WorldWideScience

Sample records for beam factory project

  1. RIKEN RI Beam Factory project

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Yasushige; Goto, Akira; Katayama, Takeshi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    The RARF proposes `RIKEN RI Beam Factory` as a next facility-expanding project. The factory makes it the primary aim to provide RI (Radioactive Isotope) beams covering over the whole atomic-mass range with the world-highest intensity in a wide energy range up to several hundreds MeV/nucleon. These RI beams are generated by the fragmentation of high-intensity heavy-ion beams. For the efficient production heavy-ion energies will be boosted up to over 100 MeV/nucleon even for very heavy ions by a K2500-MeV superconducting ring cyclotron serving as a post accelerator of the existing K540-MeV ring cyclotron. A new type of experimental installation called `MUSES` (Multi-USe Experimental Storage rings) will be constructed as well. With MUSES, various types of unique colliding experiments will become possible. (author)

  2. RI beam factory project at RIKEN

    International Nuclear Information System (INIS)

    The RI Beam Factory is being proposed at RIKEN, which is a project to construct two superconducting ring cyclotrons (SRC-4 and SRC-6), experimental storage rings (MUSES) and experimental facilities. Heavy ions are to be accelerated to energies of up to 400 AMeV for light nuclei and 150 AMeV for the heaviest nuclei by the SRC-6 and up to 1400 AMeV in the MUSES. Wide varieties of radioactive nuclear beams are to be supplied as secondary beams. Electrons, stable nuclei, and highly charged ions in addition to radioactive nuclei can be stored in the storage rings. The MUSES provides various collision methods, such as colliding, merging, and internal target modes. A few of the selected new nuclear-physics opportunities are discussed briefly. (author)

  3. The MUSES project at the RIKEN RI beam factory

    International Nuclear Information System (INIS)

    At RIKEN, the Radio Isotope Beam Factory, RIBF is proposed as an expansion of the existing heavy ion accelerators. A new type experiments facility, MUSES (multi-use experimental storage rings), is planned for this RI beam factory. It consists of an accumulator cooler ring (ACR), a booster synchrotron ring (BSR) with an ijnector electron linac and double storage rings (DSR). This MUSES will be installed downstream from the Superconducting Ring Cyclotron (SRC) and RI separator, Big-RIPS. The DSR permits various types of unique colliding experiments; ion-ion merging or collisions; collisions of electron and ion (stable or RI) beams and collisions of RI with high brilliant X-rays from an undulator. The ACR serves for the accumulation and cooling of RI beams and for atomic and molecular physics with cooler electron beams. The BSR works solely for the acceleration of ion and electron beams. In the present paper, the basic concept of the MUSES accelerator are descibed emphasizing the case of electron-RI collisions at the DSR

  4. RIKEN radioactive isotope beam factory project – Present status and perspectives

    Indian Academy of Sciences (India)

    H Sakurai

    2010-08-01

    Programs for studying nuclear reactions and structure of exotic nuclei available at the RIKEN radioactive isotope beam factory project are introduced and discussed by demonstrating recent highlights. Special emphasis is given to the present status and future plans of new devices.

  5. Longitudinal Beam Stability in the SUPER B-FACTORY

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A.; /SLAC; Zobov, M.; /Frascati

    2009-07-06

    We give an overview of wake fields and impedances in a proposed Super B project, which is based on extremely low emittance beams colliding at a large angle with a crab waist transformation. Understanding the effects that wake fields have on the beam is critical for a successful machine operation. We use our combined experience from the operation of the SLAC B-factory and DA{Phi}NE {Phi}-factory to eliminate strong HOM sources and minimize the chamber impedance in the Super B design. Based on a detailed study of the wake fields in this design we have developed a quasi-Green's function for the entire ring that is used to study bunch lengthening and beam stability. In particular, we check the stability threshold using numerical solutions of the Fokker-Plank equation. We also make a comparison of numerical simulations with the bunch lengthening data in the B- factory.

  6. Frontiers of particle beams: Factories with e+e- rings

    International Nuclear Information System (INIS)

    The present volume is the proceedings of the latest of these joint schools, held in Benalmadena, Spain. This course dealt with the design and development of high performance ''factories'' using e+e- colliders. Topics covered were: physics motivation, overall design of factories and their detectors, high luminosity injection, short bunches, instabilities, feedback, beam-beam interaction, lattice and interaction-region design, special schemes, RF, vacuum, ion clearing and background. See hints under the relevant topics. (orig.)

  7. The Neutrino Factory and Beta Beam Experiments and Development

    CERN Document Server

    Albright, C; Beacom, J; Berg, J S; Black, E; Blondel, A; Bogacz, S; Brice, S; Caspi, S; Chou, W; Cummings, M; Fernow, R; Finley, D; Gallardo, J; Geer, S; Gómez-Cadenas, J J; Goodman, M; Harris, D; Huber, P; Jansson, A; Johnstone, C; Kahn, S; Kaplan, D; Kirk, H; Kobilarcik, T; Lindner, Manfred; McDonald, K; Mena, O; Neuffer, David V; Palladino, V; Palmer, R; Paul, K; Rapidis, P; Solomey, Nickolas; Spampinato, P T; Summers, D; Torun, Y; Whisnant, K; Winter, W; Zisman, M S

    2004-01-01

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R\\&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure \\textsl{CP} violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle $\\theta_{13}$. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without s...

  8. Software Development Factories, the Project Management Perspective

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2012-01-01

    Full Text Available In a software factory, the applications are developed in the same way Henri Ford started manufacturing cars. In such a way, a customized solution could be obtained within a reasonable budget and within the foreseen timeframe. This development method offers a flexible solution that can be readapted rapidly and automatically to the changing business needs, so the Project Management becomes a real challenge.

  9. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    Energy Technology Data Exchange (ETDEWEB)

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  10. The B-factory project at KEK

    International Nuclear Information System (INIS)

    The B-Factory project at KEK aims to construct an accelerator complex to detect the CP-violation effect of B-mesons. It is a two-ring electron-positron collider of 3.5 x 8 GeV in the existing TRISTAN tunnel. The design peak luminosity is 1034 cm-2s-1, which will be realized in two steps: from a small-angle collision with a luminosity of 2 x 1033 cm-2s-1 to a large-angle crab-crossing scheme with the final luminosity of 1034 cm-2s-1. (orig.)

  11. RIKEN RI Beam Factory - Recent Results and Perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, T. [RIKEN Nisina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2010-03-01

    The new facility of the RIKEN RI Beam Factory (RIBF) is dedicated to provide beams of unstable nuclei very far from the stability valley. It started operation at the end of 2006 after 10 years construction. Three newly-built cyclotrons boost the energy up to 345 MeV/nucleon for various heavy-ion beams accelerated by pre-existed accelerators, a linac (RILAC) and a ring cyclotron (RRC), which have been operated in 20 years. The first experiment in the year 2007, production of new neutron-rich palladium isotopes, was followed by the first experiment of secondary reactions at the end of 2008. The capability in producing nuclei far from the stability is exceeding the one of any other facilities in the world, and will reach the level where about 1000 unknown isotopes can be created. Several new experimental installations are planned or being constructed.

  12. Radiation protection system at the RIKEN RI beam factory.

    Science.gov (United States)

    Uwamino, Y; Fujita, S; Sakamoto, H; Ito, S; Fukunishi, N; Yabutani, T; Yamano, T; Fukumura, A

    2005-01-01

    The RIKEN RI (radioactive isotope) Beam Factory is scheduled to commence operations in 2006, and its maximum energy will be 400 MeV u(-1) for ions lighter than Ar and 350 MeV u(-1) for uranium. The beam intensity will be 1 pmicroA (6 x 10(12) particles s(-1)) for any element at the goal. For the hands-on-maintenance and the rational shield thickness of the building, the beam loss must be controlled with several kinds of monitors. Three types of radiation monitors will be installed. The first one consists of a neutron dose equivalent monitor and an ionisation chamber, which are commercially available area monitors. The second one is a conventional hand-held dose equivalent monitor wherein the logarithmic signal is read by a programmable logic controller based on the radiation safety interlock system (HIS). The third one is a simple plastic scintillator called a beam loss monitor. All the monitors have threshold levels for alarm and beam stop, and HIS reads all these signals.

  13. Definition study of the TRIUMF kaon factory control system project

    Energy Technology Data Exchange (ETDEWEB)

    Dohan, D.A.; Ludgate, G.A.; Osberg, E.A.; Koscielniak, S. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility); Inwood, C. (Inwood Real-Time Systems Associates, Kinburn, ON (Canada))

    1990-08-01

    The authors present an engineering-model-based approach for the design of the TRIUMF KAON factory control system. After a description of the algorithms for the construction using the beam-optics parameters as input the functional components of this system identified by these algorithms are described. (HSI).

  14. Physics at a future Neutrino Factory and super-beam facility

    NARCIS (Netherlands)

    Bandyopadhyay, A.; Choubey, S.; Gandhi, R.; Goswami, S.; Roberts, B. L.; Bouchez, J.; Antoniadis, I.; Ellis, J.; Giudice, G. F.; Schwetz, T.; Umasankar, S.; Karagiorgi, G.; Aguilar-Arevalo, A.; Conrad, J. M.; Shaevitz, M. H.; Pascoli, S.; Geer, S.; Campagne, J. E.; Rolinec, M.; Blondel, A.; Campanelli, M.; Kopp, J.; Lindner, M.; Peltoniemi, J.; Dornan, P. J.; Long, K.; Matsushita, T.; Rogers, C.; Uchida, Y.; Dracos, M.; Whisnant, K.; Casper, D.; Chen, Mu-Chun; Popov, B.; Aysto, J.; Marfatia, D.; Okada, Y.; Sugiyama, H.; Jungmann, K.; Lesgourgues, J.; Zisman, M.; Tortola, M. A.; Friedland, A.; Davidson, S.; Antusch, S.; Biggio, C.; Donini, A.; Fernandez-Martinez, E.; Gavela, B.; Maltoni, M.; Lopez-Pavon, J.; Rigolin, S.; Mondal, N.; Palladino, V.; Filthaut, F.; Albright, C.; de Gouvea, A.; Kuno, Y.; Nagashima, Y.; Mezzetto, M.; Lola, S.; Langacker, P.; Baldini, A.; Nunokawa, H.; Meloni, D.; Diaz, M.; King, S. F.; Zuber, K.; Akeroyd, A. G.; Grossman, Y.; Farzan, Y.; Tobe, K.; Aoki, Mayumi; Murayama, H.; Kitazawa, N.; Yasuda, O.; Petcov, S.; Romanino, A.; Chimenti, P.; Vacchi, A.; Smirnov, A. Yu; Couce, E.; Gomez-Cadenas, J. J.; Hernandez, P.; Sorel, M.; Valle, J. W. F.; Harrison, P. F.; Lunardini, C.; Nelson, J. K.; Barger, V.; Everett, L.; Huber, P.; Winter, W.; Fetscher, W.; van der Schaaf, A.

    2009-01-01

    The conclusions of the Physics Working Group of the International Scoping Study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried out by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Super-beams

  15. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  16. Green Project System Design of Machine Process Factory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the specialty of the product and the dim conscio us ness of environmental protection, the status of dirty, chaos and difference is l ong-term existed in the machine process factory. It seriously affects workers' work and living environment, and restricts the total level of the environment p rotection in our country. The project is the fatal scientific research task of H enan province in 2001. As the members' endeavor of task group, we have finished the total plan of green project system and some other ...

  17. Physics at a future Neutrino Factory and super-beam facility

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roberts, B L; Bouchez, J; Antoniadis, I; Ellis, J; Giudice, G F; Schwetz, T; Umansankar, S; Karagiorgi, G; Aguilar-Arevalo, A; Conrad, J M; Shaevitz, M H; Pascoli, Silvia; Geer, S; Rolinec, M; Blondel, A; Campanelli, M; Kopp, J; Lindner, M; Peltoniemi, J; Dornan, P J; Long, K; Matsushita, T; Rogers, C; Uchida, Y; Dracos, M; Whisnant, K; Casper, D; Chen, Mu-Chun; Popov, B; Aysto, J; Marfatia, D; Okada, Y; Sugiyama, H; Jungmann, K; Lesgourgues, J; Murayama, France H; Zisman, M; Tortola, M A; Friedland, A; Antusch, S; Biggio, C; Donini, A; Fernandez-Martinez, E; Gavela, B; Maltoni, M; Lopez-Pavon, J; Rigolin, S; Mondal, N; Palladino, V; Filthaut, F; Albright, C; de Gouvea, A; Kuno, Y; Nagashima, Y; Mezzetoo, M; Lola, S; Langacker, P; Baldini, A; Nunokawa, H; Meloni, D; Diaz, M; King, S F; Zuber, K; Akeroyd, A G; Grossman, Y; Farzan, Y; Tobe, K; Aoki, Mayumi; Kitazawa, N; Yasuda, O; Petcov, S; Romanino, A; Chimenti, P; Vacchi, A; Smirnov, A Yu; Couce, Italy E; Gomez-Cadenas, J J; Hernandez, P; Sorel, M; Valle, J W F; Harrison, P F; Lundardini, C; Nelson, J K; Barger, V; Everett, L; Huber, P; Winter, W; Fetscher, W; van der Schaaf, A

    2009-01-01

    The conclusions of the Physics Working Group of the international scoping study of a future Neutrino Factory and super-beam facility (the ISS) are presented. The ISS was carried by the international community between NuFact05, (the 7th International Workshop on Neutrino Factories and Superbeams, Laboratori Nazionali di Frascati, Rome, June 21-26, 2005) and NuFact06 (Ivine, California, 24{30 August 2006). The physics case for an extensive experimental programme to understand the properties of the neutrino is presented and the role of high-precision measurements of neutrino oscillations within this programme is discussed in detail. The performance of second generation super-beam experiments, beta-beam facilities, and the Neutrino Factory are evaluated and a quantitative comparison of the discovery potential of the three classes of facility is presented. High-precision studies of the properties of the muon are complementary to the study of neutrino oscillations. The Neutrino Factory has the potential to provide ...

  18. The SuperB factory, physics potential and project status

    Directory of Open Access Journals (Sweden)

    Wiechczynski Jaroslaw

    2012-12-01

    Full Text Available The SuperB project is an international enterprise aiming at the construction of the high-luminosity asymmetric beam energy electron-positron accelerator, which would be located in the area of Rome. It would exploit several novel features allowing to achieve an unprecedented luminosities and to collect almost a hundred times more data than the current generation of ”B factories”. As for the leptonic colliders, it will maintain a clean, low-background experimental environment that is crucial for numerous measurements on the field of high energy physics

  19. Beam-size effect and particle losses at SuperB factory developed in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G L; Serbo, V G [Novosibirsk State University, 630090, Novosibirsk, Pirogova st., 2 (Russian Federation)], E-mail: serbo@math.nsc.ru

    2009-06-15

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields} e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at SuperB factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%. We perform a critical comparison of our result with that presented in the Conceptual Design Report of the Italian SuperB factory.

  20. Beam-size effect and particle losses at Super$B$ factory developed in Italy

    CERN Document Server

    Kotkin, G L

    2009-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the $e^+ e^- \\to e^+ e^- \\gamma$ process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at Super$B$ factory developed in Italy. We find out that this effect reduces beam losses due to bremsstrahlung by about 40%.

  1. Beam-size effect and particle losses at B-factories KEKB and PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2005-01-01

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross section of this process has to be substantially modified. In the present paper such a beam-size effect is calculated for bremsstrahlung at B-factories KEKB and PEP-II. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  2. Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory

    International Nuclear Information System (INIS)

    Highlights: • In-flight particle identification of RI beams developed for BigRIPS separator. • Atomic number Z and mass-to-charge ratio A/Q are deduced by the TOF-Bρ-ΔE. • Precise determinations of Bρ and TOF with trajectory reconstruction and slew correction, respectively. • The achieved A/Q resolution is high enough to clearly identify the charge state. • Thorough removal of background events improves the reliability of identification. -- Abstract: We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator, RI beams are identified by their atomic number Z and mass-to-charge ratio A/Q which are deduced from the measurements of time of flight (TOF), magnetic rigidity (Bρ) and energy loss (ΔE), and delivered as tagged RI beams to a variety of experiments including secondary reaction measurements. High A/Q resolution is an essential requirement for this scheme, because the charge state Q of RI beams has to be identified at RIBF energies such as 200–300 MeV/nucleon. By precisely determining the Bρ and TOF values, we have achieved relative A/Q resolution as good as 0.034% (root-mean-square value). The achieved A/Q resolution is high enough to clearly identify the charge state Q in the Z versus A/Q particle identification plot, where fully-stripped and hydrogen-like peaks are very closely located. The precise Bρ determination is achieved by refined particle trajectory reconstruction, while a slew correction is performed to precisely determine the TOF value. Furthermore background events are thoroughly removed to improve reliability of the particle identification. In the present paper we present the details of the particle identification scheme in the BigRIPS separator. The isotope separation in the BigRIPS separator is also briefly introduced

  3. Beam commissioning of the SπRIT time projection chamber

    Science.gov (United States)

    Jhang, Genie; Barney, Jon; Estee, Justin; Isobe, Tadaaki; Kaneko, Masanori; Kurata-Nishimura, Mizuki; Cerizza, Giordano; Santamaria, Clementine; Lee, Jung Woo; Lasko, Paweł; Łukasik, Jerzy; Lynch, William G.; McIntosh, Alan B.; Murakami, Tetsuya; Pawłowski, Piotr; Shane, Rebecca; Tangwancharoen, Suwat; Tsang, Manyee Betty; Baba, Hidetada; Hong, Byungsik; Kim, Young Jin; Lee, Hyo Sang; Otsu, Hideaki; Pelczar, Krzysztof; Sakurai, Hiroyoshi; Suzuki, Daisuke; Xiao, Zhigang; Yennello, Sherry J.; Zhang, Yan

    2016-07-01

    The SπRIT Time Projection Chamber (TPC) was constructed at Michigan State University in the U.S.A. and transported to the Radioactive Isotope Beam Factory at RIKEN in Japan. In October 2015, the SπRIT TPC was commissioned with 200 AMeV 79Se beams outside the SAMURAI dipole magnet. The experimental setup consists of the SπRIT TPC, a Multiplicity Trigger Array, a KATANA array, and a Active Veto array. The TPC is fully equipped with a newly-developed read-out electronics system, GET electronics. The trigger logic to select events of the TPC based on the ancillary detectors was tested. The analysis software, SpiRITROOT, was developed to analyze the SπRIT TPC data to determine the best trigger logic for upcoming experiments.

  4. Neutrino factories

    CERN Document Server

    Dydak, Friedrich

    2002-01-01

    The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a window to what lies beyond the Standard Model. Many current and forthcoming experiments will answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino mixing matrix, will be offered by the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. These beams enable the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only moderate extrapolations from existing technologies. Although the main physics attraction of the neutrino factory is in the area of neutrino oscillations, an interesting spectrum of further opportunities ranging from high-precisi...

  5. Evaluation of Health Consequences of Air Pollution Induced by Beam Rolling Mills Factory (Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2014-10-01

    Full Text Available The increases in air pollution over the metropolitan cities are a threat to human health and environment. An attempt has been made to evaluate the health consequences of indoor air pollution induced by Beam Rolling Mills Factory at Ahwaz (Iran. A questionnaire was prepared to obtain information on health of 481 workers, out of which 200 each were selected from exposed and non-exposed category by stratified randomized method. Fisher exact test and chi-square test were used to calculate the values. The study concludes that more than 80% of the workers have high exposure risk to diseases. Analysis of the health impacts reveals that exposed workers are more prone to various diseases as compared to the non-exposed workers. It is also observed that exposure to air pollutants might be the causative factor for various diseases among the smokers but also nonsmoking workers. The analysis also reveals that there is higher relative risk in occupational fatigue and cardio-vascular disease. Further, the study found that percentage of workers having various diseases is much higher in the indoor environment as compared to the outdoor environment

  6. 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities

    CERN Document Server

    2015-01-01

    These proceedings present the written contributions from participants of the 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities (NUFACT 2014) that was held at the University of Glasgow (Glasgow, Scotland, United Kingdom) from 25-30 August 2014. This edition of the NUFACT annual meetings, which started in 1999, consisted of 24 plenary and 92 parallel talks and various poster sessions, with the participation of 124 delegates. Furthermore, the International Neutrino Summer School 2014 was held from 10-22 August 2014 at St Andrews, Scotland, in the two weeks before NUFACT 2014. It was intended for young scientists with an interest in neutrino physics in such a way that they would be able to participate and contribute to the NUFACT workshop as well. The objectives of the NUFACT workshops are to review progress on different studies for future accelerator-based neutrino oscillation facilities, with the goal to discover the mass hierarchy of neutrinos, CP violation in the leptonic s...

  7. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    Energy Technology Data Exchange (ETDEWEB)

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  8. Influence of the beam-size effect on particle losses at B-factories PEP-II and KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. E-mail: serbo@math.nsc.ru

    2004-01-21

    In the colliders, the macroscopically large impact parameters give a substantial contribution to the standard cross-section of the e{sup +}e{sup -}{yields}e{sup +}e{sup -}{gamma} process. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard cross-section of this process has to be substantially modified. In the present paper such a beam-size is calculated for bremsstrahlung at B-factories PEP-II and KEKB. We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  9. Mission critical operation archiving system using a database for synchrotron radiation beam lines at the Photon Factory

    International Nuclear Information System (INIS)

    The mission critical operation archiving system has been designed and built using the Oracle database for the twenty-two synchrotron radiation beam lines at the 2.5 GeV positron storage ring at the Photon Factory, where X-ray/VUV synchrotron radiation experiments are simultaneously carried out. When any one of beam lines is malfunctioning, neither injecting the 2.5 GeV beam into the storage ring nor operation of the ring is allowed due to the radiation safety reason. The system is designed for critical operation of the synchrotron radiation beam lines to provide a quick recovery from a failure, allowing a long term operation. The system has real-time capability to automatically store the database with all possible operational events of all vacuum valves/shutters and safety interlock signals, and all static operational data, including the pressures of the beam lines and the storage ring, and related operational data which represent the physical behaviors of the beam lines. By retrieving any combination of operational data, the system allows to reproduce the physical behaviors that have occurred in the beam lines. The total number of items to be inspected by the system is over 40 million in order to obtain a correlation between the faulty component and other physical components that suggests the cause of the failure. With the aid of the system, the operator at the control room can easily determine the faulty component, and recover the accelerator component. (author)

  10. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  11. TRISTAN, electron-positron colliding beam project

    International Nuclear Information System (INIS)

    In this report e+e- colliding beam program which is now referred to as TRISTAN Project will be described. A brief chronology and outline of TRISTAN Project is given in Chapter 1. Chapter 2 of this article gives a discussion of physics objectives at TRISTAN. Chapter 3 treats the overall description of the accelerators. Chapter 4 describes design of each of the accelerator systems. In Chapter 5, detector facilities are discussed in some detail. A description of accelerator tunnels, experimental areas, and utilities are given in Chapter 6. In the Appendix, the publications on the TRISTAN Project are listed. (author)

  12. Wilson Prize Lecture: The Novosibirsk Tau/Charm Factory Project: prospect/status

    Science.gov (United States)

    Skrinsky, Alexander

    2002-04-01

    For a long time at the Budker Institute of Nuclear Physics, we develop step-by-step our electron-electron and electron-positron colliders. Now, the VEPP-4M collider (total energy up to 11 GeV), with a special emphasis on Two-Photon hadron physics, is in operation. The new VEPP-2000 collider, as direct extension of our VEPP-2M collider (which finished its very productive life in 2000) to the energy up to 2 GeV total, should start its commissioning phase in 2002. But our main goal in the field (for quite a few years already) is development and construction of Tau/Charm Factory (VEPP-5 collider). There are 3 main modes of operation foreseen: Maximal luminosity - up to 1 \\cdot 10^34 cm-2 sec-1. For reaching of this ambitious goal we intend to use ``round beam'' approach. The approach will be used and studied at VEPP-2000. Longitudinally polarized collisions (proposed and proved theoretically in Novosibirsk still in 1969) with luminosity 1 \\cdot 10^33 cm-2 sec-1. High monochromaticity option (down to few 10 of keV). Now the new injector complex, which would produce intense low emittance bunches of positrons and electrons (for VEPP-5, VEPP-4M and VEPP-2000 efficient operation) is nearing completion. Fraction of the VEPP-5 tunnel is constructed. We hope, when the VEPP-5 collider would become closer to completion, to attract international collaborators to use unique features of our Tau/Charm Factory.

  13. An overview of the slow-positron beam facility at the photon factory, KEK

    Science.gov (United States)

    Kurihara, Toshikazu; Shirakawa, Akihiro; Enomoto, Atsushi; Shidara, Tetsuo; Kobayashi, Hitoshi; Nakahara, Kazuo

    1995-01-01

    The KEK slow-positron source is in the final stage of construction. The beam line comprises a 31 m long vacuum duct within an axial magnetic field and a following electrostatic guided section. In order to vary the energy of a positron beam dedicated to depth-profile measurements, a high voltage station capable of applying 60 kV has been installed in the beam transport system. The target assembly (a water-cooled tantalum rod of 5 radiation lengths and a moderator with multiple tungsten vanes) and the following straight section (8 m; used for positron storage) are under high voltage. The beam duct located downstream is at ground potential. Positron beams passing through this region have a high kinetic energy. A focusing triplet quadrupole lens and a moderator on the retarding electrode are located at the end of the magnetic transport. This beam line has 9 right-angle-curved ducts, comprising a radius of curvature of 40 cm. Positrons with a maximum energy of 60 keV are guided by bending magnets attached to the beam-transport ducts. A transport system to switch from magnetically guided to electrostatically guided has been installed. The design of the brightness-enhancement stage of the positron beam for positron re-emission microscopy is in progress. In a preliminary experiments at 2.0 GeV with a 2 kW primary beam, 4×10 6e +/s of slow positrons were observed by detecting annihilation γ-rays at the end of the magnetic beam-transport line. Further improvements are expected by careful surface and thermal treatments of the moderator.

  14. B factory via conversion of 1 TeV electron beams into 1 TeV photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Mtingwa, S.K.; Strikman, M.

    1989-01-01

    We derive formulae which describe the interaction of laser beams with electron beams. Specializing to the case of 1 TeV electron beams from the future generation of electron linear accelerators, we calculate the production rate of backscattered 1 TeV photons, and using these photons, we show that it is possible to organize the photoproduction of beauty particles so as to measure 10/sup 9/b/bar b/ pairs per year. This should be adequate to study rare decays and CP violation in B meson decay. 9 refs., 1 fig.

  15. Design and Initial Commissioning of Beam Diagnostics for the PEP-II B Factory.

    Science.gov (United States)

    Fisher, A. S.; Alzofon, D.; Arnett, D.; Bong, E. L.; Brugnoletti, B.; Collins, B.; Daly, E.; Gioumousis, A.; Johnson, R.; Kulikov, A.; Kurita, N.; Langton, J.; McCormick, D.; Noriega, R.; Smith, S.; Smith, V.; Stege, R.; Bjork, M.; Chin, M.; Hinkson, J.; McGill, R.; Suwada, T.

    1997-05-01

    PEP-II is a 2.2-km-circumference collider with a 2.1-A, 3.1-GeV positron ring (the Low-Energy Ring) 1 m above a 1-A, 9-GeV electron ring (the High-Energy Ring); both are designed for 3 A maximum. We will describe the beam diagnostics and present initial measurements from HER commissioning, expected to start in March 1997. LER commissioning will follow in 1998. The beam size and pulse duration are measured using near-UV synchrotron light extracted by grazing-incidence mirrors that must withstand up to 200 W/cm. To measure the charge in every bucket at 60 Hz with an accuracy of ≈0.5%, the sum signal from a set of 4 pickup buttons is digitized and averaged over 256 samples per bucket. The sum is normalized to the ring current, measured by a DC current transformer. The 300 beam-position monitors per ring are multiplexed to share 171 processor modules, which use DSPs for recording positions over 1024 turns and for calibration. For diagnostics and machine protection, 100 photomultiplier-based Cherenkov detectors measure beam losses and abort the beam in case of high loss.

  16. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    CERN Document Server

    Adli, Erik; Gessner, Spencer J; Hogan, Mark J; Raubenheimer, Tor; An, Weiming; Joshi, Chan; Mori, Warren

    2013-01-01

    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small...

  17. Response of Solid and Liquid Targets to High Power Proton Beams for Neutrino Factories

    CERN Document Server

    Sievers, P

    2000-01-01

    The response of solid and liquid targets to rapid heating by the incident proton beam is assessed in a classical way, among other things by solving the wave equation under linear conditions and in cylindrical symmetry. This study provides bench mark values and allows to identify critical issues and limiting factors which can help to guide further investigations with more sophisticated means.

  18. A tau -- charm -- factory at Argonne

    International Nuclear Information System (INIS)

    Depending on the beam energy setting, the τ -- charm -- factory will be optimized to study physics with τ leptons, with charmed mesons, or with charmonium states. This report gives a short overview of the physics of these topics. Also discussed are the detectors and the costs associated with this project

  19. Coherent Effects of High Current Beam in Project-X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, Alexander; Yakovlev, Vyacheslav; Gonin, Ivan; Khabiboulline, Timergali; Lunin, Andrei; Saini, Arun; Solyak, Nikolay; Vostrikov, Alexander

    2013-04-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  20. Influence of the beam-size or MD-effect on particle losses at B-factories PEP-II and KEKB

    CERN Document Server

    Kotkin, G L

    2004-01-01

    For the $e^+ e^- \\to e^+ e^- \\gamma$ process at colliding beams, macroscopically large impact parameters give an essential contribution to the standard cross section. These impact parameters may be much larger than the transverse sizes of the colliding bunches. It means that the standard calculations have to be essentially modify. In the present paper such a beam-size or MD-effect is calculated for bremsstrahlung at B-factories PEP-II and KEKB using the list of nominal parameters from Review of Particle Physics (2002). We find out that this effect reduces beam losses due to bremsstrahlung by about 20%.

  1. Increasing Cone-beam projection usage by temporal fitting

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Hansen, Mads Fogtmann; Larsen, Rasmus

    2010-01-01

    A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections are typi......A Cone-beam CT system can be used to image the lung region. The system records 2D projections which will allow 3D reconstruction however a reconstruction based on all projections will lead to a blurred reconstruction in regions were respiratory motion occur. To avoid this the projections...... measurements. It has been suggested in [8] to circumvent the Cone beam CT(CBCT) reconstruction by utilizing an ordinary planning CT instead and learning its deformation from the CBCT projection data. The main problem with this approach is that pathological changes can cause problems. Alternatively as suggested...

  2. 3D sound in the telepresence project BEAMING

    DEFF Research Database (Denmark)

    Olesen, Søren Krarup; Markovic, Milos; Madsen, Esben;

    2012-01-01

    The involvement of Aalborg University in the EU project BEAMING will be presented. BEAMING deals with telepresence including multiple modalities; vision, haptics and audio, of which the latter is of main interest here. The setup consists of two types of locations: The Destination, where the Locals...

  3. Beam Combination for Sparse Aperture Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for funding to continue development of an alternative beam combiner for Stellar Imager (SI), a 30-aperture, interferometric telescope chosen as one...

  4. Projected beam irradiation at low latitudes using Meteonorm database

    DEFF Research Database (Denmark)

    Hatwaambo, Sylvester; Perers, Bengt; Karlsson, Björn

    2009-01-01

    The quantitative analysis of beam radiation received on a solar concentrator may be understood by evaluating the projected solar height angle or profile angle along the north-south vertical plane. This means that all the sunrays projected along the north-south vertical plane will be intercepted...... radiation data is missing or irregular. In this paper we present the projected beam solar radiation at low latitudes based on the standard Meteonorm calculations. The conclusion is that there is potential in using solar concentrators at these latitudes since the projected beam radiation is more during...... by a collector provided the projection angle lies within the acceptance angle. The Meteonorm method of calculating solar radiation on any arbitrary oriented surface uses the globally simulated meteorological databases. Meteonorm has become a valuable too for estimating solar radiation where measured solar...

  5. Neutrino factory near detector

    OpenAIRE

    Bogomilov, M.; Y. Karadzhov; Matev, R.; Tsenov, R.; Laing, A.; F.J.P. Soler

    2013-01-01

    The neutrino factory is a facility for future precision studies of neutrino oscillations. A so-called near detector is essential for reaching the required precision for a neutrino oscillation analysis. The main task of the near detector is to measure the flux of the neutrino beam. Such a high intensity neutrino source like a neutrino factory provides also the opportunity for precision studies of various neutrino interaction processes in the near detector. We discuss the design concepts of suc...

  6. Procurement of Beams in Multiple D&B Bridge Projects

    Directory of Open Access Journals (Sweden)

    CT. Ramanathan

    2010-06-01

    Full Text Available Selected infrastructure development projects are being implemented by Design and Build (D&B pocurement system in Sabah (East Malaysia by the Public Works Department (PWD. In the first phase 45 bridge replacement projects were awarded in 5 packages. These simultaneous multiple Bridge projects are for the development of the backward areas and hence their timely completion is utmost important. Procurement and production of bridge beams have been the critical element of construction in these rural areas and no researches has been reported on various aspects of procurement of the bridge beams in multiple D&B projects. The aspects of procurement researched in this work include the determination of a common beam element for the ease of procurement and the optimization of the construction methodology, the finalization and purchasing plate dimensions to suite the manufacturer's production range, the delivery of materials, the planning and monitoring of fabrication, the preparation and assembly, and the erection and launching of beams. The beams are optimized using element optimization techniques. The most important problems in fabricating steel girders were in planning and scheduling of materials for the fabrication and the fabrication process. Findings in all the aspects of production of steel girders are highlighted through a case study of six long span bridges at various locations in Sabah. Solutions drawn from lessons learnt which minimize wastages, and aids in timely completion of beams in multiple bridge construction are discussed.

  7. Physics projects of COMPASS with hadron beams

    CERN Document Server

    Faessler, M A

    1999-01-01

    COMPASS, a new state-of-the-art spectrometer to be installed at the CERN Super Proton Synchrotron for experiments with muon and hadron beams, will be exposed to hadron beams with intensities up to 10/sup 8//sec and energies up to 280 GeV. The physics goals are to study the rare production of charmed hadrons, including doubly charmed baryons, in inelastic interactions, with particular interest in their semileptonic decays; to search for glueballs and hybrids in central and diffractive production. Predictions of chiral perturbation theory will be tested in Primakoff reactions. The spectrometer shall be equipped with excellent particle identification and tracking, with calorimetry, dedicated triggers and fast read-out. A significant improvement of light hadron spectroscopy - compared to previous measurements -can be achieved already in the initial phase of the experiment. (4 refs).

  8. Isobar separator for radioactive nuclear beams project

    Energy Technology Data Exchange (ETDEWEB)

    Davids, C.N.; Nolen, J.A.

    1995-08-01

    In order to produce pure beams of radioactive products emanating from the production target/ion source system, both mass and isobar separation is required. A preliminary mass separation with a resolution {triangle}M/M of approximately 10{sup -3} will select the proper mass beam. An isobar separator is needed because the masses of adjacent isobars are usually quite close, especially for beams near stability. In general, a mass resolution of 5 x 10{sup -5} is needed for isobar separation in the A < 120 region, while a resolution of 3 x 10{sup -5} or better is needed for heavier masses. Magnets are used to obtain mass separation. However, in addition to having mass dispersion properties, magnets also have an equal energy dispersion. This means that an energy variation in the beam cannot be distinguished from a mass difference. This is important because ions emerge from the ion source having a small ({approximately} 10{sup -5} - 10{sup -4}) energy spread. In order to make the system respond only to mass differences, it must be made energy dispersion. This is normally accomplished by using a combination of electric and magnetic fields. The most convenient way of doing this is to use an electric deflection following the magnet separator. A preliminary isobar separator which achieves a mass resolution of 2.7 x 10{sup -5} is shown in Figure I-38. It uses two large 60{degrees} bending magnets to obtain a mass dispersion of 140 mm/%, and four electric dipoles with bending angles of 39{degrees} to cancel the energy dispersion. Sextupole and octupole correction elements are used to reduce the geometrical aberrations.

  9. Beam kicker control system for CSR project in Lanzhou

    International Nuclear Information System (INIS)

    The beam kicker system is a key part for beam extraction and injection in ring-like accelerator, which works under high voltage and huge current. This paper introduces the kicker control system based on ARM+DSP+FPGA for CSR project in Lanzhou, which has nanosecond timing precision. ARM mainly completes the control signals with the network communication, and the time control precision for the beam kicker system is performed mainly by FPGA and DSP. The sequence control signals through the optic fiber transmission, synchronous to kicker power supply the voltage to assign uses the signal isolators and ferrites to suppress the disturbance pulses. Scene test has proved that this system can meet beam kicker control's request and work safely and stably. The control system has extracted and injected the CSR beam successfully in October 2007. (authors)

  10. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  11. LANSCE beam instrumentation and the LANSCE refurbishment project

    Energy Technology Data Exchange (ETDEWEB)

    Mccrady, Rodney C [Los Alamos National Laboratory; Blind, Barbara [Los Alamos National Laboratory; Gilpatrick, John D [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Rybarcyk, Lawrence J [Los Alamos National Laboratory; Sedillo, James D [Los Alamos National Laboratory; Gruchalla, Michael E [Los Alamos National Laboratory

    2010-01-01

    The heart of the LANSCE accelerator complex consists of Cockroft-Walton-type injectors, a drift-tube linac (DTL) and a side-coupled linac (CCL). These systems are approaching 40 years of age and a project to re-establish high-power capability and to extend the lifetime is underway. Many of the present beam diagnostic systems are difficult to maintain, and the original beam position monitors don't provide any data at all. These deficiencies hamper beam tuning and trouble-shooting efforts. One thrust of the refurbishment project is to restore reliable operation of the diagnostic systems. This paper describes the present diagnostics systems and their limitations and the envisaged next-generation systems. The emphasis will be on the uses and requirements for the systems rather than the solutions and engineering aspects of the refurbishment.

  12. Physics at neutrino factories

    CERN Document Server

    Peach, Kenneth J

    2001-01-01

    There is increasing interest in using intense neutrino beams from a high-energy muon storage ring-the Neutrino Factory-to make precise measurements of the lepton mixing matrix, including the T-violating phase, as well as a diverse programme of other physics.

  13. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  14. Neutrinos: from the Workshop to the Factory

    CERN Multimedia

    2001-01-01

    Over the next 5 years much work will be done to reach a theoretical and practical description of a neutrino factory. How could this project turn out to be an interesting future option for CERN? Neutrino beams travelling from CERN to the Canary Islands? And to the Svalbard archipelago in Norway? Or even to the Pyhaesalmi Mine in Finland? Why neutrinos? And why so far? The answers provide one of CERN's next challenging options: the construction of a high-energy muon storage ring to provide neutrino beams. This project, nicknamed 'neutrino factory', now figures in CERN's middle term plan as a recognized and supported research and development project. International collaborations, with other European laboratories and also with America and Japan, are now being set up. Long baseline locations for neutrino oscillations studies at a CERN based neutrino factory. Early in its history, LEP established that there exist just three kinds of light neutrinos, those associated with the electron, muon, and tau leptons. For a...

  15. Assessment of air pollution and its effects on the health status of the workers in beam rolling mills factory (Iran National Steel Industrial Group from Ahvaz-Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2009-01-01

    Full Text Available Background: Air pollutants of iron- and steel-making operations have historically been an environmental and health hazard. These pollutants include gaseous substances such as sulfur oxide, nitrogen dioxide, and carbon monoxide. The Iran National Steel Industrial Group beam rolling mills factory has two production lines viz. line 630 and line 650, with different beam production capabilities and is capable of producing different types of beams. Materials and Methods: A retrospective cross-sectional study on 400 workers in different exposure levels to environmental pollution was performed during 2005 to determine the mean value of respirable particulate matter (RPM concentrations and its effects on the health status of workers. To elicit information regarding the health status of the worker, the National Institute for Occupational Safety and Health standard questionnaire was used. Fisher′s exact test was performed to assess the relative risk (RR of exposure to air pollution on cardiovascular diseases, chest tightness, cough, difficulty in retention, i.e. loss of memory, tension, occupational fatigue, and occupational stress in exposed workers. Results: There was significant difference in RPM pollution level between two product lines. The RR of exposure to air pollution on cardiovascular diseases, chest tightness, cough, difficulty in retention, i.e. loss of memory, tension, occupational fatigue, and occupational stress in exposed workers were 2.78, 2.44, 2.15, 1.92, 1.57, 3.90, and 2.09, respectively.

  16. Extracting respiratory signals from thoracic cone beam CT projections

    CERN Document Server

    Yan, Hao; Yin, Wotao; Pan, Tinsu; Ahmad, Moiz; Mou, Xuanqin; Cervino, Laura; Jia, Xun; Jiang, Steve B

    2012-01-01

    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising tech...

  17. Proceedings of the meeting on the planning of the computer control and data processing system in the photon factory project

    International Nuclear Information System (INIS)

    In the photon factory for synchrotron radiation experiments, a computer control and data processing system is required for efficient utilization of the factory. Reports made in the meeting oriented as above are presented individually, reflecting various aspects of joint-use computer system and its technological advances. (Mori, K.)

  18. Projecting light beams with 3D waveguide arrays

    CERN Document Server

    Crespi, Andrea

    2016-01-01

    Free-space light beams with complex intensity patterns, or non-trivial phase structure, are demanded in diverse fields, ranging from classical and quantum optical communications, to manipulation and imaging of microparticles and cells. Static or dynamic spatial light modulators, acting on phase or intensity of an incoming light wave, are the conventional choices to produce beams with such non-trivial characteristics. However, interfacing these devices with optical fibers or integrated optical circuits often requires difficult alignment or cumbersome optical setups. Here we explore theoretically and with numerical simulations the potentialities of directly using the output of engineered three-dimensional waveguide arrays, illuminated with linearly polarized light, to project light beams with peculiar structures. We investigate through a collection of illustrative configurations the far field distribution, showing the possibility to achieve orbital angular momentum, or to produce elaborate intensity or phase pa...

  19. Slime Factory.

    Science.gov (United States)

    Fowler, Marilyn L.

    1992-01-01

    Describes a classroom activity using slime, a colloid: it behaves like both a solid and liquid. Explains how slime can be produced from guar gum. An activity where students work in teams and become a slime factory is presented. (PR)

  20. Perspectives for Muon Colliders and Neutrino Factories

    CERN Document Server

    Bonesini, M

    2016-01-01

    High brilliance muon beams are needed for future facilities such as a Neutrino Factory, an Higgs-factory or a multi-TeV Muon Collider. The R&D path involves many aspects, of which cooling of the incoming muon beams is essential.

  1. The Invention Factory

    Science.gov (United States)

    Speitel, Thomas W.; Scott, Neil G.; Gabrielli, Sandy D.

    2007-01-01

    The Invention Factory is a nontraditional youth-based, after-school program in Honolulu that teaches information technology and mechanics to teenagers through interactive, hands-on projects that improve human computer interaction for individuals with disabilities. One objective of the program is to stimulate interest in science and engineering…

  2. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 109 electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE's National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE's evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc

  3. Environmental assessment -- Proposed neutrino beams at the Main Injector project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The US Department of Energy (DOE) proposes to build a beamline on the Fermi National Accelerator Laboratory (Fermilab) site to accommodate an experimental research program in neutrino physics. The proposed action, called Neutrino Beams at the Main Injector (NuMI), is to design, construct, operate and decommission a facility for producing and studying a high flux beam of neutrinos in the energy range of 1 to 40 GeV (1 GeV is one billion or 10{sup 9} electron volts). The proposed facility would initially be dedicated to two experiments, COSMOS (Cosmologically Significant Mass Oscillations) and MINOS (Main Injector Neutrino Oscillation Search). The neutrino beam would pass underground from Fermilab to northern Minnesota. A tunnel would not be built in this intervening region because the neutrinos easily pass through the earth, not interacting, similar to the way that light passes through a pane of glass. The beam is pointed towards the MINOS detector in the Soudan Underground Laboratory in Minnesota. Thus, the proposed project also includes construction, operation and decommissioning of the facility located in the Soudan Underground Laboratory in Minnesota that houses this MINOS detector. This environmental assessment (EA) has been prepared by the US Department of Energy (DOE) in accordance with the DOE`s National Environmental Policy Act (NEPA) Implementing Procedures (10 CFR 1021). This EA documents DOE`s evaluation of potential environmental impacts associated with the proposed construction and operation of NuMI at Fermilab and its far detector facility located in the Soudan Underground Laboratory in Minnesota. Any future use of the facilities on the Fermilab site would require the administrative approval of the Director of Fermilab and would undergo a separate NEPA review. Fermilab is a Federal high-energy physics research laboratory in Batavia, Illinois operated on behalf of the DOE by Universities Research Association, Inc.

  4. Status of Beam Line Detectors for the BigRIPS Fragment Separator at RIKEN RI Beam Factory: Issues on High Rates and Resolution

    Science.gov (United States)

    Sato, Yuki; Fukuda, Naoki; Takeda, Hiroyuki; Kameda, Daisuke; Suzuki, Hiroshi; Shimizu, Yohei; Ahn, DeukSoon; Murai, Daichi; Inabe, Naohito; Shimaoka, Takehiro; Tsubota, Masakatsu; Kaneko, Junichi H.; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi; Kumagai, Hidekazu; Murakami, Hiroyuki; Sato, Hiromi; Yoshida, Koichi; Kubo, Toshiyuki

    A multiple sampling ionization chamber (MUSIC) and parallel-plate avalanche counters (PPACs) were installed within the superconducting in-flight separator, named BigRIPS, at the RIKEN Nishina Center for particle identification of RI beams. The MUSIC detector showed negligible charge collection inefficiency from recombination of electrons and ions, up to a 99-kcps incidence rate for high-energy heavy ions. For the PPAC detectors, the electrical discharge durability for incident heavy ions was improved by changing the electrode material. Finally, we designed a single crystal diamond detector, which is under development for TOF measurements of high-energy heavy ions, that has a very fast response time (pulse width <1 ns).

  5. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  6. Future e+ e- Flavor Factories: accelerator challenges

    CERN Document Server

    Biagini, M E

    2008-01-01

    Operation of the B-Factories (PEP-II and KEKB) has been very successful, both having exceeded their design peak and integrated luminosity and provided a huge amount of good data to the experiments. Proposal for upgrades, in order to achieve about two order of magnitude larger luminosity, are in progress in Japan, with Super-KEKB, and in Europe, with SuperB. Very high beam intensity, very short bunch length and low Interaction Point beta-functions are the key points of the Japanese design, very challenging for the hardware components (RF, vacuum). On the other hand SuperB exploits a new collision scheme, namely large Piwinski angle and "crab waist", which will allow to reach a luminosity two order of magnitude larger without increasing beam currents and decreasing bunch lengths. In this talk the present status of the two projects will be reviewed.

  7. La neutrino factory del CERN e i problemi radiologici dell'annesso proton driver

    CERN Document Server

    Bressan, Beatrice Alessandra

    2001-01-01

    The thesis, La Neutrino Factory del CERN e i problemi radiologici dell’annesso proton driver (CERN Neutrino Factory and the radiological problems of the annex proton driver), deals with the new particle accelerators for the post LHC (Large Hadron Collider) era. The first part of the work describes these innovative accelerators with particular emphasis on the muon collider which, producing μ+/μ− collisions in the 100 GeV energy range, should explore deeply the Higgs Boson physics. The second part of the thesis describes the three-step scenario proposed for the muon accelerators: Neutrino Factory, Higgs Factory and a collider with TeV C.M. energy. The third chapter explains how a Neutrino Factory works. In a Neutrino Factory the neutrino beam is generated by high-energy muons decaying in a storage ring. The muons are produced by pions generated in a target bombarded by an intense proton beam. In the CERN project, the proton beam is produced by a super conducting LINAC (with 75 Hz frequency and 2.2 GeV ene...

  8. Charged Particle Optics in Circular Higgs Factory

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yunhai [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  9. B factory collider designs and future plans

    International Nuclear Information System (INIS)

    Typical parameters of B factory colliders are presented, along with their justification. Design challenges that arise from these parameter choices are indicated. These challenges appear in both the physics design of the collider and its technological implementation. An overview of the three active B factory projects (PEP-II, KEK-B, and the CESR upgrade) is briefly given, and technical approaches adopted by the projects to deal with the design challenges are outlined. Project status and plans for the various B factory projects are also indicated. Because the problems faced by the designers of B factories are closely related to those that will be faced in the design of a Tau-Charm Factory (τcF), the solutions adopted by the B factory designers can in many cases be carried over to the τcF essentially unchanged. copyright 1996 American Institute of Physics

  10. New data postprocessing for e-beam projection lithography

    Science.gov (United States)

    Okamoto, Kazuya; Kamijo, Koichi; Kojima, Shinichi; Minami, Hideyuki; Okino, Teruaki

    2001-08-01

    In electron beam projection lithography (EPL), one of the most crucial tasks is to develop a data post-processing system, namely, a specific tool to expose a faithful pattern for every subfield on the wafer based on the pattern layout data. This system includes two basic flows. The 1st flow is common for reticle fabrication, and the 2nd flow is unique for EPL. During the 2nd flow, based on the LSI pattern data, electron optics space-charge effect correction will be automatically and rapidly executed and output to the EPL system in order to adjust parameters such as focus, magnification, rotation and astigmatism. In addition, this system should perform such tasks as segmentations of subfields (including complementary division), arrangement of stripes and reticlets, and alignment mark insertion. For proximity effect correction, we will first use a pattern shape modulation first. Shape modification at stitching boundaries is also investigated. In summary, to achieve conformable EPL delivery to customers, a new data post- processing system is developed in collaboration with some suppliers.

  11. Pion beam development for the LAMPF biomedical project

    International Nuclear Information System (INIS)

    Common to both static and dynamic patient irradiations at the LAMPF linac is the problem of maintaining good quality control of beams form a secondary channel. A major contributor to therapy beam variation has been change in electron contamination due to the change in target geometry and proton beam steering. The electron variation problem is described and a solution is presented that has been realized as a result o a new target geometry that allows some control of the electron fraction

  12. Beam Cooling and Laser Spectroscopy (BECOLA) Project at NSCL

    Science.gov (United States)

    Minamisono, K.; Barquest, B. R.; Bollen, G.; Mantica, P. F.; Morrissey, D. J.; Ringle, R.; Schwarz, S.

    2009-10-01

    A new beam line for beam cooling and laser spectroscopy (BECOLA) has been designed and is being installed at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The BECOLA beam line will be capable of accepting ions of energy up to 60 keV. A linear Radio Frequency Quadrupole (RFQ) ion trap [1] will be used to cool and bunch the beam upstream of the BECOLA beam line. This beam line will have two dedicated experimental legs, one for collinear-laser spectroscopy with the bunched beam and another for polarization by optical pumping of low energy atoms/ions for β-NMR experiments. Initial studies at NSCL will include the measurement of μ, Q and of light- and medium-mass refractory isotopes, using both the laser spectroscopy and the β-NMR technique. A frequency doubled light of Ti:Sapphire ring laser pumped by diode-pumped solid state laser will be used for spectroscopy and optical pumping for polarization. The present status of BECOLA beam line as well as the laser system will be presented. [4pt] [1] G. Bollen et al., Nucl. Instr. and Meth. A 532, 203 (2004).

  13. Single stage ECR source for the radioactive ion beam project in Louvain- la-Neuve

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M.; Vanhorenbeeck, J.; Baeten, F.; Dom, C.; Darquennes, D.; Delbar, T.; Jongen, Y.; Huyse, M.; Reusen, G.; Van Duppen, P. and others

    1989-01-01

    In 1987 the project RIB (Radioactive Ion Beam) was started at Louvain-La - Neuve, to produce and accelerate radioactive nuclei of C, N, O, F and Ne. Within the framework of this project, a single stage E.C.R. source will be built. The general scheme of the project and the design of the source are discussed.

  14. Photon Factory activity report, 1991

    International Nuclear Information System (INIS)

    The Photon Factory is a national synchrotron radiation research facility affiliated with the National Laboratory for High Energy Physics located in Tsukuba Science City. The Photon Factory consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV electron/positron storage ring, beam lines and experimental stations. All the facilities for synchrotron radiation research are open to scientists. A part of the accumulation ring of the TRISTAN main ring has been used as a synchrotron radiation source in the energy range from 5.8 to 6.5 GeV. The Photon Factory is composed of three divisions of Injector Linac, Light Source and Instrumentation. The researches of each divisions are reviewed, and the users' short reports are collected. The list of published papers with author index is also included in the publication. (K.I.) 233 refs

  15. The EB Factory Project. II. Validation with the Kepler Field in Preparation for K2 and TESS

    CERN Document Server

    Parvizi, Mahmoud; Stassun, Keivan G

    2014-01-01

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical "by eye" human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline - the Eclipsing Binary Factory (EBF) - that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler "Q3" Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ~2,600 EBs. When we require EB classification with at least 90% confidence, we find ...

  16. Projection imaging of photon beams using Čerenkov-excited fluorescence

    OpenAIRE

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H.A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-01-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in...

  17. The EB factory project. II. Validation with the Kepler field in preparation for K2 and TESS

    Energy Technology Data Exchange (ETDEWEB)

    Parvizi, Mahmoud; Paegert, Martin; Stassun, Keivan G., E-mail: mahmoud.parvizi@vanderbilt.edu [Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN 37235 (United States)

    2014-12-01

    Large repositories of high precision light curve data, such as the Kepler data set, provide the opportunity to identify astrophysically important eclipsing binary (EB) systems in large quantities. However, the rate of classical “by eye” human analysis restricts complete and efficient mining of EBs from these data using classical techniques. To prepare for mining EBs from the upcoming K2 mission as well as other current missions, we developed an automated end-to-end computational pipeline—the Eclipsing Binary Factory (EBF)—that automatically identifies EBs and classifies them into morphological types. The EBF has been previously tested on ground-based light curves. To assess the performance of the EBF in the context of space-based data, we apply the EBF to the full set of light curves in the Kepler “Q3” Data Release. We compare the EBs identified from this automated approach against the human generated Kepler EB Catalog of ∼2600 EBs. When we require EB classification with ⩾90% confidence, we find that the EBF correctly identifies and classifies eclipsing contact (EC), eclipsing semi-detached (ESD), and eclipsing detached (ED) systems with a false positive rate of only 4%, 4%, and 8%, while complete to 64%, 46%, and 32%, respectively. When classification confidence is relaxed, the EBF identifies and classifies ECs, ESDs, and EDs with a slightly higher false positive rate of 6%, 16%, and 8%, while much more complete to 86%, 74%, and 62%, respectively. Through our processing of the entire Kepler “Q3” data set, we also identify 68 new candidate EBs that may have been missed by the human generated Kepler EB Catalog. We discuss the EBF's potential application to light curve classification for periodic variable stars more generally for current and upcoming surveys like K2 and the Transiting Exoplanet Survey Satellite.

  18. Higgs factories

    CERN Document Server

    Telnov, V I

    2013-01-01

    Over the past two decades, the high energy physics community has been actively discussing and developing a number of post-LHC collider projects; however, none of them have been approved due to high costs and the uncertainty in post-LHC physics scenarios. There have been great expectations of rich new physics in the 0.1-1 TeV mass region: the Higgs boson (one or several), supersymmetry, or perhaps new particles from the dark-matter family. It has been the general consensus that the best machine for the detailed study of new physics to be discovered at the LHC would be an energy-frontier linear e+e- collider. Physicists held their breath waiting for the results from the LHC. In summer 2012, two LHC detectors, ATLAS and CMS, announced the discovery of a Higgs boson with the mass of 126 GeV and (still) nothing else. The absence of new physics in the region below 1 TeV has changed the post-LHC collider R&D priorities and triggered a zoo of project proposals for the precision study of the 126 GeV Higgs boson, p...

  19. Modeling of an Adjustable Beam Solid State Light Project

    Science.gov (United States)

    Clark, Toni

    2015-01-01

    This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.

  20. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    Institute of Scientific and Technical Information of China (English)

    YANG Min; JIN Xu-Ling; LI Bao-Lei

    2010-01-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress(FDK)algorithm,we propose a simple yet feasible method to accurately measure the projected coordinate origin.This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse.We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography(DR)projections of a group of spherical objects.Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections.Based on the experimental results,this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  1. The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR

    CERN Document Server

    Bianchin, S; Ajimura, S; Borodina, O; Fukuda, T; Hoffmann, J; Kavatsyuk, M; Koch, K; Koike, T; Kurz, N; Maas, F; Minami, S; Mizoi, Y; Nagae, T; Nakajima, D; Okamura, A; Ott, W; Özel, B; Pochodzalla, J; Rappold, C; Saito, T R; Sakaguchi, A; Sako, M; Sekimoto, M; Sugimura, H; Takahashi, T; Tamura, H; Tanida, K; Trautmann, W

    2008-01-01

    The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with $^6$Li and $^{12}$C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying $^{3}_{\\Lambda}$H, $^{4}_{\\Lambda}$H and $^{5}_{\\Lambda}$He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.

  2. Hypernuclear Spectroscopy with Stable Heavy Ion Beams and Rare-isotope Beams:HypHI Project at GSI and FAIR

    Institute of Scientific and Technical Information of China (English)

    T.R.Saito

    2009-01-01

    The international HypHI collaboration proposes to perform hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR in order to study neutron and proton rich hypernuclei and to measure directly hypernuclear magnetic moments for the first time.The project is divided into four phases.In the first Phase 0 experiment,the feasibility of precise hypernuclear spectroscopy with heavy ion beams will be demonstrated by observing π~- decay channels of ~e_ΛH,~4_ΛH and ~5_ΛHe with ~6Li projectiles at 2 AGeV impinging on a ~(12)C target.In the later Phases 1 through 3,studies of proton and neutron rich hypernuclei,direct measurements of hypernuclear magnetic moments and the spectroscopy of hypernuclei toward the nucleon drip-lines are planned.

  3. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  4. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT

    International Nuclear Information System (INIS)

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized 3He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem

  5. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    Energy Technology Data Exchange (ETDEWEB)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for

  6. Neutrino factories: realization and physics potential

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab; Zisman, M.S.; /LBL, Berkeley

    2006-12-01

    Neutrino Factories offer an exciting option for the long-term neutrino physics program. This new type of neutrino facility will provide beams with unique properties. Low systematic uncertainties at a Neutrino Factory, together with a unique and precisely known neutrino flavor content, will enable neutrino oscillation measurements to be made with unprecedented sensitivity and precision. Over recent years, the resulting neutrino factory physics potential has been discussed extensively in the literature. In addition, over the last six years the R&D necessary to realize a Neutrino Factory has been progressing, and has developed into a significant international activity. It is expected that, within about five more years, the initial phase of this R&D program will be complete and, if the community chooses to build this new type of neutrino source within the following decade, neutrino factory technology will be ready for the final R&D phase prior to construction. In this paper (1) an overview is given of the technical ingredients needed for a Neutrino Factory, (2) beam properties are described, (3) the resulting neutrino oscillation physics potential is summarized, (4) a more detailed description is given for one representative Neutrino Factory design, and (5) the ongoing R&D program is summarized, and future plans briefly described.

  7. Beam-cooling methods in the NICA project

    Science.gov (United States)

    Kostromin, S. A.; Meshkov, I. N.; Sidorin, A. O.; Smirnov, A. V.; Trubnikov, G. V.; Shurkhno, N.

    2012-07-01

    The Nuclotron-based Ion Collider Facility (NICA) is a new accelerator complex under construction at the Joint Institute for Nuclear Research (JINR) for experiments with colliding beams of heavy ions up to gold at energies as high as 4.5 × 4.5 GeV/u aimed at studying hot and dense strongly interacting nuclear matter and searching for possible indications of the mixed phase state and critical points of phase transitions. This facility comprises an ion source of the electron-string type, a 3-MeV/u linear accelerator, a 600-MeV/u superconducting booster synchrotron (Booster), a Nuclotron (upgraded superconducting synchrotron with a maximum energy of 4.5 GeV/u for ions with the charge-to-mass ratio Z/ A = 1/3), and a collider consisting of two vertically separated superconducting rings with an average luminosity of 1027 cm-2 s-1 in an energy range over 3.0 GeV/u. Beam cooling is supposed to be used in two NICA elements, the Booster, and the collider rings. The Booster is intended for the storage of 197Au31+ ions to an intensity of about 4 × 109 particles; their acceleration to the energy 600 MeV/u, which is sufficient for the complete stripping of nuclei (an increase in the injection energy and the charge state of ions makes the requirements for vacuum conditions in the Nuclotron less stringent); and the formation of the necessary beam emittance using the electron cooling system. Two independent beam-cooling systems, a stochastic one and an electron one, are supposed to be used in the collider. The parameters of the cooling systems, the optimum mode of operation for the collider, and the arrangement and design of the elements of the systems are discussed.

  8. The DAE{\\delta}ALUS Project: Rationale and Beam Requirements

    CERN Document Server

    Alonso, Jose R

    2010-01-01

    Neutrino physics focuses on huge detectors deep underground. The Sanford Lab in South Dakota will build a 300 kiloton water-Cherenkov detector 1500 meters deep for muon neutrino oscillation studies of the mass hierarchy and CP violation. This will be used by the Long Baseline experiment (LBNE) detecting few GeV neutrinos from Fermilab, 1300 km away. The DAE{\\delta}ALUS Collaboration also plans several neutrino-production sites at closer distances up to 20 km from the 300 kT detector, producing muon antineutrinos from stopped pions. The complementarity with LBNE greatly enhances results, and enthusiasm is mounting to do both experiments. DAE{\\delta}ALUS needs 0.8-1 GeV accelerators with mA proton beams. Three sites at 1.5, 8 and 20 km from the 300 kT detector require several accelerators. The cost per machine must be below 1/10 of existing megawatt-class proton machines. Beyond high power and energy, beam parameters are modest. Challenges are reliability, control of beam loss and minimizing activation. Options...

  9. Managing the Real-time Behaviour of a Particle Beam Factory The CERN Proton Synchrotron Complex and its Timing System Principles

    CERN Document Server

    Bau, J C; Lewis, J; Philippe, J

    1998-01-01

    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed a...

  10. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    Energy Technology Data Exchange (ETDEWEB)

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; /Fermilab; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  11. A Far-Field Electro-Magnetic Tractor Beam Project

    Data.gov (United States)

    National Aeronautics and Space Administration — When the project began, our intention was to develop a more accurate model of the forces that could be obtained between experimentally demonstrate...

  12. Low-energy neutrino factory design

    Energy Technology Data Exchange (ETDEWEB)

    Ankenbrandt, C.; /Fermilab /MUONS Inc., Batavia; Bogacz, S.A.; /Jefferson Lab; Bross, A.; Geer, S.; Johnstone, C.; Neuffer, D.; Popovic, M.; /Fermilab

    2009-07-01

    The design of a low-energy (4 GeV) neutrino factory (NF) is described, along with its expected performance. The neutrino factory uses a high-energy proton beam to produce charged pions. The {pi}{sup {+-}} decay to produce muons ({mu}{sup {+-}}), which are collected, accelerated, and stored in a ring with long straight sections. Muons decaying in the straight sections produce neutrino beams. The scheme is based on previous designs for higher energy neutrino factories, but has an improved bunching and phase rotation system, and new acceleration, storage ring, and detector schemes tailored to the needs of the lower energy facility. Our simulations suggest that the NF scheme we describe can produce neutrino beams generated by {approx} 1.4 x 10{sup 21} {mu}{sup +} per year decaying in a long straight section of the storage ring, and a similar number of {mu}{sup -} decays.

  13. Photon Factory activity report, 1995

    International Nuclear Information System (INIS)

    The Photon Factory at the National Laboratory for High Energy Physics is a national facility for scientific research utilizing synchrotron radiation. Although the Photon Factory operator the linear injector, two light sources including the 2.5 GeV storage ring and the 6.5 GeV TRISTAN accumulation Ring as well as a major fraction of their beamlines and experimental station. This report is covered the period from October 1994 to September 1995. The total number of proposals by this PAC was 399 in 1995. Facility development projects currently in progress include the following, TRISTAN Super Light Facility (TSLF) project, VUV-FEL project, KEKB project and Slow-positron Source. This report contents outline of the Photon Factory, introduction, scientific disciplines, electronic properties of condensed matters, atomic and molecular science, X-ray imaging, radiobiology using synchrotron radiation, structural properties of condensed matters, structural properties of solid surfaces and adsorbates, structure and function of proteins, theoretical researches, experimental facilities, beamlines, new instrumentation, AR Upgrade, collaborations, projects, user's short reports, list of published papers 1994/95. (S.Y.)

  14. Photon Factory activity report, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Photon Factory at the National Laboratory for High Energy Physics is a national facility for scientific research utilizing synchrotron radiation. Although the Photon Factory operator the linear injector, two light sources including the 2.5 GeV storage ring and the 6.5 GeV TRISTAN accumulation Ring as well as a major fraction of their beamlines and experimental station. This report is covered the period from October 1994 to September 1995. The total number of proposals by this PAC was 399 in 1995. Facility development projects currently in progress include the following, TRISTAN Super Light Facility (TSLF) project, VUV-FEL project, KEKB project and Slow-positron Source. This report contents outline of the Photon Factory, introduction, scientific disciplines, electronic properties of condensed matters, atomic and molecular science, X-ray imaging, radiobiology using synchrotron radiation, structural properties of condensed matters, structural properties of solid surfaces and adsorbates, structure and function of proteins, theoretical researches, experimental facilities, beamlines, new instrumentation, AR Upgrade, collaborations, projects, user`s short reports, list of published papers 1994/95. (S.Y.)

  15. Photon Factory activity report, 1988

    International Nuclear Information System (INIS)

    Since the foundation of Photon Factory a decade age, it has played an important role as a unique synchrotron X-ray radiation source in Japan. Installation of various insertion devices, storage of intense positron beam and reduction of beam emittance were the substantial achievements in the last several years. The exploitation of the TRISTAN Accumulation Ring as a synchrotron radiation source has paved the way for a new potential of development. All these activities have brought about the increase of beamlines and the expansion of scientific fronts. Third International Conference on Synchrotron Radiation Instrumentation held in Tsukuba was one of the most highlighted events for the facility. In coming years, it is intended to open new research fields using the promising single bunch beam and circularly polarized wiggler radiation. The TRISTAN Main Ring also will be applied to synchrotron radiation research. The Photon Factory in a national synchrotron radiation research facility affiliated to the National Laboratory for High Energy Physics, and it consists of a 2.5 GeV electron linac, a 2.5 GeV storage ring as a synchrotron light source, beam lines and experimental stations. The operation, improvement and development in respective departments are reported. (Kako, I.)

  16. Concept of the ESO-VLT Project-Beam Combination

    Science.gov (United States)

    Merkle, F.

    The optical configuration of the VLT is based on a linear array of 4 independently mounted 8 m telescopes. They can be operated either independently or in various combination schemes. In the latter case the light collected with the unit telescopes is fed via beam combination optics to the combined focus. The coherent combination path opens long baseline interferometry with a resolution span of approx. 0.5 marcsec in the blue to approx. 30 marcsec at 20 μm wavelength in the case of a 150 m baseline.

  17. A simplified approach for the generation of projection data for cone beam geometry

    Indian Academy of Sciences (India)

    Tushar Roy; P S Sarkar; Amar Sinha

    2011-04-01

    To test a developed reconstruction algorithm for cone beam geometry, whether it is transmission or emission tomography, one needs projection data. Generally, mathematical phantoms are generated in three dimensions and the projection for all rotation angles is calculated. For non-symmetric objects, the process is cumbersome and computation intensive. This paper describes a simple methodology for the generation of projection data for cone beam geometry for both transmission and emission tomographies by knowing the object’s attenuation and/or source spatial distribution details as input. The object details such as internal geometrical distribution are nowhere involved in the projection data calculation. This simple approach uses the pixilated object matrix values in terms of the matrix indices and spatial geometrical coordinates. The projection data of some typical phantoms (generated using this approach) are reconstructed using standard FDK algorithm and Novikov’s inversion formula. Correlation between the original and reconstructed images has been calculated to compare the image quality.

  18. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  19. Photon stimulated desorption (PSD) measurements of extruded copper and of welded copper beam chambers for the PEP II asymmetric B-factory

    Energy Technology Data Exchange (ETDEWEB)

    Foerster, C.L.; Lanni, C. [Brookhaven National Lab., Upton, NY (United States). NSLS; Perkins, C. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Calderon, M.; Barletta, W. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    PEP II is being built as a higher luminosity electron-positron collider, with asymmetric beams of 9 GeV and 3.1 GeV, having maximum currents of 3.0 A. Based on the previous work on the NSLS VUV beamline U10B, a copper was selected for construction of UHV beam chambers and absorbers to minimize the pressure rise from synchrotron radiation during operation. An extruded beam chamber and a welded beam chamber were fabricated from the selected copper for PSD measurements on NSLS X-ray beamline X28A. The chambers were exposed to white light with a critical energy of 5 KeV, both direct and through a 0.010 inch thick Beryllium filter. Each chamber was exposed to a dose of approximately 10{sup 23} photons per meter at an incidence angle of 25 mrad, after argon glow conditioning and a 150 C vacuum bake. Desorption yields for H{sub 2} CO, CO{sub 2}, and CH{sub 4} are reported as a function of accumulated photon flux, critical energy, and chamber preparation. The results are compared with the previous work on beamline U10B and with those of other published work for copper.

  20. Photon Factory activity report, 1987

    International Nuclear Information System (INIS)

    The Photon Factory made great strides in 1987. The low emittance operation of the PF ring was achieved in March, and resulted favorably in the increase of brilliance from 2 to 20 times for all the beam lines with high beam stability. At the same time, the installation of inserted devices was under way for all available straight sections of the ring. A 54-pole wiggler-undulator has been commissioned at BL-16. The devices to be inserted in the near future are a multipole wiggler for BL-13, an undulator for BL-19, and an undulator for circular polarized radiation at BL-28. The construction of beam lines continued, and four new beam lines, BL-6, BL-9, BL-16 and BL-17, are now in operation, BL-13 and BL-19 are under construction, and BL-3, BL-5, BL-18, BL-20 and BL-28 are in the design stage. Since its inauguration with four beam lines in 1982, the Photon Factory has grown rapidly, and approaches the goal of operating the PF ring with positrons in full use of its 24 beam ports and the straight sections for inserted devices. The total operation time was limited to 3,000 hours by the budget for fiscal year 1987, and about 80 % of the operation hours were devoted to the experiments of users. The nearly perfect operation of the 400 m long linac has continued in 1987, and has supplied both electrons and positrons to the TRISTAN collision experiment. The light source of a 2.5 GeV electron storage ring was normally operated. (Kako, I.)

  1. B-Factory Interaction Region Design

    Science.gov (United States)

    Sullivan, M.

    1997-05-01

    High luminosity B factories are generally high current (1-3 A) e^+e^- storage ring accelerators that operate at a center-of-mass energy equal to the mass of the Υ4S resonance (10.58 GeV). The high beam currents are achieved by storing a large number of bunches (several hundred to several thousand) into each beam. Two designs, the ones located at SLAC and KEK, also have asymmetric beam energies. This imparts a boost to the nearly stationary B mesons formed from the decay of the Υ4S and allows precision vertex tracking detectors to look for a difference between the decay profiles of the matter and anti-matter B mesons thereby observing a violation of CP. Bringing these stored beams into collision is one of the major challenges of any B factory design. In order to achieve high luminosity the beams must be tightly focused. This pushes the final focusing elements close enough to the interaction point to be inside the solenoidal field of the physics detector. In addition, beam related detector backgrounds from synchrotron radiation and scattered beam particles must be kept below an acceptable level. The major B factory designs at Cornell University, KEK, and SLAC have all addressed these problems in various ways that depend on specific accelerator design decisions. This presentation will describe the accelerator choices that affect the interaction region design of a B factory and discuss how the above designs address the challenges posed by a high luminosity B factory.

  2. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  3. A generalized reverse projection method for fan beam geometry under partially coherent illumination

    Science.gov (United States)

    Wu, Z.; Wang, Z. L.; Gao, K.; Zhang, K.; Ge, X.; Wang, D. J.; Wang, S. H.; Chen, J.; Pan, Z. Y.; Zhu, P. P.; Wu, Z. Y.

    2014-02-01

    In this paper, a generalized reverse projection (RP) method for grating-based fan beam phase contrast imaging is presented. Compared to the original RP method, rays rather than projection images are taken into account during the information extraction process. We also discuss the influence of partial coherence on the extracted information. Theoretical derivations and numerical simulations are performed to confirm the validity of the method.

  4. The radioactive ion beam project at VECC, Kolkata – A status report

    Indian Academy of Sciences (India)

    Alok Chakrabarti

    2002-12-01

    A project to build an ISOL-post accelerator type of radioactive ion beam (RIB) facility has been undertaken at VECC, Kolkata. The funding for the first phase of the project was approved in August 1997. This phase will be the R&D phase and will be completed by December 2003. The present status of development of the various sub-systems of the RIB facility will be discussed.

  5. Investigation of respirable particulate matter pollutants on air-breathing zone workers in the Beam Rolling Mills Factory (Iran National Steel Industrial Group, Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2008-01-01

    Full Text Available Workers of iron and steel factories are exposed to a wide range of pollutants depending on the particular process, the materials involved, the effectiveness of monitoring and the control measures. Adverse effects are determined by the physical state and propensities of the pollutant involved, the intensity and duration of the exposure, the extent of pollutant accumulation in the body and the sensitivity of the individual to its effects. The main aim of this study is to assess the levels of the indoor respirable particulate matter (RPM and to compare the health condition of exposed workers, with nonexposed employees group. Line 630 has only one furnace of 40 tons and line 650 has two furnaces of 20 and 40 tons capacity due to which the mean of the RPM concentrations in the breathing zone was significantly different ( P < 0.05 in line 650 but not in line 630 as compared with National Institute for Occupational Safety and Hygiene′s (3 mg/m 3 . The average of the RPM concentrations in production line 650 is higher than that of production line 630, with the 95% confidence interval in saw cabin station number 1 of production line 650.

  6. Impact of polarized e{sup -} and e{sup +} beams at a future linear collider and a Z-factory. Pt. II. Physics beyond the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    Polarization of both beams at a future Linear Collider would be ideal for facing both expected and unforeseen challenges in searches for new physics: fixing the chirality of the couplings and enabling the higher precision for the polarization measurement itself as well as for polarization-dependent observables, it provides a powerful tool for studying new physics at the future Linear Collider, such as discovering new particles, analyzing signals model-independently and resolving precisely the underlying model. Techniques and engineering designs for a polarized-positron source are well advanced. Potential constraints concerning luminosity, commissioning and operating issues appear to be under control. This article mainly treats with the impact of polarized beams on physics beyond the Standard Model. (orig.)

  7. P.I.A.F.E. project: production of highly charged particles for radioactive ion beams

    International Nuclear Information System (INIS)

    The transformation of a mono-charged ion beam into a multicharged ion beam is an important problem in the projects of radioactive beams acceleration. This transformation must be performed with the best possible efficiency and in the shortest possible time to avoid the loss of particles by radioactive degenerescence. A ionization method using an electron cyclotron resonance (ECR) source is proposed. It consists in the fast capture by the ECR plasma of the radioactive elements injected inside this source in the form of a mono-charged ion beam. This method gives good results (2 to 6% efficiency to move from the 1+ to the 9+ charge state) for the ionization of alkaline elements, rare and metallic gases, with fast times of response allowing the ionization of radioactive products with a lifetime inferior to 1 s. (J.S.)

  8. Design of a support system for the vertical beam transfer lines of the ELENA project

    CERN Document Server

    Bozhkov, Kristiyan

    2016-01-01

    This report aims to present the design of a support system for the vertical beam transfer lines of the ELENA project. Two different designs can be found in this report. The mechanical strength and the structure performance of the support are analysed by a finite element model.

  9. Recent radioactive ion beam program at RIKEN and related topics

    Indian Academy of Sciences (India)

    Akira Ozawa

    2001-08-01

    Recent experimental programs at RIKEN concerning RI beams are reviewed. RIKEN has the ring cyclotron (RRC) with high intense heavy-ion beams and large acceptance fragment separator, RIPS. The complex can provide high intense RI-beams. By using the high intense RI-beams, a variety of experiments have been done. Recently, nuclear structure for unstable nuclei has been paid much attention. In special, disappearance and appearance of magic numbers are discussed experimentally and theoretically. Thus, in this review, related experiments concerning disappearance and appearance of magic numbers are described. Finally, future project in RIKEN, RI-beam factory, is introduced briefly.

  10. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  11. Job and Task Analysis project at Brookhaven National Laboratory's high flux beam reactor

    International Nuclear Information System (INIS)

    The presenter discussed the Job and Task Analysis (JTA) project conducted at Brookhaven National Laboratory's High Flux Beam Reactor (HFBR). The project's goal was to provide JTA guidelines for use by DOE contractors, then, using the guidelines conduct a JTA for the reactor operator and supervisor positions at the HFBR. Details of the job analysis and job description preparation as well as details of the task selection and task analysis were given. Post JTA improvements to the HFBR training programs were covered. The presentation concluded with a listing of the costs and impacts of the project

  12. A fast GPU-based approach to branchless distance-driven projection and back-projection in cone beam CT

    Science.gov (United States)

    Schlifske, Daniel; Medeiros, Henry

    2016-03-01

    Modern CT image reconstruction algorithms rely on projection and back-projection operations to refine an image estimate in iterative image reconstruction. A widely-used state-of-the-art technique is distance-driven projection and back-projection. While the distance-driven technique yields superior image quality in iterative algorithms, it is a computationally demanding process. This has a detrimental effect on the relevance of the algorithms in clinical settings. A few methods have been proposed for enhancing the distance-driven technique in order to take advantage of modern computer hardware. This paper explores a two-dimensional extension of the branchless method proposed by Samit Basu and Bruno De Man. The extension of the branchless method is named "pre-integration" because it achieves a significant performance boost by integrating the data before the projection and back-projection operations. It was written with Nvidia's CUDA platform and carefully designed for massively parallel GPUs. The performance and the image quality of the pre-integration method were analyzed. Both projection and back-projection are significantly faster with preintegration. The image quality was analyzed using cone beam image reconstruction algorithms within Jeffrey Fessler's Image Reconstruction Toolbox. Images produced from regularized, iterative image reconstruction algorithms using the pre-integration method show no significant impact to image quality.

  13. Photon Factory activity report, 1990

    International Nuclear Information System (INIS)

    The Photon Factory has grown at a considerable rate, and 600 experiments are carried out in 1991, while the number of users is now 2300 including about 500 from industrial sectors. The use of synchrotron radiation increased from fundamental research to industrial development. The development at the Photon Factory is supported by the capability of the accelerators. At present, the 2.5 GeV PF ring is operated with positrons at the initial beam current of 350 mA. The total operation time was 3500 hours in the fiscal year 1990. The development of an avalanche mode photodiode, the observation of quantum beat in the experiment of nuclear Bragg scattering, the measurement of photo-electron and photo-ion spectroscopy were carried out. The conversion of TRISTAN main ring to an ultrahigh brilliance and high coherence source is planned for the future. The annual PF Symposium was held, and Professor H. Winick gave the lecture 'Ultrahigh brightness and coherent radiation from large storage rings'. In this report, the outline of the Photon Factory and the activities in Divisions of Injector Linac, Light Source and Instrumentation are described. (K.I.)

  14. Projection imaging of photon beams using Čerenkov-excited fluorescence

    Science.gov (United States)

    Glaser, Adam K.; Davis, Scott C.; Voigt, William H. A.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2013-02-01

    Full 3D beam profiling and quality assurance (QA) of therapeutic megavoltage linear accelerator (LINAC) x-ray photon beams is not routinely performed due to the slow point-by-point measurement nature of conventional scanning ionization chamber systems. In this study we explore a novel optical-based dose imaging approach using a standard commercial camera, water tank, and fluorescent dye, which when excited by the Čerenkov emission induced by the radiation beam, allows 2D projection imaging in a fast timeframe, potentially leading toward 3D tomographic beam profiling. Detailed analysis was carried out to optimize the imaging parameters in the experimental setup. The results demonstrate that the captured images are linear with delivered dose, independent of dose rate, and comparison of experimentally captured images to a reference dose distribution for a 4 × 4 cm2 6 MV x-ray photon beam yielded results with improved accuracy over a previous study which used direct imaging and Monte Carlo calibration of the Čerenkov emission itself. The agreement with the reference dose distribution was within 1-2% in the lateral direction, and ±3% in the depth direction. The study was restricted to single 2D image projection, with the eventual goal of creating full 3D profiles after tomographic reconstruction from multiple projections. Given the increasingly complex advances in radiation therapy, and the increased emphasis on patient-specific treatment plans, further refinement of the technique could prove to be an important tool for fast and robust QA of x-ray photon LINAC beams.

  15. Roseires Dam Heightening Project in Sudan Works of Pre-tensioned Pre-stressed Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    黄志敏

    2014-01-01

    Works of pre-tensioned and pre-stressed concrete beams at dam crest of Roseires Dam Heightening Project located on Nile Riv-er in the Country of Sudan was in a big quantity, complexity and tight completion time. For pre-tensioning operation, frame type pedestal was built. Strict work method statement and applicable work procedure were also developed to assure high work quality and timely completion. All these have become precious experience in the field of pre-tensioning and pre-stressing beams.

  16. Pion production for neutrino factories and muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, N.V.; Guidman, K.K.; Strait, J.B.; Striganov, S.I.; /Fermilab

    2009-12-01

    Optimization of pion and muon production/collection for neutrino factories and muon colliders is described along with recent developments of the MARS15 code event generators and effects influencing the choice of the optimal beam energy.

  17. Low-contrast visualization in megavoltage cone-beam CT at one beam pulse per projection using thick segmented scintillators

    Science.gov (United States)

    El-Mohri, Youcef; Antonuk, Larry E.; Zhao, Qihua; Choroszucha, Richard B.; Wang, Yi

    2010-04-01

    Megavoltage cone-beam computed tomography (MV CBCT) using an electronic portal imaging device (EPID) is a highly promising technique for providing valuable volumetric information for image guidance in radiotherapy. However, active matrix flat-panel imagers (AMFPIs), which are the established gold standard in portal imaging, require a relatively large dose to create images that are clinically useful. This is a consequence of the inefficiency of the phosphor screens employed in conventional MV AMFPIs, which utilize only ~2% of the incident radiation at 6 MV. Fortunately, the incorporation of thick, segmented scintillators can significantly improve the performance of MV AMFPIs, leading to improved image quality for projection imaging at extremely low dose. It is therefore of interest to explore the performance of such thick scintillators for MV CBCT toward the goal of soft-tissue contrast visualization. In this study, prototype AMFPIs incorporating segmented scintillators based on CsI:Tl and BGO crystals with thicknesses ranging from ~11 to 25 mm have been constructed and evaluated. Each prototype incorporates a detector consisting of a matrix of 120 × 60 scintillator elements separated by reflective septal walls, with an element-to-element pitch of 1.016 mm, coupled to an overlying ~1 mm thick Cu plate. The prototype AMFPIs were incorporated into a bench-top CBCT system, allowing the acquisition of tomographic images of a contrast phantom using a 6 MV radiotherapy photon beam. The phantom consists of a water-equivalent (solid water) cylinder, embedded with tissue-equivalent inserts having electron densities, relative to water, varying from ~0.43 to ~1.47. Reconstructed images of the phantom were obtained down to the lowest available dose (one beam pulse per projection), corresponding to a total scan dose of ~4 cGy using 180 projections. In this article, reconstructed images, contrast, noise and contrast-to-noise ratio for the tissue-equivalent objects using the

  18. Railways Factory in Resita

    Directory of Open Access Journals (Sweden)

    Cornel Iacob-Mare

    2013-09-01

    Full Text Available This paper proposes an exemption Analysis railway factory in Resita impressed having experience and also provide some technical characteristics of freight wagons representative technology, used to transport products made in factories in ReşiŃa.

  19. PCs in the factory

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication.PCs have become as essential to the factory environment as they are to the office environment. This in-depth report examines how specially adapted PCs and peripherals are being established in Factory Process Control and Reporting. The report covers: * Hardware and Software* Typical Applications* Implementation Issues* Case Studies and Real Applications

  20. Handbook factory planning and design

    CERN Document Server

    Wiendahl, Hans-Peter; Nyhuis, Peter

    2015-01-01

    This handbook introduces a methodical approach and pragmatic concept for the planning and design of changeable factories that act in strategic alliances to supply the ever-changing needs of the global market. In the first part, the change drivers of manufacturing enterprises and the resulting new challenges are considered in detail with focus on an appropriate change potential. The second part concerns the design of the production facilities and systems on the factory levels work place, section, building and site under functional, organisational, architectural and strategic aspects keeping in mind the environmental, health and safety aspects including corporate social responsibility. The third part is dedicated to the planning and design method that is based on a synergetic interaction of process and space. The accompanying project management of the planning and construction phase and the facility management for the effective utilization of the built premises close the book. -        Concise overview o...

  1. The Nearby Supernova Factory

    CERN Document Server

    Wood-Vasey, W M; Lee Byung Cheol; Loken, S; Nugent, P; Perlmutter, S; Siegrist, J L; Wang, L; Antilogus, P; Astier, Pierre; Hardin, D; Pain, R; Copin, Y; Smadja, G; Gangler, E; Castera, A; Adam, G; Bacon, R; Lemonnier, J P; Pecontal, A; Pécontal, E; Kessler, R

    2004-01-01

    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03

  2. Development of neutron beam projects at the University of Texas TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    Recently, the UT-TRIGA research reactor was licensed and has become fully operational. This reactor, the first new US university reactor in 17 years, is the focus of a new reactor laboratory facility which is located on the Balcones Research Center at The University of Texas at Austin. The TRIGA Mark II reactor is licensed for 1.1 MW steady power operation, 3 dollar pulsing, and includes five beam ports. Various neutron beam-line projects have been assigned to each beam port. Neutron Depth Profiling (NDP) and the Texas Cold Neutron Source (TCNS) are close to completion and will be operational in the near future. The design of the NDP instrument has been completed, a target chamber has been built, and the thermal neutron collimator, detectors, data acquisition electronics, and data processing computers have been acquired. The target chamber accommodates wafers up to 12'' in diameter and provides remote positioning of these wafers. The design and construction of the TCNS has been completed. The TCNS consists of a moderator (mesitylene), a neon heat pipe, a cryogenic refrigerator, and neutron guide tubes. In addition, fission-fragment research (HIAWATHA), Neutron Capture Therapy, and Neutron Radiography are being pursued as projects for the other three beam ports. (author)

  3. Simultaneous Hand-Eye-Workspace and Camera Calibration using Laser Beam Projection

    OpenAIRE

    Jwu-Sheng Hu; Yung-Jung Chang

    2014-01-01

    This work presents a novel calibration technique capable of simultaneously calibrating a camera’s intrinsic parameters and hand-eye-workspace relations. In addition to relaxing the requirement of a precise calibration reference to achieve manipulator accuracy, the proposed method functions when the hand is not in the view field of the eye. The calibration method uses a laser pointer mounted on the hand to project laser beams onto a planar object, which serves as the working plane. Collected l...

  4. Energy balance of a cheese factory and preliminary project for biogas production; Bilan energetique de la fromagerie et avant-projet d'installation de biogaz. Richard Bettex - 1487 Champtauroz (VD)

    Energy Technology Data Exchange (ETDEWEB)

    Membrez, Y. [Erep SA, Aclens (Switzerland); Wellinger, A. [Nova Energie GmbH, Aadorf (Switzerland); Bonjour, B. [Sorane SA, Lausanne (Switzerland)

    2002-07-01

    This report is a feasibility study for a biogas production unit adapted to a farm in Champtauroz in Switzerland, and a dual purpose power plant generating thermal and electric energy from the biogas according to the energy demand of the cheese factory attached to the farm. Typically 5*10{sup 5} m{sup 3} per year of biogas should be extracted from the manure of around 1,500 farm animals. The methane would be produced by a continuously operated digestor. The energy demand of the cheese factory, mainly thermal energy for the goat milk transformation process and electric power for the milk refrigeration, is measured in details and its annual profile is estimated. This demand is practically independent from the outdoor temperature as long as this temperature is higher than 10 {sup o}C. The report also includes a cost estimate for the whole project, functional schematics of the biogas production unit and of the power plant, and several diagrams displaying the heat and electric power demands of the cheese factory as a function of parameters like the cheese production and the quantity of refrigerated milk.

  5. Apiary B-Factory separation scheme

    International Nuclear Information System (INIS)

    A magnetic beam-separation scheme for an asymmetric-energy B-Factory based on the SLAC electron-positron collider PEP is described that has the following properties: the beams collide head-on and are separated magnetically with sufficient clearance at the parasitic crossing points and at the septum, the magnets have large beam-stay-clear apertures, synchrotron radiation produces low detector backgrounds and acceptable heat loads, and the peak β-function values and contributions to the chromaticities in the IR quadrupoles are moderate. 8 figs., 2 tabs

  6. Towards energy transparent factories

    CERN Document Server

    Posselt, Gerrit

    2016-01-01

    This monograph provides a methodological approach for establishing demand-oriented levels of energy transparency of factories. The author presents a systematic indication of energy drivers and cost factors, taking into account the interdependencies between facility and production domains. Particular attention is given to energy flow metering and monitoring. Readers will also be provided with an in-depth description of a planning tool which allows for systematically deriving suitable metering points in complex factory environments. The target audience primarily comprises researchers and experts in the field of factory planning, but the book may also be beneficial for graduate students.

  7. Photon Factory Activity Report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Photon Factory Activity Report no.12 deals with our activities in the period from October 1993 through September 1994. We operate two light sources at the Photon Factory; the 2.5-GeV Photon Factory storage ring, which is a dedicated light source, and the 6.5-GeV TRISTAN Accumulation Ring, which is parasitically used as a light source. We keep more than seventy experimental stations at two facilities, and accept experiments primarily according to approval by the Program Advisory Committee. The number of proposals to the Photon Factory has been still growing. Three-hundred eighty two proposals were approved by the PAC in FY1994, which is an increase by thirteen percent compared to the previous year. Remarkable was growth in biology proposals, particularly proposals in protein crystallography. In FY 1994, we accepted approximately 20,000 man-days as general users, and almost ten percent of them were from abroad. We always open the facility to users, not only domestic but also international. Recently we have been concentrating our effort to upgrading of the light sources and reconstruction of the experimental stations to keep the Photon Factory an attractive research facility in the forthcoming years. We have already started a program of reducing the emittance of the 2.5-GeV storage ring, which now operates with an emittance of 110 nm-rad, to 27 nm-rad by modifying the lattice, with the goal of operation at the reduced emittance in the fall of 1997. We also have conceived of a conversion of the TRISTAN Accumulation Ring to a dedicated light source of high energies. The on-going TRISTAN project will terminate by the end of 1995, and the TRISTAN Main Ring will be converted to a new B-Factory. At this moment, the TRISTAN Accumulation Ring will be disused as the injector to the Main Ring, and conversion of the AR to a dedicated light source becomes possible. (J.P.N.)

  8. Photon Factory Activity Report, 1994

    International Nuclear Information System (INIS)

    Photon Factory Activity Report no.12 deals with our activities in the period from October 1993 through September 1994. We operate two light sources at the Photon Factory; the 2.5-GeV Photon Factory storage ring, which is a dedicated light source, and the 6.5-GeV TRISTAN Accumulation Ring, which is parasitically used as a light source. We keep more than seventy experimental stations at two facilities, and accept experiments primarily according to approval by the Program Advisory Committee. The number of proposals to the Photon Factory has been still growing. Three-hundred eighty two proposals were approved by the PAC in FY1994, which is an increase by thirteen percent compared to the previous year. Remarkable was growth in biology proposals, particularly proposals in protein crystallography. In FY 1994, we accepted approximately 20,000 man-days as general users, and almost ten percent of them were from abroad. We always open the facility to users, not only domestic but also international. Recently we have been concentrating our effort to upgrading of the light sources and reconstruction of the experimental stations to keep the Photon Factory an attractive research facility in the forthcoming years. We have already started a program of reducing the emittance of the 2.5-GeV storage ring, which now operates with an emittance of 110 nm-rad, to 27 nm-rad by modifying the lattice, with the goal of operation at the reduced emittance in the fall of 1997. We also have conceived of a conversion of the TRISTAN Accumulation Ring to a dedicated light source of high energies. The on-going TRISTAN project will terminate by the end of 1995, and the TRISTAN Main Ring will be converted to a new B-Factory. At this moment, the TRISTAN Accumulation Ring will be disused as the injector to the Main Ring, and conversion of the AR to a dedicated light source becomes possible. (J.P.N.)

  9. A multiscale filter for noise reduction of low-dose cone beam projections

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B.

    2015-08-01

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  10. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels. PMID:26247344

  11. Virtual Factory Testbed

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Factory Testbed (VFT) is comprised of three physical facilities linked by a standalone network (VFNet). The three facilities are the Smart and Wireless...

  12. Factorial PD-Clustering

    CERN Document Server

    Tortora, Cristina; Summa, Mireille Gettler

    2011-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factorial PD-clustering make a linear transformation of original variables into a reduced number of orthogonal ones using a common criterion with PD-Clustering. It is demonstrated that Tucker 3 decomposition allows to obtain this transformation. Factorial PD-clustering makes alternatively a Tucker 3 decomposition and a PD-clustering on transformed data until convergence. This method could significantly improve the algorithm performance and allows to work with large dataset, to improve the stability and the robustness of the method.

  13. Automotive factory network renewal

    OpenAIRE

    Scicluna, Christopher

    2012-01-01

    The aim of this applied thesis was to plan, implement, and study the upgrading the network infrastructure in Valmet Automotive Oy, specifically in its Uusikaupunki factory. Valmet Automotive is a Finnish automotive service provider, focusing on premium vehicles, convertible roof systems and electric vehicles. The objective was to plan and implement a networking infrastructure that could support the load of a factory in full-scale production, while ensuring near-constant availability. T...

  14. Damped button electrode for B-Factory BPM system

    Energy Technology Data Exchange (ETDEWEB)

    Shintake, T.; Akasaka, N.; Obina, T.; Chin, Y.H. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    A new concept of damping of resonances in a button electrode has been proposed and tested in the BPM system for the B-Factory project at KEK (KEKB). Since a very high current beam has to be stored in the machine, even a small resonance in the ring will result in losing a beam due to multi-bunch instabilities. In a conventional button electrode used in BPMs, a TE110 mode resonance can be trapped in the gap between the electrode and the vacuum chamber. In order to damp this mode, the diameter of the electrode has been chosen to be small to increase the resonance frequency and to radiate the power into the beam pipe. In addition, an asymmetric structure is applied to extract the EM energy of the TE110 mode into the coaxial cable as the propagating TEM mode which has no cut-off frequency. Results of the computer simulations and tests with cold models are reported. The quality factor of the TE110 mode was small enough due to the radiation into the beam pipe even in the conventional electrode and the mode coupling effect due to the asymmetric shape was significant on a cavity-like TE111 mode. (author)

  15. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    CERN Document Server

    Jones, Bernard L; Miften, Moyed

    2015-01-01

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. Resu...

  16. Photo-fission for the production of radioactive beams ALTO project

    Energy Technology Data Exchange (ETDEWEB)

    Essabaa, S. E-mail: essabaa@ipno.in2p3.fr; Arianer, J.; Ausset, P.; Bajeat, O.; Baronick, J.P.; Clapier, F.; Coacolo, L.; Donzaud, C.; Ducourtieux, M.; Gales, S.; Gardes, D.; Grialou, D.; Hosni, F.; Guillemaud-Mueller, D.; Ibrahim, F.; Junquera, T.; Lau, C.; Le Blanc, F.; Lefort, H.; Le Scornet, J.C.; Lesrel, J.; Mueller, A.C.; Obert, J.; Perru, O.; Potier, J.C.; Proust, J.; Pougheon, F.; Roussiere, B.; Rouviere, N.; Sauvage, J.; Sorlin, O.; Tkatchenko, A.; Verney, D.; Waast, B.; Rinolfi, L.; Rossat, G.; Forkel-Wirth, D.; Muller, A.; Bienvenu, G.; Bourdon, J.-C.; Garvey, T.; Jacquemard, B.; Omeich, M

    2003-05-01

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups.

  17. Photo-fission for the production of radioactive beams ALTO project

    CERN Document Server

    Essabaa, S; Ausset, P; Bajeat, O; Baronick, J P; Clapier, F; Coacolo, J L; Donzaud, C; Ducourtieux, M; Galas, S; Gardes, D; Grialou, D; Hosni, F; Guillemaud-Müller, D; Ibrahim, F; Junquera, T; Lau, C; Le Blanc, F; Lefort, H; Le Scornet, J C; Lesrel, J; Müller, A C; Obert, J; Perru, O; Potier, J C; Proust, J; Pougheon, F; Roussière, B; Rouvière, N; Sauvage, J; Sorlin, O; Tkatchenko, A; Verney, D; Waast, B; Rinolfi, Louis; Rossat, G; Forkel-Wirth, Doris; Müller, A; Bienvenu, G; Bourdon, J C; Garvey, Terence; Jacquemard, B; Omeich, M

    2003-01-01

    In order to probe neutron rich radioactive noble gases produced by photo-fission, a PARRNe-1 experiment (Production d'Atomes Radioactifs Riches en Neutrons) has been carried out at CERN. The incident electron beam of 50 MeV was delivered by the LIL machine: LEP Injector Linac. The experiment allowed us to compare under the same conditions two production methods of radioactive noble gases: fission induced by fast neutrons and photo-fission. The obtained results show that the use of the electrons is a promising mode to get intense neutron rich ion beams. After the success of this photo-fission experiment, a conceptual design for the installation at IPN Orsay of a 50 MeV electron accelerator close to the PARRNe-2 device has been worked out: ALTO Project. This work has started within a collaboration between IPNO, LAL (Laboratoire de l'Accelerateur Lineaire) and CERN groups.

  18. Conceptual design of a ring beauty factory

    International Nuclear Information System (INIS)

    This paper reports on the design of the B-meson factory with an expected luminosity of 1033-1034 cm-2s-1 in the energy range of 4.5-6.5 GeV per beam under consideration at the Novosibirsk Institute of Nuclear Physics. The facility will consist of two main parts: the injector and the B-meson factory itself. A 100 m linear electron accelerator to 10 GeV was chosen as an injector. Such a linac is the prototype of the linear collider VLEPP. The injector is expected to feed the B-factory with 1010 electrons and positrons per second directly on the experimental energy. The B-meson factory itself will be about 500 m double ring with combined insertions in the interaction region. In both rings up to 20 bunches will be operated simultaneously. The beams interact one with the other at one interaction point (IP) only. Besides the opportunity to operate with a great number of bunches, an enhancement in luminosity is supposed to be achieved due to mini-beta function that results from a strong bunch length decrease, as well as due to the monochromatization collision scheme

  19. The charge breeder beam line for the selective production of exotic species project at INFN-Legnaro National Laboratories

    Science.gov (United States)

    Galatà, A.; Comunian, M.; Maggiore, M.; Manzolaro, M.; Angot, J.; Lamy, T.

    2014-02-01

    SPES (Selective Production of Exotic Species) is an INFN (Istituto Nazionale di Fisica Nucleare) project with the aim at producing and post-accelerating exotic beams to perform forefront research in nuclear physics. To allow post-acceleration of the radioactive ions, an ECR-based Charge Breeder (CB) developed on the basis of the Phoenix booster was chosen. The design of the complete beam line for the SPES-CB will be described: a system for stable 1+ beams production was included; special attention was paid to the medium resolution mass spectrometer after the CB to limit possible superposition of the exotic beams with the impurities present in the ECR plasma.

  20. Electron positron factories

    International Nuclear Information System (INIS)

    In this paper, we will first indicate the key issues in designing a B-factory and a φ-factory, and illustrate the approaches that are being followed to address them. In general, reaching the B-factory parameter regime offers the most challenges, so we will emphasize it here. Then we will consider an extrapolation of our present understanding of collider performance and assess the maximum luminosity that could be anticipated. To reach extremely high luminosity, it may be necessary to consider possibilities beyond the scope of ''standard'' approaches to collider design; a few illustrative examples are outlined. For both the present designs and the extrapolated parameters, R ampersand D activities in a few key areas are required; these areas are discussed in this paper also

  1. A method for robust segmentation of arbitrarily shaped radiopaque structures in cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Per Rugaard; Fledelius, Walther; Keall, Paul J.; Weiss, Elisabeth; Lu Jun; Brackbill, Emily; Hugo, Geoffrey D. [Department of Oncology, Aarhus University Hospital, Nr Brogade 44, 8000 Aarhus C (Denmark); Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States) and Sydney Medical School-Central, University of Sydney, NSW 2006 (Australia); Virginia Commonwealth University, Richmond, Virginia 23284 (United States)

    2011-04-15

    Purpose: Implanted markers are commonly used in radiotherapy for x-ray based target localization. The projected marker position in a series of cone-beam CT (CBCT) projections can be used to estimate the three dimensional (3D) target trajectory during the CBCT acquisition. This has important applications in tumor motion management such as motion inclusive, gating, and tumor tracking strategies. However, for irregularly shaped markers, reliable segmentation is challenged by large variations in the marker shape with projection angle. The purpose of this study was to develop a semiautomated method for robust and reliable segmentation of arbitrarily shaped radiopaque markers in CBCT projections. Methods: The segmentation method involved the following three steps: (1) Threshold based segmentation of the marker in three to six selected projections with large angular separation, good marker contrast, and uniform background; (2) construction of a 3D marker model by coalignment and backprojection of the threshold-based segmentations; and (3) construction of marker templates at all imaging angles by projection of the 3D model and use of these templates for template-based segmentation. The versatility of the segmentation method was demonstrated by segmentation of the following structures in the projections from two clinical CBCT scans: (1) Three linear fiducial markers (Visicoil) implanted in or near a lung tumor and (2) an artificial cardiac valve in a lung cancer patient. Results: Automatic marker segmentation was obtained in more than 99.9% of the cases. The segmentation failed in a few cases where the marker was either close to a structure of similar appearance or hidden behind a dense structure (data cable). Conclusions: A robust template-based method for segmentation of arbitrarily shaped radiopaque markers in CBCT projections was developed.

  2. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  3. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  4. Uniformity pattern and related criteria for two-level factorials

    Institute of Scientific and Technical Information of China (English)

    FANG; Kaitai; QIN; Hong

    2005-01-01

    In this paper,the study of projection properties of two-level factorials in view of geometry is reported.The concept of uniformity pattern is defined.Based on this new concept,criteria of uniformity resolution and minimum projection uniformity are proposed for comparing two-level factorials.Relationship between minimum projection uniformity and other criteria such as minimum aberration,generalized minimum aberration and orthogonality is made explict.This close relationship raises the hope of improving the connection between uniform design theory and factorial design theory.Our results provide a justification of orthogonality,minimum aberration,and generalized minimum aberration from a natural geometrical interpretation.

  5. Physics opportunities at mu+ mu- Higgs factories

    Energy Technology Data Exchange (ETDEWEB)

    C. Blochinger et al.

    2004-01-12

    We update theoretical studies of the physics opportunities presented by {mu}{sup +} {mu}{sup -} Higgs factories. Interesting measurements of the Standard Model Higgs decays into {bar b}b, {tau}{sup +} {tau}{sup -} and WW* may be possible if the Higgs mass is less than about 160 GeV, as preferred by the precision electroweak data, the mass range being extended by varying appropriately the beam energy resolution. A suitable value of the beam energy resolution would also enable the uncertainty in the b-quark mass to be minimized, facilitating measurements of parameters in the MSSM at such a first {mu}{sup +} {mu}{sup -} Higgs factory. These measurements would be sensitive to radiative corrections to the Higgs-fermion-antifermion decay vertices, which may violate CP. Radiative corrections in the MSSM may also induce CP violation in Higgs-mass mixing, which can be probed via various asymmetries measurable using polarized {mu}{sup +} {mu}{sup -} beams. In addition, Higgs-chargino couplings may be probed at a second {mu}{sup +} {mu}{sup -} Higgs factory.

  6. Prediction of position estimation errors for 3D target trajetories estimated from cone-beam CT projections

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Cho, Byungchul; Keall, Paul

    2010-01-01

    The three-dimensional (3D) trajectory of an implanted tumor marker can be estimated from its projected 2D trajectory in a set of cone-beam CT (CBCT) projections by a probability-based method[1]. The uncertainty in the position estimation depends on the trajectory and varies along a given trajectory...

  7. Utilizing assumption for project of stand for solid state targets activation on inner beams of AIC-144 cyclotron

    International Nuclear Information System (INIS)

    General assumptions for project of target activation stand at AIC-144 cyclotron are presented. The project predicts production of 67Ga, 111In, 201Tl, 139Ce, 88Y, 123I and 211At isotopes using various target backings. Directions concerning target cooling and beam parameters are also described

  8. The Smart Factory

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Bilberg, Arne; Bogers, Marcel;

    2014-01-01

    Nowadays we live in a world, which a decade ago would only be described in the science fiction literature. More and more things become smart and both scientists and engineers strive for developing not only new and innovative devices, but also homes, factories, or even cities. Despite of continuous...

  9. The Clone Factory

    Science.gov (United States)

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  10. A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

    CERN Document Server

    Jia, Xun; Cervino, Laura; Folkerts, Michael; Jiang, Steve B

    2012-01-01

    Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scali...

  11. Influence of standing positions and beam projections on effective dose and eye lens dose of anaesthetists in interventional procedures

    International Nuclear Information System (INIS)

    More and more anaesthetists are getting involved in interventional radiology procedures and so it is important to know the radiation dose and to optimise protection for anaesthetists. In this study, based on Monte Carlo simulations and field measurements, both the whole-body doses and eye lens dose of anaesthetists were studied. The results showed that the radiation exposure to anaesthetists not only depends on their workload, but also largely varies with their standing positions and beam projections during interventional procedures. The simulation results showed that the effective dose to anaesthetists may vary with their standing positions and beam projections to more than a factor of 10, and the eye lens dose may vary with the standing positions and beam projections to more than a factor of 200. In general, a close position to the bed and the left lateral (LLAT) beam projection will bring a high exposure to anaesthetists. Good correlations between the eye lens dose and the doses at the neck, chest and waist over the apron were observed from the field measurements. The results indicate that adequate arrangements of anaesthesia device or other monitoring equipment in the fluoroscopy rooms are useful measures to reduce the radiation exposure to anaesthetists, and anaesthetists should be aware that they will receive the highest doses under left lateral beam projection. (authors)

  12. Caudocranial horizontal beam radiographic projection for evaluation of femoral fracture and osteotomy repair in dogs and cats

    International Nuclear Information System (INIS)

    A new radiographic projection of the femur was evaluated for use in the assessment of fracture or osteotomy repair in small animals. The view is obtained by directing the x-ray beam horizontally through the hind limb, from caudad to craniad, with the animal positioned in lateral recumbency, the hip flexed, and the stifle extended. Views obtained, using the new projection, were compared with the standard ventrodorsal views of the pelvis, with hind limbs extended. Osteotomy lines in the femoral shaft were significantly (P less than 0.01) more visible on the horizontal beam view. Significant difference was not evident in visibility of fracture lines between the 2 radiographic projections. The horizontal beam view was easily obtained, and equivalent to the standard ventrodorsal view for radiographic evaluation of femoral fracture and osteotomy repair

  13. Fast computation of statistical uncertainty for spatiotemporal distributions estimated directly from dynamic cone beam SPECT projections

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2001-04-09

    The estimation of time-activity curves and kinetic model parameters directly from projection data is potentially useful for clinical dynamic single photon emission computed tomography (SPECT) studies, particularly in those clinics that have only single-detector systems and thus are not able to perform rapid tomographic acquisitions. Because the radiopharmaceutical distribution changes while the SPECT gantry rotates, projections at different angles come from different tracer distributions. A dynamic image sequence reconstructed from the inconsistent projections acquired by a slowly rotating gantry can contain artifacts that lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying regions of interest on the images. If cone beam collimators are used and the focal point of the collimators always remains in a particular transaxial plane, additional artifacts can arise in other planes reconstructed using insufficient projection samples [1]. If the projection samples truncate the patient's body, this can result in additional image artifacts. To overcome these sources of bias in conventional image based dynamic data analysis, we and others have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modeling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view [2-8]. In our previous work we developed a computationally efficient method for fully four-dimensional (4-D) direct estimation of spatiotemporal distributions from dynamic SPECT projection data [5], which extended Formiconi's least squares algorithm for reconstructing temporally static distributions [9]. In addition, we studied the biases that result from modeling various orders temporal continuity and using various time samplings [5]. the present work, we address computational issues associated with evaluating the statistical uncertainty of

  14. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    International Nuclear Information System (INIS)

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  15. Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information

    Energy Technology Data Exchange (ETDEWEB)

    Meilinger, Manuel [Regensburg Univ. (Germany). CIML Group; Siemens Healthcare, Erlangen (Germany); Schmidgunst, Christian; Schuetz, Oliver [Siemens Healthcare, Erlangen (Germany); Lang, Elmar W. [Regensburg Univ. (Germany). CIML Group

    2011-07-01

    In this work we present a new method to reduce artifacts, produced by high-density objects, especially metal implants, in X-ray cone beam computed tomography (CBCT). These artifacts influence clinical diagnostics and treatments using CT data, if metal objects are located in the field of view (FOV). Our novel method reduces metal artifacts by virtually replacing the metal objects with tissue objects of the same shape. First, the considered objects must be segmented in the original 2D projection data as well as in a reconstructed 3D volume. The attenuation coefficients of the segmented voxels are replaced with adequate attenuation coefficients of tissue (or water), then the required parts of the volume are projected onto the segmented 2D pixels, to replace the original information. This corrected 2D data can then be reconstructed with reduced artifacts, i.e. all metal objects virtually vanished. After the reconstruction, the segmented 3D metal objects were re-inserted into the corrected 3D volume. Our method was developed for mobile C-arm CBCTs; as it is necessary that they are of low weight, the C-arm results in unpredictable distortion. This misalignment between the original 2D data and the forward projection of the reconstructed 3D volume must be adjusted before the correction of the segmented 2D pixels. We applied this technique to clinical data and will now present the results. (orig.)

  16. The Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, A.J.; /Queen Mary, U. of London

    2007-01-26

    The main physics goals of a high luminosity e{sup +}e{sup -} flavor factory are discussed, including the possibilities to perform detailed studies of the CKM mechanism of quark mixing, and constrain virtual Higgs and Non-Standard Model particle contributions to the dynamics of rare B{sub u,d,s} decays. The large samples of D mesons and {tau} leptons produced at a flavor factory will result in improved sensitivities on D mixing and lepton flavor violation searches, respectively. One can also test fundamental concepts such as lepton universality to much greater precision than existing constraints and improve the precision on tests of CPT from B meson decays. Recent developments in accelerator physics have demonstrated the feasibility to build an accelerator that can achieve luminosities of {Omicron}(10{sup 36} cm{sup -2} s{sup -1}).

  17. Maximum Autocorrelation Factorial Kriging

    OpenAIRE

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete

    2000-01-01

    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  18. Beauty-factories

    International Nuclear Information System (INIS)

    In recent years a number of proposals for B-factories, i.e. medium energy e+e- colliders with luminosities at the limit of what can be reasonably expected using the most modern techniques in accelerator physics have been made in various parts of the world. The principle of this new type of collider is described, the challenge it presents to accelerator physicists is detailed, the proposed solutions are presented and analyzed. (author) 11 refs.; 1 tab

  19. Status of neutron beam facilities at HANARO and a thermal neutron guide project of KAERI

    International Nuclear Information System (INIS)

    After successful installation of cold neutron facilities at HANARO such as neutron guides, cold neutron source including cold neutron instruments, now 14 cold and thermal neutron spectrometers are operating, and 5 instruments are under commissioning. The neutron guides with complicated shapes placed in the beam plug and the main shutter also in the curved part were delivered by a guide provider but the rest guides such as the guides in the guide bunker and the guide hall area were fabricated by KAERI. All the guides are coated with M=2 supermirror having different cross-sections and curvatures were operating with a high performance, where 10 cold neutron spectrometers will open to outside users. For a planning of a new project called ‘thermal guide facilities development’, the neutron guide system design started late last year, which was carried out to optimize the layout of the instruments and to calculate the neutron flux at sample position. At this meeting, the simulation results of the thermal neutron guide beam lines, status of in-house neutron guide development and specifications of some instruments will be presented.

  20. Robust Control Design for Vibration Isolation of an Electron Beam Projection Lithography System

    Science.gov (United States)

    Wang, Fu-Cheng; Hong, Min-Feng; Yen, Jia-Yush

    2010-06-01

    This paper describes vibration control for an electron beam projection lithography (EPL) system. Two kinds of disturbances should be considered for an EPL: load disturbances from the machine and ground disturbances from the environment. However, the suspension settings for insulating these two disturbances conflict with each other. Therefore, we propose a double-layer optical table and apply disturbance response decomposing (DRD) techniques to independently control the disturbances. We use a passive control structure to isolate the ground disturbances, and an active control structure to suppress load disturbances. In addition, symmetric transformation is applied to decouple a full optical table into bounce/pitch and roll/warp half-table models, which can be further decoupled into quarter-table models to simplify controller design. Finally, we apply robust control techniques to design active controllers. From both simulation and experimental results, the designed H∞ robust controllers are proven effective in reducing EPL system vibrations.

  1. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    Energy Technology Data Exchange (ETDEWEB)

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J. [Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom and Manchester Academic Health Science Centre, University of Manchester, Manchester M20 4BX (United Kingdom); AGH University of Science and Technology, al. A. Mickiewicza 30, Krakow 30-059 (Poland); School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston PR1 2HE (United Kingdom)

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  2. Cost-effective design for a neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Alex Bogacz

    2006-01-01

    There have been active efforts in the U.S., Europe, and Japan on the design of a neutrino factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high-energy storage ring. In the U.S., a second detailed feasibility study (FS2) for a neutrino factory was completed in 2001. Since that report was published, new ideas in bunching, cooling, and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

  3. A cost-Effective Design for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J.S.; Bogacz, S.A.; Caspi, S.; Cobb, J.; Fernow, R.C.; Gallardo, J.C.; Kahn, S.; Kirk, H.; Neuffer, D.; Palmer, R.; Paul, K.; Witte, H.; Zisman, M.

    2006-06-01

    There have been active efforts in the U.S., Europe, and Japan on the design of a Neutrino Factory. This type of facility produces intense beams of neutrinos from the decay of muons in a high energy storage ring. In the U.S., a second detailed Feasibility Study (FS2) for a Neutrino Factory was completed in 2001. Since that report was published, new ideas in bunching, cooling and acceleration of muon beams have been developed. We have incorporated these ideas into a new facility design, which we designate as Study 2B (ST2B), that should lead to significant cost savings over the FS2 design.

  4. Photon Factory activity report, 1989

    International Nuclear Information System (INIS)

    At the Photon Factory about 500 experiments are now running annually with about 50 experimental stations, the total operation time of the 2.5 GeV storage ring was 3400 hour in 1989, and the number of users was more than 2000, including 300 scientists from industry. This wide usage of synchrotron radiation has been supported by good performance of the accelerators. The positron beam current of the linac was increased for rapid injection (injection time: 20 min). The entire roof of the Light Source building was covered with thermal insulator (urethane-foam). This has greatly improved the beam stability of the ring. It has been operated at an initial ring current of 350 mA with a life time of 20 hours. Distinctive instrumentation at the Photon Factory has expanded to various fields such as angle-resolved ion-spectroscopy, dispersive EXAFS, trace impurity X-ray fluorescence analysis, plane-wave topography, structure analysis under high pressure, and imaging plates. Recently, experiments of protein structure analysis have been carried out extensively; Sakabe developed a new type of Weissenberg camera for protein crystallography, and about 50 experiments have been done for the past six months by a combination of Sakabe camera and imaging plates. The 2.5 GeV light source is now at an entrance of its harvest season. The TRISTAN Accumulation Ring has been used throughout this year in a time sharing basis with the TRISTAN experiment; twenty minutes for injection to TRISTAN Main Ring and 2 hours for SR experiment. The main subject has been magnetic Compton scattering with circularly polarized wiggler radiation. Such experiences enable us to expand our perspective for research in the following decade; we are investigating the possibility of operating the TRISTAN Main Ring at 6-8 GeV with 6000-pole undulaters, resulting in an extremely brilliant radiation source (Emittance: 0.1 nm·rad at 5 GeV with damping rings). (J.P.N.)

  5. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E.; Lo, Yeh-Chi

    2016-04-01

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as  -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients.

  6. Calculating tumor trajectory and dose-of-the-day using cone-beam CT projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Bernard L., E-mail: bernard.jones@ucdenver.edu; Westerly, David; Miften, Moyed [Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045 (United States)

    2015-02-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. The authors developed and validated a method which uses these projections to determine the trajectory of and dose to highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, the trajectory of which mimicked a lung tumor with high amplitude (up to 2.5 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each CBCT projection, and a Gaussian probability density function for the absolute BB position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two modifications of the trajectory reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation (Phase), and second, using the Monte Carlo (MC) method to sample the estimated Gaussian tumor position distribution. The accuracies of the proposed methods were evaluated by comparing the known and calculated BB trajectories in phantom-simulated clinical scenarios using abdominal tumor volumes. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square trajectory errors averaged 3.8% ± 1.1% of the marker amplitude. Dosimetric calculations using Phase methods were more accurate, with mean absolute error less than 0.5%, and with error less than 1% in the highest-noise trajectory. MC-based trajectories prevent the overestimation of dose, but when viewed in an absolute sense, add a small amount of dosimetric error (<0.1%). Conclusions: Marker trajectory and target dose-of-the-day were accurately calculated using CBCT projections. This technique provides a method to evaluate highly mobile tumors using ordinary CBCT data, and could facilitate better strategies to mitigate or compensate for motion during

  7. Reducing metal artifacts in cone-beam CT images by preprocessing projection data

    International Nuclear Information System (INIS)

    Purpose: Computed tomography (CT) streak artifacts caused by metallic implants remain a challenge for the automatic processing of image data. The impact of metal artifacts in the soft-tissue region is magnified in cone-beam CT (CBCT), because the soft-tissue contrast is usually lower in CBCT images. The goal of this study was to develop an effective offline processing technique to minimize the effect. Methods and Materials: The geometry calibration cue of the CBCT system was used to track the position of the metal object in projection views. The three-dimensional (3D) representation of the object can be established from only two user-selected viewing angles. The position of the shadowed region in other views can be tracked by projecting the 3D coordinates of the object. Automatic image segmentation was used followed by a Laplacian diffusion method to replace the pixels inside the metal object with the boundary pixels. The modified projection data were then used to reconstruct a new CBCT image. The procedure was tested in phantoms, prostate cancer patients with implanted gold markers and metal prosthesis, and a head-and-neck patient with dental amalgam in the teeth. Results: Both phantom and patient studies demonstrated that the procedure was able to minimize the metal artifacts. Soft-tissue visibility was improved near or away from the metal object. The processing time was 1-2 s per projection. Conclusion: We have implemented an effective metal artifact-suppressing algorithm to improve the quality of CBCT images

  8. Robust breathing signal extraction from cone beam CT projections based on adaptive and global optimization techniques.

    Science.gov (United States)

    Chao, Ming; Wei, Jie; Li, Tianfang; Yuan, Yading; Rosenzweig, Kenneth E; Lo, Yeh-Chi

    2016-04-21

    We present a study of extracting respiratory signals from cone beam computed tomography (CBCT) projections within the framework of the Amsterdam Shroud (AS) technique. Acquired prior to the radiotherapy treatment, CBCT projections were preprocessed for contrast enhancement by converting the original intensity images to attenuation images with which the AS image was created. An adaptive robust z-normalization filtering was applied to further augment the weak oscillating structures locally. From the enhanced AS image, the respiratory signal was extracted using a two-step optimization approach to effectively reveal the large-scale regularity of the breathing signals. CBCT projection images from five patients acquired with the Varian Onboard Imager on the Clinac iX System Linear Accelerator (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Stable breathing signals can be reliably extracted using the proposed algorithm. Reference waveforms obtained using an air bellows belt (Philips Medical Systems, Cleveland, OH) were exported and compared to those with the AS based signals. The average errors for the enrolled patients between the estimated breath per minute (bpm) and the reference waveform bpm can be as low as -0.07 with the standard deviation 1.58. The new algorithm outperformed the original AS technique for all patients by 8.5% to 30%. The impact of gantry rotation on the breathing signal was assessed with data acquired with a Quasar phantom (Modus Medical Devices Inc., London, Canada) and found to be minimal on the signal frequency. The new technique developed in this work will provide a practical solution to rendering markerless breathing signal using the CBCT projections for thoracic and abdominal patients. PMID:27008349

  9. Tomographic mammography using a limited number of low-dose cone-beam projection images

    International Nuclear Information System (INIS)

    A method is described for using a limited number (typically 10-50) of low-dose radiographs to reconstruct the three-dimensional (3D) distribution of x-ray attenuation in the breast. The method uses x-ray cone-beam imaging, an electronic digital detector, and constrained nonlinear iterative computational techniques. Images are reconstructed with high resolution in two dimensions and lower resolution in the third dimension. The 3D distribution of attenuation that is projected into one image in conventional mammography can be separated into many layers (typically 30-80 1-mm-thick layers, depending on breast thickness), increasing the conspicuity of features that are often obscured by overlapping structure in a single-projection view. Schemes that record breast images at nonuniform angular increments, nonuniform image exposure, and nonuniform detector resolution are investigated in order to reduce the total x-ray exposure necessary to obtain diagnostically useful 3D reconstructions, and to improve the quality of the reconstructed images for a given exposure. The total patient radiation dose can be comparable to that used for a standard two-view mammogram. The method is illustrated with images from mastectomy specimens, a phantom, and human volunteers. The results show how image quality is affected by various data-collection protocols

  10. Status of the SPES project, a new tool for fundamental and apply science studies with exotic ion beams at LNL

    Science.gov (United States)

    Napoli, D. R.; Andrighetto, A.; Antonini, P.; Bellan, L.; Bellato, M.; Benini, D.; Bermudez, J.; Bisoffi, G.; Boratto, E.; Bortolato, D.; Calabretta, L.; Calderolla, M.; Calore, A.; Campo, D.; Carturan, S.; Cinausero, M.; Comunian, M.; Corradetti, S.; De Angelis, G.; De Ruvo, P. L.; Esposito, J.; Ferrari, L.; Galatá, A.; Gelain, F.; Giacchini, M.; Giacomazzi, P.; Gobbi, C.; Gramegna, F.; Gulmini, M.; Lollo, M.; Lombardi, A.; Maggiore, M.; Manzolaro, M.; Michinelli, R.; Modanese, P.; Moisio, M. F.; Monetti, A.; Mozzi, A.; Palmieri, A.; Pasquato, F.; Pedretti, D.; Pegoraro, R.; Pisent, A.; Poggi, M.; Pranovi, L.; Prete, G.; Roncolato, C.; Rossignoli, M.; Russo, A. D.; Sarchiapone, L.; Scarpa, D.; Silingardi, R.; Dobon, J. J. Valiente; Visentin, E.; Vivian, G.; Zafiropoulos, D.; Prete, G. F.

    2016-07-01

    SPES, a new accelerator facility for both the production of exotic ion beams and radio-pharmaceuticals, is presently being installed at the Laboratori Nazionali di Legnaro in Italy (LNL). The new cyclotron, which will provide high intensity proton beams for the production of the rare isotopes, has been installed and is now in the commissioning phase. We present here the status of the part of the project devoted to the production and acceleration of fission fragments created in the interaction of an intense proton beam on a production target of UCx. The expected SPES radioactive beams intensities, their quality and their maximum energies (up to 11 MeV/A for A=130) will permit to perform forefront research in nuclear structure and nuclear dynamics far from the stability valley. Another low energy section of the facility is foreseen for new and challenging research, both in the nuclear physics and in the material science frameworks.

  11. Deciding WQO for factorial languages

    KAUST Repository

    Atminas, Aistis

    2013-04-05

    A language is factorial if it is closed under taking factors (i.e. contiguous subwords). Every factorial language can be described by an antidictionary, i.e. a minimal set of forbidden factors. We show that the problem of deciding whether a factorial language given by a finite antidictionary is well-quasi-ordered under the factor containment relation can be solved in polynomial time. © 2013 Springer-Verlag Berlin Heidelberg.

  12. CEBAF [Continuous Electron Beam Accelerator Facility] design overview and project status

    International Nuclear Information System (INIS)

    This paper discusses the design and specifications of the Continuous Electron Beam Accelerator Facility. Beam performance objectives are discussed, as well as the recirculating linac concept, the injector, cavities, cryogenic system, beam transport and optics, rf system and construction progress. 19 refs., 10 figs

  13. Strength evaluation of a superferric quadrupole magnet for RIKEN RI-Beam factory project; RI bimu seiseiyo chodendo shijukyoku magunetto koiru no kyodo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    FUkuda, D.; Osaki, O.; Tanaka, A. [Toshiba Corp., Tokyo (Japan); Kubo, T. [Inst. of Physical and Chemical Research, Saitama (Japan)

    2000-05-29

    The coil, which there is for RI in the superconductive quadruple pole model magnet proposes the structure, which puts on the preloading for avoiding the looseness by the cooling. However, it worries about the damage of the coil. And, the effect to the magnetic field accuracy by the coil deformation in the energization becomes also a problem. However, in present state, the mechanical property data is little, and it comes to the strength evaluation method, it has not been established. Then, in this study, mechanical property of the coil is investigated, and the strength evaluation method is established, while it verifies the damage of the coil in the preloading and energization. (NEDO)

  14. Simultaneous Hand-Eye-Workspace and Camera Calibration using Laser Beam Projection

    Directory of Open Access Journals (Sweden)

    Jwu-Sheng Hu

    2014-02-01

    Full Text Available This work presents a novel calibration technique capable of simultaneously calibrating a camera’s intrinsic parameters and hand-eye-workspace relations. In addition to relaxing the requirement of a precise calibration reference to achieve manipulator accuracy, the proposed method functions when the hand is not in the view field of the eye. The calibration method uses a laser pointer mounted on the hand to project laser beams onto a planar object, which serves as the working plane. Collected laser spot images must adhere to certain nonlinear constraints established by each hand pose and the corresponding plane-laser intersection. This work also introduces calibration methods for two cases using single and multiple planes. A multistage closed-form solution is derived and serves as the initial guess to the nonlinear optimization procedure that minimizes errors globally, allowing the proposed calibration method to function without manual intervention. The effectiveness of the proposed method is verified by comparison with existing hand-eye calibration methods via simulation and experiments using an industrial manipulator.

  15. Low-energy electron beam proximity projection lithography (LEEPL): the world's first e-beam production tool, LEEPL 3000

    Science.gov (United States)

    Behringer, Uwe F. W.

    2004-06-01

    In June 2000 ago the company Accretech and LEEPL corporation decided to develop an E-beam lithography tool for high throughput wafer exposure, called LEEPL. In an amazing short time the alpha tool was built. In 2002 the beta tool was installed at Accretech. Today the first production tool the LEEPL 3000 is ready to be shipped. The 2keV E-beam tool will be used in the first lithography strategy to expose (in mix and match mode with optical exposure tools) critical levels like gate structures, contact holes (CH), and via pattern of the 90 nm and 65 nm node. At the SEMATECH EPL workshop on September 22nd in Cambridge, England it was mentioned that the amount of these levels will increase very rapidly (8 in 2007; 13 in 2010 and 17 in 2013). The schedule of the production tool for 45 nm node is mid 2005 and for the 32 nm node 2008. The Figure 1 shows from left to right α-tool, the β-tool and the production tool LEEPL 3000. Figure 1 also shows the timetable of the 4 LEEPL forum all held in Japan.

  16. Towards the optimal energy of the proton driver for a neutrino factory and muon collider

    CERN Document Server

    Strait, J; Striganov, S I; 10.1103/PhysRevSTAB.13.111001

    2010-01-01

    Cross section data from the HARP experiment for pion production by protons from a tantalum target have been convoluted with the acceptance of the front-end channel for the proposed neutrino factory or muon collider and integrated over the full phase space measured by HARP, to determine the beam-energy dependence of the muon yield. This permits a determination of the optimal beam energy for the proton driver for these projects. The cross section data are corrected for the beam-energy dependent amplification due to the development of hadronic showers in a thick target. The conclusion is that, for constant beam power, the yield is maximum for a beam energy of about 7 GeV, but it is within 10% of this maximum for 4

  17. Final Technical Report on STTR Project DE-FG02-04ER86191 Hydrogen Cryostat for Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-05-07

    The project was to develop cryostat designs that could be used for muon beam cooling channels where hydrogen would circulate through refrigerators and the beam-cooling channel to simultaneously refrigerate 1) high-temperature-superconductor (HTS) magnet coils, 2) cold copper RF cavities, and 3) the hydrogen that is heated by the muon beam. In an application where a large amount of hydrogen is naturally present because it is the optimum ionization cooling material, it was reasonable to explore its use with HTS magnets and cold, but not superconducting, RF cavities. In this project we developed computer programs for simulations and analysis and conducted experimental programs to examine the parameters and technological limitations of the materials and designs of Helical Cooling Channel (HCC) components (magnet conductor, RF cavities, absorber windows, heat transport, energy absorber, and refrigerant).The project showed that although a hydrogen cryostat is not the optimum solution for muon ionization cooling channels, the studies of the cooling channel components that define the cryostat requirements led to fundamental advances. In particular, two new lines of promising development were opened up, regarding very high field HTS magnets and the HS concept, that have led to new proposals and funded projects.

  18. Siphon-based turbine - Demonstration project: hydropower plant at a paper factory in Perlen, Switzerland; Demonstrationsprojekt Saugheber - Turbinen. Wasserturbinenanlage Papierfabrik Perlen (WTA-PF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes the demonstration project that concerned the re-activation and refurbishing of a very low-head hydropower installation. The functional principles of the siphon-turbine used are explained and the potential for its use at many low-head sites examined. The authors are of the opinion that innovative technology and simple mechanical concepts could be used to reactivate out-of-use hydropower plant or be used to refurbish existing plant to provide increased efficiency and reliability. Various other points that are to be considered when planning the refurbishment of a hydropower plant such as retaining mechanical and hydraulic symmetry in the plant are listed and concepts for reducing operating costs are discussed. Figures on the three runner-regulated turbines installed in Perlen are quoted.

  19. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  20. Study of expected performance of the hard X-ray beam for the FEL-X project

    CERN Document Server

    Sei, N; Ohgaki, H; Mikado, T; Yasumoto, M; Ogawa, H

    2002-01-01

    We advance the FEL-X project and plan to install a new optical klystron for the infrared FELs within next year. The expected FEL gain at a wavelength of 10.6 mu m is over 2% with the present electron-beam qualities in the storage ring NIJI-IV. Infrared FELs based on the fundamental and higher harmonics from the new optical klystron will generate hard X-ray beams with an energy of 0.1-2 MeV by the FEL-Compton backscattering process. Conventional light sources cannot provide sufficient amounts of photons in this energy region. The expected yield of the hard X-ray beam is 10 sup 5 -10 sup 6 per second with an energy spread of 3%.

  1. Projection correlation based view interpolation for cone beam CT: primary fluence restoration in scatter measurement with a moving beam stop array

    International Nuclear Information System (INIS)

    Scatter correction is an open problem in x-ray cone beam (CB) CT. The measurement of scatter intensity with a moving beam stop array (BSA) is a promising technique that offers a low patient dose and accurate scatter measurement. However, when restoring the blocked primary fluence behind the BSA, spatial interpolation cannot well restore the high-frequency part, causing streaks in the reconstructed image. To address this problem, we deduce a projection correlation (PC) to utilize the redundancy (over-determined information) in neighbouring CB views. PC indicates that the main high-frequency information is contained in neighbouring angular projections, instead of the current projection itself, which provides a guiding principle that applies to high-frequency information restoration. On this basis, we present the projection correlation based view interpolation (PC-VI) algorithm; that it outperforms the use of only spatial interpolation is validated. The PC-VI based moving BSA method is developed. In this method, PC-VI is employed instead of spatial interpolation, and new moving modes are designed, which greatly improve the performance of the moving BSA method in terms of reliability and practicability. Evaluation is made on a high-resolution voxel-based human phantom realistically including the entire procedure of scatter measurement with a moving BSA, which is simulated by analytical ray-tracing plus Monte Carlo simulation with EGSnrc. With the proposed method, we get visually artefact-free images approaching the ideal correction. Compared with the spatial interpolation based method, the relative mean square error is reduced by a factor of 6.05-15.94 for different slices. PC-VI does well in CB redundancy mining; therefore, it has further potential in CBCT studies.

  2. Modern Beer Factory Interwoven in Urban Texture

    Directory of Open Access Journals (Sweden)

    Gjorgjevska Violeta

    2016-01-01

    Full Text Available The main idea of this research is to present a concept of integration of a beer factory in a new urban reality. Nowadays, modern development of industrial architecture enables beer factories to leave their typical locations in industrial zones and draw nearer to their customers. To design a modern industrial complex incorporating the ideas of the contemporary way of designing an industrial facility with a clear and indicative architectural expression of its hybrid character requires great skilfulness. Using a linear grid, the concept of this project will be developed in a composition consisting of several strips. This kind of structure creates a compositional equivalence from strip to strip, integrating the natural and the urban, the public and the private.

  3. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Chao, M; Yuan, Y; Rosenzweig, K; Lo, Y [The Mount Sinai Medical Center, New York, NY (United States); Brousmiche, S [Ion Beam Application, Louvain-la-neuve (Belgium)

    2015-06-15

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking.

  4. SU-D-207-01: Markerless Respiratory Motion Tracking with Contrast Enhanced Thoracic Cone Beam CT Projections

    International Nuclear Information System (INIS)

    Purpose: To develop a novel technique to enhance the image contrast of clinical cone beam CT projections and extract respiratory signals based on anatomical motion using the modified Amsterdam Shroud (AS) method to benefit image guided radiation therapy. Methods: Thoracic cone beam CT projections acquired prior to treatment were preprocessed to increase their contrast for better respiratory signal extraction. Air intensity on raw images was firstly estimated and then applied to correct the projections to generate new attenuation images that were subsequently improved with deeper anatomy feature enhancement through taking logarithm operation, derivative along superior-inferior direction, respectively. All pixels on individual post-processed two dimensional images were horizontally summed to one column and all projections were combined side by side to create an AS image from which patient’s respiratory signal was extracted. The impact of gantry rotation on the breathing signal rendering was also investigated. Ten projection image sets from five lung cancer patients acquired with the Varian Onboard Imager on 21iX Clinac (Varian Medical Systems, Palo Alto, CA) were employed to assess the proposed technique. Results: Application of the air correction on raw projections showed that more than an order of magnitude of contrast enhancement was achievable. The typical contrast on the raw projections is around 0.02 while that on attenuation images could greater than 0.5. Clear and stable breathing signal can be reliably extracted from the new images while the uncorrected projection sets failed to yield clear signals most of the time. Conclusion: Anatomy feature plays a key role in yielding breathing signal from the projection images using the AS technique. The air correction process facilitated the contrast enhancement significantly and attenuation images thus obtained provides a practical solution to obtaining markerless breathing motion tracking

  5. Automated patient setup and gating using cone beam computed tomography projections

    Science.gov (United States)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  <  0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  6. Evolutionary algorithm for the neutrino factory front end design

    Energy Technology Data Exchange (ETDEWEB)

    Poklonskiy, Alexey A.; /Michigan State U.; Neuffer, David; /Fermilab

    2009-01-01

    The Neutrino Factory is an important tool in the long-term neutrino physics program. Substantial effort is put internationally into designing this facility in order to achieve desired performance within the allotted budget. This accelerator is a secondary beam machine: neutrinos are produced by means of the decay of muons. Muons, in turn, are produced by the decay of pions, produced by hitting the target by a beam of accelerated protons suitable for acceleration. Due to the physics of this process, extra conditioning of the pion beam coming from the target is needed in order to effectively perform subsequent acceleration. The subsystem of the Neutrino Factory that performs this conditioning is called Front End, its main performance characteristic is the number of the produced muons.

  7. A method to determine the detector locations of the cone-beam projection of the balls’ centers

    Science.gov (United States)

    Deng, Lin; Xi, Xiaoqi; Li, Lei; Han, Yu; Yan, Bin

    2015-12-01

    In geometric calibration of cone-beam computed tomography (CBCT), sphere-like objects such as balls are widely imaged, the positioning information of which is obtained to determine the unknown geometric parameters. In this process, the accuracy of the detector location of CB projection of the center of the ball, which we call the center projection, is very important, since geometric calibration is sensitive to errors in the positioning information. Currently in almost all the geometric calibration using balls, the center projection is invariably estimated by the center of the support of the projection or the centroid of the intensity values inside the support approximately. Clackdoyle’s work indicates that the center projection is not always at the center of the support or the centroid of the intensity values inside, and has given a quantitative analysis of the maximum errors in evaluating the center projection by the centroid. In this paper, an exact method is proposed to calculate the center projection, utilizing both the detector location of the ellipse center and the two axis lengths of the ellipse. Numerical simulation results have demonstrated the precision and the robustness of the proposed method. Finally there are some comments on this work with non-uniform density balls, as well as the effect by the error occurred in the evaluation for the location of the orthogonal projection of the cone vertex onto the detector.

  8. Beam quality simulation of the Boeing photoinjector accelerator for the MCTD project

    Science.gov (United States)

    Takeda, Harunori; Davis, Keith; Delo, Lance

    1991-07-01

    We present a performance study of the photoinjector accelerator installed at Boeing Corp., Seattle, for the Modular Component Technology Development (MCTD) program. This 5 MeV injector operates at 433 MHz and is designed to produce a normalized emittance less than 100π mm mrad. This study was performed using the PARMELA simulation code. We study parametrically the dependence of the beam emittance on the magnetic fields produced by beam-guiding coils and by the gap coil located immediately after the first injector cavity. We also study the effect of phasing between cavities and the bunched electron beam. In addition to considering the parameters that determine the electron beam environment, we consider the space-charge effect on the bunched beam at higher charge.

  9. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    Science.gov (United States)

    Caballero, J.; Hover, J.; Love, P.; Stewart, G. A.

    2012-12-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  10. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    International Nuclear Information System (INIS)

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment's computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ‘pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to pick-up a real payload to execute. The first generation of pilot factories were usually specific to a single Virtual Organization (VO), and were bound to the particular architecture of that VO's distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new and improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is highly configurable. It is able to send different types of pilots to sites and exploit different submission mechanisms and queue characteristics. It is tightly integrated with the PanDA job submission framework, coupling pilot flow to the amount of work the site has to run. It gathers information from many sources in order to correctly configure itself for a site and its decision logic can easily be updated. Integrated into AutoPyFactory is a flexible system for delivering both generic and specific job wrappers which can perform many useful actions before starting to run end-user scientific applications, e.g., validation of the middleware, node profiling and diagnostics, and monitoring. AutoPyFactory also has a robust monitoring system that has been invaluable in establishing a reliable pilot factory service for ATLAS.

  11. Cone beam CT imaging with limited angle of projections and prior knowledge for volumetric verification of non-coplanar beam radiation therapy: a proof of concept study

    Science.gov (United States)

    Meng, Bowen; Xing, Lei; Han, Bin; Koong, Albert; Chang, Daniel; Cheng, Jason; Li, Ruijiang

    2013-11-01

    Non-coplanar beams are important for treatment of both cranial and noncranial tumors. Treatment verification of such beams with couch rotation/kicks, however, is challenging, particularly for the application of cone beam CT (CBCT). In this situation, only limited and unconventional imaging angles are feasible to avoid collision between the gantry, couch, patient, and on-board imaging system. The purpose of this work is to develop a CBCT verification strategy for patients undergoing non-coplanar radiation therapy. We propose an image reconstruction scheme that integrates a prior image constrained compressed sensing (PICCS) technique with image registration. Planning CT or CBCT acquired at the neutral position is rotated and translated according to the nominal couch rotation/translation to serve as the initial prior image. Here, the nominal couch movement is chosen to have a rotational error of 5° and translational error of 8 mm from the ground truth in one or more axes or directions. The proposed reconstruction scheme alternates between two major steps. First, an image is reconstructed using the PICCS technique implemented with total-variation minimization and simultaneous algebraic reconstruction. Second, the rotational/translational setup errors are corrected and the prior image is updated by applying rigid image registration between the reconstructed image and the previous prior image. The PICCS algorithm and rigid image registration are alternated iteratively until the registration results fall below a predetermined threshold. The proposed reconstruction algorithm is evaluated with an anthropomorphic digital phantom and physical head phantom. The proposed algorithm provides useful volumetric images for patient setup using projections with an angular range as small as 60°. It reduced the translational setup errors from 8 mm to generally image quality, with a reduction of mostly 2-3 folds (up to 100) in root mean square image error. The proposed algorithm

  12. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  13. Electromagnetic Modeling of a Fast Traveling-Wave Beam Chopper for the SNS Project.

    Science.gov (United States)

    Kurennoy, Sergey

    1998-04-01

    High current and severe restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast --- with the rise time from 2% to 98% less than 2.5 ns --- beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures, based on meander lines, is discussed. Three-dimensional time-domain computer simulations are used to study transient effects in the chopper and to optimize its design.

  14. Photon factory activity report, 1993

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National Laboratory of High Energy Physics. First the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, synchrotron radiation facility at the Tristan accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.)

  15. Atomic Energy (factories) rules: 1988

    International Nuclear Information System (INIS)

    These rules are made by the Central Government under the Factories Act, 1948 and extend to all factories engaged in carrying out the purposes of the Atomic Energy Act, 1962. The rules cover the requirements of inspecting staff, health aspects, personnel safety, personnel welfare, working hours, employment of young persons, special provisions in case of dangerous manufacturing processes or operations, supplemental rules for administrative aspects and special powers of competent authority. (M.G.B.)

  16. General B factory design considerations

    International Nuclear Information System (INIS)

    We describe the general considerations that go into the design of an asymmetric B factory collider. Justification is given for the typical parameters of such a facility, and the physics and technology challenges that arise from these parameter choices are discussed. Cost and schedule issues for a B factory are discussed briefly. A summary of existing proposals is presented, noting their similarities and differences. (orig.)

  17. Photon factory activity report, 1992

    International Nuclear Information System (INIS)

    This issue is the annual report of the Photon Factory, National laboratory of High Energy Physics. First, the outline of the Photon Factory is presented. Injector linac, light source, beamlines and instrumentation, the Tristan synchrotron radiation facility at the accumulation ring, and the Tristan super light facility are described in detail. The facility is open to researchers. The user's reports are collected as well. (J.P.N.) (435 refs.)

  18. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  19. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  20. Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber

    Science.gov (United States)

    Kolata, J. J.; Howard, A. M.; Mittig, W.; Ahn, T.; Bazin, D.; Becchetti, F. D.; Beceiro-Novo, S.; Chajecki, Z.; Febbrarro, M.; Fritsch, A.; Lynch, W. G.; Roberts, A.; Shore, A.; Torres-Isea, R. O.

    2016-09-01

    The total fusion excitation function for 10Be+40Ar has been measured over the center-of-momentum (c.m.) energy range from 12 to 24 MeV using a time-projection chamber (TPC). The main purpose of this experiment, which was carried out in a single run of duration 90 h using a ≈100 particle per second (pps) 10Be beam, was to demonstrate the capability of an active-target TPC to determine fusion excitation functions for extremely weak radioactive ion beams. Cross sections as low as 12 mb were measured with acceptable (50%) statistical accuracy. It also proved to be possible to separate events in which charged particles were emitted from the fusion residue from those in which only neutrons were evaporated. The method permits simultaneous measurement of incomplete fusion, break-up, scattering, and transfer reactions, and therefore fully exploits the opportunities presented by the very exotic beams that will be available from the new generation of radioactive beam facilities.

  1. The Study of a European Neutrino Factory Complex

    CERN Document Server

    Gruber, P; Amand, J F; Autin, Bruno; Baldy, J L; Benedikt, Michael; Benett, R; Bernardon, A; Blondel, A; Bongardt, K; Cappi, R; Castellano, M G; Chiaveri, Enrico; Delahaye, J P; Densham, C J; Drumm, P V; Edgecocka, R; Fabich, A; Franchetti, Giuliano; Gareyte, Jacques; Garoby, R; Gastaldi, Ugo; Gerigk, F; Gilardoni, S S; Giovannozzi, Massimo; Hancock, S; Hanke, K; Haseroth, H; Hill, C; Hoffman, I; Holzer, B; Hübner, K; Jansson, A; Johnson, C D; Johnston, C; Küchler, D; Lettry, Jacques; Lindroos, M; Lombardi, A M; Martini, M; Migliorati, M; Méot, F; Métral, Elias; Möhl, D; Müller, A S; Neuffer, David V; Palumbo, L; Pasternak, J; Perrin, A; Pirkl, Werner; Poehler, M; Prior, C R; Ravn, H L; Rees, G; Riche, A; Russenschuck, Stephan; Ryne, Robert D; Schindl, Karlheinz; Schriber, Stanley O; Schönauer, Horst Otto; Scrivens, R; Senichev, Yu V; Sievers, P; Silari, Marco; Tazzioli, F; Ullrich, H M; Vassilopoulos, N; Verdier, A; Vretenar, Maurizio; Wenander, F; Wilson, Edmund J N; Wyss, C; Zimmermann, M F; Zisman, M S; Zucchelli, P

    2004-01-01

    The Neutrino Factory is a new concept for an accelerator that produces a high-intensity, high-energy beam of electron and muon neutrinos - the ultimate tool for neutrino oscillation studies and the only machine conceived up today that could help detect CP violation of leptons. The basic concept of the Neutrino Factory is the production of neutrinos from the decay of high-energy muons. Due to their short lifetime, these muons have to be accelerated very fast. Several new accelerator techniques, like a high-intenstiy proton linac, high-power targets, ionization cooling or recirculating muon linacs are required. This paper presents a snapshot of the accelerator design at CERN. Although some aspects of this European Neutrino Factory Scheme have been optimised for the CERN site, the basic principle is site-independent.

  2. AutoPyFactory: A Scalable Flexible Pilot Factory Implementation

    CERN Document Server

    Caballero, J; The ATLAS collaboration; Love, P; Stewart, G

    2012-01-01

    The ATLAS experiment at the CERN LHC is one of the largest users of grid computing infrastructure, which is a central part of the experiment’s computing operations. Considerable efforts have been made to use grid technology in the most efficient and effective way, including the use of a pilot job based workload management framework. In this model the experiment submits ’pilot’ jobs to sites without payload. When these jobs begin to run they contact a central service to retrieve a real payload to execute. The first generation of pilot factories were usually specific to a single VO, and were bound to the particular architecture of that VO’s distributed processing. A second generation provides factories which are more flexible, not tied to any particular VO, and provide new or improved features such as monitoring, logging, profiling, etc. In this paper we describe this key part of the ATLAS pilot architecture, a second generation pilot factory, AutoPyFactory. AutoPyFactory has a modular design and is hig...

  3. Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC

    CERN Document Server

    Deile, Mario; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Salvant, Benoit; Valentino, Gianluca

    2016-01-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the lu...

  4. REXEBIS the Electron Beam Ion Source for the REX-ISOLDE project

    CERN Document Server

    Wenander, F; Liljeby, L; Nyman, G H

    1998-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed especially to trap and further ionise the sometimes rare and short-lived isotopes that are produced in the ISOLDE separator for the Radioactive beam EXperiment at ISOLDE (REX-ISOLDE). By promoting the single-charged ions to a high charge-state the ions are more efficiently accelerated in the following linear accelerator. The EBIS uses an electron gun capable of producing a 0.5 A electron beam. The electron gun is immersed in a magnetic field of 0.2 T, and the electron beam is compressed to a current density of >200 A/cm2 inside a 2 T superconducting solenoid. The EBIS is situated on a high voltage (HV) platform with an initial electric potential of 60 kV allowing cooled and bunched 60 keV ions extracted from a Penning trap to be captured. After a period of confinement in the electron beam (<20 ms), the single-charged ions have been ionised to a charge-to-mass ratio of approximately ¼. During this confinement period, the platform potential is decr...

  5. Muon Acceleration Concepts for Future Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Slawomir Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H− and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  6. Photon factory accelerator status and activities

    International Nuclear Information System (INIS)

    The present report addresses the Photon Factory, a user-based facility for synchrotron-radiation research at the National Laboratory for High Energy Physics (KEK) in Japan. It consists of a 2.5 GeV storage ring and an electron-positron linac. Its construction started in 1978 and the accelerators were commissioned in 1982. The Photon Factory storage ring is a dedicated synchrotron-radiation source with a critical photon energy of 4 keV. There are 23 spaces in which front-ends (beamlines) can be installed for introducing synchrotron radiation into the experimental hall. Twenty front-ends are available for user experiments. The report particularly describes the status of the linac and the storage ring, focusing on major features of the linac operation and storage ring operation. The recent improvements are then outlined, focusing on positron beam injection and operation, improvement of the high-power pulsed klystron, monitor and control system, daily drift of the light axis, and operation of the new superconducting vertical wiggler. The accelerator activities are then described, centering on the test linac and a plan to use the TRISTAN MR as a synchrotron radiation source. (N.K.)

  7. Muon Acceleration Concepts for Future Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Slawomir Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.

  8. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  9. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing

  10. The Gamma Factory proposal for CERN

    CERN Document Server

    Krasny, Mieczyslaw Witold

    2015-01-01

    This year, 2015, marks the centenary of the publication of Einsteins Theory of General Relativity and it has been named the International Year of Light and light-based technologies by the UN General Assembly. It is thus timely to discuss the possibility of broadening the present CERN research program by including a new component based on a novel concept of the light source which could pave a way towards a multipurpose Gamma Factory. The proposed light source could be realized at CERN by using the infrastructure of the existing accelerators. It could push the intensity limits of the presently operating light-sources by at least 7 orders of magnitude, reaching the flux of the order of 10^17 photons/s, in the particularly interesting gamma-ray energy domain of 1 < Ephoton < 400 MeV. This domain is out of reach for the FEL-based light sources. The energy-tuned, quasi-monochromatic gamma beams, together with the gamma-beam-driven, high intensity secondary beams of polarized positrons, polarized muons, neutro...

  11. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  12. Development of a fast traveling-wave beam chopper for the SNS project

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S.S.; Power, J.F.

    1998-12-31

    High current and stringent restrictions on beam losses, below 1 nA/m, in the designed linac for the Spallation Neutron Source (SNS) require clean and fast--with the rise time from 2% to 98% less than 2.5 ns--beam chopping in its front end, at the beam energy 2.5 MeV. The development of new traveling-wave deflecting current structures based on meander lines is discussed. Three-dimensional time-domain computer simulations with MAFIA are used to study transient effects in the chopper and to optimize current structure design. Two options for the fast pulsed voltage generator--based on FETs and vacuum tubes--are considered, and their advantages and shortcomings for the SNS chopper are discussed.

  13. A beam test of prototype time projection chamber using micro-pattern gas detectors at KEK

    Indian Academy of Sciences (India)

    Makoto Kobayashi; on behalf of part of the ILC{TPC Collaboration

    2007-12-01

    We conducted a series of beam tests of prototype TPCs for the international linear collider (ILC) experiment, equipped with an MWPC, a MicroMEGAS, or GEMs as a readout device. The prototype operated successfully in a test beam at KEK under an axial magnetic field of up to 1 T. The analysis of data is now in progress and some of the preliminary results obtained with GEMs and MicroMEGAS are presented along with our interpretation. Also given is the extrapolation of the obtained spatial resolution to that of a large TPC expected as the central tracker of the ILC experiment.

  14. A two-dimensional lattice of blue detuned atom traps using a projected Gaussian beam array

    CERN Document Server

    Piotrowicz, M J; Maller, K; Li, G; Zhang, S; Isenhower, L; Saffman, M

    2013-01-01

    We describe a new type of blue detuned optical lattice for atom trapping which is intrinsically two dimensional, while providing three-dimensional atom localization. The lattice is insensitive to optical phase fluctuations since it does not depend on field interference between distinct optical beams. The array is created using a novel arrangement of weakly overlapping Gaussian beams that creates a two-dimensional array of dark traps which are suitable for magic trapping of ground and Rydberg states. We analyze the spatial localization that can be achieved and demonstrate trapping and detection of single Cs atoms in 6 and 49 site two-dimensional arrays.

  15. Design and performance of the beam transfer lines for the HIE-ISOLDE Project

    CERN Document Server

    Parfenova, A; Bauche, J; Cantero, E D; Farantatos, P; Fraser, M A; Goddard, B; Kadi, Y; Kolehmainen, A J; Lanaia, D; Martino, M; Mompo, R; Siesling, E; Sosa, A G; Timmins, M; Vandoni, G; Voulot, D; Zografos, E

    2013-01-01

    Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1] have been carried out in MadX [2], and benchmarked against Trace3D results [3, 4]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. As a result, the tolerances for the various error-contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical aperture were validated. The methodology and results of the studies are presented.

  16. 17th International Workshop on Neutrino Factories and Future Neutrino Facilities Search

    CERN Document Server

    2015-01-01

    NuFact15 is the seventeenth in a series that started in 1999 as an important yearly workshop with emphasis on future neutrino projects. This will be the first edition in Latin America, showing the scientific growth of this field. The main goals of the workshop are to review the progress on studies of future facilities able to improve on measurements of the properties of neutrinos and charged lepton flavor violation as well as new phenomena searches beyond the capabilities of presently planned experiments. Since such progress in the neutrino sector could require innovation in neutrino beams, the role of a neutrino factory within future HEP initiatives will be addressed. The workshops are not only international but also interdisciplinary in that experimenters, theorists and accelerator physicists from the Asian, American and European regions share expertise with the common goal of designing the next generation of experiments.

  17. HIGHER LUMINOSITY B-FACTORIES

    International Nuclear Information System (INIS)

    The present B-factories PEP-II and KEKB have reached luminosities of 3-4 x 1033/cm2/s and delivered integrated luminosity at rates in excess of 4fb-1 per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 1034/cm2/s in a few years and with more aggressive improvements may reach luminosities of order 1035/cm2/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e+e- B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e+e-accelerators [3,4]. A luminosity approaching 1036 cm-2s-1 appears possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this accelerator will be qualitatively different from present e+e- colliders due to this continuous injection

  18. A beauty factory using an SRF linac and a storage ring

    International Nuclear Information System (INIS)

    We present a brief review of accelerator facilities proposed for measuring CP violation in the B-meson system. In light of this comparison we discuss requirements for a B-factory using an e+ storage ring beam colliding with a superconducting RF linac e- beam to produce a luminosity of 1034 cm-2sec-1. 14 refs., 3 tabs

  19. Final Technical Report on STTR Project DE-FG02-06ER86282 Development and Demonstration of 6-Dimensional Muon Beam Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-24

    The overarching purpose of this project was to prepare a proposal for an experiment to demonstrate 6-dimensional muon beam cooling. The technical objectives were all steps in preparing the proposal, which was successfully presented to the Fermilab Accelerator Advisory Committee in February 2009. All primary goals of this project have been met.

  20. The Prototype Active-Target Time-Projection Chamber used with TwinSol radioactive-ion beams

    Science.gov (United States)

    Ahn, T.; Bardayan, D. W.; Bazin, D.; Beceiro Novo, S.; Becchetti, F. D.; Bradt, J.; Brodeur, M.; Carpenter, L.; Chajecki, Z.; Cortesi, M.; Fritsch, A.; Hall, M. R.; Hall, O.; Jensen, L.; Kolata, J. J.; Lynch, W.; Mittig, W.; O'Malley, P.; Suzuki, D.

    2016-06-01

    The study of low-energy reactions with radioactive-ion beams has been greatly enhanced by the recent use of active-target detectors, which have high efficiency and low thresholds to detect low-energy charged-particle decays. Both of these features have been used in experiments with the Prototype Active-Target Time-Projection Chamber to study α -cluster structure in unstable nuclei and 3-body charged-particle decays after implantation. Predicted α -cluster structures in 14 C were probed using resonant α scattering and the nature of the 3- α breakup of the 02+ Hoyle state in 12 C after the beta decay of 12 N and 12 B was studied. These experiments used in-flight radioactive-ion beams that were produced using the dual superconducting solenoid magnets TwinSol at the University of Notre Dame. Preliminary results from these experiments as well as the development of future radioactive beams to be used in conjunction with the PAT-TPC are presented.

  1. Symbiote 5 @ the Rag Factory Gallery London: a gallery guide in 8 postcards

    OpenAIRE

    van Rijn, Walter

    2011-01-01

    Made as part of the project Symbiote 5 @ The Rag Factory London (2011) Artist book: A set of 8 printed postcards, 147 x 105mm A6, numbered 1-8?Colour and black&white. Double sided print.? Edition of 50 ex. All images are based on videos of actual exhibitions/events at the Rag Factory, downloaded from youtube. (cc)BY-NC-SA 2011 Walter van Rijn?. See also: http://www.symbiotext.net/category/symbiote5/ Exhibited: ?Symbiote 5 @ The Rag Factory, 6-10 July 2011. The Rag Factory, 16 Hene...

  2. Development and characterization of semiconductor materials by ion beams. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    This CRP was recommended by the Consultants meeting on Ion Beam Techniques Applied to Semiconductor and Related Advanced Materials, held in April 1997 in Vienna. The consultants proposed to have a CRP in the field of application of MeV ion beams for the development and characterization of semiconductor materials. The CRP was approved and a first RCM was held in Vienna between 2-5 June 1998, in order to stimulate ideas and to promote collaborations among CRP participants. The goals and practical outcomes of the CRP were defined and several specific topics were identified including: optoelectronic characterization of semiconductor materials and devices by ion microbeams, characterization of thin films, defect transformations in semiconductors, light element analysis. One important recommendation was that sample exchanges among different laboratories be strongly encouraged. The participants presented individual activities on their projects, all subjects of research were identified and linked with approved individual projects. Collaboration among the participants was discussed and established. Some modifications to work plans were adopted. As proposed during the first RCM, the final RCM was held at the Ruder Boskovic Institute, Zagreb, Croatia, between 25 and 29 September 2000, with the purpose of reviewing/discussing the results achieved during the course of the CRP and to prepare a draft of the final report and associated publication. This document contains summary of the CRP and ten individual reports presented by participants. Each of the reports has been indexed separately

  3. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams

    International Nuclear Information System (INIS)

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  4. Beam tube experiments and correlated research projects at the TRIGA reactor Vienna

    International Nuclear Information System (INIS)

    The four beam tubes and the thermal column at the TRIGA reactor Vienna were used intensively during the reporting period. Three of the beam tubes are mainly used for neutron spectroscopy such as small angle scattering, neutron interferometry and polarized neutrons where now investigations of magnetic structures in pulsed high magnetic fields (25 T) synchronized with the pulsed mode of the reactor have been started. The thermalizing column will be modified from the present cold neutron source to a comfortable neutron radiography installation which allows investigations of objects of a size up to 30 cm diameters. The thermal column is also used for neutron radiography and as a strong gamma source to investigate gamma irradiation effects on various materials such as glass fiber cables. In view of flexible utilization of the thermal column a movable shielding construction has been designed which is simple rolled away on the rails of the thermal column doors when access to the thermal column in necessary. (orig.)

  5. Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    CERN Document Server

    Arneodo, F; Bonesini, M; Borio di Tigliole, A; Boschetti, B; Bueno, A; Calligarich, E; Casagrande, F; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, E; Cline, D; Curioni, A; De Mitri, I; De Vecchi, C; Dolfini, R; Ferrari, A; Ghezzi, A; Guglielmi, A; Kisiel, J; Mannocchi, G; Martinez de la Ossa, A; Matthey, C; Mauri, F; Montanari, C; Navas, S; Negri, P; Nicoletto, Marino; Otwinowski, S; Paganoni, M; Palamara, O; Pepato, Adriano; Periale, L; Piano Mortari, G; Picchi, P; Pietropaolo, F; Puccini, A; Pullia, A; Ragazzi, S; Rancati, T; Rappoldi, A; Raselli, G L; Redaelli, N; Rondio, E; Rubbia, André; Rubbia, Carlo; Sala, P R; Sergiampietri, F; Sobczyk, J; Suzuki, S; Tabarelli de Fatis, T; Terrani, M; Terranova, F; Tonazzo, A; Ventura, Sandro; Vignoli, C; Wang, H; Zalewska A

    2006-01-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.

  6. Jean Piaget: Images of a life and his factory.

    Science.gov (United States)

    Burman, Jeremy Trevelyan

    2012-08-01

    In this article, I use a new book about Jean Piaget to introduce a new historical method: examining "psychological factories." I also discuss some of the ways that "Great Men" are presented in the literature, as well as opportunities for new projects if one approaches the history of the discipline differently and examines the conditions that made that greatness possible. To that end, the article includes many details about Piaget that have never before been discussed in English. Attention is drawn, in particular, to Piaget's collaborators: the hundreds of workers at his factory in Geneva, many of whom were women. (PsycINFO Database Record (c) 2012 APA, all rights reserved). PMID:23397918

  7. Multiple Segment Factorial Vignette Designs

    Science.gov (United States)

    Ganong, Lawrence H.; Coleman, Marilyn

    2006-01-01

    The multiple segment factorial vignette design (MSFV) combines elements of experimental designs and probability sampling with the inductive, exploratory approach of qualitative research. MSFVs allow researchers to investigate topics that may be hard to study because of ethical or logistical concerns. Participants are presented with short stories…

  8. DEVELOPMENT OF LAW RELATING TO FACTORIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. K. Sahu

    2015-01-01

    Full Text Available The rapid growth of industrial town and factories has paved the way to develop our industrial legislation accordingly. The Government of India never expressed their interest in framing separate legislation vis-à-vis factories which resulted in implementation of the same statute which was enacted pre-independence. It was done by virtue of Art. 372 of the Constitution of India. However, the Constitutional Lawmakers created vacuum for the implementation of new statute in accordance with the demand of society by inserting scope under the Directive Principles of State Policies. However, in the 67 years history of Indian Republic, there are unprecedented developments of law relating to factories in India.The Government of India, with the adoption of existed statute, made an effort to incorporate the welfare legislation but it never developed along with the change in time. It is to be noticed that as far as existing statutes are concerned, the development is an effect of judicial pronouncement or some tragic incident like Bhopal Gas Tragedy. This paper succinctly describes the history of factory legislation, the constitutional validity of the previous statute and necessary amendment which have already been done and / or on the verge of being amended. It will further discuss contribution of judiciary in developing the law relating to factories, scope of industrial jurisprudence in promoting the development of factory legislation. The primary focus of the research project is to reflect upon the areas where factory legislation has developed, so that proper yardstick could be made in order to put emphasis on those areas which have been remained untouched.

  9. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.; Weiss, Elisabeth; Williamson, Jeffrey F. [Department of Radiation Oncology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  10. Factory Outlet Stores: Ein Trend in Deutschland?

    OpenAIRE

    Nufer, Gerd; Sieber, Dorothea

    2009-01-01

    Der Factory Outlet Store stellt einen neuen Vertriebskanal dar, der es Herstellern ermöglicht, Kunden Markenprodukte zu vergleichsweise günstige Preisen anzubieten. Der vorliegende Beitrag befasst sich mit dem Konzept Factory Outlet Store und der Frage, ob es sich hierbei um einen aktuellen Marketing-Trend handelt bzw. welche Mittel unternommen werden müssen, um Factory Outlet Stores nachhaltig zu etablieren. Hierzu werden Factory Outlet Stores aus der Marketing-Perspektive analysiert, bei de...

  11. Project X: A Flexible High Power Proton Facility

    CERN Document Server

    Holmes, Stephen; Tschirhart, Robert

    2013-01-01

    Project X is a high intensity proton facility that will support a world-leading Intensity Frontier research program over the next several decades at Fermilab. When compared to other facilities in the planning stages elsewhere in the world Project X is completely unique in its ability to deliver, simultaneously, up to 6 MW of site-wide beam power to multiple experiments, at multiple energies, and with flexible beam formats. Project X will support a wide range of experiments based on neutrinos, muons, kaons, nucleons, and nuclei. In addition, Project X will lay the foundation for the long-term development of a Neutrino Factory and/or Muon Collider. A complete concept for Project X has been developed and is documented in the Project X Reference Design Report.

  12. Phase Velocity Analysis of Projected Wave Motion Along Oblique Radar Beams - A Numerical Study of Type-1 Radar Echoes

    Directory of Open Access Journals (Sweden)

    Chi-Lon Fern

    2013-01-01

    Full Text Available The nonlinear features of type-1 radar echoes were studied by a two-dimensional (2D simulation of saturation the Farley-Buneman (FB wave. The behavior of this FB wave in a plane perpendicular to the _ magnetic field was simulated with a two-fluid code in which electron inertia was discounted while ion inertia was retained. It showed that the appearance of secondary waves propagating vertically and obliquely as the primary horizontal FB wave saturates. The secondary waves originating from nonlinear saturation process will construct the evolution of 2D modes which can be observed by oblique radar beams. We carried out the statistical analysis of projection phase velocities of 2D modes along oblique radar beam at different radar elevation angles. The result revealed that a likely density gradient effect of type-1 radar echoes for the wavelength dependence of phase velocity would appear at a larger radar elevation angle while short wavelength waves would approach isotropic speeds close to ion acoustic speed. This interesting result is primarily attributed to the spectral features of 2D modes.

  13. Circular Higgs Factories & Possible Long-Term Strategy

    CERN Document Server

    Zimmermann, F

    2013-01-01

    In 2012 two LHC experiments have discovered a new particle with a mass around 125 GeV, which appears to be the scalar Higgs boson of the Standard Model. To further examine this remarkable particle it could be produced in large numbers for precision studies by an e+e− collider operating near the ZH threshold at beam energies of 120 GeV, or, in the s-channel by a gamma-gamma collider with primary electron beam energies of 80 GeV, or by a high-energy electron-proton collider. In this talk I will discuss tentative design parameters, novel concepts and accelerator-physics challenges (1) for a high-luminosity lepton-hadron collider, bringing into collision a 60-GeV electron beam from an energy-recovery electron linac with one of the LHC hadron beams – LHeC –, (2) for a gamma-gamma Higgs-factory collider based on the reconfigured recirculating SC electron linac – SAPPHiRE – and (3) for a circular e+e− Higgs-factory collider in a new tunnel with a circumference of 80-100 km – TLEP. I will also discuss f...

  14. Results from the B Factories

    Energy Technology Data Exchange (ETDEWEB)

    Bevan, A.; /Queen Mary, U. of London

    2009-01-08

    These proceedings are based on lectures given at the Helmholtz International Summer School Heavy Quark Physics at the Bogoliubov Laboratory of Theoretical Physics, Dubna, Russia, during August 2008. I review the current status of CP violation in B meson decays from the B factories. These results can be used, along with measurements of the sides of the Unitarity Triangle, to test the CKM mechanism. In addition I discuss experimental studies of B decays to final states with 'spin-one' particles.

  15. Status of the TRIUMF KAON factory proposal

    International Nuclear Information System (INIS)

    Over the last year considerable progress has been achieved on both technical and political fronts. Hardware studies have continued on both magnet power supplies and on rf cavities - the latter work gaining an extra dimension from a recently-instituted formal collaboration with LAMPF. A racetrack-shaped lattice is being considered in conjunction with a three-element slow extraction system in an effort to reduce losses to the 0.1% level. British Columbia has agreed to fund the buildings and tunnels (Cdn $87M) and is making the KAON Factory its tope priority project with the Canadian federal government. A joint federal-provincial delegation has traveled abroad and found that a number of countries would consider significant contributions to the cost. Government approval contingent upon such contributions is anticipated later in 1988, together with preconstruction R and D funds

  16. RF Cavities For The Muon and Neutrino Factory Collaboration Study

    CERN Document Server

    Moretti, A; Jurgens, T G; Qian, Z; Wu, V

    2000-01-01

    A multi-laboratory collaboration is studying the feasibility of building a muon collider, the first phase of which maybe a neutrino factory. The phase space occupied by the muons is very large and needs to be cooled several orders of magnitude for either machine, 100,000 to 1 million for the collider and ten to 100 for the factory. Ionization cooling is the base line method for muon cooling. This scheme uses hydrogen absorbers and rf re-acceleration in a long series of magnetic focusing channels to cool the muons. At Fermilab two rf cavity types are under study to provide the required cooling rf re-acceleration, a 805 MHz high gradient cavity for the collider and a 201 MHz high gradient cavity for the neutrino factory. The 805 MHz cavity currently under going cold testing is a non-periodic pi-mode cavity with the iris openings shaped to follow the contour of the beam. The 201 MHz cavity uses hollow thin metal tubes over the beam aperture to terminate the field in a pill-box type mode to increase its shunt imp...

  17. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  18. Physics and technology challenges of B anti B factories

    International Nuclear Information System (INIS)

    An e+e- collider designed to serve as a B factory requires a luminosity of 3 x 1033 cm-2 s-1 - a factor of 20 beyond that of the best present collider (the CESR ring) - and thus presents a considerable challenge to the accelerator builder. To optimize the experiment, it is necessary that the B bar B system have a moving center-of-mass, which implies different energies for the two beams (hence an asymmetric collider). This feature dictates that a two-ring configuration be used. Accelerator physics issues that arise in such a design are related to the need to tightly focus the beams to a vertical beta function on the order of 1 cm, to bring the beams from two different rings into collision and then cleanly separate them again, and to mask the detector region sufficiently to permit measurements with very large beam current passing through the interaction region. In addition, the process of optimizing the luminosity for asymmetric collisions breaks new ground. Because the luminosity is limited by the beam-beam interaction, any large improvement must come from considerably increasing both the beam current and the number of bunches in the ring. These choices place many demands on accelerator technology as well as accelerator physics. Vacuum systems must be designed to handle the thermal load from a multi-ampere beam of 8-9 GeV and to maintain an adequate running pressure (below 10 nTorr) in the face of a large gas load from synchrotron radiation induced photodesorption. An RF system capable of supporting the high beam currents must be developed. To reduce the growth of potentially strong multibunch instabilities, the cavity higher-order modes (HOMs) must be highly damped to Q≤70. Even with a well-optimized RF system, the high beam currents typically mean that wideband multibunch feedback systems (both longitudinal and transverse) are needed to maintain beam stability

  19. On-line separators for the Dubna Superheavy Element Factory

    Science.gov (United States)

    Popeko, A. G.

    2016-06-01

    The main goal of creation of a Superheavy Element Factory at the Flerov Laboratory of Nuclear Reactions (FLNR) is to sufficiently improve the efficiency of studies on heavy and superheavy nuclei. The factory will be based on a high-current DC-280 cyclotron. The use of beams with the intensity up to 6 ×1013 s-1 (10 pμA) requires effective separators providing high suppression of unwanted reaction products. Following the analysis of the kinematic characteristics of several hundreds of reactions, a conclusion was drawn that it is necessary to construct three separators optimized for specific tasks: a universal gas-filled separator for synthesis and study of the properties of heavy isotopes, a velocity filter for spectroscopic investigations, and a pre-separator for further chemical separation and precise mass measurements.

  20. GPU-based Fast Cone Beam CT Reconstruction from Undersampled and Noisy Projection Data via Total Variation

    CERN Document Server

    Jia, Xun; Li, Ruijiang; Song, William Y; Jiang, Steve B

    2010-01-01

    Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. To lower the imaging dose, we have developed a fast GPU-based CBCT reconstruction algorithm. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. Multi-grid technique is also employed. It is found that 20~40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 sec on a NVIDIA Tesla C1060 GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studi...

  1. Project for a beam line consecrated to soft condensed matter, common heterogeneous materials and non-crystalline materials on soleil

    International Nuclear Information System (INIS)

    This project is a part of the 'SOLEIL' synchrotron project. The camera proposed is optimized for small angle x-ray scattering in the domain of soft condensed matter, common heterogeneous materials such as wood, cements, glass, and more generally non-crystalline materials. The beam line is designed to allow a quick succession of different users without time consuming adjustments. Therefore, optical settings are minimized, taking into account the pluri-disciplinary nature of the analysis possibilities. To this end, the technical requirements are as follows. First and essentially, the wave-length has to be fixed and set around 12 keV. Focusing mirrors, optics to sample and sample to detector distances, and the size of the detector allow for a wide range of wave vector to be used. Rejection rate will be lower, and angular dynamical range will be larger than any of the current synchrotron lines. We want this line to be, and to stay, complementary to more specific systems, such as reflectivity experiments or grazing angle scattering experiments. However, we are thinking of an adaptation to ultra small angle scattering mode, based on the Bonse and Hart camera. Such equipment, actually a kind of 'Instamatic' of the reciprocal space, will fulfill to the need of chemical engineers, biophysicists or material scientists interested in hard as well as soft condensed matter. It will allow a large amount of experiments per time unit. (author)

  2. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  3. Measuring correlations in non-separable vector beams using projective measurements

    CERN Document Server

    Subramanian, Keerthan

    2016-01-01

    In quantum mechanics, two particles are said to be entangled if the composite wavefunction is non-separable. Separating the two particles and measuring their coincidences as was done in the Aspect experiment leads to a modulated correlation between the polarization states of the two particles. In this article we demonstrate a similar experiment to look at a system whose two degrees of freedom (DoF)- polarization and mode - are entangled, ie the system can be modelled as a non-separable function in the Hilbert space. We propose an interferometric method to perform projective measurements that leads to correlations as seen for entangled quantum particles.

  4. 液晶径向偏振光转换组件用于实验教学%The Radially Polarized Beam Converter for Experimental Teaching Project

    Institute of Scientific and Technical Information of China (English)

    陈建农; 曲崇; 李志刚; 朱林伟

    2015-01-01

    The definition and conception of radially polarized beam and azimuthally polarized beam are first in-troduced and described. Then the principle of generating these kinds of polarized beams is presented in detail. The driving electrical circuit,the software and the experimental procedure are also described. This experiment can be as a selective optical experiment project or liquid crystal experiment project for the undergraduates in the university.%首次提出并描述径向偏振光和方位角偏振光的定义和概念,详细阐述产生这些偏振光的工作原理. 描述该实验的驱动电路以及软件和实验程序. 该实验可以作为本科生的光学或液晶方向实验项目的选择性实验.

  5. KEKB beam instrumentation systems

    Science.gov (United States)

    Arinaga, M.; Flanagan, J.; Hiramatsu, S.; Ieiri, T.; Ikeda, H.; Ishii, H.; Kikutani, E.; Mimashi, T.; Mitsuhashi, T.; Mizuno, H.; Mori, K.; Tejima, M.; Tobiyama, M.

    2003-02-01

    For the stable high-luminosity operation and luminosity increase, the electron and positron storage rings of the KEK B-Factory (KEKB) is equipped with various beam instrumentations, which have been working well since the start of the commissioning in December, 1998. Details and performance of the beam-position monitor system based on the spectrum analysis using DSPs, the turn-by-turn BPM with four-dimensional function available for measurements of the individual bunch position, phase and intensity, the parametric beam-DCCTs designed so as to avoid the magnetic-core-selection problems for the parametric flux modulation, the bunch-by-bunch feedback system indispensable to suppress the strong multibunch instabilities in KEKB, the various optical beam diagnostic systems, such as synchrotron radiation interferometers for precise beam-size measurement, the tune meters, the bunch length monitors and the beam-loss monitors are described. Delicate machine tuning of KEKB is strongly supported by these instrumentations.

  6. Preliminary studies of the quickly pulsed synchrotron involved in the Beta-Beam project; Etudes preliminaires du synchrotron rapidement pulse du projet Beta-Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lachaize, A

    2007-07-01

    This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.

  7. Eficiency factory - Quo Vadis? Brief study; Effizienzfabrik - Quo Vadis? Kurzstudie

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Katharina; Kleine, Oliver; Hirzel, Simon; Rhode, Clemens

    2012-11-15

    The demand for an enhanced resource efficiency and energy efficiency in production arises not only from a purely economic perspective, but also from environmental and social reasons. Nevertheless, the issue of resource efficiency did not gain the necessary attention at the corporate level. In 2009, the Federal Ministry of Education and Research (Berlin, Federal Republic of Germany) launched a program to develop resource-efficient production technologies in which 31 integrated research projects with the efficiency factory and a dedicated accompanying project are promoted immediately in order to improve the transfer of the results. The contribution under consideration reports on the performance of the efficiency factory as a transfer platform in the context of the funding priority and the research results achieved up to now.

  8. Electron-beam lithography with character projection exposure for throughput enhancement with line-edge quality optimization

    Science.gov (United States)

    Ikeno, Rimon; Maruyama, Satoshi; Mita, Yoshio; Ikeda, Makoto; Asada, Kunihiro

    2016-03-01

    Among various electron-beam lithography (EBL) techniques, variable-shaped beam (VSB) and character projection (CP) methods have attracted many EBL users for their high-throughput feature, but they are considered to be more suited to small-featured VLSI fabrication with regularly-arranged layouts like standard-cell logics and memory arrays. On the other hand, non-VLSI applications like photonics, MEMS, MOEMS, and so on, have not been fully utilized the benefit of CP method due to their wide variety of layout patterns. In addition, the stepwise edge shapes by VSB method often causes intolerable edge roughness to degrade device characteristics from its intended performance with smooth edges. We proposed an overall EBL methodology applicable to wade-variety of EBL applications utilizing VSB and CP methods. Its key idea is in our layout data conversion algorithm that decomposes curved or oblique edges of arbitrary layout patterns into CP shots. We expect significant reduction in EB shot count with a CP-bordered exposure data compared to the corresponding VSB-alone conversion result. Several CP conversion parameters are used to optimize EB exposure throughput, edge quality, and resultant device characteristics. We demonstrated out methodology using the leading-edge VSB/CP EBL tool, ADVANTEST F7000S-VD02, with high resolution Hydrogen Silsesquioxane (HSQ) resist. Through our experiments of curved and oblique edge lithography under various data conversion conditions, we learned correspondence of the conversion parameters to the resultant edge roughness and other conditions. They will be utilized as the fundamental data for further enhancement of our EBL strategy for optimized EB exposure.

  9. A Stationary Target for the CERN-Neutrino-Factory

    CERN Document Server

    Sievers, P

    2001-01-01

    As production target for Neutron Factories, free mercury jets with high axial velocity of about 20 m/s are being studied. For the CERN-Neutrino-Factory proposal with a 4 MW beam power, but with a relatively large beam size at 2.2 GeV/c and pulsed at 75 Hz, maximum energy deposition densities of below 20 J/g and average power densities of about 1 kW/g are expected. Therefore a study has been made which discusses the feasibility and limits of a confined, stationary target cooled by a liquid. It is proposed to use solid spheres of high density material with diameters in the millimeter range. These spheres are confined inside a Titanium container and cooled by an efficient water circuit. Alternatively, low density liquid metal cooling could be used. Dynamic response, as pressure pulses and vibrations are greatly reduced by the small size of the target granules in combination with a relatively long beam pulse with a duration of 3.3 ms. The open issue of the lifetime of such as structure and its fatigue limit at...

  10. A Stationary Target for the CERN-Neutrino-Factory

    CERN Document Server

    Sievers, P

    2001-01-01

    As production target for Neutrino Factories,free mercury jets with high axial velocity of about 20 m /s are being studied.For the CERN-Neutrino- Factory proposal with a 4 MW beam power,but with a relatively large beam size at 2 .2 GeV /c and pulsed at 50 Hz ,maximum energy deposition densities of below 20 J /g and average power densities of about 1 kW /g are expected in the target.Therefore a study has been made which discusses the feasibility and limits of a stationary target.It is proposed to use densely packed solid spheres of heavy material and with diameters in the millimeter range.These spheres are con fined inside a Titanium container and cooled by an e fficient water circuit or possibly by He-gas.Dynamic response,as pressure pulses and vibrations are greatly reduced in the small target granules due to relatively long beam bursts,each with a duration of 3.3 s .The encouraging results achieved in this assessment justify to pursue further experimental tests,in particular of the cooling...

  11. Circular Higgs Factories: LEP3, TLEP and SAPPHiRE

    CERN Document Server

    Zimmermann, F

    2012-01-01

    In 2012 two LHC experiments have discovered a new particle with a mass around 125 GeV, which might be the scalar Higgs boson of the Standard Model. This particle could be produced in large numbers for precision studies by an e+e− collider operating near the ZH threshold at a beam energy of 120 GeV or, in the s-channel, by a gamma-gamma collider with primary electron beam energies of 80 GeV. In this seminar I discuss tentative design parameters, novel concepts and accelerator-physics challenges for two circular e+e− Higgs-factory colliders – LEP3 and TLEP – and for a gamma-gamma Higgs-factory collider based on a recirculating SC electron linac – SAPPHiRE. LEP3, installed in the existing 27-km LHC tunnel, and TLEP, in a new 80-km long tunnel, require – in addition to the collider ring – a fast cycling accelerator ring for quasi-continuous top-up injection to compensate the short beam lifetime due to radiative Bhabha scattering at luminosities above 1e34 cm-2s-1. In addition, a large momentum apert...

  12. Patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse error-events and near misses: Introducing the ACCIRAD project

    International Nuclear Information System (INIS)

    In 2011 the European Commission launched a tender to develop guidelines for risk analysis of accidental and unintended exposures in external beam radiotherapy. This tender was awarded to a consortium of 6 institutions, including the ESTRO, in late 2011. The project, denominated “ACCIRAD”, recently finished the data collection phase. Data were collected by surveys administered in 38 European countries. Results indicate non-uniform implementation of event registration and classification, as well as incomplete or zero implementation of risk assessment and events analysis. Based on the survey results and analysis thereof, project leaders are currently drafting proposed guidelines entitled “Guidelines for patient safety in external beam radiotherapy – Guidelines on risk assessment and analysis of adverse-error events and near misses”. The present article describes the aims and current status of the project, including results of the surveys

  13. Feasibility study for an asymmetric B-factory at KEK

    International Nuclear Information System (INIS)

    In June, 1989, the study group for exploring the feasibility of B meson physics using an asymmetric energy accelerator was organized. This report is the summary of the results of the works that this study group carried out in nine months, and is the Japanese edition of the report of English edition 'Task Force Report on Asymmetric B-factory at KEK'. The activity plan of the study group was to make up the plan exceeding the preceding CLEO-2 experiment by utilizing the features of an asymmetric B-factory. Under this plan, the activities have been carried out by the study meetings twice every week on the physics side and once every two weeks on the accelerator side. Besides, in two study meetings held in October and December, 1989, several persons who have engaged in the research on B meson physics actually in foreign countries were invited, and the discussion was carried out. At present toward the materialization of the plan, the concrete investigation of accelerators and measuring instruments was begun. The significance of a B-factory and the construction project, the physics of a B-factory, the experimental method and the plan for an accelerator are reported. (K.I.)

  14. Physics at a Higgsino Factory

    CERN Document Server

    Baer, Howard; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2014-01-01

    Naturalness arguments applied to supersymmetric theories imply a spectrum containing four light higgsinos \\tz_{1,2} and \\tw_1^+- with masses ~ 100-300 GeV (the closer to M_Z the more natural). The compressed mass spectrum and associated low energy release from \\tw_1 and \\tz_2 three-body decay makes higgsinos difficult to detect at LHC14, while the other sparticles might be heavy, and possibly even beyond LHC14 reach. In contrast, the International Linear e^+e^- Collider (ILC) with \\sqrt{s}>2m(higgsino) would be a {\\it higgsino factory} in addition to a Higgs boson factory and would serve as a discovery machine for natural SUSY! In this case, both chargino and neutralino production %which give rise to distinct event topologies, occur at comparable rates, and lead to observable signals above SM backgrounds. We examine two benchmark cases, one just beyond the LHC8 reach with \\tw_1(\\tz_2)-\\tz_1 mass gap of 15 (21) GeV, and a second more difficult case beyond even the LHC14 reach, where the mass gap is just 10 GeV...

  15. Neutrino-factory storage ring with multiple baselines

    CERN Document Server

    Cline, David B; Garren, A

    2001-01-01

    We designed a noble bow tie storage ring to provide neutrino beams for multiple neutrino detectors around the world with a baseline length of about 1000-9000 km. We present a preliminary lattice that could provide non-planar straight sections. We describe the amount of non-planarity of the third or fourth baseline and the space angles between the baselines and the local surface angles at possible site locations for neutrino factories and at the possible detector locations. We describe the detectors at the Gran Sasso Laboratory, Italy, and at the new laboratory at Carlsbad, NM.

  16. PROGRESS OF THE PEP-II B-FACTORY

    International Nuclear Information System (INIS)

    PEP-II is an e+e- B-Factory Collider located at SLAC operating at the Upsilon 4S resonance. PEP-II has delivered, over the past five years, an integrated luminosity to the BaBar detector of over 139 fb-1 and has reached a luminosity of 6.58 x 1036/cm2/s. Steady progress is being made in reaching higher luminosity. The goal over the next several years is to reach a luminosity of at least 2 x 1034/cm2/s. The accelerator physics issues being addressed in PEP-II to reach this goal include the electron cloud instability, beam-beam effects, parasitic beam-beam effects, high RF beam loading, shorter bunches, lower betay*, interaction region operation, and coupling control. A view of the PEP-II tunnel is shown in Figure 1. The present parameters of the PEP-II B-Factory are shown in Table 1 compared to the design. The present peak luminosity is 219% of design and the best integrated luminosity per month is 7.4 fb-1 that is 225% of design. The best luminosity per month is shown in Figure 2. The integrated luminosity over a month is shown in Figure 3 and the total integrated luminosity in shown in Figure 4. The progress in luminosity has come from correcting the orbits, adding specific orbit bumps to correct coupling and dispersion issues, lowering the beta y* in the LER, and moving the fractional horizontal tunes in both rings to just above the half integer (<0.52)

  17. Welding by laser beam

    International Nuclear Information System (INIS)

    A laser which does not require a vacuum and the beam from which can be projected over a distance without loss of power is sited outside a welding zone and the beam projected through a replaceable laser transparent window. The window is designed and shaped to facilitate access of the beam of workpiece items to be welded in containment. Either the workpiece or the laser beam may be moved during welding. (author)

  18. Engineering the Polyketide Cell Factory

    DEFF Research Database (Denmark)

    Mølgaard, Louise

    cerevisiae. Both organisms have well-known genetic tools available for gene targeting and heterologous expression. It has been the aim to create a stable expression platform with all genes integrated in the genome. This has been achieved through the use of two advanced genetic engineering systems for A...... sufficient titers. To improve the production of polyketides biological engineering principles have been applied for the development and engineering of microbial polyketide cell factories. The two biological hosts used for heterologous polyketide production were Aspergillus nidulans and Saccharomyces...... through the use of adaptive evolution, random mutagenesis and screening as well as metabolic engineering. Firstly, in silico guided metabolic engineering was used as a tool to direct metabolism towards higher levels of 6-MSA production in A. nidulans. 6-MSA was stably expressed in the A. nidulans genome...

  19. A Tau-Charm Factory at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Seth, K.K. [Northwestern Univ., Evanston, IL (United States)

    1994-04-01

    It is proposed that a Tau Charm Factory represents a natural extension of CEBAF into higher energy domains. The exciting nature of the physics of charm quarks and tau leptons is briefly reviewed and it is suggested that the concept of a linac-ring collider as a Tau Charm Factory at CEBAF should be seriously studied.

  20. Factorial invariance in multilevel confirmatory factor analysis.

    Science.gov (United States)

    Ryu, Ehri

    2014-02-01

    This paper presents a procedure to test factorial invariance in multilevel confirmatory factor analysis. When the group membership is at level 2, multilevel factorial invariance can be tested by a simple extension of the standard procedure. However level-1 group membership raises problems which cannot be appropriately handled by the standard procedure, because the dependency between members of different level-1 groups is not appropriately taken into account. The procedure presented in this article provides a solution to this problem. This paper also shows Muthén's maximum likelihood (MUML) estimation for testing multilevel factorial invariance across level-1 groups as a viable alternative to maximum likelihood estimation. Testing multilevel factorial invariance across level-2 groups and testing multilevel factorial invariance across level-1 groups are illustrated using empirical examples. SAS macro and Mplus syntax are provided.

  1. Software factory techniques applied to Process Control at CERN

    CERN Multimedia

    Dutour, MD

    2007-01-01

    The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems) has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of assembling project, domain and technical information seamlessly into deployable PLC (Programmable logic Controller) – SCADA (Supervisory Control And Data Acquisition) systems. This software factory delivers consistently high quality by reducing human error and repetitive tasks, and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to encapsulate and hide the PLC and SCADA target platforms, enabling the experts to focus on the business model rather than specific syntaxes and grammars. Based on industry standard software...

  2. Energy efficiency enhancement in cement factories using expert system

    International Nuclear Information System (INIS)

    Full text : In this paper, expert system for energy efficiency in cement industry is presented. Due to the fact that cement manufacturing project in these factories are similar, so in main parts knowing the consumption origins and save potential and existing approaches can be similar. In this method, via expert system software of prolog AH types of energy consumption and investment costs are listed in which method of best first search and innovative search have been used and by forming knowledge base, targeting to get best approaches is presented. The obtained results, regarding the executed limits, will be displayed in the output of program and this program can be given the best decision about energy management in cement factories

  3. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σQ), electronic noise (σE), and view aliasing (σview). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (Nproj), dose (Dtot), and voxel size (bvox). Results: The results reveal a nonmonotonic relationship between image noise andNproj at fixed total dose: for the CBCT system considered, noise decreased with increasing Nproj due to reduction of view sampling effects in the regime Nproj proj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f β—and a general model of individual noise components (σQ, σE, and σview) demonstrated agreement with measurements over a broad range in Nproj, Dtot, and bvox. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeNproj ∼ 250–350, nearly an order of magnitude lower in Nproj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and imaging chain (including nonidealities of

  4. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Department of Biomedical Engineering, Tianjin University, Tianjin, China 300072 (China); Gang, G. J. [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Siewerdsen, J. H., E-mail: jeff.siewerdsen@jhu.edu [Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21205 (United States); Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore, Maryland 21205 (United States)

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  5. The Experience Factory: Strategy and Practice

    Science.gov (United States)

    Basili, Victor R.; Caldiera, Gianluigi

    1995-01-01

    The quality movement, that has had in recent years a dramatic impact on all industrial sectors, has recently reached the system and software industry. Although some concepts of quality management, originally developed for other product types, can be applied to software, its specificity as a product which is developed and not produced requires a special approach. This paper introduces a quality paradigm specifically tailored on the problem of the systems and software industry. Reuse of products, processes and experiences originating from the system life cycle is seen today as a feasible solution to the problem of developing higher quality systems at a lower cost. In fact, quality improvement is very often achieved by defining and developing an appropriate set of strategic capabilities and core competencies to support them. A strategic capability is, in this context, a corporate goal defined by the business position of the organization and implemented by key business processes. Strategic capabilities are supported by core competencies, which are aggregate technologies tailored to the specific needs of the organization in performing the needed business processes. Core competencies are non-transitional, have a consistent evolution, and are typically fueled by multiple technologies. Their selection and development requires commitment, investment and leadership. The paradigm introduced in this paper for developing core competencies is the Quality Improvement Paradigm which consists of six steps: (1) Characterize the environment, (2) Set the goals, (3) Choose the process, (4) Execute the process, (5) Analyze the process data, and (6) Package experience. The process must be supported by a goal oriented approach to measurement and control, and an organizational infrastructure, called Experience Factory. The Experience Factory is a logical and physical organization distinct from the project organizations it supports. Its goal is development and support of core competencies

  6. In-flight RI beam separator BigRIPS at RIKEN and elsewhere in Japan

    CERN Document Server

    Kubo, T

    2003-01-01

    Presented are features of the in-flight radioactive isotope (RI) beam separators in Japan as well as of a next-generation separator BigRIPS being built at RIKEN for the RI-beam factory project. Characteristic features and present status of the existing separators are reviewed for the RIPS at RIKEN, the Secondary Beam Line at RCNP, the Secondary Beam Course at NIRS, the CRIB at CNS and the RMS at JAERI. Design features are outlined for the BigRIPS, which is characterized by two major features: large acceptances and a tandem (or two-stage) separator scheme. The large acceptances allow one to produce RI beams efficiently by using in-flight fission of uranium ions, being achieved by using superconducting quadrupoles with a large aperture. The tandem separator scheme allows one to deliver tagged RI beam. The integrated capability of the BigRIPS and the accelerators of the project can significantly enlarge the scope of future RI-beam experiments. A low-energy course following the BigRIPS can provide energy-degraded...

  7. KEKB B-factory design report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    KEKB is an asymmetric electron-positron collider at 8 x 3.5 GeV which aims at providing electron-positron collision at the center of mass energy of 10.58 GeV. Its mission is to support high energy physics research programs on CP violation and other topics in B-meson decay. Its luminosity goal is 10{sup 34}/cm{sup 2}s. As the construction of the KEKB was approved as a five-year project by the Japanese government, it was begun formally in April, 1994. The low energy ring LER for positrons at 3.5 GeV and the high energy ring HER for electrons at 8 GeV will be built side by side in the existing TRISTAN tunnel with 3 km circumference, and the maximum use of the infrastructure of TRISTAN will be made. The KEKB has only one interaction point in the Tsukuba experimental hall, and the BELLE detector will be installed in this interaction region. The layout of the two rings is explained. In this report, the basic design, hardware systems, the construction schedule, physics requirement, machine parameters, beam-beam interaction, RF parameters, impedance and collective effects, lattice design, interaction region, RF system, magnet system, vacuum system, beam instrumentation, injection and accelerator control system are described. (K.I.).

  8. Minimum secondary aberration fractional factorial split-plot designs in terms of consulting designs

    Institute of Scientific and Technical Information of China (English)

    Al; Mingyao; ZHANG; Runchu

    2006-01-01

    It is very powerful for constructing nearly saturated factorial designs to characterize fractional factorial (FF) designs through their consulting designs when the consulting designs are small. Mukerjee and Fang employed the projective geometry theory to find the secondary wordlength pattern of a regular symmetrical fractional factorial split-plot (FFSP) design in terms of its complementary subset, but not in a unified form. In this paper, based on the connection between factorial design theory and coding theory, we obtain some general and unified combinatorial identities that relate the secondary wordlength pattern of a regular symmetrical or mixed-level FFSP design to that of its consulting design. According to these identities, we further establish some general and unified rules for identifying minimum secondary aberration, symmetrical or mixed-level, FFSP designs through their consulting designs.

  9. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  10. Rapid prototyping 3D virtual world interfaces within a virtual factory environment

    Science.gov (United States)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.

  11. Status of the Super-B factory Design

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; /Michigan State U.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; Weathersby, S.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /LPSC, Grenoble /Saclay

    2012-05-18

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  12. HiPER Tritium factory elements

    Science.gov (United States)

    Guillaume, Didier

    2011-06-01

    HiPER will include a Tritium target factory. This presentation is an overview. We start from process ideas to go to first sketch passing through safety principles. We will follow the Tritium management process. We need first a gas factory producing the right gas mixture from hydrogen, Deuterium and Tritium storage. Then we could pass through the target factory. It is based on our LMJ single shot experiment and some new development like the injector. Then comes pellet burst and vapour recovery. The Tritium factory has to include the waste recovery, recycling process with gas purification before storage. At least, a nuclear plant is not a classical building. Tritium is also very special... All the design ideas have to be adapted. Many facilities are necessary, some with redundancy. We all have to well known these constraints. Tritium budget will be a major contributor for a material point of view as for a financial one.

  13. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  14. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  15. The physics of the B factories

    CERN Document Server

    Bevan, A J; Mannel, Th; Prell, S; Yabsley, B D; Abe, K; Aihara, H; Anulli, F; Arnaud, N; Aushev, T; Beneke, M; Beringer, J; Bianchi, F; Bigi, I I; Bona, M; Brambilla, N; Brodzicka, J; Chang, P; Charles, M J; Cheng, C H; Cheng, H -Y; Chistov, R; Colangelo, P; Coleman, J P; Drutskoy, A; Druzhinin, V P; Eidelman, S; Eigen, G; Eisner, A M; Faccini, R; Flood, K T; Gambino, P; Gaz, A; Gradl, W; Hayashii, H; Higuchi, T; Hulsbergen, W D; Hurth, T; Iijima, T; Itoh, R; Jackson, P D; Kass, R; Kolomensky, Yu G; Kou, E; Križan, P; Kronfeld, A; Kumano, S; Kwon, Y J; Latham, T E; Leith, D W G S; Lüth, V; Martinez-Vidal, F; Meadows, B T; Mussa, R; Nakao, M; Nishida, S; Ocariz, J; Olsen, S L; Pakhlov, P; Pakhlova, G; Palano, A; Pich, A; Playfer, S; Poluektov, A; Porter, F C; Robertson, S H; Roney, J M; Roodman, A; Sakai, Y; Schwanda, C; Schwartz, A J; Seidl, R; Sekula, S J; Steinhauser, M; Sumisawa, K; Swanson, E S; Tackmann, F; Trabelsi, K; Uehara, S; Uno, S; van der Water, R; Vasseur, G; Verkerke, W; Waldi, R; Wang, M Z; Wilson, F F; Zupan, J; Zupanc, A; Adachi, I; Albert, J; Banerjee, Sw; Ben-Haim, E; Biassoni, P; Cahn, R N; Cartaro, C; Chauveau, J; Chen, C; Chiang, C C; Cowan, R; Dalseno, J; Davier, M; Davies, C; Dingfelder, J C; Echenard, B; Epifanov, D; Fulsom, B G; Gabareen, A M; Gary, J W; Godang, R; Graham, M T; Hafner, A; Hamilton, B; Hartmann, T; Hayasaka, K; Hearty, C; Iwasaki, Y; Khodjamirian, A; Kusaka, A; Kuzmin, A; Lafferty, G D; Lazzaro, A; Li, J; Lindemann, D; Long, O; Lusiani, A; Marchiori, G; Martinelli, M; Miyabayashi, K; Mizuk, R; Mohanty, G B; Muller, D R; Nakazawa, H; Ongmongkolkul, P; Pacetti, S; Palombo, F; Pedlar, T K; Piilonen, L E; Pilloni, A; Poireau, V; Prothmann, K; Pulliam, T; Rama, M; Ratcliff, B N; Roudeau, P; Schrenk, S; Schroeder, T; Schubert, K R; Shen, C P; Shwartz, B; Soffer, A; Solodov, E P; Somov, A; Starič, M; Stracka, S; Telnov, A V; Todyshev, K Yu; Tsuboyama, T; Uglov, T; Vinokurova, A; Walsh, J J; Watanabe, Y; Won, E; Wormser, G; Wright, D H; Ye, S; Zhang, C C; Abachi, S; Abashian, A; Abe, N; Abe, R; Abe, T; Abrams, G S; Adam, I; Adamczyk, K; Adametz, A; Adye, T; Agarwal, A; Ahmed, H; Ahmed, M; Ahmed, S; Ahn, B S; Ahn, H S; Aitchison, I J R; Akai, K; Akar, S; Akatsu, M; Akemoto, M; Akhmetshin, R; Akre, R; Alam, M S; Albert, J N; Aleksan, R; Alexander, J P; Alimonti, G; Allen, M T; Allison, J; Allmendinger, T; Alsmiller, J R G; Altenburg, D; Alwyn, K E; An, Q; Anderson, J; Andreassen, R; Andreotti, D; Andreotti, M; Andress, J C; Angelini, C; Anipko, D; Anjomshoaa, A; Anthony, P L; Antillon, E A; Antonioli, E; Aoki, K; Arguin, J F; A, K; Arisaka, K; Asai, K; Asai, M; Asano, Y; Asgeirsson, D J; Asner, D M; Aso, T; Aspinwall, M L; Aston, D; Atmacan, H; Aubert, B; Aulchenko, V; Ayad, R; Azemoon, T; Aziz, T; Azzolini, V; Azzopardi, D E; Baak, M A; Back, J J; Bagnasco, S; Bahinipati, S; Bailey, D S; Bailey, S; Bailly, P; van Bakel, N; Bakich, A M; Bala, A; Balagura, V; Baldini-Ferroli, R; Ban, Y; Banas, E; Band, H R; Banerjee, S; Baracchini, E; Barate, R; Barberio, E; Barbero, M; Bard, D J; Barillari, T; Barlow, N R; Barlow, R J; Barrett, M; Bartel, W; Bartelt, J; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Bay, A; Beaulieu, M; Bechtle, P; Beck, T W; Becker, J; Becla, J; Bedny, I; Behari, S; Behera, P K; Behn, E; Behr, L; Beigbeder, C; Beiline, D; Bell, R; Bellini, F; Bellis, M; Bellodi, G; Belous, K; Benayoun, M; Benelli, G; Benitez, J F; Benkebil, M; Berger, N; Bernabeu, J; Bernard, D; Bernet, R; Bernlochner, F U; Berryhill, J W; Bertsche, K; Besson, P; Best, D S; Bettarini, S; Bettoni, D; Bhardwaj, V; Bhimji, W; Bhuyan, B; Biagini, M E; Biasini, M; van Bibber, K; Biesiada, J; Bingham, I; Bionta, R M; Bischofberger, M; Bitenc, U; Bizjak, I; Blanc, F; Blaylock, G; Blinov, V E; Bloom, E; Bloom, P C; Blount, N L; Blouw, J; Bly, M; Blyth, S; Boeheim, C T; Bomben, M; Bondar, A; Bondioli, M; Bonneaud, G R; Bonvicini, G; Booke, M; Booth, J; Borean, C; Borgland, A W; Borsato, E; Bosi, F; Bosisio, L; Botov, A A; Bougher, J; Bouldin, K; Bourgeois, P; Boutigny, D; Bowerman, D A; Boyarski, A M; Boyce, R F; Boyd, J T; Bozek, A; Bozzi, C; Bračko, M; Brandenburg, G; Brandt, T; Brau, B; Brau, J; Breon, A B; Breton, D; Brew, C; Briand, H; Bright-Thomas, P G; Brigljević, V; Britton, D I; Brochard, F; Broomer, B; Brose, J; Browder, T E; Brown, C L; Brown, C M; Brown, D N; Browne, M; Bruinsma, M; Brunet, S; Bucci, F; Buchanan, C; Buchmueller, O L; Bünger, C; Bugg, W; Bukin, A D; Bula, R; Bulten, H; Burchat, P R; Burgess, W; Burke, J P; Button-Shafer, J; Buzykaev, A R; Buzzo, A; Cai, Y; Calabrese, R; Calcaterra, A; Calderini, G; Camanzi, B; Campagna, E; Campagnari, C; Capra, R; Carassiti, V; Carpinelli, M; Carroll, M; Casarosa, G; Casey, B C K; Cason, N M; Castelli, G; Cavallo, N; Cavoto, G; Cecchi, A; Cenci, R; Cerizza, G; Cervelli, A; Ceseracciu, A; Chai, X; Chaisanguanthum, K S; Chang, M C; Chang, Y H; Chang, Y W; Chao, D S; Chao, M; Chao, Y; Charles, E; Chavez, C A; Cheaib, R; Chekelian, V; Chen, A; Chen, E; Chen, G P; Chen, H F; Chen, J -H; Chen, J C; Chen, K F; Chen, P; Chen, S; Chen, W T; Chen, X; Chen, X R; Chen, Y Q; Cheng, B; Cheon, B G; Chevalier, N; Chia, Y M; Chidzik, S; Chilikin, K; Chistiakova, M V; Cizeron, R; Cho, I S; Cho, K; Chobanova, V; Choi, H H F; Choi, K S; Choi, S K; Choi, Y; Choi, Y K; Christ, S; Chu, P H; Chun, S; Chuvikov, A; Cibinetto, G; Cinabro, D; Clark, A R; Clark, P J; Clarke, C K; Claus, R; Claxton, B; Clifton, Z C; Cochran, J; Cohen-Tanugi, J; Cohn, H; Colberg, T; Cole, S; Colecchia, F; Condurache, C; Contri, R; Convert, P; Convery, M R; Cooke, P; Copty, N; Cormack, C M; Corso, F Dal; Corwin, L A; Cossutti, F; Cote, D; Ramusino, A Cotta; Cottingham, W N; Couderc, F; Coupal, D P; Covarelli, R; Cowan, G; Craddock, W W; Crane, G; Crawley, H B; Cremaldi, L; Crescente, A; Cristinziani, M; Crnkovic, J; Crosetti, G; Cuhadar-Donszelmann, T; Cunha, A; Curry, S; D'Orazio, A; Dû, S; Dahlinger, G; Dahmes, B; Dallapiccola, C; Danielson, N; Danilov, M; Das, A; Dash, M; Dasu, S; Datta, M; Daudo, F; Dauncey, P D; David, P; Davis, C L; Day, C T; De Mori, F; De Domenico, G; De Groot, N; De la Vaissière, C; de la Vaissière, Ch; de Lesquen, A; De Nardo, G; de Sangro, R; De Silva, A; DeBarger, S; Decker, F J; Sanchez, P del Amo; Del Buono, L; Del Gamba, V; del Re, D; Della Ricca, G; Denig, A G; Derkach, D; Derrington, I M; DeStaebler, H; Destree, J; Devmal, S; Dey, B; Di Girolamo, B; Di Marco, E; Dickopp, M; Dima, M O; Dittrich, S; Dittongo, S; Dixon, P; Dneprovsky, L; Dohou, F; Doi, Y; Doležal, Z; Doll, D A; Donald, M; Dong, L; Dong, L Y; Dorfan, J; Dorigo, A; Dorsten, M P; Dowd, R; Dowdell, J; Drásal, Z; Dragic, J; Drummond, B W; Dubitzky, R S; Dubois-Felsmann, G P; Dubrovin, M S; Duh, Y C; Duh, Y T; Dujmic, D; Dungel, W; Dunwoodie, W; Dutta, D; Dvoretskii, A; Dyce, N; Ebert, M; Eckhart, E A; Ecklund, S; Eckmann, R; Eckstein, P; Edgar, C L; Edwards, A J; Egede, U; Eichenbaum, A M; Elmer, P; Emery, S; Enari, Y; Enomoto, R; Erdos, E; Erickson, R; Ernst, J A; Erwin, R J; Escalier, M; Eschenburg, V; Eschrich, I; Esen, S; Esteve, L; Evangelisti, F; Everton, C W; Eyges, V; Fabby, C; Fabozzi, F; Fahey, S; Falbo, M; Fan, S; Fang, F; Fanin, C; Farbin, A; Farhat, H; Fast, J E; Feindt, M; Fella, A; Feltresi, E; Ferber, T; Fernholz, R E; Ferrag, S; Ferrarotto, F; Ferroni, F; Field, R C; Filippi, A; Finocchiaro, G; Fioravanti, E; da Costa, J Firmino; Fischer, P -A; Fisher, A; Fisher, P H; Flacco, C J; Flack, R L; Flaecher, H U; Flanagan, J; Flanigan, J M; Ford, K E; Ford, W T; Forster, I J; Forti, A C; Forti, F; Fortin, D; Foster, B; Foulkes, S D; Fouque, G; Fox, J; Franchini, P; Sevilla, M Franco; Franek, B; Frank, E D; Fransham, K B; Fratina, S; Fratini, K; Frey, A; Frey, R; Friedl, M; Fritsch, M; Fry, J R; Fujii, H; Fujikawa, M; Fujita, Y; Fujiyama, Y; Fukunaga, C; Fukushima, M; Fullwood, J; Funahashi, Y; Funakoshi, Y; Furano, F; Furman, M; Furukawa, K; Futterschneider, H; Gabathuler, E; Gabriel, T A; Gabyshev, N; Gaede, F; Gagliardi, N; Gaidot, A; Gaillard, J -M; Gaillard, J R; Galagedera, S; Galeazzi, F; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Gandini, P; Ganguly, S; Ganzhur, S F; Gao, Y Y; Gaponenko, I; Garmash, A; Tico, J Garra; Garzia, I; Gaspero, M; Gastaldi, F; Gatto, C; Gaur, V; Geddes, N I; Geld, T L; Genat, J -F; George, K A; George, M; George, S; Georgette, Z; Gershon, T J; Gill, M S; Gillard, R; Gilman, J D; Giordano, F; Giorgi, M A; Giraud, P -F; Gladney, L; Glanzman, T; Glattauer, R; Go, A; Goetzen, K; Goh, Y M; Gokhroo, G; Goldenzweig, P; Golubev, V B; Gopal, G P; Gordon, A; Gorišek, A; Goriletsky, V I; Gorodeisky, R; Gosset, L; Gotow, K; Gowdy, S J; Graffin, P; Grancagnolo, S; Grauges, E; Graziani, G; Green, M G; Greene, M G; Grenier, G J; Grenier, P; Griessinger, K; Grillo, A A; Grinyov, B V; Gritsan, A V; Grosdidier, G; Perdekamp, M Grosse; Grosso, P; Grothe, M; Groysman, Y; Grünberg, O; Guido, E; Guler, H; Gunawardane, N J W; Guo, Q H; Guo, R S; Guo, Z J; Guttman, N; Ha, H; Ha, H C; Haas, T; Haba, J; Hachtel, J; Hadavand, H K; Hadig, T; Hagner, C; Haire, M; Haitani, F; Haji, T; Haller, G; Halyo, V; Hamano, K; Hamasaki, H; de Monchenault, G Hamel; Hamilton, J; Hamilton, R; Hamon, O; Han, B Y; Han, Y L; Hanada, H; Hanagaki, K; Handa, F; Hanson, J E; Hanushevsky, A; Hara, K; Hara, T; Harada, Y; Harrison, P F; Harrison, T J; Harrop, B; Hart, A J; Hart, P A; Hartfiel, B L; Harton, J L; Haruyama, T; Hasan, A; Hasegawa, Y; Hast, C; Hastings, N C; Hasuko, K; Hauke, A; Hawkes, C M; Hayashi, K; Hazumi, M; Hee, C; Heenan, E M; Heffernan, D; Held, T; Henderson, R; Henderson, S W; Hertzbach, S S; Hervé, S; Heß, M; Heusch, C A; Hicheur, A; Higashi, Y; Higasino, Y; Higuchi, I; Hikita, S; Hill, E J; Himel, T; Hinz, L; Hirai, T; Hirano, H; Hirschauer, J F; Hitlin, D G; Hitomi, N; Hodgkinson, M C; Höcker, A; Hoi, C T; Hojo, T; Hokuue, T; Hollar, J J; Hong, T M; Honscheid, K; Hooberman, B; Hopkins, D A; Horii, Y; Hoshi, Y; Hoshina, K; Hou, S; Hou, W S; Hryn'ova, T; Hsiung, Y B; Hsu, C L; Hsu, S C; Hu, H; Hu, T; Huang, H C; Huang, T J; Huang, Y C; Huard, Z; Huffer, M E; Hufnagel, D; Hung, T; Hutchcroft, D E; Hyun, H J; Ichizawa, S; Igaki, T; Igarashi, A; Igarashi, S; Igarashi, Y; Igonkina, O; Ikado, K; Ikeda, H; Ikeda, K; Ilic, J; Inami, K; Innes, W R; Inoue, Y; Ishikawa, A; Ishino, H; Itagaki, K; Itami, S; Itoh, K; Ivanchenko, V N; Iverson, R; Iwabuchi, M; Iwai, G; Iwai, M; Iwaida, S; Iwamoto, M; Iwasaki, H; Iwasaki, M; Iwashita, T; Izen, J M; Jackson, D J; Jackson, F; Jackson, G; Jackson, P S; Jacobsen, R G; Jacoby, C; Jaegle, I; Jain, V; Jalocha, P; Jang, H K; Jasper, H; Jawahery, A; Jayatilleke, S; Jen, C M; Jensen, F; Jessop, C P; Ji, X B; John, M J J; Johnson, D R; Johnson, J R; Jolly, S; Jones, M; Joo, K K; Joshi, N; Joshi, N J; Judd, D; Julius, T; Kadel, R W; Kadyk, J A; Kagan, H; Kagan, R; Kah, D H; Kaiser, S; Kaji, H; Kajiwara, S; Kakuno, H; Kameshima, T; Kaminski, J; Kamitani, T; Kaneko, J; Kang, J H; Kang, J S; Kani, T; Kapusta, P; Karbach, T M; Karolak, M; Karyotakis, Y; Kasami, K; Katano, G; Kataoka, S U; Katayama, N; Kato, E; Kato, Y; Kawai, H; Kawai, M; Kawamura, N; Kawasaki, T; Kay, J; Kay, M; Kelly, M P; Kelsey, M H; Kent, N; Kerth, L T; Khan, A; Khan, H R; Kharakh, D; Kibayashi, A; Kichimi, H; Kiesling, C; Kikuchi, M; Kikutani, E; Kim, B H; Kim, C H; Kim, D W; Kim, H; Kim, H J; Kim, H O; Kim, H W; Kim, J B; Kim, J H; Kim, K T; Kim, M J; Kim, P; Kim, S K; Kim, S M; Kim, T H; Kim, Y I; Kim, Y J; King, G J; Kinoshita, K; Kirk, A; Kirkby, D; Kitayama, I; Klemetti, M; Klose, V; Klucar, J; Knecht, N S; Knoepfel, K J; Knowles, D J; Ko, B R; Kobayashi, N; Kobayashi, S; Kobayashi, T; Kobel, M J; Koblitz, S; Koch, H; Kocian, M L; Kodyš, P; Koeneke, K; Kofler, R; Koike, S; Koishi, S; Koiso, H; Kolb, J A; Kolya, S D; Kondo, Y; Konishi, H; Koppenburg, P; Koptchev, V B; Kordich, T M B; Korol, A A; Korotushenko, K; Korpar, S; Kouzes, R T; Kovalskyi, D; Kowalewski, R; Kozakai, Y; Kozanecki, W; Kral, J F; Krasnykh, A; Krause, R; Kravchenko, E A; Krebs, J; Kreisel, A; Kreps, M; Krishnamurthy, M; Kroeger, R; Kroeger, W; Krokovny, P; Kronenbitter, B; Kroseberg, J; Kubo, T; Kuhr, T; Kukartsev, G; Kulasiri, R; Kulikov, A; Kumar, R; Kumar, S; Kumita, T; Kuniya, T; Kunze, M; Kuo, C C; Kuo, T -L; Kurashiro, H; Kurihara, E; Kurita, N; Kuroki, Y; Kurup, A; Kutter, P E; Kuznetsova, N; Kvasnička, P; Kyberd, P; Kyeong, S H; Lacker, H M; Lae, C K; Lamanna, E; Lamsa, J; Lanceri, L; Landi, L; Lang, M I; Lange, D J; Lange, J S; Langenegger, U; Langer, M; Lankford, A J; Lanni, F; Laplace, S; Latour, E; Lau, Y P; Lavin, D R; Layter, J; Lebbolo, H; LeClerc, C; Leddig, T; Leder, G; Diberder, F Le; Lee, C L; Lee, J; Lee, J S; Lee, M C; Lee, M H; Lee, M J; Lee, S -J; Lee, S E; Lee, S H; Lee, Y J; Lees, J P; Legendre, M; Leitgab, M; Leitner, R; Leonardi, E; Leonidopoulos, C; Lepeltier, V; Leruste, Ph; Lesiak, T; Levi, M E; Levy, S L; Lewandowski, B; Lewczuk, M J; Lewis, P; Li, H; Li, H B; Li, S; Li, X; Li, Y; Gioi, L Li; Libby, J; Lidbury, J; Lillard, V; Lim, C L; Limosani, A; Lin, C S; Lin, J Y; Lin, S W; Lin, Y S; Lindquist, B; Lindsay, C; Lista, L; Liu, C; Liu, F; Liu, H; Liu, H M; Liu, J; Liu, R; Liu, T; Liu, Y; Liu, Z Q; Liventsev, D; Vetere, M Lo; Locke, C B; Lockman, W S; Di Lodovico, F; Lombardo, V; London, G W; Pegna, D Lopes; Lopez, L; Lopez-March, N; Lory, J; LoSecco, J M; Lou, X C; Louvot, R; Lu, A; Lu, C; Lu, M; Lu, R S; Lueck, T; Luitz, S; Lukin, P; Lund, P; Luppi, E; Lutz, A M; Lutz, O; Lynch, G; Lynch, H L; Lyon, A J; Lyubinsky, V R; MacFarlane, D B; Mackay, C; MacNaughton, J; Macri, M M; Madani, S; Mader, W F; Majewski, S A; Majumder, G; Makida, Y; Malaescu, B; Malaguti, R; Malclès, J; Mallik, U; Maly, E; Mamada, H; Manabe, A; Mancinelli, G; Mandelkern, M; Mandl, F; Manfredi, P F; Mangeol, D J J; Manoni, E; Mao, Z P; Margoni, M; Marker, C E; Markey, G; Marks, J; Marlow, D; Marques, V; Marsiske, H; Martellotti, S; Martin, E C; Martin, J P; Martin, L; Martinez, A J; Marzolla, M; Mass, A; Masuzawa, M; Mathieu, A; Matricon, P; Matsubara, T; Matsuda, T; Matsumoto, H; Matsumoto, S; Matsumoto, T; Matsuo, H; Mattison, T S; Matvienko, D; Matyja, A; Mayer, B; Mazur, M A; Mazzoni, M A; McCulloch, M; McDonald, J; McFall, J D; McGrath, P; McKemey, A K; McKenna, J A; Mclachlin, S E; McMahon, S; McMahon, T R; McOnie, S; Medvedeva, T; Melen, R; Mellado, B; Menges, W; Menke, S; Merchant, A M; Merkel, J; Messner, R; Metcalfe, S; Metzler, S; Meyer, N T; Meyer, T I; Meyer, W T; Michael, A K; Michelon, G; Michizono, S; Micout, P; Miftakov, V; Mihalyi, A; Mikami, Y; Milanes, D A; Milek, M; Mimashi, T; Minamora, J S; Mindas, C; Minutoli, S; Mir, L M; Mishra, K; Mitaroff, W; Miyake, H; Miyashita, T S; Miyata, H; Miyazaki, Y; Moffitt, L C; Mohapatra, A; Mohapatra, A K; Mohapatra, D; Moll, A; Moloney, G R; Mols, J P; Mommsen, R K; Monge, M R; Monorchio, D; Moore, T B; Moorhead, G F; de Freitas, P Mora; Morandin, M; Morgan, N; Morgan, S E; Morganti, M; Morganti, S; Mori, S; Mori, T; Morii, M; Morris, J P; Morsani, F; Morton, G W; Moss, L J; Mouly, J P; Mount, R; Mueller, J; Müller-Pfefferkorn, R; Mugge, M; Muheim, F; Muir, A; Mullin, E; Munerato, M; Murakami, A; Murakami, T; Muramatsu, N; Musico, P; Nagai, I; Nagamine, T; Nagasaka, Y; Nagashima, Y; Nagayama, S; Nagel, M; Naisbit, M T; Nakadaira, T; Nakahama, Y; Nakajima, M; Nakajima, T; Nakamura, I; Nakamura, T; Nakamura, T T; Nakano, E; Nakayama, H; Nam, J W; Narita, S; Narsky, I; Nash, J A; Natkaniec, Z; Nauenberg, U; Nayak, M; Neal, H; Nedelkovska, E; Negrini, M; Neichi, K; Nelson, D; Nelson, S; Neri, N; Nesom, G; Neubauer, S; Newman-Coburn, D; Ng, C; Nguyen, X; Nicholson, H; Niebuhr, C; Nief, J Y; Niiyama, M; Nikolich, M B; Nisar, N K; Nishimura, K; Nishio, Y; Nitoh, O; Nogowski, R; Noguchi, S; Nomura, T; Nordby, M; Nosochkov, Y; Novokhatski, A; Nozaki, S; Nozaki, T; Nugent, I M; O'Grady, C P; O'Neale, S W; O'Neill, F G; Oberhof, B; Oddone, P J; Ofte, I; Ogawa, A; Ogawa, K; Ogawa, S; Ogawa, Y; Ohkubo, R; Ohmi, K; Ohnishi, Y; Ohno, F; Ohshima, T; Ohshima, Y; Ohuchi, N; Oide, K; Oishi, N; Okabe, T; Okazaki, N; Okazaki, T; Okuno, S; Olaiya, E O; Olivas, A; Olley, P; Olsen, J; Ono, S; Onorato, G; Onuchin, A P; Onuki, Y; Ooba, T; Orimoto, T J; Oshima, T; Osipenkov, I L; Ostrowicz, W; Oswald, C; Otto, S; Oyang, J; Oyanguren, A; Ozaki, H; Ozcan, V E; Paar, H P; Padoan, C; Paick, K; Palka, H; Pan, B; Pan, Y; Vazquez, W Panduro; Panetta, J; Panova, A I; Panvini, R S; Panzenböck, E; Paoloni, E; Paolucci, P; Pappagallo, M; Paramesvaran, S; Park, C S; Park, C W; Park, H; Park, H K; Park, K S; Park, W; Parry, R J; Parslow, N; Passaggio, S; Pastore, F C; Patel, P M; Patrignani, C; Patteri, P; Pavel, T; Pavlovich, J; Payne, D J; Peak, L S; Peimer, D R; Pelizaeus, M; Pellegrini, R; Pelliccioni, M; Peng, C C; Peng, J C; Peng, K C; Peng, T; Penichot, Y; Pennazzi, S; Pennington, M R; Penny, R C; Penzkofer, A; Perazzo, A; Perez, A; Perl, M; Pernicka, M; Perroud, J -P; Peruzzi, I M; Pestotnik, R; Peters, K; Peters, M; Petersen, B A; Petersen, T C; Petigura, E; Petrak, S; Petrella, A; Petrič, M; Petzold, A; Pia, M G; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Piemontese, M; Pierini, M; Pierson, S; Pioppi, M; Piredda, G; Pivk, M; Plaszczynski, S; Polci, F; Pompili, A; Poropat, P; Posocco, M; Potter, C T; Potter, R J L; Prasad, V; Prebys, E; Prencipe, E; Prendki, J; Prepost, R; Prest, M; Prim, M; Pripstein, M; Prudent, X; Pruvot, S; Puccio, E M T; Purohit, M V; Qi, N D; Quinn, H; Raaf, J; Rabberman, R; Raffaelli, F; Ragghianti, G; Rahatlou, S; Rahimi, A M; Rahmat, R; Rakitin, A Y; Randle-Conde, A; Rankin, P; Rashevskaya, I; Ratkovsky, S; Raven, G; Re, V; Reep, M; Regensburger, J J; Reidy, J; Reif, R; Reisert, B; Renard, C; Renga, F; Ricciardi, S; Richman, J D; Ritchie, J L; Ritter, M; Rivetta, C; Rizzo, G; Roat, C; Robbe, P; Roberts, D A; Robertson, A I; Robutti, E; Rodier, S; Rodriguez, D M; Rodriguez, J L; Rodriguez, R; Roe, N A; Röhrken, M; Roethel, W; Rolquin, J; Romanov, L; Romosan, A; Ronan, M T; Rong, G; Ronga, F J; Roos, L; Root, N; Rosen, M; Rosenberg, E I; Rossi, A; Rostomyan, A; Rotondo, M; Roussot, E; Roy, J; Rozanska, M; Rozen, Y; Rubin, A E; Ruddick, W O; Ruland, A M; Rybicki, K; Ryd, A; Ryu, S; Ryuko, J; Sabik, S; Sacco, R; Saeed, M A; Tehrani, F Safai; Sagawa, H; Sahoo, H; Sahu, S; Saigo, M; Saito, T; Saitoh, S; Sakai, K; Sakamoto, H; Sakaue, H; Saleem, M; Salnikov, A A; Salvati, E; Salvatore, F; Samuel, A; Sanders, D A; Sanders, P; Sandilya, S; Sandrelli, F; Sands, W; Sands, W R; Sanpei, M; Santel, D; Santelj, L; Santoro, V; Santroni, A; Sanuki, T; Sarangi, T R; Saremi, S; Sarti, A; Sasaki, T; Sasao, N; Satapathy, M; Sato, Nobuhiko; Sato, Noriaki; Sato, Y; Satoyama, N; Satpathy, A; Savinov, V; Savvas, N; Saxton, O H; Sayeed, K; Schaffner, S F; Schalk, T; Schenk, S; Schieck, J R; Schietinger, T; Schilling, C J; Schindler, R H; Schmid, S; Schmitz, R E; Schmuecker, H; Schneider, O; Schnell, G; Schönmeier, P; Schofield, K C; Schott, G; Schröder, H; Schram, M; Schubert, J; Schümann, J; Schultz, J; Schumm, B A; Schune, M H; Schwanke, U; Schwarz, H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Scott, I J; Seeman, J; Seiden, A; Seitz, R; Seki, T; Sekiya, A I; Semenov, S; Semmler, D; Sen, S; Senyo, K; Seon, O; Serbo, V V; Serednyakov, S I; Serfass, B; Serra, M; Serrano, J; Settai, Y; Seuster, R; Sevior, M E; Shakhova, K V; Shang, L; Shapkin, M; Sharma, V; Shebalin, V; Shelkov, V G; Shen, B C; Shen, D Z; Shen, Y T; Sherwood, D J; Shibata, T; Shibata, T A; Shibuya, H; Shidara, T; Shimada, K; Shimoyama, M; Shinomiya, S; Shiu, J G; Shorthouse, H W; Shpilinskaya, L I; Sibidanov, A; Sicard, E; Sidorov, A; Sidorov, V; Siegle, V; Sigamani, M; Simani, M C; Simard, M; Simi, G; Simon, F; Simonetto, F; Sinev, N B; Singh, H; Singh, J B; Sinha, R; Sitt, S; Skovpen, Yu I; Sloane, R J; Smerkol, P; Smith, A J S; Smith, D; Smith, D S; Smith, J G; Smol, A; Snoek, H L; Snyder, A; So, R Y; Sobie, R J; Soderstrom, E; Soha, A; Sohn, Y S; Sokoloff, M D; Sokolov, A; Solagna, P; Solovieva, E; Soni, N; Sonnek, P; Sordini, V; Spaan, B; Spanier, S M; Spencer, E; Speziali, V; Spitznagel, M; Spradlin, P; Staengle, H; Stamen, R; Stanek, M; Stanič, S; Stark, J; Steder, M; Steininger, H; Steinke, M; Stelzer, J; Stevanato, E; Stocchi, A; Stock, R; Stoeck, H; Stoker, D P; Stroili, R; Strom, D; Strother, P; Strube, J; Stugu, B; Stypula, J; Su, D; Suda, R; Sugahara, R; Sugi, A; Sugimura, T; Sugiyama, A; Suitoh, S; Sullivan, M K; Sumihama, M; Sumiyoshi, T; Summers, D J; Sun, L; Sun, S; Sundermann, J E; Sung, H F; Susaki, Y; Sutcliffe, P; Suzuki, A; Suzuki, J; Suzuki, J I; Suzuki, K; Suzuki, S; Suzuki, S Y; Swain, J E; Swain, S K; T'Jampens, S; Tabata, M; Tackmann, K; Tajima, H; Tajima, O; Takahashi, K; Takahashi, S; Takahashi, T; Takasaki, F; Takayama, T; Takita, M; Tamai, K; Tamponi, U; Tamura, N; Tan, N; Tan, P; Tanabe, K; Tanabe, T; Tanaka, H A; Tanaka, J; Tanaka, M; Tanaka, S; Tanaka, Y; Tanida, K; Taniguchi, N; Taras, P; Tasneem, N; Tatishvili, G; Tatomi, T; Tawada, M; Taylor, F; Taylor, G N; Taylor, G P; Telnov, V I; Teodorescu, L; Ter-Antonyan, R; Teramoto, Y; Teytelman, D; Thérin, G; Thiebaux, Ch; Thiessen, D; Thomas, E W; Thompson, J M; Thorne, F; Tian, X C; Tibbetts, M; Tikhomirov, I; Tinslay, J S; Tiozzo, G; Tisserand, V; Tocut, V; Toki, W H; Tomassini, E W; Tomoto, M; Tomura, T; Torassa, E; Torrence, E; Tosi, S; Touramanis, C; Toussaint, J C; Tovey, S N; Trapani, P P; Treadwell, E; Triggiani, G; Trincaz-Duvoid, S; Trischuk, W; Troost, D; Trunov, A; Tsai, K L; Tsai, Y T; Tsujita, Y; Tsukada, K; Tsukamoto, T; Tuggle, J M; Tumanov, A; Tung, Y W; Turnbull, L; Turner, J; Turri, M; Uchida, K; Uchida, M; Uchida, Y; Ueki, M; Ueno, K; Ujiie, N; Ulmer, K A; Unno, Y; Urquijo, P; Ushiroda, Y; Usov, Y; Usseglio, M; Usuki, Y; Uwer, U; Va'vra, J; Vahsen, S E; Vaitsas, G; Valassi, A; Vallazza, E; Vallereau, A; Vanhoefer, P; van Hoek, W C; Van Hulse, C; van Winkle, D; Varner, G; Varnes, E W; Varvell, K E; Vasileiadis, G; Velikzhanin, Y S; Verderi, M; Versillé, S; Vervink, K; Viaud, B; Vidal, P B; Villa, S; Villanueva-Perez, P; Vinograd, E L; Vitale, L; Vitug, G M; Voß, C; Voci, C; Voena, C; Volk, A; von Wimmersperg-Toeller, J H; Vorobyev, V; Vossen, A; Vuagnin, G; Vuosalo, C O; Wacker, K; Wagner, A P; Wagner, D L; Wagner, G; Wagner, M N; Wagner, S R; Wagoner, D E; Walker, D; Walkowiak, W; Wallom, D; Wang, C C; Wang, C H; Wang, J; Wang, J G; Wang, K; Wang, L; Wang, L L; Wang, P; Wang, T J; Wang, W F; Wang, X L; Wang, Y F; Wappler, F R; Watanabe, M; Watson, A T; Watson, J E; Watson, N K; Watt, M; Weatherall, J H; Weaver, M; Weber, T; Wedd, R; Wei, J T; Weidemann, A W; W, A J R; Wenzel, W A; West, C A; West, C G; West, T J; White, R M; Wicht, J; Widhalm, L; Wiechczynski, J; Wienands, U; Wilden, L; Wilder, M; Williams, D C; Williams, G; Williams, J C; Williams, K M; Williams, M I; Willocq, S Y; Wilson, J R; Wilson, M G; Wilson, R J; Winklmeier, F; Winter, M A; Wisniewski, W J; Wittgen, M; Wittlin, J; Wittmer, W; Wixted, R; Woch, A; Wogsland, B J; Wong, Q K; Wray, B C; Wren, A C; Wright, D M; Wu, C H; Wu, J; Wu, S L; Wulsin, H W; Xella, S M; Xie, Q L; Xie, Y; Xu, Z Z; Yèche, Ch; Yamada, Y; Yamaga, M; Yamaguchi, A; Yamaguchi, H; Yamaki, T; Yamamoto, H; Yamamoto, N; Yamamoto, R K; Yamamoto, S; Yamanaka, T; Yamaoka, H; Yamaoka, J; Yamaoka, Y; Yamashita, Y; Yamauchi, M; Yan, D S; Yan, Y; Yanai, H; Yanaka, S; Yang, H; Yang, R; Yang, S; Yarritu, A K; Yashchenko, S; Yashima, J; Yasin, Z; Yasu, Y; Ye, S W; Yeh, P; Yi, J I; Yi, K; Yi, M; Yin, Z W; Ying, J; Yocky, G; Yokoyama, K; Yokoyama, M; Yokoyama, T; Yoshida, K; Yoshida, M; Yoshimura, Y; Young, C C; Yu, C X; Yu, Z; Yuan, C Z; Yuan, Y; Yumiceva, F X; Yusa, Y; Yushkov, A N; Yuta, H; Zacek, V; Zain, S B; Zallo, A; Zambito, S; Zander, D; Zang, S L; Zanin, D; Zaslavsky, B G; Zeng, Q L; Zghiche, A; Zhang, B; Zhang, J; Zhang, L; Zhang, L M; Zhang, S Q; Zhang, Z P; Zhao, H W; Zhao, M; Zhao, Z G; Zheng, Y; Zheng, Y H; Zheng, Z P; Zhilich, V; Zhou, P; Zhu, R Y; Zhu, Y S; Zhu, Z M; Zhulanov, V; Ziegler, T; Ziegler, V; Zioulas, G; Zisman, M; Zito, M; Zürcher, D; Zwahlen, N; Zyukova, O; Živko, T; Žontar, D; Bevan, Adrian; Golob, Bostjan; Mannel, Thomas; Prell, Soeren; Yabsley, Bruce

    2014-01-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

  16. Identification of Colour Reconnection using Factorial Correlator

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Hua; LIU Lian-Shou

    2000-01-01

    A new signal is proposed for the colour reconnection in the hadronic decay of W+ W- in e+e- collisions. Using Pythia Monte Carlo it is shown that factorial correlators for W+ and W- without colour reconnection are almost identical to unity, while those for the cases with colour reconnection fall down approximately linearly in the log log plot. This signal, being based on the factorial correlator, is more sensitive than the ones using only averaged quantities.

  17. A Novel Prototype Model for Monitoring the Factories Remnants on Nile River

    Directory of Open Access Journals (Sweden)

    Sherif Kamel Hussein

    2015-03-01

    Full Text Available The environment faces too many issues including the water pollution problem in the Nile River. This problem could be solved by having a system provides the factory with the control and monitoring to be able to monitor and treat their water remnants according to the standards required by ministry of environment. This project will establish and design a new control system that could be used by factories for monitoring and controlling their remnants. The project based on using an interfacing device for facility management technology (eWON, and also Supervisory Control and Data Acquisition System (SCADA, that support General Packet Radio Service (GPRS for remote data connection.

  18. Single-scan scatter correction in CBCT by using projection correlation based view interpolation (PC-VI) and a stationary ring-shaped beam stop array (BSA)

    CERN Document Server

    Yan, Hao; Zhang, Yanbo; Zankl, Maria

    2014-01-01

    In the scatter correction for x-ray Cone Beam (CB) CT, the single-scan scheme with moving Beam Stop Array (BSA) offers reliable scatter measurement with low dose, and by using Projection Correlation based View Interpolation (PC-VI), the primary fluence shaded by the moving BSA (during scatter measurement) could be recovered with high accuracy. However, the moving BSA may increase the mechanical burden in real applications. For better practicability, in this paper we proposed a PC-VI based single-scan scheme with a ring-shaped stationary BSA, which serves as a virtual moving BSA during CB scan, so the shaded primary fluence by this stationary BSA can be also well recovered by PC-VI. The principle in designing the whole system is deduced and evaluated. The proposed scheme greatly enhances the practicability of the single-scan scatter correction scheme.

  19. PEP-II: An asymmetric B factory

    International Nuclear Information System (INIS)

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e+e- collider capable of achieving a luminosity of L = 3 x 1033 cm-2 s-1. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings

  20. VLBA Reveals Dust-Enshrouded "Supernova Factory"

    Science.gov (United States)

    2003-05-01

    Using the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope, astronomers have discovered a newly-exploded star, or supernova, hidden deep in a dust-enshrouded "supernova factory" in a galaxy some 140 million light-years from Earth. "This supernova is likely to be part of a group of super star clusters that produce one such stellar explosion every two years," said James Ulvestad, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. "We're extremely excited by the tremendous insights into star formation and the early Universe that we may gain by observing this 'supernova factory,'" he added. Ulvestad worked with Susan Neff of NASA's Goddard Space Flight Center in Greenbelt, MD, and Stacy Teng, a graduate student at the University of Maryland, on the project. The scientists presented their findings to the American Astronomical Society's meeting in Nashville, TN. "These super star clusters likely are forming in much the same way that globular clusters formed in the early Universe, and thus provide us with a unique opportunity to learn about how some of the first stars formed billions of years ago," Neff said. The cluster is in an object called Arp 299, a pair of colliding galaxies, where regions of vigorous star formation have been found in past observations. Since 1990, four other supernova explosions have been seen optically in Arp 299. Observations with the NSF's Very Large Array (VLA) earlier showed a region near the nucleus of one of the colliding galaxies which had all the earmarks of prolific star formation. The astronomers focused on this region, prosaically dubbed "Source A," with the VLBA and the NSF's Robert C. Byrd Green Bank Telescope in 2002, and found four objects in this dusty cloud that are likely young supernova remnants. When they observed the region again in February 2003, there was a new, fifth, object located only 7 light-years from one of the previously detected objects. More observations on April 30-May

  1. Study of technical issues on proton beam line tunnel in material/life science experimental facility of high intensity proton accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Shinichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Meigo, Shin-ichiro; Konno, Chikara [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    The so called NM Tunnel, which is a specific proton beam line space for the muon experiment and the spallation neutron source, is placed in the Material/Life Science Experimental Facility under the JAERI-KEK Joint project on the High Intensity Proton Accelerator. The group relevant to the NM tunnel has studied extensively technical issues associated from various aspects since last year. As a result, a basic structure of the NM Tunnel has been established as the initial phase. In viewing the importance for the facility design, this report summaries studies done by members of the group. (author)

  2. A Possible Hybrid Cooling Channel for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S; Gallardo, Juan C.

    2010-05-17

    A Neutrino Factory requires an intense and well-cooled (in transverse phase space) muon beam. We discuss a hybrid approach for a linear 4D cooling channel consisting of high-pressure gas-filled RF cavities--potentially allowing high gradients without breakdown--and discrete LiH absorbers to provide the necessary energy loss that results in the required muon beam cooling. We report simulations of the channel performance and its comparison with the vacuum case; we also briefly discuss technical and safety issues associated with cavities filled with high-pressure hydrogen gas. Even with additional windows that might be needed for safety reasons, the channel performance is comparable to that of the original, all-vacuum Feasibility Study 2a channel on which our design is based. If tests demonstrate that the gas-filled RF cavities can operate effectively with an intense beam of ionizing particles passing through them, our approach would be an attractive way of avoiding possible breakdown problems with a vacuum RF channel.

  3. Ring impedance and stored current for the photon factory

    International Nuclear Information System (INIS)

    The impedance of the Photon Factory ring is computed using estimates for individual vacuum chamber component impedances, and computer results for the impedance of the RF cavities. The total single-bunch loss impedance is expected to be about 2.5 MΩ at a bunch length of 2.0 cm. This is lower than the SPEAR impedance (per unit length of ring circumference) by about a factor of 5. Thus, the threshold current for single bunch instabilities which limit the beam current will probably be on the order of 150 - 200 mA. There should be no problem in reaching a stored current of 500 mA with 312 bunches. RF and beam parameters, such as stored current, klystron power, synchrotron radiation power, higher mode power, cavity power and reflected power are computed as a function of energy for two operating regions: at a constant beam current of 500 mA for lower energies where a klystron power of less than 650 kW is required, and at a constant klystron power of 650 kW at higher energies. Results are given for operation with and without a wiggler, and for both the single-bunch and 312-bunch modes. (author)

  4. Final Technical Report on STTR Project DE-FG02-06ER86281 Particle Tracking in Matter-Dominated Beam Lines (G4beamline)

    Energy Technology Data Exchange (ETDEWEB)

    Muons, Inc.

    2011-05-19

    This project has been for software development of the G4beamline [1] program, which is a particle-tracking simulation program based on the Geant4 toolkit [2], optimized for beam lines. This program can perform more realistic simulations than most alternatives, while being significantly easier to use by physicists. This project has fostered the general acceptance of G4beamline within the muon community, and has assisted in expanding its role outside that community. During this project, the G4beamline user community has grown from about a half-dozen users to more than 200 users around the world. This project also validated our business decision to keep G4beamline an open-source program, judging that an STTR project would provide more development resources than would marketing and selling the program. G4beamline is freely available to the physics community, and has been well validated against experiments and other codes within its domain. Muons, Inc. continues to support and develop the program, and a major part of the company's continued success and growth is directly related to our expertise in applying this program to interesting applications.

  5. The control system of the photon factory storage ring

    Science.gov (United States)

    Pak, Cheol On

    1989-05-01

    The Photon Factory 2.5 GeV electron storage ring at KEK, a dedicated machine for synchrotron radiation, stored its first beam on March, 1982. The first control system of the storage ring comprised seven distributed minicomputers connected through a star-type network. However, from 1985 they have been gradually replaced in order to meet increasing system requirements. At present, the control system uses four "supermini" computers as device controllers and a general-purpose computer as a library computer. These computers are connected to each other through a token ring-type network. Each control computer independently performs several processes. However, console functions as man-machine interfaces of all processes can be treated in a unified way using the network. A prototype database for operation logging has been completed and tested.

  6. Utilizing assumption for project of stand for solid state targets activation on inner beams of AIC-144 cyclotron; Zalozenia uzytkowe do projektu stanowiska do aktywacji tarcz w stanie stalym na wiazce wewnetrznej cyklotronu AIC-144

    Energy Technology Data Exchange (ETDEWEB)

    Petelenz, B. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1997-09-01

    General assumptions for project of target activation stand at AIC-144 cyclotron are presented. The project predicts production of {sup 67}Ga, {sup 111}In, {sup 201}Tl, {sup 139}Ce, {sup 88}Y, {sup 123}I and {sup 211}At isotopes using various target backings. Directions concerning target cooling and beam parameters are also described 25 refs, 1 tab

  7. Perspectives on Higher Luminosity B-Factories

    International Nuclear Information System (INIS)

    The present B-factories PEP-II and KEKB have reached luminosities of 4-6 x 1033/cm2/s and delivered integrated luminosity at rates in excess of 6 fb-1 per month [1,2]. The recent turn on of these two B-Factories has shown that modern accelerator physics, design, and engineering can produce colliders that rapidly reach their design luminosities and deliver integrated luminosities capable of frontier particle physics discoveries. PEP-II and KEK-B with ongoing upgrade programs should reach luminosities of over 1034/cm2/s in a few years and with more aggressive improvements may reach luminosities of order 4 x 1034/cm2/s by the end of the decade. However, due to particle physics requirements, the next generation B-Factory may require significantly more luminosity. Initial parameters of a very high luminosity e+e- B-Factory or Super B-Factory (SBF) are being developed incorporating several new ideas from the successful operation of the present generation e+e- accelerators [3,4]. A luminosity approaching 1036 cm-2s-1 may be possible. Furthermore, the ratio of average to peak luminosity may be increased by 30% due to continuous injection. The operation of this new accelerator will be qualitatively different from present e+e- colliders due to this continuous injection

  8. Baby factories taint surrogacy in Nigeria.

    Science.gov (United States)

    Makinde, Olusesan Ayodeji; Makinde, Olufunmbi Olukemi; Olaleye, Olalekan; Brown, Brandon; Odimegwu, Clifford O

    2016-01-01

    The practice of reproductive medicine in Nigeria is facing new challenges with the proliferation of 'baby factories'. Baby factories are buildings, hospitals or orphanages that have been converted into places for young girls and women to give birth to children for sale on the black market, often to infertile couples, or into trafficking rings. This practice illegally provides outcomes (children) similar to surrogacy. While surrogacy has not been well accepted in this environment, the proliferation of baby factories further threatens its acceptance. The involvement of medical and allied health workers in the operation of baby factories raises ethical concerns. The lack of a properly defined legal framework and code of practice for surrogacy makes it difficult to prosecute baby factory owners, especially when they are health workers claiming to be providing services to clients. In this environment, surrogacy and other assisted reproductive techniques urgently require regulation in order to define when ethico-legal lines have been crossed in providing surrogacy or surrogacy-like services. PMID:26602942

  9. Beam Stacking Study of HIRFL-CSR Project%兰州重离子加速器冷却储存环束流累积研究

    Institute of Scientific and Technical Information of China (English)

    原有进; 夏佳文; 张文志; 宋明涛; 杨晓东

    2001-01-01

    The beam accumulation methods of HIRFL-CSR(Heavy Ion ResearchFacility of Lanzhou and Cooler Storage Rings) project were studied. Two accumulation methods will be adopted to increase the beam intensity of CSRm. For both multiple multi-turn injection method and RF stacking method, electron cooling of beam plays an important role.%对兰州重离子加速器冷却储存环加速器主体的主要功能环——主环的束流累积方法和设计进行了研究.为了使主环对不同种类的重离子束流都具有较强的累积能力,在设计时考虑采用电子冷却参与下的两种束流累积方法:多次多圈注入和射频堆积.对这两种方法,电子冷却的冷却时间都是将束流累积到高流强的关键因素.

  10. Vacuum system of the high energy ring of an asymmetric B-factory based on PEP

    International Nuclear Information System (INIS)

    The multi-ampere currents required for high luminosity operation of an asymmetric B factory leads to extremely stressing requirements on a vacuum system suitable for maintaining long beam-gas lifetimes and acceptable background levels in the detector. We present the design for a Cu alloy vacuum chamber and its associated pumping system for the 9 GeV electron storage ring of the proposed B factory based on PEP. The excellent thermal and photo-desorption properties of Cu allows handling the high proton flux in a conventional, single chamber design with distributed ion pumps. The x-ray opacity of the Cu is sufficiently high that no additional lead shielding is necessary to protect the dipoles from the intense synchrotron radiation generated by the beam. The design allows chamber commissioning in <500 hr of operation. 5 refs., 3 figs., 2 tabs

  11. Rapid Application Development Using Software Factories

    CERN Document Server

    Stojanovski, Toni

    2012-01-01

    Software development is still based on manufactory production, and most of the programming code is still hand-crafted. Software development is very far away from the ultimate goal of industrialization in software production, something which has been achieved long time ago in the other industries. The lack of software industrialization creates an inability to cope with fast and frequent changes in user requirements, and causes cost and time inefficiencies during their implementation. Analogous to what other industries had done long time ago, industrialization of software development has been proposed using the concept of software factories. We have accepted this vision about software factories, and developed our own software factory which produces three-layered ASP.NET web applications. In this paper we report about our experience with using this approach in the process of software development, and present comparative results on performances and deliverables in both traditional development and development usin...

  12. The Physics of the B Factories

    Science.gov (United States)

    Bevan, A. J.; Golob, B.; Mannel, Th.; Prell, S.; Yabsley, B. D.; Aihara, H.; Anulli, F.; Arnaud, N.; Aushev, T.; Beneke, M.; Beringer, J.; Bianchi, F.; Bigi, I. I.; Bona, M.; Brambilla, N.; Brodzicka, J.; Chang, P.; Charles, M. J.; Cheng, C. H.; Cheng, H.-Y.; Chistov, R.; Colangelo, P.; Coleman, J. P.; Drutskoy, A.; Druzhinin, V. P.; Eidelman, S.; Eigen, G.; Eisner, A. M.; Faccini, R.; Flood, K. T.; Gambino, P.; Gaz, A.; Gradl, W.; Hayashii, H.; Higuchi, T.; Hulsbergen, W. D.; Hurth, T.; Iijima, T.; Itoh, R.; Jackson, P. D.; Kass, R.; Kolomensky, Yu. G.; Kou, E.; Križan, P.; Kronfeld, A.; Kumano, S.; Kwon, Y. J.; Latham, T. E.; Leith, D. W. G. S.; Lüth, V.; Martinez-Vidal, F.; Meadows, B. T.; Mussa, R.; Nakao, M.; Nishida, S.; Ocariz, J.; Olsen, S. L.; Pakhlov, P.; Pakhlova, G.; Palano, A.; Pich, A.; Playfer, S.; Poluektov, A.; Porter, F. C.; Robertson, S. H.; Roney, J. M.; Roodman, A.; Sakai, Y.; Schwanda, C.; Schwartz, A. J.; Seidl, R.; Sekula, S. J.; Steinhauser, M.; Sumisawa, K.; Swanson, E. S.; Tackmann, F.; Trabelsi, K.; Uehara, S.; Uno, S.; van de Water, R.; Vasseur, G.; Verkerke, W.; Waldi, R.; Wang, M. Z.; Wilson, F. F.; Zupan, J.; Zupanc, A.; Adachi, I.; Albert, J.; Banerjee, Sw.; Bellis, M.; Ben-Haim, E.; Biassoni, P.; Cahn, R. N.; Cartaro, C.; Chauveau, J.; Chen, C.; Chiang, C. C.; Cowan, R.; Dalseno, J.; Davier, M.; Davies, C.; Dingfelder, J. C.; Echenard, B.; Epifanov, D.; Fulsom, B. G.; Gabareen, A. M.; Gary, J. W.; Godang, R.; Graham, M. T.; Hafner, A.; Hamilton, B.; Hartmann, T.; Hayasaka, K.; Hearty, C.; Iwasaki, Y.; Khodjamirian, A.; Kusaka, A.; Kuzmin, A.; Lafferty, G. D.; Lazzaro, A.; Li, J.; Lindemann, D.; Long, O.; Lusiani, A.; Marchiori, G.; Martinelli, M.; Miyabayashi, K.; Mizuk, R.; Mohanty, G. B.; Muller, D. R.; Nakazawa, H.; Ongmongkolkul, P.; Pacetti, S.; Palombo, F.; Pedlar, T. K.; Piilonen, L. E.; Pilloni, A.; Poireau, V.; Prothmann, K.; Pulliam, T.; Rama, M.; Ratcliff, B. N.; Roudeau, P.; Schrenk, S.; Schroeder, T.; Schubert, K. R.; Shen, C. P.; Shwartz, B.; Soffer, A.; Solodov, E. P.; Somov, A.; Starič, M.; Stracka, S.; Telnov, A. V.; Todyshev, K. Yu.; Tsuboyama, T.; Uglov, T.; Vinokurova, A.; Walsh, J. J.; Watanabe, Y.; Won, E.; Wormser, G.; Wright, D. H.; Ye, S.; Zhang, C. C.; Abachi, S.; Abashian, A.; Abe, K.; Abe, N.; Abe, R.; Abe, T.; Abrams, G. S.; Adam, I.; Adamczyk, K.; Adametz, A.; Adye, T.; Agarwal, A.; Ahmed, H.; Ahmed, M.; Ahmed, S.; Ahn, B. S.; Ahn, H. S.; Aitchison, I. J. R.; Akai, K.; Akar, S.; Akatsu, M.; Akemoto, M.; Akhmetshin, R.; Akre, R.; Alam, M. S.; Albert, J. N.; Aleksan, R.; Alexander, J. P.; Alimonti, G.; Allen, M. T.; Allison, J.; Allmendinger, T.; Alsmiller, J. R. G.; Altenburg, D.; Alwyn, K. E.; An, Q.; Anderson, J.; Andreassen, R.; Andreotti, D.; Andreotti, M.; Andress, J. C.; Angelini, C.; Anipko, D.; Anjomshoaa, A.; Anthony, P. L.; Antillon, E. A.; Antonioli, E.; Aoki, K.; Arguin, J. F.; Arinstein, K.; Arisaka, K.; Asai, K.; Asai, M.; Asano, Y.; Asgeirsson, D. J.; Asner, D. M.; Aso, T.; Aspinwall, M. L.; Aston, D.; Atmacan, H.; Aubert, B.; Aulchenko, V.; Ayad, R.; Azemoon, T.; Aziz, T.; Azzolini, V.; Azzopardi, D. E.; Baak, M. A.; Back, J. J.; Bagnasco, S.; Bahinipati, S.; Bailey, D. S.; Bailey, S.; Bailly, P.; van Bakel, N.; Bakich, A. M.; Bala, A.; Balagura, V.; Baldini-Ferroli, R.; Ban, Y.; Banas, E.; Band, H. R.; Banerjee, S.; Baracchini, E.; Barate, R.; Barberio, E.; Barbero, M.; Bard, D. J.; Barillari, T.; Barlow, N. R.; Barlow, R. J.; Barrett, M.; Bartel, W.; Bartelt, J.; Bartoldus, R.; Batignani, G.; Battaglia, M.; Bauer, J. M.; Bay, A.; Beaulieu, M.; Bechtle, P.; Beck, T. W.; Becker, J.; Becla, J.; Bedny, I.; Behari, S.; Behera, P. K.; Behn, E.; Behr, L.; Beigbeder, C.; Beiline, D.; Bell, R.; Bellini, F.; Bellodi, G.; Belous, K.; Benayoun, M.; Benelli, G.; Benitez, J. F.; Benkebil, M.; Berger, N.; Bernabeu, J.; Bernard, D.; Bernet, R.; Bernlochner, F. U.; Berryhill, J. W.; Bertsche, K.; Besson, P.; Best, D. S.; Bettarini, S.; Bettoni, D.; Bhardwaj, V.; Bhimji, W.; Bhuyan, B.; Biagini, M. E.; Biasini, M.; van Bibber, K.; Biesiada, J.; Bingham, I.; Bionta, R. M.; Bischofberger, M.; Bitenc, U.; Bizjak, I.; Blanc, F.; Blaylock, G.; Blinov, V. E.; Bloom, E.; Bloom, P. C.; Blount, N. L.; Blouw, J.; Bly, M.; Blyth, S.; Boeheim, C. T.; Bomben, M.; Bondar, A.; Bondioli, M.; Bonneaud, G. R.; Bonvicini, G.; Booke, M.; Booth, J.; Borean, C.; Borgland, A. W.; Borsato, E.; Bosi, F.; Bosisio, L.; Botov, A. A.; Bougher, J.; Bouldin, K.; Bourgeois, P.; Boutigny, D.; Bowerman, D. A.; Boyarski, A. M.; Boyce, R. F.; Boyd, J. T.; Bozek, A.; Bozzi, C.; Bračko, M.; Brandenburg, G.; Brandt, T.; Brau, B.; Brau, J.; Breon, A. B.; Breton, D.; Brew, C.; Briand, H.; Bright-Thomas, P. G.; Brigljević, V.; Britton, D. I.; Brochard, F.; Broomer, B.; Brose, J.

    2014-11-01

    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C. Please note that version 3 on the archive is the auxiliary version of the Physics of the B Factories book. This uses the notation alpha, beta, gamma for the angles of the Unitarity Triangle. The nominal version uses the notation phi_1, phi_2 and phi_3. Please cite this work as Eur. Phys. J. C74 (2014) 3026.

  13. Ergonomic analysis jobs in recovered factories.

    Science.gov (United States)

    Cuenca, Gabriela; Zotta, Gastón

    2012-01-01

    With the advent of the deep economic crisis in Argentina on 2001, the recovery of companies through to the creation of the Cooperatives Working Self-Management or Factories Recovered by its workers was constituted as one of the ways in which the salaried disobeyed the increasing unemployment. When the companies turn into recovered factories they tend to leave of side practices that have been seen like imposed by the previous organization and not understanding them as a primary condition for the execution of his tasks. Safety and ergonomics are two disciplines that are no longer considered relevant to the daily work. Therefore this investigation aims to revalue, undergo semantic to give back to a place in every organization analyzed. This research developed a self-diagnostic tool for working conditions, and the environment, present in the recovered factories.

  14. Particle production and energy deposition studies for the neutrino factory target station

    OpenAIRE

    Back, John L.; Densham, Chris; Edgecock, R.; Prior, Gersende

    2013-01-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture syst...

  15. Lightweight bonded acrylic facing at the Vitra VSL Factory

    Directory of Open Access Journals (Sweden)

    Matthias

    2013-12-01

    Full Text Available Corresponding author: Matthias Michel, E-mail: michel@imagine-structure.eu Acrylic glass is omnipresent in the industrialised world; but as a building material most architects, facade planners and engineers are still unfamiliar with this material. In most cases it is applied as a substitute for glass which leads to inappropriate joints and fixtures. During the years of the path toward the digital era, the authors were in the fortunate position to be involved in several unconventional glass and acrylic glass projects. On the basis of their most recent project, the facade of the Vitra VSL Factory by SANAA Architekten, they describe the development of a facade for which they chose acrylic glass not as a substitute for glass but rather as a conscious material choice. Since the entire facade is it was possible to apply the manufacturing technology of deep-drawing, allowing for very thin wall thicknesses.

  16. Simulation studies of crystal-photodetector assemblies for the Turkish accelerator center particle factory electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Kocak, F., E-mail: fkocak@uludag.edu.tr

    2015-07-01

    The Turkish Accelerator Center Particle Factory detector will be constructed for the detection of the produced particles from the collision of a 1 GeV electron beam against a 3.6 GeV positron beam. PbWO{sub 4} and CsI(Tl) crystals are considered for the construction of the electromagnetic calorimeter part of the detector. The generated optical photons in these crystals are detected by avalanche or PIN photodiodes. Geant4 simulation code has been used to estimate the energy resolution of the calorimeter for these crystal–photodiode assemblies.

  17. Electroweak and CP violation physics at a linear collider Z-factory

    CERN Document Server

    Hawkings, R; Hawkings, Richard; Moenig, Klaus

    1999-01-01

    A future linear collider such as TESLA may be able to run on the Z0 resonance with very high luminosity and polarised electron and positron beams. The possibilities of measuring electroweak quantities with high precision are investigated. Huge improvements with respect to the present precision can be expected, especially for the asymmetries A_LR and A_b where beam polarisation can be exploited. The very large sample of Z to bbbar events also allows studies of various CP-violating b decays. The precision achievable on the CKM unitarity triangle angles is comparable to experiments at b factories and future hadron colliders.

  18. Black Liquor Treatment Project of Guizhou Pulp and Paper Making Factory%对贵州制浆造纸厂“黑液”治理方案的建议

    Institute of Scientific and Technical Information of China (English)

    宁媛; 李皖; 曾祥钦

    2001-01-01

    According to the local conditions and the comparison between different proposals,the reclaiming of rough lignin by acid settlement and the reuse of processed lignin are adopted as the most economically effcient project to treat the black liquor pollution.A primary estimate shows that a recovery of 1000 kg of rough lignin will bring 100 renminbi yuan of net income to the enterprise,not including the economic benefits from the usage of the processed lignin.The relevant technology is based on the production and experiments,so it is completely feasible.%从贵州省情出发,通过方案比较,采取酸沉析回收粗木素治理黑液、木素改性再利用方案,黑液的污染将得到有效治理,而且还将获得新的经济效益。初步估算:每回收1吨粗木素可净增效益100元,粗木素改性利用后还可以产生新的经济效益,这对促进地方经济持续发展和社会稳定都很有意义。方案中的有关技术都有生产和生产性中试基础,方案具备可行性。

  19. Guided and Interactive Factory Tours for Schools

    NARCIS (Netherlands)

    Kaibel, Andreas; Auwaerter, Andreas; Kravcik, Milos

    2006-01-01

    Please, cite this paper as: Kaibel, A., Auwaerter, A., & Kravcik, M. (2006). Guided and Interactive Factory Tours for Schools. Proceedings of the First European Conference on Technology Enhanced Learning. October 1st-4th, Crete, Greece: Springer. Retrieved October 18th, 2006, from http://dspace.lear

  20. Business plan Feed Factory Zambezi Valley, Mozambique

    NARCIS (Netherlands)

    Vernooij, A.G.; Wilschut, S.

    2015-01-01

    This business plan focuses on the establishment of a poultry feed factory, one of the essential elements of a sustainable and profitable poultry meat value chain. There is a growing demand for poultry meat in the Tete Province, and currently a large part of the consumed broilers come from other part

  1. The Energy Factory; EnergieFabriek

    Energy Technology Data Exchange (ETDEWEB)

    Van den Boomen, M.; Van den Dungen, G.J.; Elias, T.; Jansen, M. [Universiteit van Amsterdam UvA, Amsterdam (Netherlands)

    2009-05-15

    The Energy Factory is a collaboration of 26 Dutch local water boards in which options for energy saving and energy production are examined. According to the authors, the initiative of the Energy Factory will lead to a reframing of the role of the water boards. Moreover, they explain how the PPP concept (People, Planet, Profit) may act as platform for negotiations between actors who are involved in the Energy Factory. In addition, the PPP concept is used to demonstrate that the Energy Factory will lead to larger social involvement, social entrepreneurship and growing profits [Dutch] De Energiefabriek is een samenwerkingsverband van 26 waterschappen in Nederland waarin wordt gezocht naar mogelijkheden om energie te besparen en zelf energie te produceren. Volgens de auteurs van deze notitie leidt het initiatief van de Energiefabriek tot een reframing van de rol van waterschappen. Daarnaast leggen ze uit hoe het PPP-concept (People, Profit, Planet) kan fungeren als platform voor onderhandelingen tussen de actoren die betrokken zijn bij de Energiefabriek. Verder wordt met het PPP-concept aangetoond dat de Energiefabriek leidt tot ruimere maatschappelijke betrokkenheid, maatschappelijk ondernemen en winstvergroting.

  2. Jean Desmet’s Dream Factory

    Directory of Open Access Journals (Sweden)

    Eline Grignard

    2015-07-01

    Full Text Available Exhibition review of "Jean Desmet’s Dream Factory. The Adventurous Years of Film (1907-1916" held in Eye Film Instituut in Amsterdam. Paying hommage to film operator and collector Jean Desmet, the exhibition presents a wide range of the film collection as well as a number of rare archival materials.

  3. The Italian Tau/charm project

    Directory of Open Access Journals (Sweden)

    Biagini Maria Enrica

    2014-06-01

    Full Text Available A τ/charm Factory, an e + e- collider with very high luminosity at the 2–4.6 GeV center of mass energy, to be built on the Rome University at Tor Vergata campus, was studied by the Consortium Nicola Cabibbo Laboratory and the INFN Frascati Laboratories. This project is the natural evolution of the flagship Italian project SuperB Factory, funded by the Italian Government in 2010 with a budget that turned out to be insufficient to cover the total costs of the project. The study of rare events at the τ/charm energy was already planned as a Phase-II of SuperB [1]. This design keeps all the unique features of SuperB, including the polarization of the electron beam, with the possibility to take data in a larger energy range, with reduced accelerator dimensions and construction and operation costs. A Report on the accelerator design has been published in September 2013 [2].

  4. Beaming teaching application

    DEFF Research Database (Denmark)

    Markovic, Milos; Madsen, Esben; Olesen, Søren Krarup;

    2012-01-01

    BEAMING is a telepresence research project aiming at providing a multimodal interaction between two or more participants located at distant locations. One of the BEAMING applications allows a distant teacher to give a xylophone playing lecture to the students. Therefore, rendering of the xylophon...

  5. Production of Tetraquark State Tcc at B-Factories

    Science.gov (United States)

    Reyima, Rashidin

    2013-12-01

    We study production of the tetraquark state Tcc via virtual photon at the B-factories in the QCD factorization framework. We predict the cross section of tetraquark state production in the leading order at the B-factories.

  6. Summary of the Superconducting RF Linac for Muon Collider and Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.; /Oak Ridge; Garoby, R.; /CERN; Geer, S.; /Fermilab

    2010-01-01

    Project-X is a proposed project to be built at Fermi National Accelerator Laboratory with several potential missions. A primary part of the Project-X accelerator chain is a Superconducting linac, and In October 2009 a workshop was held to concentrate on the linac parameters. The charge of the workshop was to 'focus only on the SRF linac approaches and how it can be used'. The focus of Working Group 2 of this workshop was to evaluate how the different linac options being considered impact the potential realization of Muon Collider (MC) and Neutrino Factory (NF) applications. In particular the working group charge was, 'to investigate the use of a multi-megawatt proton linac to target, phase rotate and collect muons to support a muon collider and neutrino factory'. To focus the working group discussion, three primary questions were identified early on, to serve as a reference: (1) What are the proton source requirements for muon colliders and neutrino factories? (2) What are the issues with respect to realizing the required muon collider and neutrino factory proton sources - (a) General considerations and (b) Considerations specific to the two linac configurations identified by Project-X? (3) What things need to be done before we can be reasonably confident that ICD1/ICD2 can be upgraded to provide the neutrino factory/muon collider needs? A number of presentations were given, and are available at the workshop web-site. This paper does not summarize the individual presentations, but rather addresses overall findings as related to the three guiding questions listed above.

  7. Status and Early Commissioning Results for the PEP-IIB-Factory High Energy Ring

    Science.gov (United States)

    Wienands, H.-Ulrich

    1997-05-01

    The PEP-II B-Factory High Energy Ring (HER) is a 2.2 km 9 GeV electron ring for 1 A beam current, construction of which is currently being completed at SLAC. The HER beam will collide with positrons from the 3.1 GeV, 2 A Low Energy Ring which is on a one-year later schedule. The SLAC linac will serve as high-intensity, low-emittance injector for the facility. By March 1997 the HER magnet and power system will have been installed and checked out. The vacuum system---capable of absorbing 10 MW of synchrotron radiation---will be closed and evacuated. Two initial rf stations with four cavities each, sufficient to support beams up to several hundred mA, will have been installed. The beam-position monitor (BPM) system consists of about 300 button-type BPM and is capable of single-turn data acquisition. A sophisticated beam-loss monitor system using Cherenkov detectors is capable of localizing losses over a 10-6 intensity range. A phased commissioning plan has been adopted with initial beam commissioning activities scheduled to commence in spring 1997, focusing on lattice optics diagnosis and tuning. We will present our experience checking out the various accelerator systems and our beam commissioning plans. First results of beam commissioning will be presented as they are available.

  8. Incense and Joss Stick Making in Small Household Factories, Thailand

    OpenAIRE

    S Siripanich; Siriwong, W.; P Keawrueang; M Borjan; Robson, M.

    2014-01-01

    Background: Incense and joss stick are generally used in the world. Most products were made in small household factories. There are many environmental and occupational hazards in these factories.Objective: To evaluate the workplace environmental and occupational hazards in small household incense and joss stick factories in Roi-Et, Thailand.Methods: Nine small household factories in rural areas of Roi-Et, Thailand, were studied. Dust concentration and small aerosol particles were counted thro...

  9. Study of low-energy neutrino factory at the Fermilab to DUSEL baseline

    Energy Technology Data Exchange (ETDEWEB)

    Kyberd, Paul; Ellis, Malcolm; /Brunel U.; Bross, Alan; Geer, Steve; /Fermilab; Mena, Olga; /Valencia U., IFIC; Long, Ken; /Imperial Coll., London; Pascoli, Silvia; /Durham U., IPPP; Fernandez Martinez, Enrique; /Munich, Max Planck Inst.; McDonald, Kirk; /Princeton U.; Huber, Patrick; /Virginia Tech.

    2009-07-01

    This note constitutes a Letter of Interest to study the physics capabilities of, and to develop an implementation plan for, a neutrino physics program based on a Low-Energy Neutrino Factory at Fermilab providing a {nu} beam to a detector at the Deep Underground Science and Engineering Laboratory. It has been over ten years since the discovery of neutrino oscillations [1] established the existence of neutrino masses and leptonic mixing. Neutrino oscillations thus provide the first evidence of particle physics beyond the Standard Model. Most of the present neutrino oscillation data are well described by the 3{nu} mixing model. While a number of the parameters in this model have already been measured, there are several key parameters that are still unknown, namely, the absolute neutrino mass scale, the precise value of the mixing angles, the CP phase {delta} and hence the presence or absence of observable CP-violation in the neutrino sector. Future measurements of these parameters are crucial to advance our understanding of the origin of neutrino masses and of the nature of flavor in the lepton sector. The ultimate goal of a program to study neutrino oscillations goes beyond a first measurement of parameters, and includes a systematic search for clues about the underlying physics responsible for the tiny neutrino masses, and, hopefully, the origin of the observed flavor structure in the Standard Model, as well as the possible source of the observed matter-antimatter asymmetry in the Universe. To achieve this goal will almost certainly require precision measurements that go well beyond the presently foreseen program. One of the most promising experimental approaches to achieve some of the goals mentioned above is to build a Neutrino Factory and its corresponding detector. The Neutrino Factory produces neutrino beams from muons which have been accelerated to an energy of, for example, 25 GeV. The muons are stored in a race-track shaped decay ring and then decay along

  10. Internet factories: Creating application-specific networks on-demand

    NARCIS (Netherlands)

    Strijkers, R.J.; Makkes, M.X.; Laat, C. de; Meijer, R.J.

    2014-01-01

    We introduce the concept of Internet factories. Internet factories structure the task of creating and managing application-specific overlay networks using infrastructure-as-a-service clouds. We describe the Internet factory architecture and report on a proof of concept with three examples that progr

  11. Exploration on the Project-Based Curriculum Design of Higher Vocational Colleges——Illustrated by the Example of the Course of "The Design of Food Stuffs Factory"%服务地方产业的项目化课程教学设计——以清远职业技术学院“食品工厂设计”课程为例

    Institute of Scientific and Technical Information of China (English)

    王飞生; 岳映明; 黄小明

    2012-01-01

    通过调查地方食品行业职业岗位需求,找准高职"食品工厂设计"课程定位,凝炼典型工作项目,分析岗位职业能力,针对性选择课程教学任务,以贴近生产项目为载体,做好课程整体设计和单元设计;以学生自主学习为主,"教学做"一体化,依托校内外实训基地,产学研强化校企合作,提升教学质量,对"食品工厂设计"课程进行项目化教学探索,对教学改革有一定意义。%Through a survey on the occupation demand of local food industry,course orientation of "The Design of Food Stuffs Factory" in higher vocational college can be figured out,and the skills needed in the target positions can also be identified.According to teaching objectives of this course,tasks can be chosen from those typical work-related projects and thus the overall curriculum design and unit design can be completed.Students'independence study is the center of the project-based teaching which is combined with the integration of teaching,learning and doing.While,this course relies on both the practice bases inside and outside school,and it strengthens the cooperation between school and enterprise,ultimately it will enhance the quality of teaching.Having explored the project-based teaching of "The Design of Food Stuffs Factory" course,this article is conducive to the teaching reform.

  12. Third Rolling Mill in a Factory Improvement Project 6 kV Reactive Power Compensation and Harmonic Control%某厂改造工程6kV供电系统无功补偿与谐波治理

    Institute of Scientific and Technical Information of China (English)

    刘义友; 吴方达; 徐芸; 刘宾

    2011-01-01

    High-power rectifier.inverter,energy-saving lamp etc equipment can produce large amounts harmonic current, and influence the normal operation of the equipment. Combined with the power play the flat line load characteristics, overviewed the third rolling mill in a factory 6 kV power system improvement project reactive power compensation and harmonic design. The scheme select high-pressure FC type filter and reactive compensation device to make the harmonic current most inflows filter circuits. After analysis and calculation, the actual filter effect proof the effect is obvious, after running,can absorb the most harmonic,can raise grid power factor, less investment, high economic benefit.%大功率的整流器、变频器、节能灯等设备会产生大量谐波电流,影响设备的正常运行,结合弹扁生产线的用电负荷特点,概述了某厂改造工程6 kV供电系统无功补偿与谐波治理的设计方案,该方案选用高压FC型滤波及无功补偿装置,使谐波电流大部分流入滤波回路.经过分析计算,投运后滤波效果实测证明效果明显,能够将谐波大部分吸收,同时还提高电网功率因数,投资少,经济效益高.

  13. Assessment of noise in furniture factories

    Directory of Open Access Journals (Sweden)

    Alexandre Petusk Filipe

    2014-12-01

    Full Text Available Work safety is of great importance in all industrial activities. The Norm NR15 of the Brazilian law determines that the work environment be tailored to employees to minimize biological, ergonomic, physical, chemical risks and accidents. The aim of this study was to evaluate the exposure of intermittent noise in a daily dose to workers in furniture factories. Measurements were made with a sound level meter and dosimeter in a workday of eight hours in 14 furniture factories located in the South of Minas Gerais. Noise values ranged from 66.0 to 117.4 dB(A. At a dose of 8 working hours it was observed that the values exceed the tolerance limit of a unit, being from 2.76 to 30.52 for minimum and maximum units, respectively. Both noises and daily doses were superior than the values set by the NR-15-Annex 01 (BRASIL, 2008.

  14. Portable Material Culture and Death Factory Auschwitz

    Directory of Open Access Journals (Sweden)

    Adrian T. Myers

    2007-11-01

    Full Text Available Like any other factory, the death factory of Auschwitz consumed primary materials and produced secondary products. Unique to Auschwitz, though, is that the primary material consumed was human life; not just the life of the breathing human body, but also the material possessions associated with that life. The detritus of this most efficient genocide – clothing, jewellery, food, corpses – was appropriated and put to new uses by the SS and the prisoners. Others have recognised the various postwar material cultural outcomes of the camp: the writing, the film, the theatre, the art, the tourism. This article, however, demonstrates that the material culture of Auschwitz is not a phenomenon exclusive to the postwar era. It focuses on the fact that inside the camp during the war, despite the landscape of death and deprivation, intimate interaction between humans and material culture continued.

  15. Use of 70 MeV Proton Beam for Medical Applications at INFN-LNS: CATANA Project

    Energy Technology Data Exchange (ETDEWEB)

    Sabini, M.G.; Cirrone, G.A.P.; Barone Tonghi, L.; Bartolotta, A.; Brai, M.; Cuttone, G.; Lo Nigro, S.; Marano, F.; Nicoletti, G.A.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romeo, N.; Rovelli, A.; Salamone, V.; Teri, G.

    2000-12-31

    The project CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) is a collaboration between the INFN-Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute and Radiology Institute of the Catania University and CSFNSM Catania. The main goal of CATANA is the study and the application of proton therapy for the treatment of shallow tumors (4 cm max) like uveal melanomas and subfoveal macular degenerations.

  16. Use of 70 MeV proton beam for medical applications at INFN-LNS: CATANA project

    Science.gov (United States)

    Sabini, M. G.; Cirrone, G. A. P.; Tonghi, L. Barone; Bartolotta, A.; Brai, M.; Cuttone, G.; Nigro, S. Lo; Marano, F.; Nicoletti, G. A.; Privitera, G.; Raffaele, L.; Reibaldi, A.; Romeo, N.; Rovelli, A.; Salamone, V.; Teri, G.

    2000-04-01

    The project CATANA (Centro di Adro Terapia ed Applicazioni Nucleari Avanzate) is a collaboration between the INFN-Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute and Radiology Institute of the Catania University and CSFNSM Catania. The main goal of CATANA is the study and the application of protontherapy for the treatment of shallow tumors (4 cm max) like uveal melanomas and subfoveal macular degenerations.

  17. Accelerator and Technical Sector Seminar: Future neutrino facilities: the neutrino factory

    CERN Multimedia

    2012-01-01

    Thursday 19.January 2012 at 14:15  -  IT Auditorium (bldg. 31 3-004) Future neutrino facilities: the neutrino factory by Gersende Prior / University of Geneva and CERN EN/MEF The neutrino factory is one of the proposed designs for a future intense neutrino beam facility. In its current layout, a high-power proton beam impinges on an Hg jet target producing pions, decaying in turn into muons. In order to reduce the particle beam emittance, the muon transverse momentum is reduced through ionization cooling by a technically demanding set-up made of closely-packed RF cavities alternating with absorbers. In this talk I will present the motivation for building an intense neutrino beam and some of the proposed neutrino facilities' design. I will discuss the challenges inherent to the cooling of muons, possible optimization of the current baseline and the on-going R&D. ________________ ATS Seminars Organisers: H. Burkhardt (BE), S. Sgobba (EN), G. deRijk (TE)

  18. LAMPF: the meson factory. A LASL monograph

    Energy Technology Data Exchange (ETDEWEB)

    Allred, J.C.

    1977-08-01

    A general and simplified introduction to the entire concept of LAMPF is given in terms of its experimental capabilities. Parts of the current experimental program are used as illustrative examples. Topics discussed include: (1) the evolution of the meson factory; (2) accelerator construction; (3) strong focusing; (4) accelerator innovations at LAMPF; (5) photons and pions; (6) muons as nuclear probes; (7) nuclear chemistry; (8) radiobiology and medical applications; (9) radioisotope production; (10) materials testing; and (11) LAMPF management and users group. (PMA)

  19. Object Classification at the Nearby Supernova Factory

    OpenAIRE

    Bailey, Stephen

    2008-01-01

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of nonsupernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintai...

  20. Anaerobic digestion of cassava starch factory effluent.

    Science.gov (United States)

    Manilal, V B; Narayanan, C S; Balagopalan, C

    1990-06-01

    Biomethanation of cassava starch factory effluent in a batch digester produced 130 l biogas/kg dry matter with an average melthane content of 59%. About 63% COD was removed during 60 days. In semicontinuous digesters, gas production was 3251/kg dry matter with a retention time of 33,3 days giving a COD reduction of 50%. Size of starter inoculum was important for good biogasification of the effluent.

  1. An asymmetric B factory based on PEP

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e{sup +}e{sup {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings.

  2. An asymmetric B factory based on PEP

    International Nuclear Information System (INIS)

    In this report we describe a design for a high-luminosity Asymmetric B Factory to be built in the PEP tunnel on the SLAC site. This proposal, a collaborative effort SLAC, LBL, and LLNL, is the culmination of more than two years of effort aimed at the design and construction of an asymmetric e+e- collider capable of achieving a luminosity of L = 3 x 1033 cm-2 s-1. The configuration adopted utilizes two storage rings, and electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of the B Factory. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two B Factory storage rings

  3. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    C. L. Fern

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  4. Electron Beam Lithography

    Science.gov (United States)

    Harriott, Lloyd R.

    1997-04-01

    Electron beams have played a significant role in semiconductor technology for more than twenty years. Early electron beam machines used a raster scanned beam spot to write patterns in electron-sensitive polymer resist materials. The main application of electron beam lithography has been in mask making. Despite the inherently high spatial resolution and wide process margins of electron beam lithography, the writing rate for semiconductor wafers has been too slow to be economically viable on a large scale. In the late 1970's, variable shape electron beam writing was developed, projecting a rectangular beam whose size can be varied for each "shot" exposure of a particular pattern, allowing some integrated circuits to be made economically where a variety of "customized" patterns are desired. In the cell or block projection electron beam exposure technique, a unit cell of a repetitive pattern is projected repeatedly to increase the level of parallelism. This can work well for highly repetitive patterns such as memory chips but is not well suited to complex varying patterns such as microprocessors. The rapid progress in the performance of integrated circuits has been largely driven by progress in optical lithography, through improvements in lens design and fabrication as well as the use of shorter wavelengths for the exposure radiation. Due to limitations from the opacity of lens and mask materials, it is unlikely that conventional optical printing methods can be used at wavelengths below 193 nm or feature sizes much below 180 nm. One candidate technology for a post-optical era is the Scattering with Angular Limitation Projection Electron-beam Lithography (SCALPEL) approach, which combines the high resolution and wide process latitude inherent in electron beam lithography with the throughput of a parallel projection system. A mask consisting of a low atomic number membrane and a high atomic number pattern layer is uniformly illuminated with high energy (100 ke

  5. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Science.gov (United States)

    Becker, N.; Smith, W. L.; Quirk, S.; Kay, I.

    2010-12-01

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  6. Using cone-beam CT projection images to estimate the average and complete trajectory of a fiducial marker moving with respiration

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N; Smith, W L; Quirk, S [Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Kay, I, E-mail: nathan.becker@albertahealthservices.ab.c [Medical Physics, Cape Breton Cancer Centre, Sydney, Nova Scotia (Canada)

    2010-12-21

    Stereotactic body radiotherapy of lung cancer often makes use of a static cone-beam CT (CBCT) image to localize a tumor that moves during the respiratory cycle. In this work, we developed an algorithm to estimate the average and complete trajectory of an implanted fiducial marker from the raw CBCT projection data. After labeling the CBCT projection images based on the breathing phase of the fiducial marker, the average trajectory was determined by backprojecting the fiducial position from images of similar phase. To approximate the complete trajectory, a 3D fiducial position is estimated from its position in each CBCT project image as the point on the source-image ray closest to the average position at the same phase. The algorithm was tested with computer simulations as well as phantom experiments using a gold seed implanted in a programmable phantom capable of variable motion. Simulation testing was done on 120 realistic breathing patterns, half of which contained hysteresis. The average trajectory was reconstructed with an average root mean square (rms) error of less than 0.1 mm in all three directions, and a maximum error of 0.5 mm. The complete trajectory reconstruction had a mean rms error of less than 0.2 mm, with a maximum error of 4.07 mm. The phantom study was conducted using five different respiratory patterns with the amplitudes of 1.3 and 2.6 cm programmed into the motion phantom. These complete trajectories were reconstructed with an average rms error of 0.4 mm. There is motion information present in the raw CBCT dataset that can be exploited with the use of an implanted fiducial marker to sub-millimeter accuracy. This algorithm could ultimately supply the internal motion of a lung tumor at the treatment unit from the same dataset currently used for patient setup.

  7. AN ALTERNATIVE SCHEME FOR THE NEUTRINO FACTORY WITH A HIGH POWER PROTON DRIVER

    International Nuclear Information System (INIS)

    We describe a scheme to produce an intense and collimated beam of neutrinos for the neutrino-oscillation experiment. The scheme feature is the presence of a Proton Driver that generates a proton beam at very large power (10mA x 15GeV), considerably higher than that proposed elsewhere for this application. With this scheme, because of the high intensity of the proton beam, to produce neutrinos at the same required rates, it is sufficient to collect π and μ mesons only around a small angle and at reduced momentum spreads. This eliminates the need for the difficult longitudinal manipulations of the protons and mesons, and of the ionization cooling that still needs to be demonstrated. It is also shown, at the end of the paper, that the Neutrino Factory here proposed can also be used as an injector for a 1 x 1 TeV2 μ+-μ- collider at large luminosity

  8. Confirmatory factorial analysis of TEOSQp / Análise factorial confirmatória do TEOSQp

    Directory of Open Access Journals (Sweden)

    Helder M. Fernandes

    2010-01-01

    Full Text Available The present research assessed the reliability, factorial validity and measurement invariance (by gender of the Portuguese version of TEOSQ –Task and Ego Orientation in Sport Questionnaire (Fonseca & Biddle, 2001. Data were collected from 1010 physical education students with a mean age of 15.42 ( SD=1.91. Factorial and invariance measurements were tested via confirmatory factorial analysis. Results supported internal consistency for the two proposed subscales (task and ego. Based on modification indices and theoretical justification the TEOSQ p was reduced to 12 items with better goodness-of-fit indices for the oblique model. The results of gender invariance did not provide full empirical support to the multi-group equivalence assumption, being suggested that TEOSQ p does not measure in the same way goal orientations for boys (orthogonal model and girls (oblique model. In light of these results, conceptual, empirical and practical issues were discussed.

  9. In-Factory Learning - Qualification For The Factory Of The Future

    Science.gov (United States)

    Quint, Fabian; Mura, Katharina; Gorecky, Dominic

    2015-07-01

    The Industry 4.0 vision anticipates that internet technologies will find their way into future factories replacing traditional components by dynamic and intelligent cyber-physical systems (CPS) that combine the physical objects with their digital representation. Reducing the gap between the real and digital world makes the factory environment more flexible, more adaptive, but also more complex for the human workers. Future workers require interdisciplinary competencies from engineering, information technology, and computer science in order to understand and manage the diverse interrelations between physical objects and their digital counterpart. This paper proposes a mixed-reality based learning environment, which combines physical objects and visualisation of digital content via Augmented Reality. It uses reality-based interaction in order to make the dynamic interrelations between real and digital factory visible and tangible. We argue that our learning system does not work as a stand-alone solution, but should fit into existing academic and advanced training curricula.

  10. The Tau-Charm Factory in the ERA of B-Factories and CESR

    International Nuclear Information System (INIS)

    This paper is a collection of presentations made at a conference on tau-charm factories, held at the Stanford Linear Accelerator Center and Stanford University on August 15-16, 1994. The papers presented summarize the physics which can be learned from such a facility, the advantages it would present over planned B-factories and large centers such as CESR, and the types of decay modes which could be observed. More detailed studies of tau physics are opened up, as well as charmonium and charmed systems. Seperate presentations to the proceedings are indexed individually into the database

  11. Oscillations of factorial cumulants to factorial moments ratio from an eikonal approach

    OpenAIRE

    Beggio, Paulo Cesar

    2013-01-01

    We study the factorial moments (Fq), the factorial cumulants (Kq) and the ratio of Kq to Fq (Hq = Kq=Fq) in pp/pp collisions using an updated approach, in which the multiplicity distribution is related to the eikonal function. The QCD inspired eikonal model adopted contains contributions of quark-quark, quark-gluon and gluon-gluon interactions. Our work shows that the approach can reproduce the collision energy dependence of the Fq moments, correctly predicts that the first minimum of the Hq ...

  12. Object classification at the Nearby Supernova Factory

    Science.gov (United States)

    Bailey, S.; Aragon, C.; Romano, R.; Thomas, R. C.; Weaver, B. A.; Wong, D.

    2008-03-01

    We present the results of applying new object classification techniques to the supernova search of the Nearby Supernova Factory. In comparison to simple threshold cuts, more sophisticated methods such as boosted decision trees, random forests, and support vector machines provide dramatically better object discrimination: we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming large optical surveys.

  13. TU-F-17A-05: Calculating Tumor Trajectory and Dose-Of-The-Day for Highly Mobile Tumors Using Cone-Beam CT Projections

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B; Miften, M [University of Colorado School of Medicine, Aurora, CO (United States)

    2014-06-15

    Purpose: Cone-beam CT (CBCT) projection images provide anatomical data in real-time over several respiratory cycles, forming a comprehensive picture of tumor movement. We developed a method using these projections to determine the trajectory and dose of highly mobile tumors during each fraction of treatment. Methods: CBCT images of a respiration phantom were acquired, where the trajectory mimicked a lung tumor with high amplitude (2.4 cm) and hysteresis. A template-matching algorithm was used to identify the location of a steel BB in each projection. A Gaussian probability density function for tumor position was calculated which best fit the observed trajectory of the BB in the imager geometry. Two methods to improve the accuracy of tumor track reconstruction were investigated: first, using respiratory phase information to refine the trajectory estimation, and second, using the Monte Carlo method to sample the estimated Gaussian tumor position distribution. 15 clinically-drawn abdominal/lung CTV volumes were used to evaluate the accuracy of the proposed methods by comparing the known and calculated BB trajectories. Results: With all methods, the mean position of the BB was determined with accuracy better than 0.1 mm, and root-mean-square (RMS) trajectory errors were lower than 5% of marker amplitude. Use of respiratory phase information decreased RMS errors by 30%, and decreased the fraction of large errors (>3 mm) by half. Mean dose to the clinical volumes was calculated with an average error of 0.1% and average absolute error of 0.3%. Dosimetric parameters D90/D95 were determined within 0.5% of maximum dose. Monte-Carlo sampling increased RMS trajectory and dosimetric errors slightly, but prevented over-estimation of dose in trajectories with high noise. Conclusions: Tumor trajectory and dose-of-the-day were accurately calculated using CBCT projections. This technique provides a widely-available method to evaluate highly-mobile tumors, and could facilitate better

  14. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    International Nuclear Information System (INIS)

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 ± 0.50 pixels (mean ± SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing (≤21 mm) that induced an absolute three-dimensional setup error of 1.6 ± 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  15. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Worm, Esben S., E-mail: esbeworm@rm.dk [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Department of Medical Physics, Aarhus University Hospital, Aarhus (Denmark); Hoyer, Morten; Fledelius, Walther [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Nielsen, Jens E.; Larsen, Lars P. [Department of Radiology, Aarhus University Hospital, Aarhus (Denmark); Poulsen, Per R. [Department of Oncology, Aarhus University Hospital, Aarhus (Denmark); Institute of Clinical Medicine, Aarhus University (Denmark)

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  16. MOEM scan engine for bar code reading and factory automation

    Science.gov (United States)

    Motamedi, M. Edward; Park, Sangtae; Melendes, Robert; Wang, A.; Andrews, Angus P.; Garcia-Nunez, Dawn S.; Jinar, Dan; Richardson, Patti D.; Studer, J.; Chen, J. K.; DeNatale, Jeffrey F.; Moranski, Jeffrey A.

    1998-03-01

    Rockwell is in the state of technology transfer to manufacturing of a micro-opto-electro-mechanical scan engine with superior scanning performance for bar code reading and factory automation. The scan engine consists of three main components: actuator, mirrors, and control electronics. The first two components are fabricated on a silicon cantilever beam while the control electronics are presently hybrid. The actuator comprises of a bimorph layer covered with two metal layers. The mirror has a large area (several mm2) and it is micromachined with a surface flatness better than (lambda) /2. Actuator scan-angles greater than 22 degree(s) with high repeatability in performance are achieved. The scan engine was integrated with an existing Rockwell commercial bar code reader/decoder and successfully proven to read a two-character code 39 bar code. The system was capable of decoding the 13-mil label at 360 scans per second with a 100% successful read performance. Environmental testing of the device indicates that the scanner can operate at elevated temperatures up to 70 degree(s)C with minor fluctuations in frequency and scan angle. The scanner has also gone through a lifetime cycle test and it has survived more than 8 billion cycles during a period of 18 months. To increase the yield and the performance level of the device, theoretical study as well as dynamic simulation by finite elements modeling have been investigated and will be reported separately.

  17. A new kind of bottom quark factory

    International Nuclear Information System (INIS)

    We describe a novel method of producing large numbers of B mesons containing bottom quarks. It is known that one should analyze at least 109 B meson decays to elucidate the physics of CP violation and rare B decay modes. Using the ultra high energy electron beams from the future generation of electron linear colliders, we Compton backscatter low energy laser beams off these electron beams. From this process, we produce hot photons having energy hundreds of GeV. Upon scattering these hot photons onto stationary targets, we show that it is possible to photoproduce and measure the necessary 109 B mesons per year. 24 refs., 4 figs

  18. Particle identification at an asymmetric B Factory

    International Nuclear Information System (INIS)

    Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B0 decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distribution as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R ampersand D conclude the chapter. 56 refs., 64 figs., 13 tabs

  19. Parameters for a Super-Flavor-Factory

    Energy Technology Data Exchange (ETDEWEB)

    Seeman, J.T.; Cai, Y.; Ecklund, S.; Novokhatski, A.; Seryi, A.; Sullivan, M.; Wienands, U.; /SLAC; Biagini, M.; Raimondi, P.; /Frascati

    2006-06-27

    A Super Flavor Factory, an asymmetric energy e{sup +}e{sup -} collider with a luminosity of order 10{sup 36} cm{sup -2} s{sup -1}, can provide a sensitive probe of new physics in the flavor sector of the Standard Model. The success of the PEP-II and KEKB asymmetric colliders in producing unprecedented luminosity above 10{sup 34} cm{sup -2} s{sup -1} has taught us about the accelerator physics of asymmetric e{sup +}e{sup -} collider in a new parameter regime. Furthermore, the success of the SLAC Linear Collider and the subsequent work on the International Linear Collider allow a new Super-Flavor collider to also incorporate linear collider techniques. This note describes the parameters of an asymmetric Flavor-Factory collider at a luminosity of order 10{sup 36} cm{sup -2} s{sup -1} at the Y(4S) resonance and about 10{sup 35} cm{sup -2} s{sup -1} at the {tau} production threshold. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the Y(4S) resonance. In the following note only the parameters relative to the Y(4S) resonance will be shown, the ones relative to the lower energy operations are still under study.

  20. Radioactive ion beam development for the SPIRAL 2 project; Developpement de faisceaux d'ions radioactifs pour le projet SPIRAL 2

    Energy Technology Data Exchange (ETDEWEB)

    Pichard, A.

    2010-11-26

    This thesis focuses on the study of radioactive ion beam production by the ISOL method for the SPIRAL 2 project. The production of light ion beams is studied and the potential in-target yields of two beams are appraised. The neutron-rich {sup 15}C yield in an oxide target is estimated with simulations (MCNPx, EAF-07) and experimental data bases; the neutron-deficient {sup 14}O yield is estimated thanks to a new measurement of the {sup 12}C({sup 3}He, n){sup 14}O reaction excitation function. Based on thermal simulations, a first design of the production target is presented. This thermal study gives the necessary answers for the detailed design of the system able to reach a production yield 140 times higher than with SPIRAL 1. The production of radioactive ion beams coming from fissions in the UCx target is also studied and more particularly effusion and ionisation processes. A global study and an off-line tests campaign allow essential knowledge to the design of the surface ionisation source for SPIRAL 2 to be acquired. A first prototype of this ion source dedicated to alkali and alkaline-earth element production has been built and a thermal calibration performed. Ionisation efficiency and time response of the target-ion source system have been measured at different target temperatures and for different noble gases. These measurements allow evaluation of the impact of effusion and ionisation processes on the production efficiency of different alkali and noble gases isotopes as a function of their half-life. (author) [French] Cette these concerne l'etude de la production de faisceaux d'ions radioactifs par la methode ISOL pour le projet SPIRAL 2. La production de faisceaux legers est tout d'abord consideree. Les taux de production potentiels de deux faisceaux sont evalues: la production de {sup 15}C (riche en neutrons) dans une cible d'oxyde est estimee a l'aide de simulations (MCNPx, EAF-07) et de donnees experimentales; le taux de

  1. Dust exposure and respiratory health among Tanzanian coffee factory workers

    OpenAIRE

    Sakwari, Gloria

    2013-01-01

    Introduction: Exposure to organic dust may cause detrimental effects to the respiratory system of exposed workers. Organic dust is commonly contaminated with microbes and their derivatives such as bacteria and endotoxin, fungi, moulds and beta glucan. Few studies on exposure and health effects have been performed in primary coffee factories. The studies showed that processes in primary coffee factories cause emission of high dust levels. Work in coffee factories has been associated with res...

  2. Compact scanning transmission x-ray microscope at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801 (Japan); Suga, Hiroki [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Takahashi, Yoshio [Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-01-28

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  3. Compact scanning transmission x-ray microscope at the photon factory

    Science.gov (United States)

    Takeichi, Yasuo; Inami, Nobuhito; Suga, Hiroki; Takahashi, Yoshio; Ono, Kanta

    2016-01-01

    We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ˜107 photons/s was focused to a diameter of ˜40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250-1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.

  4. High luminosity, electron-positron colliders as strangeness, charm, and beauty factories

    International Nuclear Information System (INIS)

    This paper reports on high luminosity electron-positron colliders operating at the mass of the φ meson (1.02 GeV) that can produce copious K bar K0 pairs from a single quantum state. Temporal correlations in the decays of the K's provide a measure of the direct CP violating amplitude and also allow a high precision test of CPT invariance. A low energy collider with high luminosity can serve as a beam physics testbed to evaluate novel approaches to collider design that may be necessary for B factories to attain luminosities ≥ 1024 cm-2s-1

  5. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  6. Beam director design report

    Energy Technology Data Exchange (ETDEWEB)

    Younger, F.C.

    1986-08-01

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

  7. Beam director design report

    International Nuclear Information System (INIS)

    A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 300 beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project

  8. Domain-driven specification techniques simplify the analysis of requirements for the KAON factory central control system

    Energy Technology Data Exchange (ETDEWEB)

    Inwood, C. (Inwood Real-Time Systems Associates, Kinburn, ON (Canada)); Ludgate, G.A.; Dohan, D.A.; Osberg, E.A.; Koscielniak, S. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility)

    1990-08-01

    Domain-driven modelling, outlined in this paper, has been successfully applied to the analysis, specification and design of the KAON Factory central control system (KF-CCS). This advanced object-oriented technique is especially suited to the development of complex systems. Early in the project, four very natural domains were identified which simplified the analysis of requirements. (orig.).

  9. AutoPyFactory and the Cloud

    CERN Document Server

    Caballero, J; The ATLAS collaboration; Love, P

    2013-01-01

    AutoPyFactory (APF) is a next-generation pilot submission framework that has been used as part of the ATLAS workload management system (PANDA) for two years. APF is reliable, scalable, and offers easy and flexible configuration. Using a plugin-based architecture, APF polls for information from configured information and batch systems (including grid sites), decides how many additional pilot jobs are needed, and submits them. With the advent of cloud computing, providing resources goes beyond submitting pilots to grid sites. Now, the resources on which the pilot will run also need to be managed. Handling both pilot submission and controlling the virtual machine life cycle (creation, retirement, and termination) from the same framework allows robust and efficient management of the process. In this paper we describe the design and implementation of these virtual machine management capabilities of APF. Expanding on our plugin-based approach, we allow cascades of virtual resources associated with a job queue. A si...

  10. [Shoe factory workers, solvents and health].

    Science.gov (United States)

    Foà, Vito; Martinotti, Irene

    2012-01-01

    Exposure to organic solvents in footwear manufacturing industry came from the glues used adhering the shoe parts to each other. Benzene was the first solvent used in shoe factories until the evidence of its capacity to cause leukaemia. Then, the demonstration that exposure to n-hexane was related to distal polyneuropathy limited the use of this substance. After that, results of neurotoxicological studies conducted on workers exposed to different mixtures of organic solvents make necessary prevention measure directed to a progressive reduction of air dispersion of these chemicals. Today exposure to solvents in workplaces is regulated by health based exposure limit values that should warranty absence of central nervous system effects. One of the most important rules of occupational medicine is verify that these exposure levels are really health protective also for workers with increased susceptibility. PMID:22697025

  11. ATHEROSCLEROSIS DISEASE: A MULTI-FACTORIAL PATHOLOGY

    Directory of Open Access Journals (Sweden)

    Marcieli da Luz Giroldo1; Arienne Serrano Alves1; Francielle Baptista1

    2007-06-01

    Full Text Available Atherosclerosis or arterial stiffening is a gradual disease that restricts the normal blood flow in different areas of body and maylead to secondary illnesses as myocardial infarction and cerebral stroke. Innumerable factors are related to the development ofatherosclerosis, among them are the dyslipidemia; genetic factors; arterial hypertension; diabetes mellitus; obesity; smoking;lack of exercise; pulmonary infection by Chlamydia and stress. Due to multi-factorial atherosclerosis characteristics,innumerable drugs, with differentiated mechanisms of action, are being elaborated to be used in prevention and control of thisdisease. However, beyond the pharmacological therapy, a balanced diet, physical activity and elimination of risk habits, assmoking, also are need for controlling atherosclerosis progression, as well as for the increase of expectative and quality of life

  12. Systems Factorial Technology Explained to Humans

    Directory of Open Access Journals (Sweden)

    Harding, Bradley

    2016-01-01

    Full Text Available The study of mental processes is at the forefront of research in cognitive psychology. However, the ability to identify the architectures responsible for specific behaviors is often quite difficult. To alleviate this difficulty, recent progress in mathematical psychology has brought forth Systems Factorial Technology (SFT; Townsend & Nozawa, 1995. Encompassing a series of analyses, SFT can diagnose and discriminate between five types of information processing architectures that possibly underlie a mental process. Despite the fact that SFT has led to new discoveries in cognitive psychology, the methodology itself remains far from intuitive to newcomers. This article therefore seeks to provide readers with a simple tutorial and a rudimentary introduction to SFT. This tutorial aims to encourage newcomers to read more about SFT and also to add it to their repertoire of analyses.

  13. Evolution of the Factory 1975-2006

    International Nuclear Information System (INIS)

    Since it was founded in 1973. Equipos Nucleares (ENSA) has been actively present in the nuclear market. This was the reason for its creation and for which it was organized from the very beginning, by designing a company with a nuclear structure and mentality. The author reviews the history and evolution of the Factory- more than a workshop- and describes its different stages, which were strongly affected by the unexpected evolution of a diminishing market- an inexistent market the likes to say- and also stresses the extraordinary difficulty of its work and the determination to remain in the nuclear market. He acknowledges the people and the culture of ENSA emphasizing their dedication, generosity, flexibility, training and enthusiasm, and stresses their stake in being the best and to attain excellence in the quality of supplies, meeting deadlines and customer satisfaction, identifying these as fundamental factors of the company's legacy. Having a better Factory is possible by improving its technological capability through researching and developing its processes, automating and robotizing manufacturing and inspection activities, and simplifying its operating systems. A result of these efforts is the continuous international presence as a supplier and collaborator with the world's leading designers, which has consolidated it as a reference supplier on the American market. Of not is the supply to the market of its different product lines a result of combining its design and manufacturing capabilities with its flexibility and size, all of which contribute to ENSA's wealth, diversity and appeal. ENSA is aware of the forthcoming resurgence of the new nuclear market. It is preparing for the future by renewing and upgrading its manufacturing facilities and implementing new systems techniques- Lean Manufacturing and Six Sigma-into its Annual Improvement Plans to favor and drive its technological capability and competitiveness and to respond to the increasingly demanding

  14. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  15. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    project was approved by the DOE Technical Topic Manager to develop magnets for the Mu2e experiment that fit well into the Fermilab Technical Division availability. The difference between the MCC helical solenoid and the Mu2e bent solenoid described in Appendix I is that the helical solenoid is made of coils that are in parallel planes with offset centers, while the coils in the bent solenoid follow the central particle trajectory and look much like a “slinky” toy. The muon-beam cooling-channel technologies developed in this project will enable a muon collider, the next step toward the energy frontier, Higgs/neutrino/Z-factories, and rare muon decay experiments. Commercial uses of the beams made possible by the cooling techniques developed in this project include scanning for nuclear contraband, studies of material properties with spin resonance techniques, and muon-catalyzed fusion.

  16. Helical muon beam cooling channel engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2015-08-07

    Technical Topic Manager to develop magnets for the Mu2e experiment that fit well into the Fermilab Technical Division availability. The difference between the MCC helical solenoid and the Mu2e bent solenoid described in Appendix I is that the helical solenoid is made of coils that are in parallel planes with offset centers while the coils in the bent solenoid follow the central particle trajectory and look much like a “slinky” toy. The muon-beam cooling-channel technologies developed in this project will enable a muon collider, the next step toward the energy frontier, Higgs/neutrino/Z-factories, and rare muon decay experiments. Commercial uses of the beams made possible by the cooling techniques developed in this project include scanning for nuclear contraband, studies of material properties with spin resonance techniques, and muon catalyzed fusion.

  17. Oscillations of factorial cumulants to factorial moments ratio from an eikonal approach

    CERN Document Server

    Beggio, Paulo Cesar

    2013-01-01

    We study the factorial moments (Fq), the factorial cumulants (Kq) and the ratio of Kq to Fq (Hq = Kq=Fq) in pp/pp collisions using an updated approach, in which the multiplicity distribution is related to the eikonal function. The QCD inspired eikonal model adopted contains contributions of quark-quark, quark-gluon and gluon-gluon interactions. Our work shows that the approach can reproduce the collision energy dependence of the Fq moments, correctly predicts that the first minimum of the Hq lies around q = 5 and qualitatively reproduces the oscillations of the Hq moments, as shown in the experimental data and predicted by QCD at preasymptotic energy. The result of this study seems to indicate that the Hq oscillations are manifestation of semihard component in the multiparticle production process. Predictions for multiplicity distribution and Hq moments at the LHC energy of 14 TeV are presented.

  18. Review of Caltech Workshop and some parametric questions for a high-luminosity asymmetric B-factory collider

    International Nuclear Information System (INIS)

    The potential to probe the Standard Model and beyond with studies in the B-meson system has resulted in the investigation of techniques to perform this physics. One of the most promising is to produce the Υ(4S) resonance, moving in the laboratory frame, using an e+e- storage-ring collider with different energies in the two beams. In this paper, the author summarizes the results of that workshop in this paper, and also investigate some parametric questions incorporating several of the constraints discussed there. The purpose of the Caltech Workshop was to consider the accelerator physics issues faced in attempting to achieve a high-luminosity asymmetric e+e- storage-ring B-factory in the Ecm ∼ 10-GeV region. There were four working groups, chosen to address what were perceived to be the most difficult areas: beam-beam limitations, optics, beam current limitations, and small beam pipe at the interaction point (IP). The author summarizes the conclusions from each of these groups in the following sections. Many of these considerations apply as well to symmetric B-factory colliders

  19. Isotropic beam bouquets for shaped beam linear accelerator radiosurgery

    Science.gov (United States)

    Wagner, Thomas H.; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Buatti, John M.; Bouchet, Lionel G.

    2001-10-01

    In stereotactic radiosurgery and radiotherapy treatment planning, the steepest dose gradient is obtained by using beam arrangements with maximal beam separation. We propose a treatment plan optimization method that optimizes beam directions from the starting point of a set of isotropically convergent beams, as suggested by Webb. The optimization process then individually steers each beam to the best position, based on beam's-eye-view (BEV) critical structure overlaps with the target projection and the target's projected cross sectional area at each beam position. This final optimized beam arrangement maintains a large angular separation between adjacent beams while conformally avoiding critical structures. As shown by a radiosurgery plan, this optimization method improves the critical structure sparing properties of an unoptimized isotropic beam bouquet, while maintaining the same degree of dose conformity and dose gradient. This method provides a simple means of designing static beam radiosurgery plans with conformality indices that are within established guidelines for radiosurgery planning, and with dose gradients that approach those achieved in conventional radiosurgery planning.

  20. Connection Among Some Optimal Criteria for Symmetrical Fractional Factorial Designs

    Institute of Scientific and Technical Information of China (English)

    Hong Qin; Ming-yao Ai; Jian-hui Ning

    2005-01-01

    A fundamental and practical question for fractional factorial designs is the issue of optimal factor assignment. Recently, some new criteria, such as generalized minimum aberration, WV-criterion, NB-criterion and uniformity criterion are proposed for comparing and selecting fractions. In this paper, we indicate that these criteria agree quite well for symmetrical fraction factorial designs.

  1. Parametric study of a target factory for laser fusion

    International Nuclear Information System (INIS)

    An analysis of a target factory leading to the derivation of production rate equations has provided the basis for a parametric study. Rate equations describing the production of laser fusion targets have been developed for the purpose of identifying key parameters, attractive production techniques and cost scaling relationships for a commercial target factory

  2. 46 CFR 162.050-13 - Factory production and inspection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Factory production and inspection. 162.050-13 Section..., AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-13 Factory production and inspection. (a) Equipment manufactured under Coast Guard approval...

  3. Review of U.S. Neutrino Factory Studies

    OpenAIRE

    Zisman, Michael S.

    2005-01-01

    We summarize the status of the two U.S. feasibility studies carried out by the Neutrino Factory and Muon Collider Collaboration (NFMCC) along with recent improvements to Neutrino Factory design developed during the American Physical Society (APS) Neutrino Physics Study. Suggested accelerator topics for the International Scoping Study (ISS) are also indicated.

  4. Factory Gate Pricing: An Analysis of the Dutch Retail Distribution

    NARCIS (Netherlands)

    H.M. le Blanc; F. Cruijssen (Frans); H.A. Fleuren; M.B.M. de Koster (René)

    2004-01-01

    textabstractFactory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution. Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers. Owing to both the asymmetry in the distribution networks

  5. Factory Gate Pricing : An Analysis of the Dutch Retail Distribution

    NARCIS (Netherlands)

    Le Blanc, H.M.; Cruijssen, F.C.A.M.; Fleuren, H.A.; de Koster, M.B.M.

    2004-01-01

    Factory Gate Pricing (FGP) is a relatively new phenomenon in retail distribution.Under FGP, products are no longer delivered at the retailer distribution center, but collected by the retailer at the factory gates of the suppliers.Owing to both the asymmetry in the distribution networks (the supplier

  6. Proceedings of B Factories, the state of the art in accelerators, detectors and physics

    International Nuclear Information System (INIS)

    The conference B Factories, The State of the Art in Accelerators, Detectors and Physics was held at Stanford Linear Accelerator Center on April 6-10, 1992. The guiding principle of the conference was to bring together accelerator physicists and high energy experimentalists and theorists at the same time, with the goal of encouraging communication in defining and solving problems in a way which cut across narrow areas of specialization. Thus the conference was, in large measure, two distinct conferences, one involving accelerator specialists, the other theorists and experimentalists. There were initial and closing plenary sessions, and three separate tracks of parallel sessions, called Accelerator, Detector/Physics and Joint Interest sessions. This report contains the papers of this conference, the general topics of these cover: vacuum system, lattice design, beam-beam interactions, rf systems, feedback systems, measuring instrumentation, the interaction region, radiation background, particle detectors, particle tracking and identification, data acquisition, and computing system, and particle theory

  7. An alternative derivation of image reconstruction on a chord from cone-beam projection%另一种基于弦的锥束CT图像重建的推导方法

    Institute of Scientific and Technical Information of China (English)

    EmilY.Sidky; 邹宇; 潘晓川

    2005-01-01

    Recently, we have developed a new formula for cone-beam CT image reconstruction. From the formula, we have also derived three algorithms. Two of the algorithms, which are referred to as the back-projection filtration (BPF) and minimum-data filtered backprojection (MD-FBP) algorithms, can provide volume images from projection data with a minimal scanning arc and minimal irradiation per view angle. The fact that these reconstruction algorithms allow for minimum irradiation per view is unique to the BPF and MD-FBP algorithms. This article explores the mathematical relationship between the projection data and an intermediate back-projection image necessary for obtaining the actual volume image. An alternative proof of the formula and the BPF algorithm are also provided.

  8. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei

    2016-01-01

    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  9. From field to factory-Taking advantage of shop manufacturing for the pebble bed modular reactor

    International Nuclear Information System (INIS)

    The move of nuclear plant construction from the field to the factory for small, advanced pebble bed modular reactor (PBMR) designs has significant benefits compared to traditional light water reactor (LWR) field oriented designs. The use of modular factory construction techniques has a growing economic benefit over time through well-established process learning applications. This paper addresses the basic PBMR design objectives and commercialization model that drive this approach; provides a brief technical description of the PBMR design and layout with representative CAD views and discusses derived figures of merit highlighting the relative simplicity of PBMR compared to a modern LWR. The discussion emphasizes that more of PBMR can be built in the factory due to the simple design of a direct helium Brayton cycle compared to an indirect LWR steam cycle with its associated equipment. For the PBMR design there are fewer and less cumbersome auxiliary and safety systems with their attendant support requirements. Additionally, the labor force economic efficiency for nuclear projects is better in the factory than in the field, including consideration of labor costs and nuclear quality programs. Industrial learning is better in the factory because of the more controlled environment, mechanization optimization opportunities and because of the more stable labor force compared to the field. Supply chain benefits are more readily achievable with strategic contracts for module suppliers. Although building a nuclear power plant is not a typical high volume manufacturing process, for the PBMR-type of plant, with its high degree of standardization and relatively small, simplified design, the shift to factory work has a significant impact on overall project cost due to earlier identification and better coordination of parallel construction paths. This is in stark contrast to the construction of a large LWR in the past. Finally, the PBMR modular plant concept continues at the

  10. Knowledge and opinions of emergency contraceptive pills among female factory workers in Tijuana, Mexico.

    Science.gov (United States)

    García, Sandra G; Becker, Davida; de Castro, Marcela Martínez; Paz, Francisco; Olavarrieta, Claudia Díaz; Acevedo-García, Dolores

    2008-09-01

    Workers in Mexico's maquiladoras (assembly plants) are mainly young, single women, many of whom could benefit from emergency contraceptive pills (ECPs). Because ECPs are readily available in Mexico, women who know about the therapy can obtain it easily. Do maquiladora workers know about the method? Could worksite programs help increase awareness? To investigate these questions, we conducted a five-month intervention during which workers in three maquiladoras along the Mexico-United States border could attend educational talks on ECPs, receive pamphlets, and obtain kits containing EC supplies. Among the workers exposed to our intervention, knowledge of ECPs increased. Reported ECP use also increased. Although our intervention apparently increased workers' knowledge and use, the factory proved to be a difficult intervention setting. Problems we experienced included a factory closure and management/staff opposition to certain project elements. Future studies should continue to investigate work-site interventions and other strategies to reach workers. PMID:18853641

  11. The benefits of conducting factory performance tests for main mine fans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.E.Jr. [PB Americas Inc., New York, NY (United States); Gamble, G.A. [Clarage Twin City Fan Co., Akron, OH (United States)

    2010-07-01

    Axial flow fans used in underground mining are also commonly used in subway tunnel ventilation fans to provide an evacuation path during a tunnel fire emergency. The axial flow fans provide sufficient air velocity to the fire site to prevent backlayering of smoke against the incoming airflow. Since the tunnels are used by the public, advance testing of fans and motors is conducted to confirm that the equipment will perform as specified during a fire. This paper discussed some of the advantages derived from conducting fan factory tests for tunnel projects that would also apply to mining applications. It also described other benefits from testing that are unique to mining. External factors that may cause the fan performance to vary considerably from the predicted performance measured at the factory were also discussed. These included air density changes and system effects produced by poorly designed shaft configurations and fan inlet ductwork. 11 refs., 6 figs.

  12. Neutrino Factory and Muon Collider Fellow

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Gail G. [Univ. of California, Riverside, CA (United States); Snopak, Pavel [Univ. of California, Riverside, CA (United States); Bao, Yu [Univ. of California, Riverside, CA (United States)

    2015-03-20

    Muons are fundamental particles like electrons but much more massive. Muon accelerators can provide physics opportunities similar to those of electron accelerators, but because of the larger mass muons lose less energy to radiation, allowing more compact facilities with lower operating costs. The way muon beams are produced makes them too large to fit into the vacuum chamber of a cost-effective accelerator, and the short muon lifetime means that the beams must be reduced in size rather quickly, without losing too many of the muons. This reduction in size is called "cooling." Ionization cooling is a new technique that can accomplish such cooling. Intense muon beams can then be accelerated and injected into a storage ring, where they can be used to produce neutrino beams through their decays or collided with muons of the opposite charge to produce a muon collider, similar to an electron-positron collider. We report on the research carried out at the University of California, Riverside, towards producing such muon accelerators, as part of the Muon Accelerator Program based at Fermilab. Since this research was carried out in a university environment, we were able to involve both undergraduate and graduate students.

  13. Study of the CNGS beam and identification of muons in the Opera experiment. Optimization of the beam line from SPL-Frejus project; Etude du faisceau CNGS et identification des muons dans l'experience OPERA. Optimisation de la ligne de faisceau du projet SPL-Frejus

    Energy Technology Data Exchange (ETDEWEB)

    Cazes, A

    2004-12-15

    Neutrino oscillations are the subject of most of the experiments looking at this particle. This mechanism uses the fact that neutrinos have mass to allow the transformation from one flavour to another one. The OPERA experiment will start to take data in spring 2006. Its goal is to proof this mechanism with no ambiguity using the appearance of tau neutrinos in the CNGS beam, which is made of muon neutrinos. This thesis presents a description of neutrino beams in general, and more precisely of the CNGS beam, which is sent from CERN to Gran Sasso in Italy. The neutrino flux are recalculated, and simulations have been performed in order to study miss positioning of the beam line elements. The OPERA detector is made of bricks containing a pile of lead plates and photographic emulsion films, of two trackers and two spectrometers. The high position resolution of the emulsions (< 1 {mu}m ), allows to identify the {tau} created by the tau neutrino charged current interactions. The brick localisation is made using a scintillator array. The pattern recognition in these scintillators as well as in the spectrometers is one of the part of this thesis. Furthermore, a muon identification algorithm has been set up. It allows to reject by a factor 20 the charm background. Future of neutrino oscillation physics is the building of more and more intense neutrino beams, in order to measure the last unknown parameters ({theta}{sub 13} and {delta}{sub CP}). The project of neutrino beam from CERN to the Fr us tunnel is fully revisited in the last part of this thesis. An optimisation of all the beam line element is proposed, and allows to reach a sensitivity to {theta}{sub 13} around one degree. (author)

  14. Peer education reaches young women factory workers in Thailand.

    Science.gov (United States)

    Cash, K

    1993-12-01

    In Thailand, the International Center for Research on Women conducted a study comparing the effect of various HIV/AIDS prevention activities on never-married women 14-24 years old who migrated to Chiang Mai to work in the export garment industry. These young women are very vulnerable to HIV/AIDS because they are freed from traditional norms and exposed to urban peer pressure. However, focus groups revealed that the women did not consider themselves at risk and feared negative reactions if they tried to discuss condoms with their boyfriends (who would equate knowledge with prior sexual experience). Among the interventions were a comic book which couched condom negotiation information in humorous terms and a romantic novel about a factory worker diagnosed with HIV. For 3 months trained peer leaders and health promoters led weekly educational sessions that included role-play. All participants were given a certificate noting that they had completed an AIDS education course. This certificate enabled the young women to broach the subject of AIDS with their boyfriends, their families, and their friends. The project improved their communication skills, their self-confidence, and their perceptions of risk. The most significant improvements were found among the women enrolled in the groups facilitated by peer leaders. Even though the peer leaders were not as knowledgeable as the health promoters, the peer leaders were more sensitive to the needs of the women and more capable of leading group discussions and participatory learning activities.

  15. The Palomar Transient Factory: System Overview, Performance and First Results

    CERN Document Server

    Law, N M; Dekany, R G; Ofek, E O; Quimby, R M; Nugent, P E; Surace, J; Grillmair, C C; Bloom, J S; Kasliwal, M M; Bildsten, L; Brown, T; Cenko, S B; Ciardi, D; Croner, E; Djorgovski, S G; van Eyken, J C; Filippenko, A V; Fox, D B; Gal-Yam, A; Hale, D; Hamam, N; Helou, G; Henning, J R; Howell, D A; Jacobsen, J; Laher, R; Mattingly, S; McKenna, D; Pickles, A; Poznanski, D; Rahmer, G; Rau, A; Rosing, W; Shara, M; Smith, R; Starr, D; Sullivan, M; Velur, V; Walters, R S; Zolkower, J

    2009-01-01

    The Palomar Transient Factory (PTF) is a fully-automated, wide-field survey aimed at a systematic exploration of the optical transient sky. The transient survey is performed using a new 8.1 square degree camera installed on the 48-inch Samuel Oschin telescope at Palomar Observatory; colors and light curves for detected transients are obtained with the automated Palomar 60-inch telescope. PTF uses eighty percent of the 1.2-m and fifty percent of the 1.5-m telescope time. With an exposure of 60-s the survey reaches a depth of approximately 21.3 in g' and 20.6 in R (5 sigma, median seeing). Four major experiments are planned for the five-year project: 1) a 5-day cadence supernova search; 2) a rapid transient search with cadences between 90 seconds and 1 day; 3) a search for eclipsing binaries and transiting planets in Orion; and 4) a 3-pi sr deep H-alpha survey. PTF provides automatic, realtime transient classification and follow up, as well as a database including every source detected in each frame. This paper...

  16. Rough Set Techniques for 24 Hour Knowledge Factory

    Directory of Open Access Journals (Sweden)

    A. B. Patki

    2012-01-01

    Full Text Available 24 Hour Knowledge Factory [1] is the work culture that incorporates different people contributing together in collaborated manner on various modules of the same project. But as advancements occurred, it was found that the approach is as difficult to realize as it is to imagine. The smooth work flow amidst the personnel demands attention. This paper discusses a software solution to easily implement this idea by designing a workflow system between the programmers who are working in the different places in 24-Hour realm. The software presents the user interfaces to enable an employee to grasp the work done until now easily. The interface creates optimized tables generated using the rough set theory. This theory gives us a fair view of the work required by providing lower and upper approximation along with various rules that could help us to find these optimum sets. Software also facilitates the developer at the immediate next shift to be sure of the code in which he is going to work.

  17. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  18. Forecasting Sales in a Sugar Factory

    Directory of Open Access Journals (Sweden)

    Vassilios ASSIMAKOPOULOS

    2011-12-01

    Full Text Available Beets’ cultivation and sugar production represent one of the most important parts of Greek agricultural economy. A careful and well-organized planning of the production as well as the determination of an accurate safety stock is important for sugar industry, as for many other companies and organizations, in order to define the production quantity which leads to maximum revenues and profits. Forecasting, and especially widely used statistical forecasting techniques, is the best way for policymakers to organize their activities and company’s production and make the appropriate adjustments. Apparently, management information systems and forecasting support packages play a leading role in this area, since the amount of data under process is usually quite large and demands an automated procedure to effectively produce and evaluate forecasts. In this case study, “Pythia”, an expert forecasting platform developed by the Forecasting and Strategy Unit of the National Technical University of Athens, was implemented on a monthly data series regarding sugar sales of a Greek sugar factory for the years 2000-2005, bringing theory and practice together. Additionally, the methods or combinations of methods which are well suited for this time series are highlighted based on three error indices. Finally, the results of the study and conclusions are considered and perspectives of progress and development in the field of forecasting are contemplated.

  19. Agile manufacturing: The factory of the future

    Science.gov (United States)

    Loibl, Joseph M.; Bossieux, Terry A.

    1994-01-01

    The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.

  20. New Physics at a Super Flavor Factory

    CERN Document Server

    Browder, Thomas E; Pirjol, Dan; Soni, Amarjit; Zupan, Jure

    2009-01-01

    The potential of a Super Flavor Factory (SFF) for searches of New Physics is reviewed. While very high luminosity B physics is assumed to be at the core of the program, its scope for extensive charm and tau studies are also emphasized. The possibility to run at the Upsilon(5S) as well as at the Upsilon(4S) is also very briefly discussed; in principle, this could provide very clean measurements of B_s decays. The strength and reach of a SFF is most notably due to the possibility of examining an impressive array of very clean observables. The angles and the sides of the unitarity triangle can be determined with unprecedented accuracy. These serve as a reference for New Physics (NP) sensitive decays such as B^+ ->tau^+ nu and penguin dominated hadronic decay modes, providing tests of generic NP scenarios with an accuracy of a few percent. Besides, very precise studies of direct and time dependent CP asymmetries in radiative B decays and forward-backward asymmetry studies in B -> X_s l^+ l^- and numerous null tes...

  1. Future Accelerators, Muon Colliders, and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  2. Recycled Paper Beam Sculpture

    Science.gov (United States)

    Keller, Kristin; Tabacchi, Jo

    2011-01-01

    As art department budgets across the country continue to shrink, art teachers are increasingly on the lookout for inexpensive materials that can be used to teach a range of concepts. In this article, the authors describe a newspaper beam tower project inspired by the book, "The Wonderful Towers of Watts" by Patricia Zelver. There are many more…

  3. IC Factory Outletin naistenvaatteiden päämerkkien asiakkaat

    OpenAIRE

    Marttala, Minna

    2009-01-01

    Tämän opinnäytetyön tarkoitus oli selvittää, millaisia IC Factory Outletin naistenvaatteiden päämerkkien asiakaskunnat ovat ja miten ne eroavat toisistaan. Tutkittavat merkit olivat In Wear, Part Two ja Jackpot. IC Factory Outlet on pieni kuuden työntekijän Outlet-myymälä, joka myy miesten- ja naistenvaatteita Helsingin Lauttasaaressa. Myymälällä ei ole resursseja omaan markkinointitutkimukseen. IC Factory Outletin johto toivoo tämän tutkimuksen auttavan suuntaamaan pienen budjetin paremmin t...

  4. Environmental radioactivity level at a mantle factory in eastern Zhejiang

    Institute of Scientific and Technical Information of China (English)

    YE Ji-Da; ZENG Guang-Jian; WU Zong-Mei; LIU Hong-Shi; NI Shi-Ying

    2003-01-01

    The γ radiation level, alpha potential energy of thoron and alpha surface contamination level at amantle factory in the east of Zhejiang Province are reported. The measured results show that the additional annual ef-fective dose equivalent absorbed by the worker in some workshops of the factory was higher than 15mSv-management limit. The alpha surface contamination on the workers' hands in some workshops was 10 timesmore than the management limit of National Standard (0.04 Bq/cm2). The mantle factory's main danger to body wasinternal irradiation of α rays from thoron aerosol.

  5. Proceedings of the workshop on the reconstruction of beamline 11 at the photon factory

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kenji; Kitajima, Yoshinori [eds.

    1994-06-01

    This document is the summary of the lectures given at the workshop on the reconstruction of the beam line BL11 which was held on March 14, 1994 at National Laboratory for High Energy Physics, sponsored by the Photon Factory. The BL11 was constructed for the purpose of solid and surface research, for accomplishing the research which is competitive in the world hereafter, the reconstruction of the beam line is necessary by all means. This workshop was held according to this consideration. In the workshop, topics were limited to two spectroscopes in oblique incidence region, and the proposals were made on the subjects of the researches which are carried out in this spectroscopic line hereafter. These give very important guideline for the design and manufacture of spectroscopes among the renewal works of the beam line. The BL11 is divided into four branches, and 2m Grasshopper type spectroscope is installed in 11A, two crystal spectroscope in 11B, 1m Seya Namioka type spectroscope in 11C, adn 2m constant deviation angle spectroscope in 11D. It cannot be said that these spectroscopes have the performances for always carrying out advanced researches. In particular, the spectroscopes in the oblique incidence region in 11A and 11D are insufficient in their beam intensity and resolution. (K.I.).

  6. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    CERN Document Server

    Van Winkle, Daniel; Teytelman, Dmitry

    2005-01-01

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine to root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback...

  7. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  8. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  9. The Experiment Factory: Standardizing Behavioral Experiments.

    Science.gov (United States)

    Sochat, Vanessa V; Eisenberg, Ian W; Enkavi, A Zeynep; Li, Jamie; Bissett, Patrick G; Poldrack, Russell A

    2016-01-01

    The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (Mason and Suri, 2011; McDonnell et al., 2012; de Leeuw, 2015; Lange et al., 2015) have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker, 2015; Open Science Collaboration, 2015) highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org) that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms. PMID:27199843

  10. The Experiment Factory: standardizing behavioral experiments

    Directory of Open Access Journals (Sweden)

    Vanessa V Sochat

    2016-04-01

    Full Text Available The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (de Leeuw (2015; McDonnell et al. (2012; Mason and Suri (2011; Lange et al. (2015 have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker (2015; Open Science Collaboration (2015 highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms.

  11. Make your company a talent factory.

    Science.gov (United States)

    Ready, Douglas A; Conger, Jay A

    2007-06-01

    Despite the great sums of money companies dedicate to talent management systems, many still struggle to fill key positions - limiting their potential for growth in the process. Virtually all the human resource executives in the authors' 2005 survey of 40 companies around the world said that their pipeline of high-potential employees was insufficient to fill strategic management roles. The survey revealed two primary reasons for this. First, the formal procedures for identifying and developing next-generation leaders have fallen out of sync with what companies need to grow or expand into new markets. To save money, for example, some firms have eliminated positions that would expose high-potential employees to a broad range of problems, thus sacrificing future development opportunities that would far outweigh any initial savings from the job cuts. Second, HR executives often have trouble keeping top leaders' attention on talent issues, despite those leaders' vigorous assertions that obtaining and keeping the best people is a major priority. If passion for that objective doesn't start at the top and infuse the culture, say the authors, talent management can easily deteriorate into the management of bureaucratic routines. Yet there are companies that can face the future with confidence. These firms don't just manage talent, they build talent factories. The authors describe the experiences of two such corporations - consumer products icon Procter & Gamble and financial services giant HSBC Group -that figured out how to develop and retain key employees and fill positions quickly to meet evolving business needs. Though each company approached talent management from a different direction, they both maintained a twin focus on functionality (rigorous talent processes that support strategic and cultural objectives) and vitality (management's emotional commitment, which is reflected in daily actions). PMID:17580649

  12. The Experiment Factory: Standardizing Behavioral Experiments

    Science.gov (United States)

    Sochat, Vanessa V.; Eisenberg, Ian W.; Enkavi, A. Zeynep; Li, Jamie; Bissett, Patrick G.; Poldrack, Russell A.

    2016-01-01

    The administration of behavioral and experimental paradigms for psychology research is hindered by lack of a coordinated effort to develop and deploy standardized paradigms. While several frameworks (Mason and Suri, 2011; McDonnell et al., 2012; de Leeuw, 2015; Lange et al., 2015) have provided infrastructure and methods for individual research groups to develop paradigms, missing is a coordinated effort to develop paradigms linked with a system to easily deploy them. This disorganization leads to redundancy in development, divergent implementations of conceptually identical tasks, disorganized and error-prone code lacking documentation, and difficulty in replication. The ongoing reproducibility crisis in psychology and neuroscience research (Baker, 2015; Open Science Collaboration, 2015) highlights the urgency of this challenge: reproducible research in behavioral psychology is conditional on deployment of equivalent experiments. A large, accessible repository of experiments for researchers to develop collaboratively is most efficiently accomplished through an open source framework. Here we present the Experiment Factory, an open source framework for the development and deployment of web-based experiments. The modular infrastructure includes experiments, virtual machines for local or cloud deployment, and an application to drive these components and provide developers with functions and tools for further extension. We release this infrastructure with a deployment (http://www.expfactory.org) that researchers are currently using to run a set of over 80 standardized web-based experiments on Amazon Mechanical Turk. By providing open source tools for both deployment and development, this novel infrastructure holds promise to bring reproducibility to the administration of experiments, and accelerate scientific progress by providing a shared community resource of psychological paradigms. PMID:27199843

  13. Black hole as a wormhole factory

    Science.gov (United States)

    Kim, Sung-Won; Park, Mu-In

    2015-12-01

    There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER = EPR " proposal for resolving the black hole entanglement debates.

  14. Overview of the nearby supernova factory

    Energy Technology Data Exchange (ETDEWEB)

    Aldering, Greg; Adam, Gilles; Antilogus, Pierre; Astier, Pierre; Bacon, Roland; Bongard, S.; Bonnaud, C.; Copin, Yannick; Hardin, D.; Howell, D. Andy; Lemmonnier, Jean-Pierre; Levy, J.-M.; Loken, S.; Nugent, Peter; Pain, Reynald; Pecontal, Arlette; Pecontal, Emmanuel; Perlmutter, Saul; Quimby, Robert; Schahmaneche, Kyan; Smadja, Gerard; Wood-Vasey, W. Michael

    2002-07-29

    The Nearby Supernova Factory (SNfactory) is an international experiment designed to lay the foundation for the next generation of cosmology experiments (such as CFHTLS, wP, SNAP and LSST) which will measure the expansion history of the Universe using Type Ia supernovae. The SNfactory will discover and obtain frequent lightcurve spectrophotometry covering 3200-10000 {angstrom} for roughly 300 Type Ia supernovae at the low-redshift end of the smooth Hubble flow. The quantity, quality, breadth of galactic environments, and homogeneous nature of the SNfactory dataset will make it the premier source of calibration for the Type Ia supernova width-brightness relation and the intrinsic supernova colors used for K-correction and correction for extinction by host-galaxy dust. This dataset will also allow an extensive investigation of additional parameters which possibly influence the quality of Type Ia supernovae as cosmological probes. The SNfactory search capabilities and follow-up instrumentation include wide-field CCD imagers on two 1.2-m telescopes (via collaboration with the Near Earth Asteroid Tracking team at JPL and the QUEST team at Yale), and a two-channel integral-field-unit optical spectrograph/imager being fabricated for the University of Hawaii 2.2-m telescope. In addition to ground-based follow-up, UV spectra for a subsample of these supernovae will be obtained with HST. The pipeline to obtain, transfer via wireless and standard internet, and automatically process the search images is in operation. Software and hardware development is now underway to enable the execution of follow-up spectroscopy of supernova candidates at the Hawaii 2.2-m telescope via automated remote control of the telescope and the IFU spectrograph/imager.

  15. Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

    Energy Technology Data Exchange (ETDEWEB)

    Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J.; Sullivan, M.K.; Wienands, U.; /SLAC; Bogomyagkov, A.V.; Levichev, E.; Nikitin, S.; Piminov, P.; Shatilov, D.; Sinyatkin, S.; Vobly, P.; Okunev, I.N.; /Novosibirsk, IYF; Bolzon, B.; Brunetti, L.; Jeremie, A.; /Annecy, LAPP; Biagini, M.E.; Boni, R.; /Frascati /INFN, Pisa /Pisa U. /INFN, Genoa /Genoa U. /CERN /Orsay, LAL /Saclay

    2011-08-19

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.

  16. Three-dimensional structure of Rubella virus factories

    International Nuclear Information System (INIS)

    Viral factories are complex structures in the infected cell where viruses compartmentalize their life cycle. Rubella virus (RUBV) assembles factories by recruitment of rough endoplasmic reticulum (RER), mitochondria and Golgi around modified lysosomes known as cytopathic vacuoles or CPVs. These organelles contain active replication complexes that transfer replicated RNA to assembly sites in Golgi membranes. We have studied the structure of RUBV factory in three dimensions by electron tomography and freeze-fracture. CPVs contain stacked membranes, rigid sheets, small vesicles and large vacuoles. These membranes are interconnected and in communication with the endocytic pathway since they incorporate endocytosed BSA-gold. RER and CPVs are coupled through protein bridges and closely apposed membranes. Golgi vesicles attach to the CPVs but no tight contacts with mitochondria were detected. Immunogold labelling confirmed that the mitochondrial protein p32 is an abundant component around and inside CPVs where it could play important roles in factory activities.

  17. Products Preview of Changzhou DIBA Textile Machinery Factory

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Changzhou DIBA Textile Machinery Factory is ,one of the well-known professional warping and warping knitting machinery manufacturersin domestic Chinese market. Recently, the products occupies a share of 85% among the whole textile machinery market in China,

  18. Lattice and interaction region design for B factories

    International Nuclear Information System (INIS)

    The topic of this paper is asymmetric, two-ring B factories. Lattice problems are illustrated by PEP II design choices. These are not unique, but they illustrate the decisions affecting the lattice that must be made. (orig.)

  19. Application of fiber laser for a Higgs factory

    Energy Technology Data Exchange (ETDEWEB)

    Chou, W.

    2014-06-04

    This paper proposes a medium size(~6km) circular Higgs factory based on a photon collider. The recent breakthrough in fiber laser technology by means of a coherent amplifier network makes such a collider feasible and probably also affordable.

  20. Factorial Schur functions via the six vertex model

    CERN Document Server

    McNamara, Peter J

    2009-01-01

    For a particular set of Boltzmann weights and a particular boundary condition for the six vertex model in statistical mechanics, we compute explicitly the partition function and show it to be equal to a factorial Schur function.

  1. Factory of the future: The {open_quotes}whole factory{close_quotes} view

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, S. [SEMATECH, Austin, TX (United States)

    1995-07-01

    The primary task of a semiconductor factory is to produce integrated circuits of outstanding performance at a steeply declining cost per electronic function delivered. The semiconductor industry over the next decade will need to continue to drive costs down in order to maximize manufacturing productivity in the climate of rising product complexity, equipment cost, and risk. Historically the industry has concentrated on aggressive yield improvement and declining wafer fab cost per cm{sup 2} as the dominant factors for increasing productivity. To continue to be competitive, SEMATECH is extending its focus beyond cost per cm{sup 2} to the more total view of cost per function. SEMATECH is working toward a combination of solutions to meet their manufacturing challenges recognizing that no single solution will provide enough benefit to achieve the productivity gains end users expect. The {open_quotes}whole factory{close_quotes} view is a useful strategic planning tool for defining the future of manufacturing in the semiconductor industry. 3 figs.

  2. Tracking Simulation for Beam Loss Studies with Application to FCC

    CERN Document Server

    Boscolo, M

    2015-01-01

    We present first results on FCC-ee beam losses using a tracking simulation tool originally developed and successfully applied to Flav or Factories designs. After a brief description of the tool, we discuss first results obtained for FCC-ee at top energy, both for the Touschek effect and radiative Bhabha scattering.

  3. USING FFAGs IN THE CREATION OF NEUTRINO BEAMS.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.

    2007-08-06

    A number of accelerator-based facilities have been proposed for the creation of neutrino beams: superbeams, neutrino factories, and beta beams. Fixed field alternating gradient accelerators (FFAGs) have potential uses in all of these facilities. Superbeams and neutrino factories require high power proton drivers for the production of pions; FFAGs can beneficial for accelerating protons for those machines. FFAGs can reduce the cost of accelerating muons in a neutrino factory because they enable the muons to make many passes through the RF cavities and still accelerate rapidly. FFAGs have potential uses in production of radioactive ions for a beta beam facility, since radioactive ions that decay into high energy neutrinos in their rest frame may potentially be produced in a ring, and the large energy acceptance of an FFAG may be useful for maximizing beam lifetime in such a ring. Finally, FFAGs have been contemplated for use in ionization cooling rings for neutrino factories, since the equilibrium distribution in ionization cooling has a large energy spread for which an FFAG's large energy acceptance is needed, and FFAGs may make it feasible to inject and extract from such a ring.

  4. Expert Meeting Report: Advanced Envelope Research for Factory Built Housing

    Energy Technology Data Exchange (ETDEWEB)

    Levy, E.; Mullens, M.; Tompos, E.; Kessler, B.; Rath, P.

    2012-04-01

    This report provides information about the Building America expert meeting on advanced envelope research for factory built housing, hosted by the ARIES Collaborative on October 11, 2011, in Phoenix, Arizona. The goals of this meeting were to provide a comprehensive solution to the use of three previously selected advanced alternatives for factory-built wall construction, assess each option focusing on major issues relating to viability and commercial potential, and determine additional steps are required to reach this potential.

  5. Invariabilidad de la estructura factorial del "California Personality Inventory" (CPI

    Directory of Open Access Journals (Sweden)

    Horacio J. A. Rimoldi

    1976-01-01

    Full Text Available Tbe factor analysis of the California Personality Inventory (CPI and Rokeaeh Dogmatism Scale was performed using the results obtained from 161 college students, of both sexes, between 18 and 22 years of age, Four factors were extracted using the principal axes solution and graphic rotations. The results were compared with other factorial studíes, They showed a highly satistory agreement with some other solution strenghtening the factorial invariance of the CPI.

  6. Performance Evaluation of Wastewater Treated Plant for Ninava Drug Factory

    OpenAIRE

    Amar Hamad

    2013-01-01

    In this study the characteristics of raw and treated wastewater from Ninava drug factory were evaluated. The results revealed that the strength of raw wastewater can be classified as medium concentrated wastewater with respect to its BOD5 since the average value is 231.7 mg/l. In addition a strong correlations were found between many characteristics of raw waste. The characteristics of produced effluent from waste water treatment plant of the factory were within the Iraqi specification for th...

  7. Economic and Environmental Sustainability of Factory Farming in the US

    OpenAIRE

    Nilsson, Asbjørn Lupo; Giersing, Josephine; Magrane, David; Breitenstein, Marcus

    2014-01-01

    This paper is written with the purpose of looking into sustainable development. More specifically, it will look at the relationship between the environmental and economical pillars of sustainability. In order for sustainable development to take place, the economy must be growing while maintaining earth’s natural resources. Factory farming might be strong from an economic point of view, but it does not seem to be environmentally friendly. Therefore we used factory farming as an example of an i...

  8. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  9. Beam line design using G4BeamLine

    CERN Document Server

    Dogan, Arda

    2014-01-01

    In Turkey in Ankara TAEK SANAEM Proton Accelerator Facility (PAF), there is a cyclotron which produces a focused intense 30 MeV proton beam and sends this beam to four different arms, three of which uses this beam to produce pharmaceutical medicine. The remaining one is spared for R&D purposes and the idea was to use these protons coming out from the fourth arm to use space radiation tests, which cannot be done in Turkey at the moment. However, according to SCC 25100 standards which is for 30 MeV protons, the beam coming out of cyclotron is too intense and focused to use for space radiation tests. Therefore, the main aim of my project is to design a beam line which will defocus the beam and reduce the flux so that the space radiation tests can be done according to the standards of SCC 25100.

  10. Why is it difficult to embed employee participation in the factory practice?

    DEFF Research Database (Denmark)

    Buhl, Henrik

    1997-01-01

    The purpose of my study is to evaluate projects with employee participation and to analyze the conditions for employee participation and the way in which it can be rooted in a factory. My hypothesis is that communicative actions have to be developed and supported as a precondition for the...... establishment of employee participation. This will propably lead to a more innovative practice, a learning organization. In this way the discussion about conditions for the establishment of participation turn in to a discussion about how to use participation to develope an innovative practice, realized in a...

  11. Black hole as a wormhole factory

    Directory of Open Access Journals (Sweden)

    Sung-Won Kim

    2015-12-01

    Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the

  12. PEP-II: An asymmetric B factory. Conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    In this report, the authors have described an updated conceptual design for the high-luminosity Asymmetric B Factory (PEP-II) to be built in the PEP tunnel culmination of more than four years of effort aimed at the design and construction of an asymmetric e{sub +}e{sub {minus}} collider capable of achieving a luminosity of L = 3 {times} 10{sup 33} cm{sup {minus}2} s{sup {minus}1}. All aspects of the conceptual design were scrutinized in March 1991 by a DOE technical review committee chaired by Dr. L. Edward Temple. The design was deemed feasible and capable of achieving its physics goals. Furthermore, the cost estimate, schedule, and management plan for the project were fully endorsed by the committee. This updated conceptual design report captures the technical progress since the March 1991 review and reflects the lower cost estimate corresponding to the improved design. Although the PEP-II design has continued to evolve, no technical scope changes have been made that invalidate the conclusion of the DOE review. The configuration adopted utilizes two storage rings, an electron ring operating at 9 GeV and a positron ring at 3.1 GeV, each with a circumference of 2200 m. The high-energy ring is an upgrade of the PEP storage ring at SLAC; all PEP magnets and most power supplies will be reused. The upgrade consists primarily of replacing the PEP vacuum chamber and RF system with newly designed versions optimized for the high-current environment of PEP-II. The low-energy ring will be newly constructed and will be situated atop the high-energy ring in the PEP tunnel. Utilities already installed in the PEP tunnel are largely sufficient to operate the two PEP-II storage rings.

  13. The PEP-II Project: Low-Energy Ring Design and Project Status

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2006-01-02

    We describe the present status of the PEP-II project. The project comprises four major systems: Injector, High-Energy Ring (HER), Low-Energy Ring (LER), and Interaction Region (IR). We focus in detail on the design of the LER, as its parameters and requirements are most closely related to those required for the Beijing Tau-Charm Factory rings. The PEP-II LER is a high-current, 3.1-GeV positron ring mounted above the 9-GeV HER. The LER uses a wiggler located in one of its six straight sections to provide emittance control and additional damping. We describe the rather complicated IR, which must transport the LER beam into the plane of the HER, focus it to a common beam size, and separate the beams after the head-on collisions. Both permanent magnet and conventional electromagnets are used in this area. The LER lattice has now adopted a simplified non-interleaved sextupole correction scheme that has reduced the required number of sextupoles substantially. We describe the LER vacuum system, one of the most challenging subsystems in PEP-II. It employs several technologies. In the arcs, aluminum extrusions and titanium sublimation pumps are employed; the straight sections use stainless steel chambers with lumped ion pumps. In the wiggler area, an extended copper photon dump with nonevaporable getter (NEG) pumps is employed to handle the very large synchrotron radiation power. The design of the room-temperature RF system, the bunch-by-bunch longitudinal and transverse feedback systems, and some of the special diagnostics will be described briefly. The PEP-II project remains on schedule to begin commissioning of the HER in April 1997, followed by the LER a year later.

  14. Vectorial rotating vortex Hankel laser beams

    Science.gov (United States)

    Kotlyar, Victor V.; Kovalev, Alexey A.; Soifer, Victor A.

    2016-09-01

    We propose a generalization of spherical waves in the form of linearly polarized beams with embedded optical vortices. The source of these beams is an infinitely narrow light ring with an infinitely small radius. These vectorial beams are obtained based on scalar Hankel beams discovered by the authors recently. We have derived explicit relations for complex amplitudes of all six components of vectorial vortex Hankel beams. A closed analytical expression for the axial projection of the orbital angular momentum density in far field has been obtained. We also showed that the intensity distribution of the electric vector rotates by 90 degrees upon the beam propagation in near field.

  15. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  16. A simple model for factory distribution: Historical effect in an industry city

    Science.gov (United States)

    Uehara, Takashi; Sato, Kazunori; Morita, Satoru; Maeda, Yasunobu; Yoshimura, Jin; Tainaka, Kei-ichi

    2016-02-01

    The construction and discontinuance processes of factories are complicated problems in sociology. We focus on the spatial and temporal changes of factories at Hamamatsu city in Japan. Real data indicate that the clumping degree of factories decreases as the density of factory increases. To represent the spatial and temporal changes of factories, we apply "contact process" which is one of cellular automata. This model roughly explains the dynamics of factory distribution. We also find "historical effect" in spatial distribution. Namely, the recent factories have been dispersed due to the past distribution during the period of economic bubble. This effect may be related to heavy shock in Japanese stock market.

  17. SuperB: A High-Luminosity Asymmetric e+e- Super Flavor Factory

    Energy Technology Data Exchange (ETDEWEB)

    Bona, M.; /et al.

    2007-05-18

    We discuss herein the exciting physics program that can be accomplished with a very large sample of heavy quark and heavy lepton decays produced in the very clean environment of an e{sup +}e{sup -} collider; a program complementary to that of an experiment such as LHCb at a hadronic machine. It then presents the conceptual design of a new type of e{sup +}e{sup -} collider that produces a nearly two-order-of-magnitude increase in luminosity over the current generation of asymmetric B Factories. The key idea is the use of low emittance beams produced in an accelerator lattice derived from the ILC Damping Ring Design, together with a new collision region, again with roots in the ILC final focus design, but with important new concepts developed in this design effort. Remarkably, SuperB produces this very large improvement in luminosity with circulating currents and wallplug power similar to those of the current B Factories. There is clear synergy with ILC R&D; design efforts have already influenced one another, and many aspects of the ILC Damping Rings and Final Focus would be operationally tested at SuperB. Finally, the design of an appropriate detector, based on an upgrade of BABAR as an example, is discussed in some detail. A preliminary cost estimate is presented, as is an example construction timeline.

  18. Experimental study of new laser-based alignment system at the KEK B-factory injector linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Suwada, T.; Satoh, M.; Kadokura, E. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2010-12-15

    A new laser-based alignment system for the precise alignment of accelerator components along an ideal straight line at the KEK B-factory injector linear accelerator (linac) is under development. This system is strongly required in the next generation of B-factories for the stable acceleration of high-brightness electron and positron beams with high bunch charges and also for maintaining the stability of injection beams with high quality. A new laser optics for the generation of a so-called Airy beam has been developed for the laser-based alignment system. The laser propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated in an 82-m-long straight section of the injector linac. The laser-based alignment measurements based on the new laser optics have been carried out with a measurement resolution of {+-}0.1 mm level by using an existing laser detection electronics. The horizontal and vertical displacements from a reference laser line measured using this system are in good agreement with those measured using a standard telescope-based optical alignment technique. In this report, we describe the experimental study in detail along with the basic designs and the recent developments in the new laser-based alignment system.

  19. Interaction region of 4 x 7-GeV asymmetric B-factory

    International Nuclear Information System (INIS)

    In this paper the authors formulate the solution to the central question of the 4 x 7-GeV asymmetric B-factory design the question of the interaction region arrangement. The fact is that for this beam energy difference (not very small and at the same time not very large) the possibility of the solution of this problem without losing luminosity compared to the symmetric case was not clear. At the same time, the asymmetry of 4 x 7 GeV is very attractive due to some important reasons. Beginning approximately from this asymmetry all physical advantages of observation of the decays of moving B-mesons are already realized and one can consider this as a low limitation on the beam energy difference. On the other hand, one is faced with the following dilemma as the asymmetry increases. If the energy difference is not yet very large, it is difficult, if possible at all, to focus both beams at the interaction point (IP). When the energy difference is large, this problem disappears, but is replaced by another the high cost of such a machine

  20. Final report on the development of a 250-kW modular, factory-assembled battery energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D. [Omnion Power Engineering Corp., East Troy, WI (United States); Nerbun, W. [AC Battery Corp., East Troy, WI (United States); Corey, G. [Sandia National Labs., Albuquerque, NM (United States). Energy Storage Systems Analysis and Development Dept.

    1998-08-01

    A power management energy storage system was developed for stationary applications such as peak shaving, voltage regulation, and spinning reserve. Project activities included design, manufacture, factory testing, and field installation. The major features that characterize the development are the modularity of the production, its transportability, the power conversion method that aggregates power on the AC side of the converter, and the use of commonly employed technology for system components. 21 figs.

  1. LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on August 17 through August 23, 2010 to perform visual inspections and conduct independent measurement and sampling of the 'Outside Areas' at the High Flux Beam Reactor (HFBR) decommissioning project. During this visit, ORISE was also able to evaluate Fan House, Building 704 survey units (SUs) 4 and 5, which are part of the Underground Utilities portion of the HFBR decommissioning project. ORISE performed limited alpha plus beta scans of the remaining Fan House foundation lower walls and remaining pedestals while collecting static measurements. Scans were performed using gas proportional detectors coupled to ratemeter-scalers with audible output and encompassed an area of approximately 1 square meter around the static measurement location. Alpha plus beta scans ranged from 120 to 460 cpm. Twenty smears for gross alpha and beta activity and tritium were collected at judgmentally selected locations on the walls and pedestals of the Fan House foundation. Attention was given to joints, cracks, and penetrations when determining each sample location. Removable concentrations ranged from -0.43 to 1.73 dpm/100 cm2 for alpha and -3.64 to 7.80 dpm/100 cm2 for beta. Tritium results for smears ranged from -1.9 to 9.0 pCi/g. On the concrete pad, 100% of accessible area was scanned using a large area alpha plus beta gas proportional detector coupled to a ratemeter-scaler. Gross scan count rates ranged from 800 to 1500 cpm using the large area detector. Three concrete samples were collected from the pad primarily for tritium analysis. Tritium concentrations in concrete samples ranged from 53.3 to 127.5 pCi/g. Gamma spectroscopy results of radionuclide concentrations in concrete samples ranged from 0.02 to 0.11 pCi/g for Cs-137 and 0.19 to 0.22 pCi/g for Ra-226. High density scans for gamma radiation levels were performed in accessible areas in each SU, Fan House

  2. Analysis of image quality and dose calculation accuracy in cone beam CT acquisitions with limited projection data (half scan, half fan) with regard to usability for adaptive radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Subject of this study is the question of whether cone beam CT (CBCT) images with reduced projection data are suitable for use in adaptive radiation therapy (ART) treatment planning. For this purpose image quality and dose calculation accuracy depending on imaging modality were analysed. In this context, two CBCT-methods will be indicated having reduced projection data sets: Scans acquired with 200 rotation angle in order to accelerate the CBCT process (half scan), or scans with an asymmetric cone beam and detector offset, used to enlarge the field-of-view (half fan). Methods: For three different CBCT-modes (On-Board-Imaging, Varian Medical Systems), two of them based on reduced projection data, and a conventional multidetector CT system, the main image quality parameters were studied. Treatment plans for two phantoms were transferred to all datasets and re-computed to analyse dose calculation accuracy. Furthermore imaging dose was measured for all modalities. Results: All three CBCT-modes showed similar results with regard to image quality. It was found, that a reduction in projection data does not necessarily involve deterioration in image quality parameters. For dose calculation based on CBCT images, a good agreement with the reference plan was found, with a maximum deviation for the mean dose in regions of interest of 1.1%. Imaging dose was found to be 2.5 cGy and 2.9 cGy for the large-FOV mode and the partial rotation mode, respectively, and 5.4 cGy for the 360 -full fan mode. (orig.)

  3. Particle production and energy deposition studies for the Neutrino Factory target station

    CERN Document Server

    Back, John J

    2013-01-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture system without adversely affecting the pion production efficiency. We show estimates of the amount of concrete shielding that will be required to protect the environment from the high radiation doses generated by the target station facility. We also present yield and energy deposition results for alternative targets: gallium liquid jet, tungsten powder jet and solid tungsten bars.

  4. Particle production and energy deposition studies for the neutrino factory target station

    Science.gov (United States)

    Back, John J.; Densham, Chris; Edgecock, Rob; Prior, Gersende

    2013-02-01

    We present FLUKA and MARS simulation studies of the pion production and energy deposition in the Neutrino Factory baseline target station, which consists of a 4 MW proton beam interacting with a liquid mercury jet target within a 20 T solenoidal magnetic field. We show that a substantial increase in the shielding is needed to protect the superconducting coils from too much energy deposition. Investigations reveal that it is possible to reduce the magnetic field in the solenoid capture system without adversely affecting the pion production efficiency. We show estimates of the amount of concrete shielding that will be required to protect the environment from the high radiation doses generated by the target station facility. We also present yield and energy deposition results for alternative targets: gallium liquid jet, tungsten powder jet, and solid tungsten bars.

  5. Status of Design of PEFP Beam Lines

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bum Sik; Cho, Yong Sub; Kwon, Hyeok Jung; Jang, Ji Ho; Hong, In Seok; Kim, Han Sung; Yun, Sang Pil; Lee, Hwa Ryun; Kim, Kye Ryung; Choi, Byung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    PEFP(Proton Engineering Frontier Project) is developing a high current 100MeV proton linear accelerator. 20MeV and 100MeV proton beam lines are also under development for beam applications. 10 beam lines will be developed to support various purposes. Two kind of proton beam energy will be transported to 2 beamlines for industrial applications and 3 beamlines for various researches. The characteristic design scheme of PEFP beam lines is the application of a programmable AC magnet. Beam distribution to 3 research beam lines will be conducted sequentially to increase the operation efficiency by using it. To provide flexibility of the irradiation conditions, each beam line is designed to have specific beam parameters. The development of beamline components, including magnets, is conducted in parallel. The details will be reported.

  6. Status of Design of PEFP Beam Lines

    International Nuclear Information System (INIS)

    PEFP(Proton Engineering Frontier Project) is developing a high current 100MeV proton linear accelerator. 20MeV and 100MeV proton beam lines are also under development for beam applications. 10 beam lines will be developed to support various purposes. Two kind of proton beam energy will be transported to 2 beamlines for industrial applications and 3 beamlines for various researches. The characteristic design scheme of PEFP beam lines is the application of a programmable AC magnet. Beam distribution to 3 research beam lines will be conducted sequentially to increase the operation efficiency by using it. To provide flexibility of the irradiation conditions, each beam line is designed to have specific beam parameters. The development of beamline components, including magnets, is conducted in parallel. The details will be reported

  7. Incense and Joss Stick Making in Small Household Factories, Thailand

    Directory of Open Access Journals (Sweden)

    S Siripanich

    2014-07-01

    Full Text Available Background: Incense and joss stick are generally used in the world. Most products were made in small household factories. There are many environmental and occupational hazards in these factories.Objective: To evaluate the workplace environmental and occupational hazards in small household incense and joss stick factories in Roi-Et, Thailand.Methods: Nine small household factories in rural areas of Roi-Et, Thailand, were studied. Dust concentration and small aerosol particles were counted through real time exposure monitoring. The inductively coupled plasma optical emission spectrometry (ICP-OES was used for quantitative measurement of heavy metal residue in incense products.Results: Several heavy metals were found in dissolved dye and joss sticks. Those included barium, manganese, and lead. Rolling and shaking processes produced the highest concentration of dust and aerosols. Only 3.9 % of female workers used personal protection equipment.Conclusion: Dust and chemicals were major threats in small household incense and joss stick factories in Thailand. Increasing awareness towards using personal protection equipment and emphasis on elimination of environmental workplace hazards should be considered to help the workers of this industry.

  8. Factorial Schur functions and the Yang-Baxter equation

    CERN Document Server

    Bump, Daniel; Nakasuji, Maki

    2011-01-01

    Factorial Schur functions are generalizations of Schur functions that have, in addition to the usual variables, a second family of "shift" parameters. We show that a factorial Schur function times a deformation of the Weyl denominator may be expressed as the partition function of a particular statistical-mechanical system (six vertex model). The proof is based on the Yang-Baxter equation. There is a deformation parameter $t$ which may be specialized in different ways. If $t=-1$, then we recover the expression of the factorial Schur function as a ratio of alternating polynomials. If $t=0$, we recover the description as a sum over tableaux. If $t=\\infty$ we recover a description of Lascoux that was previously considered by McNamara. We also are able to prove using the Yang-Baxter equation the asymptotic symmetry of the factorial Schur functions in the shift parameters. Finally, we give a proof using our methods of the dual Cauchy identity for factorial Schur functions. Thus using our methods we are able to give...

  9. Project, construction and characterization of ionization chambers for use as standard systems in X and gamma radiation beams; Projeto, construcao e caracterizacao de camaras de ionizacao para utilizacao como sistemas padroes em feixes de radiacao X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Perini, Ana Paula

    2013-07-01

    Ionization chambers present some advantages in relation to other dosimeters: easiness of handling, low energy dependence and high precision. The advantages associated to ionization chambers and the large number of diagnostic radiology exams and therapeutic treatments motivated the development of this PhD program. In this project ionization chambers were developed and characterized to be applied in diagnostic radiology and therapy beam dosimetry, with high precision and performance, in compliance with international recommendations. They were assembled in a simple way, utilizing low-cost national materials, so they can be reproduced and applied at calibration laboratories. The project of these ionization chambers presents some differences in relation to commercial ionization chambers, as the materials utilized and geometrical arrangements. Besides the development of the ionization chambers to be utilized in standard X-ray beam dosimetry as work standard systems, two graphite parallel-plate ionization chambers were developed and characterized to be applied as reference standard systems for determining the air kerma rates of gamma radiation sources. Comparing the air kerma rates determined with the reference standard of the Calibration Laboratory of IPEN, a Farmer ionization chamber, with the values of the air kerma rates obtained with the graphite ionization chambers, the maximum differences obtained were only 1.7% and 1.2% for the G1 and G2 graphite ionization chambers, respectively. Moreover, these ionization chambers presented correction factors close to 1.000, which is ideal for an ionization chamber be characterized as a reference standard system. (author)

  10. Beam Time Accounting

    CERN Document Server

    Seitova, Diana

    2016-01-01

    ISOLDE is one of the leading research facilities in the field of nuclear physics. A proton beam with an energy 1.4 GeV coming from the Proton Synchrotron Booster (PSB) hits one of the targets at ISOLDE and produces Radioactive Ion Beams (RIBs). Then, the RIBs of interest is selected and delivered to the different experimental stations. In order to deliver the beam to the certain experimental station, the positions of the devices along the beamline should satisfy certain conditions. The purpose of this project is to define the conditions for the beam to pass through the different beamlines and to store the data about device’s status for later analysis and statistics, so it would be possible to know when the beam was used for different experiments. The data with the settings of the different devices is saved in the Timber database and the first steps for making virtual devices to compile the status of the beamlines were completed.

  11. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  12. Novel and improved yeast cell factories for biosustainable processes

    DEFF Research Database (Denmark)

    Workman, Mhairi

    2014-01-01

    utilizing traditionally applied cell factories are generally based on a limited range of substrates (mainly glucose). However, a wider diversity in substrate range is highly desirable in developing biorefinery scenarios where feed-stocks containing a number of carbon sources are typically employed....... In addition to plant biomass hydrolysates, glycerol is of interest here, being available in amounts relevant for industrial scale bioprocesses due to increased production of biodiesel. The well characterised cell factory Saccharomyces cerevisiae exhibits a clear preference for glucose as a carbon source...... with relevant applications as cell factories (including Pichia spp. and Yarrowia lipolytica) and other less well characterized strains (e.g. Pachysolen tannophilus). This presentation will address how we evaluate cellular performance with a view to utilizing yeast species in industrial biotechnology...

  13. Factorial Moments in a Generalized Lattice Gas Model

    CERN Document Server

    Wettig, T

    1994-01-01

    We construct a simple multicomponent lattice gas model in one dimension in which each site can either be empty or occupied by at most one particle of any one of $D$ species. Particles interact with a nearest neighbor interaction which depends on the species involved. This model is capable of reproducing the relations between factorial moments observed in high--energy scattering experiments for moderate values of $D$. The factorial moments of the negative binomial distribution can be obtained exactly in the limit as $D$ becomes large, and two suitable prescriptions involving randomly drawn nearest neighbor interactions are given. These results indicate the need for considerable care in any attempt to extract information regarding possible critical phenomena from empirical factorial moments.

  14. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  15. PowerFactory applications for power system analysis

    CERN Document Server

    Gonzalez-Longatt, Francisco

    2014-01-01

    This book presents a comprehensive set of guidelines and applications of DIgSILENT PowerFactory, an advanced power system simulation software package, for different types of power systems studies. Written by specialists in the field, it combines expertise and years of experience in the use of DIgSILENT PowerFactory with a deep understanding of power systems analysis. These complementary approaches therefore provide a fresh perspective on how to model, simulate and analyse power systems. It presents methodological approaches for modelling of system components, including both classical and non-

  16. R and D Toward a Neutrino Factory and Muon Collider

    International Nuclear Information System (INIS)

    Significant progress has been made in recent years in R and D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R and D efforts. This paper will review the U.S. MAP R and D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  17. CONFOUNDING STRUCTURE OF TWO-LEVEL NONREGULAR FACTORIAL DESIGNS

    Institute of Scientific and Technical Information of China (English)

    Ren Junbai

    2012-01-01

    In design theory,the alias structure of regular fractional factorial designs is elegantly described with group theory.However,this approach cannot be applied to nonregular designs directly. For an arbitrary nonregular design,a natural question is how to describe the confounding relations between its effects,is there any inner structure similar to regular designs? The aim of this article is to answer this basic question.Using coefficients of indicator function,confounding structure of nonregular fractional factorial designs is obtained as linear constrains on the values of effects.A method to estimate the sparse significant effects in an arbitrary nonregular design is given through an example.

  18. The Tau-Charm Factory and tau physics

    International Nuclear Information System (INIS)

    An international group of physicists is developing the concept and design of a Tau-Charm Factory: a two-ring, electron-positron, circular collider with 1.5 ≤ √s ≤ 4.2 GeV and a design luminosity of 1033 cm-2 s-1. This paper presents the concept of the facility and outlines the tau lepton physics which can be done. A companion talk by R. Schindler discusses the D0, D±, and Ds physics at a Tau-Charm Factory. 25 refs., 2 tabs

  19. R&D Toward a Neutrino Factory and Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S

    2011-03-20

    Significant progress has been made in recent years in R&D towards a neutrino factory and muon collider. The U.S. Muon Accelerator Program (MAP) has been formed recently to expedite the R&D efforts. This paper will review the U.S. MAP R&D programs for a neutrino factory and muon collider. Muon ionization cooling research is the key element of the program. The first muon ionization cooling demonstration experiment, MICE (Muon Ionization Cooling Experiment), is under construction now at RAL (Rutherford Appleton Laboratory) in the UK. The current status of MICE will be described.

  20. Preliminary analysis of a target factory for laser fusion

    International Nuclear Information System (INIS)

    An analysis of a target factory leading to the determination of production expressions has provided for the basis of a parametric study. Parameters involving the input and output rate of a process system, processing yield factors, and multiple processing steps and production lines have been used to develop an understanding of their dependence on the rate of target injection for laser fusion. Preliminary results have indicated that a parametric study of this type will be important in the selection of processing methods to be used in the final production scheme of a target factory

  1. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    International Nuclear Information System (INIS)

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs

  2. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  3. Microalgae as Solar-Powered Protein Factories.

    Science.gov (United States)

    Hempel, Franziska; Maier, Uwe G

    2016-01-01

    Microalgae have an enormous ecological relevance as they contribute significantly to global carbon fixation. But also for biotechnology microalgae became increasingly interesting during the last decades as many algae provide valuable natural products. Especially the high lipid content of some species currently attracts much attention in the biodiesel industry. A further application that emerged some years ago is the use of microalgae as expression platform for recombinant proteins. Several projects on the production of therapeutics, vaccines and feed supplements demonstrated the great potential of using microalgae as novel low-cost expression platform. This review provides an overview on the prospects and advantages of microalgal protein expression systems and gives an outlook on potential future applications. PMID:27165330

  4. SuperB: Next-Generation e+e− B-factory Collider

    CERN Document Server

    Novokhatski, A; Chao, A; Nosochkov, Y; Seeman, J T; Sullivan, M K; Wienands, J T; Wittmer, W; Baylac, M A; Bourrion, O; Monseu, N; Vescovi, C; Bettoni, S; Biagini, M E; Boni, R; Boscolo, M; Demma, T; Drago, A; Esposito, M; Guiducci, S; Preger, M A; Raimondi, P; Tomassini, S; Zobov, M; Bogomyagkov, A V; Nikitin, S A; Piminov, P A; Shatilov, D N; Sinyatkin, S V; Vobly, P; Bolzon, B; Brunetti, L; Jeremie, A; A. Chancé; Fabbricatore, P; Farinon, S; Musenich, R; Liuzzo, S M; Paoloni, E; Okunev, I N; Poirier, F; Rimbault, C; Variola, A

    2011-01-01

    The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interactio...

  5. Beta Beams Implementation at CERN

    CERN Document Server

    Hansen, Christian

    2011-01-01

    Beta Beam,the concept of generating a pure and intense (anti) neutrino beam by letting accelerated radioactive ions beta decay in a storage ring, called Decay Ring (DR), is the base of one of the proposed next generation neutrino oscillation facilities, necessary for a complete study of the neutrino oscillation parameter space. Sensitivities of the unknown neutrino oscillation parameters depend on the Decay Ring's ion intensity and of it's duty factor (the filled ratio of the ring). Therefore efficient ion production, stripping, bunching, acceleration and storing are crucial sub-projects under study and development within the Beta Beam collaboration. Specifically the feasibility of these tasks as parts of a Beta Beam implementation at CERN will be discussed in this report. The positive impact of the large {\\theta}13 indications from T2K on the Beta Beam performance will also be discussed.

  6. Higgs Factory and 100 TeV Hadron Collider: Opportunity for a New World Laboratory within a Decade

    CERN Document Server

    Assadi, Saeed; McIntyre, Peter; Gerity, James; Kellams, Joshua; Mann, Thomas; Mathewson, Christopher; Pogue, Nathaniel; Sattarov, Akhdiyor; York, Richard

    2014-01-01

    Suggestions have been made for a 80-100 km circumference Future Circular Collider (FCC) that could ultimately contain a circular e+e- ring collider operating as a Higgs Factory as well as a 100 TeV hadron collider. Those suggestions have motivated us to propose an approach in which the project is sited at the location at the SSC tunnel, which has the lowest tunnel cost ever. The low tunnel cost would make it cost-effective to locate the 100 TeV Hadron Collider in a 270 km circumference tunne, using 4.5 Tesla superconducting magnets. The SSC tunnel itself would be used to house the Higgs Factory and the injector for the Hadron Collider. The injector for the Higgs Factory would be also used as a driver for an X-ray Free Electron Laser with unique capabilities for protein crystallography. The location of the project at a location with favorable geotechnology for minimum-cost tunneling, and low-cost/low-risk technology for the SRF and superconducting magnets, open the possibility to build the proposed laboratory ...

  7. Factorial Validity of the Fennema-Sherman Mathematics Attitudes Scales.

    Science.gov (United States)

    O'Neal, Marcia R.; And Others

    The factorial validity of four of the nine Fennema-Sherman Mathematics Attitudes Scales (FSMASs) was examined for use in measuring fifth graders' interaction with a subject. The following four scales were assessed: (1) the Confidence in Learning Mathematics Scale; (2) the Attitude Toward Success in Mathematics Scale (ATSMS); (3) the Mathematics…

  8. Review of North American Neutrino Factory R and D

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.; Neutrino Factory and Muon Collider Collaboration

    2002-10-07

    We report here on the R and D program of the U.S. Neutrino Factory and Muon Collider Collaboration. Our effort includes work on targetry, muon ionization cooling, simulation work, and development of superconducting RF cavities. In addition, we are involved in the international effort toward a Muon Ionization Cooling Experiment (MICE). Recent activities in all these areas will be described.

  9. Pioneering role of the KEKB B-factory

    International Nuclear Information System (INIS)

    The KEKB B-factory experimentally verified the Kobayashi-Masukawa theory, and contributed to their 2008 Nobel Prize in Physics. KEKB has realized various innovative technologies to achieve the highest luminosity in the world. KEKB has opened up a new frontier of high-luminosity colliders. (author)

  10. Semi-factorial models and N\\'eron models

    CERN Document Server

    Pépin, Cédric

    2011-01-01

    Let S be the spectrum of a discrete valuation ring with function field K. Let X be a scheme over S. We will say that X is semi-factorial over S if each invertible sheaf on the generic fiber X_K can be extended to an invertible sheaf on X. Here we show that any proper geometrically normal scheme over K admits a model over S which is proper, flat, normal and semi-factorial. We also construct some semi-factorial compactifications of regular S-schemes, such as N\\'eron models of abelian varieties. Moreover, the semi-factoriality property for a scheme X/S corresponds to the N\\'eron property of its Picard functor. In particular, one can recover the N\\'eron model of the Picard variety of X_K from the Picard functor of X/S, as in the case of curves. This provides some information about relative algebraic equivalence on the S-scheme X.

  11. The Case for a Muon Collider Higgs Factory

    CERN Document Server

    Alexahin, Yuri; Cline, David B; Conway, Alexander; Cummings, Mary Anne; Di Benedetto, Vito; Eichten, Estia; Delahaye, Jean-Pierre; Gatto, Corrado; Grinstein, Benjamin; Gunion, Jack; Han, Tao; Hanson, Gail; Hill, Christopher T; Ignatov, Fedor; Johnson, Rolland P; Lebedev, Valeri; Lederman, Leon M; Lipton, Ron; Liu, Zhen; Markiewicz, Tom; Mazzacane, Anna; Mokhov, Nikolai; Nagaitsev, Sergei; Neuffer, David; Palmer, Mark; Purohit, Milind V; Raja, Rajendran; Rubbia, Carlo; Striganov, Sergei; Summers, Don; Terentiev, Nikolai; Wenzel, Hans

    2013-01-01

    We propose the construction of a compact Muon Collider Higgs Factory. Such a machine can produce up to \\sim 14,000 at 8\\times 10^{31} cm^-2 sec^-1 clean Higgs events per year, enabling the most precise possible measurement of the mass, width and Higgs-Yukawa coupling constants.

  12. Physics and technology challenges of Banti B factories

    International Nuclear Information System (INIS)

    The construction of a high-luminosity asymmetric B factory provides excellent scientific opportunities, combining first-rate particle physics incentives (to study the origins of CP violation) with equally exciting challenges in both the accelerator physics and accelerator technology areas. (orig./BBOE)

  13. A Comprehensive Guide to Factorial Two-Level Experimentation

    CERN Document Server

    Mee, Robert

    2009-01-01

    Statistical design of experiments is useful in virtually every quantitative field. This book focuses on two-level factorial designs that provide efficient plans for exploring the effects of many factors at once. It is suitable for engineers, physical scientists, and those who conduct experiments.

  14. Proceedings of the tau-charm factory workshop

    International Nuclear Information System (INIS)

    This report contains papers on the following main topics: machine physics; tau physics; D and Ds physics; J/Ψ and charmonium physics; tau charm factories; workshop summary; accelerator physics; tau physics; charmed meson physics; J/Ψ and charmonium physics; and detector

  15. Dust levels in an asbestos-cement factory: problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, A.

    1986-01-01

    Isasbest Ltd., an asbestos-cement factory in Israel, has established dust-preventive measures, maintained high ecological and medical standards, and assisted afflicted workers suffering from asbestos-related diseases. The problems of the handling of asbestos and its relationship to health should be approached according to the conditions in each specific workplace so that reasonable solutions can be found for proper control.

  16. Lead levels of Culex mosquito larvae inhabiting lead utilizing factory

    Institute of Scientific and Technical Information of China (English)

    Kitvatanachai; S; Apiwathnasorn; C; Leemingsawat; S; Wongwit; W; Overgaard; HJ

    2011-01-01

    Objective:To determine lead level primarily in Culex quinquefasciatus(Cx.quinquefasciatus), and Culex gelidus(Cx.gelidus) larvae inhabiting lead consuming factories,and to putatively estimate eco-toxicological impact of effluents from the firms.Methods:Third instars larvae were sampled by standard dipping method and lead concentrations in the larvae and their respective surrounding factory aquatic environments were determined through standard atomic absorption spectrophotometry(AAS).Results:Cx.quinquefasciatus was the most abundant species followed by Cx.gelidus.The levels of lead were higher in the Cx.quinquefasciatus(1.08-47.47μg/g),than in the wastewaters surface(0.01-0.78 μg/mL) from the factories or closer areas around factories. Other species were not reaching the.criteria for lead determination.Conclusions:The Cx. quinquefasciatus larvae can bio-accumulate the metal and can potentially serve as a biomarker of lead contamination,to complemente conventional techniques.

  17. Report of the B-factory group: II, Accelerator technology

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H.; Cassel, D.G.; Feldman, G.J.; Alam, M.S.; Aleksan, R.; Atwood, W.B.; Bartelt, J.; Bisognano, J.J.; Boyce, J.R.; Cline, D.B.

    1989-01-01

    This report discusses the following topics on B-factory accelerators: Storage rings for the {Upsilon}(4S) and continuing Linear colliders for the {Upsilon}(4S) and continuum; and storage rings and linear colliders for the Z. 52 refs., 5 figs., 12 tabs.

  18. Lettuce growth and quality optimization in a plant factory

    NARCIS (Netherlands)

    Nicole, C.C.S.; Charalambous, F.; Martinakos, S.; De Voort, Van S.; Li, Z.; Verhoog, M.; Krijn, M.

    2016-01-01

    Since the early 2000s, plant factory (or vertical farm) technology has been introduced for growing vegetables and soft fruits. With a well-controlled environment, new health benefits, food safety, optimized nutrients and increased shelf-life can be offered to consumers. With the progress of light

  19. Mobile Monitoring and Embedded Control System for Factory Environment

    Directory of Open Access Journals (Sweden)

    Kuang-Yow Lian

    2013-12-01

    Full Text Available This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC technology is used to carry out the actual electricity load experiments using smart phones.

  20. Child Protection Decision Making: A Factorial Analysis Using Case Vignettes

    Science.gov (United States)

    Stokes, Jacqueline; Schmidt, Glen

    2012-01-01

    This study explored decision making by child protection social workers in the province of British Columbia, Canada. A factorial survey method was used in which case vignettes were constructed by randomly assigning a number of key characteristics associated with decision making in child protection. Child protection social workers (n = 118) assessed…

  1. Search for Light New Physics at B Factories

    Directory of Open Access Journals (Sweden)

    Bertrand Echenard

    2012-01-01

    Full Text Available Many extensions of the Standard Model include the possibility of light new particles, such as light Higgs bosons or dark matter candidates. These scenarios can be probed using the large datasets collected by B factories, complementing measurements performed at the LHC. This paper summarizes recent searches for light new physics conducted by the BABAR and Belle experiments.

  2. Energy efficiency in factories; Energieeffizienz in der Industrie

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Johannes; Schaefer, Mirko; Gruening, Christian; Hesselbach, Jens [Univ. Kassel (Germany). Fachgebiet Umweltgerechte Produkte und Prozesse; Kohl, Daniel; Thiede, Holger; Boehm, Stefan [Univ. Kassel (Germany). Fachgebiet Trennende und Fuegende Fertigungsverfahren

    2012-10-15

    Saving energy should be more than the substitution of light bulbs. A basic knowledge of production processes is absolutely necessary to increase energy efficiency. Focusing on selected examples, the study shows a variety to reduce the primary energy demand from individual processes to the entire factory.

  3. An investigation of hadronization mechanism at a Z~0 factory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the hadronization pictures adopted in the LUND String Fragmentation Model (LSFM),Webber Cluster Fragmentation Model (WCFM) and Quark Combination Model (QCM),respectively.Predictions of hadron multiplicity,baryon to meson ratios and baryon-antibaryon flavor correlations,especially those related to heavy hadrons at a Z 0 factory obtained by LSFM and QCM,are reported.

  4. 3D thermal climate monitoring in factory buildings

    NARCIS (Netherlands)

    Posselt, G.; Booij, P.S.; Thiede, S.; Fransman, J.E.; Driessen, B.J.F.; Herrmann, C.

    2015-01-01

    Guaranteeing defined conditions, such as the temperature levels inside the factory's building shell, is often important to produce high-quality products. Heating, ventilation and air conditioning (HVAC) equipment, as part of the technical building services, is energy intensive and accounts for a maj

  5. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat;

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  6. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 104. The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  7. Phenomenology of neutrino oscillations at the neutrino factory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jian

    2011-12-19

    We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain {mu}{sup +} {yields} {nu}{sub e} {yields} {nu}{sub {mu}} {yields} {mu}{sup -} and the right-charge muons coming from the chain {mu}{sup +} {yields} anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} {yields} {mu}{sup -} (similar to {mu}{sup -} chains), where {nu}{sub e} {yields} {nu}{sub {mu}} and anti {nu}{sub {mu}} {yields} anti {nu}{sub {mu}} are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of {tau} decays, generated by appearance channels {nu}{sub {mu}} {yields} {nu}{sub {tau}} and {nu}{sub e} {yields} {nu}{sub {tau}}, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero {theta}{sub 13}, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the

  8. Bigelow Expandable Activity Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The BEAM project advances inflatable habitat technology further and conducts flight demonstration of a commercially-designed inflatable system to achieve Technology...

  9. Integral logistics of the nuclear fuel Factory Juzbado; Logistica integral de la Fabrica de combustible Nulcear de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Perez, P.

    2015-07-01

    The Logistic considers the complete process since the determination of possible demand, production planning, materials procurement, production control and delivery of final products to customer. This complete process is managed in all the scope under the same department called Planning and Logistic. This integration, some times really complex, has allowed to Enusa factory control all the key aspects that allow its running completely, considering the synergy's and important advantages to solve different problems. This article describes how we work of the main areas of procurement, production planning and control, fuel delivery and project planning of improvements on equipment's and factory systems, with an integrated management of all of them under the same direction. (Author)

  10. Impact of Long Range Beam-Beam Effects on Intensity and Luminosity Lifetimes from the 2015 LHC Run

    CERN Document Server

    Crouch, Matthew; Banfi, Danilo; Barranco, Javier; Bruce, Roderik; Buffat, Xavier; Muratori, Bruno; Pieloni, Tatiana; Pojer, Mirko; Salvachua, Belen; Tambasco, Claudia; Trad, Georges

    2016-01-01

    Luminosity is one of the key parameters that determines the performance of colliding beams in the Large Hadron Collider (LHC). Luminosity can therefore be used to quantify the impact of beam-beam interactions on the beam lifetimes and emittances. The High Luminosity Large Hadron Collider (HL-LHC) project aims to reach higher luminosities, approximately a factor of 7 larger than the nominal LHC at peak luminosity without crab cavities. Higher luminosities are achieved by increasing the bunch populations and reducing the transverse beam sizes. This results in stronger beam-beam effects. Here the LHC luminosity and beam intensity decay rates are analysed as a function of reducing beam separation with the aim of characterising the impact of beam-beam effects on the luminosity and beam lifetime. The analysis and results are discussed with possible application to the HL-LHC upgrade.

  11. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  12. Hadron Production for the Neutrino Factory and for the Atmospheric Neutrino Flux

    CERN Multimedia

    2002-01-01

    The HARP experiment carries out, at the CERN PS, a programme of measurements of secondary hadron production, over the full solid angle, produced on thin and thick nuclear targets by beams of protons and pions with momenta in the range 2 to 15~\\GeVc. The first aim of this experiment is to acquire adequate knowledge of pion yields for an optimal design of the proton driver of the Neutrino Factory. The second aim is to reduce substantially the existing $\\sim 30$\\% uncertainty in the calculation of absolute atmospheric neutrino fluxes and the $\\sim 7$\\% uncertainty in the ratio of neutrino flavours, required for a refined interpretation of the evidence for neutrino oscillation from the study of atmospheric neutrinos in present and forthcoming experiments. The HARP experiment comprises a large-acceptance charged-particle magnetic spectrometer of conventional design, located in the East Hall of the CERN PS and using the T9 tagged charged-particle beam. The main detector is a cylindrical TPC inside a solenoid magnet...

  13. Magnet Misalignment Studies for the Front-end of the Neutrino Factory

    CERN Document Server

    Prior, G; Stratakis, D; Neuffer, D; Snopok, P; Rogers, C

    2013-01-01

    In the Neutrino Factory front-end the muon beam coming from the interaction of a high-power (4 MW) proton beam on a mercury jet target is transformed through a buncher, a phase rotator and an ionization cooling channel before entering the downstream acceleration system. The muon front-end channel is densely packed with solenoid magnets, normal conducting radio-frequency cavities and absorber windows for the cooling section. The tolerance to the misalignment of the different components has to be determined in order on one hand to set the limits beyond which the performance of the front-end channel would be degraded; on the other hand to optimize the design and assembly of the front-end cells such that the component alignment can be checked and corrected for where crucial for the performance of the channel. In this paper we show the results of some of the simulations of the frontend channel performance where the magnetic field direction has been altered compared to the baseline.

  14. South Texas Maquiladora Suppliers Project.

    Science.gov (United States)

    Patrick, J. Michael

    This project was undertaken to assist South Texas industries in improving export to nearby Mexican maquiladoras (factories). The maquiladora program is based on co-production by two plants under a single management, one on each side of the border. Activities addressed four objectives: (1) to determine the dollar value, quantity, and source of the…

  15. Beam halo studies in LEHIPA DTL

    International Nuclear Information System (INIS)

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch

  16. Beam halo studies in LEHIPA DTL

    Science.gov (United States)

    Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.

    2015-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.

  17. Ion Trapping in the SLAC B-factory High Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Villevald, D.; Heifets, S.; /SLAC

    2006-09-07

    The presence of trapped ions in electron storage rings has caused significant degradation in machine performance. The best known way to prevent the ion trapping is to leave a gap in the electron bunch train. The topic of this paper is the dynamics of ions in the field of the bunch train with uneven bunch filling. We consider High Energy Ring (HER) of the PEP-II B-factory. In the first section we summarize mechanisms of the ion production. Then the transverse and longitudinal dynamics are analyzed for a beam with and without gap. After that, the effect of the ions is considered separating all ions in the ring in several groups depending on their transverse and longitudinal stability. The main effects of the ions are the tune shift and the tune spread of the betatron oscillations of the electrons. The tune spread is produced by bunch to bunch variation of the electric field of ions and by nonlinearity of the field. It is shown that the main contribution to the shift and spread of the betatron tune of the beam is caused by two groups of ions: one-turn ions and trapped ions. One-turn ions are the ions generated during the last passage of the bunch train. Trapped ions are the ions with stable transverse and longitudinal motion. In the last section we discuss shortly related problems of parameters of the clearing electrodes, injection scenario, and collective effects. Clearing electrodes should be located at the defocusing in x-plane quadrupole magnets. An electric DC field of value 1.0 kv/cm will be enough to prevent the ion trapping process. During the injection, it is recommended to fill the bucket with the design number of the particles per bunch N{sub B} before going to the next bucket. In addition, it is recommended to have the sequential filling of the ring, i.e. the filling from one bucket to the next sequentially. It was shown that ions will not be trapped at the location of the interaction point. The reason for this is that the current of the positron beam is

  18. Childhood leukaemia and ordnance factories in west Cumbria during the Second World War.

    Science.gov (United States)

    Kinlen, L

    2006-07-01

    Much evidence has accumulated that childhood leukaemia (CL) is a rare response to a common, but unidentified, infection and in particular that situations involving the unusual mixing of urban and rural groups (approximating to, respectively, groups infected with, and susceptible to, the relevant microorganism) can produce localised epidemics with consequent increases of the infrequent leukaemic complication. During the Second World War, explosives production factories were built and operated at Drigg and Sellafield, and a shell filling factory at Bootle, in west Cumbria, England, requiring substantial numbers of construction workers to be brought into this remote and isolated area. Following the design of an earlier study of CL near large (post-war) rural construction sites, mortality from this disease was investigated with the help of the Office of National Statistics, in the area around these Cumbrian factories where local workers largely lived, during the construction period and with particular reference to the overlapping construction and operational phase when the mixing of local and migrant workers would have been greatest. An excess of leukaemia deaths at ages 1-14 was found during the construction period (observed 3; observed/expected (O/E) 2.2, 95% confidence interval (CI): 0.6, 6.0), which was more marked and statistically significant during the overlap with operations (O 3; O/E 4.5, 95% CI: 1.1, 12.2), especially at ages 1-4 (O 2; O/E 7.1, CI: 1.2, 23.6). A previous investigation did not detect this excess because it considered only a small part of west Cumbria that omitted the communities where most of the workforce lived, having incorrectly attributed the post-war expansion of the village of Seascale (situated between Drigg and Sellafield) to the wartime ordnance factories. The present findings are consistent with the results of the earlier study of rural construction projects and with the general evidence that marked rural-urban population mixing

  19. Design of an electron cooling device for the accumulator cooler ring in MUSES project

    CERN Document Server

    Tanabé, T; Ohtomo, K; Katayama, T; Yamashita, A; Syresin, E M; Meshkov, I N

    2000-01-01

    As a part of new experimental facility in the Radio Isotope Beam Factory (RIBF) project at RIKEN, the Multi-Use Experimental Storage rings (MUSES) have an Accumulator Cooler Ring (ACR) which is used for both the accumulation and cooling of RI beams and various experiments. Besides a stochastic cooler, an electron cooler (EC) is presently under development. The ion energy in the ACR ranges from 60 to 400 MeV/u which corresponds to the electron beam (e-beam) energy for the EC from 30 to 250 kV. The maximum current from a 12.7 mm cathode is 4.1 A with a gun perveance of 0.79 mu P. A superconducting solenoid in the gun section generates a magnetic field of 4 T which corresponds to a factor of 20 in adiabatic expansion. The design issues of the gun section, collector, toroidal magnets and compensation solenoids are discussed in detail with some retrospection of the development.

  20. Design of an electron cooling device for the accumulator cooler ring in MUSES project

    International Nuclear Information System (INIS)

    As a part of new experimental facility in the Radio Isotope Beam Factory (RIBF) project at RIKEN, the Multi-Use Experimental Storage rings (MUSES) have an Accumulator Cooler Ring (ACR) which is used for both the accumulation and cooling of RI beams and various experiments. Besides a stochastic cooler, an electron cooler (EC) is presently under development. The ion energy in the ACR ranges from 60 to 400 MeV/u which corresponds to the electron beam (e-beam) energy for the EC from 30 to 250 kV. The maximum current from a 12.7 mm cathode is 4.1 A with a gun perveance of 0.79 μP. A superconducting solenoid in the gun section generates a magnetic field of 4 T which corresponds to a factor of 20 in adiabatic expansion. The design issues of the gun section, collector, toroidal magnets and compensation solenoids are discussed in detail with some retrospection of the development

  1. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  2. Interim Design Report for the International Design Study for a Neutrino Factory

    International Nuclear Information System (INIS)

    The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has generated a

  3. Interim Design Report for the International Design Study for a Neutrino Factory

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, S.; Gandhi, R.; Goswami, S.; /Harish-Chandra Res. Inst.; Berg, J.S.; Fernow, R.; Gallardo, J.C.; Gupta, R.; Kirk, H.; Simos, N.; Souchlas, N.; /Brookhaven; Ellis, M.; /Brunel U. /CERN /Durham U., IPPP /Fermilab /Geneva U. /Glasgow U. /Heidelberg, Max Planck Inst. /Imperial Coll., London /Jefferson Lab /Saha Inst.

    2011-10-01

    The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reduction in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has

  4. Proceedings of the 2-nd workshop on JINR tau-charm factory

    International Nuclear Information System (INIS)

    Application of tau-charm factory for investigation of hadronic decay and charged leptonic weak interaction is considered. JINR tau-charm-factory design and magnetic and vacuum systems of the booster ring are described. New types of silicon microstrip detector sand BGO-counters developed for tau-charm-factory are proposed

  5. Organizational and economic control on providing the furniture factory competitiveness

    Directory of Open Access Journals (Sweden)

    Melnyk, Liliya Mykolayivna

    2012-11-01

    Full Text Available The essence and structure of the organizational and economic control onproviding the furniture factory competitiveness are considered in the article. The factorsinfluencing badly the enterprise economic state strengthening and providing the proper furnitureproducts competitiveness have been studied. The classification of the main types of resources beingused now for the factory production and economic activity carrying out and providing the properlevel of competitiveness is given. The scheme of organizational and economic control of a furnitureenterprise competitiveness is proposed where the supply, functional and target systems are singledout. The supply system includes the sub-systems of normative-legal, methods, resource andscientific support for the enterprise competitiveness increasing. The functional system is based onthe implementation of the management process using common functions, management procedureand administrative decisions. The target system aims at determining the objectives and results ofthe furniture production activity.

  6. Search for new physics at a super- factory

    Indian Academy of Sciences (India)

    Thomas E Browder; Amarjit Soni

    2004-12-01

    The importance of a super- factory in the search for new physics, in particular, due to CP-odd phase(s) from physics beyond the standard model is surveyed. The first point to emphasize is that we now know how to directly measure all three angles of the unitarity triangle very cleanly, i.e. without theoretical assumptions with irreducible theory error $\\lesssim 1$%. However, this requires much more luminosity than is currently available at -factories. Direct searches via penguin-dominated hadronic modes as well as radiative, pair-leptonic and semi-leptonic decays are also discussed. Null tests of the SM are stressed as these will play a crucial role especially if the effects of BSM phase(s) on -physics are small.

  7. SEARCH FOR NEW PHYSICS AT A SUPER-B FACTORY.

    Energy Technology Data Exchange (ETDEWEB)

    BROWDER,T.E.; SONI,A.

    2004-01-05

    The importance of a Super-B Factory in the search for New Physics, in particular, due to CP-od phase(s) from physics beyond the Standard Model is surveyed. The first point to emphasize is that we know now how to directly measure all three angles of the unitarity triangle very cleanly, i. e. without theoretical assumptions with irreducible theory error {le} 1%; however this requires much more luminosity than is currently available at B-factories. Direct searches via penguin-dominated hadronic modes as well as radiative, pair-leptonic and semi-leptonic decays are also discussed. Null tests of the SM are stressed as these will play a crucial role especially if the effects of BSM phase(s) on B-physics are small.

  8. Systems analysis and futuristic designs of advanced biofuel factory concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Chianelli, Russ; Leathers, James; Thoma, Steven George; Celina, Mathias Christopher; Gupta, Vipin P.

    2007-10-01

    The U.S. is addicted to petroleum--a dependency that periodically shocks the economy, compromises national security, and adversely affects the environment. If liquid fuels remain the main energy source for U.S. transportation for the foreseeable future, the system solution is the production of new liquid fuels that can directly displace diesel and gasoline. This study focuses on advanced concepts for biofuel factory production, describing three design concepts: biopetroleum, biodiesel, and higher alcohols. A general schematic is illustrated for each concept with technical description and analysis for each factory design. Looking beyond current biofuel pursuits by industry, this study explores unconventional feedstocks (e.g., extremophiles), out-of-favor reaction processes (e.g., radiation-induced catalytic cracking), and production of new fuel sources traditionally deemed undesirable (e.g., fusel oils). These concepts lay the foundation and path for future basic science and applied engineering to displace petroleum as a transportation energy source for good.

  9. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    CERN Document Server

    Kutter, T

    2015-01-01

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  10. A guide to using the BL-6A2 synchrotron facilities at the photon factory, Tsukuba, Japan

    International Nuclear Information System (INIS)

    The Photon Factory (PF) consists of a 2.5 GeV electron/positron linear accelerator, a 2.5 GeV storage ring as a dedicated synchrotron light source, beam lines and experimental stations, to serve users synchrotron radiation (SR) for experiment. The 2.5 GeV linear accelerator is used as an injector for both PF ring and the accumulating ring (AR). It is currently capable of injecting positrons or electrons. The AR has been partly used as a high energy synchrotron radiation source from its bending magnets, and partly augmented with a new insertion device to produce elliptically polarized radiation. It has been operated for the users of synchrotron radiation at the energy from 5.8 to 6.5 GeV. With the electron beam in the storage ring for SR research, the instability of the beam is inevitable arising from ions or charged dust trapped by the beam. Therefore, positrons are used instead of electrons in order to completely overcome the difficulty. The wiggler produces vertically polarized radiation in the range of photon energy. The superconducting NbTi is well suitable to obtain high magnetic field. (K.I.)

  11. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  12. Beamline for schools beam line training day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their second day at CERN learning the basics of beam physics, and visiting their experimental setup at the T9 beam line in CERN's East Hall on the Meyrin site.

  13. Feedback implementation options and issues for B factory accelerators

    International Nuclear Information System (INIS)

    The proposed B factory accelerator facilities will require active feedback systems to control multibunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2--4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Conceptual designs are presented for the PEP II transverse and longitudinal feedback systems

  14. SuperB: a Linear High-Luminosity B Factory

    Energy Technology Data Exchange (ETDEWEB)

    Albert, J.; Bettarini, S.; Biagini, M.; Bonneaud, G.; Cai, Y.; Calderini, G.; Ciuchini, M.; Dubois-Felsmann, G.P.; Ecklund, S.; Forti, F.; Gershon, T.J.; Giorgi, M.A.; Hitlin, D.G.; Leith, D.W.G.S.; Lusiani, A.; MacFarlane, D.B.; Martinez-Vidal, F.; Neri, N.; Novokhatski, A.; Pierini, M.; Piredda, G.; /Caltech /Pisa U. /Pisa, Scuola Normale

    2006-02-08

    This paper is based on the outcome of the activity that has taken place during the recent workshop on ''SuperB in Italy'' held in Frascati on November 11-12, 2005. The workshop was opened by a theoretical introduction of Marco Ciuchini and was structured in two working groups. One focused on the machine and the other on the detector and experimental issues.. The present status on CP is mainly based on the results achieved by BABAR and Belle. Establishment of the indirect CP violation in B sector in 2001 and of the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e{sup +}e{sup -} asymmetric B Factories operating at the center of mass energy corresponding to the mass of the {Upsilon}(4S ). With the two B Factories taking data, the Unitarity Triangle is now beginning to be over constrained by improving the measurements of the sides and now also of the angles {alpha}, and {gamma}. We are also in presence of the very intriguing results about the measurements of sin2{beta} in the time dependent analysis of decay channels via penguin loops, where b {yields} s{bar s}s and b {yields} s{bar d}d. {tau} physics, in particular LFV search, as well as charm and ISR physics are important parts of the scientific program of a SuperB Factory. The physics case together with possible scenarios for the high luminosity SuperB Factory based on the concepts of the Linear Collider and the related experimental issues are discussed.

  15. Feedback implementation options and issues for B factory accelerators

    International Nuclear Information System (INIS)

    The proposed B factory accelerator facilities will require active feedback systems to control multibunch instabilities. These feedback systems must operate in machines with thousands of circulating bunches and with short (2-4 ns) interbunch intervals. The functional requirements for transverse (betatron) and longitudinal (synchrotron) feedback systems are presented. Several possible implementation options are discussed and system requirements developed. Conceptual designs are presented for the PEP II transverse and longitudinal feedback systems

  16. A Pulsed Synchrotron for Muon Acceleration at a Neutrino Factory

    CERN Document Server

    Summers, D J; Berg, J S; Palmer, R B

    2003-01-01

    A 4600 Hz pulsed synchrotron is considered as a means of accelerating cool muons with superconducting RF cavities from 4 to 20 GeV/c for a neutrino factory. Eddy current losses are held to less than a megawatt by the low machine duty cycle plus 100 micron thick grain oriented silicon steel laminations and 250 micron diameter copper wires. Combined function magnets with 20 T/m gradients alternating within single magnets form the lattice. Muon survival is 83%.

  17. A Facility Layout Problem in a Marble Factory via Simulation

    OpenAIRE

    Edis, Rahime; Kahraman, Bayram; Araz, Özlem; Özfırat, M.

    2011-01-01

    The marble factory in this study is a typical instance of a flow shop based production system. Adding new machines to the plant and/or introducing a new product may convert the actual layout to an inefficient one. Such cases may cause a significant increase in transportation of materials between machines that decreases the utilization rates of machines and operators as well as overall productivity. Therefore, facility planning is a key issue in marble plants in terms of total cost and custome...

  18. Factorial Analysis of Mass Media Influence on Academic Sports Development

    OpenAIRE

    Benar Noshin; Emami Mina; Eftekhari Ozra; Yeganeh Far Nastaran; Khan Mohammadi Ali Mohammad

    2016-01-01

    Purpose: Main objective of this research was factorial analysis of mass media influence on academic sports development. Material: Methodology of the research was descriptive- correlation. Population of the research was composed of all referees, coaches and athletes participating in students' sports Olympiad of Iran Payam e Noor Universities in year 2014. Statistical sample of research was chosen randomly and consisted of 176 persons. Data gathering tool was a researcher made questionnaire; it...

  19. The Factorial Distribution of Income in the Union Bargaining Model

    OpenAIRE

    Beenstock, Michael

    1989-01-01

    Attention is focused on the implications of the Union Bargaining Model (UBM) for the factorial distribution of income. It is shown that when the contract curve is given, greater union bargaining power raises the wage share. We argue, however, that the factors that strengthen the bargaining power of unions are likely to induce offsetting shifts in the contract curve. A simulation exercise indicates that the shift in the contract curve is likely to be of secondary importance in determining the ...

  20. Optimization of Protocell of Silica Nanoparticles Using 32 Factorial Designs

    OpenAIRE

    Kaur, Gunjeet; Rath, Goutam; Heer, Hemraj; Goyal, Amit K.

    2011-01-01

    The purpose of the research is to carry out systemic optimization of protocells (liposomes entrapped with silica particles). Optimization was carried out using 32 factorial designs for the selection of the optimized protocell composition with reference to particle size distribution and zetapotential. This design was carried out to study the effect of independent variables such as molar ratio of phosphatidylcholine to cholesterol and concentration of silica nanoparticles. A total of nine formu...