecock, R.; Prior, Gersende

    2013-01-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture syst...

  5. Proceedings of the meeting on the planning of the photon factory accelerators, Tsukuba, October 25, 1977

    International Nuclear Information System (INIS)

    For Photon Factory Accelerators planned in the National Laboratory for High Energy Physics, designs of a 2.5 GeV electron Linac and a 2.5 GeV storage ring are approaching to the final stage. Contents of the meeting with future users of the synchrotron radiation experimental facilities are presented: the injector and storage ring; and requirements for the beams in soft and hard x-ray regions. (Mori, K.)

  6. The neutrino factory and related accelerator R and D

    International Nuclear Information System (INIS)

    A muon-based neutrino factory, encompassing high power proton accelerators, innovations in rapid acceleration techniques for unstable particles, and initiatives such as ionisation cooling, provides a rich and varied source of high-energy R and D. Over the last ten years, the UK has played a leading role in progress towards a large-scale neutrino facility, both at national and international level, and now seeks to move to the next phase with preparation of an International Design Study report for publication in 2010. The basic principles of the project are outlined here, with emphasis on the major problems still to be overcome. Much of the development work relates to other areas of accelerator science - such as spallation neutron sources, used for research in condensed matter physics - and the way in which such projects interact and benefit from each other is also described

  7. Single-scan scatter correction in CBCT by using projection correlation based view interpolation (PC-VI) and a stationary ring-shaped beam stop array (BSA)

    CERN Document Server

    Yan, Hao; Zhang, Yanbo; Zankl, Maria

    2014-01-01

    In the scatter correction for x-ray Cone Beam (CB) CT, the single-scan scheme with moving Beam Stop Array (BSA) offers reliable scatter measurement with low dose, and by using Projection Correlation based View Interpolation (PC-VI), the primary fluence shaded by the moving BSA (during scatter measurement) could be recovered with high accuracy. However, the moving BSA may increase the mechanical burden in real applications. For better practicability, in this paper we proposed a PC-VI based single-scan scheme with a ring-shaped stationary BSA, which serves as a virtual moving BSA during CB scan, so the shaded primary fluence by this stationary BSA can be also well recovered by PC-VI. The principle in designing the whole system is deduced and evaluated. The proposed scheme greatly enhances the practicability of the single-scan scatter correction scheme.

  8. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  9. PERBANDINGAN METODE 2K-P FRACTIONAL FACTORIAL DENGAN METODE TAGUCHI PADA PROSES PEMBUATAN FIBER GLASS

    OpenAIRE

    Suryanata Rahardja; Jani Rahardjo

    2001-01-01

    Fiber glass products are widely used in the industry. High quality fiberglass product requires a composition and to obtain the optimal composition, an experiment needs to be done. In this project, experimental designs in 2k-p fractional factorial design and Taguchi method were carried out to obtain the optimal composition. According to the impact test results based on the model by the JIS (Japanese Industrial Standard) for fiber glass, it was found that the 2k-p fractional factorial design me...

  10. Guided and Interactive Factory Tours for Schools

    NARCIS (Netherlands)

    Kaibel, Andreas; Auwaerter, Andreas; Kravcik, Milos

    2006-01-01

    Please, cite this paper as: Kaibel, A., Auwaerter, A., & Kravcik, M. (2006). Guided and Interactive Factory Tours for Schools. Proceedings of the First European Conference on Technology Enhanced Learning. October 1st-4th, Crete, Greece: Springer. Retrieved October 18th, 2006, from http://dspace.lear

  11. The Energy Factory; EnergieFabriek

    Energy Technology Data Exchange (ETDEWEB)

    Van den Boomen, M.; Van den Dungen, G.J.; Elias, T.; Jansen, M. [Universiteit van Amsterdam UvA, Amsterdam (Netherlands)

    2009-05-15

    The Energy Factory is a collaboration of 26 Dutch local water boards in which options for energy saving and energy production are examined. According to the authors, the initiative of the Energy Factory will lead to a reframing of the role of the water boards. Moreover, they explain how the PPP concept (People, Planet, Profit) may act as platform for negotiations between actors who are involved in the Energy Factory. In addition, the PPP concept is used to demonstrate that the Energy Factory will lead to larger social involvement, social entrepreneurship and growing profits [Dutch] De Energiefabriek is een samenwerkingsverband van 26 waterschappen in Nederland waarin wordt gezocht naar mogelijkheden om energie te besparen en zelf energie te produceren. Volgens de auteurs van deze notitie leidt het initiatief van de Energiefabriek tot een reframing van de rol van waterschappen. Daarnaast leggen ze uit hoe het PPP-concept (People, Profit, Planet) kan fungeren als platform voor onderhandelingen tussen de actoren die betrokken zijn bij de Energiefabriek. Verder wordt met het PPP-concept aangetoond dat de Energiefabriek leidt tot ruimere maatschappelijke betrokkenheid, maatschappelijk ondernemen en winstvergroting.

  12. Business plan Feed Factory Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a poultry feed factory, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Tete Province, and currently a large part of the consumed broilers come from other part

  13. Jean Desmet’s Dream Factory

    Directory of Open Access Journals (Sweden)

    Eline Grignard

    2015-07-01

    Full Text Available Exhibition review of "Jean Desmet’s Dream Factory. The Adventurous Years of Film (1907-1916" held in Eye Film Instituut in Amsterdam. Paying hommage to film operator and collector Jean Desmet, the exhibition presents a wide range of the film collection as well as a number of rare archival materials.

  14. WE-G-BRF-05: Feasibility of Markerless Motion Tracking Using Dual Energy Cone Beam Computed Tomography (DE-CBCT) Projections

    International Nuclear Information System (INIS)

    Purpose: To compare markerless template-based tracking of lung tumors using dual energy (DE) cone-beam computed tomography (CBCT) projections versus single energy (SE) CBCT projections. Methods: A RANDO chest phantom with a simulated tumor in the upper right lung was used to investigate the effectiveness of tumor tracking using DE and SE CBCT projections. Planar kV projections from CBCT acquisitions were captured at 60 kVp (4 mAs) and 120 kVp (1 mAs) using the Varian TrueBeam and non-commercial iTools Capture software. Projections were taken at approximately every 0.53° while the gantry rotated. Due to limitations of the phantom, angles for which the shoulders blocked the tumor were excluded from tracking analysis. DE images were constructed using a weighted logarithmic subtraction that removed bony anatomy while preserving soft tissue structures. The tumors were tracked separately on DE and SE (120 kVp) images using a template-based tracking algorithm. The tracking results were compared to ground truth coordinates designated by a physician. Matches with a distance of greater than 3 mm from ground truth were designated as failing to track. Results: 363 frames were analyzed. The algorithm successfully tracked the tumor on 89.8% (326/363) of DE frames compared to 54.3% (197/363) of SE frames (p<0.0001). Average distance between tracking and ground truth coordinates was 1.27 +/− 0.67 mm for DE versus 1.83+/−0.74 mm for SE (p<0.0001). Conclusion: This study demonstrates the effectiveness of markerless template-based tracking using DE CBCT. DE imaging resulted in better detectability with more accurate localization on average versus SE. Supported by a grant from Varian Medical Systems

  15. Technological innovation of quantum beams

    International Nuclear Information System (INIS)

    To celebrate the centennial anniversary of Einstein's great achievement done in 1905, 'World Year of Physics 2005 Forum,' Japan, held a conference on May 25, 2005, in Tokyo for students called 'Quantum Beam Technology Innovation.' This report consists of Proceeding of the lectures given at the conference which includes the new world to be exploited by quantum beam technology, Japanese science and technology policy in 21st century, expectation from research and development of company, quantum beam facilities and advanced research programs, nanotechnology and material science, utility of physical tools in life science fields, and quantum beam technology applied to industry. Topics are the nature of material wave and the coherency which explore the fine structure of matter, atomic lasers, Spring-8 facility at Harima, intense neutron beams at JAEA, RI beams at RIKEN, B factory of KEK, and HIMAC at Chiba for medical uses. (S. Ohno)

  16. Vacuum system design for the PEP-II B Factory High-Energy Ring

    International Nuclear Information System (INIS)

    The design of the vacuum system for the PEP-II B Factory High-Energy Ring is reviewed. The thermal design and vacuum requirements are particularly challenging in PEP-II due to high stored beam currents up to 3.0 amps in 1658 bunches. The vacuum chambers for the HER arcs are fabricated by electron beam welding extruded copper sections up to 6 m long. Design of these chambers and the vacuum PumPing configuration is described with results from vacuum and thermal analyses

  17. Electroweak and CP violation physics at a linear collider Z-factory

    CERN Document Server

    Hawkings, R; Hawkings, Richard; Moenig, Klaus

    1999-01-01

    A future linear collider such as TESLA may be able to run on the Z0 resonance with very high luminosity and polarised electron and positron beams. The possibilities of measuring electroweak quantities with high precision are investigated. Huge improvements with respect to the present precision can be expected, especially for the asymmetries A_LR and A_b where beam polarisation can be exploited. The very large sample of Z to bbbar events also allows studies of various CP-violating b decays. The precision achievable on the CKM unitarity triangle angles is comparable to experiments at b factories and future hadron colliders.

  18. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Science.gov (United States)

    Kocak, F.

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal-photodiode assemblies.

  19. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, F., E-mail: fkocak@uludag.edu.tr

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO{sub 4} and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies.

  20. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO4 and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies

  1. SU-E-J-167: Improvement of Time-Ordered Four Dimensional Cone-Beam CT; Image Mosaicing with Real and Virtual Projections

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M; Kida, S; Masutani, Y; Shiraki, T; Yamamoto, K; Shiraishi, K; Nakagawa, K; Haga, A [University of Tokyo Hospital, Bunkyo-ku, Tokyo (Japan)

    2014-06-01

    Purpose: In the previous study, we developed time-ordered fourdimensional (4D) cone-beam CT (CBCT) technique to visualize nonperiodic organ motion, such as peristaltic motion of gastrointestinal organs and adjacent area, using half-scan reconstruction method. One important obstacle was that truncation of projection was caused by asymmetric location of flat-panel detector (FPD) in order to cover whole abdomen or pelvis in one rotation. In this study, we propose image mosaicing to extend projection data to make possible to reconstruct full field-of-view (FOV) image using half-scan reconstruction. Methods: The projections of prostate cancer patients were acquired using the X-ray Volume Imaging system (XVI, version 4.5) on Synergy linear accelerator system (Elekta, UK). The XVI system has three options of FOV, S, M and L, and M FOV was chosen for pelvic CBCT acquisition, with a FPD panel 11.5 cm offset. The method to produce extended projections consists of three main steps: First, normal three-dimensional (3D) reconstruction which contains whole pelvis was implemented using real projections. Second, virtual projections were produced by reprojection process of the reconstructed 3D image. Third, real and virtual projections in each angle were combined into one extended mosaic projection. Then, 4D CBCT images were reconstructed using our inhouse reconstruction software based on Feldkamp, Davis and Kress algorithm. The angular range of each reconstruction phase in the 4D reconstruction was 180 degrees, and the range moved as time progressed. Results: Projection data were successfully extended without discontinuous boundary between real and virtual projections. Using mosaic projections, 4D CBCT image sets were reconstructed without artifacts caused by the truncation, and thus, whole pelvis was clearly visible. Conclusion: The present method provides extended projections which contain whole pelvis. The presented reconstruction method also enables time-ordered 4D CBCT

  2. Black Liquor Treatment Project of Guizhou Pulp and Paper Making Factory%对贵州制浆造纸厂“黑液”治理方案的建议

    Institute of Scientific and Technical Information of China (English)

    宁媛; 李皖; 曾祥钦

    2001-01-01

    According to the local conditions and the comparison between different proposals,the reclaiming of rough lignin by acid settlement and the reuse of processed lignin are adopted as the most economically effcient project to treat the black liquor pollution.A primary estimate shows that a recovery of 1000 kg of rough lignin will bring 100 renminbi yuan of net income to the enterprise,not including the economic benefits from the usage of the processed lignin.The relevant technology is based on the production and experiments,so it is completely feasible.%从贵州省情出发,通过方案比较,采取酸沉析回收粗木素治理黑液、木素改性再利用方案,黑液的污染将得到有效治理,而且还将获得新的经济效益。初步估算:每回收1吨粗木素可净增效益100元,粗木素改性利用后还可以产生新的经济效益,这对促进地方经济持续发展和社会稳定都很有意义。方案中的有关技术都有生产和生产性中试基础,方案具备可行性。

  3. Residues leaching from 'Factory of barren ores'

    International Nuclear Information System (INIS)

    The objective of the present work is safe management of residues from Factory of Barren Ores, their reprocessing, expenditures reduction for remediation of Istiklol city former uranium tailings. For this purpose, some experiences were adopted - Factory of Barren Ores tailing use for filling up the open pit where water with uranium content 3-5 mg/l is located. Factory of Barren Ores waste are passed through heap leaching and have some amount of uranium salts dissolved in water. Thus, we propose to dissolve uranium from Factory of Barren Ores wastes with uranium bearing water flowing out from gallery and filling up the open-pit by radioactive wastes. In so doing, uranium content flowing out from gallery will increase twice, and further, passing them through apricot's shell, as a sorbent, we will clean the water against radionuclides. Residue samples with uranium content 0,015% from Factory of Barren Ores and uranium bearing waters from gallery 1 with uranium content 0,0025 g/l were used for laboratory tests. After which, a slurry was prepared by means of residue mixing with water in ratio of solid and liquid phases (S:L) - 1:2 and 9,7 ml of sulfuric acid (Ρ=1,82) was added which corresponds consumption by H2SO4 176,54 kg/t. For the first test, leaching was carried out during 4 hours at ph=1,6 at room temperature. For the second test, leaching was carried out at 60deg Cand ph=1,6 during 4 hours. Slurry heating and mixing was carried out by means of magnetic mixer. The basic residue leaching indicators are provided in this article.

  4. Study of technical issues on proton beam line tunnel in material/life science experimental facility of high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Shinichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Meigo, Shin-ichiro; Konno, Chikara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    The so called NM Tunnel, which is a specific proton beam line space for the muon experiment and the spallation neutron source, is placed in the Material/Life Science Experimental Facility under the JAERI-KEK Joint project on the High Intensity Proton Accelerator. The group relevant to the NM tunnel has studied extensively technical issues associated from various aspects since last year. As a result, a basic structure of the NM Tunnel has been established as the initial phase. In viewing the importance for the facility design, this report summaries studies done by members of the group. (author)

  5. Final Technical Report on STTR Project DE-FG02-06ER86281 Particle Tracking in Matter-Dominated Beam Lines (G4beamline)

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-19

    This project has been for software development of the G4beamline [1] program, which is a particle-tracking simulation program based on the Geant4 toolkit [2], optimized for beam lines. This program can perform more realistic simulations than most alternatives, while being significantly easier to use by physicists. This project has fostered the general acceptance of G4beamline within the muon community, and has assisted in expanding its role outside that community. During this project, the G4beamline user community has grown from about a half-dozen users to more than 200 users around the world. This project also validated our business decision to keep G4beamline an open-source program, judging that an STTR project would provide more development resources than would marketing and selling the program. G4beamline is freely available to the physics community, and has been well validated against experiments and other codes within its domain. Muons, Inc. continues to support and develop the program, and a major part of the company's continued success and growth is directly related to our expertise in applying this program to interesting applications.

  6. Comments on particle identification at the B factory

    International Nuclear Information System (INIS)

    The importance of particle identification at an asymmetric B factory is discussed and the general status of a number of particle identification technologies which might be included in B factory detectors is briefly reviewed

  7. Production of Tetraquark State Tcc at B-Factories

    Science.gov (United States)

    Reyima, Rashidin

    2013-12-01

    We study production of the tetraquark state Tcc via virtual photon at the B-factories in the QCD factorization framework. We predict the cross section of tetraquark state production in the leading order at the B-factories.

  8. Silanization of glass chips—A factorial approach for optimization

    Science.gov (United States)

    Vistas, Cláudia R.; Águas, Ana C. P.; Ferreira, Guilherme N. M.

    2013-12-01

    Silanization of glass chips with 3-mercaptopropyltrimethoxysilane (MPTS) was investigated and optimized to generate a high-quality layer with well-oriented thiol groups. A full factorial design was used to evaluate the influence of silane concentration and reaction time. The stabilization of the silane monolayer by thermal curing was also investigated, and a disulfide reduction step was included to fully regenerate the thiol-modified surface function. Fluorescence analysis and water contact angle measurements were used to quantitatively assess the chemical modifications, wettability and quality of modified chip surfaces throughout the silanization, curing and reduction steps. The factorial design enables a systematic approach for the optimization of glass chips silanization process. The optimal conditions for the silanization were incubation of the chips in a 2.5% MPTS solution for 2 h, followed by a curing process at 110 °C for 2 h and a reduction step with 10 mM dithiothreitol for 30 min at 37 °C. For these conditions the surface density of functional thiol groups was 4.9 × 1013 molecules/cm2, which is similar to the expected maximum coverage obtained from the theoretical estimations based on projected molecular area (∼5 × 1013 molecules/cm2).

  9. DKIST enclosure modeling and verification during factory assembly and testing

    Science.gov (United States)

    Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka

    2014-08-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.

  10. Incense and Joss Stick Making in Small Household Factories, Thailand

    OpenAIRE

    S Siripanich; Siriwong, W.; P Keawrueang; M Borjan; Robson, M.

    2014-01-01

    Background: Incense and joss stick are generally used in the world. Most products were made in small household factories. There are many environmental and occupational hazards in these factories.Objective: To evaluate the workplace environmental and occupational hazards in small household incense and joss stick factories in Roi-Et, Thailand.Methods: Nine small household factories in rural areas of Roi-Et, Thailand, were studied. Dust concentration and small aerosol particles were counted thro...

  11. Compressor Lattice Design for SPL Beam

    CERN Document Server

    Aiba, M

    2007-01-01

    A compressor ring providing very short proton bunches of a few ns has been designed as a component of a proton driver in the neutrino factory. Proton beams accelerated with the SPL (Superconducting Proton Linac) are stored in an accumulator ring before being transported to a compressor ring. The bunch compression is then performed with longitudinal phase rotation. For the neutrino factory, a special pulse structure of the primary proton beam is required. In the SPL based proton driver, the specification imposes that six (or five) bunches of a few ns length and about 12μs bunch spacing are formed in one cycle.

  12. Utilizing assumption for project of stand for solid state targets activation on inner beams of AIC-144 cyclotron; Zalozenia uzytkowe do projektu stanowiska do aktywacji tarcz w stanie stalym na wiazce wewnetrznej cyklotronu AIC-144

    Energy Technology Data Exchange (ETDEWEB)

    Petelenz, B. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-09-01

    General assumptions for project of target activation stand at AIC-144 cyclotron are presented. The project predicts production of {sup 67}Ga, {sup 111}In, {sup 201}Tl, {sup 139}Ce, {sup 88}Y, {sup 123}I and {sup 211}At isotopes using various target backings. Directions concerning target cooling and beam parameters are also described 25 refs, 1 tab

  13. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.; /Oak Ridge; Garoby, R.; /CERN; Geer, S.; /Fermilab

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  14. Internet factories: Creating application-specific networks on-demand

    NARCIS (Netherlands)

    Strijkers, R.J.; Makkes, M.X.; Laat, C. de; Meijer, R.J.

    2014-01-01

    We introduce the concept of Internet factories. Internet factories structure the task of creating and managing application-specific overlay networks using infrastructure-as-a-service clouds. We describe the Internet factory architecture and report on a proof of concept with three examples that progr

  15. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    International Nuclear Information System (INIS)

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR

  16. Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions

    OpenAIRE

    Hamming, N. M.; Daly, M. J.; Irish, J. C.; Siewerdsen, J. H.

    2009-01-01

    Intraoperative imaging offers a means to account for morphological changes occurring during the procedure and resolve geometric uncertainties via integration with a surgical navigation system. Such integration requires registration of the image and world reference frames, conventionally a time consuming, error-prone manual process. This work presents a method of automatic image-to-world registration of intraoperative cone-beam computed tomography (CBCT) and an optical tracking system. Multimo...

  17. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    International Nuclear Information System (INIS)

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions

  18. Assessment of noise in furniture factories

    Directory of Open Access Journals (Sweden)

    Alexandre Petusk Filipe

    2014-12-01

    Full Text Available Work safety is of great importance in all industrial activities. The Norm NR15 of the Brazilian law determines that the work environment be tailored to employees to minimize biological, ergonomic, physical, chemical risks and accidents. The aim of this study was to evaluate the exposure of intermittent noise in a daily dose to workers in furniture factories. Measurements were made with a sound level meter and dosimeter in a workday of eight hours in 14 furniture factories located in the South of Minas Gerais. Noise values ranged from 66.0 to 117.4 dB(A. At a dose of 8 working hours it was observed that the values exceed the tolerance limit of a unit, being from 2.76 to 30.52 for minimum and maximum units, respectively. Both noises and daily doses were superior than the values set by the NR-15-Annex 01 (BRASIL, 2008.

  19. Physics at e+e- factories

    International Nuclear Information System (INIS)

    Feasible designs are well advanced for high-luminosity e+e- storage rings which produce B0 bar B0 pairs either at rest or, in what appears to be a more promising option, boosted in the detector frame. Facilities which could provide samples of 30--100 fb-1 per year on the Υ(4S) will be proposed in early 1991. Here we examine the principal physics goal of such B Factories, namely CP violation in the b system. Methods in a variety of channels, estimated event samples, and detector requirements are all considered. We conclude that the physics argument for an e+e- B Factory is well documented, and compelling. 50 refs., 22 figs., 10 tabs

  20. Portable Material Culture and Death Factory Auschwitz

    Directory of Open Access Journals (Sweden)

    Adrian T. Myers

    2007-11-01

    Full Text Available Like any other factory, the death factory of Auschwitz consumed primary materials and produced secondary products. Unique to Auschwitz, though, is that the primary material consumed was human life; not just the life of the breathing human body, but also the material possessions associated with that life. The detritus of this most efficient genocide – clothing, jewellery, food, corpses – was appropriated and put to new uses by the SS and the prisoners. Others have recognised the various postwar material cultural outcomes of the camp: the writing, the film, the theatre, the art, the tourism. This article, however, demonstrates that the material culture of Auschwitz is not a phenomenon exclusive to the postwar era. It focuses on the fact that inside the camp during the war, despite the landscape of death and deprivation, intimate interaction between humans and material culture continued.

  1. The Physics of the B Factories

    International Nuclear Information System (INIS)

    The inspiration for this book came from Fran@cois le Diberder. During his term as spokesperson for BABAR he laid down a vision for the two B Factory detector collaborations, BABAR and Belle, to work together on a book that would describe the methodologies used and physics results obtained by those experiments. A key ideal emphasized from the outset was that this book should be written from a pedagogical perspective; it should be of interest to the student and expert alike. This vision was presented during a BABAR collaboration meeting on the island of Elba in May 2008 and a follow up Belle collaboration meeting at KEK, with visiting colleagues from the BABAR collaboration, and was embraced by the community. A number of workshops involving people from the theoretical community as well as the two collaborations were held on four continents over the following years. The resulting book, ''The Physics of the B Factories'', is a testament to the way that this concept captured the zeitgeist on both sides of the Pacific Ocean. This book is divided into three parts, the first of which provides a brief description of the B Factories, including a short (though not exhaustive) historical perspective, as well as descriptions of the detectors, ancillary data acquisition systems and data (re)processing systems that were built by the two detector collaborations in the late 1990's. The second part of the book discusses tools and methods that are frequently used when analyzing the data collected. These range from details of low level reconstruction algorithms and abstract summaries of statistical methods to high level prescriptions used when evaluating systematic uncertainties on measurements of observables. The third part of the book is devoted to physics results. This includes sufficient theoretical discussion in order for the reader to understand the context of the work being described. We are indebted to our colleagues from the theoretical community who have helped us achieve

  2. The Italian Tau/charm project

    Directory of Open Access Journals (Sweden)

    Biagini Maria Enrica

    2014-06-01

    Full Text Available A τ/charm Factory, an e + e- collider with very high luminosity at the 2–4.6 GeV center of mass energy, to be built on the Rome University at Tor Vergata campus, was studied by the Consortium Nicola Cabibbo Laboratory and the INFN Frascati Laboratories. This project is the natural evolution of the flagship Italian project SuperB Factory, funded by the Italian Government in 2010 with a budget that turned out to be insufficient to cover the total costs of the project. The study of rare events at the τ/charm energy was already planned as a Phase-II of SuperB [1]. This design keeps all the unique features of SuperB, including the polarization of the electron beam, with the possibility to take data in a larger energy range, with reduced accelerator dimensions and construction and operation costs. A Report on the accelerator design has been published in September 2013 [2].

  3. LAMPF: the meson factory. A LASL monograph

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.

    1977-08-01

    A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group. (PMA)

  4. Object Classification at the Nearby Supernova Factory

    OpenAIRE

    Bailey, Stephen

    2008-01-01

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintai...

  5. B Physics at the B-Factories

    International Nuclear Information System (INIS)

    After six years of data taking the B-Factories are now providing measurements with an accuracy which is beyond expectations. All the angles and sides of the unitarity triangle are measured to unprecedented accuracy and with several different techniques. This redundancy of measurements, in agreement with the Standard Model, allows to probe models for new physics. This paper summarizes the current results with particular emphasis on novel techniques

  6. Exploration on the Project-Based Curriculum Design of Higher Vocational Colleges——Illustrated by the Example of the Course of "The Design of Food Stuffs Factory"%服务地方产业的项目化课程教学设计——以清远职业技术学院“食品工厂设计”课程为例

    Institute of Scientific and Technical Information of China (English)

    王飞生; 岳映明; 黄小明

    2012-01-01

    通过调查地方食品行业职业岗位需求,找准高职"食品工厂设计"课程定位,凝炼典型工作项目,分析岗位职业能力,针对性选择课程教学任务,以贴近生产项目为载体,做好课程整体设计和单元设计;以学生自主学习为主,"教学做"一体化,依托校内外实训基地,产学研强化校企合作,提升教学质量,对"食品工厂设计"课程进行项目化教学探索,对教学改革有一定意义。%Through a survey on the occupation demand of local food industry,course orientation of "The Design of Food Stuffs Factory" in higher vocational college can be figured out,and the skills needed in the target positions can also be identified.According to teaching objectives of this course,tasks can be chosen from those typical work-related projects and thus the overall curriculum design and unit design can be completed.Students'independence study is the center of the project-based teaching which is combined with the integration of teaching,learning and doing.While,this course relies on both the practice bases inside and outside school,and it strengthens the cooperation between school and enterprise,ultimately it will enhance the quality of teaching.Having explored the project-based teaching of "The Design of Food Stuffs Factory" course,this article is conducive to the teaching reform.

  7. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  8. An asymmetric B factory based on PEP

    International Nuclear Information System (INIS)

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e+e- collider capable of achieving a luminosity of L = 3 x 1033 cm-2 s-1. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings

  9. Factorial complexity and Morally Debatable Behaviors

    Directory of Open Access Journals (Sweden)

    Grimaldo Muchotrigo, Mirian P.

    2011-12-01

    Full Text Available Currently, from the scientific and professional practice point of view, comes out the necessity to know more about moral permissiveness, as it seems to be an increase in “moral relativism”.. Because it, it this is important to have tools to collect valid and reliable information about moral in social situations defined as social and personal behavior issue. This paper presents a technical note of The Morally Debatable Behaviors Scale (MDBS from Harding & Phillips (1986, which was developed in USA and mainly focused on young people and adults. This technical note makes direct reference to a recent Latin American study (Merino & Grimaldo, 2010; this article focuses on the internal structure and the problems associated with evidences of factorial complexity among items of the MDBS. This means that the interpretation of scores is not factorially simple and could not be achieved by a conceptual distinction between the latent constructs applied to the study sample.. The results in the previous study of the factorial complexity leads the researcher to decide whether an instrument for measuring this aspect may contain a reasonable amount of complexity that is consistent with what is in reality, or look for the unidimensional and simple structure.

  10. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    CERN Multimedia

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  11. In-Factory Learning - Qualification For The Factory Of The Future

    Science.gov (United States)

    Quint, Fabian; Mura, Katharina; Gorecky, Dominic

    2015-07-01

    The Industry 4.0 vision anticipates that internet technologies will find their way into future factories replacing traditional components by dynamic and intelligent cyber-physical systems (CPS) that combine the physical objects with their digital representation. Reducing the gap between the real and digital world makes the factory environment more flexible, more adaptive, but also more complex for the human workers. Future workers require interdisciplinary competencies from engineering, information technology, and computer science in order to understand and manage the diverse interrelations between physical objects and their digital counterpart. This paper proposes a mixed-reality based learning environment, which combines physical objects and visualisation of digital content via Augmented Reality. It uses reality-based interaction in order to make the dynamic interrelations between real and digital factory visible and tangible. We argue that our learning system does not work as a stand-alone solution, but should fit into existing academic and advanced training curricula.

  12. Results of the direct comparison of primary standards for absorbed dose to water in 60Co and high-energy photon beams (EURAMET TC-IR Project 1021)

    International Nuclear Information System (INIS)

    The BEV graphite calorimeter is in operation since 1983 as an absorbed dose to water primary standard for 60Co radiation fields. After an extended refurbishment process the energy range was enhanced for application in accelerator fields. For this purpose a set of conversion and correction factors was required. They were obtained utilising Monte Carlo simulations and measurements. To verify the results of the refurbishment and the enhancement process a project was proposed for the direct comparison of primary standards for absorbed dose to water of BEV, METAS and PTB, in 60Co gamma ray beams and high-energy photon beams. The primary standards used for this comparison were the BEV graphite calorimeter and two water calorimeters (METAS, PTB). The measurements were carried out in the 60Co gamma ray beams and in high-energy photon beams (4 MV, 6 MV, 10 MV and 15 MV) of METAS and PTB. The BEV transported the graphite calorimeter primary standard to PTB (in September 2008) and METAS (in November 2008). This was the first time that an absorbed dose primary standard calorimeter of one National Metrology Institute (NMI) was transported to a different NMI for the purpose of a direct comparison in accelerator high-energy photon beams. The project was connected with a huge logistic effort (transportation and setup of the calorimeter system including graphite phantom, measurement- and evaluation device, vacuum pump, ionization chamber measurement system etc.) and with a lot of expected and unexpected challenges. The main concept of the comparison is shown. Measurements in 60Co gamma ray beams: Determination of the reference value for absorbed dose to water of the 60Co therapy unit of PTB, respectively METAS with the the BEV graphite calorimeter; Comparison of this value with the reference value determined with the water calorimeter of PTB, respectively METAS. Measurements in high-energy photon beams: Determination of absorbed dose to water at the accelerator at PTB, respectively

  13. An imaging time-of-propagation system for charged particle identification at a super B factory

    CERN Document Server

    Nishimura, K; Hoedlmoser, H; Jacobson, B; Kennedy, J; Rosen, M; Ruckman, L; Varner, G; Wong, A; Yen, W

    2009-01-01

    Super B factories that will further probe the flavor sector of the Standard Model and physics beyond will demand excellent charged particle identification (PID), particularly K/pi separation, for momenta up to 4 GeV/c, as well as the ability to operate under beam backgrounds significantly higher than current B factory experiments. We describe an Imaging Time-of-Propagation (iTOP) detector which shows significant potential to meet these requirements. Photons emitted from charged particle interactions in a Cerenkov radiator bar are internally reflected to the end of the bar, where they are collected on a compact image plane using photodetectors with fine spatial segmentation in two dimensions. Precision measurements of photon arrival time are used to enhance the two dimensional imaging, allowing the system to provide excellent PID capabilities within a reduced detector envelope. Results of the ongoing optimization of the geometric and physical properties of such a detector are presented, as well as simulated PI...

  14. Fabrication and installment of the hard-wired I and C works for the neutral beam injection test stand of the K-STAR project

    International Nuclear Information System (INIS)

    Instrumentation and Control(I and C) of the neutral beam injection test stand (NBI-TS) for the K-STAR national fusion research project has been underway since the start of the project to answer the diverse requests arising from the various facets of the development and construction phases of the project. In a parallel effort with the software oriented I and C development, there has been existing an enormous amount of hard-wiring I and C works for the NBI facility to be developed and fabricated in schedule. Circuits and hardwired functions have been designed, tested, fabricated, and finally installed to the relevant parts of the system. Examples of those hard-wired I and C works are related to the vacuum system, gas feeding system, arc detector circuit, ion source monitoring, bending magnet and calorimeter. Another one to be mentioned is the interlock circuitry. One of the interlock circuits are related to the coolant flow failure. The other is the interlock circuit related to the vacuum failure. All of the above mentioned circuitry now constitutes integral parts for the proper operation of the NBI system; details of those hard-wired I and C work are described in this report

  15. Study of an asymmetric B-factory

    International Nuclear Information System (INIS)

    A facility in which e+ - e- beams collide with different beam energies (Eel/Epos > 3) would provide the possibility of measuring CP violation and rare decays in the B-quark system. Luminosities of several 1033 cm-2s-1 are required. In this paper the authors report on a study in which the use of the PETRA storage ring for such a facility is investigated. The basic concept is to exploit the existence of a large storage ring. This allows one to operate the asymmetric collider near the optimum Lorentz boost for the detection of the decay vertices of the B-mesons, namely βγ = 1. Beam energies of 12 GeV for the electrons and 2.33 GeV for the positrons stored in a 144-m-circumference ring appear to be the best compromise between optimum Lorentz boost, high luminosity, and tolerable synchrotron radiation power losses. The main factors in attaining high luminosity are the high multibunch beam currents in both beams, high single bunch currents in the low-energy beam, operation with many bunches requiring quick beam separation, strong low-β focusing, synchrotron radiation generated in the beam separators, and finally large total synchrotron radiation power loss of the beam. Practical solutions using currently available accelerator technology are discussed in this report

  16. The Tau-Charm Factory in the ERA of B-Factories and CESR

    International Nuclear Information System (INIS)

    This paper is a collection of presentations made at a conference on tau-charm factories, held at the Stanford Linear Accelerator Center and Stanford University on August 15-16, 1994. The papers presented summarize the physics which can be learned from such a facility, the advantages it would present over planned B-factories and large centers such as CESR, and the types of decay modes which could be observed. More detailed studies of tau physics are opened up, as well as charmonium and charmed systems. Seperate presentations to the proceedings are indexed individually into the database

  17. Analysis of the charged particle multiplicity distribution using the ratio of cumulant factorial to factorial moments

    International Nuclear Information System (INIS)

    The ratio of the cumulant factorial to factorial moments of the charged particle multiplicity distribution is known to show a quasi-oscillatory behaviour when plotted versus the order of the moments. This peculiar behaviour is also predicted by the NNLLA of perturbative QCD assuming the validity of the LPHD hypothesis. Using the subjet multiplicity distribution obtained from both Durham and Cambridge jet algorithms, instead of the charged particle multiplicity distribution, in order to vary the dependence on the LPHD hypothesis; it is shown that the oscillations appear only for non-perturbative energy scales. (author)

  18. Oscillations of factorial cumulants to factorial moments ratio from an eikonal approach

    OpenAIRE

    Beggio, Paulo Cesar

    2013-01-01

    We study the factorial moments (Fq), the factorial cumulants (Kq) and the ratio of Kq to Fq (Hq = Kq=Fq) in pp/pp collisions using an updated approach, in which the multiplicity distribution is related to the eikonal function. The QCD inspired eikonal model adopted contains contributions of quark-quark, quark-gluon and gluon-gluon interactions. Our work shows that the approach can reproduce the collision energy dependence of the Fq moments, correctly predicts that the first minimum of the Hq ...

  19. Activity of beam uses for innovating frontier industry and knowledge

    International Nuclear Information System (INIS)

    The state of quantum beam technology, available research fields, various methods to promote use and persons of talent are stated. Japan Proton Accelerator Research Complex (J-PARC) and RI Beam Factory (RIBF) are in progressing in Japan. J-PARC is one of three large neutron resources; the others are SNS (USA) and ISIS (England). RI beam generation system factory of RIBF will be established in 2006, and Rare Isotope Accelerator (NSCL, USA), Facility for Antiproton and Ion Research (FAIR, Germany) and SPIRALII (French) are in progressing. The quantum beam technology will be used in the research fields such as nanotechnology, materials, life science, medical technology, environment and energy. The platform to promote use of quantum beam, establishment of trial use, a society for the study of beam use, seminars, mail service, and other methods for use of beam is described. (S.Y.)

  20. AN ALTERNATIVE SCHEME FOR THE NEUTRINO FACTORY WITH A HIGH POWER PROTON DRIVER

    International Nuclear Information System (INIS)

    We describe a scheme to produce an intense and collimated beam of neutrinos for the neutrino-oscillation experiment. The scheme feature is the presence of a Proton Driver that generates a proton beam at very large power (10mA x 15GeV), considerably higher than that proposed elsewhere for this application. With this scheme, because of the high intensity of the proton beam, to produce neutrinos at the same required rates, it is sufficient to collect π and μ mesons only around a small angle and at reduced momentum spreads. This eliminates the need for the difficult longitudinal manipulations of the protons and mesons, and of the ionization cooling that still needs to be demonstrated. It is also shown, at the end of the paper, that the Neutrino Factory here proposed can also be used as an injector for a 1 x 1 TeV2 μ+-μ- collider at large luminosity

  1. Accelerating cavity development for the Cornell B-factory, CESR-B

    International Nuclear Information System (INIS)

    To achieve luminosities of 30-100 times CESR, 1-2 amps of current must be stored. A CESR B-factory parameter list calls for 50 MV for two rings, to be supplied by 16 cells operating at 10 MV/m gradient. With a new cell shape, the impedances of the dangerous higher order modes (HOM) are drastically reduced. All HOMs modes propagate out of the cavity via the beam pipe, which is specially shaped. This allows HOM power couplers to be placed completely outside the cryostat. A ferrite absorber on the beam pipe lowers all Qs to ∼100, which is sufficient to avoid multi-bunch instabilities without feedback systems. A waveguide input coupler on the beam-pipe provides Qext as low as 5x104, with a C- slot shaped iris that has a negligible effect on the cavity loss parameter

  2. Factorial algebraic group actions and categorical quotients

    CERN Document Server

    Arzhantsev, I V; Hausen, J

    2009-01-01

    Given an action of an affine algebraic group with only trivial characters on a factorial variety, we ask for categorical quotients. We characterize existence in the category of algebraic varieties. Moreover, allowing constructible sets as quotients, we obtain a more general existence result, which, for example, settles the case of a finitely generated algebra of invariants. As an application, we provide a combinatorial GIT-type construction of categorial quotients for actions on, e.g. complete, varieties with finitely generated Cox ring via lifting to the universal torsor.

  3. Advanced manufacturing: optimising the factories of tomorrow

    International Nuclear Information System (INIS)

    Faced with competition Patrick Philippon - Les Defis du CEA no.179 - April 2013 from the emerging countries, the competitiveness of the industrialised nations depends on the ability of their industries to innovate. This strategy necessarily entails the reorganisation and optimisation of the production systems. This is the whole challenge for 'advanced manufacturing', which relies on the new information and communication technologies. Interactive robotics, virtual reality and non-destructive testing are all technological building blocks developed by CEA, now approved within a cross-cutting programme, to meet the needs of industry and together build the factories of tomorrow. (author)

  4. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophone...

  5. Final focus test beam

    International Nuclear Information System (INIS)

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration

  6. MOEM scan engine for bar code reading and factory automation

    Science.gov (United States)

    Motamedi, M. Edward; Park, Sangtae; Melendes, Robert; Wang, A.; Andrews, Angus P.; Garcia-Nunez, Dawn S.; Jinar, Dan; Richardson, Patti D.; Studer, J.; Chen, J. K.; DeNatale, Jeffrey F.; Moranski, Jeffrey A.

    1998-03-01

    Rockwell is in the state of technology transfer to manufacturing of a micro-opto-electro-mechanical scan engine with superior scanning performance for bar code reading and factory automation. The scan engine consists of three main components: actuator, mirrors, and control electronics. The first two components are fabricated on a silicon cantilever beam while the control electronics are presently hybrid. The actuator comprises of a bimorph layer covered with two metal layers. The mirror has a large area (several mm2) and it is micromachined with a surface flatness better than (lambda) /2. Actuator scan-angles greater than 22 degree(s) with high repeatability in performance are achieved. The scan engine was integrated with an existing Rockwell commercial bar code reader/decoder and successfully proven to read a two-character code 39 bar code. The system was capable of decoding the 13-mil label at 360 scans per second with a 100% successful read performance. Environmental testing of the device indicates that the scanner can operate at elevated temperatures up to 70 degree(s)C with minor fluctuations in frequency and scan angle. The scanner has also gone through a lifetime cycle test and it has survived more than 8 billion cycles during a period of 18 months. To increase the yield and the performance level of the device, theoretical study as well as dynamic simulation by finite elements modeling have been investigated and will be reported separately.

  7. Particle identification at an asymmetric B Factory

    International Nuclear Information System (INIS)

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B0 decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R ampersand D conclude the chapter. 56 refs., 64 figs., 13 tabs

  8. The rehabilitation of ancient gas factory sites

    International Nuclear Information System (INIS)

    In France, the inheritance of ancient town gas factories, mainly under the responsibility of Gaz de France, has left pollutants in the soils of their sites. The aim of the national company is to control these pollutants. Several hundred of town gas factories were exploited in France from 1798 (date of the invention of the process by Lebon) to the end of the 60's. The town gas, obtained from high temperature pyrogenic decomposition of coal, led to by-products which were stored or mixed with the soil. This paper describes the environmental and quality policy carried out by Gaz de France to characterize and remove the pollutants (coke, clinker, tar, phenols, ammoniated water, hydrogen sulphide, cyanides, benzene, toluene, xylenes..) to evaluate the risks of exposure of contaminants and their possible impact on human health. A method with 17 criteria was elaborated to characterize the sites and the rehabilitation comprises three steps: the environmental audit (evaluation of the concentration of pollutants and of their possible environmental and human impact), the complementary analysis (extension of the contaminated area, nature and concentration of pollutants, geologic and hydrogeologic characterisation of the site), and the rehabilitation itself when necessary (confinement or elimination of pollutants using thermal, physico-chemical or biological treatments). (J.S.)

  9. Parameters for a Super-Flavor-Factory

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, J.T.; Cai, Y.; Ecklund, S.; Novokhatski, A.; Seryi, A.; Sullivan, M.; Wienands, U.; /SLAC; Biagini, M.; Raimondi, P.; /Frascati

    2006-06-27

    A Super Flavor Factory, an asymmetric energy e{sup +}e{sup -} collider with a luminosity of order 10{sup 36} cm{sup -2} s{sup -1}, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10{sup 34} cm{sup -2} s{sup -1} has taught us about the accelerator physics of asymmetric e{sup +}e{sup -} collider in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10{sup 36} cm{sup -2} s{sup -1} at the Y(4S) resonance and about 10{sup 35} cm{sup -2} s{sup -1} at the {tau} production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the Y(4S) resonance. In the following note only the parameters relative to the Y(4S) resonance will be shown, the ones relative to the lower energy operations are still under study.

  10. Asymptotic normality through factorial cumulants and partitions identities

    CERN Document Server

    Bobecka, Konstancja; Lopez-Blazquez, Fernando; Rempala, Grzegorz; Wesolowski, Jacek

    2011-01-01

    In the paper we develop an approach to asymptotic normality through factorial cumulants. Factorial cumulants arise in the same manner from factorial moments, as (ordinary) cumulants from (ordinary) moments. Another tool we exploit is a new identity for "moments" of partitions of numbers. The general limiting result is then used to (re)derive asymptotic normality for several models including classical discrete distributions, occupancy problems in some generalized allocation schemes and two models related to negative multinomial distribution.

  11. Improving Covariate Balance in 2^K Factorial Designs via Rerandomization

    OpenAIRE

    Branson, Zach; Dasgupta, Tirthankar; Donald B. Rubin

    2015-01-01

    Factorial designs are widely used in agriculture, engineering, and the social sciences to study the causal effects of several factors simultaneously on a response. The objective of such a design is to estimate all factorial effects of interest, which typically include main effects and interactions among factors. To estimate factorial effects with high precision when a large number of pre-treatment covariates are present, balance among covariates across treatment groups should be ensured. We p...

  12. Tau Lepton Physics at a Tau Charm Factory

    CERN Document Server

    Meo, J L

    2003-01-01

    A two-day workshop, ''The Tau-Charm Factory in the Era of B-factories and CESR,'' was held at SLAC in August, 1994. This paper summarizes the important research on the tau-lepton which could be done at a tau-charm factory in the next decade. It is based on the presentations by the speakers and on the discussions by participants, as well as on published papers.

  13. Dust exposure and respiratory health among Tanzanian coffee factory workers

    OpenAIRE

    Sakwari, Gloria

    2013-01-01

    Introduction: Exposure to organic dust may cause detrimental effects to the respiratory system of exposed workers. Organic dust is commonly contaminated with microbes and their derivatives such as bacteria and endotoxin, fungi, moulds and beta glucan. Few studies on exposure and health effects have been performed in primary coffee factories. The studies showed that processes in primary coffee factories cause emission of high dust levels. Work in coffee factories has been associated with res...

  14. Beam instability Workshop - plenary sessions

    International Nuclear Information System (INIS)

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions

  15. Ergonomics assessment in an aluminum factory in Iceland

    OpenAIRE

    Gudjonsdottir, Anna

    2015-01-01

    The purpose of this study was to do an ergonomic assessment in aluminum factory and to write a literature review of factory work and health. The results from the ergonomic assessment where then compared to the literature. The aluminum factory in which the ergonomic assessment was carried out was the Rio Tinto Alcan factory in Iceland. The reason why I did choose to do the assessment there was my work experience as summer worker for 2 summers in the factory’s casthouse. What was found in t...

  16. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    C. L. Fern

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  17. A new kind of bottom quark factory

    International Nuclear Information System (INIS)

    We describe a novel method of producing large numbers of B mesons containing bottom quarks. It is known that one should analyze at least 109 B meson decays to elucidate the physics of CP violation and rare B decay modes. Using the ultra high energy electron beams from the future generation of electron linear colliders, we Compton backscatter low energy laser beams off these electron beams. From this process, we produce hot photons having energy hundreds of GeV. Upon scattering these hot photons onto stationary targets, we show that it is possible to photoproduce and measure the necessary 109 B mesons per year. 24 refs., 4 figs

  18. Compact scanning transmission x-ray microscope at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, Hiroki [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-01-28

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  19. Factory acceptance test of COLDDIAG: A cold vacuum chamber for diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, Stefan; Baumbach, Tilo; Casalbuoni, Sara; Grau, Andreas; Hagelstein, Michael; Saez de Jauregui, David; Holubek, Tomas [Karlsruhe Institute of Technology, Karlsruhe (Germany); Boffo, Cristian; Sikler, Guenther [Babcock Noell GmbH, Wuerzburg (Germany); Baglin, Vincent [CERN, Geneva (Switzerland); Cox, Matthew; Schouten, Jos [Diamond Light Source, Oxfordshire (United Kingdom); Cimino, Roberto; Commisso, Mario; Spataro, Bruno [INFN/LNF, Frascatti (Italy); Mostacci, Andrea [Rome University La Sapienza, Rome (Italy); Wallen, Eric [MAX-Lab, Lund (Sweden); Weigel, Ralf [Max-Planck Institute for Metal Research, Stuttgart (Germany); Clarke, Jim; Scott, Duncan [STFC/ASTeC, Daresbury (United Kingdom); Bradshaw, Tom [STFC/RAL, Chilton (United Kingdom); Jones, Roger; Shinton, Ian [University Manchester (United Kingdom)

    2011-07-01

    Superconductive insertion devices (IDs) have higher fields for a given gap and period length compared with the state of the art technology of permanent magnet IDs. This technological solution is very interesting for synchrotron light sources since it permits to increase the brilliance and/or the photon energy at moderate costs. One of the key issues for the development of superconducting IDs is the understanding of the beam heat load to the cold vacuum chamber. Therefore a cold vacuum chamber for diagnostic was built. Here we report about the design, planned measurements and the factory acceptance test of COLDDIAG.

  20. Factory acceptance test of COLDDIAG: A cold vacuum chamber for diagnostics

    International Nuclear Information System (INIS)

    Superconductive insertion devices (IDs) have higher fields for a given gap and period length compared with the state of the art technology of permanent magnet IDs. This technological solution is very interesting for synchrotron light sources since it permits to increase the brilliance and/or the photon energy at moderate costs. One of the key issues for the development of superconducting IDs is the understanding of the beam heat load to the cold vacuum chamber. Therefore a cold vacuum chamber for diagnostic was built. Here we report about the design, planned measurements and the factory acceptance test of COLDDIAG.

  1. Compact scanning transmission x-ray microscope at the photon factory

    Science.gov (United States)

    Takeichi, Yasuo; Inami, Nobuhito; Suga, Hiroki; Takahashi, Yoshio; Ono, Kanta

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ˜107 photons/s was focused to a diameter of ˜40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250-1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  2. High luminosity, electron-positron colliders as strangeness, charm, and beauty factories

    International Nuclear Information System (INIS)

    This paper reports on high luminosity electron-positron colliders operating at the mass of the φ meson (1.02 GeV) that can produce copious K bar K0 pairs from a single quantum state. Temporal correlations in the decays of the K's provide a measure of the direct CP violating amplitude and also allow a high precision test of CPT invariance. A low energy collider with high luminosity can serve as a beam physics testbed to evaluate novel approaches to collider design that may be necessary for B factories to attain luminosities ≥ 1024 cm-2s-1

  3. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Science.gov (United States)

    Becker, N.; Smith, W. L.; Quirk, S.; Kay, I.

    2010-12-01

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  4. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N; Smith, W L; Quirk, S [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Kay, I, E-mail: nathan.becker@albertahealthservices.ab.c [Medical Physics, Cape Breton Cancer Centre, Sydney, Nova Scotia (Canada)

    2010-12-21

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  5. Liquid metal target studies for high-power proton beams

    International Nuclear Information System (INIS)

    Full text: Proton beams with an average beam power of several MW are needed to produce the high secondary particle flux required by future accelerator centres like neutrino factories or neutron spallation sources. In such scenarios, the secondary beams are produced via conversion targets and the high power involved imposes the need for advanced target concepts. The use of liquid metal is a natural solution to the stresses and fatigue, induced by the proton beam, that eventually lead to the destruction of most solid targets. A liquid jet would provide a 'new' target for each proton pulse if the material disrupted by the proton beam can be evacuated within the proton pulse interval. Such a target configuration is presently considered for the pion production target of a neutrino superbeam or a neutrino factory. We present experimental results on the impact of proton beam pulses on free-surface liquid metal targets. These tests were performed at the ISOLDE facility at CERN. (author)

  6. The DIRC Detector at the SLAC B-Factory PEP-II: Operational Experience and Performance for Physics Application

    International Nuclear Information System (INIS)

    The Dirc, a novel type of Cherenkov ring imaging device, is the primary hadronic particle identification system for the BABAR detector at the asymmetric B-factory, Pep-II at SLAC. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiators and light guides. BABAR began taking data with colliding beams in late spring 1999. This paper describes the performance of the Dirc during the first 2.5 years of operation

  7. Validation of factorial analysis in a simulation study and in sequential cardiac first-pass acquisitions

    International Nuclear Information System (INIS)

    This study was designed to assess the accuracy and reproducibility of factorial analysis. Assuming that a dynamic acquisition visualizes several overlapping compartments (cpts) having different time-activity curves (TACs) then factorial analysis is supposed to isolate the TACs of these different cpts. Its accuracy was tested with a computer simulated 16-frame dynamic acquisition representing two cpts partly or completely overlapping and having different TACs. The reproducibility was assessed in seven patients who underwent six consecutive left ventricular first-pass radionuclide angiographies, three in the right and three in the left anterior oblique projections. Because of the short half-life of the tracer (gold 195m, T 1/2 = 30.5 sec) all the acquisitions could be performed in similar conditions of background. A series of 16 frames representing a composite cardiac cycle was reconstructed with four beats and submitted to factorial analysis. In the simulation data a perfect accuracy was found in any situation of partially overlapping cpts. For the totally overlapping cpts differing in size, the TAC of the small cpt was often distorted while the TAC of the large cpt was always correctly identified. In the patients the time of maximum and minimum of the TACs was reproducible in all projections. The coefficient of correlation of the amplitude was 0.74 between the RAO and LAO projections. By comparison it was 0.73 for the TACs obtained from a left ventricular region of interest. In conclusion factorial analysis provides sufficiently accurate and reproducible results in cardiac first-pass study to envision its clinical applications

  8. AutoPyFactory and the Cloud

    CERN Document Server

    Caballero, J; The ATLAS collaboration; Love, P

    2013-01-01

    AutoPyFactory (APF) is a next-generation pilot submission framework that has been used as part of the ATLAS workload management system (PANDA) for two years. APF is reliable, scalable, and offers easy and flexible configuration. Using a plugin-based architecture, APF polls for information from configured information and batch systems (including grid sites), decides how many additional pilot jobs are needed, and submits them. With the advent of cloud computing, providing resources goes beyond submitting pilots to grid sites. Now, the resources on which the pilot will run also need to be managed. Handling both pilot submission and controlling the virtual machine life cycle (creation, retirement, and termination) from the same framework allows robust and efficient management of the process. In this paper we describe the design and implementation of these virtual machine management capabilities of APF. Expanding on our plugin-based approach, we allow cascades of virtual resources associated with a job queue. A si...

  9. [Shoe factory workers, solvents and health].

    Science.gov (United States)

    Foà, Vito; Martinotti, Irene

    2012-01-01

    Exposure to organic solvents in footwear manufacturing industry came from the glues used adhering the shoe parts to each other. Benzene was the first solvent used in shoe factories until the evidence of its capacity to cause leukaemia. Then, the demonstration that exposure to n-hexane was related to distal polyneuropathy limited the use of this substance. After that, results of neurotoxicological studies conducted on workers exposed to different mixtures of organic solvents make necessary prevention measure directed to a progressive reduction of air dispersion of these chemicals. Today exposure to solvents in workplaces is regulated by health based exposure limit values that should warranty absence of central nervous system effects. One of the most important rules of occupational medicine is verify that these exposure levels are really health protective also for workers with increased susceptibility. PMID:22697025

  10. Systems Factorial Technology Explained to Humans

    Directory of Open Access Journals (Sweden)

    Harding, Bradley

    2016-01-01

    Full Text Available The study of mental processes is at the forefront of research in cognitive psychology. However, the ability to identify the architectures responsible for specific behaviors is often quite difficult. To alleviate this difficulty, recent progress in mathematical psychology has brought forth Systems Factorial Technology (SFT; Townsend & Nozawa, 1995. Encompassing a series of analyses, SFT can diagnose and discriminate between five types of information processing architectures that possibly underlie a mental process. Despite the fact that SFT has led to new discoveries in cognitive psychology, the methodology itself remains far from intuitive to newcomers. This article therefore seeks to provide readers with a simple tutorial and a rudimentary introduction to SFT. This tutorial aims to encourage newcomers to read more about SFT and also to add it to their repertoire of analyses.

  11. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  12. Evolution of the Factory 1975-2006

    International Nuclear Information System (INIS)

    Since it was founded in 1973. Equipos Nucleares (ENSA) has been actively present in the nuclear market. This was the reason for its creation and for which it was organized from the very beginning, by designing a company with a nuclear structure and mentality. The author reviews the history and evolution of the Factory- more than a workshop- and describes its different stages, which were strongly affected by the unexpected evolution of a diminishing market- an inexistent market the likes to say- and also stresses the extraordinary difficulty of its work and the determination to remain in the nuclear market. He acknowledges the people and the culture of ENSA emphasizing their dedication, generosity, flexibility, training and enthusiasm, and stresses their stake in being the best and to attain excellence in the quality of supplies, meeting deadlines and customer satisfaction, identifying these as fundamental factors of the company's legacy. Having a better Factory is possible by improving its technological capability through researching and developing its processes, automating and robotizing manufacturing and inspection activities, and simplifying its operating systems. A result of these efforts is the continuous international presence as a supplier and collaborator with the world's leading designers, which has consolidated it as a reference supplier on the American market. Of not is the supply to the market of its different product lines a result of combining its design and manufacturing capabilities with its flexibility and size, all of which contribute to ENSA's wealth, diversity and appeal. ENSA is aware of the forthcoming resurgence of the new nuclear market. It is preparing for the future by renewing and upgrading its manufacturing facilities and implementing new systems techniques- Lean Manufacturing and Six Sigma-into its Annual Improvement Plans to favor and drive its technological capability and competitiveness and to respond to the increasingly demanding

  13. Plasma diagnostics of discharge channels for neutralized ion beam transport

    OpenAIRE

    Niemann, Christoph

    2002-01-01

    Most of the future accelerators will be high intensity machines delivering mega-watt beams for applications such as spallation neutron production, muon colliders, neutrino factories, nuclear-waste transmutation or inertial confinement fusion energy (IFE). Especially in the field of heavy ion driven inertial confinement fusion, where space charge dominated multi kilo-ampere beams have to be transported over several meters through a reactor chamber to a mm-size target, some kind of beam neutral...

  14. Oscillations of factorial cumulants to factorial moments ratio from an eikonal approach

    CERN Document Server

    Beggio, Paulo Cesar

    2013-01-01

    We study the factorial moments (Fq), the factorial cumulants (Kq) and the ratio of Kq to Fq (Hq = Kq=Fq) in pp/pp collisions using an updated approach, in which the multiplicity distribution is related to the eikonal function. The QCD inspired eikonal model adopted contains contributions of quark-quark, quark-gluon and gluon-gluon interactions. Our work shows that the approach can reproduce the collision energy dependence of the Fq moments, correctly predicts that the first minimum of the Hq lies around q = 5 and qualitatively reproduces the oscillations of the Hq moments, as shown in the experimental data and predicted by QCD at preasymptotic energy. The result of this study seems to indicate that the Hq oscillations are manifestation of semihard component in the multiparticle production process. Predictions for multiplicity distribution and Hq moments at the LHC energy of 14 TeV are presented.

  15. Review of U.S. Neutrino Factory Studies

    International Nuclear Information System (INIS)

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated

  16. 46 CFR 162.050-13 - Factory production and inspection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Factory production and inspection. 162.050-13 Section..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-13 Factory production and inspection. (a) Equipment manufactured under Coast Guard approval...

  17. Lifestyles and periodontal disease of Japanese factory workers

    OpenAIRE

    Yoshida, Yukie; Ogawa, Yukiko; Imaki, Masahide; Nakamura, Takeo; Tanada, Seiki

    1997-01-01

    The association between lifestyle and periodontal disease as classified by the Community Periodontal Index of Treatment Needs (CPITN) was investigated in 1,821 factory workers, 20–69 years of age, residing in Osaka, Japan. Lifestyles were examined using a questionnaire concerning the smoking habits, alcohol consumption, physical exercise, sleeping hours and dietary habits of male factory workers.

  18. Why and how to normalize the factorial moments of intermittency

    International Nuclear Information System (INIS)

    The normalization of factorial moments of intermittency, which is often the subject of controverses, is justified and (re-)derived from the general assumption of multi-Poissonian statistical noise in the production of particles at high-energy. Correction factors for the horizontal vs. Vertical analyses are derived in general cases, including the factorial multi-bin correlation moments

  19. Parametric study of a target factory for laser fusion

    International Nuclear Information System (INIS)

    An analysis of a target factory leading to the derivation of production rate equations has provided the basis for a parametric study. Rate equations describing the production of laser fusion targets have been developed for the purpose of identifying key parameters, attractive production techniques and cost scaling relationships for a commercial target factory

  20. Proceedings of the Workshop on CP Violation at KAON Factory

    International Nuclear Information System (INIS)

    These proceedings contain the written version of eight talks delivered at the Workshop on CP Violation at KAON Factory. The articles contain reviews on the exploration of CP violation effects associated with the s-quark. Discussion on the use of intense kaon fluxes, which will be available at the proposed KAON Factory, are included

  1. Review of U.S. Neutrino Factory Studies

    OpenAIRE

    Zisman, Michael S.

    2005-01-01

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated.

  2. A collection of tools for factory eco-efficiency

    OpenAIRE

    Despeisse, Melanie; Dave, Aanand; Litos, Lampros; Roberts, Simon; Ball, Peter D.; Evans, Stephen

    2016-01-01

    co-efficiency is generally defined as doing more with less, aiming to decouple environmental impact from economic and social value creation. This paper presents three tools to guide the implementation of eco-efficiency in factories: (1) definition and patterns of good practices for sustainable manufacturing, (2) a self-assessment tool and maturity grid, and (3) a factory modelling framework.

  3. TU-F-17A-05: Calculating Tumor Trajectory and Dose-Of-The-Day for Highly Mobile Tumors Using Cone-Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better

  4. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    International Nuclear Information System (INIS)

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 ± 0.50 pixels (mean ± SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing (≤21 mm) that induced an absolute three-dimensional setup error of 1.6 ± 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  5. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Worm, Esben S., E-mail: esbeworm@rm.dk [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Department of Medical Physics, Aarhus University Hospital, Aarhus (Denmark); Hoyer, Morten; Fledelius, Walther [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Nielsen, Jens E.; Larsen, Lars P. [Department of Radiology, Aarhus University Hospital, Aarhus (Denmark); Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark)

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  6. From field to factory-Taking advantage of shop manufacturing for the pebble bed modular reactor

    International Nuclear Information System (INIS)

    The move of nuclear plant construction from the field to the factory for small, advanced pebble bed modular reactor (PBMR) designs has significant benefits compared to traditional light water reactor (LWR) field oriented designs. The use of modular factory construction techniques has a growing economic benefit over time through well-established process learning applications. This paper addresses the basic PBMR design objectives and commercialization model that drive this approach; provides a brief technical description of the PBMR design and layout with representative CAD views and discusses derived figures of merit highlighting the relative simplicity of PBMR compared to a modern LWR. The discussion emphasizes that more of PBMR can be built in the factory due to the simple design of a direct helium Brayton cycle compared to an indirect LWR steam cycle with its associated equipment. For the PBMR design there are fewer and less cumbersome auxiliary and safety systems with their attendant support requirements. Additionally, the labor force economic efficiency for nuclear projects is better in the factory than in the field, including consideration of labor costs and nuclear quality programs. Industrial learning is better in the factory because of the more controlled environment, mechanization optimization opportunities and because of the more stable labor force compared to the field. Supply chain benefits are more readily achievable with strategic contracts for module suppliers. Although building a nuclear power plant is not a typical high volume manufacturing process, for the PBMR-type of plant, with its high degree of standardization and relatively small, simplified design, the shift to factory work has a significant impact on overall project cost due to earlier identification and better coordination of parallel construction paths. This is in stark contrast to the construction of a large LWR in the past. Finally, the PBMR modular plant concept continues at the

  7. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  8. The benefits of conducting factory performance tests for main mine fans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.E.Jr. [PB Americas Inc., New York, NY (United States); Gamble, G.A. [Clarage Twin City Fan Co., Akron, OH (United States)

    2010-07-01

    Axial flow fans used in underground mining are also commonly used in subway tunnel ventilation fans to provide an evacuation path during a tunnel fire emergency. The axial flow fans provide sufficient air velocity to the fire site to prevent backlayering of smoke against the incoming airflow. Since the tunnels are used by the public, advance testing of fans and motors is conducted to confirm that the equipment will perform as specified during a fire. This paper discussed some of the advantages derived from conducting fan factory tests for tunnel projects that would also apply to mining applications. It also described other benefits from testing that are unique to mining. External factors that may cause the fan performance to vary considerably from the predicted performance measured at the factory were also discussed. These included air density changes and system effects produced by poorly designed shaft configurations and fan inlet ductwork. 11 refs., 6 figs.

  9. Knowledge and opinions of emergency contraceptive pills among female factory workers in Tijuana, Mexico.

    Science.gov (United States)

    García, Sandra G; Becker, Davida; de Castro, Marcela Martínez; Paz, Francisco; Olavarrieta, Claudia Díaz; Acevedo-García, Dolores

    2008-09-01

    Workers in Mexico's maquiladoras (assembly plants) are mainly young, single women, many of whom could benefit from emergency contraceptive pills (ECPs). Because ECPs are readily available in Mexico, women who know about the therapy can obtain it easily. Do maquiladora workers know about the method? Could worksite programs help increase awareness? To investigate these questions, we conducted a five-month intervention during which workers in three maquiladoras along the Mexico-United States border could attend educational talks on ECPs, receive pamphlets, and obtain kits containing EC supplies. Among the workers exposed to our intervention, knowledge of ECPs increased. Reported ECP use also increased. Although our intervention apparently increased workers' knowledge and use, the factory proved to be a difficult intervention setting. Problems we experienced included a factory closure and management/staff opposition to certain project elements. Future studies should continue to investigate work-site interventions and other strategies to reach workers. PMID:18853641

  10. Uniform beam distributions using octupoles

    International Nuclear Information System (INIS)

    The Gaussian beam profile of the BNL 200 MeV H- Linac beam at the Radiation Effects Facility target location was transformed into a rectangular profile with almost uniform distribution by placing two octupole magnetic elements at particular locations along the beam line. Experimental results of the beam profile projection in the horizontal and vertical planes, with and without octupoles, are presented and compared with third order calculations. 7 refs., 3 figs

  11. Review of Caltech Workshop and some parametric questions for a high-luminosity asymmetric B-factory collider

    International Nuclear Information System (INIS)

    The potential to probe the Standard Model and beyond with studies in the B-meson system has resulted in the investigation of techniques to perform this physics. One of the most promising is to produce the Υ(4S) resonance, moving in the laboratory frame, using an e+e- storage-ring collider with different energies in the two beams. In this paper, the author summarizes the results of that workshop in this paper, and also investigate some parametric questions incorporating several of the constraints discussed there. The purpose of the Caltech Workshop was to consider the accelerator physics issues faced in attempting to achieve a high-luminosity asymmetric e+e- storage-ring B-factory in the Ecm ∼ 10-GeV region. There were four working groups, chosen to address what were perceived to be the most difficult areas: beam-beam limitations, optics, beam current limitations, and small beam pipe at the interaction point (IP). The author summarizes the conclusions from each of these groups in the following sections. Many of these considerations apply as well to symmetric B-factory colliders

  12. Reinforcement of the high-power RF source at the Photon Factory storage ring

    International Nuclear Information System (INIS)

    Four single-cell cavities are used for beam acceleration in the Photon Factory storage ring. An RF power was supplied by two 180-kW klystrons until July, 1988. The maximum stored current of the ring was 370 mA, limited by the available RF-power. In order to store more high-current beams, the RF-power source was reinforced by an addition of two klystrons in 1988. Hence, each cavity is driven by a single klystron. Related devices such as a high-voltage power supply for the klystron, a circulator, waveguides and low-level RF circuits were newly installed. The reinforcement allowed us to achieve a stored current of 500 mA at 2.5 GeV. (author)

  13. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    International Nuclear Information System (INIS)

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory

  14. Continuous synchronization scheme for TRIUMF KAON Factory Booster and Collector by heterodyne with intermediate frequency

    International Nuclear Information System (INIS)

    Often it arises that several batches of protons must be transferred in box-car fashion from a Booster to Main Ring synchrotron. When the combination (i) large change in kinematic β, (ii) γ-transition close to γ-beam, (iii) small radial aperture confining Δp/ps steering, and (iv) absence of magnetic flat top, occur in the Booster, then conventional phase slip methods of synchronization become infeasible. An alternative is to heterodyne the Booster revolution frequency with an intermediate frequency (of predetermined phase variation) so as to produce a signal equal to a harmonic of the main ring revolution frequency. This allows elaboration of a synchronization control. This paper describes computer modelling of the synchronization technique, as applied to the KAON Factory Booster and Collector, including the effects of error sources and beam-control loops. 4 figs

  15. Transverse feedback systems for the PEP-II B-factory

    International Nuclear Information System (INIS)

    Growth rates of coherent beam oscillations are faster than the natural damping mechanisms for the parameters of the PEP-II B-factory storage rings at nominal currents, even with damping of cavity higher order modes (HOM's). With 165 8 bunches separated by 4.2 ns, and a large current of up to 3A (2.14 A nominal in the low energy ring), many coupled-bunch modes are excited by the resistive wall impedance and cavity higher order mode impedance. Fastest growth times of transverse rigid-bunch modes of approximately 300 ps are expected, two orders of magnitude faster than the radiation damping time. We will provide broadband, bunch-by-bunch feedback to suppress this coherent motion of the beam. Experience gained with a prototype system, installed and successfully operating at the LBNL Advanced Light Source (ALS), has been used extensively in developing the design of the PEP-II systems

  16. INPHO project. Task 1: the setting of electron lines - beam dynamics; Projet INPHO. Tache 1: mise en place des lignes - faisceaulogie. Bilan de la phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Anselmetti, S.; Baze, J.M.; Brasseur, A.; Cazanou, M.; Cazaux, S.; Coadou, B.; Congretel, G.; Contrepois, P.; Curtoni, A.; Denis, J.F.; Desmons, M.; Dorlot, M.; Fontaine, M.; Jablonka, M.; Jannin, J.L.; Joly, J.M.; Launay, J.C.; Lotode, A.; Luong, M.; Mattei, P.; Nardin, P.; Perrin, J.L.; Saudemont, J.C.; Veyssiere, C. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Laine, F. [CEA Saclay, Dept. des Technologies du Capteur et du Signal (DRT/LIST/DETECS/SSTM/L2MA), 91 - Gif-sur-Yvette (France)

    2005-07-01

    The INPHO project aims at upgrading and optimizing the SAPHIR installation that is dedicated to the measurement (through the detection of photofission reactions) of radioactive wastes containing transuranium elements. Some modifications have been made during the phase I of the upgrading: -) the supply of power between the 2 parts of the accelerator has been modified. Now the setting of the beam energy does not imply to compensate for a phase shift; -) the vacuum level of the accelerator has been improved, it passed from 10{sup -6} torr to 7.10{sup -8} torr); and current measurers have been set on the electron line (there were no direct diagnostics previously). Other modifications are planned for the phase II of the upgrading. It concerns: -) the power supply of the electron gun; -) the control system; and the power supply of the klystron. In parallel with the phase II, feasibility studies have been led for the design of an electron line that will allow the electron-photon converter target to be as near as possible to the waste package to probe. (A.C.)

  17. 77 FR 44593 - Burlington Coat Factory Warehouse Corporation, Provisional Acceptance of a Settlement Agreement...

    Science.gov (United States)

    2012-07-30

    ... COMMISSION Burlington Coat Factory Warehouse Corporation, Provisional Acceptance of a Settlement Agreement... accepted Settlement Agreement with Burlington Coat Factory Warehouse Corporation, containing a civil... Factory Warehouse Corporation CPSC Docket No. 12-C0008 Settlement Agreement 1. In accordance with...

  18. Neutrino Factory and Muon Collider Fellow

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Gail G. [Univ. of California, Riverside, CA (United States); Snopak, Pavel [Univ. of California, Riverside, CA (United States); Bao, Yu [Univ. of California, Riverside, CA (United States)

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  19. Forecasting Sales in a Sugar Factory

    Directory of Open Access Journals (Sweden)

    Vassilios ASSIMAKOPOULOS

    2011-12-01

    Full Text Available Beets’ cultivation and sugar production represent one of the most important parts of Greek agricultural economy. A careful and well-organized planning of the production as well as the determination of an accurate safety stock is important for sugar industry, as for many other companies and organizations, in order to define the production quantity which leads to maximum revenues and profits. Forecasting, and especially widely used statistical forecasting techniques, is the best way for policymakers to organize their activities and company’s production and make the appropriate adjustments. Apparently, management information systems and forecasting support packages play a leading role in this area, since the amount of data under process is usually quite large and demands an automated procedure to effectively produce and evaluate forecasts. In this case study, “Pythia”, an expert forecasting platform developed by the Forecasting and Strategy Unit of the National Technical University of Athens, was implemented on a monthly data series regarding sugar sales of a Greek sugar factory for the years 2000-2005, bringing theory and practice together. Additionally, the methods or combinations of methods which are well suited for this time series are highlighted based on three error indices. Finally, the results of the study and conclusions are considered and perspectives of progress and development in the field of forecasting are contemplated.

  20. New Physics at a Super Flavor Factory

    CERN Document Server

    Browder, Thomas E; Pirjol, Dan; Soni, Amarjit; Zupan, Jure

    2009-01-01

    The potential of a Super Flavor Factory (SFF) for searches of New Physics is reviewed. While very high luminosity B physics is assumed to be at the core of the program, its scope for extensive charm and tau studies are also emphasized. The possibility to run at the Upsilon(5S) as well as at the Upsilon(4S) is also very briefly discussed; in principle, this could provide very clean measurements of B_s decays. The strength and reach of a SFF is most notably due to the possibility of examining an impressive array of very clean observables. The angles and the sides of the unitarity triangle can be determined with unprecedented accuracy. These serve as a reference for New Physics (NP) sensitive decays such as B^+ ->tau^+ nu and penguin dominated hadronic decay modes, providing tests of generic NP scenarios with an accuracy of a few percent. Besides, very precise studies of direct and time dependent CP asymmetries in radiative B decays and forward-backward asymmetry studies in B -> X_s l^+ l^- and numerous null tes...