WorldWideScience

Sample records for beam energy spread

  1. Uncorrelated Energy Spread and Longitudinal Emittance of a Photoinjector Beam

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Stupakov, G.; Wu, J.; /SLAC

    2005-05-25

    Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.

  2. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  3. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  4. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  5. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sullivan, T. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  6. Emittance growth in displaced, space-charge-dominated beams with energy spread

    International Nuclear Information System (INIS)

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, the authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of their results is presented

  7. Emittance growth in displaced, space-charge-dominated beams with energy spread

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, J.J.; Miller, J. (Lawrence Livermore National Lab., CA (United States)); Haber, I. (Naval Research Lab., Washington, DC (United States))

    1993-05-11

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator.

  8. Emittance growth in displaced, space-charge-dominated beams with energy spread

    International Nuclear Information System (INIS)

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator

  9. Emittance growth in displaced, space-charge-dominated beams with energy spread

    Science.gov (United States)

    Barnard, J. J.; Miller, J.; Haber, I.

    1993-05-01

    Conversion of transverse energy associated with the coherent motion of displaced beams into thermal energy, and thus emittance growth, has been predicted theoretically by a number of authors. Here, they authors show, using 2-D particle-in-cell simulations, that emittance growth is inhibited for tune depressed beams, if the energy spread of the beam is not too large. Further, using a uniform density model to calculate the space charge field of the beam, they numerically determine the criteria for emittance growth as a function of tune depression, energy spread, and beam displacement over a wide range of parameters. A theoretical interpretation of the results is presented. This study is applicable to an inertial fusion reactor driven by a heavy ion accelerator.

  10. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  11. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  12. Production of low axial energy spread ion beams with multicusp sources

    International Nuclear Information System (INIS)

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution

  13. Minimum beam-energy spread of a high-current rf linac

    International Nuclear Information System (INIS)

    Energy spread is an important parameter of an electron linac and, usually, is determined by the time dependence of the external rf accelerating field. By using a combination of fundamental and higher harmonic frequencies, the accelerating field can be maintained approximately constant over a beam bunch with the resultant energy spread approximately zero. This technique is no longer adequate when the longitudinal wake field of the beam bunch is taken into account. The wake-field variation along the bunch length introduces an energy spread that cannot be exactly compensated for with the use of fundamental and higher harmonic frequencies. The achievable minimum energy spread including the wake-field effect is therefore limited. In this paper, the authors report the minimum energy spreads achievable using the fundamental and third-harmonic frequencies, calculated using a least-squares algorithm, for some typical structures in use at Los Alamos National Laboratory. The dependence of these results on bunch shape, bunch charge, and structure frequency is discussed. Also included are discussions of schemes for implementing the third-harmonic frequency and their effectiveness

  14. Energy and time spreads of a particle beam used in APM technique

    International Nuclear Information System (INIS)

    A Monte Carlo code has been developed to simulate neutron and alpha production in the time correlated associated particle method (TCAPM). The atomic and molecular composition of the deuterium beam, tritium ratio in the target, slowing-down and straggling of deuterons as well as the angular dependence of emitted neutrons and alpha particles are both taken into account in these calculations. The following physical characteristics are obtained: mean energy of detected alpha particles and their spread, mean time of flight and its spread values for alpha particles, alpha and associated neutron spectra as well as neutron spatial cone distribution. (author). 11 refs, 10 figs, 4 tabs

  15. Production of megavolt neutron beams with relative energy spread of ∼5x10-4

    International Nuclear Information System (INIS)

    A method for production of megavolt neutron beams with relative energy spread of ∼ 5x10-4 based on using electrostatic accelerator and a foilless gas target permitting to realize continuous and easily controlled reproduction of working substance (acetone, heavy water) is described. Differential pumping of vapors of working substance by freezing in refrigerators cooled by liquid nitrogen is used in the target. Technique for using neutron beams from the 12C(d, n) reaction for measuring total cross sections of neutron interaction with nuclei and differential cross sections of elastic scattering is developed

  16. A method of determining narrow energy spread electron beams from a laser plasma wakefield accelerator using undulator radiation

    International Nuclear Information System (INIS)

    In this paper a new method of determining the energy spread of a relativistic electron beam from a laser-driven plasma wakefield accelerator by measuring radiation from an undulator is presented. This could be used to determine the beam characteristics of multi-GeV accelerators where conventional spectrometers are very large and cumbersome. Simultaneous measurement of the energy spectra of electrons from the wakefield accelerator in the 55-70 MeV range and the radiation spectra in the wavelength range of 700-900 nm of synchrotron radiation emitted from a 50 period undulator confirm a narrow energy spread for electrons accelerated over the dephasing distance where beam loading leads to energy compression. Measured energy spreads of less than 1% indicates the potential of using a wakefield accelerator as a driver of future compact and brilliant ultrashort pulse synchrotron sources and free-electron lasers that require high peak brightness beams.

  17. Multi-bunch energy spread induced by beam loading in standing wave structure

    International Nuclear Information System (INIS)

    The interaction of a relativistic beam with the modes of the TM010 pass-band of a multicell cavity does not cause any problem: although all the modes are excited by the RF (radiofrequency) generator, resulting in different cell excitations during the cavity filling and the beam pulse, the net accelerating field exhibits negligible fluctuations from bunch to bunch. However, when the beam is not fully relativistic, this is no more true. The phase slippage occurring in the first cells, between the non relativistic beam and the lower pass-band modes, produces an effective enhancement of the shunt impedances, which is usually negligible for a relativistic beam in a well tuned cavity. Moreover, the voltage jumps (amplitude and phase) occurring at each bunch passage, as well as the beam detuning caused by the off-crest bunches, vary from cell to cell. These effects enhance dramatically the fluctuation of the accelerating voltage, with a dominant beating provided by the pass-band mode nearest to the pi-mode. The induced beam energy spread has been estimated by the help of two distinct codes, developed at Frascati (Italy) and (Saclay), with results in good agreement. While an interaction integral is computed at each bunch passage, the cavity refilling is calculated by solving coupled differential equations of the modes of the pass-band, driven by a generator linked to one end-cell. It is shown also that the intermode coupling arises from the external Q of the drive end-cell, and not from the wall losses. For illustration, the authors applied the method to the beam-loading problem in the SC capture cavity of the low charge injector of the TESLA test facility installed at DESY

  18. Low energy spread electron beams from ionization injection in a weakly relativistic laser wakefield accelerator

    International Nuclear Information System (INIS)

    We show via two-dimensional particle-in-cell simulations that low energy spread, relativistic electron beams (>120 MeV, <15%) can be produced in the weakly non-linear regime of a plasma wakefield, driven by a moderate power laser pulse (initial a0 < 1). Higher ionization states of a high-Z trace species, mixed in a background H plasma, provide the source of injected electrons. Injection occurs even though the laser intensity is initially well below the trapping threshold, as it is found that the laser pulse evolves until it fulfils the trapping requirements through self-compression. By careful control of intensity and density, the amount of evolution and hence of trapping can be controlled. Acceleration is terminated by depletion due to the extended evolution time, leading to narrow energy spread features even for long interaction lengths. Particle tracking shows that electrons ‘born’ at the periphery of the laser pulse are more likely to follow smoother trajectories inside the wakefield and subsequently to be trapped and accelerated. (paper)

  19. Optimization of power output and study of electron beam energy spread in a Free Electron Laser oscillator

    CERN Document Server

    Abramovich, A; Efimov, S; Gover, A; Pinhasi, Y; Yahalom, A

    2001-01-01

    Design of a multi-stage depressed collector for efficient operation of a Free Electron Laser (FEL) oscillator requires knowledge of the electron beam energy distribution. This knowledge is necessary to determine the voltages of the depressed collector electrodes that optimize the collection efficiency and overall energy conversion efficiency of the FEL. The energy spread in the electron beam is due to interaction in the wiggler region, as electrons enter the interaction region at different phases relative to the EM wave. This interaction can be simulated well by a three-dimensional simulation code such as FEL3D. The main adjustable parameters that determine the electron beam energy spread after interaction are the e-beam current, the initial beam energy, and the quality factor of the resonator out-coupling coefficient. Using FEL3D, we study the influence of these parameters on the available radiation power and on the electron beam energy distribution at the undulator exit. Simulations performed for I=1.5 A, E...

  20. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    International Nuclear Information System (INIS)

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET–CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator

  1. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Science.gov (United States)

    Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  2. Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends

    CERN Document Server

    Li, Rui

    2014-01-01

    In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

  3. Production of megavolt neutron beams with a relative energy spread of ∼ 5 x 10-4

    International Nuclear Information System (INIS)

    A method is described for producing megavolt neutron beams with a relative energy spread of ∼ 5 x 10-4, based on the use of an electrostatic accelerator and a gas target with no foil, making it possible to carry out continuous, controlled production of the working substance. In the target differential pumping of the vapor of the working substance is effected by freezing out in liquid-nitrogen condensers. A method has been developed for using beams of neutrons from the 12C(d,n) reaction to measure the total cross sections for the interaction of neutrons with nuclei and the differential cross sections for elastic scattering

  4. Development and investigation of finite energy spread and improved emittance relativistic electron beams

    International Nuclear Information System (INIS)

    The experiments with a divided cathode in an electron beam gun, one half of which is connected via a resistor with the high voltage terminal, lead to the generation of a low emittance electron beam with instantaneously two different energies which is suitable for suppression of collective instabilities in an electron ring accelerator. The energy difference can be varied up to 100 keV proportional to the resistance, and the sub-currents are equal. The beam parts are well separated and focussed at the injection area of the compressor, and their radial distance is about equal to the radial difference of the corresponding closed orbits, such that electron ring formation with minimum radial betatron oscillations should be possible. (orig.)

  5. Estimation of the electron beam energy spread for TEM information limit

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Tiemeijer, Peter C.; Sidorov, Maxim V.

    2002-02-20

    Sub-Angstrom TEM of materials requires focal-series reconstruction (FSR) or electron holography to retrieve the electron wave at the specimen exit-surface to very high resolution. As a consequence, we need to measure the microscope information limit. With a sub-Angstrom information limit, the one-Angstrom microscope (OAM) project at the NCEM has achieved sub-Angstrom resolution by FSR. We present a new method of estimating the information limit of the microscope, based on energy-spread measurements with an image filter.

  6. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    Science.gov (United States)

    Grishkov, A. A.; Pegel, I. V.

    2013-11-01

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  7. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, A. A., E-mail: grishkov@to.hcei.tsc.ru; Pegel, I. V. [Russian Academy of Sciences, Institute of High Current Electronics, Siberian Branch (Russian Federation)

    2013-11-15

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  8. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  9. Generation of Low Absolute Energy Spread Electron Beams in Laser Wakefield Acceleration Using Tightly Focused Laser through Near-Ionization-Threshold Injection

    CERN Document Server

    Li, F; Wan, Y; Wu, Y P; Hua, J F; Pai, C H; Lu, W; Mori, W B; Joshi, C

    2015-01-01

    An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle-in-cell simulations. The core idea of the proposed scheme is to lower the energy spread of trapped beams by shortening the injection distance. We have established theory to precisely predict the injection distance, as well as the ionization degree of injection atoms/ions, electron yield and ionized charge. We have found relation between injection distance and laser and plasma parameters, giving a strategy to control injection distance hence optimizing beam's energy spread. In the presented simulation example, we have investigated the whole injection and acceleration in detail and found some unique features of the injection scheme, like multi-bunch injection, unique longitudinal phase-space distribution, etc. Ultimate electron beam has a relative energy spread (rm...

  10. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources

    OpenAIRE

    Tong ZHANG; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural trans...

  11. Compensating the Electron Beam Energy Spread by the Natural Transverse Gradient of Laser Undulator in All-Optical X-ray Sources

    CERN Document Server

    Zhang, Tong; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2013-01-01

    All-optical schemes provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this letter, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly dispersing the electron beam transversely. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  12. Compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  13. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  14. A method to compensate the energy loss of a continuous stacked beam with a large momentum spread

    International Nuclear Information System (INIS)

    A system of rectangular drift tube loaded cavities resonating in the TE 101 mode combined with a cyclic scaling guide field can be used to accelerate an unbunched beam of charged particles. The system is superior to phase displacement because the cavities are driven at a fixed frequency with certain phase differences between each other. The range of particle momenta is limited by rf-knock out. Rf-induced betatron oscillations and phase dependent momentum changes can be compensated by means of sixteen cavities on the circumference of the accelerator. The amplitude of the betatron oscillations and the energy gain were calculated numerically for storage devices consisting of a spiral-sector FFAG guide field and one or sixteen cavities, respectively, using measured rf-feld data. The systems seem to be practical only for electrons with an energy up to 100 MeV. The rf-system works within an energy width of several MeV. (Auth.)

  15. Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e$^+$e$^-$ circular collider

    CERN Document Server

    Cerri, Olmo; Pierini, Maurizio; Podo, Alessandro; Rolandi, Gigi

    2016-01-01

    We study the expected sensitivity to measure the branching ratio of Higgs boson decays to invisible particles at a future circular \\epem collider (FCCee), considering an integrated luminosity of 3.5 ab$^{-1}$ at a center-of-mass energy $\\sqrt{s}=240$ GeV. The impact of the energy spread of the FCCee beam on the measurement is discussed. Two different detector concepts are considered: a detector corresponding to the CMS reconstruction performances and the expected design of the ILC detector. The minimum branching ratio for a $5\\sigma$ observation after 3.5ab$^{-1}$ of data taking is $1.7\\pm 0.1\\%(stat+syst) $ ($2.5\\pm 0.3\\%((stat+syst))$ ) for an ILC-like (CMS-like) detector concept. The branching ratio exclusion limit at 95\\% CL is $0.63 \\pm 0.22\\%((stat+syst))$ ($0.92\\pm0.32 \\%((stat+syst))$).

  16. Ion beams in SEM: An experiment towards a high brightness low energy spread electron impact gas ion source

    NARCIS (Netherlands)

    Jun, D.S.; Kutchoukov, V.G.; Kruit, P.

    2011-01-01

    A next generation ion source suitable for both high resolution focused ion beam milling and imaging applications is currently being developed. The new ion source relies on a method of which positively charged ions are extracted from a miniaturized gas chamber where neutral gas atoms become ionized b

  17. Reduce proton energy spread by target ablation

    CERN Document Server

    Zhao, Shuan; Chen, Jiaer; Yan, Xueqing

    2015-01-01

    It's shown that, with strong target ablation monoenergetic protons along the laser direction is available during the laser aluminum foil interaction, which is different from the classic TNSA theory. When the laser pre-pulse is too strong that the whole target is vaporized, the energetic electrons generated in the gas preplasma will play an important role for the ion acceleration because the sheath field will not be available. These electrons beam, which is highly directional, will setup triangle envelope acceleration field along the laser direction at the target rear, reducing the ion energy spread.

  18. Beam spread and point spread functions and their measurement in the ocean

    Science.gov (United States)

    Honey, R. C.

    1980-03-01

    It is demonstrated experimentally that the principle of reciprocity, when applied to the problem of spreading of a collimated beam incident on the sea from above, can significantly simplify the measurement of beam spread at large depths in real, inhomogeneous oceans. The reciprocal experiment replaces the cosine irradiance detector with a cosine light source, and the resultant angular radiance distribution is measured at the surface with a camera system. The experiment can be easily extrapolated to a camera in an aircraft.

  19. Practical biological spread-out Bragg peak design of carbon beam

    OpenAIRE

    Kim, Chang Hyeuk; Lee, Hwa-Ryun; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated fo...

  20. Time-resolved momentum and beam size diagnostics for bunch trains with very large momentum spread

    Energy Technology Data Exchange (ETDEWEB)

    Olvegård, M., E-mail: maja.olvegard@physics.uu.se [Uppsala University, Department of Physics and Astronomy, Box 516, 751 20 Uppsala (Sweden); Barnes, M.J.; Ducimetière, L. [CERN, European Organization of Nuclear Research, 1211 Genève 23 (Switzerland); Ziemann, V. [Uppsala University, Department of Physics and Astronomy, Box 516, 751 20 Uppsala (Sweden)

    2015-10-11

    We propose a novel method to measure the time-resolved momentum distribution and size of beams with very large momentum spread. To demonstrate the principle we apply the method to the beam at the end of a Compact Linear Collider decelerator, where conventional diagnostic methods are hampered by the large energy spread of the drive beam after up to 90% of its kinetic energy is converted into microwave power. Our method is based on sweeping the beam in a circular pattern to determine the momentum distribution and recording the beam size on a screen using optical transition radiation. We present an algorithm to extract the time-resolved momentum distribution. Furthermore, the beam size along the bunch train can be extracted from the image left on a screen by sweeping the beam linearly. We introduce the analysis technique and show simulation results that allow us to estimate the applicability. In addition, we present a conceptual design of the technical realization.

  1. Time-resolved momentum and beam size diagnostics for bunch trains with very large momentum spread

    International Nuclear Information System (INIS)

    We propose a novel method to measure the time-resolved momentum distribution and size of beams with very large momentum spread. To demonstrate the principle we apply the method to the beam at the end of a Compact Linear Collider decelerator, where conventional diagnostic methods are hampered by the large energy spread of the drive beam after up to 90% of its kinetic energy is converted into microwave power. Our method is based on sweeping the beam in a circular pattern to determine the momentum distribution and recording the beam size on a screen using optical transition radiation. We present an algorithm to extract the time-resolved momentum distribution. Furthermore, the beam size along the bunch train can be extracted from the image left on a screen by sweeping the beam linearly. We introduce the analysis technique and show simulation results that allow us to estimate the applicability. In addition, we present a conceptual design of the technical realization

  2. Beam ν-spread due to field errors in RHIC

    International Nuclear Information System (INIS)

    The random field error multipoles can produce a significant ν-spread in the beam. Tracking studies, for particles with emittances and Δp/p which are within the beam, have shown that a major part of the ν-spread comes from the statistically significant average value of b3 and b4 in the main dipoles in the arcs. Because of systematic errors in the construction of the dipoles, this average value may be larger than that which one would expect from a purely radom distribution of errors. A correction system for the average b3 and b4 in the dipoles appears important. Results will be given for the ν-spread found for the uncorrected multipoles, and for the ν-spread after correction of the average b3 and b4. 7 refs., 5 tabs

  3. Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: results of Monte Carlo simulations for a Varian 2100EX accelerator

    International Nuclear Information System (INIS)

    The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10x10 to 40x40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10x10 cm2 and 40x40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases. (author)

  4. On compensating tune spread induced by space charge in bunched beams

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko V. N.; Wang, G.

    2014-05-09

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator, or, in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. Using a proper transverse profile of the electron beam (or plasma column) for a coasting beam would compensate both the tune shift and the tune spread in the hadron beam. But all of these methods do not address the issue of tune spread compensation of a bunched hadron beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with miss-matched longitudinal velocity to compensate the space charge induced tune-shift and tune spread. We present a number of practical examples of such system.

  5. Emittance dilution through coherent energy spread generation in bending systems

    International Nuclear Information System (INIS)

    For a bunched beam, coherent energy spread generated within a bending system may couple to the transverse (bending) plane coordinates through the chromatic transfer functions of the particular beamline - even an achromatic beamline. The resulting transverse emittance dilution is dependent on the magnitude of the energy spread, its generation rate along the beamline, and the beamline's chromatic transfer functions. The coherent energy spread may be due to resistive-wall wakefields or coherent synchrotron radiation. For specific beamlines, such as a periodic arc or wiggler, the longitudinal-to-transverse coupling is minimal and, in ideal cases, completely suppressed resulting in reduction or cancellation of all transverse emittance dilution effects. This is of particular interest for micro-bunch transport or compression systems such as exist in future FEL or linear collider projects

  6. Practical biological spread-out Bragg peak design of carbon beam

    CERN Document Server

    Kim, Chang Hyeuk; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated for each slice at the target region. To generate appropriate biological SOBP, a set of weighting factor, which is a power function in terms of energy step, was applied to the obtained each physical dose. The designed biological SOBP showed 1.34 % of uniformity.

  7. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail

    Science.gov (United States)

    Ward, Bill

    2011-03-01

    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  8. Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  9. Wake fields and energy spread for the eRHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.; Kayran, D.

    2011-10-16

    Wake fields in high-current ERLs can cause significant beam quality degradations. Here we summarize effects of coherent synchrotron radiation, resistive wall, accelerating cavities and wall roughness for ERL parameters of the eRHIC project. A possibility of compensation of such correlated energy spread is also presented. An emphasis in the discussion is made on the suppression of coherent synchrotron radiation due to shielding and a possible reduction of wall roughness effects for realistic surfaces. In this report we discuss the wake fields with a focus on their effect on the energy spread of the beam. Other effects of wake fields are addressed elsewhere. An energy spread builds up during a pass though a very long beam transport in the eRHIC ERL under design. Such energy spread become important when beam is decelerated to low energy, and needs to be corrected. Several effects, such as Coherent Synchrotron Radiation (CSR), Resistive Wall (RW), accelerating RF cavities (RF) and Wall Roughness (WR) were considered. In this paper, we briefly summarize major contributions to energy spread from the wake fields for eRHIC parameters, and present possible energy spread compensation for decelerated beam. In the rest of the report we discuss effects which we believe are suppressed for the eRHIC parameters.

  10. Comparison of energy spreads induced by a wakefield in a cavity

    International Nuclear Information System (INIS)

    The energy spread of a beam bunch induced in a linear accelerator can be reduced to a minimum if the amplitude and the phase of the RF voltage are optimized. The energy spread is induced by the longitudinal wakefield and by the sinusoidal profile of the accelerating voltage acting on the beam. The cavity shape, the bunch profile, and the charge in the bunch determine the wake function. Aiming to have an approximately constant net voltage acting across the beam bunch, we optimize the amplitude and the phase of the RF voltage. The minimum energy spread, the required RF voltage, and the required RF phase are calculated as a function of the net charge and the length of the bunch. To find out the effect of cavity shape on the minimum energy spread, the optimization was performed for several types of cavities. 4 refs., 8 figs

  11. Proton Beam Energy Characterization

    OpenAIRE

    Marus, Lauren A.; Engle, J.W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2015-01-01

    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from...

  12. Spreading of energy in the Ding-Dong Model

    OpenAIRE

    Roy, S.; Pikovsky, A.

    2011-01-01

    We study properties of energy spreading in a lattice of elastically colliding harmonic oscillators (Ding-Dong model). We demonstrate that in the regular lattice the spreading from a localized initial state is mediated by compactons and chaotic breathers. In a disordered lattice the compactons do not exist, and the spreading eventually stops, resulting in a finite configuration with a few chaotic spots.

  13. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures

    CERN Document Server

    Fu, Feichao; Zhu, Pengfei; Zhao, Lingrong; Jiang, Tao; Lu, Chao; Liu, Shengguang; Shi, Libin; Yan, Lixin; Deng, Haixiao; Feng, Chao; Gu, Qiang; Huang, Dazhang; Liu, Bo; Wang, Dong; Wang, Xingtao; Zhang, Meng; Zhao, Zhentang; Stupakov, Gennady; Xiang, Dao; Zhang, Jie

    2015-01-01

    High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. This work also extends the applications of corrugated structures to the low beam charge (a few pC) and low beam energy (a few MeV) regime and may have a strong impact in many accelerator-based facilities.

  14. An energy spread minimization system for microbeam generation in the JAERI AVF cyclotron

    International Nuclear Information System (INIS)

    A heavy-ion microbeam with energy of hundreds of MeV is a significantly useful probe for research in biology and biotechnology. A single-ion hit technique using the heavy-ion microbeam is being developed at the JAERI AVF cyclotron facility for elucidation of biofunctions. For production of a microbeam with a spot size of one micro-meter in diameter, the energy spread in the beam is required to be reduced to 0.02% to minimize the effect of chromatic aberrations in the focusing lenses. The energy spread in the cyclotron beam depends on a waveform of the acceleration voltage and beam phase acceptance of the cyclotron. The typical energy spread of the cyclotron beam is around 0.1% in the ordinary acceleration mode using a sinusoidal voltage waveform. The energy spread can be reduced by superimposing a fifth-harmonic voltage waveform on the fundamental one to generate a flat-top waveform for uniform energy gain. The flat-top acceleration system has been designed for the variable-energy multi-particle AVF cyclotron with acceleration harmonic mode of 1, 2 and 3. An additional coaxial cavity has been installed to generate the fifth-harmonic voltage, coupled to the main resonator. The frequency range of the fifth harmonics, 55-110 MHz, was fully covered by the flat-top acceleration system

  15. Research on Flange Spread of H-Beam on Universal Mill

    Institute of Scientific and Technical Information of China (English)

    XU Xu-Dong; BAI Jin-lan; WANG Bing-xin; LIU Xiang-hua; WU Di

    2006-01-01

    The deformation process of H-beams was simulated by explicit dynamic FEM, and the influence of deformation parameters on the spread of rolling piece was obtained. The results show that the flange width, elongation ratio between flange and web and flange thickness are the major influencing factors on the spread of rolling piece, and the inclination and diameter of vertical roll together with web inner width can also influence to some extent on the spread of rolling piece.

  16. Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching

    Science.gov (United States)

    Zhang, Zhijun; Li, Wentao; Liu, Jiansheng; Wang, Wentao; Yu, Changhai; Tian, Ye; Nakajima, Kazuhisa; Deng, Aihua; Qi, Rong; Wang, Cheng; Qin, Zhiyong; Fang, Ming; Liu, Jiaqi; Xia, Changquan; Li, Ruxin; Xu, Zhizhan

    2016-05-01

    We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, the e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.

  17. Simple formulae for the optimization of the FEL gain length including the effects of emittance, betatron oscillations and energy spread

    International Nuclear Information System (INIS)

    Simple analytical formulae are presented for a quick optimization of the Free Electron Laser (FEL) gain length for given values of radiation wavelength, electron beam current, normalized transverse emittance and energy spread. The optimization parameters include the gap size of the wiggler, the wiggler period and the betatron wavelength (in the case of external focusing). The method is based on the handy formulae for the FEL gain of a Gaussian beam including the effects of energy spread, emittance, and betatron oscillations of the electron beam. We have found a simple relation between the minimum FEL gain length and the optimum betatron wavelength for given energy spread, emittance, and gap size of the wiggler. When the emittance is about the radiation wavelength divided by 4ρ and the energy spread is negligible, this relation shows that the gain length is optimized if the betatron wavelength is chosen so that the betatron phase advances by a half radian in the gain length

  18. Real energy spread of ions produced in vacuum spark-discharge plasma

    International Nuclear Information System (INIS)

    The initial energy spread of ions formed in vacuum spark-discharge plasma is studied, and is found to be approx. 100 eV (at 50% of maximum intensity). Of three possible mechanisms for ion acceleration, the hydrodynamic mechanism and the action of the self-consistent electric field have been shown to be the basic mechanisms. The mechanism of ion acceleration in the inter-electrode field does not play an important role. The energy spread of ions can increase considerably during the formation of an ion beam, and this is usually the case in double-focusing mass spectrometers. (orig.)

  19. Measurement of the energy-spread contribution to information transfer limits in HR-TEM

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Tiemeijer, Peter C.; Sidorov, Maxim V.

    2002-02-18

    Sub-Angstrom TEM of materials at intermediate voltages requires a sub-Angstrom information limit for the microscope. With a Scherzer resolution of 1.7 Angstrom, but a sub-Angstrom information limit, the one-Angstrom microscope (OAM) project at the NCEM is able to generate resolution below 0.8 Angstrom. Microscope information limit comes from damping of transfer by the temporal coherence. A major term contributing to temporal coherence is energy spread in the electron beam. We derive a new expression for the energy spread, and show how it can be measured from the result that is obtained using a standard electron spectrometer.

  20. Anomalous broadening of energy distributions in photoemitted electron beams

    Science.gov (United States)

    Guidi, Vincenzo

    1996-06-01

    Photoemission is widely used to generate electron beams with an energy spread lower than by thermoemission. However, when a photocathode is illuminated by a multimode laser this feature is lost and an electron beam with several eV of energy spread is produced. We have developed an explanation for this anomalous behavior pointing out its origin in the combined effect of charge relaxation, taking place within the beam, together with the modulation of the laser power imposed by laser modes. The model permits a correct interpretation overall experimental evidences.

  1. Lateral spread of dose distribution by therapeutic proton beams in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Abril, Isabel, E-mail: ias@ua.es [Departament de Física Aplicada, Universitat d’Alacant, E-03080 Alacant (Spain); Vera, Pablo de [Departament de Física Aplicada, Universitat d’Alacant, E-03080 Alacant (Spain); Garcia-Molina, Rafael [Departamento de Física – Centro de Investigación en Óptica y Nanofísica, Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, E-30100 Murcia (Spain); Kyriakou, Ioanna; Emfietzoglou, Dimitris [Medical Physics Laboratory, University of Ioannina Medical School, GR-45110 Ioannina (Greece)

    2015-06-01

    We have calculated the lateral spread of the dose distribution of protons in liquid water by means of the SEICS (Simulation of Energetic Ions and Clusters through Solids) code, which properly accounts for the electronic stopping force (including energy-loss straggling), multiple elastic scattering with the target nuclei, dynamical electron charge-exchange processes and nuclear fragmentation reactions between the projectile and the nuclei of the target. Due to the multiple elastic scattering processes part of the proton energy may be deposited at a given lateral distance from the initial beam direction, which is quantified by the root mean square radius (r{sub rms}). We find in our simulations that the r{sub rms} follows a parabolic dependence as a function of the depth in the target and the quotient between the r{sub rms} at the Bragg peak and the depth of the Bragg peak is around 3% independently of the proton energy. A rather good agreement is obtained when comparing our results of r{sub rms} with experimental data and with other models.

  2. Low energy spread 100 MeV-1 GeV electron bunches from laser wakefield acceleration at LOASIS

    International Nuclear Information System (INIS)

    Experiments at the LOASIS laboratory of LBNL recently demonstrated production of 100 MeV electron beams with low energy spread and low divergence from laser wakefield acceleration. The radiation pressure of a 10 TW laser pulse guided over 10 diffraction ranges by a plasma density channel was used to drive an intense plasma wave (wakefield), producing acceleration gradients on the order of 100 GV/m in a mm-scale channel. Beam energy has now been increased from 100 to 1000 MeV by using a cm-scale guiding channel at lower density, driven by a 40TW laser, demonstrating the anticipated scaling to higher beam energies. Particle simulations indicate that the low energy spread beams were produced from self trapped electrons through the interplay of trapping, loading, and dephasing. Other experiments and simulations are also underway to control injection of particles into the wake, and hence improve beam quality and stability further

  3. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    CERN Document Server

    Yang, J; Okada, Y; Yorozu, M; Yanagida, T; Endo, A

    2002-01-01

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91+-0.28 pi mm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac.

  4. Experimental studies of emittance growth and energy spread in a photocathode RF gun

    International Nuclear Information System (INIS)

    In this paper we report on a low emittance electron source, based on a photocathode RF gun, a solenoid magnet and a subsequent linac. The dependencies of the beam transverse emittance and relative energy spread with respect to the laser injection phase of the radio-frequency (RF) gun, the RF phase of the linac and the bunch charge were investigated experimentally. It was found that a lower beam emittance is observed when the laser injection phase in the RF gun is low. The emittance increases almost linearly with the bunch charge under a constant solenoid magnetic field. The corrected relative energy spread of the beam is not strongly dependent on the bunch charge. Finally, an optimal normalized rms transverse emittance of 1.91±0.28 πmm mrad at a bunch charge of 0.6 nC was obtained when the RF gun was driven by a picosecond Nd:YAG laser. A corrected relative rms energy spread of 0.2-0.25% at a bunch charge of 0.3-2 nC was obtained after the beam was accelerated to 14 MeV by the subsequent linac

  5. Point spread function modeling and images restoration for cone-beam CT

    OpenAIRE

    Zhang, Hua; Huang, Kuidong; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the...

  6. Low-energy-spread laser wakefield acceleration using ionization injection with a tightly focused laser in a mismatched plasma channel

    Science.gov (United States)

    Li, F.; Zhang, C. J.; Wan, Y.; Wu, Y. P.; Xu, X. L.; Hua, J. F.; Pai, C. H.; Lu, W.; Gu, Y. Q.; Mori, W. B.; Joshi, C.

    2016-03-01

    An improved ionization injection scheme for laser wakefield acceleration using a tightly focused laser pulse, with intensity near the ionization threshold to trigger the injection in a mismatched plasma channel, has been proposed and examined via 3D particle-in-cell (PIC) simulations. In this scheme, the key to achieving a very low energy spread is shortening the injection distance through the fast diffraction of the tightly focused laser. Furthermore, the oscillation of the laser envelope in the mismatched plasma channel can induce multiple low-energy-spread injections with an even distribution in both space and energy. The envelope oscillation can also significantly enhance the energy gain of the injected beams compared to the standard non-evolving wake scenario due to the rephasing between the electron beam and the laser wake. A theoretical model has been derived to precisely predict the injection distance, the ionization degree of injection atoms/ions, the electron yield as well as the ionized charge for given laser-plasma parameters, and such expressions can be directly utilized for optimizing the quality of the injected beam. Through 3D PIC simulations, we show that an injection distance as short as tens of microns can be achieved, which leads to ultrashort fs, few pC electron bunches with a narrow absolute energy spread around 2 MeV (rms). Simulations also show that the initial absolute energy spread remains nearly constant during the subsequent acceleration due to the very short bunch length, and this indicates that further acceleration of the electron bunches up to the GeV level may lead to an electron beam with an energy spread well below 0.5%. Such low-energy-spread electron beams may have potential applications for future coherent light sources driven by laser-plasma accelerators.

  7. Measurement of Schottky-like Signals from Linac Bunched Hadron Beams for Momentum Spread Evaluation

    CERN Document Server

    Kowina, P; Caspers, F; Singh, R

    2013-01-01

    We present a novel method for the measurement of Linac beam parameters in the longitudinal phase space. The longitudinal momentum spread can be evaluated by means of Schottky type signal analysis of bunched beams. There is a close similarity between a repetitive Linac bunch train and a circulating beam with a single short batch in a large machine like the LHC. A dedicated longitudinal cavity pick-up was used in the Linac where resonance frequency and Q-value were carefully selected in order to get an optimum compromise between the unavoidable coherent signal and the desired incoherent part of the beam spectrum. A time domain gating similar to the 4.8 GHz LHC Schottky front-end is applied. As a cross-check of the validity of the interpretation in terms of momentum spread, the Linac beam is analyzed in the downstream synchrotron using standard Schottky methods. In principle, this approach can be understood as an extension of Schottky analysis for circular machines with a perfect “mixing” between subsequent ...

  8. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  9. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Shinonaga, Togo, E-mail: togo@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsukamoto, Masahiro [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao [Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Matsushita, Nobuhiro [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Xie, Guoqiang [Institute for Materials Research, Tohoku University, 2-1-1 Karahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Abe, Nobuyuki [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO{sub 2}) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO{sub 2} film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO{sub 2} particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO{sub 2} a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  10. Cell spreading on titanium dioxide film formed and modified with aerosol beam and femtosecond laser

    Science.gov (United States)

    Shinonaga, Togo; Tsukamoto, Masahiro; Nagai, Akiko; Yamashita, Kimihiro; Hanawa, Takao; Matsushita, Nobuhiro; Xie, Guoqiang; Abe, Nobuyuki

    2014-01-01

    Titanium (Ti) is widely used in biomaterials because of its excellent anti-corrosion properties and high strength. However, Ti has no biological function, so its bioactivity must be improved. Coating a titanium dioxide (TiO2) film on a Ti plate surface has been shown to improve the biocompatibility of Ti plates. If periodic nanostructures were formed on the film surface, the direction of cell spreading might be controlled by the direction of the grooves. Controlling cell spreading on biomaterials would contribute to the creation of advanced biomaterials. In this paper, a TiO2 film was formed on a Ti plate with an aerosol beam composed of sub micron-sized TiO2 particles and helium gas. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on the film by scanning the femtosecond laser focusing spot. The period and height of the periodic nanostructures were about 230 nm and 150 nm, respectively. In a cell test, cell spreading was observed along the grooves of the periodic nanostructures; in contrast, cell spreading did not show a definite direction on TiO2 a film without periodic nanostructures. These results suggest that the direction of cell spreading on the film can be controlled by periodic nanostructure formation generated using a femtosecond laser.

  11. Intense low energy positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  12. Beam-beam studies for the High-Energy LHC

    CERN Document Server

    Ohmi, K; Zimmermann, F

    2011-01-01

    LHC upgrades are being considered both towards higher luminosity (HL-LHC) and towards higher energy (HE-LHC). In this paper we report initial studies of the beam-beam effects in the HE-LHC [1]. The HE-LHC aims at beam energies of 16.5 TeV, where the transverse emittance decreases due to synchrotron radiation with a 2-hour damping time. As a result of this emittance, shrinkage the beam-beam parameter increases with time, during a physics store. The beam-beam limit in the HE-LHC is explored using computer simulations.

  13. Investigation of possible csr induced energy spread effects with the A0 photoinjector bunch compressor

    International Nuclear Information System (INIS)

    The bunch compressor of the A0 Photoinjector at Fermilab was removed this past spring to install a transverse to longitudinal emittance exchange experiment. Prior to its removal questions arose about the possibility of observing the effects of Coherent Synchrotron Radiation on the compressed beam. The energy spread of the beam with and without compression was measured to observe any changes. Various beam charges were used to look for square law effects associated with CSR. No direct observation of CSR in the compressor was attempted because the design of the vacuum chamber did not allow it. In this paper we report the results of these experiments and comparison with simulations using ASTRA and CSRTrack. The results are also compared with analytical approximations

  14. High energy ion beam mixing

    International Nuclear Information System (INIS)

    Experimental investigations have been made on the parameters which can be used to control the mixing profiles, and the width of intermixed layers in film-substrate systems being irradiated by high energy heavy ion beams. The samples were irradiated by ion beams of Au, Cu, and Si with energies of 1.5 to 3 MeV. Typical examples of the RBS spectra are presented and discussions are made on the extent of contribution of binary collisions on the interfacial mixing. The experimental and simulation results show that the interfacial mixing is dominated by the binary collisions. (author)

  15. Ping-Pong Beam Training for Reciprocal Channels with Delay Spread

    DEFF Research Database (Denmark)

    Carvalho, Elisabeth De; Andersen, Jørgen Bach

    We present an iterative beam training procedure for a reciprocal channel with delay spread between two massive antenna arrays. The primary application is communication at millimeter wave frequencies. The procedure is based on ping pong transmissions. For each matricial channel coefficient, it...... tracks the left and right singular vectors associated to the maximal singular value. Based on the set of singular vectors, we build transmit and receive equalizers. A simple equalization based on matched filtering is showed to be optimal in the case of a Gaussian i.i.d. channel and a sparse channel....

  16. Transversal symmetry breaking and axial spreading modification for Gaussian optical beams

    CERN Document Server

    Araujo, Manoel; Lima, Marina

    2016-01-01

    For a long time it was believed there was no reason to include the geometrical phase in studying the propagation of gaussian optical beams through dielectric blocks. This can be justified by the fact that the first order term in the Taylor expansion of this phase is responsible for the lateral shift of the optical beam which is also predicted by ray optics. From this point of view, the geometrical phase can be seen as a purely auxiliary concept. In this paper, we show how the second order term in the Taylor expansion accounts for the symmetry breaking of the transversal spatial distribution and acts as an axial spreading modifier. These new effects clearly shows the importance of the geometrical phase in describing the correct behavior of light. To test our theoretical predictions, we briefly discuss a possible experimental implementation.

  17. Point spread function modeling and images restoration for cone-beam CT

    CERN Document Server

    Zhang, Hua; Shi, Yikai; Xu, Zhe

    2014-01-01

    X-ray cone-beam computed tomography (CT) has the notable features such as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection images degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed firstly. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection images restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection images restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasib...

  18. Point spread function modeling and image restoration for cone-beam CT

    Science.gov (United States)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  19. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author)

  20. Random phase disturbances and tolerance on amplitude and phase spread in driver of two-beam accelerator with accompanying wave

    International Nuclear Information System (INIS)

    One investigates into effect of random phase disturbances on particle dynamics at extraction of UHF power from two-beam accelerator driver with accompanying wave. Paper presents the simulation results of beam dynamics in the driver depending on the value of phase disturbances. One determines tolerances for spread in values of amplitude and phase of wave in driver power extractors

  1. On Compensating Tune Spread Induced by Space Charge in Bunched Beams

    OpenAIRE

    Litvinenko, Vladimir N.; Wang, Gang

    2014-01-01

    Space charge effects play significant role in modern-day accelerators. These effects frequently constrain attainable beam parameters in an accelerator - or - in an accelerator chain. They also could limit the luminosity of hadron colliders operating either at low energies or with a sub-TeV high brightness hadron beams. A number of schemes for compensating space charge effects in a coasting (e.g. continuous) hadron beam were proposed and some of them had been tested. But all of these methods d...

  2. Is LEP beam-beam limited at its highest energy?

    CERN Document Server

    Brandt, D; Meddahi, Malika; Verdier, A

    1999-01-01

    The operation of LEP at 45.6 GeV was limited by beam-beam effects and the vertical beam-beam parameter xy never exceeded 0.045. At the highest energy of 94.5 GeV, the increased damping allows higher beam-beam parameters xy . Values above 0.07 in the vertical plane averaged over four experiments have been obtained frequently with peak values up to 0.075 in a single experiment. Although the maximum intensity in LEP is presently limited by technical considerations, some observations indicate that the beam-beam limit is close and the question of the maximum possible values can be raised. These observations are shown in this paper and possible consequences are presented. The optimum operation of LEP in the neighbourhood of the beam-beam limit is discussed.

  3. Dependence of image quality on energy spread for a Bragg diffraction based radiography system

    International Nuclear Information System (INIS)

    The aim of this work is to investigate the relationship between contrast and energy resolution of a quasi-monochromatic X-ray system based on Bragg diffraction on a mosaic crystal. Three different energies have been considered: 18, 22 and 26 keV. A commercial phantom containing large and small area details and a digital detector have been used. Results show that for large area details and for a certain value of energy, the energy spread of the incident X-ray beams produces a small reduction of the contrast, while for small area details the high reduction of the contrast is principally due to the spatial resolution properties of the system

  4. CSR routine for low energy electron beam in GPT

    International Nuclear Information System (INIS)

    General Particle Tracer (GPT) is a particle tracking code, which includes 3D space charge effect based on nonequidistant multigrid Poisson solver or point-to-point method. It is used to investigate beam dynamics in ERL and FEL injectors. We have developed a new routine to simulate coherent synchrotron radiation (CSR) in GPT based on the formalism of Sagan. The routine can calculate 1D-wake functions for arbitrary beam trajectories as well as CSR shielding effect. In particular, the CSR routine does not assume ultrarelativistic electron beam and is therefore applicable at low beam energies in the injector. Energy loss and energy spread caused by CSR effect were checked for a simple circular orbit, and compared with analytic formulas. (author)

  5. Parton distributions with high energy proton beams

    International Nuclear Information System (INIS)

    The opportunities for using high energy proton beams to advance our current knowledge in parton distributions are discussed. Highlights from some Fermilab dimuon production experiments with 800 GeV proton beams are presented. Possible future directions are discussed

  6. Use achromatic beam line for Hall C beam energy measurement

    International Nuclear Information System (INIS)

    There are several different methods to measure accelerator beam energy, for example, from frequency spectrum measurement and calculation of orbit length from accurate measurement of magnetic field in a reference dipole magnet from high precision floating wire analogue, and from detecting the synchrotron radiation emitted from kicker magnets. In this report an achromatic spectrometer method combined with calibrating a reference magnet and determining the deflection angle of spectrometer is proposed. The similar method will be used to measure beam energy in Bates Linear Accelerator Center, a 10-3 accuracy of beam energy measurement is expected

  7. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  8. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashutosh, E-mail: asingh.rs.ece@iitbhu.ac.in [Faculty of Physical Sciences, Institute of Natural Sciences and Humanities, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Uttar Pradesh 225003 (India); Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Jain, P. K. [Center of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-09-15

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE{sub 041}–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE{sub 041}–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators.

  9. Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator

    International Nuclear Information System (INIS)

    In this paper, the effects of electron beam parameters and velocity spread on the RF behavior of a metallic photonic band gap (PBG) cavity gyrotron operating at 35 GHz with TE041–like mode have been theoretically demonstrated. PBG cavity is used here to achieve a single mode operation of the overmoded cavity. The nonlinear time-dependent multimode analysis has been used to observe the beam-wave interaction behavior of the PBG cavity gyrotron, and a commercially available PIC code “CST Particle Studio” has been reconfigured to obtain 3D simulation results in order to validate the analytical values. The output power for this typical PBG gyrotron has been obtained ∼108 kW with ∼15.5% efficiency in a well confined TE041–like mode, while all other competing modes have significantly low values of power output. The output power and efficiency of a gyrotron depend highly on the electron beam parameters and velocity spread. The influence of several electron beam parameters, e.g., beam voltage, beam current, beam velocity pitch factor, and DC magnetic field, on the PBG gyrotron operations has been investigated. This study would be helpful in optimising the electron beam parameters and estimating accurate RF output power of the high frequency PBG cavity based gyrotron oscillators

  10. Over-compression, a method to shape the longitudinal bunch distribution for a reduced energy spread

    International Nuclear Information System (INIS)

    In the Stanford Linear Collider the energy spread of the bunches at the end of the linac is dominated by longitudinal wakefields. A short, high current bunch with a Gaussian shape will produce a double-horned energy distribution. It can be shown that certain charge distributions with a sharp rise time (about rectangular or half-Gaussian) will give no additional energy spread due to the linac, since the generated wakefield and the rf-curvature cancel each other exactly. In this paper different methods are presented on how to achieve such distributions by using non-linear dependences in the RTL (Ring-To-Linac) compression region. A simple and effective method to achieve such a distribution is by over-compression. When not fully compressing the bunch, there are two settings of the compressor voltage, under and over-compression, which give the same core bunch length in the linac. By switching from the under to the over-compressed setting, the tails are reduced from more than Gaussian to less than Gaussian beam tails. This results in a roughly rectangular shape which will give the wakefield-rf cancellation. Simulations, measurements and their implications are discussed

  11. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  12. Uncertainty of the beam energy measurement in the e+e- collision using Compton backscattering

    Science.gov (United States)

    Mo, Xiao-Hu

    2014-10-01

    The beam energy is measured in the e+e- collision by using Compton backscattering. The uncertainty of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with the Monte Carlo sampling technique. These quantitative conclusions are especially important for understanding the uncertainty of the beam energy measurement system.

  13. A Method to Assign Spread Codes Based on Passive RFID Communication for Energy Harvesting Wireless Sensors Using Spread Spectrum Transmission

    Directory of Open Access Journals (Sweden)

    Ken Takahashi

    2015-08-01

    Full Text Available Considerable research has been conducted on systems that collect real-world information by using numerous energy harvesting wireless sensors. The sensors need to be tiny, cheap, and consume ultra-low energy. However, such sensors have some functional limits, including being restricted to wireless communication transmission. Therefore, when more than one sensor simultaneously transmits information in these systems, the receiver may not be able to demodulate if the sensors cannot accommodate multiple access. To solve this problem, a number of proposals have been made based on spread spectrum technologies for resistance to interference. In this paper, we point out some problems regarding the application of such sensors, and explain the assumption of spread codes assignment based on passive radio frequency identification (RFID communication. During the spread codes assignment, the system cannot work. Hence, efficient assignment method is more appropriate. We consider two assignment methods and assessed them in terms of total assignment time through an experiment. The results show the total assignment time in case of Electronic Product Code (EPC Global Class-1 Generation-2 which is an international standard for wireless protocols and the relationship between the ratio of the time taken by the read/write command and the ratio of total assignment time by the two methods. This implies that more efficient methods are obtained by considering the time ratio of read/write command.

  14. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Science.gov (United States)

    Chen, Ting-Jung; Wu, Chia-Ching; Tang, Ming-Jer; Huang, Jong-Shin; Su, Fong-Chin

    2010-01-01

    Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as

  15. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading.

    Directory of Open Access Journals (Sweden)

    Ting-Jung Chen

    Full Text Available Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs. Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT and cuboctahedron tensegrity (COT. The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area, cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then

  16. Beam dynamics in high energy particle accelerators

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.

  17. Generation of Electron Bessel Beams with Nondiffractive Spreading by a Nanofabricated Annular Slit

    Science.gov (United States)

    Saitoh, Koh; Hirakawa, Kazuma; Nambu, Hiroki; Tanaka, Nobuo; Uchida, Masaya

    2016-04-01

    The shaping of a wavefront of free electrons has been experimentally realized very recently. We report the generation of an electron Bessel beam using a nanofabricated annular slit. We directly observe that electron Bessel beams propagate while maintaining a narrow beam width over a long propagation distance. In addition, we experimentally verify the self-healing property of these electron beams, which can reconstruct their shape after passing an obstacle. The experimental results are compared with simulation results of the propagation including a hexagonal slit. The present technique of electron Bessel beam generation can be used to develop a novel electron-beam-shaping, an atomic manipulation technique, and a new electron microscopy.

  18. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  19. Semi-analytical 6D model of space charge force for dense electron bunches with a large energy spread

    International Nuclear Information System (INIS)

    Laser driven accelerators are capable of producing multi nC, multi MeV electron beams with transverse and longitudinal sizes on the order of microns. To investigate the transport of such electron bunches, a fast and fully relativistic space charge code which can handle beams with arbitrarily large energy spread has been developed. A 6-D macroparticle model for the beam is used to calculate the space charge fields at each time step. The collection of macroparticles is divided into longitudinal momentum bins, each with a small spread in relative momentum. The macroparticle distribution in each momentum bin is decomposed into ellipsoidal shells in position space. For each shell, an analytical expression for the electrostatic force in the bin rest frame is used. The total space charge force acting on one macroparticle in the lab frame is then the vector sum of the Lorentz-transformed forces from all the momentum bins. We have used this code to study the evolution of typical beams emerging from the plasma in the two most popular schemes, i.e., the self-modulated laser-wakefield-accelerator, where the laser pulse size is many times the plasma wavelength (L >> lr), and the colliding pulse laser-wakefield-accelerator regime where L-lr and two counter propagating laser pulses are used to inject electrons into the wakefield

  20. Ion Beam Energy Calibration Method for Accelerator

    International Nuclear Information System (INIS)

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  1. Low energy beam transport system developments

    International Nuclear Information System (INIS)

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H− beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H− beams, but such gas densities cause unacceptably high H− beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H− beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed

  2. Low energy beam transport system developments

    Science.gov (United States)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  3. Calibration of a proton beam energy monitor.

    Science.gov (United States)

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  4. Low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D.; Formanoy, I.; Brandenburg, S.

    2006-01-01

    This paper describes the redesign of the low-energy beam line at KVI. Redesigned and properties of the optical elements of the transport beam line is done by using the code COSY INFINITY in the third-order of approximation. The effects of fringe fields of the optical elements are also taken into acc

  5. Angular momentum and energy spread measurements by backscattering technique

    CERN Document Server

    Belyaev, Grigory

    A main interest in the design of a high-intensity particle beam accelerator as the EURISOL driver is the control of the particle losses in the vacuum chamber. These losses, even concerning an extremely low fraction of the beam (10-4-10-7), can be sufficient to considerably complicate the maintenance of such an accelerator. Within this framework and in order to contribute to accelerator projects dedicated to rare isotope physics, the CEA is undertaking a research program on the theoretical and experimental study of the physical processes involved in halo formation around a high intensity beam in a particle accelerator. This research program is performed in collaboration with several French and international laboratories.This note details the principle and the design of an innovative emittance measurement unit which aims to be “weakly” interceptive. “Weakly” means that the beam can continue to propagate in the pipe with similar properties compared to the case when the diagnostic is not inserted. It is p...

  6. Neutralization of low energy broad ion beam

    International Nuclear Information System (INIS)

    The paper is devoted to experimental and theoretical investigation of a low energy broad ion beam space charge and current compensation and ion-beam plasma (IBP), which would be created in transport space of the beam. The beam had cylindrical symmetry. The continuous uniform and hole tube like ion beams are used in the experiments. Different channels of electron appearing have been investigated for cases of neutralization due to secondary γ-electrons from the target and by electrons from glow cathode-neutralizer with metal or dielectric target. Results of neutralizing electrons energy distributions function measurements are presented as well as dependences of electron temperature and self-consisted plasma potential vs. beam parameters, ambient gas pressure, neutralizer parameters. Role of the thermoelectrons and dependence of IBP parameters on neutralizer area, location and potential are discussed. Significant role in neutralization of spatial collisional processes has been revealed even in neutralization by thermocathode. On the base of the experimental results self-consistent theoretical model have been developed, which describes the behavior of intense ion beam passing through the neutral gas at low pressure within conductive walls. The collisionless approach is used which means absence of collisional relaxation of the beam. This theory is used to derive the plasma potential and electron temperature within the beam

  7. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  8. Energy loss mechanism of a gold ion beam on a tandem acceleration system

    International Nuclear Information System (INIS)

    Heavy ion beam probe (HIBP) is used as a reliable method to measure plasma potential and its fluctuation in magnetically confined fusion plasma. The origins of the energy spread on a tandem accelerator system are the fluctuation of acceleration voltage, the energy spread of negative ions produced in an ion source, and the energy broadening caused in a charge stripping gas cell. In the present work, the experimental and theoretical studies mainly on the second and third problems were carried out. A tandem acceleration test stand was constructed, which consists of a negative gold ion source, a tandem acceleration system, a movable Faraday cup and an energy analyzer. The energy spectra of the Au- beam extracted from the ion source were measured. The energy shift between the primary negative ion beam and the positive ion beam converted in a gas cell at small gas thickness was measured. The energy loss spectra and the energy broadening of Au+ beam are explained. A simple model is proposed by using the semi-classical internal energy transfer function of Firsov and the scattering by the unified potential of Ziegler. The energy broadening of Au+ beam produced by a tandem system can be estimated by the present theoretical prediction. (K.I.)

  9. Phase rotation of muon beams for producing intense low-energy muon beams

    CERN Document Server

    Neuffer, D; Hansen, G

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  10. Landau damping effects and evolutions of energy spread in small isochronous ring

    CERN Document Server

    Li, Yingjie; Lin, Fanglei

    2013-01-01

    This paper studies the Landau damping effects on the microwave instability of a coasting long bunch in an isochronous ring due to the finite energy spread and the emittance. Our 2D dispersion relation gives more accurate predictions of the microwave instability growth rates at the short wavelength than the conventional 1D formula. The long-term evolution of energy spread is also studied by measurements and simulations.

  11. Landau damping effects and evolutions of energy spread in small isochronous ring

    International Nuclear Information System (INIS)

    This paper presents the Landau damping effects on the microwave instability of a coasting long bunch in an isochronous ring due to finite energy spread and emittance. Our two-dimensional (2D) dispersion relation gives more accurate predictions of the microwave instability growth rates of short-wavelength perturbations than the conventional 1D formula. The long-term evolution of energy spread is also studied by measurements and simulations

  12. Spreading The Net: The Multiple Benefits Of Energy Efficiency Improvements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Improving energy efficiency can deliver a range of benefits to the economy and society. However energy efficiency programmes are often evaluated only on the basis of the energy savings they deliver. As a result, the full value of energy efficiency improvements in both national and global economies may be significantly underestimated. This also means that energy efficiency policy may not be optimised to target the potential of the full range of outcomes possible. Moreover, when the merit of energy efficiency programmes is judged solely on reductions in energy demand, programmes are susceptible to criticisms related to the rebound effect when the energy savings are less than expected due to other welfare gains. There are several reasons why the full range of outcomes from energy efficiency policy is not generally evaluated. First, it is due to the non-market, somewhat intangible, nature of the socioeconomic benefits, which makes them difficult to quantify. Second, the effects due to energy efficiency alone can be complex to isolate and to determine causality. Third, evaluators and policy makers working in the energy efficiency sphere are usually energy professionals, working for an energy agency or ministry, with little experience of how energy efficiency might impact other non-energy sectors. The result is an under-appreciation – and related underinvestment – in energy efficiency, and as a consequence, missed opportunities and benefits. These foregone benefits represent the ‘opportunity cost’ of failing to adequately evaluate and prioritize energy efficiency investments. The objective of this report is to fully outline the array of different benefits from improved energy efficiency and investigate their implications for policy design. By better understanding the different benefits arising from energy efficiency it should be easier for policy makers to prioritise the most significant outcomes, in addition to energy savings, in optimising energy efficiency

  13. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  14. Beam life time studies and design optimization of the Ultra-low energy Storage Ring

    Science.gov (United States)

    Welsch, C. P.; Papash, A. I.; Harasimowicz, J.; Karamyshev, O.; Karamysheva, G. A.; Newton, D.; Panniello, M.; Putignano, M.; Siggel-King, M. R. F.; Smirnov, A.

    2014-04-01

    The Ultra-low energy electrostatic Storage Ring (USR) at the future Facility for Low-energy Antiproton and Ion Research (FLAIR) will provide cooled beams of antiprotons in the energy range between 300 keV down to 20 keV. Based on the original design concept developed in 2005, the USR has been completely redesigned over the past few years by the QUASAR Group. The ring structure is now based on a 'split achromat' lattice. This ensures compact ring dimensions of 10 m × 10 m, whilst allowing both, in-ring experiments with gas jet targets and studies with extracted beams. In the USR, a wide range of beam parameters shall be provided, ranging from very short pulses in the nanosecond regime to a coasting beam. In addition, a combined fast and slow extraction scheme will be featured that allows for providing external experiments with cooled beams of different time structure. Detailed investigations into the dynamics of low energy beams, including studies into the long term beam dynamics and ion kinetics, beam life time, equilibrium momentum spread and equilibrium lateral spread during collisions with an internal target were carried out. This required the development of new simulation tools to further the understanding of beam storage with electrostatic fields. In addition, studies into beam diagnostics methods for the monitoring of ultra-low energy ions at beam intensities less than 10 6 were carried out. This includes instrumentation for the early commissioning of the machine, as well as for later operation with antiprotons. In this paper, on overview of the technical design of the USR is given with emphasis on two of the most important operating modes, long term beam dynamics and the design of the beam diagnostics system.

  15. Crossed Beam Energy Transfer in the NIF ICF Target Design

    International Nuclear Information System (INIS)

    In the National Ignition Facility (NIF) ICF point design, the cylindrical hohlraum target is illuminated by multiple laser beams through two laser entrance holes on the ends. According to simulations by LASNEX and HYDRA plasma created inside the hohlraum will stream out of the LEH, accelerate to supersonic speeds and then fan out radially. Inside the hohlraum, flows are subsonic. Forward Brillouin scattering can transfer energy between pairs of laser beams (0 and 1) if the following frequency matching condition is satisfied: ω0 - ω1 = (k0 - k1) · V + |k0 - k1| cs (1) where ω0.1 and k0.1 are the frequencies and wave-numbers of the two laser beams, V is the plasma flow velocity and cs is the local ion sound speed. In the nominal case of equal frequency beams, this requires the component of the plasma flow velocity transverse to the bisector of the beam directions to be sonic, with the resulting transfer being to the downstream beam. In the NIF beam geometry, this is from the outer to inner cones of beams. The physics of this transfer is the same as in beam bending; the difference being that in the case of beam bending the effect is to redistribute power to the downstream side of the single beam. Were significant power transfer to occur in the point design, the delicately tuned implosion symmetry would be spoiled. To directly compensate for the transfer, the incident beam powers would have to be adjusted. The greatest vulnerability in the point design thus occurs at 15.2ns, when the inner beams are at their peak power and are at their nominal design power limit. In this situation, some other means of symmetry control would be required, such as re-pointing. At 15.2ns, the envelope focal intensities of the outer and inner beams are approximately 1015 and 6.7 1014 W/cm2 respectively. There is little absorption or diffractive spreading of the beams in the crossing region, so these intensities are also representative there. The outer beams are at higher intensity

  16. Pxie low energy beam transport commissioning

    CERN Document Server

    Prost, L; Andrews, R; Carneiro, J -P; Hanna, B; Scarpine, V; Shemyakin, A; D'Arcy, R; Wiesner, C

    2015-01-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. It includes a 10 mA DC, 30 KeV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to ~25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source and LEBT, which includes 3 solenoids, several clearing electrodes/collimators and a chopping system, have been built, installed, and commissioned to full specification parameters. This report presents the outcome of our commissioning activities, including phase-space measurements at the end of the beam line under various neutralization schemes obtained by changing the electro...

  17. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haitao, E-mail: ren@frib.msu.edu; Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn [Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-02-15

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  18. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  19. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    International Nuclear Information System (INIS)

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper

  20. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  1. Effects of Levy Flights Mobility Pattern on Epidemic Spreading under Limited Energy Constraint

    CERN Document Server

    Hu, Yanqing; Xu, Xiaoke; Han, Zhangang; Di, Zengru

    2010-01-01

    Recently, many empirical studies uncovered that animal foraging, migration and human traveling obey Levy flights with an exponent around -2. Inspired by the deluge of H1N1 this year, in this paper, the effects of Levy flights' mobility pattern on epidemic spreading is studied from a network perspective. We construct a spatial weighted network which possesses Levy flight spatial property under a restriction of total energy. The energy restriction is represented by the limitation of total travel distance within a certain time period of an individual. We find that the exponent -2 is the epidemic threshold of SIS spreading dynamics. Moreover, at the threshold the speed of epidemics spreading is highest. The results are helpful for the understanding of the effect of mobility pattern on epidemic spreading.

  2. Time resolved energy measurement of the Tesla test facility beam through the analysis of optical transition radiation angular distribution

    International Nuclear Information System (INIS)

    This study of the energy stability along the macropulse of the Tesla test facility Linac (TTFL) (1) was obtained by the measurement of the angular distribution of the optical transition radiation (OTR). This technique does not require a dispersive section and can be performed at any point of the beam line. Measurements have been performed with different settings of the RF low level control and at different values of the beam current. An energy variation along the macropulse was spread of the whole macrobunch. The analysis of the OTR angular distribution pattern allows also, to some extent, to evaluate the beam angular spread

  3. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  4. Fluidic energy harvesting beams in grid turbulence

    Science.gov (United States)

    Danesh-Yazdi, A. H.; Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2015-08-01

    Much of the recent research involving fluidic energy harvesters based on piezoelectricity has focused on excitation through vortex-induced vibration while turbulence-induced excitation has attracted very little attention, and virtually no previous work exists on excitation due to grid-generated turbulence. The present experiments involve placing several piezoelectric cantilever beams of various dimensions and properties in flows where turbulence is generated by passive, active, or semi-passive grids, the latter having a novel design that significantly improves turbulence generation compared to the passive grid and is much less complex than the active grid. We experimentally show for the first time that the average power harvested by a piezoelectric cantilever beam placed in decaying isotropic, homogeneous turbulence depends on mean velocity, velocity and length scales of turbulence as well as the electromechanical properties of the beam. The output power can be modeled as a power law with respect to the distance of the beam from the grid. Furthermore, we show that the rate of decay of this power law closely follows the rate of decay of the turbulent kinetic energy. We also introduce a forcing function used to model approximately the turbulent eddies moving over the cantilever beam and observe that the feedback from the beam motion onto the flow is virtually negligible for most of the cases considered, indicating an effectively one-way interaction for small-velocity fluctuations.

  5. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  6. Superintense ion beam with high energy density

    Science.gov (United States)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  7. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    International Nuclear Information System (INIS)

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant

  8. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  9. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    International Nuclear Information System (INIS)

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed

  10. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Natisin, M. R., E-mail: mnatisin@physics.ucsd.edu; Danielson, J. R.; Surko, C. M. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  11. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    A visual diagnostic technique has been developed to monitor and study ion-beam structure, shape, and size along a transport line. In this technique, a commercially available fluorescent screen is used in conjunction with a video camera. The visual representation of the beam structure is digitized enhanced through false-color coding, and displayed on a TV monitor for on-line viewing. The digitized information is stored for further off-line processing (e.g.,extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of measuring transverse emittance (or angular spread). This technique allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position)

  12. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  13. Energy Absorption Capacity of Composite Beams

    Directory of Open Access Journals (Sweden)

    Arivalagan

    2009-01-01

    Full Text Available Local buckling may occur in the compression flange of rectangular hollow-section beams under cyclic repeated loadingarising from earthquakes. Once a local mechanism forms, residual strength rapidly reduces within a few cycles. This is trueeven for compact sections under static bending. This paper aims to study the experimental behaviour and ultimate momentcapacity of unfilled and concrete-filled rectangular hollow sections subjected to cyclic reversible loading. Two types offiller material were used - normal mix concrete and fly ash concrete. The effect of filler materials, section slenderness, loaddeflectionresponse, moment-strain behaviour, first cycle peak load, ductility, stiffness degradation and energy absorption ofconcrete –filled RHS beams are studied.

  14. Energy recovery in high energy neutral beam injectors

    International Nuclear Information System (INIS)

    One way to heat the plasma of thermonuclear fusion experiments, is to inject high energy (50 to 100 KeV per nucleon), neutral particles (hydrogen or deuterium). Neutral beam elaboration consists in ion production and acceleration, neutralisation by charge exchange on gas target, disposal of unneutralized ions. But, in the case of positive ion based neutral beam injection, the neutralisation efficiency is limited to 50% at 100 KeV, and decreases rapidly with energy. The energy recovery is a new method for disposing of the unneutralized ions: these are electrostatically decelerated and collected on electrodes which are polarized at low voltage, close to the ion source potential. An energy recovery system was studied and experimented with positive ion beams of 50 and 100 KeV. In the framework of a french-japanese collaboration, we measured a relative power reduction of about 20%, with 100 KeV, 1,5 MW deuterium beams. We have also studied theoretically an energy recovery system for negative ion beams, which will be utilized at high energy (1 MeV). A relative power reduction of 20% can be expected in the best conditions

  15. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    International Nuclear Information System (INIS)

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Qext with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam energy

  16. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  17. Energy verification in Ion Beam Therapy

    CERN Document Server

    Moser, F; Dorda, U

    2011-01-01

    The adoption of synchrotrons for medical applications necessitates a comprehensive on-line verification of all beam parameters, autonomous of common beam monitors. In particular for energy verification, the required precision of down to 0.1MeV in absolute terms, poses a special challenge regarding the betatron-core driven 3rd order extraction mechanism which is intended to be used at MedAustron [1]. Two different energy verification options have been studied and their limiting factors were investigated: 1) A time-of-flight measurement in the synchrotron, limited by the orbit circumference information and measurement duration as well as extraction uncertainties. 2) A calorimeter-style system in the extraction line, limited by radiation hardness and statistical fluctuations. The paper discusses in detail the benefits and specific aspects of each method.

  18. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    Science.gov (United States)

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  19. Post-Tanner stages of droplet spreading: the energy balance approach revisited

    International Nuclear Information System (INIS)

    The spreading of a circular liquid drop on a solid substrate can be described in terms of the time evolution of its base radius R(t). In complete wetting, the quasistationary regime (far away from initial and final transients) typically obeys the so-called Tanner law, with R∼tαT, αT = 1/10. Late-time spreading may differ significantly from the Tanner law: in some cases the drop does not thin down to a molecular film and instead reaches an equilibrium pancake-like shape; in other situations, as revealed by recent experiments with spontaneously spreading nematic crystals, the growth of the base radius accelerates after the Tanner stage. Here we demonstrate that these two seemingly conflicting trends can be reconciled within a suitably revisited energy balance approach, by taking into account the line tension contribution to the driving force of spreading: a positive line tension is responsible for the formation of pancake-like structures, whereas a negative line tension tends to lengthen the contact line and induces an accelerated spreading (a transition to a faster power law for R(t) than in the Tanner stage).

  20. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  1. The Effect of the Electron-Beam Parameter Spread on Microwave Generation in a Three-Cavity Axial Vircator

    Science.gov (United States)

    Gurnevich, Evgeny; Molchanov, Pavel

    2015-04-01

    The behavior of the generation efficiency and radiation spectrum of a three-cavity axial vircator versus the radius of the injected electron beam, its impedance and energy homogeneity is studied. This paper establishes that for each geometry of a three-cavity resonator, there exist the optimal (maximizing the generation efficiency) values of these parameters and determines the range within which they may vary without losing the efficiency of generation.

  2. The effect of the electron-beam parameter spread on microwave generation in a three-cavity axial vircator

    OpenAIRE

    Gurnevich, E. A.; Molchanov, P. V.

    2014-01-01

    The behavior of the generation efficiency and radiation spectrum of a three-cavity axial vircator versus the radius of the injected electron beam, its impedance and energy homogeneity is studied. This paper establishes that for each geometry of a three-cavity resonator, there exist the optimal (maximizing the generation efficiency) values of these parameters and determines the range within which they may vary without losing the efficiency of generation.

  3. Beam test of multi-bunch energy compensation system in the accelerator test facility at KEK

    International Nuclear Information System (INIS)

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the ΔF method with the 2856±4.327 HMz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam the consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0 x 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ±0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856±4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using ΔF ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper. (author)

  4. Low energy beam transport for HIDIF

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O. E-mail: o.meusel@iap.uni-frankfurt.de; Pozimski, J.; Jakob, A.; Lakatos, A

    2001-05-21

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Gross, R. Doelling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe{sup +} beam are presented and the results of numerical simulations are shown.

  5. The energy spread of a LaB6 cathode operated in the virtual source mode

    International Nuclear Information System (INIS)

    The LaB6 cathode has been the brightest thermionic source used in microprobe applications requiring longer lifetime [1-2]. It is x100 lower in brightness than thermal field emitters (TFE) ca Zr/W (100) [3]. There are attractive similarities between these cathodes in terms of work function and operating temperature that are worth considering. Major differences include their respective source sizes (>10μm vs 30nm) and energy spread of 1-2 eV vs 0.6-0.7eV for the LaB6 and TFE, respectively [4,3]. We report here on the experimental measurement of the energy spread of a LaB6 cathode operated in the virtual source mode. The cathode used has an end-form measuring 15μm. Total energy spread values obtained using a dedicated electron energy analyser shows values of 0.4eV-0.7eV, significantly lower than typical values in the thermionic mode of 1-2eV

  6. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  7. Lower hybrid instability driven by mono-energy α-particles with finite pitch angle spread in a plasma

    Science.gov (United States)

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K.

    2013-02-01

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy α-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of α-particles. The α-particles produced in D-T fusion reactions have huge Larmor radii (˜10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of ˜1019 m-3, magnetic field ˜4 Tesla and α-particle concentration ˜0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  8. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  9. Equilibrium energy spread and emittance in a Compton ring: An alternative approach

    Science.gov (United States)

    Chaikovska, I.; Variola, A.

    2014-04-01

    In this article the Campbell's theorem is used to evaluate the equilibrium emittance and energy spread in a Compton ring. This method allows us to have an efficient analytical approach separating the contributions of the Compton cross section from the luminosity factor. The consequent advantage is given by the possibility to have an easy extrapolation for the "nonclassical" cases like the polarized Compton backscattering or the evaluation of the equilibrium given by different radiation mechanisms. The effects accounting for the polarized Compton backscattering in the article are evaluated numerically. The analytical results in the nonpolarized case and in the negligible recoil effect approximation are in excellent agreement with the values obtained by matching the Compton damping rate with the quantum fluctuations, and they show that the equilibrium energy spread and emittance are independent from the luminosity.

  10. Impact of inward turbulence spreading on energy loss of edge-localized modes

    International Nuclear Information System (INIS)

    Nonlinear two-fluid and gyrofluid simulations show that an edge localized modes (ELM) crash has two phases: fast initial crash of ion temperature perturbation on the Alfvén time scale and slow turbulence spreading. The turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region. Because of the inward turbulence spreading effect, the energy loss of an ELM decreases when density pedestal height increases. The Landau resonance yields the different cross phase-shift of ions and electrons. A 3 + 1 gyro-Landau-fluid model is implemented in BOUT++ framework. The gyrofluid simulations show that the kinetic effects have stabilizing effects on the ideal ballooning mode and the energy loss increases with the pedestal height

  11. Aspects on the optimal photon beam energy for radiation therapy

    International Nuclear Information System (INIS)

    The selection of optimal photon beam energy is investigated both for realistic clinical bremsstrahlung beams and for monoenergetic photon beams. The photon energies covered in this investigation range from 60Co to bremsstrahlung and monoenergetic beams with maximum energies up to 50 MeV. One head and neck tumor and an advanced cervix tumor are investigated and the influence of beam direction is considered. It is shown that the use of optimized intensity modulated photon beams significantly reduces the need of beam energy selection. The most suitable single accelerator potential will generally be in the range 6-15 MV for both superficially located and deep-seated targets, provided intensity-modulated dose delivery is employed. It is also shown that a narrow penumbra region of a photon beam ideally should contain low-energy photons (≤4 MV), whereas the gross tumor volume, particularly when deep-seated targets are concerned, should be irradiated by high-energy photons. The regions where low photon energies are most beneficial are where organs at risk are laterally close to the target volume. The situation is completely changed when uniform or wedged beams are used. The selection of optimal beam energy then becomes a very important task in line with the experience from traditional treatment techniques. However, even with a large number of uniform beam portals, the treatment outcome is substantially lower than with a few optimized intensity-modulated beams. (orig.)

  12. Electrostatic energy analyzers for high energy charged particle beams

    International Nuclear Information System (INIS)

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics

  13. Time-resolved imaging of the microbunching instability and energy spread at the Linac Coherent Light Source

    Science.gov (United States)

    Ratner, D.; Behrens, C.; Ding, Y.; Huang, Z.; Marinelli, A.; Maxwell, T.; Zhou, F.

    2015-03-01

    The microbunching instability (MBI) is a well-known problem for high brightness electron beams and has been observed at accelerator facilities around the world. Free-electron lasers (FELs) are particularly susceptible to MBI, which can distort the longitudinal phase space and increase the beam's slice energy spread (SES). Past studies of MBI at the Linac Coherent Light Source (LCLS) relied on optical transition radiation to infer the existence of microbunching. With the development of the x-band transverse deflecting cavity (XTCAV), we can for the first time directly image the longitudinal phase space at the end of the accelerator and complete a comprehensive study of MBI, revealing both detailed MBI behavior as well as insights into mitigation schemes. The fine time resolution of the XTCAV also provides the first LCLS measurements of the final SES, a critical parameter for many advanced FEL schemes. Detailed MBI and SES measurements can aid in understanding MBI mechanisms, benchmarking simulation codes, and designing future high-brightness accelerators.

  14. Calculation of depth-dose distribution of intermediate energy heavy-ion beams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10 -100 MeV/u) is presented. By comparing high energy beams where projectile fragmentation is overwhelm ing with lowenergies where energy straggling is the sole factor instead, a crescent energy spread with increasing depth and a simple fragmentation assumption were included for the depth-dose calculation of the intermediate energy beam. Rel ative depth-dose curves of carbon and oxygen ion beams with intermediate energie s were computed according to the method here. Comparisons between the calculated relative doses and measurements are shown. The calculated Bragg curves, especially the upstream and downstream Bragg peaks, agree with the measured data. Differences between the two results appear only around the peak regions because of th e limitations of the calculation and experimental conditions, but the calculated curves generally reproduce the measured data within the experimental errors. Th e reasons for the divergences were analyzed carefully and the magnitudes of the deviations are given.

  15. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  16. Primary energy spectrum of cosmic rays obtained by arrival time spread of particles in EAS

    Science.gov (United States)

    Okita, M.; Wada, T.; Yamashita, Y.; Okei, K.; Morita, T.; Liang, S.; Takahashi, N.; Iyono, A.; Matsumoto, H.; Noda, C.; Masuda, M.; Yamamoto, I.; Kohata, M.; Ochi, N.; Nakatsuka, T.; Tsuji, S.

    2008-01-01

    The Large Area Air Shower (LAAS) group has been performing a network observation of extensive air showers (EAS) by using compact arrays. According to J. Linsley, the primary energy of EAS can be estimated from the spread of the arrival times of EAS particles, even with a small array. A shift register system for clocking the arrival times was installed in an array (OUS1) which is located in Okayama University of Science. Analyzing the OUS1 data, we obtained the primary energies of large air showers.

  17. Primary energy spectrum of cosmic rays obtained by arrival time spread of particles in EAS

    International Nuclear Information System (INIS)

    The Large Area Air Shower (LAAS) group has been performing a network observation of extensive air showers (EAS) by using compact arrays. According to J. Linsley, the primary energy of EAS can be estimated from the spread of the arrival times of EAS particles, even with a small array. A shift register system for clocking the arrival times was installed in an array (OUS1) which is located in Okayama University of Science. Analyzing the OUS1 data, we obtained the primary energies of large air showers

  18. Time-of-flight energy compensation to improve energy resolution in low-energy radioactive beam experiments at the TwinSol facility

    Energy Technology Data Exchange (ETDEWEB)

    Becchetti, F.D., E-mail: fdb@umich.edu [Department of Physics, Randall Lab, University of Michigan, Ann Arbor MI 48109 (United States); Jiang Hao; Ojaruega, M.; Torres-Isea, R.O. [Department of Physics, Randall Lab, University of Michigan, Ann Arbor MI 48109 (United States); Villano, A.N. [Department of Physics, Randall Lab, University of Michigan, Ann Arbor MI 48109 (United States); University of Notre Dame, Notre Dame IN 46556 (United States); Kolata, J.J.; Roberts, A. [University of Notre Dame, Notre Dame IN 46556 (United States)

    2011-10-01

    Improved time-of-flight (ToF) capability has been added to University of Michigan (UM)-University of Notre Dame (UND) TwinSol low-energy dual 6T solenoid-based radioactive nuclear-beam (RNB) facility at the UND FN tandem Van de Graaff accelerator. An extended low-background beam line has been combined with a newly-constructed ca.1 meter diameter ISO-250 based scattering chamber capable of sub-ns ToF of RNBs. These together with the intrinsic, low ToF spread in the TwinSol ion-optical system yields improved ToF information for low-energy RNB nuclear reaction studies. Using either the intrinsic accelerator bunched and pulsed-selected beams with RF timing, or with the addition of an MCP+foil timing system (or similar) detector at the dual-solenoid cross-over region allows for reduction of the energy spread inherent in these low-energy RNB reactions. As an example, using the ToF information reduces the FWHM energy spread in a high-intensity 28 MeV {sup 8}Li beam from about 1 MeV to beam). This has been utilized in a recent experiment measuring the Coulomb excitation of a short-lived {sup 8}Li RNB on gold targets. The use of ToF permitted a much more efficient measurement of this reaction as certain background measurements were no longer needed and the full {sup 8}Li beam intensity could be utilized. A number of other improvements are planned to further improve the ToF resolution and count-rate limits of the various ToF systems and we hope to utilize these in the future.

  19. Energy Beam Highways Through the Skies

    Science.gov (United States)

    Myrabo, Leik N.

    1996-01-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  20. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  1. A Method to Assign Spread Codes Based on Passive RFID Communication for Energy Harvesting Wireless Sensors Using Spread Spectrum Transmission

    OpenAIRE

    Ken Takahashi; Kenji Inoue; Yuusuke Kawakita; Jin Mitsugi; Haruhisa Ichikawa

    2015-01-01

    Considerable research has been conducted on systems that collect real-world information by using numerous energy harvesting wireless sensors. The sensors need to be tiny, cheap, and consume ultra-low energy. However, such sensors have some functional limits, including being restricted to wireless communication transmission. Therefore, when more than one sensor simultaneously transmits information in these systems, the receiver may not be able to demodulate if the sensors cannot accommodate mu...

  2. Influence of Surface Energy of Polymer Films on Spreading and Adhesion of UV-Flexo Inks

    Directory of Open Access Journals (Sweden)

    Vyacheslav Repeta

    2013-12-01

    Full Text Available Most technological processes involved in polygraphic production are based on the interaction between liquids and solids. An important role is thereby attributed to the wetting phenomenon which ensures ink transfer and adhesion of printing inks, primers, varnishes to the surface of substrates. The interaction between ink and solids in the printing process provides intermolecular interaction in both, the liquid (cohesion and the liquid with solids phases (adhesion. This research studies the influence of surface energy of polymeric films and polarity on spreading and adhesion of flexographic UV-inks.

  3. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calcu-lated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  4. Low energy ion beam dynamics of NANOGAN ECR ion source

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  5. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    OpenAIRE

    Muchnoi, N.; Schreiber, H. J.; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitiv...

  6. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  7. Adaptive optics for laser power beaming

    Science.gov (United States)

    Leland, Robert P.

    1992-01-01

    It has been proposed to use a high energy pulsed laser to beam power into space for satellites or a lunar base. The effects of atmospheric transmission are critical to such a system. Thermal blooming in the atmosphere can cause the beam to spread rapidly. Atmospheric turbulence can cause beam bending or beam spreading, resulting in the loss of transmitted energy that fails to hit the target receiver.

  8. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  9. U.S. heavy ion beam science towards inertial fusion energy

    International Nuclear Information System (INIS)

    Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments. (author)

  10. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Science.gov (United States)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  11. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  12. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    International Nuclear Information System (INIS)

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described

  13. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  14. Study on electron beam in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  15. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  16. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.;

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...... of an accelerated radioactive beam produced at ISOLDE. We use data from an experiment with an 11Be beam incident on a deuteron target producing 10Be from a (d,t) reaction. The T-REX Si detector array was used for particle detection, but the technique is applicable for other setups....

  17. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    Science.gov (United States)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-03-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  18. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  19. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  20. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  1. Alpha-particle diagnostics with high energy neutral beams

    International Nuclear Information System (INIS)

    We have examined the feasibility of alpha-particle diagnostics using a high energy neutral beam on the R-tokamak, a planned device at IPP-Nagoya, Japan, for reacting plasma experiments. In this method, injected neutral particles neutralize alpha particles so as to escape from the magnetically confined plasma through double charge exchange processes, He++ + A0 -- → He0 + A++. Requirements for a probing beam are dis cussed from viewpoints of penetration of an injected beam in the plasma and a neutralization efficiency of alpha particles in a wide velocity range. Either a Li0 beam or a He0 beam in the ground state, produced from a negative ion beam is suitable. A method to neutralize a He- beam into the ground state through an auto-detachment process is proposed. (author)

  2. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  3. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation

  4. Evaluation of beam energy fluctuation caused by phase noise

    International Nuclear Information System (INIS)

    The stability of RF signal sources is quite important for accelerators which have to provide very high quality beams. The RF sources for XFELs, for example, have to satisfy the integrated phase fluctuation less than several tens femtoseconds. The SSB noises of RF reference signal dominate the short-term instabilities of the RF phase of the carrier RF. This phase modulation finally results in the beam energy fluctuation. This presentation gives a quantitative evaluation of the beam energy fluctuations in an electron linear accelerator caused by phase noises comparing a theoretical analysis and experimental results: A simple model, which represents actual RF phase transmission in transmission lines of an electron linac, was introduced to understand how phase noises result the relative phase deference between a beam bunch and accelerating RF fields. In the experiments, we measured the enhanced beam energy fluctuations by modulating the phase of the reference RF signals with an external signal. (author)

  5. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    CERN Document Server

    Muchnoi, N; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of $10^{-4}$ or bette...

  6. Development of multi-bunch beam energy compensation method

    International Nuclear Information System (INIS)

    A method to compensate for beam loading effects in a multi-bunch beam is under development at Accelerator Test Facility (ATF) in KEK. In this paper we describe the rf high power test for ΔT energy compensation by using the SLED cavities. In this ΔT (early injection and amplitude modulation) energy compensation method, the input waveform into accelerating structure is changed by controlling the rf phase and combining the rf-power from two klystrons with a 3 dB hybrid combiner to compensate multi-bunch beam energy for various beam currents. In this test, an arbitrary waveform was generated by changing the rotating speed of the each klystron phase into the opposite direction and the beam test will be done soon. (author)

  7. Analyzer of energy spectra of a magnetized relativistic electron beam

    International Nuclear Information System (INIS)

    Analyzer of magnetized REB instant energy spectrum is described. The analyzer operation principle is based on the application of a sharp change of the direction of force lines of a magnetic field which is non-adiabatic for the beam electrons. The analyzer design is described, the main factors effecting the energy resolution are considered. The analyzer serviceability is examined in the course of experiments on plasma heating using a heavy-current microsecond REB at the GOL-3 device. The analyzer energy resolution which does not exceed 10% at 0.8 MeV energy and 20% at 0.3 MeV is determined. Beam energy spectra are obtained in one of the regimes of beam interaction with plasma. The efficiency of beam interaction with plasma determined using the analyzer achieves 30%. 10 refs.; 7 figs

  8. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time. PMID:27447489

  9. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks

    Science.gov (United States)

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network’s life time. PMID:27447489

  10. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  11. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  12. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  13. Processes leading to enhanced energy deposition by particle beams

    International Nuclear Information System (INIS)

    Range shortening of electron and proton beams due to target temperature and density effects is calculated. The effect on target hydrodynamics is calculated for a proton beam. The effect of the penetration of an electron beam self magnetic field into the target is shown to cause effective range shortening. Enhanced energy deposition by a pinched electron beam in a foil target is studied numerically and experimentally. The target expansion velocity measured by laser flash photography is used to determine the enhancement factor. Bremsstrahlung measurements are used to study the electron trajectories

  14. Unprecedented intensity of a low-energy positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hugenschmidt, C. [Technische Universitaet Muenchen, ZWEFRM II/E21, Lichtenbergstrasse 1, 85747 Garching (Germany)], E-mail: Christoph.Hugenschmidt@frm2.tum.de; Loewe, B.; Mayer, J.; Piochacz, C.; Pikart, P.; Repper, R.; Stadlbauer, M.; Schreckenbach, K. [Technische Universitaet Muenchen, ZWEFRM II/E21, Lichtenbergstrasse 1, 85747 Garching (Germany)

    2008-08-11

    A new in-pile {gamma}-converter and Pt-moderator was recently installed at the neutron induced positron source NEPOMUC. The intensity of the moderated positron beam is unprecedented and amounts to (9.0{+-}0.8)x10{sup 8} moderated positrons per second at an energy of 1 keV. Hence, the beam facility NEPOMUC provides the world highest intensity of a monoenergetic positron beam reported so far. Up to now, no degradation of the positron yield has been observed for several weeks of operation. Thus, the long-term stability of the positron beam enables experiments with high reliability.

  15. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    Science.gov (United States)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. An online, energy-resolving beam profile detector for laser-driven proton beams.

    Science.gov (United States)

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  17. Realistic modeling of microwave instability effects on the evolution of the beam energy-phase distribution in proton synchrotrons

    International Nuclear Information System (INIS)

    Either bunched or coasting beam in a synchrotron may exhibit microwave instability of the momentum spread is small. A useful physical picture is that beam particles are captured in buckets generated by the beam image current flowing in the longitudinal coupling impedance. Qualitatively, trapping and auto-deceleration occur when the height of the buckets exceed the FWHM energy spread of the beam. Microwave instability implies in addition that the coupling impedance is largest at several times the rf frequency and that the decay of the wakefield is fast enough that bunches do not affect each other. The parameters used in this paper are influenced by the Fermilab Main Ring and design of the Main Injector. The numerical modeling uses standard features of the code ESME. In most of the reported simulations 2 · 104 macroparticles and 32 values of n separated by 1113 provide the current spectrum. Microwave instability may be an intensity limitation during parts of the acceleration cycle where the beam is debunched or loosely bunched, perhaps at injection or high duty factor extraction. Probably of more general importance is the time near transition when the spread in circulation frequency is sharply reduced, i.e., when η ∼ 0. Concrete examples are given in this report

  18. Optimum solution of dual-ring double-scattering system for an incident beam with given phase space for proton beam spreading

    CERN Document Server

    Takada, Y

    2002-01-01

    A systematic method is given for deriving optimum scatterer parameters for the dual-ring double-scattering system for the incident proton beam with the given phase space parameters. This is accomplished by relating it to the known optimum solution for zero-emittance beam. Limitations on the phase space parameters of the beam incident on the first scatterer have been clarified to obtain such valid solutions. It is shown that the dual-ring double-scattering method can be applied to an incident beam with emittance as large as 100-200 pi mm mrad. The effect of the change of phase space parameters on the lateral distribution has been investigated. It was found that the larger the emittance of the beam, the more sensitive the fluence distribution is to the change of phase space parameters. The effect of the different emittances of the incident beam in x-theta, y-phi spaces is discussed. It is shown that lateral distribution is sensitive to the misalignment of the beam.

  19. Radioactive beam production at the Bevalac

    International Nuclear Information System (INIS)

    At the Bevalac radioactive beams are routinely produced by the fragmentation process. The effectiveness of this process with respect to the secondary beam' emittance, intensity and energy spread depends critically on the nuclear reaction kinematics and the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies of the nuclear reaction process, many of the qualities of the incident beam can be passed on the secondary beam. Factors affecting secondary beam quality are discussed along with techniques for isolating and purifying a specific reaction product. The on-going radioactive beam program at the Bevalac is used as an example with applications, present performance and plans for the future

  20. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  1. Characterization of different beam shapes for piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    This paper deals with the analysis of different beam shapes for piezoelectric energy harvesters. The theory is based on the well-established Rayleigh–Ritz method for piezoelectric compound structures. It is validated by experiments with triangular-shaped and rectangular-shaped beams. It turns out that triangular-shaped beams are more effective than rectangular-shaped ones in terms of curvature homogeneity independent of the proof mass. This effect is opposed by the adverse mass distribution and the increased stiffness of triangular-shaped beams. Therefore, the overall efficiency is only weakly influenced by the beam shape. Nevertheless triangular-shaped beams drastically outperform rectangular ones in terms of tolerable excitation amplitude and maximum output power

  2. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  3. Channeling of high energy beams in nanotubes

    CERN Document Server

    Bellucci, S; Chesnokov, Yu A; Guidi, V; Scandale, Walter; Chesnokov, Yu. A.

    2003-01-01

    We present simulations of particle beam channeling in carbon nanotubes and evaluate the possibilities for experimental observation of channeling effect in straight and bent nanotubes at IHEP and LNF. Different particle species are considered: protons of 1.3 and 70 GeV, and positrons of 0.5 GeV. Predictions are made for the experiments, with analysis of requirements on the quality of nanosamples and resolution of the experimental set-up. Based on Monte Carlo simulations, the capabilities of nanotube channeling technique for particle beam steering are discussed.

  4. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok [Institute for Basic Science, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of)

    2016-02-15

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  5. Computer simulations of a low energy proton beam tomograph

    International Nuclear Information System (INIS)

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  6. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  7. Compact 180 deg magnetic energy analyzer for relativistic electron beams

    International Nuclear Information System (INIS)

    A compact, 180 deg deflection magnetic energy analyzer has been designed and used to measure the energy spectrum of the beam produced by the Tesla Transformer-Pulse forming line type Relativistic Electron Beam (REB) generator being used in the FEL experiments that are currently underway at Institute for Plasma Research. Relativistic electron beams have been used in many applications ranging from free-electron lasers to virtual cathode oscillators and other high power microwave devices. In all these cases, it is required that the electron beam is propagated without considerable loss across a drift region and it is also imperative that accurate energy measurements are required for dependable estimates and analysis regarding the output parameters of the system. In the case of a free-electron laser, the output wavelength of the FEL has a strong dependence on the beam energy and hence it is important to determine as accurately as possible, the energy of the electron beam in order to accurately estimate the FEL radiation frequency

  8. Preparation of a beam quality indicator for effective energy determinations of continuum beams: establishment of traceability

    CERN Document Server

    Matsubayashi, M; Kobayashi, H

    1999-01-01

    A new beam quality indicator (BQI) was designed and fabricated to determine effective energies of beams extracted from neutron radiography facilities. Performances of the five new BQIs were compared with the original BQI which was recently proposed and tested by various beams. Non-filtered thermal neutrons, filtered thermal neutrons, and cold neutrons from a guide tube were used in the performance test program. The new BQIs were also examined by four different detection systems using a combination of a Gd converter and a X-ray film, a neutron imaging plate, a cooled charge coupled device camera, and a silicon intensified target tube camera.

  9. Energy harvesting from controlled buckling of piezoelectric beams

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  10. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  11. Thermo-mechanical modelling of high energy particle beam impacts

    CERN Document Server

    Scapin, M; Dallocchio, A

    2010-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in LHC in a single beam is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage occurs in a regime where practical experience does not exist. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam, in which 8 bunches irradiate the target directly. The energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA. ...

  12. Investigating the Implications of a Variable RBE on Proton Dose Fractionation Across a Clinical Pencil Beam Scanned Spread-Out Bragg Peak

    OpenAIRE

    Marshall, Thomas; Chaudhary, Pankaj; Michaelidesova, Anna; Vachelova, Jana; Davidkova, Marie; Vondracek, Vladimir; SCHETTINO, Giuseppe; Prise, Kevin

    2016-01-01

    Purpose: To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited.Methods and Ma...

  13. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  14. On the propagation of a low energy oxygen ion beam

    International Nuclear Information System (INIS)

    Positive ion beams, in the range from about tens eV to several hundred eV are frequently used in RIE and RIBE etching systems. The experimental limitations in this energy range are severe and there are still many unsolved problems. Optimal ion beam focusing and maximum current beam at the substrate target are assured by the adequate ion beam neutralization. The electrons from the target plasma and also the secondary ones resulted from the ion-grid and ion-neutral interactions form a negative space charge that is involved in the ion beam neutralization. After the extraction, both the angular divergence and damping of the beam are essential to settle the position of the substrate. The beam angular divergence is established by the ion trajectories in the extraction region and also is strongly influenced by the ion beam neutralization. The shape and thickness of the space charge near the grid, which in turn is determined by the beam intensity, grid characteristics and target plasma parameters is necessary to be investigated. Positive ion bombardment plays an important role in the plasma treatments of polymers. This was the reason that investigations about the surface modifications of polymers in a positive oxygen ion beam-low density plasma (IB-LDP) system were carried out by our group [2-6]. In such system the electrons of the low-density target plasma neutralize the positive space charge of the beam and also that brought by the beam onto the polymer (insulator) surface. Results concerning the investigations of the IB-LDP system, in oxygen, by Langmuir probe method, in different experimental conditions are given in the present paper. They are compared with those obtained by using Monte Carlo method for elementary processes (ion charge transfer, electronic ionisation) in 'particle in cell' numerical simulation. (authors)

  15. Energy Absorption Capacity of Composite Beams

    OpenAIRE

    Arivalagan; Kandasamy

    2009-01-01

    Local buckling may occur in the compression flange of rectangular hollow-section beams under cyclic repeated loadingarising from earthquakes. Once a local mechanism forms, residual strength rapidly reduces within a few cycles. This is trueeven for compact sections under static bending. This paper aims to study the experimental behaviour and ultimate momentcapacity of unfilled and concrete-filled rectangular hollow sections subjected to cyclic reversible loading. Two types offiller material we...

  16. PHENIX Experiment Results from the RHIC Beam Energy Scan Program

    CERN Document Server

    ,

    2013-01-01

    The PHENIX Experiment at RHIC has conducted a beam energy scan at several collision energies in order to search for signatures of the QCD critical point and the onset of deconfinement. PHENIX has conducted measurements of transverse energy production, muliplicity fluctuations, the skewness and kurtosis of net charge distributions, Hanbury-Brown Twiss correlations, charged hadron flow, and energy loss. The data analyzed to date show no significant indications of the presence of the critical point.

  17. RBE and OER within the spread-out Bragg peak for proton beam therapy. In vitro study at the Proton Medical Research Center at the University of Tsukuba

    International Nuclear Information System (INIS)

    There are few reports on the biological homogeneity within the spread-out Bragg peak (SOBP) of proton beams. Therefore, to evaluate the relative biological effectiveness (RBE) and the oxygen enhancement ratio (OER), human salivary gland tumor (HSG) cells were irradiated at the plateau position (position A) and three different positions within a 6-cm-wide SOBP (position B, 26 mm proximal to the middle; position C, middle; position D, 26 mm distal to the middle) using 155-MeV/n proton beams under both normoxic and hypoxic conditions at the Proton Medical Research Center, University of Tsukuba, Japan. The RBE to the plateau region (RBEplateau) and the OER value were calculated from the doses corresponding to 10% survival data. Under the normoxic condition, the RBEplateau was 1.00, 0.99 and 1.09 for positions B, C and D, respectively. Under the hypoxic condition, the RBEplateau was 1.10, 1.06 and 1.12 for positions B, C and D, respectively. The OER was 2.84, 2.60, 2.63 and 2.76 for positions A, B, C and D, respectively. There were no significant differences in either the RBEplateau or the OER between these three positions within the SOBP. In conclusion, biological homogeneity need not necessarily be taken into account for treatment planning for proton beam therapy at the University of Tsukuba. (author)

  18. Electron beam pumping of CdZnSe quantum well laser structures using a variable energy electron beam

    Science.gov (United States)

    Trager-Cowan, C.; Bagnall, D. M.; McGow, F.; McCallum, W.; O'Donnell, K. P.; Smith, P. C.; Wright, P. J.; Cockayne, B.; Prior, K. A.; Mullins, J. T.; Horsburgh, G.; Cavenett, B. C.

    1996-02-01

    In this paper we present experimental results on electron beam pumping of MBE and MOVPE lasers with CdZnSe single quantum wells. Laser emission in the gree and blue occurs under pulsed excitation, with threshold power densities typically less than 2 kW/cm 2 at low temperatures. Threshold curves obtained at different electron beam energies show that there is an optimum electron beam energy for wells at a given depth below the surface. This suggests that it is possible to match the electron beam energy to a given structure. Results are broadly consistent with Monte Carlo calculations of the depth dependence of the energy deposition of the electron beam.

  19. Crossed-beam energy transfer in direct-drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  20. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  1. Single Cells Spreading on a Protein Lattice Adopt an Energy Minimizing Shape

    Science.gov (United States)

    Vianay, Benoit; Käfer, Jos; Planus, Emmanuelle; Block, Marc; Graner, François; Guillou, Hervé

    2010-09-01

    When spreading onto a protein microlattice living cells spontaneously acquire simple shapes determined by the lattice geometry. This suggests that, on a lattice, living cells’ shapes are in thermodynamic metastable states. Using a model at thermodynamic equilibrium we are able to reproduce the observed shapes. We build a phase diagram based on two adimensional parameters characterizing essential cellular properties involved in spreading: the cell’s compressibility and fluctuations.

  2. Single cells spreading on a protein lattice adopt an energy minimizing shape.

    OpenAIRE

    Vianay, Benoit; Käfer, Jos; Planus, Emmanuelle; Block, Marc,; Graner, François; Guillou, Hervé

    2010-01-01

    When spreading onto a protein microlattice living cells spontaneously acquire simple shapes determined by the lattice geometry. This suggests that, on a lattice, living cells' shapes are in thermodynamic metastable states. Using a model at thermodynamic equilibrium we are able to reproduce the observed shapes. We build a phase diagram based on two adimensional parameters characterizing essential cellular properties involved in spreading: the cell's compressibility and fluctuations.

  3. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  4. Low energy, high power hydrogen neutral beam for plasma heating.

    Science.gov (United States)

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  5. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  6. Beam Intensity and Energy Control for the SPIRAL2 Facility

    OpenAIRE

    Jamet, C.; André, T.; Ducoudret, B.; Doutressoulles, C.; Le Coz, W.; Ledu, G.; Leloir, S.; Loret, S.

    2012-01-01

    TUPB029 - ISBN 878-3-95450-122-9 International audience The first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current...

  7. Beam monitor system for high-energy beam transportation at HIMAC

    International Nuclear Information System (INIS)

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x105 and 1x106 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are used for continuously monitoring the beam during treatments, which play a role in keeping qualities of the treatments. The monitor system has been designed to meet requirements for medical uses, and works in a stable and reliable manner and satisfies the requirements. (author)

  8. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    Science.gov (United States)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  9. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  10. Pin diode calibration - beam overlap monitoring for low energy cooling

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  11. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  12. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  13. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  14. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10-4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  15. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  16. Current status of medium and low energy electron beam accelerators and their applications

    International Nuclear Information System (INIS)

    Electron Beam (EB) use has been increasing in popularity as a crosslinking process over the past several years. Examples of EB use are heat resistance improvement of electric wires, high quality foamed polyethylene (PE) and polypropylene (PP), Automotive Tire manufacturing and heat-shrinkable film. EB process is used in the Tire manufacturing as a pre-vulcanization of rubber sheet before forming process. EB improves the green strength of rubber sheet and it makes it possible to maintain the shape or size of the original until completion of final vulcanization. It is said that this effect is useful for reducing the consumption of rubber material. The application of Low energy electron beam accelerators (low energy EB) is mainly used to cure resins or coatings and it has been gradually spreading to the industrial field such as pressure sensitive adhesives, release paper, transfer film, etc. Low energy EB curing is often compared with Ultra-Violet (UV) curing, but commercialized application indicate there is an advantage for the EB process. A typical advantage is that no initiators are required to start curing, which UV requires. EB curing may be used to supplement disadvantages of UV such as weatherability, color limitation, etc. In addition to these, EB process is spreading by using its original advantages, of high cross-link density, small heat influence on the substrate and no solvent requirement. EB can also be used to remove So2 and Nox from coal flue gas and for sterilizing medical devices. EB has a great advantage which includes simultaneous removal of So2 and Nox and the by-product can be used as a fertilizer. The sterilization by Electron Beam is expected to be an alternative to gas sterilization which has some safety issues likely to be discussed in the future projects. (J.P.N.)

  17. Energy recuperation of intense proton beam compensated by slow electrons

    International Nuclear Information System (INIS)

    Experimental studies of direct transformation (recuperation) of intense ion beam energy are described. In a recuperator low-energy electrons of a beam are separated by a grid unit and ions are detected by one of the three types of collectors: plane, ''Faraday cylinder'' with a grid in the input hole and without it. The transformation of proton beam energy with current density up to 150 mA/cm2 at current pulse duration of 300 μ and power of ∼ 0.5 kW is realized with the efficiency of 70%, at power up to 30 kW - with the efficiency of about 50%. The investigation results can be used for the development of recuperation systems in thermonuclear facilities

  18. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  19. American Institute of Beamed Energy Propulsion: An Introduction

    Science.gov (United States)

    Pakhomov, Andrew V.

    2008-04-01

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose "to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large". The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed.

  20. American Institute of Beamed Energy Propulsion: An Introduction

    International Nuclear Information System (INIS)

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose 'to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large'. The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed

  1. Staging laser plasma accelerators for increased beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  2. Modeling crossed-beam energy transfer for inertial confinement fusion

    Science.gov (United States)

    Marion, D. J. Y.; Debayle, A.; Masson-Laborde, P.-E.; Loiseau, P.; Casanova, M.

    2016-05-01

    We developed a numerical code that describes both the energy transfer occurring when two or more laser beams overlap in a weakly non-homogeneous plasma, and the beam energy losses associated with the electron-ion collisions. The numerical solutions are validated with both the exact analytical solutions in homogeneous plasmas, and with new approximate analytical solutions in non-homogeneous plasmas that include the aforementioned inverse bremsstrahlung effect. Comparisons with kinetic particle-in-cell simulations are satisfactory, provided the acoustic wave-breaking limit and the self-focusing regime are not reached. An application of the Cross-Beam Energy Transfer model is shown for a typical case of indirect-drive implosion in a gold hohlraum.

  3. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  4. Staging laser plasma accelerators for increased beam energy

    OpenAIRE

    Panasenko, Dmitriy

    2010-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, ...

  5. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  6. Influence of axial energy spread on the negative-mass instability in a relativistic nonneutral E layer

    International Nuclear Information System (INIS)

    The influence of an axial energy spread on the negative-mass instability in a relativistic nonneutral E layer aligned parallel to a uniform axial magnetic field B0e/sub z/ is investigated. The stability analysis is carried out within the framework of the linearized Vlasov--Maxwell equations. It is assumed that the E layer is thin with radial thickness (2a) much smaller than the mean radius (R0), and that ν/γ0very-much-less-than1, where ν is Budker's parameter and γ0mc2 is the mean electron energy. Stability properties are investigated for the choice of electron distribution function in which all electrons have the same value of canonical angular momentum (P/sub theta P0/=const) and a step-function distribution in axial momentum p/sub z/. The negative-mass growth rate is calculated including the important stabilizing influence of axial energy spread (ΔE), and it is shown that a modest energy spread (ΔE/γ0mc2approx. = a few percent) is sufficient to stabilize perturbations with axial wavenumber satisfying k2R20> or approx. =1

  7. Beam monitor system for high-energy beam transportation at HIMAC

    CERN Document Server

    Torikoshi, M; Takada, E; Kanai, T; Yamada, S; Ogawa, H; Okumura, K; Narita, K; Ueda, K; Mizobata, M

    1999-01-01

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO sub 2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x10 sup 5 and 1x10 sup 6 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are use...

  8. Production of high energy photon beam at TAC

    International Nuclear Information System (INIS)

    When an electron pass through an electric field, the electron loose its part of energy and photon is generated. This process is known as Bremsstrahlung (means 'radiation breaking' in German) and this photon can be used in a variety of different application. The TAC will be first Turkish Accelerator Center (TAC) where a IR-FEL and Beamstrahlung photon beam facilities will be established in first stage. The electrons will be accelerated up to 40 MeV by two LINAC and these beam will be used to generate Bremsstrahlung photon. In this study, the main parameters for Bremsstrahlung photon beam facility will be established at TAC will be detailed and fields to be used Bremsstrahlung beam will also be presented.

  9. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.)

  10. High-energy accelerator for beams of heavy ions

    Science.gov (United States)

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  11. Focused high energy proton beam micromachining: A perspective view

    International Nuclear Information System (INIS)

    Micromachining techniques utilising optical, UV and X-ray photons, as well as electrons, low energy heavy ions and high energy light ions (protons), are briefly reviewed. The advantages and disadvantages of each process are discussed. High energy ion beam micromachining (proton micromachining) is a new process which exhibits a unique feature; direct-write 3-dimensional micromachining at submicron resolutions. Although this technique may not compete with conventional mask processes for producing high volume batch production of microcomponents, high energy ion beam micromachining may have a significant role in rapid prototyping, research into the characteristics of microstructures, and the manufacture of molds, stamps and thick masks. Several examples of high energy proton micromachining are presented to illustrate the potential of the technique

  12. High-precision absolute measurement of CEBAF beam mean energy

    International Nuclear Information System (INIS)

    The absolute measurement of the beam mean energy with an accuracy of one part in 104 or higher is an important demand of the CEBAF Hall A physics program. This accuracy may reduce the uncertainty in the d(e, e'p)p cross section δσ/σ to 1%. The need for such an accurately calibrated beam is not particular to CEBAF; at other electron facilities uncertainty in the incident energy has proven to be among the dominant sources of systematic error. The following methods for solving the problem were considered at both CEBAF and the Yerevan Physics Institute during 1990--1991: Backscattering of a plane electromagnetic wave by the relativistic electron beam. Calculations show that the intensity of the backscattered radiation in a bandwidth of 10-4 near the maximum frequency is about 1 photon per second at 4 GeV and 0.3 mA. Magnetic spectrometers performing as three- and four-magnet chicanes with appropriate detector systems. Such a system was used at SLAC for absolute measurement of the SLC beams energy, where a maximum accuracy of 5 x 10-4 was achieved. Calculations show that a similar accuracy can be achieved for the CEBAF beam in both proposed systems. Measurement of the vertical distribution of synchrotron radiation. Calculations indicate that precision of about 2.5 x 10-5 is achievable for CEBAF

  13. Beamed Energy Propulsion: Research Status And Needs--Part 1

    International Nuclear Information System (INIS)

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas

  14. Compensation of large ion energy spreads by multigap grid reflectors in time-of-flight mass spectrometers

    Science.gov (United States)

    Pilyugin, I. I.

    2016-03-01

    The problem of compensation of the initial ion energy spread by a multigap grid reflector of the time-of-flight mass spectrometer is considered. It is shown mathematically that the problem can be reduced to analysis of properties of catastrophes A n under additional conditions of positive geometrical gaps of the reflector. Examples of design of reflectors corresponding to catastrophes A 2 and A 3 are analyzed. The advantage of a three-gap reflector over a two-gap reflector in the compensation of a large energy spread of ions for the same value of the resolution of the device is demonstrated. The application of the three-gap reflector improves the sensitivity of the time-of-flight mass spectrometer. The results of calculations are confirmed experimentally.

  15. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    NARCIS (Netherlands)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T.

    2010-01-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with (12)C ions under spread-out Bragg peak conditions

  16. High energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    The availability of high-energy beams of radioactive species is the most recent advancement in the field of accelerator physics. One of the primary interactions experienced by relativistic heavy ions is the peripheral nuclear collision. Thus, radioactive nuclei are produced as secondary particles from peripheral nuclear fragmentation reactions. These nuclei have trajectories and energies differing little from that of the parent particle. Various radioactive beams produced as a result of these reactions, now available on a regular basis from the Bevalac, are: 11C, 13N, 15O, and 19Ne with sufficient intensity. Besides the interest in such beams for nuclear physics, important applications in therapeutic and diagnostic radiology and in nuclear medicine are discussed

  17. High-speed screen beam-profile-monitor system for high-energy beam-transport line at the HIMAC

    International Nuclear Information System (INIS)

    A screen monitor system was developed for beam profile monitors at the new High-Energy Beam-Transport (HEBT) section out the HIMAC. This monitor consists of the very thin fluorescent screen and the high-speed CCD camera. In addition to perform high-speed and high-resolution, this monitor does not almost destroy the beam. (author)

  18. Internal flows and energy circulation in light beams

    International Nuclear Information System (INIS)

    We review optical phenomena associated with the internal energy redistribution which accompany propagation and transformations of monochromatic light fields in homogeneous media. The total energy flow (linear-momentum density, Poynting vector) can be divided into a spin part associated with the polarization and an orbital part associated with the spatial inhomogeneity. We give a general description of the internal flows in the coordinate and momentum (angular spectrum) representations for both nonparaxial and paraxial fields. This enables one to determine local densities and integral values of the spin and orbital angular momenta of the field. We analyse patterns of the internal flows in standard beam models (Gaussian, Laguerre–Gaussian, flat-top beam, etc), which provide an insightful picture of the energy transport. Emphasis is given to the singular points of the flow fields. We describe the spin–orbit and orbit–orbit interactions in the processes of beam focusing and symmetry breakdown. Finally, we consider how the energy flows manifest themselves in the mechanical action on probing particles and in the transformations of a propagating beam subjected to a transverse perturbation. (review article)

  19. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    Science.gov (United States)

    Coopersmith, Jonathan

    2010-05-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  20. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  1. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  2. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)

  3. Recent applications of low energy electron beam processing

    International Nuclear Information System (INIS)

    It is obvious that radiation processing reduces energy consumption and avoids pollution because the coatings are solventless; but as important these factors may be, they alone do not justify the investment of an electron beam accelerator. With a few examples from the industry, motivations of users to choose electron processing is explained. (author)

  4. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; Denis, A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  5. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.;

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam with a...

  6. Spiral design and beam dynamics for a variable energy cyclotron

    International Nuclear Information System (INIS)

    Beam-orbit studies were performed for the conversion of the SREL synchrocyclotron magnet for use as a room temperature, multiparticle, isochronous cyclotron. Based on model magnet measurements of field profiles for 8 to 230K gauss hill fields, a four sector spiral pole tip design has been realized which allows all isotope species of heavy ion beams to be accelerated to required final energies. The total spiral angle of 380 allows injection of the beams from the MP tandem into the cyclotron through a valley. The two valey RF system of 140 kV peak accelerates beams on harmonic numbers 2, 3, 4, 6 and 10 at 14 to 21 MHz. Computer calculations indicated acceptable ν/sub z/, ν/sub r/ and phase space beam characteristics and passing of resonances for typical beams considered: 16O at 8 and 150 MeV/amu, 60Ni at 100 MeV/amu and 238U at 2.5 and 16 MeV/amu. Single turn extraction is achieved with electrostatic deflection

  7. High energy photon production in strong colliding laser beams

    OpenAIRE

    Kuchiev, Michael; Ingham, Julian

    2015-01-01

    The collision of two intense, low-frequency laser beams is considered. The $e^-e^+$ pairs created in this field are shown to exhibit recollisions, which take place at high energy accumulated due to the wiggling of fermions. The resulting $e^-e^+$ annihilation produces high energy photons, or heavy particles. The coherent nature of the laser field provides strong enhancement of the probability of these events. Analytical and numerical results are outlined.

  8. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  9. Constraining sterile neutrinos with a low energy beta-beam

    OpenAIRE

    Agarwalla, Sanjib K.; Huber, Patrick; Link, Jonathan M.

    2009-01-01

    We show that a low energy beta-beam facility can be used to search for sterile neutrinos by measuring the disappearance of electron anti-neutrinos. This channel is particularly sensitive since it allows to use inverse beta decay as detection reaction; thus it is free from hadronic uncertainties, provided the neutrino energy is below the pion production threshold. This corresponds to a choice of the Lorentz gamma=30 for the 6He parent ion. Moreover, a disappearance measurement allows the const...

  10. Constraining sterile neutrinos with a low energy beta-beam

    OpenAIRE

    Agarwalla, Sanjib Kumar

    2010-01-01

    We study the possibility to use a low energy beta-beam facility to search for sterile neutrinos by measuring the disappearance of electron anti-neutrinos. This channel is particularly sensitive since it allows to use inverse beta decay as detection reaction; thus it is free from hadronic uncertainties, provided the neutrino energy is below the pion production threshold. This corresponds to a choice of the Lorentz gamma=30 for the 6He parent ion. Moreover, a disappearance measurement allows th...

  11. Effects of tidal forces on the beam energy in LEP

    International Nuclear Information System (INIS)

    The e+e- collider LEP is used to investigate the Z particle and to measure its energy and width. This requires energy calibrations with ∼20 ppm precision achieved by measuring the frequency of a resonance which destroys the transverse beam polarization established by synchrotron radiation. To make this calibration valid over a longer period all effects causing an energy change have to be corrected for. Among those are the terrestrial tides due to the Moon and Sun. They move the Earth surface up and down by as much as ∼0.25 m which represents a relative local change of the Earth radius of 0.04 ppm. This motion has also lateral components resulting in a change of the LEP circumference (Cc=26.7 km) by a similar relative amount. Since the length of the beam orbit is fixed by the constant RF-frequency the change of the machine circumference will force the beam to go off-center through the quadrupoles and receive an extra deflection leading to an energy change given by ΔCc/Cc ∼ -αc ΔE/E. With the momentum compaction αc = 1.85 · 10-4 for the present LEP optics this gives tide-driven p.t.p. energy excursion up to about 220 ppm, corresponding to ∼18.5 MeV for the Z energy. A beam energy measurement carried out over a 24 hour period perfectly confirmed the effects expected from a more detailed calculation of the tides. A corresponding correction can be applied to energy calibrations

  12. Vibration piezoelectric energy harvester with multi-beam

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yan, E-mail: yanc@dlut.edu.cn; Zhang, Qunying, E-mail: zhangqunying89@126.com; Yao, Minglei, E-mail: yaomingleiok@126.com [Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Dong, Weijie, E-mail: dongwj@dlut.edu.cn [School of Electronic and Information Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Gao, Shiqiao, E-mail: gaoshq@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing Province (China)

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  13. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  14. Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part II: Application to Coupled Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Young-Ho Park

    2006-01-01

    Full Text Available This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally, the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.

  15. High-Energy Electron Beam Application to Air Pollutants Removal

    International Nuclear Information System (INIS)

    The advantage of electron beam (EB) process in pollutants removal is connected to its high efficiency to transfer high amount of energy directly into the matter under treatment. Disadvantage which is mostly related to high investment cost of accelerator may be effectively overcome in future as the result of use accelerator new developments. The potential use of medium to high-energy high power EB accelerators for air pollutants removal is demonstrated in [1]. The lower electrical efficiencies of accelerators with higher energies are partially compensated by the lower electron energy losses in the beam windows. In addition, accelerators with higher electron energies can provide higher beam powers with lower beam currents [1]. The total EB energy losses (backscattering, windows and in the intervening air space) are substantially lower with higher EB incident energy. The useful EB energy is under 50% for 0.5 MeV and about 95% above 3 MeV. In view of these arguments we decided to study the application of high energy EB for air pollutants removal. Two electron beam accelerators are available for our studies: electron linear accelerators ALIN-10 and ALID-7, built in the Electron Accelerator Laboratory, INFLPR, Bucharest, Romania. Both accelerators are of traveling-wave type, operating at a wavelength of 10 cm. They utilize tunable S-band magnetrons, EEV M 5125 type, delivering 2 MW of power in 4 μ pulses. The accelerating structure is a disk-loaded tube operating in the 2 mode. The optimum values of the EB peak current IEB and EB energy EEB to produce maximum output power PEB for a fixed pulse duration EB and repetition frequency fEB are as follows: for ALIN-10: EEB = 6.23 MeV; IEB =75 mA; PEB 164 W (fEB = 100 Hz, EB = 3.5 s) and for ALID-7: EEB 5.5 MeV; IEB = 130 mA; PEB = 670 W (fEB = 250 Hz, EB = 3.75 s). This paper presents a special designed installation, named SDI-1, and several representative results obtained by high energy EB application to SO2, NOx and VOCs

  16. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  17. A monochromatic, aberration-corrected, dual-beam low energy electron microscope

    International Nuclear Information System (INIS)

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. - Highlights: • We present a LEEM with a monochromator, aberration corrector, and two electron beams. • We analyze objective lens aberrations up to 5th order with aberration correction. • Tetrode and pentode mirror

  18. In-beam PET at high-energy photon beams: a feasibility study

    International Nuclear Information System (INIS)

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft fuer Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable

  19. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior.

    Directory of Open Access Journals (Sweden)

    Ziqing Yao

    Full Text Available Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased cooperation (decreased defection but had no effect on cheating, whereas negative social news increased cheating but with no change in cooperation (or defection. We conclude that there is a spreading impact of positive social news in the conventional norm domain and of negative social news in the moral norm domain.

  20. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior

    Science.gov (United States)

    Yao, Ziqing; Yu, Rongjun

    2016-01-01

    Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased cooperation (decreased defection) but had no effect on cheating, whereas negative social news increased cheating but with no change in cooperation (or defection). We conclude that there is a spreading impact of positive social news in the conventional norm domain and of negative social news in the moral norm domain. PMID:27253877

  1. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior.

    Science.gov (United States)

    Yao, Ziqing; Yu, Rongjun

    2016-01-01

    Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased cooperation (decreased defection) but had no effect on cheating, whereas negative social news increased cheating but with no change in cooperation (or defection). We conclude that there is a spreading impact of positive social news in the conventional norm domain and of negative social news in the moral norm domain. PMID:27253877

  2. The Spreading of Social Energy: How Exposure to Positive and Negative Social News Affects Behavior

    OpenAIRE

    Ziqing Yao; Rongjun Yu

    2016-01-01

    Social news, unlike video games or TV programs, conveys real-life interactions. Theoretically, social news in which people help or harm each other and violate rules should influence both prosocial and violation behaviors. In two experiments, we demonstrated the spreading effects of social news in a social interaction context emphasizing social conventions and a nonsocial interaction context emphasizing moral norms. Across the two studies, the results showed that positive social news increased...

  3. Some probe experiments on a high energy cesium ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Hubach, R. A.; Peppin, G. B.

    1963-03-31

    A probe has been developed which is, in effect, a directional Langmuir probe. The directional quality is necessary for use in a beam of high energy ions to eliminate the effects of the streaming ions on the probe operation. This probe has been utilized to measure the back-streaming (albedo) electron component to verify the bottle model of space-charge neutralization. It has also been possible to infer the density of slow ions in the beam created by gas ionization and to infer a value of the cross section for such gas ionization which .agrees with the anticipated value. (auth)

  4. The production and use of ultralow energy ion beams

    Science.gov (United States)

    Goldberg, R. D.; Armour, D. G.; van den Berg, J. A.; Cook, C. E. A.; Whelan, S.; Zhang, S.; Knorr, N.; Foad, M. A.; Ohno, H.

    2000-02-01

    An ion accelerator, purpose built to produce beams at energies down to 10 eV with current densities in the 10-100 μA cm-2 range, is described. Fitted with dual ion source assemblies, the machine enables ultralow energy ion implantation and the growth of films and multilayers to be carried out under highly controlled conditions. The accelerator delivers ion beams into an ultrahigh vacuum chamber, containing a temperature controlled target stage (range -120 to +1350 °C), where they are used to study the fundamental physics relating to the interaction of ultralow energy ions with surfaces. This knowledge underlies a wide range of ion-beam and plasma-based technologies and, to illustrate its importance, results are presented from investigations designed to determine the optimum conditions for the growth of diamond-like and aluminum films by ion-beam deposition and the formation of ultrashallow junctions in semiconductors by 2.5 keV As+ implantation. The later investigation shows how transient arsenic diffusion, which occurs during post-implant thermal processing, can be controlled by manipulating the substrate temperature during implantation.

  5. Buffer gas cooling of ion beams

    International Nuclear Information System (INIS)

    The cooling action of a buffer gas on ions contained within it can be used to cool an ion beam, thereby greatly improving its emittance and energy spread. It can also be used to greatly enhance the collection of an ion beam in an electromagnetic trap. The basic principles will be introduced in the context of a prototype system for such a beam cooler

  6. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  7. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    International Nuclear Information System (INIS)

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented

  8. An energy-based beam hardening model in tomography

    Energy Technology Data Exchange (ETDEWEB)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E [Vision Lab, Physics Departement, University of Antwerp (RUCA) (Belgium)

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography ({mu}CT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  9. Intermediate-energy neutron beam for NCT at MURR

    International Nuclear Information System (INIS)

    The University of Missouri Research Reactor (MURR) is one of the high-flux reactors in the USA and it can be used to produce an intense beam of intermediate-energy neutrons for neutron capture therapy. Two methods are being evaluated at MURR to produce such a beam. The first uses a moderator of Al2O3 replacing part of the graphite and water on one side of the core of the reactor to produce a source of predominantly intermediate-energy neutrons. The second method is a filter of 238U between the core and the patient position to pass only intermediate-energy neutrons. The results of these evaluations are presented in this paper along with an outline of the other resources at the University of Missouri-Columbia that are available to support an NCT program. 4 references, 7 figures, 1 table

  10. Highly Compressed Ion Beam for High Energy Density Science

    International Nuclear Information System (INIS)

    The Heavy Ion Fusion Virtual National Laboratory is developing the intense ion beams needed to drive matter to the High Energy Density regimes required for Inertial Fusion Energy and other applications. An interim goal is a facility for Warm Dense Matter studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach they are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target ''foils,'' which may in fact be foams with mean densities 1% to 10% of solid. This approach complements that being pursued at GSI Darmstadt, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrically target. They present the beam requirements for Warm Dense Matter experiments. The authors discuss neutralized drift compression and final focus experiments and modeling. They describe suitable accelerator architectures based on Drift-Tube Linac, RF, single-gap, Ionization-Front Accelerator, and Pulse-Line Ion Accelerator concepts. The last of these is being pursued experimentally. Finally, they discuss plans toward a user facility for target experiments

  11. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  12. A high energy neutral beam system for reactors

    International Nuclear Information System (INIS)

    High energy neutral beams provide a promising method of heating and driving current in steady-stage tokamak fusion reactors. As an example, we have made a conceptual design of a neutral beam system for current drive on the International Thermonuclear Experimental Reactor (ITER). The system, based on electrostatic acceleration of Dions, can deliver up to 100 MW of 1.6 MeV Do neutrals through three ports. Radiation protection is provided by locating sensitive beamlime components 35 to 50 m from the reactor. In an application to a 3300 MW power reactor, a system delivering 120 MW of 2-2.4 MeV deuterium beams assisted by 21 MW of lower hybrid wave power drives 25 MA provides an adequate plasma power again (Q = 24) for a commercial fusion power plant. (author). 8 refs.; 1 fig.; 2 tabs

  13. Spheromak Energy Transport Studies via Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

    2008-02-11

    Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

  14. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Czok, Ulrich; Geissel, Hans; Petrick, Martin; Reinheimer, Katrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2008-10-01

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 105 (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 μs. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  15. Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Plass, Wolfgang R. [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany)], E-mail: Wolfgang.R.Plass@exp2.physik.uni-giessen.de; Dickel, Timo [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Czok, Ulrich; Geissel, Hans [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Petrick, Martin; Reinheimer, Katrin [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Scheidenberger, Christoph [II. Physikalisches Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung, 64291 Darmstadt (Germany); Yavor, Mikhail I. [Institute of Analytical Instrument Making, Russian Academy of Sciences, 190103 St. Petersburg (Russian Federation)

    2008-10-15

    A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) system for low-energy radioactive ion beam facilities has been developed, which can be used for (i) isobar separation and (ii) direct mass measurements of very short-lived nuclei with half-lives of about 1 ms or longer, and (iii) for identification and diagnosis of the ion beam by mass spectrometry. The system has been designed and simulated, and individual subsystems have been built and characterized experimentally. An injection trap for cooling and bunching of the ion beam has been developed, and cooling times of less than one millisecond have been achieved. The performance of the MR-TOF-MS was characterized using the isobaric doublet of carbon monoxide and nitrogen molecular ions. A mass resolving power of 10{sup 5} (FWHM) has been obtained even with an uncooled ion population. The separator capabilities of the MR-TOF-MS have been demonstrated by removing either carbon monoxide or nitrogen ions from the beam in a Bradbury-Nielsen Gate after a flight time of 320 {mu}s. The separation power achieved is thus at least 7000 (FWHM) and increases for longer time-of-flight. An energy buncher stage has been designed that compresses the energy spread of the beam after the separation and facilitates efficient injection of the selected ions into an accumulation trap prior to transfer of the ions to experiments downstream of the MR-TOF-MS.

  16. Dual energy scanning beam laminographic x-radiography

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  17. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  18. Dual energy scanning beam laminographic x-radiography

    International Nuclear Information System (INIS)

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs

  19. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    International Nuclear Information System (INIS)

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics

  20. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  1. Design study of a beam energy recovery system for a negative-ion-based neutral beam injector

    International Nuclear Information System (INIS)

    A beam energy recovery system for future neutral beam injectors based on negative ions has been designed. Residual negative ions are recovered electrically, while residual positive ions are decelerated on a soft-landing beam dump. This design simplifies the beam energy recovery power supply system an reduces the heat flux on the beam dump. Residual ions are separated into negative and positive ions by the stray magnetic field from the Fusion Engineering Reactor (FER). The next Japanese tokamak reactor. Each ion beam is also guided to the collector electrode and the soft-landing beam dump by the stray magnetic field. In the 500-keV/20-MW injector designed for FER, the total power efficiency can be improved from 46 to 59% by recovering the negative ions

  2. LHC Beam Stability and Feedback Control - Orbit and Energy -

    CERN Document Server

    Steinhagen, R J

    2007-01-01

    This report presents the stability and control of the Large Hadron Collider's (LHC) two beam orbits and their particle momenta using beam-based feedback systems. The LHC, presently being built at CERN, will store, accelerate and provide particle collisions with a maximum particle momentum of 7TeV/c and a nominal luminosity of L = 10^34 cm^−2s^−1. The presence of two beams, with both high intensity as well as high particle energies, requires excellent control of particle losses inside a superconducting environment, which will be provided by the LHC Cleaning and Machine Protection System. The performance and function of this and other systems depends critically on the stability of the beam and may eventually limit the LHC performance. Environmental and accelerator-inherent sources as well as failure of magnets and their power converters may perturb and reduce beam stability and may consequently lead to an increase of particle loss inside the cryogenic mass. In order to counteract these disturbances, c...

  3. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si3N4-Mo-Si3N4. These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si3N4-Si3N4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  4. Interaction of turbulence with flexible beams in fluidic energy harvesting

    Science.gov (United States)

    Danesh Yazdi, Amir Hossein

    Advances in the development and fabrication of microelectronics have enhanced the energy efficiency of these devices to such an extent that they can now operate at very low power levels, typically on the order of a few microwatts or less. Batteries are primarily thought of as the most convenient source of power for electronic devices, but in instances where a device needs to be deployed in a difficult-to-access location such as under water, the added weight and especially maintenance of such a power source becomes costly. A solution that avoids this problem and is particularly attractive in a "deploy & forget" setting involves designing a device that continuously harvests energy from the surrounding environment. Piezoelectric energy harvesters, which employ the direct piezoelectric effect to convert mechanical strain into electrical energy, have garnered a great deal of attention in the literature. This work presents an overview of the experimental and analytical results related to fluidic energy extraction from vortex and turbulent flow using piezoelectric cantilever beams. In particular, the development of the FTGF (Fourier Transform-Green's Function) solution approach to the coupled, continuous electromechanical equations governing piezoelectric cantilever beams and the associated TFB (Train of Frozen Boxcars) method, which models the flow of vortices and turbulent eddies over the beams, is discussed. In addition, the behavior of fluidic energy harvesters in decaying isotropic, homogeneous grid turbulence generated by passive, semi-passive and active grids is examined and a novel grid-turbulence forcing model is introduced. An expression for the expected power output of the piezoelectric beam is obtained by utilizing this forcing function model in the single degree-of-freedom electromechanical equations. Furthermore, approximate, closed-form solutions to the theoretical expected power are derived from deterministic turbulence forcing models and are compared with

  5. Beamed Energy Propulsion: Research Status And Needs--Part 2

    International Nuclear Information System (INIS)

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar ''in-space'' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs

  6. Biomaterial imaging with MeV-energy heavy ion beams

    International Nuclear Information System (INIS)

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi3-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi3 ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis

  7. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    The 22Mg nucleus plays an important role in nuclear astrophysics, specially in the 22Mg(α,p)25Al and proton capture 22Mg(p,γ)23Al reactions. It is believed that 22Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22Mg beam used for the direct measurement of the scattering reaction 22Mg(α,α)22Mg, and the stellar reaction 22Mg(α,p)25Al in the energy region concerning an astrophysical temperature of T9=1–3 GK

  8. Si etching with reactive neutral beams of very low energy

    International Nuclear Information System (INIS)

    A Si etching process has been investigated with reactive neutral beams (NBs) extracted using a low acceleration voltage of less than 100 V from CF4 and Ar mixed plasmas. The etched Si profile shows that the etching process is predominantly anisotropic. The reactive NB has a constant Si etching rate in the acceleration voltage range from 20 V to 80 V. It is considered that low-energy NBs can trigger Si etching because F radicals adsorb onto the Si surface and weaken Si–Si bonds. The etching rate per unit beam flux is 33 times higher than that with Ar NB. These results show that the low-energy reactive NB is useful for damage-free high speed Si etching

  9. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  10. Compact Source of Electron Beam with Energy of 200 kEv and Average Power of 2 kW

    CERN Document Server

    Kazarezov, Ivan; Balakin, Vladimir E; Bryazgin, Alex; Bulatov, Alexandre; Glazkov, Ivan; Kokin, Evgeny; Krainov, Gennady; Kuznetsov, Gennady I; Molokoedov, Andrey; Tuvik, Alfred

    2005-01-01

    The paper describes a compact electron beam source with average electron energy of 200 keV. The source operates with pulse power up to 2 MW under average power not higher than 2 kW, pulsed beam current up to 10 A, pulse duration up to 2 mks, and repetition rate up to 5 kHz. The electron beam is extracted through aluminium-beryllium alloy foil. The pulse duration and repetition rate can be changed from control desk. High-voltage generator for the source with output voltage up to 220 kV is realized using the voltage-doubling circuit which consists of 30 sections. The insulation type - gas, SF6 under pressure of 8 atm. The cooling of the foil supporting tubes is provided by a water-alcohol mixture from an independent source. The beam output window dimensions are 180?75 mm, the energy spread in the beam +10/-30%, the source weight is 80 kg.

  11. Low energy Fe+ beam irradiation to C60 thin film

    International Nuclear Information System (INIS)

    We have developed an electron cyclotron resonance ion source apparatus, which is designed for the production of endohedral fullerene. In this study, we irradiated the Fe+ beam to the C60 thin film. We changed the experimental condition of the dose and the ion energy. We could observe the Fe + C60 peak by analysis of the time-of-flight mass spectrometry. The highest intensity of the Fe + C60 peak was observed at the ion energy of 200 eV. The Fe + C60 peak intensity tended to become high in the case of long irradiation time and large dose.

  12. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  13. Time-energy relation of the nTOF neutron beam: energy standards revisited

    International Nuclear Information System (INIS)

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the nTOF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of 193Ir, which is commonly considered as an energy standard

  14. Upgrade of beam energy measurement system at BEPC-II

    Science.gov (United States)

    Zhang, Jian-Yong; Cai, Xiao; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M. N.; Krasnov, A. A.; Muchnoi, N. Yu.; Pyata, E. E.; Mamoshkina, E. V.; Harris, F. A.

    2016-07-01

    The beam energy measurement system is of great importance for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. In order to meet the requirements of data taking and improve the measurement accuracy, the system has continued to be upgraded, which involves the updating of laser and optics subsystems, replacement of a view-port of the laser to the vacuum insertion subsystem, the use of an electric cooling system for a high purity germanium detector, and improvement of the data acquisition and processing subsystem. The upgrade system guarantees the smooth and efficient measurement of beam energy at BEPC-II and enables accurate offline energy values for further physics analysis at BES-III. Supported in part by National Natural Science Foundation of China (NSFC)(11375206, 10775142, 10825524, 11125525, 11235011), the Ministry of Science and Technology of China (2015CB856700, 2015CB856705), State key laboratory of particle and detection and electronics; and the CAS Center for Excellence in Particle Physics (CCEPP); the RFBR grant(14-02-00129-a), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, part of this work related to the design of ZnSe viewports is supported by the Russian Science Foundation (14-50-00080)

  15. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  16. Feasibility study of glass dosimeter for postal dose intercomparison of high-energy proton therapy beams

    International Nuclear Information System (INIS)

    Purpose: We evaluated the glass dosimeter suitability as an external audit program in proton therapy beam. A feasibility test of the glass dosimeter postal dose intercomparison was performed for high-energy proton beam use in radiation oncology with the collaboration of five proton therapy centers (Shizuoka Cancer Center, University of Florida Proton Center, MD Anderson Cancer Center, Loma Linda University Medical Center, and University of Pennsylvania School of Medicine). Material and methods: The dosimetric properties of a GD-301 glass dosimeter were investigated for its potential use for postal dosimetry. Measurements were performed in a water phantom using a stair-like holder specially designed for this study. The depth-dose distribution measured with the glass dosimeter was compared to those from GEANT4 Monte-Carlo simulation. The GEANT4 code was also used to simulate the influence of holder material in the absorbed dose by inserting the glass dosimeter in a water phantom within the stair-like holder. We investigated the methodology of the absorbed dose determination with the glass dosimeter system establishing the calibration factor and various correction factors (non-linearity, fading, energy, holder). The participating proton therapy centers were asked to irradiate the glass dosimeter to 2 Gy with similar setup and conditions. Results: The repeatability and dose rate dependence is within 1.2% and 1.5%, respectively. Depth-dose distributions in the pristine Bragg curve and the spread-out Bragg curve were estimated to be within 3%, compared with depth-dose measured with the ionization chamber. The difference in absorbed dose between the glass dosimeter and ionization chamber was within ±2% as a function of proton beam quality, residual ranges were between 2.1 and 9.0 cm. The influence of the holder material in absorbed doses of the proton beams is less than 1%. In the accuracy evaluation of the glass dosimeter system established in blind test, we obtained

  17. A fluor and wire-shadow diagnostic for low-energy ion beams

    International Nuclear Information System (INIS)

    A video diagnostic technique utilizing a fluorescent screen and a video camera has been developed to monitor the two-dimensional beam-intensity profile and angular divergence of low-energy (25-35 keV) ion beams. Detailed off-line analysis is used to compare and augment standard beam emittance data. Experimental results on 2-D beam profiles are presented

  18. Low energy hydrogen ion beams in silicon processing

    International Nuclear Information System (INIS)

    Effects of low energy hydrogen ion beams in silicon processing were studied. It was found that exposing Si to a beam of low energy ions induced extensive lattice damage at the Si surface. H passivation studies were extended to include point defects in the semiconductor bulk. These studies indicate that the role of H ions in altering the concentration of active traps in the semiconductor could be explained in a unifying manner, by taking into account the interaction of Si interstitials with point defects in the Si bulk. These interstitials are created at the Si surface when it is bombarded by energetic ions. Shallow acceptor neutralization was seen in the bulk of boron-doped, Ar+ or H+ bombarded Si, when the sample temperature during the ion-beam exposure was kept below 600C. Although these results strongly suggest that the compensation effect is not H related, the possibility of H contamination of Si from water vapor in the vacuum chamber prevented the author from completely ruling out H induced compensation as the cause of acceptor compensation. Finally, using H as a passivating agent, a novel process to fabricate ion-implanted junctions using low-temperature (T 0C), was demonstrated for both majority- and minority-carrier devices. The implications of this research have also been discussed

  19. Two-beam type IH-RFQ linear accelerator for low-energy and high intensity heavy ion beam

    International Nuclear Information System (INIS)

    We developed a two-beam type IH-RFQ (Interdigital H type Radio Frequency Quadrupole) linac system to proof the principle of a multi-beam type IH-RFQ linac in Research Laboratory for Nuclear Reactors of Tokyo Institute of Technology. The multi-beam type RFQ linac has several beam channels in a cavity for accelerating high intensity and low energy heavy ion beams. The developed system consists of a two-beam type IH-RFQ cavity as a prototype of the multi-beam type cavity, a two-beam type laser ion source with DPIS (Direct Plasma Injection Scheme) and beam analyzers mainly. A a result of the beam acceleration test, the linac system accelerates carbon ions from 5 keV/u to 60 keV/u and generates about 108 mA (2x54 mA/channel) in the total output current. In this paper, we describe the development of the linac system and some results of the beam acceleration test. (author)

  20. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  1. Producing titanium-niobium alloy by high energy beam

    International Nuclear Information System (INIS)

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element

  2. Producing titanium-niobium alloy by high energy beam

    Science.gov (United States)

    Sharkeev, Yu. P.; Golkovski, M. G.; Glukhov, I. A.; Eroshenko, A. Yu.; Bataev, V. A.; Fortuna, S. V.

    2016-01-01

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  3. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  4. An Energy Saving System for a Beam Pumping Unit.

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

  5. An Energy Saving System for a Beam Pumping Unit

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

  6. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    Science.gov (United States)

    Dang, H. M.; van Goethem, M. J.; van der Graaf, E. R.; Brandenburg, S.; Hoekstra, R.; Schlathölter, T.

    2010-10-01

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB and DSB that is unaffected by radical scavengers and thus due to direct effect is quantified.

  7. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, H.M.; Van Goethem, M.J.; Van der Graaf, E.R.; Brandenburg, S.; Hoekstra, R.; Schlatholter, T. [KVI, University of Groningen, Groningen (Netherlands)

    2010-10-15

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with {sup 12}C ions under spread-out Bragg peak conditions (densely ionizing) and with {sup 137}Cs {gamma}-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for {gamma}-photons than for {sup 12}C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for {gamma}-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For {sup 12}C induced damage, the fraction of SSB (single strand break) and DSB (double strand break) that is unaffected by radical scavengers and thus due to direct effect is quantified. (authors)

  8. Plasmid DNA damage by heavy ions at spread-out Bragg peak energies

    International Nuclear Information System (INIS)

    Interaction of ionizing radiation with plasmid DNA can lead to formation of single strand breaks, double strand breaks and clustered lesions. We have investigated the response of the synthetic plasmid pBR322 in aqueous solution upon irradiation with 12C ions under spread-out Bragg peak conditions (densely ionizing) and with 137Cs γ-photons (sparsely ionizing) as a function of dose. To evaluate the relevance of indirect effects, i.e. influences of diffusion limited radical induced DNA damage triggered by water radiolysis, the experiments were performed at various concentrations of the radical scavenger mannitol. Agarose gel electrophoresis was employed to quantify the DNA damage. At low scavenger concentration for a given dose DNA damage is higher for γ-photons than for 12C. For the latter, the microscopic dose distribution is inhomogeneous, with very high dose deposited along the few tracks through the solution. This is in agreement with the concept that scavengers efficiently reduce damage for γ-photons, implying that the underlying damage mechanism is single strand break induction by OH radicals. For 12C induced damage, the fraction of SSB (single strand break) and DSB (double strand break) that is unaffected by radical scavengers and thus due to direct effect is quantified. (authors)

  9. The beam energy calibration system for the BEPC-II collider

    CERN Document Server

    Achasov, M N; Mo, Xiaohu; Muchnoi, N Yu; Qin, Qing; Qu, Huamin; Wang, Yifang; Xu, Jinqiang

    2008-01-01

    This document contains a proposal of the BEPC-II collider beam energy calibration system (IHEP, Beijing). The system is based on Compton backscattering of carbon dioxide laser radiation, producing a beam of high energy photons. Their energy spectrum is then accurately measured by HPGe detector. The high-energy spectrum edge will allow to determine the average electron or positron beam energy with relative accuracy about 3x10^-5.

  10. Energy characteristics of beam-plasma interaction in a closed volume

    Energy Technology Data Exchange (ETDEWEB)

    Klykov, I. L. [Russian Academy of Sciences, Kotel' nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation); Tarakanov, V. P. [Russian Academy of Sciences, Institute for High Energy Densities, Joint Institute for High Temperatures (Russian Federation); Shustin, E. G. [Russian Academy of Sciences, Kotel' nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)

    2012-03-15

    Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.

  11. Energy characteristics of beam-plasma interaction in a closed volume

    Science.gov (United States)

    Klykov, I. L.; Tarakanov, V. P.; Shustin, E. G.

    2012-03-01

    Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.

  12. Fundamental physics research using a low energy muon beam

    International Nuclear Information System (INIS)

    A process is proposed for the production of true muonium, in which the simultaneous generation of positive and negative muons is utilized in the discovery of new and more compact leptonic atoms. The proposed method, which is based on the use of a low energy muon apparatus, has certain advantages and could lead to the long-awaited appearance of positive and negative muons in the bound state, a goal that has been pursued for a half century. In this apparatus, the formation of true muonium is obtained by frictional cooling with an electron cyclotron resonance plasma,followed by the detection of high energy gamma rays. Simulation studies using the GEANT4 code were applied to the development of this low energy beam apparatus in order to provide evidence for the validity of the frictional cooling principle. (author)

  13. Simulation of single-event energy-deposition spreading in a hybrid pixellated detector for gamma imaging

    CERN Document Server

    Manach, E

    2002-01-01

    In the framework of the Medipix2 Collaboration, a new photon-counting chip is being developed made of a 256x256 array of 55 mu m-side square pixels. Although the chip was primarily developed for semiconductor X-ray imagers, we think that this type of device could be used in applications such as decommissioning of nuclear facilities where typical sources have gamma-ray energies in the range of a few hundred keV. In order to enhance the detection efficiency in this energy range, we envisage connecting the Medipix2 chip to a CdTe or CdZnTe substrate (at least 1 mm thick). The small pixel size, the thickness of the Cd(Zn)Te substrate and the high photon energy motivate us to estimate first the spatial energy spreading following a photon interaction inside the detector. Estimations were made using the MCNP Monte Carlo package by simulating the individual energy distribution for each primary photon interaction. As an illustration of our results, simulating a 660 keV gamma source, we found that there are two pixels ...

  14. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  15. Low-energy High-current Electron Beam Generation in Plasma System and Beam-Plasma Interaction

    International Nuclear Information System (INIS)

    The review of results of experimental investigations and computer simulations of low-energy high-current electron beam generation in a low-impedance system and dynamics of beam-plasma system are given. The system includes a long plasma-filled diode, an auxiliary thermionic cathode and an explosive emission cathode. The auxiliary cathode is used to generate the a low-current, low-voltage electron beam to form long plasma anode by means of a residual gas ionisation in an external longitudinal magnetic field. The high-current low-energy electron beam is generated from the explosive emission cathode embedded in preliminary prepared plasma. Peculiarities of the system are due to: 1) the generation of electron beams with currents exceeding Alfven's limit; 2) the charge density of the beam close to the plasma density. These peculiarities complicate beam-plasma interaction significantly due to sharp non-uniform distribution of the beam current density, dominant transverse motion of the beam electrons and redistribution of ion-plasma density under the influence of fields. Computer simulation was performed using electromagnetic PIC code KARAT for different geometry's of the system

  16. Spread effects - methodology

    International Nuclear Information System (INIS)

    Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)

  17. A device for a proton beam energy control for radiotherapy

    International Nuclear Information System (INIS)

    A Medical-Technical Facility for hadron radiotherapy based on the JINR DLNP phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of a deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room. (author)

  18. Vacuum Chamber for the Measurement System of the Beam Energy

    Science.gov (United States)

    Abakumova, E.; Achasov, M.; Dong, HaiYi; Qu, HuaMin; Krasnov, A.; Kosarev, A.; Muchnoi, N.; Pyata, E.; Xiao, Qiong; Mo, XiaoHu; Wang, YiFang; Zhukov, A.

    Vacuum chamber for the beam energy measurement system based on the Compton backscattering method is presented. The main elements of the chamber are GaAs entrance viewport and a copper mirror. The viewport design provides baking out of the vacuum chamber up to 250 °C. To produce the viewport, an original technology based on brazing GaAs plate by lead has been developed. The vacuum chambers were installed at the BEPC-II and VEPP-4 M colliders. After installation the residual gas pressure is about 10-10 Torr.

  19. Beamed Energy Propulsion by Means of Target Ablation

    International Nuclear Information System (INIS)

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded

  20. Measuring pion beta decay with high-energy pion beams

    International Nuclear Information System (INIS)

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay π+ → π0e+vε is predicted by the Standard Model (SM) to be R(π+ → π0e+vε) = 0.3999±0.0005 s-1. The best experimental number, obtained using in-flight decays, is R(π+ → π0e+vε) = 0.394 ± 0.015 s-1. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required

  1. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  2. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  3. BEAM TRANSFER LINES FOR THE SPALLATION NEUTRON SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    RAPARIA,D.; LEE,Y.Y.; WENG,W.T.; WEI,J.

    2002-04-08

    Beam transfer lines for the Spallation Neutron Source (SNS) are designed to have low beam losses for hand on maintenance while satisfying the facility footprint requirements. There are two main beam transfer lines, High Energy Beam Transport (HEBT) line which connect super conducting linac to the accumulator ring and Ring to Target Beam transport (RTBT) which transfers beam from accumulator ring to the target. HEBT line not only transfer the beam from linac to ring but also prepare beam for ring injection, correct the energy jitter from the linac, provide required energy spread for the ring injection, clean the transverse and longitudinal halo particles from the beam, determine the linac beam quality, and provide the protection to the accumulator ring. RTBT line transport the beam from ring to target while fulfilling the target requirements of beam size, maximum current density, beam moment on the target in case of ring extraction kicker failure. and protect the target from the ring fault conditions.

  4. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  5. Review of Recent Results from the RHIC Beam Energy Scan

    CERN Document Server

    Kumar, Lokesh

    2013-01-01

    We review recent results from the RHIC beam energy scan (BES) program, aimed to study the Quantum Chromodynamics (QCD) phase diagram. The main goals are to search for the possible phase boundary, softening of equation of state or first order phase transition, and possible critical point. Phase-I of the BES program has recently concluded with data collection for Au+Au collisions at center-of-mass energies ($\\sqrt{s_{NN}}$) of 7.7, 11.5, 19.6, 27, and 39 GeV. Several interesting results are observed for these lower energies where the net-baryon density is high at the mid-rapidity. These results indicate that the matter formed at lower energies (7.7 and 11.5 GeV) is hadron dominated and might not have undergone a phase transition. In addition, the centrality dependence of freeze-out parameters is observed for the first time at lower energies, slope of directed flow for (net)-protons measured versus rapidity shows an interesting behavior at lower energies, and higher moments of net-proton show deviation from Skel...

  6. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mahinay, C. L. S., E-mail: cmahinay@nip.upd.edu.ph; Ramos, H. J. [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Metro Manila (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  7. Spreading volcanoes

    Science.gov (United States)

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  8. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  9. Enhanced creation of high energy particles in colliding laser beams

    CERN Document Server

    Kuchiev, Michael

    2015-01-01

    The creation of particles by two colliding strong laser beams is considered. It is found that the electron-positron pairs created in the laser field via the Schwinger mechanism may recollide after one or several oscillations in the field. Their collision can take place at high energy, which the pair gains from the field. As a result, high energy gamma quanta can be created by inelastic scattering or annihilation of the pair. Moreover, heavy particles such as muon pairs may also be created via the annihilation $e^+ + e^-\\rightarrow \\mu^+ + \\mu^- $. The probability of $e^-e^+$ collision is greatly enhanced due to a strong alignment of the electron and positron momenta with the electric field. The found muon creation rate exponentially exceeds the rate predicted by the direct Schwinger mechanism for muons, while the photon creation rate exponentially exceeds photon emission due to the fermion oscillation.

  10. Beam energy absolute measurement using K-edge absorption spectrometers

    International Nuclear Information System (INIS)

    A method is presented of absolute energy measurement with an accuracy of triangle Ε ∼ 10-4Εo by direct measurement of the bend angle in a high-precision magnetic dipole using two opposite-direction short (about 2 mm long) high-field-intensity magnets (bar Β dipole much-lt Βshortmag) installed at each end and two K-edge absorption spectrometers. Using these spectrometers and the hard x-ray synchrotron radiation created by the short magnets, a bend angle of 4.5 arc deg for the CEBAF energy bandwidth can be measured with an accuracy of a few units of 10-6 rad, and the main sources of systematic errors are the absolute measurement of the field integral and the determination of the centroid of the synchrotron beam at a wavelength equal to the K-edge absorption of the chosen substance

  11. High energy electron beam processing experiments with induction accelerators

    International Nuclear Information System (INIS)

    Induction accelerators are capable of producing very high electron beam power for processing at energies of 1-10 MeV. A high energy electron beam (HEEB) material processing system based on all-solid-state induction accelerator technology is in operation at Science Research Laboratory. The system delivers 50 ns 500 A current pulses at 1.5 MeV and is capable of operating at high power (500 kW) and high ( similar 5 kHz) repetition rate. HEEB processing with induction accelerators is useful for a wide variety of applications including the joining of high temperature materials, powder metallurgical fabrication, treatment of organic-contaminated wastewater and the curing of polymer matrix composites. High temperature HEEB experiments at SRL have demonstrated the brazing of carbon-carbon composites to metallic substrates and the melting and sintering of powders for graded-alloy fabrication. Other experiments have demonstrated efficient destruction of low-concentration organic contaminants in water and low temperature free-radical cross-linking of fiber-reinforced composites with acrylated resin matrices. (orig.)

  12. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  13. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  14. Beam Energy Scan at RHIC and z-Scaling

    International Nuclear Information System (INIS)

    Beam Energy Scan (BES) data obtained at RHIC are briefly reviewed. Method of data analysis (z-scaling approach) based on self-similarity and locality of constituent interactions in hadron and nucleus collisions at high energy is described. The method is applied for analysis of BES data to search for signatures of phase transition and Critical Point (CP). Some results of analysis of hadron spectra measured in heavy ion collisions (HIC) at RHIC over a wide range of the energy √(sNN)=7.7–200 GeV are presented. Microscopic scenario of constituent interactions in the framework of this approach is discussed. Dependence of the energy loss on the momentum of the produced hadron, energy and centrality of the collision is studied. Self-similarity of the constituent interactions in terms of momentum fractions is used to characterize the nuclear medium by a “specific heat” and the colliding nuclei by fractal dimensions. Kinematic regions which are assumed to be most preferable for search for signatures of phase transition of nuclear matter produced in HIC in BES are discussed

  15. Transport of intense proton beam in the presence of subdominant species in a low energy beam transport system

    Science.gov (United States)

    Babu, P. Sing; Goswami, A.; Pandit, V. S.

    2016-04-01

    The dynamics of space-charge-dominated low energy proton beam in the presence of H2+ and H3+ beams has been studied in a solenoid based transport system using particle-in-cell (PIC) simulation method. Multispecies envelope equation and random search technique have been used to transport and match the primary beam considering two options. The PIC simulation shows the formation of hollow distribution of H2+ and H3+ beams around the proton beam in the first case where the waist of the proton beam is formed in between the solenoids and it is absent in the second case where the beam size is kept large in between the solenoids. Separation of hollow distribution appears more distinct as the proton fraction is increased and is almost independent of the combination of H2+ and H3+ beams for a given proton fraction. This effect helps to reject the unwanted species more effectively. The evolution of rms size and emittance of the proton beam has been studied in the presence of a circular aperture using KV and Gaussian distributions for the species in both the cases.

  16. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  17. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    Science.gov (United States)

    Douglas, David R.

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  18. Generation of high-energy monoenergetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    CERN Document Server

    Wu, Dong; He, X T; McGuffey, C; Beg, F N

    2014-01-01

    A novel radiation pressure acceleration (RPA) regime of heavy ion beams from laser-irradiated ultrathin foils is proposed by self-consistently taking into account the ionization dynamics. In this regime, the laser intensity is required to match with the large ionization energy gap when the successive ionization of high-Z atoms passing the noble gas configurations [such as removing an electron from the helium-like charge state $(\\text{Z}-2)^+$ to $(\\text{Z}-1)^+$]. While the target ions in the laser wing region are ionized to low charge states and undergo rapid dispersions due to instabilities, a self-organized, stable RPA of highly-charged heavy ion beam near the laser axis is achieved. It is also found that a large supplement of electrons produced from ionization helps preserving stable acceleration. Two-dimensional particle-in-cell simulations show that a monoenergetic $\\text{Al}^{13+}$ beam with peak energy $1\\ \\text{GeV}$ and energy spread of $5\\%$ is obtained by lasers at intensity $7\\times10^{20}\\ \\text...

  19. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  20. First beam test of ΔΦ-A initial beam loading compensation for electron linacs

    International Nuclear Information System (INIS)

    The initial-beam-loading effect may cause serious beam loss in the electron linac of the Super SOR light source. Because of the large energy spread, it is difficult to compensate the beam loading with ordinary methods, such as the adjustment of injection timing and ECS (Energy Compensation System). A phase-amplitude (ΔΦ-A) modulation system has already been developed and tested. First beam test using this system was carried out at the 125 MeV electron linac of Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University. Its result shows that our system well corrects the energy spread due to initial beam loading effect. In this paper, we report the results of first beam test. (author)

  1. Future of the Beam Energy Scan program at RHIC

    International Nuclear Information System (INIS)

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation

  2. ESCIMO.spread (v2): parameterization of a spreadsheet-based energy balance snow model for inside-canopy conditions

    Science.gov (United States)

    Marke, T.; Mair, E.; Förster, K.; Hanzer, F.; Garvelmann, J.; Pohl, S.; Warscher, M.; Strasser, U.

    2016-02-01

    This article describes the extension of the ESCIMO.spread spreadsheet-based point energy balance snow model by (i) an advanced approach for precipitation phase detection, (ii) a method for cold content and liquid water storage consideration and (iii) a canopy sub-model that allows the quantification of canopy effects on the meteorological conditions inside the forest as well as the simulation of snow accumulation and ablation inside a forest stand. To provide the data for model application and evaluation, innovative low-cost snow monitoring systems (SnoMoS) have been utilized that allow the collection of important meteorological and snow information inside and outside the canopy. The model performance with respect to both, the modification of meteorological conditions as well as the subsequent calculation of the snow cover evolution, are evaluated using inside- and outside-canopy observations of meteorological variables and snow cover evolution as provided by a pair of SnoMoS for a site in the Black Forest mountain range (southwestern Germany). The validation results for the simulated snow water equivalent with Nash-Sutcliffe model efficiency values of 0.81 and 0.71 and root mean square errors of 8.26 and 18.07 mm indicate a good overall model performance inside and outside the forest canopy, respectively. The newly developed version of the model referred to as ESCIMO.spread (v2) is provided free of charge together with 1 year of sample data including the meteorological data and snow observations used in this study.

  3. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  4. TIBER II [Tokamak Ignition/Burn Experimental Reactor] parameters with neutral beams at high energies

    International Nuclear Information System (INIS)

    The baseline neutral beam energy for TIBER II was chosen to be 500 keV consistent with the use of near term dc acceleration technology. Adequate penetration to the axis for core current drive in larger ETR devices requires higher beam energies. However, beam instabilities may limit the current drive efficiency at high energy to lower values than predicted classically. The characteristics of TIBER II and a device with 4.5 m major radius as functions of beam energy are presented. 11 refs

  5. Scheme for Low Energy Beam Transport with a Non-Neutralized Section

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-23

    A typical Low Energy Beam Transport (LEBT) design relies on dynamics with nearly complete beam space charge neutralization over the entire length of the LEBT. This paper argues that, for a beam with modest perveance and uniform current density distribution when generated at the source, a downstream portion of the LEBT can be un-neutralized without significant emittance growth.

  6. Beam energy loss to parasitic modes in SPEAR II

    International Nuclear Information System (INIS)

    The energy loss due to the excitation of parasitic modes in the SPEAR II rf cavities and vacuum chamber components has been measured by observing the shift in synchronous phase angle as a function of circulating beam current and accelerating cavity voltage. The resulting parasitic mode loss resistance is 5 Mω at a bunch length of 6.5 cm. The loss resistance varies with bunch length σ/sub z/ approximately as exp(/minus/0.3 σ/sub z/). If the measured result is compared with reasonable theoretical predictions, we infer that the major portion of the parasitic loss takes place in ring vacuum components rather than in the rf cavities. 7 refs., 5 figs., 2 tabs

  7. Energy deposition studies for the LBNE beam absorber

    Energy Technology Data Exchange (ETDEWEB)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  8. Energy deposition studies for the LBNE beam absorber

    CERN Document Server

    Rakhno, Igor L; Tropin, Igor S

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  9. Precise beam energy measurement using resonant spin depolarization in the SOLEIL storage ring

    International Nuclear Information System (INIS)

    The average electron beam energy for the operational mode of 400 mA in 416 bunches in the SOLEIL storage ring was measured to be 2.73724±0.00016 GeV with an accuracy of 5.9×10−5 using the method of resonant spin depolarization (RSD). A Touschek-dominated electron beam was excited using a shaker magnet, and the beam polarization and depolarization were monitored using the change in beam lifetime and beam loss rate. To establish the primary condition that is required to perform energy measurement using the RSD method, the radiative beam polarization was first simulated using the SLIM beam dynamics code and then measured using the relative increase of beam lifetime for a Touschek-dominated electron beam. With a fast frequency sweep rate, the main depolarization resonance to be used to extract the beam energy, along with sidebands within the range of frequency sweep, was identified during our first trials. Sweeping the frequency of the excitation field around the main resonance with a slower frequency sweep rate, the beam energy measurement accuracy was increased from 1.7×10−4 to 5.9×10−5. Finally, the effects of closed orbit distortions on the radiative polarization and measured energy accuracy are discussed.

  10. Results from the STAR Beam Energy Scan Program

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Lokesh [Department of Physics, Kent State University (United States)

    2011-07-15

    The main aim of the beam energy scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) is to explore the quantum chromodynamics (QCD) phase diagram. The specific physics goal is to search for the phase boundary and the QCD critical point. We present results from Au+Au collisions at various energies collected in the BES program by the Solenoidal Tracker At RHIC (STAR) experiment. First results on transverse momentum (p{sub T}) spectra, dN/dy, and average transverse mass () for identified hadrons produced at mid-rapidity for {radical}(s{sub NN})=7.7 GeV are presented. Centrality dependence of dN/dy and are also discussed and compared to corresponding data from other energies. In addition, first results on charged hadron directed (v{sub 1}) and elliptic flow (v{sub 2}) for {radical}(s{sub NN})=7.7, 11.5 and 39 GeV are presented. New results on event-by-event fluctuations (particle ratio, net-proton and net-charge higher moments) are presented for {radical}(s{sub NN})=39 GeV.

  11. Beam energy scan using a viscous hydro+cascade model

    CERN Document Server

    Karpenko, Iu A; Huovinen, P; Petersen, H

    2013-01-01

    Following the experimental program at BNL RHIC, we perform a similar "energy scan" using 3+1D viscous hydrodynamics coupled to the UrQMD hadron cascade, and study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow. To this aim the equation of state for finite baryon density from a Chiral model coupled to the Polyakov loop is employed for hydrodynamic stage. 3D initial conditions from UrQMD are used to study gradual deviation from boost-invariant scaling flow. We find that the inclusion of shear viscosity in the hydrodynamic stage of evolution consistently improves the description of the data for Pb-Pb collisions at CERN SPS, as well as of the elliptic flow measurements for Au-Au collisions in the Beam Energy Scan (BES) program at BNL RHIC. The suggested value of shear viscosity is $\\eta/s\\ge0.2$ for $\\sqrt{s_{NN}}=6.3\\dots39$ GeV.

  12. STAR Results from the RHIC Beam Energy Scan-I

    CERN Document Server

    ,

    2012-01-01

    The Beam Energy Scan (BES) program is being pursued at RHIC to study the QCD phase diagram, and search for the possible QCD phase boundary and possible QCD critical point. The data for Phase-I of the BES program have been collected for Au+Au collisions at center-of-mass energies ($\\sqrt{s_{NN}}$) of 7.7, 11.5, 19.6, 27, and 39 GeV. These collision energies allowed the STAR experiment to cover a wide range of baryon chemical potential $\\mu_{B}$ (100--400 MeV) in the QCD phase diagram. We report on several interesting results from the BES Phase-I covering the high net-baryon density region. These results shed light on particle production mechanism and freeze-out conditions, first-order phase transition and "turn-off" of QGP signatures, and existence of a critical point in the phase diagram. Finally, we give an outlook for the future BES Phase-II program and a possible fixed target program at STAR.

  13. Results from the STAR Beam Energy Scan Program

    CERN Document Server

    Kumar, Lokesh

    2011-01-01

    The main aim of the beam energy scan (BES) program at the Relativistic Heavy-Ion Collider (RHIC) is to explore the quantum chromodynamics (QCD) phase diagram. The specific physics goal is to search for the phase boundary and the QCD critical point. We present results from Au+Au collisions at various energies collected in the BES program by the Solenoidal Tracker At RHIC (STAR) experiment. First results on transverse momentum ($p_{T}$) spectra, $dN/dy$, and average transverse mass ($$) for identified hadrons produced at mid-rapidity for $\\sqrt{s_{NN}}$ = 7.7 GeV are presented. Centrality dependence of $dN/dy$ and $$ are also discussed and compared to corresponding data from other energies. In addition, first results on charged hadron directed ($v_{1}$) and elliptic flow ($v_{2}$) for $\\sqrt{s_{NN}}=$ 7.7, 11.5, and 39 GeV are presented. New results on event-by-event fluctuations (particle ratio, net-proton and net-charge higher moments) are presented for $\\sqrt{s_{NN}}=$ 39 GeV.

  14. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  15. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10-3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  16. Low-energy run of Fermilab Electron Cooler's beam generation system

    Energy Technology Data Exchange (ETDEWEB)

    Prost, Lionel; Shemyakin, Alexander; /Fermilab; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  17. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    Science.gov (United States)

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2008-12-01

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  18. The VULCANO spreading programme

    International Nuclear Information System (INIS)

    Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)

  19. A numerical study of the characteristics of the LEALE photon beam

    International Nuclear Information System (INIS)

    At the LEALE laboratory a monochromatic photon beam with energy in the range 80/300 MeV is available. Photons are produced by positron annihilation on a liquid hydrogen target. The characteristics of the beam are calculated for various conditions (positron energy, photon collimator, target thickness), taking into account the effects contributing to the beam spreading (energy loss and multiple scattering of protons in the annihilation target, energy distribution and angular divergence of the positron beam). (author)

  20. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhengzheng, E-mail: liuz@frib.msu.edu; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-11

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators.

  1. A new beam loss detector for low-energy proton and heavy-ion accelerators

    International Nuclear Information System (INIS)

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR), to be implemented upstream of each FRIB cryomodule, as part of the direct loss monitoring system to fulfill the needs of machine protection. - Highlights: • Traditional BLM is not effective for beam loss monitoring at FRIB low energy linac segments. • We developed LMR to intercept a small portion of beam loss and output voltage signals. • We made a prototype LMR and demonstrated its functionality to monitor small beam losses. • The LMR is very sensitive for small beam losses and is independent of beam current. • The LMR is especially useful for loss monitoring at low energy ion/proton accelerators

  2. Simulation of wire-compensation of long range beam beam interaction in high energy accelerators

    International Nuclear Information System (INIS)

    Full text: We present weak-strong simulation results for the effect of long-range beam-beam (LRBB) interaction in LHC as well as for proposed wire compensation schemes or wire experiments, respectively. In particular, we discuss details of the simulation model, instability indicators, the effectiveness of compensation, the difference between nominal and PACMAN bunches for the LHC, beam experiments, and wire tolerances. The simulations are performed with the new code BBTrack. (author)

  3. Allotropic conversion of carbon-related films by using energy beams

    International Nuclear Information System (INIS)

    Energy beams such as ion and laser beams are employed to convert of C60 molecules into another carbon allotropes. The ion beam deposition (IBD) technique is effective to study the nucleation process by changing several growth parameters (beam energy, substrate temperature and ion species). The 12CHx+ (x = 0-4) ions with different energies (50-200 eV) are incident on two kinds of substrates (Si(111) and Ir(100)/MgO(100)) at room temperature and 700 deg C. Immersed nanosize diamonds are found in amorphous films in all cases. The topological features obtained in IBD are compared with laser processing experiments

  4. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  5. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  6. Studies for the determination of the beam energy with Compton backscattered photons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng; Judin, Vitali; Huttel, Erhard; Schuh, Marcel; Streichert, Max; Papash, Alexander; Nasse, Michael J.; Hertle, Edmund; Mueller, Anke-Susanne [Karlsruhe Institute of Technology (Germany)

    2013-07-01

    The method of resonant depolarization which is now used for determination of beam energy (2.5 GeV) at ANKA becomes cumbersome for lower beam energies. As an alternative method, a compact Compton backscattering setup with a storage cavity of laser and appropriate detection system is proposed. In the presentation, the preliminary design of the setup and simulation results are present.

  7. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  8. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  9. High energy Coulomb-scattered electrons for relativistic particle beam diagnostics

    CERN Document Server

    Thieberger, P; Carlson, C; Chasman, C; Costanzo, M; Degen, C; Drees, K A; Fischer, W; Gassner, D; Gu, X; Hamdi, K; Hock, J; Marusic, A; Miller, T; Minty, M; Montag, C; Luo, Y; Pikin, A I; White, S M

    2016-01-01

    A new system used for monitoring energetic coulomb-scattered electrons as the main diagnostic for accurately aligning the electron and ion beams in the new Relativistic Heavy Ion Collider electron lenses is described in detail. Other possible applications of such energetic electrons are also discussed, such as similar systems for aligning electron beams for long-range beam-beam compensation and hollow electron beams for halo collimation and halo monitoring. A new type of "electron wire" beam profile monitor is described as well. Use of atomic electrons from the residual gas accelerated to high energies by the relativistic ions could lead to yet another type of non-destructive beam diagnostics, in this case not requiring an electron beam.

  10. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  11. Influence of initial energy modulation on premodulated electron beam propagating through a drift tube

    International Nuclear Information System (INIS)

    Influence of the initial energy modulation caused by the self-potential depression on the premodulated electron-beam propagation through a drift tube is investigated. The potential depression κ can significantly vary because of the initial current modulation. Thus, beam close-quote s kinetic energy at the injection varies accordingly. A self-consistent nonlinear theory of current modulation of the premodulated electron beam is developed. It is shown that the initial energy modulation caused by the self-potential depression at injection plays a significant role in the current modulation for long range propagation. It is also found from a small signal theory that reduction of the beam close-quote s kinetic energy due to its potential depression accelerates debunching process of the initial current modulation. Although the initial current modulation is debunched quickly for high current beam, amplitude of the current modulation never becomes zero because of the initial energy modulation. copyright 1997 American Institute of Physics

  12. Evaluation of crystal implantation technique for the measurement of neutral beam composition and energy spectra

    International Nuclear Information System (INIS)

    A promising method of measuring a neutral beam's energy spectrum and impurity content is to implant beam high purity silicon crystals. The depth distribution of the beam particles into the crystal surface is then measured by SIMS (secondary ion mass spectroscopy); the penetration distance is a function of the incident particle energy. The inferred beam energy spectrum can be used to determine the percentages of atomic and molecular ions that comprise the source plasma. Moreover, other elements are analyzed by mass and compared with the total amount of implanted hydrogen in order to obtain a beam impurity content. Previous analysis of a 40 keV ORNL hydrogen beam gave a source species composition that agreed with that obtained by magnetic momentum analysis of the residual ion beam to within the accuracy of the momentum analysis. Crystals have already been irradiated by a 78 keV hydrogen beam from the LBL 30-sec ion source at their Neutral Beam Engineering Test Facility (NBETF); similar exposures are made with the ORNL 30 sec source at the same test stand. Use of the NBETF allows direct comparison with the spectra obtained from the LBL Doppler-shift spectrometer. Although increasing particle energy allows greater peak resolution and increased accuracy, the increasing power density makes proper exposure more difficult. An exposure technique used at ORNL to measure a 70 keV beam is also discussed

  13. Monte Carlo dosimetric evaluation of high energy vs low energy photon beams in low density tissues

    International Nuclear Information System (INIS)

    Background and purpose: Low megavoltage photon beams are often the treatment choice in radiotherapy when low density heterogeneities are involved, because higher energies show some undesirable dosimetric effects. This work is aimed at investigating the effects of different energy selection for low density tissues. Patients and methods: BEAMnrc was used to simulate simple treatment set-ups in a simple and a CT reconstructed lung phantom and an air-channel phantom. The dose distribution of 6, 15 and 20 MV photon beams was studied using single, AP/PA and three-field arrangements. Results: Our results showed no significant changes in the penumbra width in lung when a pair of opposed fields were used. The underdosage at the anterior/posterior tumor edge caused by the dose build-up at the lung-tumor interface reached 7% for a 5x5 cm AP/PA set-up. Shrinkage of the 90% isodose volume was noticed for the same set-up, which could be rectified by adding a lateral field. For the CT reconstructed phantom, the AP/PA set-up offered better tumor coverage when lower energies were used but for the three field set-up, higher energies resulted to better sparing of the lung tissue. For the air-channel set-up, adding an opposed field reduced the penumbra width. Using higher energies resulted in a 7% cold spot around the air-tissue interface for a 5x5 cm field. Conclusions: The choice of energy for treatment in the low density areas is not a straightforward decision but depends on a number of parameters such as the beam set-up and the dosimetric criteria. Updated calculation algorithms should be used in order to be confident for the choice of energy of treatment

  14. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  15. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  16. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  17. Beam optics of a dipole magnet for energy measurement in an RF linac

    International Nuclear Information System (INIS)

    This paper presents the analytical calculation and simulation for the beam optics study of a 30° sector magnet. This sector magnet will be used to measure the energy of a 1.5 MeV electron beam being injected from an RF linac. From initial beam parameters, arc length of the magnet and number of ampere-turns have been optimised. To find out beam size, Transfer matrix method is used for different initial beam conditions. A program is written in MATHEMATICA to solve the envelope equation in both dispersive and non-dispersive plane . To validate this program, simulation is carried out in the software CST PARTICLE STUDIO. (author)

  18. Executive summary of the workshop on polarisation and beam energy measurement at the ILC

    International Nuclear Information System (INIS)

    This note summarizes the results of the ''Workshop on Polarisation and Beam Energy Measurements at the ILC'', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (i) physics requirements, (ii) polarised sources and low energy polarimetry, (iii) BDS polarimeters, (iv) BDS energy spectrometers, and (v) physics-based measurements of beam polarisation and beam energy from collider data. Discussions focused on the current ILC baseline programme as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarisation of Pe- >or similar 80% and positron polarisation of Pe+ >or similar 30% are part of the baseline configuration of the machine. Energy and polarisation measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed. (orig.)

  19. Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses

    International Nuclear Information System (INIS)

    Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration (RPA) of intense laser pulses is investigated. Different from previously studied RPA of protons or light ions, the dynamic ionization of high-Z atoms can stabilize the heavy ion acceleration. A self-organized, stable RPA scheme specifically for heavy ion beams is proposed, where the laser peak intensity is required to match with the large ionization energy gap when the successive ionization state passes the noble gas configurations [such as removing an electron from the helium-like charge state (Z−2)+ to (Z−1)+]. Two-dimensional particle-in-cell simulations show that a mono-energetic Al13+ beam with peak energy 1.0 GeV and energy spread of only 5% can be obtained at intensity of 7×1020 W/cm2 through the proposed scheme. A heavier, mono-energetic, ion beam (Fe26+) can attain a peak energy of 17 GeV by increasing the intensity to 1022 W/cm2

  20. Preservation effect of high energy electron beam on kyoho grape

    International Nuclear Information System (INIS)

    The Kyoho grapes were kept in cold storage of-0.5 degree C ∼ 0.5 degree C, RH 85% ∼ 95% after irradiation of 400, 700, 1000, 1500, 2500 Gy and SO2 treatment, and the antiseptic effect and storage quality were studied. The result showed that high energy electron beam could control the growth of bacteria, mould, yeast, coliform, alleviate the deterioration of grapes during storage. Irradiation below the dose 1000 Gy can decrease the respiration intensity, prevent the decreasing of titratable acid, ascorbic acid content, and keep higher activity of SOD enzyme. The Vc content was 3.79 mg /100 g after 700 Gy irradiation 90 days, the titratable acid and total soluble sugar content were 0.348%, 11.44%, and the activity of SOD was 14.89 U /g, which was higher than the control significantly (P 2 bleaching spot. Integrate the effects on microorganism control and grape quality, treatment of 700 Gy had the best preservation effect in this study. After preserved for 98 d, the good fruit rate of 700 Gy treatment was 93.33% , significantly higher than other treatments (P < 0.05). (authors)

  1. Global energy confinement scaling for neutral-beam-heated tokamaks

    International Nuclear Information System (INIS)

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks has been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from ASDEX, DITE, D-III, ISX-B, PDX, PLT, and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tau/sub E/ on discharge parameters kappa, I/sub p/, B/sub t/, anti n/sub e/ P/sub tot/, a, and R/a, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tau/sub E/ α kappa/sup 0.28/ B/sub T//sup -0.09/ I/sub p//sup 1.24/anti n/sub e//sup -0.26/ P/sub tot//sup -0.58/ a/sup 1.16/ (R/a)/sup 1.65/

  2. Global energy confinement scaling for neural-beam-heated tokamaks

    International Nuclear Information System (INIS)

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks have been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from Asdex, DITE, D-III, ISX-B, PDX, PLT and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tausub(E) on the discharge parameters kappa, Isub(p), Bsub(t), n-barsub(e)Psub(tot), a and R, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tausub(E) is proportional to kappasup(0.28)Bsub(T)sup(-0.09)Isub(p)sup(1.24)n-barsub(e)sup(0.26) Psub(tot)sup(-0.58)asup(-0.49)Rsup(1.65). (author)

  3. Time-resolved energy spectrum of a pseudospark-produced electron beam

    International Nuclear Information System (INIS)

    For the first time a time-resolved energy spectrum of a pseudospark-produced electron beam is constructed. A small portion of electron beam sampled at its axis is injected into a vacuum and the electrons passed through a negatively biased electrode are measured by a Faraday cup. The time-resolved energy spectrum is determined by analyzing the Faraday cup current waveforms measured at various bias voltages. The resultant spectrum reveals that the instantaneous beam energy is nearly monoenergetic. The energy is monotonically decreasing in time and resembles the anode-cathode voltage waveform. This suggests that electrons are accelerated by the full instantaneous anode-cathode voltage

  4. High energy backward-Compton scattering γ beam for particle and nuclear physics

    International Nuclear Information System (INIS)

    The GeV photon beam at SPring-8 is produced by backward-Compton scattering of laser photons from 8 GeV electrons. The maximum energy of the photon will be above 3 GeV, and the beam intensity will be 107 photons/sec. Polarization of the photon beam will be 100% at the maximum energy with fully polarized laser photons. We report the outline of the quark nuclear physics project with this high-quality high-intensity beam. (author)

  5. Scintillation light produced by low-energy beams of highly-charged ions

    OpenAIRE

    M. Vogel; Winters, D.F.A.; Ernst, H.; H. Zimmermann; Kester, O.

    2007-01-01

    Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and ...

  6. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  7. Spread Supersymmetry

    CERN Document Server

    Hall, Lawrence J

    2011-01-01

    In the multiverse the scale of SUSY breaking, \\tilde{m} = F_X/M_*, may scan and environmental constraints on the dark matter density may exclude a large range of \\tilde{m} from the reheating temperature after inflation down to values that yield a LSP mass of order a TeV. After selection effects, the distribution for \\tilde{m} may prefer larger values. A single environmental constraint from dark matter can then lead to multi-component dark matter, including both axions and the LSP, giving a TeV-scale LSP lighter than the corresponding value for single-component LSP dark matter. If SUSY breaking is mediated to the SM sector at order X^* X, only squarks, sleptons and one Higgs doublet acquire masses of order \\tilde{m}. The gravitino mass is lighter by a factor of M_*/M_Pl and the gaugino masses are suppressed by a further loop factor. This Spread SUSY spectrum has two versions; the Higgsino masses are generated in one from supergravity giving a wino LSP and in the other radiatively giving a Higgsino LSP. The env...

  8. SHOCK IMPACT OF HIGH ENERGY/INTENSITY BEAMS WITH MATTER AND HIGH ENERGY DENSITY PHYSICS

    OpenAIRE

    Blanco Sancho, Juan; Schmidt, Rudiger

    2010-01-01

    The purpose of this study is to assess the damage caused to the equipment (beamdump, collimators etc) in case of an accident involving full impact of the LHC beam. First, the FLUKA code [1] is used to calculate the proton energy loss in solid carbon and this energy loss data is used as input to a two–dimensional hydrodynamic computer code, BIG2 [2] to study the thermodynamic and hydrodynamic response of the target. The BIG2 code is run for 5 μs and the density distribution at the end of this ...

  9. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  10. Intermediate energy neutron beams from the MURR [University of Missouri Research Reactor

    International Nuclear Information System (INIS)

    Several reactors in the US are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, ideal beams of 1, 35, and 1,000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive Al, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube

  11. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  12. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Science.gov (United States)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  13. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams

    International Nuclear Information System (INIS)

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm2. For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm2. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm2 for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis

  14. Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description

    International Nuclear Information System (INIS)

    We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV - 5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ≤ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ∼ 0.1 - 1 MeV. We have also studied the influence in the radial distribution of deposited energy by using a full energy distribution of secondary electrons generated by proton impact or by using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ∼ 0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly

  15. Probing the high-density behavior of nuclear symmetry energy with high-energy radioactive beams

    CERN Document Server

    Li, B A

    2003-01-01

    Central collisions induced by high energy radioactive beams can be used as a novel means to obtain crucial information about the high density ({\\rm HD}) behaviour of nuclear symmetry energy. This information is critical for understanding several key issues in astrophysics. Within an isospin-dependent hadronic transport model using phenomenological equations of state ({\\rm EOS}) for dense neutron-rich matter, we investigate several experimental probes of the HD behavior of nuclear symmetry energy, such as, the $\\pi^-$ to $\\pi^+$ ratio, neutron-proton differential flow and its excitation function. Measurements of these observables will provide the first terrestrial data to constrain stringently the HD behaviour of nuclear symmetry energy and thus also the {\\rm EOS} of dense neutron-rich matter.

  16. Space-charge neutralization experiment with a low-energy proton beam

    International Nuclear Information System (INIS)

    The mechanism of space-charge neutralization of a low-energy proton beam is investigated both experimentally and theoretically. In the experiment, the transverse profile of a 500 keV proton beam delivered by a duoplasmatron source is accurately measured at the end of a 3 m long drift space. Profile measurements are performed by an imaging technique using a scintillating screen and an intensified CCD camera. Measurement results done with different beam intensities (between 0.5 and 15 mA) and various residual-gas pressures are described. They show that, at high beam current an increase of the gas pressure results in a reduction of the beam spot, which indicates an increase of the value of the neutralization coefficient. On the other hand, the behavior is the opposite at low beam current: the beam size increases with the gas pressure. An interpretation of these experimental results is proposed. (author)

  17. A microwave chip-based beam splitter for low-energy guided electrons

    CERN Document Server

    Hammer, J; Weber, Ph; Hommelhoff, P

    2014-01-01

    We demonstrate the splitting of a low-energy electron beam by means of a microwave pseudopotential formed above a planar chip substrate. Beam splitting arises from smoothly transforming the transverse guiding potential for an electron beam from a single-well harmonic confinement into a double-well, thereby generating two separated output beams with $5\\,$mm lateral spacing. Efficient beam splitting is observed for electron kinetic energies up to $3\\,$eV, in excellent agreement with particle tracking simulations. Furthermore, we present a beam splitter potential that is numerically optimized towards coherent and adiabatic splitting of guided electron wave packets. Prospects for electron-based quantum matter-wave optics applications are discussed.

  18. Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics

    CERN Document Server

    Papaphilippou, Y; Argyropoulos, T; Bartmann, W; Bartosik, H; Bohl, T; Bracco, C; Cettour-Cave, S; Cornelis, K; Drosdal, L; Esteban Muller, J; Goddard, B; Guerrero, A; H¨ofle, W; Kain, V; Rumolo, G; Salvant, B; Shaposhnikova, E; Timko, H; Valuch, D; Vanbavinckhove, G; Wenninger, J; Gianfelice-Wendt, E

    2013-01-01

    An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.

  19. Nuclear fragmentation of high-energy light-ion beams in water

    International Nuclear Information System (INIS)

    Light-ion beams ranging between carbon and neon with energies of a few hundred MeV/u offer favorable conditions for the treatment of deep-seated tumors. Nuclear fragmentation experiments are presented to study favorable therapy beams simultaneously in thick water target. Comparative measurements with 10B, 12C, 14N, 16O beams are described. (R.P.) 5 refs.; 4 figs

  20. Calculation of energy spectra for the therapeutic electron beams from depth-dose curves

    International Nuclear Information System (INIS)

    In this note the algorithm for calculation of the electron energy spectrum from the depth-dose curve was tested by data on a 4 MeV linear accelerator with scanning beam. A Perspex phantom with cellulose triacetate dosimetric films was irradiated on a conveyor moving perpendicularly to the area of beam scanning, thus simulating irradiation by broad beam. Excellent agreement between measured and calculated spectra is claimed. (U.K.)

  1. A calorimeter-Faraday cup to measure energy content of ion beams

    International Nuclear Information System (INIS)

    A calorimeter-Faraday cup to measure energy content of ion beams is described. It uses an HP quartz thermometer having a 10-40C sensitivity; contact potential problems, arising when working with thermocouples, are so avoided. Calibration has been performed with a resistive filament and with an electron beam. The apparatus is profitable if the measured ion beams are constant in time. The measured sensitivity was 10-40C/10-5W. (author)

  2. The calculation of mean energy for electron beam in the energy range of radio therapy in light media

    International Nuclear Information System (INIS)

    A Gaussian distribution for electron energy is deduced by Fokker-Planck approximation to the Boltzmann equation for high-energy electrons penetrating in multi-constituents media, then a recursion-iteration algorithm for the mean energy calculation of high-energy electron beam is obtained after introducing the modified CSDA mean energy and using Yang's multiple scattering theory. Some calculational results of this algorithm are also given in the article, and compared with corresponding data of Monte Carlo simulations and experimental measurements. The comparison shows that the algorithm can precisely predict the mean energy of high-energy electron beam penetrating in light media. Furthermore, two common formulae for electron beam mean energy calculation in radiotherapy dose algorithms. i.e., the Harder formula and Brahme formula, are discussed, and a more accurate semi-empirical formula is recommended as well

  3. Production of low-energy neutral oxygen beams by grazing-incidence neutralization

    International Nuclear Information System (INIS)

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

  4. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Science.gov (United States)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  5. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    International Nuclear Information System (INIS)

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  6. A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Göttfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Härtel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Krüger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmored, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Røhne, O.; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P A; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C J W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by 11% to 25% compared to the response at the electromagnetic scale.

  7. THERMO-MECHANICAL MODELLING OF METAL STRUCTURES SUBJECTED TO HIGH ENERGY PARTICLE BEAM IMPACTS

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    Particle accelerators [Wiedemann 1993] act as microscopes for such a complex research; these large machines accelerate charged elementary particles (electrons, protons or ionized atoms) to high kinetic energies. A high energy particle beam can be brought into collision against a fixed target or against another beam and from this encounter a multitude of short life sub-atomic particles is originated. The higher the energy of the colliding beams and the event rate, the wider the spectrum of the generable sub-atomic particles.

  8. RF broad-beam low-energy ion source with electron compensation

    Directory of Open Access Journals (Sweden)

    Zykov A. V.

    2010-03-01

    Full Text Available Characteristics of single-grid RF ion source with 250 mm beam diameter and 1A beam current have been studied. Energy distribution functions of electrons and ions emitted by the source have been measured. It is shown that the emitted electron current is sufficient for full ion beam current compensation. The technique of ion to electron current ratio control allowing to change this ratio in wide range is proposed. Using the ICP in the source allows to rich high current density in the low ion energy range with the possibility of independent control of ion energy and current density.

  9. Measurement of low energy longitudinal polarised positron beams via a Bhabha polarimeter

    CERN Document Server

    Alexander, G; Alexander, Gideon; Reinherz-Aronis, Erez

    2005-01-01

    The introduction of a longitudinal polarised positron beam in an $e^+e^-$ linear collider calls for its polarisation monitoring and measurement at low energies near its production location. Here it is shown that a relatively simple Bhabha scattering polarimeter allows, at energies below 5000 MeV, a more than adequate positron beam longitudinal polarisation measurement by using only the final state electrons. It is further shown that out of the three, 10, 250 or 5000 MeV positron beam energy locations, where the polarisationmeasurement in the TESLA linear collider can be performed, the 250 MeV site is best suited for this task.

  10. Estimates of energy fluence at the focal plane in beams undergoing neutralized drift compression

    International Nuclear Information System (INIS)

    The authors estimate the energy fluence (energy per unit area) at the focal plane of a beam undergoing neutralized drift compression and neutralized solenoidal final focus, as is being carried out in the Neutralized Drift Compression Experiment (NDCX) at LBNL. In these experiments, in order to reach high beam intensity, the beam is compressed longitudinally by ramping the beam velocity (i.e. introducing a velocity tilt) over the course of the pulse, and the beam is transversely focused in a high field solenoid just before the target. To remove the effects of space charge, the beam drifts in a plasma. The tilt introduces chromatic aberrations, with different slices of the original beam having different radii at the focal plane. The fluence can be calculated by summing the contribution from the various slices. They develop analytic formulae for the energy fluence for beams that have current profiles that are initially constant in time. They compare with envelope and particle-in-cell calculations. The expressions derived are useful for predicting how the fluence scales with accelerator and beam parameters

  11. Observation of resonant energy transfer between identical-frequency laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Afeyan, B. B.; Cohen, B. I.; Estabrook, K. G.; Glenzer, S. H.; Joshi, C.; Kirkwood, R. K.; Moody, J. D.; Wharton, K. B.

    1998-12-09

    Enhanced transmission of a low intensity laser beam is observed when crossed with an identical-frequency beam in a plasma with a flow velocity near the ion sound speed. The time history of the enhancement and the dependence on the flow velocity strongly suggest that this is due to energy transfer between the beams via a resonant ion wave with zero frequency in the laboratory frame. The maximum energy transfer has been observed when the beams cross in a region with Mach 1 flow. The addition of frequency modulation on the crossing beams is seen to reduce the energy transfer by a factor of two. Implications for indirect-drive fusion schemes are discussed.

  12. Energy and energy width measurement in the FNAL antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H{sub 2} gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10{sup 4} in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter {eta} = (P{sub beam}/F{sub rev}){center dot}(dF{sub rev}/dP{sub beam}). These two measurement techniques are described in this report.

  13. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  14. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  15. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    Science.gov (United States)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  16. Radiobiological Characterization of Two Therapeutic Proton Beams With Different Initial Energy Spectra Used at the Institut Curie Proton Therapy Center in Orsay

    International Nuclear Information System (INIS)

    Purpose: Treatment planning in proton therapy uses a generic value for the relative biological efficiency (RBE) of 1.1 throughout the spread-out Bragg peak (SOBP) generated. In this article, we report on the variation of the RBE with depth in the SOBP of the 76- and 201-MeV proton beams used for treatment at the Institut Curie Proton Therapy Center in Orsay. Methods and Materials: The RBE (relative to 137Cs γ-rays) of the two modulated proton beams at three positions in the SOBP was determined in two human tumor cells using as endpoints clonogenic cell survival and the incidence of DNA double-strand breaks (DSBs) as measured by pulse-field gel electrophoresis without and with enzymatic treatment to reveal clustered lesions. Results: The RBE for induced cell killing by the 76-MeV beam increased with depth in the SOBP. However for the 201-MeV protons, it was close to that for 137Cs γ-rays and did not vary significantly. The incidence of DSBs and clustered lesions was higher for protons than for 137Cs γ-rays, but did not depend on the proton energy or the position in the SOBP. Conclusions: Until now, little attention has been paid to the variation of RBE with depth in the SOBP as a function of the nominal energy of the primary proton beam and the molecular nature of the DNA damage. The RBE increase in the 76-MeV SOBP implies that the tumor tissues at the distal end receives a higher biologically equivalent dose than at the proximal end, despite a homogeneous physical dose. This is not the case for the 201-MeV energy beam. The precise determination of the effects of incident beam energy, modulation, and depth in tissues on the linear energy transfer–RBE relationship is essential for treatment planning.

  17. Laser diagnostic for high current H- beams

    International Nuclear Information System (INIS)

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H- beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4x10-17cm2 at 1.5 eV, A 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10 ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H- beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H- beam to allow diagnostics on the neutral beam without intercepting the high-current H- beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated. copyright 1998 American Institute of Physics

  18. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10-5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  19. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    International Nuclear Information System (INIS)

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams

  20. Electron beam guiding by grooved SiO2 parallel plates without energy loss

    Science.gov (United States)

    Xue, Yingli; Yu, Deyang; Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-01

    Using a pair of grooved SiO2 parallel plates, stably guided electron beams were obtained without energy loss at 800-2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  1. Dosimetric characterisation of a low energy electron beam machine using cellulose triacetate (CTA) film

    International Nuclear Information System (INIS)

    Every new electron beam accelerator has to be dosimetrically characterised. This paper reports the dosimetric characterizations of newly installed low every electron beam machine using two types of CTA film thickness i.e. 125μ and 38μ . Data on dose rate, lateral and depth dose distribution, and the relationship between energy, current, conveyor speed and dose per pass are established

  2. The Utrecht 850 kV cascade generator I. Beam deflection and energy control

    NARCIS (Netherlands)

    Braams, C.M.; Smith, P.B.

    1960-01-01

    The beam deflection magnet and energy control system of the Utrecht cascade generator are described. The uniform-field magnet has entrance and exit slits located outside the magnetic held. Since the cascade generator produces a vertical beam, the most convenient choice for the angle of deflection wa

  3. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  4. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    CERN Document Server

    Prost, Lionel R

    2016-01-01

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  5. On the exponential decay of the Euler-Bernoulli beam with boundary energy dissipation

    OpenAIRE

    Lazzari, Barbara; Nibbi, Roberta

    2011-01-01

    We study the asymptotic behavior of the Euler-Bernoulli beam which is clamped at one end and free at the other end. We apply a boundary control with memory at the free end of the beam and prove that the "exponential decay" of the memory kernel is a necessary and sufficient condition for the exponential decay of the energy.

  6. Parallel blind deconvolution of astronomical images based on the fractal energy ratio of the image and regularization of the point spread function

    Science.gov (United States)

    Jia, Peng; Cai, Dongmei; Wang, Dong

    2014-11-01

    A parallel blind deconvolution algorithm is presented. The algorithm contains the constraints of the point spread function (PSF) derived from the physical process of the imaging. Additionally, in order to obtain an effective restored image, the fractal energy ratio is used as an evaluation criterion to estimate the quality of the image. This algorithm is fine-grained parallelized to increase the calculation speed. Results of numerical experiments and real experiments indicate that this algorithm is effective.

  7. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y., E-mail: yutaka-fujiwara@aist.go.jp; Sakakita, H.; Nakamiya, A. [Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan); Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan); Hirano, Y.; Kiyama, S. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568 (Japan)

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  8. Some Theoretical Estimations of Spatial Distribution of Compton Backscattered Laser Photons Beam

    CERN Document Server

    Peresunko, Yu P

    2003-01-01

    Spatial distribution of intensity, degree and direction of linear polarization of tagged photon beam, which is obtained due to Compton backscattering of laser light on high-energy electron beam, are calculated. Effects of angular dispersion and spatial spread of electron beam are taken into account. Calculations have been carried out for the example of LEGS facility.

  9. Electron beam electromagnetic field interaction in one-dimensional coaxial vircator

    Science.gov (United States)

    Shao, H.; Liu, G. Z.; Yang, Z. F.

    2005-10-01

    A one-dimensional model of the interaction between an injected electron beam and an electromagnetic (EM) field inside a coaxial vircator is presented. The effects of the injected electron beam energy spread, anode absorption rate, feedback and injected current premodulation are analyzed. The EM-gains of interaction between the electron beam and TM01, TE11 modes are derived and discussed.

  10. Basic Phenomena In High Energy-Density Beam Welding And Cutting

    Science.gov (United States)

    Arata, Yoshiaki

    1983-08-01

    Essential features in the dynamic behaviours of welding and cutting processes with high energy density beams are reviewed and clarified by the efficient usage of various cineradiographic diagnosises. Formation of a deep beam hole in the weld pool are described and the important effect of the front wall characters in the beam hole is demonstrated on the natures of deep penetration and defect formations such as spiking and porosity. The cutting process is also interpreted in the frame of the same physical viewpoint with the welding. A new and efficient suppression method of spiking, porosity and humping are examined and confirmed using Tandem Electron Beam developed by the author.

  11. An ESQ lens system for low energy beam transport experiments on the SSC test stand

    International Nuclear Information System (INIS)

    A low-energy beam transport system is designed with the aim of transporting a 30 mA, 35 kV H- beam from a volume source and focusing it into an RFQ. The characteristics of the beam from the source are determined analyzing the emittance data. The behavior of the beam through the LEBT is studied using simulation codes. The system parameters are optimized so that the LEBT has a very modest contribution to the emittance growth (here a factor of about 1.5) and the emittance budget of the linac section is maintained

  12. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  13. Control of energy sweep and transverse beam motion in induction linacs

    International Nuclear Information System (INIS)

    Recent interest in the electron induction accelerator has focused on its application as a driver for high power radiation sources - free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out typical beam successful experiments have been carried out typical beam parameters are: beam energy 1 to 10MeV, current 1 to 3kA and pulse width 50nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep 8 A/m2rad2. In the visible region the requirements on these parameters become roughly an order of magnitude more stringent. Recently with the ETAII accelerator at LLNL the authors have achieved energy sweep 108 A/m2rad2 for 40nsec flattop with 1.5kA of beam current and 2.7MeV energy. In this paper they will discuss the recent data and the advances that have made the improved beam quality possible. The most important advances are; understanding of focusing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion

  14. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  15. Chromaticity of the lattice and beam stability in energy-recovery linacs

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  16. Low energy electron beam processing in Europe at the end of the 20th century

    International Nuclear Information System (INIS)

    Overview of low energy electron beam processing in Europe was presented. The presentation contained the following topics: the early installations, years of growth, stagnation, status 1999 and the future of this technology

  17. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  18. Precision shape modification of nanodevices with a low-energy electron beam

    Science.gov (United States)

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  19. The practical experience of a total conversion to high energy electron beam processing

    Science.gov (United States)

    Descamps, Th.

    1995-02-01

    The total conversion of a manufacturing site to a new sterilisation method, high energy electron beam, combined with the rearrangement of the concerned assortment of products is a vast program. The result is a modern and efficient sterilisation tool.

  20. The practical experience of a total conversion to high energy electron beam processing

    International Nuclear Information System (INIS)

    The total conversion of a manufacturing site to a new sterilisation method, high energy electron beam, combined with the rearrangement of the concerned assortment of products is a vast program. The result is a modern and efficient sterilisation tool. (author)

  1. Design of the medium energy beam transport (MEBT) line for the rare ion beam project at VECC

    International Nuclear Information System (INIS)

    The design of a 24 m long MEBT line connecting the accelerator LINAC 3 with LINAC 4 of the VECC-RIB project is presented. The design goal is to achieve a optimal solution for the transport of heavy ion beams, emerging from LINAC 3 with the mean energy of 414 KeV/u and q/A ≥ 1/14 so that the beam is well matched both in transverse and longitudinal direction at the entry of the LINAC 4. A charge stripper is placed before LINAC 4 in order to achieve higher charge to mass ratio (q/A ≥ 1/7). The presence of the charge stripper requires that the alpha and beta parameters of the beam both in X and Y plane should be very small at the charge stripper so that emittance blow up is less. The restrictions of space in the site compel us to make the line about 14 m long before it can be bent in a 90 degree achromatic bend. As we are using a charge stripper, mass dispersion must be high at the intermediate focal point between the two dipole magnets of the achromatic bend to select the desired ion species for acceleration in the subsequent acceleration stages. This rather long length (∼ 24 m) of the beam line requires two rebunchers to match the beam longitudinally at the entry of the LINAC 4. In this paper, the step by step procedure of achieving various requirements, viz, minimization of alpha and beta at the stripper, achromatic bend with appreciable mass dispersion in between the bending magnets and beam matching at LINAC 4 could be effectively met. (author)

  2. Presumption of the energy-spectrum of high-energy electron beam based on the beta-distribution model

    International Nuclear Information System (INIS)

    The energy spectra of high-energy electron beams used in radiotherapy are the most important data for evaluating absorbed doses and/or dose distributions in the body of a patient. However, it is impossible to measure the actual spectra of a high-energy electron beam. In this study, we suggest a method to presume the spectra of high-energy electron beams by use of the beta distribution model. The procedure of this method is as follows: (1) the spectrum of the high-energy electron beam was assumed to have a maximum energy Emax, and α, β parameters of the beta probability density function. (2) The percentage depth dose (PDD) based on the assumed spectrum was calculated by a Monte Carlo simulation. (3) The best matching energy spectrum was searched in comparison with the experimental PDD curves. Finally, the optimal energy spectrum of the electron beam was estimated after reiterating the process from (1) to (3). With our method, the measured PDD curves were optimally simulated following the experimental data. It appeared that the assumed spectra approximated well to the actual spectra. However, the error between the assumed and experimental data was observed in the region under the incident surface. We believe this was due to the influence of low-energy electrons scattered at installed collimators, etc. In order to simulate PDDs in this region accurately, a further correction process is required for a spectrum based on the beta distribution model. (author)

  3. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    Science.gov (United States)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  4. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11C and 19Ne beams, but the short half-life of 19Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  5. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Science.gov (United States)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  6. Design and Optimization of Low Energy Beam Transport for TAC Proton Facility

    CERN Document Server

    Kisoglu, H F; Sultansoy, S; Yilmaz, M

    2014-01-01

    In this study, a low energy beam transport (LEBT) channel for the proton linac section of the Turkish Accelerator Center (TAC) has been designed by using TRAVEL code. Commonly used LEBT including two focusing solenoid magnets will transport and match the H- beam from a volume source to RFQ. In the beam dynamics simulations of such a LEBT line, 95% space-charge compensation (SCC) has been considered in this study. We aimed to find out the determination of our RFQ parameters that gives the best possible beam quality using beam collimator as an alternative way. In this way, we have acquired the best possible beam quality on RFQ input plane as well as optimizing the LEBT line.

  7. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac

    International Nuclear Information System (INIS)

    The H− magnetron source provides about 100 mA H− beam to be match into the radio-frequency quadrupole accelerator. As H− beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H− beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H− beam from optically pumped polarized ion source

  8. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac.

    Science.gov (United States)

    Raparia, D; Alessi, J; Atoian, G; Zelenski, A

    2016-02-01

    The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source. PMID:26932107

  9. Analysis of an energy harvesting piezoelectric beam with energy storage circuit

    International Nuclear Information System (INIS)

    Accurate (distributed-parameter) models of energy harvesting piezoelectric beams have recently been presented and experimentally validated. However, these studies were limited in their practical significance since the external electrical load was assumed to be a simple linear impedance (resistor or capacitor), without any means of energy storage. This paper presents and validates experimentally a mathematical model of a base-excited piezoelectric cantilever connected across an energy storage circuit comprising a diode in series with a capacitor. The resulting half-wave AC–DC rectification enables the capacitor to retain a part of the harvested energy (i.e. accumulate a mean voltage). The Euler–Bernoulli beam model with piezoelectric coupling is used. The resulting wave equation is transformed into modal space using the analytical modal analysis method (AMAM). The Shockley diode equation is used to model the current. The resulting nonlinear system of equations is solved for a prescribed base motion input using a numerical integration routine. The analysis of the same cantilever connected across an unrectified capacitor is also performed for comparative purposes. Theoretical studies show that, for the case of the rectified capacitor, as well as the unrectified capacitor, the energy harvesting effect does not have a dampening effect on the steady-state vibration. However, whereas the resonance frequency of the unrectified system is a function of the load, the resonance frequency of the rectified system is fixed at a value that is very close to the open circuit resonance frequency of the unrectified system. The theoretical findings are validated by the experimental results. (paper)

  10. Use of Crystals for High Energy Photon Beam Linear Polarization Conversion into Circular

    CERN Document Server

    Akopov, N Z; Darbinian, S M

    2000-01-01

    The possibility to convert the photon beam linear polarization into circularone at photon energies of hundreds GeV with the use of crystals is considered.The energy and orientation dependencies of refractive indexes are investigatedin case of diamond, silicon and germanium crystal targets. To maximize thevalues for figure of merit, the corresponding crystal optimal orientationangles and thickness are found. The degree of circular polarization andintensity of photon beam are estimated and possibility of experimentalrealization is discussed.

  11. A novel rice transformation method mediated by low energy ion beam

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Transfer the foreign DNA into rice via ion beam was first reported in 1994 in our lab. In this study, we aimed to establish an efficient transformation system mediated by low energy ion beam. Factors influenced the transformation were carefully investigated, including type of ion, parameters of ion energy, dose and dose rate, and plant genotype and receptors. Molecular and genetic characterization of a large number of these plants (more than 250 independent transgenic plants) provided the basis information of this system.

  12. Bioeffects of Low Energy Ion Beam Implantation: DNA Damage, Mutation and Gene Transter

    Institute of Scientific and Technical Information of China (English)

    TANG Mingli; YU Zengliang

    2007-01-01

    Low-energy ion beam implantation(10~200 keV)has been proved to have a wide range of biological effects and is broadly used in the breeding of crops and micro-organisms.To understand its mechanisms better and facilitate its applications,the developments in the bioeffects of low energy ion beam implantation in the past twenty years are summarized in this paper.

  13. Frontiers of particle beam and high energy density plasma science using pulse power technology

    International Nuclear Information System (INIS)

    The papers presented at the symposium on “Frontiers of Particle Beam and High Energy Density Plasma Science using Pulse Power Technology” held in November 20-21, 2009 at National Institute for Fusion Science are collected. The papers reflect the present status and resent progress in the experiment and theoretical works on high power particle beams and high energy density plasmas produced by pulsed power technology. (author)

  14. Biomedical applications of medium energy particle beams at LAMPF

    International Nuclear Information System (INIS)

    At LAMPF an 800-MeV proton accelerator is used to produce intense beams of secondary protons, pi mesons, and muons which are being employed in several areas of biomedical research. The primary proton beam is used to produce short-lived radioisotopes of clinical interest. Carefully tailored secondary proton beams are used to obtain density reconstructions of samples with a dose much less than that required by x-ray CT scanners. The elemental composition of tissue samples is being determined non-destructively with muonic x-ray analysis. Finally, an extensive program, with physical, biological, and clinical components, is underway to evaluate negative pi mesons for use in cancer radiotherapy. The techniques used in these experiments and recent results are described

  15. Beam Emittance Measurements for the Low-Energy Demonstration Accelerator Radio-Frequency Quadrupole

    OpenAIRE

    Schulze, M. E.; Gilpatrick, J.D.; Lysenko, W. P.; Rybarcyk, L. J.; Schneider, J. D.; Smith, Jr., Norman Austin; You, L. M.

    2000-01-01

    The Low-Energy Demonstration Accelerator (LEDA) radio-frequency quadrupole (RFQ) is a 100% duty factor (CW) linac that delivers >100 mA of H+ beam at 6.7 MeV. The 8-m-long, 350-MHz RFQ structure accelerates a dc, 75-keV, 110-mA H+ beam from the LEDA injector with >90% transmission. LEDA [1,2] consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW RFQ with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam stop. The beam...

  16. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  17. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.;

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion-effect...... on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that...

  18. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    In this report the activities of the GSI Darmstadt (FRG) during 1985 concerning inertial confinement fusion by heavy ion beams. Short communications and abstracts are presented concerning a Z-pinch experiment, heavy ion pumped lasers and X-ray spectroscopy, the study of ion-ion collisions, a RFQ development and beam transport studies, accelerator theory, targets for SIS/ESR experiments, the rayleigh-Taylor instability, studies on the equation of state for matter under high pressure, as well as the development of computer codes. (HSI)

  19. Application of Energy Finite Element Method in Active Vibration Control of Piezoelectric Intelligent Beam

    Directory of Open Access Journals (Sweden)

    Jinhua Xie

    2012-01-01

    Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.

  20. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-05-01

    Highlights: • Decelerated ultra-low energy ion beam bombarded naked DNA. • DNA form change induced by ion bombardment was investigated. • N-ion bombardment at 32 eV induced DNA single and double strand breaks. • Ar-ion bombardment at a-few-hundreds eV induced DNA single strand break. - Abstract: Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  1. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    International Nuclear Information System (INIS)

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand

  2. Controlled self-modulation of high energy beams in a plasma

    International Nuclear Information System (INIS)

    A high energy particle beam propagating in a uniform plasma is subject to the transverse two-stream instability that first transforms the beam into the train of microbunches and then quickly destroys that train by transverse wakefields. By the proper longitudinal inhomogeneity of the plasma density, it is possible to stop the instability action at the stage of microbunches and form the bunch train that can resonantly excite plasma wakefields over a long distance. The latter feature is vital for proton beam driven plasma wakefield acceleration that was recently proposed as a way to bring electrons to TeV energy range in a single plasma section.

  3. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly. PMID:12689203

  4. Scintillating screens sensitivity and resolution studies for low energy, low intensity beam diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Harasimowicz, Janusz; Welsch, Carsten P. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Cosentino, Luigi; Finocchiaro, Paolo; Pappalardo, Alfio [National Institute of Nuclear Physics INFN-LNS, Catania 95125 (Italy)

    2010-10-15

    In order to investigate the limits of scintillating screens for beam profile monitoring in the ultra-low energy, ultra-low intensity regime, CsI:Tl, YAG:Ce, and a Tb glass-based scintillating fiber optic plate (SFOP) were tested. The screens response to 200 and 50 keV proton beams with intensities ranging from a few picoampere down to the subfemtoampere region was examined. In the following paper, the sensitivity and resolution studies are presented in detail for CsI:Tl and the SFOP, the two most sensitive screens. In addition, a possible use of scintillators for ultra-low energy antiproton beam monitoring is discussed.

  5. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Mohamed Y., E-mail: zakaria@vt.edu; Al-Haik, Mohammad Y.; Hajj, Muhammad R. [Virginia Tech, Norris Hall, Blacksburg, Virginia 24061 (United States)

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  6. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    International Nuclear Information System (INIS)

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle- in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design. (authors)

  7. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Science.gov (United States)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-03-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  8. Time-energy relation of the n{sub T}OF neutron beam: energy standards revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, G.; Colonna, N. E-mail: nicola.colonna@ba.infn.it; Marrone, S.; Tagliente, G.; Heil, M.; Cano-Ott, D.; Mosconi, M.; Moreau, C.; Mengoni, A.; Abbondanno, U.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Angelopoulos, A.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvar, F.; Benlliure, J.; Berthomieux, E.; Bisceglie, E.; Calvino, P.; Capote, R.; Cennini, P.; Chepel, V.; Chiaveri, E.; Coceva, C.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Frais-Koelbl, H.; Furman, W.I.; Goncalves, I.F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Herrera-Martinez, A.; Ioannides, K.G.; Isaev, S.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Ketlerov, V.; Kitis, G.; Koehler, P.E.; Konovalov, V.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, M.I.; Lozano, M.; Lukic, S.; Marganiec, J.; Mastinu, P.F.; Milazzo, P.M.; Molina-Coballes, A.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Peskov, V.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.M.; Rapp, W.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Soares, J.C.; Stephan, C.; Tain, J.L.; Tassan-Got, L.; Tavora, L.M.N.; Terlizzi, R.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K

    2004-10-21

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the n{sub T}OF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of {sup 193}Ir, which is commonly considered as an energy standard.

  9. Beam-Flattener Design for High Energy Radiographic Inspection

    Science.gov (United States)

    Grandin, Robert; Rudolphi, Thomas

    2009-01-01

    This report documents the work done to develop a beam flattener for use in the inspection of rocket motors at ATK Space Systems Utah facilities. The following pages provide a brief introduction to the necessity of this project, comprehensive description of the design methodology, and experimentally-based conclusions regarding project success.

  10. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  11. Low-energy radioactive nuclear beam project at INS

    International Nuclear Information System (INIS)

    The present status of the Institute for Nuclear Study of the University of Tokyo (INS) radioactive nuclear beam project is reported. The capability of the facility and possible experiments are also discussed, including research programs of nuclear physics, nuclear astrophysics, and material science. (authors). 6 refs., 5 figs., 1 tab

  12. An Energy Filter for Slow Positron Beam Using Cosine Coils

    Institute of Scientific and Technical Information of China (English)

    R.S.Yu; B.Y.Wang; 等

    2001-01-01

    A novel charged-particle velocity filter for slow positron beam has been successfully built and tested.It is a pure magnetic system composed of three magnetic fields,two of them are pure dipole magnetic fields generated by two symmetrically put cosine coils.The physical principle and the performance of the cosine coils are reviewed.

  13. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G; Thorn, A

    2013-01-01

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  14. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  15. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  16. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  17. Lens effect of unipolar electrostatic steerers on low-energy ion beams and its effective reduction

    International Nuclear Information System (INIS)

    The JAEA-Tokai tandem accelerator has two ion injectors, one is the negative ion injector placed on the ground and the other is the positive ion injector in the high voltage terminal. The electrostatic steerers in the high voltage terminal are used for ion beams from the both injectors. Because the beams from the negative ion injector gain high energy at the 20MV terminal, the electrodes of the electrostatic steerers are designed to be supplied several ten kV. The high voltages are supplied by two unipolar DC power supplies and they are controlled as the sum of the voltages keeps constant. The high electric potential between the electrodes affects the beam trajectory as an electrostatic lens. The potential must be too high for the low energy ion beams from the positive ion injector on the 100kV deck. We simulated the beam trajectory by calculation and evaluated the strength of the lens effects. The results showed that the focal distances were too short to control the beam form positive ion injector using optical devices in the downstream. If we reduce the voltages to one tenth in simulation, then the focusing effects were much less significant. We installed a multiplying factor circuit to make the voltages variable and much lower. The results of beam-handling tests using the circuit actually showed significant increase of the ion beam current. (author)

  18. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    Energy Technology Data Exchange (ETDEWEB)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli (E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  19. Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons

    CERN Document Server

    Klein, R; Thornagel, R; Brandt, G; Görgen, R; Ulm, G

    2002-01-01

    Accurate knowledge of all storage ring parameters is essential for the Physikalisch-Technische Bundesanstalt (PTB) to operate the electron storage ring BESSY II as a primary source standard. One parameter entering the Schwinger equation for the calculation of the spectral photon flux of bending magnet radiation is the electron beam energy. So at BESSY II the electron beam energy is measured by two independent techniques one of which is described in this paper: the photons from a CO sub 2 -laser are scattered in a head-on collision with the stored electrons. From the spectrum of the backscattered photons that are detected by an energy-calibrated HPGe detector the electron beam energy can be determined. The experimental set-up at the BESSY II electron storage ring as well as the current experimental status are described for operation of the storage ring at the energies of 900 and 1700 MeV.

  20. Lattice design of medium energy beam transport line for n spallation neutron source

    International Nuclear Information System (INIS)

    A 1 GeV H- injector linac is being designed at RRCAT for the proposed Indian Spallation Neutron Source (ISNS). The front-end of the injector linac will consist of Radiofrequency Quadrupole (RFQ) linac, which will accelerate the H- beam from 50 keV to 3 MeV. The beam will be further accelerated in superconducting Single Spoke Resonators (SSRs). A Medium Energy Beam Transport (MEBT) line will be used to transport the beam from the exit of RFQ to the input of SSR. The main purpose of MEBT is to carry out beam matching from RFQ to SSR, and beam chopping. In this paper, we describe the optimization criteria for the lattice design of MEBT. The optimized lattice element parameters are presented for zero and full (15 mA) current case. Beam dynamics studies have been carried out using an envelope tracing code Trace-3D. Required beam deflection angle due to the chopper housed inside the MEBT for beam chopping has also been estimated. (author)