WorldWideScience

Sample records for beam energy measurement

  1. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  2. Use achromatic beam line for Hall C beam energy measurement

    International Nuclear Information System (INIS)

    There are several different methods to measure accelerator beam energy, for example, from frequency spectrum measurement and calculation of orbit length from accurate measurement of magnetic field in a reference dipole magnet from high precision floating wire analogue, and from detecting the synchrotron radiation emitted from kicker magnets. In this report an achromatic spectrometer method combined with calibrating a reference magnet and determining the deflection angle of spectrometer is proposed. The similar method will be used to measure beam energy in Bates Linear Accelerator Center, a 10-3 accuracy of beam energy measurement is expected

  3. LINAC4 low energy beam measurements

    CERN Document Server

    Hein, L M; Lallement, J B; Lombardi, A M; Midttun, O; Posocco, P; Scrivens, R

    2012-01-01

    Linac4 is a 160 MeV normal-conducting linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton Linac (Linac2) as linear injector for the CERN accelerators. The low energy part, comprising a 45 keV Low Energy Beam Transport system (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) is being assembled in a dedicated test stand for pre-commissioning with a proton beam. During 2011 extensive measurements were done after the source and after the LEBT with the aim of preparing the RFQ commissioning and validating the simulation tools, indispensable for future source upgrades. The measurements have been thoroughly simulated with a multi-particle code, including 2D magnetic field maps, error studies, steering studies and the generation of beam distribution from measurements. Emittance, acceptance and transmission measurements will be presented and compared to the results of the simulations.

  4. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  5. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    OpenAIRE

    Muchnoi, N.; Schreiber, H. J.; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitiv...

  6. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calcu-lated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  7. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  8. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  9. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  10. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  11. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  12. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    CERN Document Server

    Muchnoi, N; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of $10^{-4}$ or bette...

  13. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  14. Precision Measurements with High Energy Neutrino Beams

    CERN Document Server

    Conrad, J M; Bolton, T; Conrad, Janet M.; Shaevitz, Michael H.; Bolton, Tim

    1998-01-01

    Neutrino scattering measurements offer a unique tool to probe the electroweak and strong interactions as described by the Standard Model (SM). Electroweak measurements are accessible through the comparison of neutrino neutral- and charged-current scattering. These measurements are complimentary to other electroweak measurements due to differences in the radiative corrections both within and outside the SM. Neutrino scattering measurements also provide a precise method for measuring the F_2(x,Q^2) and xF_3(x,Q^2 structure functions. The predicted Q^2 evolution can be used to test perturbative Quantum Chromodynamics as well as to measure the strong coupling constant, alpha _s, and the valence, sea, and gluon parton distributions. In addition, neutrino charm production, which can be determined from the observed dimuon events, allows the strange-quark sea to be investigated along with measurements of the CKM matrix element |V_{cd}| and the charm quark mass.

  15. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10-4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  16. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  17. High-precision absolute measurement of CEBAF beam mean energy

    International Nuclear Information System (INIS)

    The absolute measurement of the beam mean energy with an accuracy of one part in 104 or higher is an important demand of the CEBAF Hall A physics program. This accuracy may reduce the uncertainty in the d(e, e'p)p cross section δσ/σ to 1%. The need for such an accurately calibrated beam is not particular to CEBAF; at other electron facilities uncertainty in the incident energy has proven to be among the dominant sources of systematic error. The following methods for solving the problem were considered at both CEBAF and the Yerevan Physics Institute during 1990--1991: Backscattering of a plane electromagnetic wave by the relativistic electron beam. Calculations show that the intensity of the backscattered radiation in a bandwidth of 10-4 near the maximum frequency is about 1 photon per second at 4 GeV and 0.3 mA. Magnetic spectrometers performing as three- and four-magnet chicanes with appropriate detector systems. Such a system was used at SLAC for absolute measurement of the SLC beams energy, where a maximum accuracy of 5 x 10-4 was achieved. Calculations show that a similar accuracy can be achieved for the CEBAF beam in both proposed systems. Measurement of the vertical distribution of synchrotron radiation. Calculations indicate that precision of about 2.5 x 10-5 is achievable for CEBAF

  18. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  19. Upgrade of beam energy measurement system at BEPC-II

    Science.gov (United States)

    Zhang, Jian-Yong; Cai, Xiao; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M. N.; Krasnov, A. A.; Muchnoi, N. Yu.; Pyata, E. E.; Mamoshkina, E. V.; Harris, F. A.

    2016-07-01

    The beam energy measurement system is of great importance for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. In order to meet the requirements of data taking and improve the measurement accuracy, the system has continued to be upgraded, which involves the updating of laser and optics subsystems, replacement of a view-port of the laser to the vacuum insertion subsystem, the use of an electric cooling system for a high purity germanium detector, and improvement of the data acquisition and processing subsystem. The upgrade system guarantees the smooth and efficient measurement of beam energy at BEPC-II and enables accurate offline energy values for further physics analysis at BES-III. Supported in part by National Natural Science Foundation of China (NSFC)(11375206, 10775142, 10825524, 11125525, 11235011), the Ministry of Science and Technology of China (2015CB856700, 2015CB856705), State key laboratory of particle and detection and electronics; and the CAS Center for Excellence in Particle Physics (CCEPP); the RFBR grant(14-02-00129-a), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, part of this work related to the design of ZnSe viewports is supported by the Russian Science Foundation (14-50-00080)

  20. Beam energy absolute measurement using K-edge absorption spectrometers

    International Nuclear Information System (INIS)

    A method is presented of absolute energy measurement with an accuracy of triangle Ε ∼ 10-4Εo by direct measurement of the bend angle in a high-precision magnetic dipole using two opposite-direction short (about 2 mm long) high-field-intensity magnets (bar Β dipole much-lt Βshortmag) installed at each end and two K-edge absorption spectrometers. Using these spectrometers and the hard x-ray synchrotron radiation created by the short magnets, a bend angle of 4.5 arc deg for the CEBAF energy bandwidth can be measured with an accuracy of a few units of 10-6 rad, and the main sources of systematic errors are the absolute measurement of the field integral and the determination of the centroid of the synchrotron beam at a wavelength equal to the K-edge absorption of the chosen substance

  1. Vacuum Chamber for the Measurement System of the Beam Energy

    Science.gov (United States)

    Abakumova, E.; Achasov, M.; Dong, HaiYi; Qu, HuaMin; Krasnov, A.; Kosarev, A.; Muchnoi, N.; Pyata, E.; Xiao, Qiong; Mo, XiaoHu; Wang, YiFang; Zhukov, A.

    Vacuum chamber for the beam energy measurement system based on the Compton backscattering method is presented. The main elements of the chamber are GaAs entrance viewport and a copper mirror. The viewport design provides baking out of the vacuum chamber up to 250 °C. To produce the viewport, an original technology based on brazing GaAs plate by lead has been developed. The vacuum chambers were installed at the BEPC-II and VEPP-4 M colliders. After installation the residual gas pressure is about 10-10 Torr.

  2. Measuring pion beta decay with high-energy pion beams

    International Nuclear Information System (INIS)

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay π+ → π0e+vε is predicted by the Standard Model (SM) to be R(π+ → π0e+vε) = 0.3999±0.0005 s-1. The best experimental number, obtained using in-flight decays, is R(π+ → π0e+vε) = 0.394 ± 0.015 s-1. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required

  3. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  4. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  5. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  6. Uncertainty of the beam energy measurement in the e+e- collision using Compton backscattering

    Science.gov (United States)

    Mo, Xiao-Hu

    2014-10-01

    The beam energy is measured in the e+e- collision by using Compton backscattering. The uncertainty of this measurement process is studied by virtue of analytical formulas, and the special effects of variant energy spread and energy drift on the systematic uncertainty estimation are also studied with the Monte Carlo sampling technique. These quantitative conclusions are especially important for understanding the uncertainty of the beam energy measurement system.

  7. Precise beam energy measurement using resonant spin depolarization in the SOLEIL storage ring

    International Nuclear Information System (INIS)

    The average electron beam energy for the operational mode of 400 mA in 416 bunches in the SOLEIL storage ring was measured to be 2.73724±0.00016 GeV with an accuracy of 5.9×10−5 using the method of resonant spin depolarization (RSD). A Touschek-dominated electron beam was excited using a shaker magnet, and the beam polarization and depolarization were monitored using the change in beam lifetime and beam loss rate. To establish the primary condition that is required to perform energy measurement using the RSD method, the radiative beam polarization was first simulated using the SLIM beam dynamics code and then measured using the relative increase of beam lifetime for a Touschek-dominated electron beam. With a fast frequency sweep rate, the main depolarization resonance to be used to extract the beam energy, along with sidebands within the range of frequency sweep, was identified during our first trials. Sweeping the frequency of the excitation field around the main resonance with a slower frequency sweep rate, the beam energy measurement accuracy was increased from 1.7×10−4 to 5.9×10−5. Finally, the effects of closed orbit distortions on the radiative polarization and measured energy accuracy are discussed.

  8. A calorimeter-Faraday cup to measure energy content of ion beams

    International Nuclear Information System (INIS)

    A calorimeter-Faraday cup to measure energy content of ion beams is described. It uses an HP quartz thermometer having a 10-40C sensitivity; contact potential problems, arising when working with thermocouples, are so avoided. Calibration has been performed with a resistive filament and with an electron beam. The apparatus is profitable if the measured ion beams are constant in time. The measured sensitivity was 10-40C/10-5W. (author)

  9. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10-3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  10. Executive summary of the workshop on polarisation and beam energy measurement at the ILC

    International Nuclear Information System (INIS)

    This note summarizes the results of the ''Workshop on Polarisation and Beam Energy Measurements at the ILC'', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (i) physics requirements, (ii) polarised sources and low energy polarimetry, (iii) BDS polarimeters, (iv) BDS energy spectrometers, and (v) physics-based measurements of beam polarisation and beam energy from collider data. Discussions focused on the current ILC baseline programme as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarisation of Pe- >or similar 80% and positron polarisation of Pe+ >or similar 30% are part of the baseline configuration of the machine. Energy and polarisation measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed. (orig.)

  11. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  12. Evaluation of crystal implantation technique for the measurement of neutral beam composition and energy spectra

    International Nuclear Information System (INIS)

    A promising method of measuring a neutral beam's energy spectrum and impurity content is to implant beam high purity silicon crystals. The depth distribution of the beam particles into the crystal surface is then measured by SIMS (secondary ion mass spectroscopy); the penetration distance is a function of the incident particle energy. The inferred beam energy spectrum can be used to determine the percentages of atomic and molecular ions that comprise the source plasma. Moreover, other elements are analyzed by mass and compared with the total amount of implanted hydrogen in order to obtain a beam impurity content. Previous analysis of a 40 keV ORNL hydrogen beam gave a source species composition that agreed with that obtained by magnetic momentum analysis of the residual ion beam to within the accuracy of the momentum analysis. Crystals have already been irradiated by a 78 keV hydrogen beam from the LBL 30-sec ion source at their Neutral Beam Engineering Test Facility (NBETF); similar exposures are made with the ORNL 30 sec source at the same test stand. Use of the NBETF allows direct comparison with the spectra obtained from the LBL Doppler-shift spectrometer. Although increasing particle energy allows greater peak resolution and increased accuracy, the increasing power density makes proper exposure more difficult. An exposure technique used at ORNL to measure a 70 keV beam is also discussed

  13. Chromaticity measurement during beam energy ramp in Indus-2

    International Nuclear Information System (INIS)

    Chromaticity is one of the important parameters of circular accelerators and plays crucial role in its operation. In Indus-2 storage ring the natural chromaticity is -19 and -12 in horizontal and vertical planes respectively. For the good injection at 550 MeV in Indus-2, chromaticity needs to be kept at (+1, +1). The corrected chromaticity does not remain constant during the energy ramp up to 2.5 GeV. We measured Indus-2 storage ring chromaticity by the conventional RF frequency change method. The measurement method and the result of the measurement are reported in this paper. (author)

  14. A study on the proton beam energy(50 MeV) measurement and diagnosis (II)

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jong Suh; Lee, Dong Hoon; Kim, Yoo Suk; Park, Chan Won; Lee, Yong Min; Hong, Sung Suk; Lee, Min Yong; Lee, Ji Sub; Hah, Hang Hoh [Korea Cancer Center Hospital of Korea Atomic Energy Research Institute, Seoul (Korea, Republic of)

    1995-02-01

    The main purpose of this project is the precise ion measurement of proton beam energy extracted at RF 25.89 MHz from the MC-50 cyclotron of SF type. There are several method for particle energy measurement. We measured the 50 MeV proton energy by using the E-{Delta}E method in 1993. And also in our experiment used range, reapproval of energy of extracted proton beam at RF 25.89 MHz was performed, which attained the same energy with the result used elastic scattering within the error range. 10 figs, 2 pix, 3 tabs, 3 refs. (Author).

  15. Beam optics of a dipole magnet for energy measurement in an RF linac

    International Nuclear Information System (INIS)

    This paper presents the analytical calculation and simulation for the beam optics study of a 30° sector magnet. This sector magnet will be used to measure the energy of a 1.5 MeV electron beam being injected from an RF linac. From initial beam parameters, arc length of the magnet and number of ampere-turns have been optimised. To find out beam size, Transfer matrix method is used for different initial beam conditions. A program is written in MATHEMATICA to solve the envelope equation in both dispersive and non-dispersive plane . To validate this program, simulation is carried out in the software CST PARTICLE STUDIO. (author)

  16. Measurement of low energy longitudinal polarised positron beams via a Bhabha polarimeter

    CERN Document Server

    Alexander, G; Alexander, Gideon; Reinherz-Aronis, Erez

    2005-01-01

    The introduction of a longitudinal polarised positron beam in an $e^+e^-$ linear collider calls for its polarisation monitoring and measurement at low energies near its production location. Here it is shown that a relatively simple Bhabha scattering polarimeter allows, at energies below 5000 MeV, a more than adequate positron beam longitudinal polarisation measurement by using only the final state electrons. It is further shown that out of the three, 10, 250 or 5000 MeV positron beam energy locations, where the polarisationmeasurement in the TESLA linear collider can be performed, the 250 MeV site is best suited for this task.

  17. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    Science.gov (United States)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  18. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    Energy Technology Data Exchange (ETDEWEB)

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  19. Review of intense-ion-beam propagation with a view toward measuring ion energy

    International Nuclear Information System (INIS)

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements

  20. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    Science.gov (United States)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  1. Measurements of absorbed energy distributions in water from pulsed electron beams

    International Nuclear Information System (INIS)

    An evaluation of the use of a holographic interferometer to measure the energy deposition as a function of depth in water from pulsed electron beams, together with a brief description of the interferometer and the technique of generating a hologram are presented. The holographic interferometer is used to measure the energy deposition as a function of depth in water from various pulsed beams of monoenergetic electrons in the energy range from 1.0 to 2.5 MeV. These results are compared to those computed by using a Monte Carlo radiation transport code, ETRAN-15, for the same electron energies. After the discrepancies between the measured and computed results are evaluated, reasonable agreement is found between the measured and computed absorbed energy distributions as a function of depth in water. An evalutation of the response of the interferometer as a function of electron intensities is performed. A comparison among four energy deposition curves that result from the irradiation of water with pulsed electron beams from a Febetron accelerator, model 705, is presented. These pulsed beams were produced by the same vacuum diode with the same charging voltage. The results indicate that the energy distribution of the electrons in the pulsed beam is not always constant. A comparison of the energy deposition curves that result from the irradiation of water with electron pulses from different vacuum diodes but the same charging voltage is presented. These results indicate again that the energy distribution of the electrons in the pulsed beam may vary between vacuum diodes. These differences would not be realized by using a totally absorbing metal calorimeter and Faraday Cup

  2. Beam Emittance Measurements for the Low-Energy Demonstration Accelerator Radio-Frequency Quadrupole

    CERN Document Server

    Schulze, M E; Lysenko, W P; Rybarcyk, L J; Schneider, J D; Smith, H V; You, L M

    2000-01-01

    The Low-Energy Demonstration Accelerator (LEDA) radio-frequency quadrupole (RFQ) is a 100% duty factor (CW) linac that delivers >100 mA of H+ beam at 6.7 MeV. The 8-m-long, 350-MHz RFQ structure accelerates a dc, 75-keV, 110-mA H+ beam from the LEDA injector with >90% transmission. LEDA [1,2] consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW RFQ with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam stop. The beam emittance is inferred from wire scanner measurements of the beam profile at a single location in the HEBT. The beam profile is measured as a function of the magnetic field gradient in one of the HEBT quadrupoles. As the gradient is changed the spot size passes through a transverse waist. Measurements are presented for peak currents between 25 and 100 mA.

  3. Measurement of the BESSY II electron beam energy by Compton-backscattering of laser photons

    CERN Document Server

    Klein, R; Thornagel, R; Brandt, G; Görgen, R; Ulm, G

    2002-01-01

    Accurate knowledge of all storage ring parameters is essential for the Physikalisch-Technische Bundesanstalt (PTB) to operate the electron storage ring BESSY II as a primary source standard. One parameter entering the Schwinger equation for the calculation of the spectral photon flux of bending magnet radiation is the electron beam energy. So at BESSY II the electron beam energy is measured by two independent techniques one of which is described in this paper: the photons from a CO sub 2 -laser are scattered in a head-on collision with the stored electrons. From the spectrum of the backscattered photons that are detected by an energy-calibrated HPGe detector the electron beam energy can be determined. The experimental set-up at the BESSY II electron storage ring as well as the current experimental status are described for operation of the storage ring at the energies of 900 and 1700 MeV.

  4. Executive Summary of the Workshop on Polarization and Beam Energy Measurements at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B.; Bailey, I.; Bartels, C.; Blair, G.; Brachmann, A.; Clarke, J.; Deacon, L.; Duginov, V.; Ghalumyan, A.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Lyapin, A.; Marchesini, I.; Melikian, R.; Monig, K.; Moeit, K.C.; /Bonn U. /Cockcroft Inst. Accel. Sci. Tech. /DESY /DESY, Zeuthen /Royal Holloway, U. of London /SLAC /Daresbury /Dubna, JINR /Yerevan Phys. Inst /Oxford U., JAI /Iowa State U. /Durham U., IPPP /Michigan U. /University Coll. London /Novosibirsk, IYF /Minsk, Inst. Phys. /Oregon U.

    2008-07-25

    This note summarizes the results of the 'Workshop on Polarization and Beam Energy Measurements at the ILC', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (1) physics requirements, (2) polarized sources and low energy polarimetry, (3) BDS polarimeters, (4) BDS energy spectrometers, and (5) physics-based measurements of beam polarization and beam energy from collider data. Discussions focused on the current ILC baseline program as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarization of P{sub e{sup -}} {approx}> 80% and positron polarization of P{sub e{sup +}} {approx}> 30% are part of the baseline configuration of the machine. Energy and polarization measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.

  5. High-Energy Neutron Beam Facilities and Nuclear Data Measurements at the Svedberg Laboratory

    International Nuclear Information System (INIS)

    The Svedberg Laboratory (TSL) belongs to Uppsala University and exploits the Gustaf Werner cyclotron that delivers beams of protons and heavy ions to different beam lines and irradiation facilities. The main activities at TSL comprise proton treatment of cancer patients, radiation testing services, detector development, and nuclear data measurements. Currently, two high-energy neutron beam facilities are in regular use at TSL: (1) The quasi-monoenergetic neutron facility (QMN), and (2) The ANITA facility (Atmospheric-like Neutrons from thIck TArget). Both the facilities are driven by the proton beam from the cyclotron, with energy selectable in the range 20 – 180 MeV. The beam is pulsed, which allows one to use time-of-flight techniques. In the present report, we describe the neutron beam facilities at TSL, with focus on the QMN facility, including beam monitors as well as quality assurance and user support routines. Furthermore, we give an overview of neutron nuclear data measurements performed at the QMN facility. (author)

  6. Energy and time of flight measurements of REX-ISOLDE stable beams using Si detectors

    CERN Document Server

    Cantero, E D; Fraser, M A; Lanaia, D; Sosa, A; Voulot, D; Zocca, F

    2014-01-01

    In this paper we present energy and time spectroscopy measurements for the stable beams of REX-ISOLDE obtained using Si detectors. By using an alpha source as a calibration reference, the absolute energy E of stable beam particles (A/q = 4) was determined in spectroscopy mode in the energy range 1 MeV < E < 8 MeV (0.30 MeV/u < E/A < 1.87 MeV/u). The time of flight of the beam particles (2.18 MeV/u < E/A < 2.27 MeV/u) was determined by installing identical Si detectors in two diagnostic boxes separated by 7.7 m. The results obtained with these two techniques are compared with the values obtained by dipole scans using a bending magnet. The measurements took place between January and February of 2013.

  7. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  8. Beam Diagnostics for Measurements of Antiproton Annihilation Cross Sections at Ultra-low Energy

    Directory of Open Access Journals (Sweden)

    Todoroki K.

    2014-03-01

    Full Text Available The ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons collaboration of CERN is currently attempting to measure the antiproton-nucleus in-flight annihilation cross sections on thin target foils of C, Pd, and Pt at 130 keV of kinetic energy. The low-energy antiprotons were supplied by the Antiproton Decelerator (AD and a radio-frequency quadrupole decelerator. For this measurement, a beam profile monitor based on secondary electron emission was developed. Data from this monitor was used to ensure that antiprotons were precisely tuned to the position of an 80-mm-diameter experimental target, by measuring the spatial profile of 200-ns-long beam pulses containing 105 − 106 antiprotons with an active area of 40 mm × 40 mm and a spatial resolution of 4 mm. By using this monitor, we succeeded in finely tuning antiproton beams on the target, and observed some annihilation events originating from the target.

  9. Measurement of fluence distribution of large area irradiated by scanning high energy ion beam

    International Nuclear Information System (INIS)

    In the JAERI cyclotron, the large area homogeneous irradiation by beam scanning system is used for the experiments on the research of space material, nuclear fusion material and biotechnology. The irradiation is accomplished by deflecting high energy ion beam in the horizontal and vertical directions using a pair of electromagnets. To investigate two-dimensional fluence distribution irradiated by this system, relative fluence distribution was measured with cellulose triacetate film dosimeters. The result showed that the distribution has the inhomogeneity caused by the distorted magnetic wave form of the system and the beam profile. To improve the homogeneity of the distribution, the information about the distribution must be obtained quickly. Therefore, a real time monitoring system of fluence distribution using a parallel plate avalanche counter is developed. The beam scanning system, the measurement of relative fluence distribution using a CTA dosimeter, the real time fluence distribution monitor system with a PPAC and so on are reported. (K.I.)

  10. Rutherford backscattering measurements at medium energies using a pulsed beam time-of-flight system

    International Nuclear Information System (INIS)

    Helium ion Rutherford backscattering is a useful method of determining the depth distributions of heavy elements in lighter substrates and, in conjunction with ion channeling. Here, the authors emphasize a pulsed time-of-flight (TOF) system for medium-energy (50 to 140 keV) Rutherford backscattering spectroscopy. A particular advantage of this approach is that X rays produced by the pulsed beam are detected by the microchannel plate detector to give an almost exact time at which the beam pulse strikes the target. This allows a reference point of time zero to be determined so that the drift times of the backscattered particles may be precisely measured. Beam pulses are formed by deflection of the ion beam using a 10-ns rise time pulse generator that provides a 0 to 100-V square wave output. This voltage is applied to deflection plates to sweep the ion beam across a 3-mm collimator. Nanosecond beam pulses have been obtained that have resulted in an energy resolution of 1.3 keV for 100-keV He ions scattered from As. This energy resolution is significantly better than the 7 keV that can be obtained using a silicon detector and results in a depth resolution for As in Si of 13 angstrom at a backscattered angle of 150 deg and a target tilt angle of 40 deg. The detection efficiency of the microchannel plate detector for 100-keV He has been measured to be close to the fill factor of 55%. The depth profile of a 1-keV As implant in Si to a fluence of approximately 1 x 1015/cm2 was measured using a 100-keV He ion beam both at normal incidence and at a target tilt angle of 40 deg. The general agreement of the experimental measurements with the results from the TRIM code is very good

  11. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    OpenAIRE

    Kuo Men; Jian-Rong Dai; Ming-Hui Li; Xin-Yuan Chen; Ke Zhang; Yuan Tian; Peng Huang; Ying-Jie Xu

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned ...

  12. The design and initial testing of a beam phase and energy measurement for LEDA

    International Nuclear Information System (INIS)

    A diagnostic system being designed to measure the beam phase and beam energy of the Low Energy Demonstration Accelerator (LEDA) is described and the characterization of the prototype presented. The accelerator, being built at LANL, is a 350 MHz proton linac with a 100 mA beam. In the first beam experiments, the 6.7 MeV RFQ will be characterized. Signals received from an rf cavity probe in the RFQ and capacitive pick-ups along the high-energy beam transport line will be compared in phase in order to calculate the beam phase and energy. The 350 MHz signals from four pick-ups will be converted to 2 MHz in a VXI-based down converter module. A second VXI phase processor module makes two, differential-phase measurements based on its four 2 MHz inputs. The heart of this system is the phase processor module. The phase processor consists of an analog front end (AFE), digital front end (DFE), digital signal processing (DSP) modules and the VXI bus interface. The AFE has an AGC circuit with a >60 dB dynamic range with a few degrees of phase shift. Following the AFE is the DFE which uses an in-phase and quadrature-phase (I and Q) technique to make the phase measurement. The DSP is used to correct the real-time data for phase variations as a function of dynamic range and system offsets. The prototype phase module gives an absolute accuracy of ±0.5 degrees with a resolution of <0.1 degrees and a bandwidth of 200 kHz. copyright 1998 American Institute of Physics

  13. Measurement of beam energy of spherical plasma focus diode and its PIC code simulations

    International Nuclear Information System (INIS)

    We have evaluated dynamic characteristics of spherical plasma focus diode (SPFD) by experiments and simulations. Using a calorimeter, there was a peak of 84 J/cm2 on z-axis of an intense, pulsed, light-ion beam energy density. To evaluate the species and energy, Thomson parabola energy spectrometer measurement was carried out. To obtain beam flux, new types of electrodes were used; grooveless high flux anode and highly transparent, webbed cathode. We found that the protonic ratio, defined by the ratio of protons over heavy ions (C+, C++, O+, and O++), is 8.2. The energy of protons, which had a peak at 300 keV, distributed in the range of 230 - 600 keV. In PIC code simulations, we proposed initial thermal energy model to express the local divergence of LIB. We assumed that the initial thermal energy models takes half vector space. The vector had a constant magnitude and random direction. When the initial energy is 20 eV, the ion beam focused in a cylindrical area of 0.4 mmφ x 2.4 mm. This focusing size was much tighter than the experimental results (6.0 mmφ x 4.5 mm) measured by time-integrated backward Rutherford scattering pinhole camera. Above 20 eV, simulation results gave better focusing. The local divergence, however, could not be expressed by the above models. (author)

  14. SEE Measurements and Simulations Using Mono-Energetic GeV-Energy Hadron Beams

    CERN Document Server

    Alia, Ruben Garcia; Brugger, Markus; Roed, Ketil; Uznanski, Slawosz; Wrobel, Frederic; Ferlet-Cavrois, Veronique; Danzeca, Salvatore; Saigne, Frederic; Spiezia, Giovanni

    2013-01-01

    Single Event Upset (SEU) measurements were performed on the ESA SEU Monitor using mono-energetic GeV-energy hadron beams available in the North Experimental Area at CERN. A 400 GeV proton beam in the H4IRRAD test area and a 120 GeV mixed pion and proton beam at the CERN-EU high Energy Reference Field facility (CERF) were used for this purpose. The resulting cross section values are presented and discussed as well as compared to the several hundred MeV case (typical for standard test facilities) from a physical interaction perspective with the intention of providing a more general understanding of the behavior. Moreover, the implications of the cross section dependence with energy above the several hundred MeV range are analyzed for different environments. In addition, analogous measurements are proposed for Single Event Latchup (SEL), motivated by discussed simulation results. Finally, a brief introduction of the future CHARM (CERN High-energy AcceleratoR Mixed facility) test installation is included.

  15. Lifetime measurements using radioactive ion beams at intermediate energies and the Doppler shift method

    International Nuclear Information System (INIS)

    Absolute transition probabilities are crucial quantities in nuclear structure physics. Therefore, it is important to establish Doppler shift (plunger) techniques also for the measurement of level lifetimes in radioactive ion beam experiments. After a first successful test of the Doppler Shift technique at intermediate energy (52MeV/u) with a stable 124Xe beam, a plunger has been built and used in two experiments, performed at the NSCL/MSU with the SEGA Ge-array and the S800 spectrometer. The aim of the first experiment was to investigate the plunger technique after a knock-out reaction using a radioactive 65Ge beam at 100 MeV/u for populating excited states in 64Ge. The second experiment aimed to measure the lifetimes of the first 2+ states in 110,114Pd with the plunger technique after Coulomb excitation at beam energies of 54 MeV/u. First results of both experiments will be presented and discussed. (orig.)

  16. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Science.gov (United States)

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  17. Measuring the energy parameters of the nanosecond electron beam extracted in air through a foil

    International Nuclear Information System (INIS)

    Comparison of the measurement results of energy densities and absorbed dose during the passage of electron beam with the energy of 300 keV, duration of 10 ns, current density of > 10 A/cm2 behind the acceleration foil in the air is conducted using different methods. The measurements have been carried out using compact nanosecond accelerator comprising a generator assembled according to the Marx scheme and vacuum diode with cold cathode operating in the regime of electron explosion emission. The current in the diode constituted approximately 3 kA, accelerating voltage - 350 kV. It is shown that during oscillographic measurements and the measurements according to the voltage upon the measurement capacitance considerable mistakes are possible which are conditioned by the electron wide spectrum. Results obtained using the calorimetric method which is especially convenient when determining absorbed doses in thin targets are the most objective ones

  18. Development of thin gaseous ionization detectors for measurements of high-energy hadron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Sei; Hong, Byung Sik; Lee, Ki Soo; Park, Sung Keun; Yu, Jae Hee [Korea University, Seoul (Korea, Republic of); Kim, Sang Yeol [NoticeKorea, Anyang (Korea, Republic of)

    2014-04-15

    Thin gaseous ionization detectors have been developed based on a current-integration mode for measurements of high-energy hadron beams. In the present detector R and D, two different types of prototype detectors with an active area of 16 x 16 cm{sup 2}, each equipped with 256-signal processing channels, were manufactured and tested with 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). The first one was equipped with a single gas electron multiplier (GEM), and the second one was a thin-plane ionization detector without the GEM foil loaded. The linearities of the detector responses for both detectors were examined for various proton-beam intensities. The quantitative accuracies for the channel-response data and for the total detector responses measured for 43-MeV protons were 0.4% and 0.34%, respectively. We conclude from the beam test that operating both types of detectors in the current-integration mode will allow quality measurements of dynamic-mode hadron beams to be performed with accuracies of better than 1%.

  19. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    International Nuclear Information System (INIS)

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of −11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  20. Errors in Measuring Transverse and Energy Jitter by Beam Position Monitors

    CERN Document Server

    Balandin, V; Golubeva, N

    2010-01-01

    The problem of errors, arising due to finite BPM resolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated "by hand", the direct usage of obtained solution, as a tool for designing of a "good measurement system", does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to "all possible values" of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy ...

  1. A new and simple calibration-independent method for measuring the beam energy of a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Katherine, E-mail: kgagnon1@ualberta.c [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Jensen, Mikael; Thisgaard, Helge [Hevesy Laboratory, Risoe-DTU, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Publicover, Julia; Lapi, Suzanne [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); McQuarrie, Steve A. [Cross Cancer Institute, Edmonton PET Centre, University of Alberta, Edmonton, AB, T6G 1Z2 (Canada); Ruth, Thomas J. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)

    2011-01-15

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of {sup nat}Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies.

  2. A new and simple calibration-independent method for measuring the beam energy of a cyclotron.

    Science.gov (United States)

    Gagnon, Katherine; Jensen, Mikael; Thisgaard, Helge; Publicover, Julia; Lapi, Suzanne; McQuarrie, Steve A; Ruth, Thomas J

    2011-01-01

    This work recommends a new and simple-to-perform method for measuring the beam energy of an accelerator. The proposed method requires the irradiation of two monitor foils interspaced by an energy degrader. The primary advantage of the proposed method, which makes this method unique from previous energy evaluation strategies that employ the use of monitor foils, is that this method is independent of the detector efficiency calibration. This method was evaluated by performing proton activation of (nat)Cu foils using both a cyclotron and a tandem Van de Graaff accelerator. The monitor foil activities were read using a dose calibrator set to an arbitrary calibration setting. Excellent agreement was noted between the nominal and measured proton energies. PMID:20926304

  3. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  4. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2015-01-01

    Full Text Available Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.

  5. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  6. Design and test of a scintillation dosimeter for dosimetry measurements of high energy radiotherapy beams

    International Nuclear Information System (INIS)

    This work describes the design and evaluation of the performances of a scintillation dosimeter developed for the dosimetry of radiation beams used in radiotherapy. The dosimeter consists in a small plastic scintillator producing light which is guided by means of a plastic optical fiber towards photodetectors. In addition to scintillation, high energy ionizing radiations produce Cerenkov light both in the scintillator and the optical fiber. Based on a wavelength analysis, we have developed a deconvolution technique to measure the scintillation light in the presence of Cerenkov light. We stress the advantages that are anticipated from plastic scintillator, in particular concerning tissue or water equivalence (mass stopping power, mass attenuation or mass energy absorption coefficients). We show that detectors based on this material have better characteristics than conventional dosimeters such as ionisation chambers or silicon detectors. The deconvolution technique is exposed, as well as the calibration procedure using an ionisation chamber. We have studied the uncertainty of our dosimeter. The electronics noise, the fiber transmission, the deconvolution technique and the calibration errors give an overall combined experimental uncertainty of about 0,5%. The absolute response of the dosimeter is studied by means of depth dose measurements. We show that absolute uncertainty with photons or electrons beams with energies ranging from 4 MeV to 25 MeV is less than ± 1 %. Last, at variance with other devices, our scintillation dosimeter does not need dose correction with depth. (author)

  7. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    Science.gov (United States)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  8. Time resolved energy measurement of the Tesla test facility beam through the analysis of optical transition radiation angular distribution

    International Nuclear Information System (INIS)

    This study of the energy stability along the macropulse of the Tesla test facility Linac (TTFL) (1) was obtained by the measurement of the angular distribution of the optical transition radiation (OTR). This technique does not require a dispersive section and can be performed at any point of the beam line. Measurements have been performed with different settings of the RF low level control and at different values of the beam current. An energy variation along the macropulse was spread of the whole macrobunch. The analysis of the OTR angular distribution pattern allows also, to some extent, to evaluate the beam angular spread

  9. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  10. Exit Dose Measurement in Therapeutic High Energy Photon Beams and Cobalt-60 Gamma Rays

    Science.gov (United States)

    Sathiyan, S.; Ravikumar, M.

    2007-01-01

    To estimate the skin dose to the patient from the treatment planning, the knowledge about exit dose is essential, which is calculated from the percentage depth dose. In this study 6 MV and 18 MV beams from linear accelerator and cobalt-60 beams were used. The ionometric measurements were carried out with parallel plate chamber of sensitive volume 0.16 cc. Parallel plate chamber was fitted in to 30 x 30 cm2 polystyrene phantom at a fixed FSD with the measuring entrance window facing farther from the source. The field size for this measuring condition was maintained at 10 x 10 cm2. The ionization measurements were also carried out by changing the thickness of the polystyrene phantom at the entrance side of the point of measurement. In order to find out the variation of relative exit dose (RED) with field size the measurements were carried out without and with the full back-scattering material (27.2 gm/cm2) placed beyond the entrance window of the chamber. The measurements were also done for the entrance polystyrene phantom thicknesses of 10, 20 and 30 cm for the field size ranging from 5 x 5 cm2 to 30 x 30 cm2. The dose at the exit surface with no backscatter material is about 4.4%, 3.7% and 5.8% less than the dose with the full backscatter material present beyond the point of measurement for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The reduction in exit dose does not depend much of the phantom thickness through which the beam traverses before exiting at the chamber side. Dose enhancements of about 1.03 times were observed for a field size of 5 x 5 cm2 for 6 MV, 18 MV X-rays and cobalt-60 gamma rays. The dose enhancement factor (DEF) values were noticed to vary with field size beyond 15 x 15 cm2 for all the energies studied. Also it can be observed that the dose enhancement factor (DEF) values do not depend on the thickness of the phantom material through which the beam has traversed. The DEF values were found to vary marginally for different phantom material

  11. Energy deposition measurements of a large-diameter, intense relativistic electron beam for high-power gas laser excitation

    International Nuclear Information System (INIS)

    Measurements of electron-beam (e-beam) energy deposition in gaseous medium by a segmented totally stopping calorimeter and a pressure jump method are described, both of which gave the same values. Typical e-beam parameters are 2 MV, 80 kA, and 65 ns (FWHM). The e-beam cross-sectional area is 10 cm in diameter. First, the radial distribution of the e-beam current generated from the field-emission diode as a function of the axial magnetic field was measured. Next, for applications to longitudinal excitation of the high-power gas lasers, the e-beam energy deposition characteristics are measured in N2 for the propagation distance up to 2.3 m in terms of the axial magnetic field, the N2 gas pressure, and the radial e-beam distribution. As a result, the axial field equivalent to the self-magnetic field of the electron beam can acceptably control the e-beam generation and propagation uniformities

  12. Beam Emittance Measurements for the Low-Energy Demonstration Accelerator Radio-Frequency Quadrupole

    OpenAIRE

    Schulze, M. E.; Gilpatrick, J.D.; Lysenko, W. P.; Rybarcyk, L. J.; Schneider, J. D.; Smith, Jr., Norman Austin; You, L. M.

    2000-01-01

    The Low-Energy Demonstration Accelerator (LEDA) radio-frequency quadrupole (RFQ) is a 100% duty factor (CW) linac that delivers >100 mA of H+ beam at 6.7 MeV. The 8-m-long, 350-MHz RFQ structure accelerates a dc, 75-keV, 110-mA H+ beam from the LEDA injector with >90% transmission. LEDA [1,2] consists of a 75-keV proton injector, 6.7-MeV, 350-MHz CW RFQ with associated high-power and low-level rf systems, a short high-energy beam transport (HEBT) and high-power (670-kW CW) beam stop. The beam...

  13. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    International Nuclear Information System (INIS)

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied

  14. A system of beam energy measurement based on the Compton backscattered laser photons for the VEPP-2000 electron-positron collider

    CERN Document Server

    Abakumova, E V; Berkaev, D E; Kaminsky, V V; Koop, I A; Korol, A A; Koshuba, S V; Krasnov, A A; Muchnoi, N Yu; Perevedentsev, E A; Pyata, E E; Shatunov, P Yu; Shatunov, Yu M; Shwartz, D B

    2013-01-01

    The beam energy measurement system for the VEPP-2000 electron-positron collider is described. The method of Compton backscattering of $CO$ laser photons on the electron beam is used. The relative systematic uncertainty of the beam energy determination is estimated as 6\\cdot10^{-5}. It was obtained through comparison of the results of the beam energy measurements using the Compton backscattering and resonance depolarization methods.

  15. A system of beam energy measurement based on the Compton backscattered laser photons for the VEPP-2000 electron-positron collider

    Science.gov (United States)

    Abakumova, E. V.; Achasov, M. N.; Berkaev, D. E.; Kaminsky, V. V.; Koop, I. A.; Korol, A. A.; Koshuba, S. V.; Krasnov, A. A.; Muchnoi, N. Yu.; Perevedentsev, E. A.; Pyata, E. E.; Shatunov, P. Yu.; Shatunov, Yu. M.; Shwartz, D. B.

    2014-04-01

    The beam energy measurement system for the VEPP-2000 electron-positron collider is described. The method of Compton backscattering of CO laser photons on the electron beam is used. The relative systematic uncertainty of the beam energy determination is estimated as 6×10-5. It was obtained through comparison of the results of the beam energy measurements using the Compton backscattering and resonance depolarization methods.

  16. Measurement of the primary and scatter dose in high energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Van der Linden, P.M. [Catharina Ziekenhuis, Eindhoven (Netherlands). Radiotherapy Dept.; Tiourina, T.B.; Dries, W.

    1995-12-01

    A method is presented to measure the primary and scatter components separately in a water tank using a small cylindrical absorber. Results from this experiment are compared with Monte Carlo calculations. The measurement setup consists of a small cylindrical absorber placed on a central axis of the beam a few centimetres above the radiation detector. Both absorber and detector move along the central axis while absorbed dose is registered. As the primary radiation is fully blocked, only scatter component is measured when a cylindrical absorber is used. Measurements in open fields result in the total absorbed dose being the sum of primary and scatter components. The primary dose component can be derived by substraction. Absorbers with different diameters are used. With decreasing dimensions the relative contribution of the dose due to scatter radiation increases. A steep increase is observed when the range of laterally scattered electrons becomes comparable with the radius of the absorber. Two different Monte Carlo simulations have been performed: with and without secondary electron transport. The data obtained for the former case perfectly agrees with the experiment. The situation where the secondary electron is assumed zero (i.e. local energy deposition) simulates the Cunningham model. Our results show that the Cunningham model predicts lower scatter component under the block edge which can be important for these applications.

  17. Multiple-measurement beam probe

    International Nuclear Information System (INIS)

    Particle accelerators are becoming smaller and are producing more intense beams; therefore, it is critical that beam-diagnostic instrumentation provide accelerator operators and automated control systems with a complete set of beam information. Traditionally, these beam data were collected and processed using limited-bandwidth interceptive techniques. For the new-generation accelerators, we are developing a multiple-measurement microstrip probe to obtain broadband beam data from inside a drift tube without perturbing the beam. The cylindrical probe's dimensions are 6-cm OD by 1.0 m long, and the probe is mounted inside a drift tube. The probe (and its associated electronics) monitors bunched-beam current, energy, and transverse position by sensing the beam's electromagnetic fields through the annular opening in the drift tube. The electrical impedance is tightly controlled through the full length of the probe and transmission lines to maintain beam-induced signal fidelity. The probe's small, cylindrical structure is matched to beam-bunch characteristics at specific beamline locations so that signal-to-noise ratios are optimized. Surrounding the probe, a mechanical structure attaches to the drift-tube interior and the quadrupole magnets; thus, the entire assembly's mechanical and electrical centers can be aligned and calibrated with respect to the rest of the linac

  18. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  19. Simulation and measurement of the electrostatic beam kicker in the low-energy undulator test line

    International Nuclear Information System (INIS)

    An electrostatic kicker has been constructed for use in the Low-Energy Undulator Test Line (LEUTL) at the Advanced Photon Source (APS). The function of the kicker is to limit the amount of beam current to be accelerated by the APS linac. Two electrodes within the kicker create an electric field that adjusts the trajectory of the beam. This paper will explore the static fields that are set up between the offset electrode plates and determine the reaction of the beam to this field. The kicker was numerically simulated using the electromagnetic solver package MAFIA [1

  20. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    OpenAIRE

    De Lellis, G.; Buontempo., S; Di Capua, F.; Marotta, A; Migliozzi, P.; Petukhov, Y.; Pistillo, C; Russo, A; Lavina, L. Scotto; Strolin, P.(Dipartimento di Fisica dell’Università Federico II di Napoli, 80125 , Naples, Italy); Tioukov, V.; Ariga, A.(Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, CH-3012, Bern, Switzerland); Naganawa, N.; Toshito, T.; Furusawa, Y.

    2007-01-01

    Beams of Carbon nuclei are used or planned to be used in various centers for cancer treatment around the world because of their therapeutic advantages over proton beams. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighboring the tumor. In this respect, the identification of the fragmentation products is a key element. We presen...

  1. Measurements of lineal energy spectra for the BNCT test beam of THOR

    International Nuclear Information System (INIS)

    A 2.5 cm tissue-equivalent Rossi type proportional counter was fabricated at St Andrews University and used in this study. Boron-doped and non-boron chambers were performed to measure the lineal energy spectra of a test epithermal neutron beam, built for the research of boron neutron capture therapy (BNCT) at Tsing Hua Open-pool Reactor (THOR). Measurements were made using standard microdosimetry equipment, including a low pressure gas flow system, low noise charge sensitive preamplifier, linear amplifier, multi-channel analyzer, and americium-241 calibration alpha source. Chambers were positioned at different depths in an acrylic phantom. Lineal energy spectra were determined for several gas pressures to simulate various cell sizes. Spectra of the boron-doped chamber are dominated by a peak at ∼200 keV/μm corresponding to the traversal of alpha particles and lithium recoils through the chamber. Peaks in the non-boron spectra correspond to gamma-rays, recoil protons, and fast neutrons. (author)

  2. Beam current measurement and beam positioning for baby-ebm

    International Nuclear Information System (INIS)

    This paper describes the electron beam detection of Baby EBM. The detection is divided by two categories; beam current measurement and beam positioning under the scanning window. The beam detector system was completely fabricated and tested and the detector was able to detect the electron beam of Baby EBM. It has been found that the beam current of this EBM is 1.62 mA for energy of 0.14 MeV. A higher beam current can be obtained if a proper cooling system to the window foil is installed. (Author)

  3. Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

    CERN Document Server

    De Lellis, G; Buontempo, S; Capua, F D; Furusawa, Y; Lavina, L S; Marotta, A; Migliozzi, P; Naganawa, N; Petukhov, Yu P; Pistillo, C; Russo, A; Strolin, P; Tioukov, V; Toshito, T; Yasuda, N

    2007-01-01

    Beams of Carbon nuclei are now in use or planned to be used in various centers for cancer treatment around the world. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important for evaluating of the spatial profile of their energy deposition in the tissues, hence the damage to tissues neighbouring the tumor. To this purpose, the identification of the fragmentation products is a key element. We present in this paper the charge measurement of about 3000 fragments produced by the interaction of $^{12}$C nuclei with an energy of 400 MeV/nucleon in a detector simulating the density of the human body. The nuclear emulsion technique is used, by means of the so-called Emulsion Cloud Chamber. The nuclear emulsions are inspected using fast automated microscopes recently developed. A charge assignment efficiency of more than 99% is achieved. The separation of Hydrogen, Helium, Lithium, Berillium, Boron and Carbon can be achieved at two standard deviations or considerably more...

  4. A measurement of the energy and timing resolution of the GlueX Forward Calorimeter using an electron beam

    International Nuclear Information System (INIS)

    The performance of the GlueX Forward Calorimeter was studied using a small version of the detector and a variable energy electron beam derived from the Hall B tagger at Jefferson Lab. For electron energies from 110 MeV to 260 MeV, which are near the lower-limits of the design sensitivity, the fractional energy resolution was measured to range from 20% to 14%, which meets the design goals. The use of custom 250 MHz flash ADCs for readout allowed precise measurements of signal arrival times. The detector achieved timing resolutions of 0.38 ns for a single 100 mV pulse, which will allow timing discrimination of photon beam bunches and out-of-time background during the operation of the GlueX detector. -- Highlights: • A beam test was conducted for a miniature of the GlueX Forward Calorimeter. • The energy resolution at low energies was found to be consistent with design goals. • The timing resolution of the incidence of events was measured with flash ADCs. • The timing resolution was confirmed to be adequate for discriminating beam bunches

  5. LEDA beam diagnostics instrumentation: Beam current measurement

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz registered electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  6. Precise and fast beam energy measurement at the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Viti, Michele

    2010-02-15

    The international Linear Collider (ILC) is an electron-positron collider with a center-of-mass energy between 200 and 500 GeV and a peak luminosity of 2 . 10{sup 34} cm{sup -2}s{sup -1}. For the physics program at this machine, an excellent bunch-by-bunch control of the beam energy is mandatory. Several techniques are foreseen to be implemented at the ILC in order to achieve this request. Energy spectrometers upstream and downstream of the electron/positron interaction point were proposed and the present default option for the upstream spectrometer is a beam position monitor based (BPM-based) spectrometer. In 2006/2007, a prototype of such a device was commissioned at the End Station A beam line at the Stanford Linear Accelerator Center (SLAC) in order to study performance and reliability. In addition, a novel method based on laser Compton backscattering has been proposed, since as proved at the Large Electron-Positron Collider (LEP) and the Stanford Linear Collider (SLC), complementary methods are necessary to cross-check the results of the BPM-based spectrometer. In this thesis, an overview of the experiment at End Station A is given, with emphasis on the performance of the magnets in the chicane and first energy resolution estimations. Also, the novel Compton backscattering method is discussed in details and found to be very promising. It has the potential to bring the beam energy resolution well below the requirement of {delta}E{sub b}/E{sub b}=10{sup -4}. (orig.)

  7. Proton Beam Energy Characterization

    OpenAIRE

    Marus, Lauren A.; Engle, J.W.; John, K. D.; Birnbaum, E. R.; Nortier, F. M.

    2015-01-01

    Introduction The Los Alamos Isotope Production Facility (IPF) is actively engaged in the development of isotope production technologies that can utilize its 100 MeV proton beam. Characterization of the proton beam energy and current is vital for optimizing isotope production and accurately conducting research at the IPF. Motivation In order to monitor beam intensity during research irradiations, aluminum foils are interspersed in experimental stacks. A theoretical yield of 22Na from...

  8. COMPASS measurements with hadron beams

    International Nuclear Information System (INIS)

    Muon and hadron beams from the CERN Super Proton Synchrotron are used in the COMPASS experiment for high-energy scattering reactions off fixed targets, aiming at measurements of non-perturbative aspects of quantum chromodynamics. With pion beams, the meson spectrum can be examined via diffractive dissociation, where the existence of hybrid or exotic states is a much discussed issue. The double-diffractive process of central production, which can be measured also with a proton beam, is a promising approach for the search for glueballs. At extremely small momentum transfer, electromagnetic processes are accessible via the Primakoff effect and aim at the determination of QCD low energy constants as the pion polarisability and the chiral anomaly. The muon program, focused on deep inelastic scattering, took place in the years 2002 to 2007. During this time, in autumn 2004, also a first pilot run with a pion beam was taken with the focus on diffractive and Primakoff measurements. Preliminary results and conclusions are presented. Data taking with a pion beam was resumed in 2008, where large statistics for diffractive scattering was collected. First insights, also in view of the findings of previous experiments, are presented, as well as the planning for continuation of data taking in 2009.

  9. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Koshimizu, Masanori, E-mail: koshi@qpc.che.tohoku.ac.jp; Asai, Keisuke [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Kurashima, Satoshi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Taguchi, Mitsumasa; Kimura, Atsushi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamatsu, Kazuhiro [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.5–2.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  10. Multicomponent measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation

    Science.gov (United States)

    Holloway, M. A.; Fiorito, R. B.; Shkvarunets, A. G.; O'Shea, P. G.; Benson, S. V.; Douglas, D.; Evtushenko, P.; Jordan, K.

    2008-08-01

    High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI), and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences, and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and optical diffraction radiation conducted at the Jefferson Laboratory’s 115 MeV ERL which show the presence of two separate components within the beam’s spatial and angular distributions. By assuming a correlation between the spatial and angular features, we estimate an rms emittance value for each of the two components.

  11. Neutron beam measurement dosimetry

    International Nuclear Information System (INIS)

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR

  12. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  13. Equalization of Medipix2 imaging detector energy thresholds using measurement of polychromatic X-ray beam attenuation

    International Nuclear Information System (INIS)

    The single photon counting pixel detector Medipix2 is a powerful tool for energy resolved X-ray imaging. It allows the energies of incoming X-rays to be discriminated by setting an energy threshold common to all pixels. As the parameters of individual pixels vary, each pixel further contains a 3-bit digital-to-analogue converter (DAC) adjustment. Values of these DACs are traditionally determined by finding the noise floor in each pixel. Our approach is based on a polychromatic X-ray beam attenuation measurement. An attenuation curve is measured using varying thickness of aluminium foil. The attenuation curve is fitted in each pixel with a function calculating the detected signal. Free parameters of the fit are the beam intensity and the energy threshold. The measurement is done twice, with the threshold adjustment set to minimum resp. maximum value in all pixels. The result is a calibration of the adjustment DACs, allowing the value of the adjustment DAC in each pixel to be found such that the dispersion of energy thresholds between pixels is minimized. It is a fast and simple to use method that does not require modification of the imaging setup. It will be shown that it reduces the dispersion of threshold values by up to 40% compared to the noise-floor based technique of equalization.

  14. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    International Nuclear Information System (INIS)

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  15. Intense low energy positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  16. The calibration of plane parallel ionisation chambers for the measurement of absorbed dose in electron beams of low to medium energies

    International Nuclear Information System (INIS)

    A study was made of calibrating the NACP plane parallel chamber in electron beams from linear accelerators of a different manufacture with energies, E O' from 4.4 to 19.1 MeV, and also in 4 and 6 MV photon beams as well as a cobalt60 beam. The photon beam measurements were both IN-AIR and IN-Phantom. With the exception of the lowest energy electron beam (nominal S MeV), the ND values from measurements in the electron beams were within +1% of the average value f'rom the three different methods according to the AAPM TG 39 protocol. The preferred method of calibration of an electron chamber is of course in an electron beam at R100 in water. This can still be done in medium energy electron beams (nominal 7 to 14 MeV) for the NACP chamber with the same degree of accuracy and precision as with AAPM TG 39 methodology. Alternatively the traditional cobalt-60 calibration beam can be replaced by a low energy (4 - 6MV) photon beam for in-phantom calibrations at 50 mm depth, giving comparable results, and with no more uncertainties than those obtained in electron beams. 9 refs., 2 tabs., 1 fig

  17. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, P. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  18. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  19. A bench measurement of the energy loss of a stored beam to a cavity

    International Nuclear Information System (INIS)

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch of an rf cavity or other vacuum-chamber structure---the so-called ''cavity radiation.'' The proposed method is analyzed in some detail. 2 refs., 4 figs

  20. A Bench Measurement of the Energy Loss of a Stored Beam to a Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sands, M.; Rees, John R.; /SLAC

    2005-08-08

    A rather simple electronic bench experiment is proposed for obtaining a measure of the impulse energy loss of a stored particle bunch to an rf cavity or other vacuum-chamber structure--the so-called ''cavity radiation''. The proposed method is analyzed in some detail.

  1. A low energy ion beam system for thermal evolution measurements of damage in ion bombarded single crystals

    International Nuclear Information System (INIS)

    The use of thermal evolution mass spectrometry in conjunction with the helium probe represents a powerful method of studying the gas-defect interaction processes associated with ion bombardment of single crystal targets. The energy and fluence dependence of the damage build-up processes together with the annealing characteristics of the damage are of considerable importance in view of the widespread use of low energy ion beam and plasma cleaning techniques. The apparatus described comprises a low energy ion gun based on an electron bombardment source and Wien filter and a target chamber incorporating a multiple target holder assembly. The design considerations and operating characteristics of the overall system are described and the often used ion bombardment cleaning procedures discussed with reference to experimental thermal evolution measurements of low energy argon and helium trapping. (author)

  2. High energy-resolution measurements of cross-sections at beams by the Method of Spectra Superposition- MSS

    International Nuclear Information System (INIS)

    For the experimental nuclear and particle physics at accelerators during more than last 40 years it has become usual not thinking about the σ(Eb) or d σ(EB)/dΩ -measurements with the energy-resolution better than the energy-straggling of accelerator beam ΔA. But in quite a number of modern problems (for instance - search for the narrow resonances in lepton-hadron and hadron-hadron collisions or in quark-bag systems production) it's required to have high energy-resolution ΔEF in cross-sections or Excitation Functions (EF). Is there in principle any way for high energy-resolution σ(EB) or dσ(EB)/d Ω better in the thin target cases than beam's ΔA at every modern accelerator ? Yes, there is. In order to supply this description with full clearance and to simplify it we will consider this problem in the non-relativistic version by dividing all series of energy-spectra transformations into five following parts : A -Initial Background Points-of- View, E -Before the Collision (Interaction), C -the Collision (Interaction) Process, C*-the Outgoing product-Particles Spectra in the target medium, D -the Detected product-particles spectra

  3. TFTR neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterflow calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source on the well-instrumented test stand, 99.5±3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12 degree, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations in the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water

  4. Electron-beam diagnostic for space-charge measurement of an ion beam

    OpenAIRE

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2003-01-01

    An electron beam diagnostic system for measuring the charge distribution of an ion beam without changing its properties is presently under development for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but these capture it, or significantly alter its properties. In this new diagnostic a low energy, low current electron beam is scanned transversely across the ion beam; the measured electron beam deflection is use...

  5. Material content of binary physical mixtures as measured with a dual-energy beam of γ rays

    International Nuclear Information System (INIS)

    The content of water and soil in physical intermixtures was measured simultaneously and nondestructively by the attenuation of a dual-energy beam of γ rays. The beam, 1 mm by about 3 cm in cross section, was devised by placing a 280-mCi source of 137Cs behind a 389-mCi source of 241Am, with lead collimators suitably aligned in front of each source and the scintillation probe. The probe was connected in parallel to two separate amplifier-analyzer-scaler systems, one being set in the integral mode to receive all pulses greater than 550 keV (for 137Cs, 662-keV peak), with the other being set in the differential mode to receive all pulses in a band 35 to 85 keV (for 241Am, 60-keV peak). When related to the count intensity in the high-energy range, the count intensity e caused by 137Cs in the low-energy band was empirically found to be independent of the material in the binary mixture (soil and/or water) placed in the beam for measurement. Also, e could be well expressed by a cubic polynomial that was then used along with a dead-time correction to determine the attenuated count intensity attributable to the 241Am source alone. Calibration of the system was then possible. Over-all measuring accuracy was on the order of plus-minus 0.01 cm3/cm3 in water content and plus-minus 0.02 g/cm3 in soil content (bulk density) for a counting period of 5 min; these changed to plus-minus 0.04 cm3/cm3 or g/cm3 for a counting period of 5 sec. (U.S.)

  6. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    International Nuclear Information System (INIS)

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics

  7. Comparison of film measurements and Monte Carlo simulations of dose delivered with very high-energy electron beams in a polystyrene phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey; Koong, Albert C.; Maxim, Peter G., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu; Loo, Billy W., E-mail: Peter.Maxim@Stanford.edu, E-mail: BWLoo@Stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305-5847 (United States); Dunning, Michael; McCormick, Doug; Hemsing, Erik; Nelson, Janice; Jobe, Keith; Colby, Eric; Tantawi, Sami; Dolgashev, Valery [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2015-04-15

    Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dose distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.

  8. The readout of the LHC beam luminosity monitor Accurate shower energy measurements at a 40 MHz repetition rate

    CERN Document Server

    Manfredi, P F; Speziali, V; Traversi, G; Manghisoni, M; Re, V; Denes, P; Placidi, Massimo; Ratti, A; Turner, W C; Datte, P S; Millaud, J E

    2004-01-01

    The LHC beam luminosity monitor is based on the following principle. The neutrals that originate in LHC at every PP interaction develop showers of minimum ionizing particles in the absorbers placed in front of the separation dipoles. The shower energy, measured by suitable detectors in the absorbers is proportional to the number of neutral particles and, therefore, to the luminosity. The principle lends itself to a luminosity measurement on a bunch-by-bunch basis. However, to make such a measurement feasible, the system must comply with extremely stringent requirements. Its speed of operation must match the 40 MHz bunch repetition rate of LHC. Besides, the detector must stand extremely high radiation doses. This paper discusses the solutions adopted to comply with these requirements.

  9. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  10. Intermediate-energy polarimeter for the measurement of the deuteron and proton beam polarization at the JINR synchrophasotron

    International Nuclear Information System (INIS)

    The vector polarization of the deuteron beam (2.5 ≤ Pd ≤ 9.0 GeV/c) of the JINR synchrophasotron was measured and monitored by the pp beam polarimeter. Considering the deuteron beam as a beam of weakly bound protons and neutrons, the asymmetries of scattering of protons from deuterons on thin polyethylene and carbon targets were determined. The polarimeter is described, and the values of the vector polarization of the deuteron beam and of the CH2 analyzing power are given

  11. Muon storage rings for a beam-systematic-free measurement of neutrino and antineutrino cross-sections at low energy

    CERN Document Server

    Navas-Concha, S

    2002-01-01

    Precision neutrino cross-section measurements at low energies will be necessary to improve the results of the current and future big neutrino experiments. In order to achieve precision neutrino cross- sections, that will yield a comprehensive understand of the underlying physics, a rather extended program will be required: (1) measurement from kinematical thresholds up to a few GeV; (2) well known and controlled neutrino flux; (3) study of neutrinos and antineutrinos and possibly nu /sub e/ and nu /sub mu / flavors; (4) on several nuclear target; (5) with detectors capable of exclusive final state reconstruction. While the "standard" choice advocated relies on currently existing or on future "traditional" neutrino beams, that will provide very high intensities at near sites, we advocate that neutrinos from muon storage rings provide a better choice to criterias (1)-(3). The currently available statistics from the CERN AD and the FNAL-Debuncher would provide statistical precisions better than 10% in typ. 200 M...

  12. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  13. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  14. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    International Nuclear Information System (INIS)

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  15. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    Science.gov (United States)

    Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  16. Electron beam coherence measurements using diffracted beam interferometry/holography.

    Science.gov (United States)

    Herring, Rodney A

    2009-06-01

    The intensity and coherence of elastically and inelastically scattered electrons have been studied by the interference of electron-diffracted beams using a method of diffracted beam interferometry/holography (DBI/H). In the interferograms produced, fringes were found to exist from low to high scattering angles. The intensity and coherence of the fringes are useful for understanding the contrast mismatch between experimental and simulated images found in atomic resolution images of crystals produced by transmission electron microscopy (TEM) and annular dark-field (ADF) scanning transmission electron microscopy (STEM). The fringes disappear when the interfering beams are separated from an exact overlay position, which produces a measurement of the beam's lateral coherence and holds promise for measuring the coherence of the respective quasi-particles associated with the energy loss electrons. PMID:19141592

  17. Thin chamber for profile measuring intensive beams of high-energy charged particles

    International Nuclear Information System (INIS)

    A two-coordinate profile meter developed on the basis of the multichnnel chamber of secondary emission (MCSE) for operation in intense (1010-3x1012 cm-2s-1) 70 GeV proton beams is described. MCSE electrodes are produced by spraying metal at thickness equal to several hundreds angstrem on 10-micron polyamide film. Resource tests have revealed high workability of MCSE when passing 6.5x1017 protons through it

  18. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    Science.gov (United States)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  19. Measurement of neutron and charged particle contamination in high energy medical therapy x-ray beams using recoil track registration in polycarbonate foils

    International Nuclear Information System (INIS)

    The production of photoneutrons and high-energy charged particles by betatrons and linear accelerators used in radiotherapy is measured. It is concluded there exists sufficient contamination in high-energy x-ray beams to be a consideration in certain radiotherapy situations

  20. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  1. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  2. Control and measurement of ion-energy distributions in a beam-plasma system

    Science.gov (United States)

    Zi-An, Wei; Jin-Xiu, Ma; CAS Key Laboratory of Geospace Environment; Department of Modern Physics Team

    2015-11-01

    A double plasma device is divided by two grids separating source and experimental chambers. Ions are accelerated by the voltage drop between two grids. To study the ion-energy in the experimental region, the ion distribution function (IDF) was probed using a retarding field energy analyzer, also the correlation between the IDF and discharge parameters was studied. It is shown that the IDF in the experimental region exhibits a double-peak structure containing a background and a high-energy streaming-ion groups. The proportion of the ion groups can be controlled by the filament current. Supported by the National Natural Science Foundation of China (Grant Nos. 11175177 and J1103207).

  3. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  4. Calibration of a proton beam energy monitor.

    Science.gov (United States)

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  5. An introduction to cross-sections and asymmetries measurable using polarised beams in high-energy e+e- colliders

    International Nuclear Information System (INIS)

    The implementation of polarised beams at SLC, and hopefully LEP, is an important development. This will allow access to a range of precision measurements which exploit the parity violating nature of the Z boson. This report gives an introduction to the basic quantities which may be measured with polarised beams. These are the left-right asymmetry (ALR), forward-backward asymmetries with and without polarisation (ARFB, ALFB, AFB) and the ''improved'' polarised forward-backward asymmetry (ApolFB). The final state polarisation measurement is also discussed. (author)

  6. Low-energy and secondary (radioactive) ion-beam profile measurements and optimization using modified Gafchromic EBT film

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Becchetti, F.D., E-mail: fdb@umich.ed [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Ojaruega, M.; Torres-Isea, R.; Raymond, R.S. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Villano, A.N. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Kolata, J.J.; Roberts, A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2010-08-21

    A modified version of Gafchromic EBT radiochromic medical imaging film, which is light insensitive and requires no special development or processing, is shown to be useful for imaging low-energy (few MeV) ion beams and radioactive sources. It appears especially well suited for use with low-intensity short-lived (radioactive) secondary beams (RNB). The film can assist in optimizing the collimation needed to minimize unwanted background ions, and to accurately determine the ion-optical alignment of RNB production and transport systems. It allows for effective imaging of beam profiles and relative intensities throughout the beam-transport system and especially at locations not readily accessible to electronic imaging detectors. The special advantages of using the film for RNBs, which often are spatially extended and contaminated with unwanted ions, are demonstrated.

  7. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  8. Uncertainties on measurements of absorbed-dose-to-water, from clinical high-energy eletron beams: a comparison with the IAEA protocols

    International Nuclear Information System (INIS)

    A pilot study was performed to verify the troubles involved in the implementation of dosimetric protocol TRS 398 for absorbed-dose-to-water, using clinical high-energy electron beams and to accomplish an detailed evaluation of uncertainty chain components associated to the measurement, which ones were not treated in the IAEA protocols, aimed the standardization of technical procedures. (author)

  9. Uncertainties on measurements of absorbed-dose-to-water, from clinical high- energy electron beams: a comparison with the IAEA protocols

    International Nuclear Information System (INIS)

    A pilot study was performed to verify the troubles involved in the implementation of dosimetric protocol TRS 398 for absorbed-dose-to-water, using clinical high-energy electron beams and to accomplish an detailed evaluation of uncertainty chain components associated to the measurement, which ones were not treated in the IAEA protocols, aimed the standardization of technical procedures. (author)

  10. Quality indexes based on water measurements for low and medium energy x-ray beams: A theoretical study with PENELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Chica, U. [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain and FISRAD S.A.S Carrera 64 a No 22-41, Bogotá D.C. (Colombia); Anguiano, M.; Lallena, A. M., E-mail: lallena@ugr.es [Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain); Vilches, M. [Servicio de Radiofísica, Hospital Universitario “San Cecilio”, Avda. Dr. Olóriz, 16, E-18012 Granada (Spain)

    2014-01-15

    Purpose : To study the use of quality indexes based on ratios of absorbed doses in water at two different depths to characterize x-ray beams of low and medium energies. Methods : A total of 55 x-ray beam spectra were generated with the codes XCOMP5R and SPEKCALC and used as input of a series of Monte Carlo simulations performed with PENELOPE, in which the percentage depth doses in water and thek{sub Q,Q{sub 0}} factors, defined in the TRS-398 protocol, were determined for each beam. Some of these calculations were performed by simulating the ionization chamber PTW 30010. Results : The authors found that the relation betweenk{sub Q,Q{sub 0}} and the ratios of absorbed doses at two depths is almost linear. A set of ratios statistically compatible with that showing the best fit has been determined. Conclusions : The results of this study point out which of these ratios of absorbed doses in water could be used to better characterize x-ray beams of low and medium energies.

  11. High energy beam manufacturing technologies

    International Nuclear Information System (INIS)

    Technological progress continues to enable us to utilize ever widening ranges of physical and chemical conditions for material processing. The increasing cost of energy, raw materials and environmental control make implementation of advanced technologies inevitable. One of the principal avenues in the development of material processing is the increase of the intensity, accuracy, flexibility and stability of energy flow to the processing site. The use of different forms of energy beams is an effective way to meet these sometimes incompatible requirements. The first important technological applications of high energy beams were welding and flame cutting. Subsequently a number of different kinds of beams have been used to solve different problems of part geometry control and improvement of surface characteristics. Properties and applications of different specific beams were subjects of a number of fundamental studies. It is important now to develop a generic theory of beam based manufacturing. The creation of a theory dealing with general principles of beam generation and beam-material interaction will enhance manufacturing science as well as practice. For example, such a theory will provide a format approach for selection and integration of different kinds of beams for a particular application. And obviously, this theory will enable us to integrate the knowledge bases of different manufacturing technologies. The War of the Worlds by H. G. Wells, as well as a number of more technical, although less exciting, publications demonstrate both the feasibility and effectiveness of the generic approach to the description of beam oriented technology. Without any attempt to compete with Wells, we still hope that this volume will contribute to the creation of the theory of beam oriented manufacturing

  12. Neutralization of low energy broad ion beam

    International Nuclear Information System (INIS)

    The paper is devoted to experimental and theoretical investigation of a low energy broad ion beam space charge and current compensation and ion-beam plasma (IBP), which would be created in transport space of the beam. The beam had cylindrical symmetry. The continuous uniform and hole tube like ion beams are used in the experiments. Different channels of electron appearing have been investigated for cases of neutralization due to secondary γ-electrons from the target and by electrons from glow cathode-neutralizer with metal or dielectric target. Results of neutralizing electrons energy distributions function measurements are presented as well as dependences of electron temperature and self-consisted plasma potential vs. beam parameters, ambient gas pressure, neutralizer parameters. Role of the thermoelectrons and dependence of IBP parameters on neutralizer area, location and potential are discussed. Significant role in neutralization of spatial collisional processes has been revealed even in neutralization by thermocathode. On the base of the experimental results self-consistent theoretical model have been developed, which describes the behavior of intense ion beam passing through the neutral gas at low pressure within conductive walls. The collisionless approach is used which means absence of collisional relaxation of the beam. This theory is used to derive the plasma potential and electron temperature within the beam

  13. Measurement of transverse energy production with Si and Au beams at relativistic energy: Towards hot and dense hadronic matter

    International Nuclear Information System (INIS)

    We present a systematic study of transverse energy (ET) production in collisions of 11.4A GeV/c Au and 14.6A GeV/c Si ions with targets of Al, Au, and Pb. Comparison of data for Au+Au and Si+Al indicates that, for the heavier system, there is an increase in the amount of stopping which is accompanied by a decrease in the width of the dET/dη distribution. The ratio of the maximum ET observed for the two systems is significantly greater than the ratio of the total energy available in the center of mass frame

  14. Guided-ion beam measurements of Ar+ + Ar symmetric charge-transfer cross sections at ion energies ranging from 0.2 to 300 eV

    International Nuclear Information System (INIS)

    Guided-ion beam (GIB) measurements of the Ar+ + Ar symmetric charge-transfer (SCT) system are presented for ion energies ranging from 0.2 to 300 eV. Two methods are applied to distinguish primary and secondary ions: (i) based on isotopic-labeling, (ii) based on significant laboratory velocity differences. The absolute cross sections measured with these methods are in excellent agreement at energies above 1 eV. The experimental results are compared with semi-classical calculations performed with various published Ar2+ potentials. The calculations including spin-orbit effects lie within 10% of the isotope-selected and attenuation measurements at all investigated ion energies. The present results lie significantly above the simple Rapp and Francis model. Important errors in the latter approach are pointed out and a correct one-electron model is proposed. First measurements of the differential cross section at 0.5 eV collision energy are briefly mentioned. (orig.)

  15. Beam-beam studies for the High-Energy LHC

    CERN Document Server

    Ohmi, K; Zimmermann, F

    2011-01-01

    LHC upgrades are being considered both towards higher luminosity (HL-LHC) and towards higher energy (HE-LHC). In this paper we report initial studies of the beam-beam effects in the HE-LHC [1]. The HE-LHC aims at beam energies of 16.5 TeV, where the transverse emittance decreases due to synchrotron radiation with a 2-hour damping time. As a result of this emittance, shrinkage the beam-beam parameter increases with time, during a physics store. The beam-beam limit in the HE-LHC is explored using computer simulations.

  16. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haitao, E-mail: ren@frib.msu.edu; Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn [Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824 (United States)

    2016-02-15

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  17. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  18. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    International Nuclear Information System (INIS)

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper

  19. Measurement and Calculation of High-Energy Neutron Spectra behind Shielding at the CERF 120 GeV/c Hadron Beam Facility

    CERN Document Server

    Nakao, N; Roesler, S; Brugger, M; Hagiwara, M; Vincke, H; Khater, H; Prinz, A A; Rokni, S H; Kosako, K

    2008-01-01

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133 degrees. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple, and results are given in the form of energy spectra, these experimental results are very useful a...

  20. High energy ion beam mixing

    International Nuclear Information System (INIS)

    Experimental investigations have been made on the parameters which can be used to control the mixing profiles, and the width of intermixed layers in film-substrate systems being irradiated by high energy heavy ion beams. The samples were irradiated by ion beams of Au, Cu, and Si with energies of 1.5 to 3 MeV. Typical examples of the RBS spectra are presented and discussions are made on the extent of contribution of binary collisions on the interfacial mixing. The experimental and simulation results show that the interfacial mixing is dominated by the binary collisions. (author)

  1. Pxie low energy beam transport commissioning

    CERN Document Server

    Prost, L; Andrews, R; Carneiro, J -P; Hanna, B; Scarpine, V; Shemyakin, A; D'Arcy, R; Wiesner, C

    2015-01-01

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) is under construction. It includes a 10 mA DC, 30 KeV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to ~25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source and LEBT, which includes 3 solenoids, several clearing electrodes/collimators and a chopping system, have been built, installed, and commissioned to full specification parameters. This report presents the outcome of our commissioning activities, including phase-space measurements at the end of the beam line under various neutralization schemes obtained by changing the electro...

  2. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  3. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    Science.gov (United States)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  4. Is LEP beam-beam limited at its highest energy?

    CERN Document Server

    Brandt, D; Meddahi, Malika; Verdier, A

    1999-01-01

    The operation of LEP at 45.6 GeV was limited by beam-beam effects and the vertical beam-beam parameter xy never exceeded 0.045. At the highest energy of 94.5 GeV, the increased damping allows higher beam-beam parameters xy . Values above 0.07 in the vertical plane averaged over four experiments have been obtained frequently with peak values up to 0.075 in a single experiment. Although the maximum intensity in LEP is presently limited by technical considerations, some observations indicate that the beam-beam limit is close and the question of the maximum possible values can be raised. These observations are shown in this paper and possible consequences are presented. The optimum operation of LEP in the neighbourhood of the beam-beam limit is discussed.

  5. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 104. The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  6. TFTR [Tokamak Fusion Test Reactor] neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab

  7. First measurements with the test stand for optical beam tomography

    OpenAIRE

    Wagner, Christopher; Meusel, Oliver; Ulrich, Ratzinger; Reichau, Hermine

    2011-01-01

    A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is teste...

  8. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  9. Measuring the proton beam polarization from the source to RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  10. Energy recovery in high energy neutral beam injectors

    International Nuclear Information System (INIS)

    One way to heat the plasma of thermonuclear fusion experiments, is to inject high energy (50 to 100 KeV per nucleon), neutral particles (hydrogen or deuterium). Neutral beam elaboration consists in ion production and acceleration, neutralisation by charge exchange on gas target, disposal of unneutralized ions. But, in the case of positive ion based neutral beam injection, the neutralisation efficiency is limited to 50% at 100 KeV, and decreases rapidly with energy. The energy recovery is a new method for disposing of the unneutralized ions: these are electrostatically decelerated and collected on electrodes which are polarized at low voltage, close to the ion source potential. An energy recovery system was studied and experimented with positive ion beams of 50 and 100 KeV. In the framework of a french-japanese collaboration, we measured a relative power reduction of about 20%, with 100 KeV, 1,5 MW deuterium beams. We have also studied theoretically an energy recovery system for negative ion beams, which will be utilized at high energy (1 MeV). A relative power reduction of 20% can be expected in the best conditions

  11. Large Dynamic Range Beam Profile Measurements with Low Current Electron Beams

    International Nuclear Information System (INIS)

    Large dynamic range [Peak/Noise > 105] beam profile measurements are routinely performed in the Hall-B beamline at Jefferson Lab. These measurements are made with a 1 to 10nA electron beam current with energies between 1 to 6 GeV. The electron beam scatters off of a thin [25 mu-m] W or Fe wire and the scattered particle/shower is detected via scintillation or Cerenkov light several meters downstream of the wire. This light is converted to an electrical pulse via photomultiplier tubes [PMT]. The PMT readout and wire motion are controlled and synchronized by VME electronics. This report describes results on increasing the dynamic range by using multiple wires of varying diameters. Profile measurements with this large dynamic range can be of use for machines with very large beam currents (ERL) where any FR-actional beam loss represents a significant amount of beam power [1,2

  12. Energy verification in Ion Beam Therapy

    CERN Document Server

    Moser, F; Dorda, U

    2011-01-01

    The adoption of synchrotrons for medical applications necessitates a comprehensive on-line verification of all beam parameters, autonomous of common beam monitors. In particular for energy verification, the required precision of down to 0.1MeV in absolute terms, poses a special challenge regarding the betatron-core driven 3rd order extraction mechanism which is intended to be used at MedAustron [1]. Two different energy verification options have been studied and their limiting factors were investigated: 1) A time-of-flight measurement in the synchrotron, limited by the orbit circumference information and measurement duration as well as extraction uncertainties. 2) A calorimeter-style system in the extraction line, limited by radiation hardness and statistical fluctuations. The paper discusses in detail the benefits and specific aspects of each method.

  13. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chase, B. E. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Chaurize, S. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Garcia, F. G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Seiya, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Pellico, W. A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Sullivan, T. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Triplett, A. K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  14. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  15. Parton distributions with high energy proton beams

    International Nuclear Information System (INIS)

    The opportunities for using high energy proton beams to advance our current knowledge in parton distributions are discussed. Highlights from some Fermilab dimuon production experiments with 800 GeV proton beams are presented. Possible future directions are discussed

  16. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  17. Electrostatic energy analyzers for high energy charged particle beams

    International Nuclear Information System (INIS)

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics

  18. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  19. Measurement of electron beam polarization at the SLC

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented. (LEW)

  20. 低能离子束横向发射度的测量及分析%Measuring and Analyzing Transverse Low-Energy Ion Beam Emittances

    Institute of Scientific and Technical Information of China (English)

    M.P.Stockli

    2007-01-01

    The transverse emittance of an ion beam describes its transverse size as the particles are transported from a source to a target.It allows for predicting beam losses in limiting apertures and the beam focus size at the target.Various definitions and issues are discussed.The most common and emerging measuring techniques are presented,including their advantages.Several methods of emittance data analysis,their accuracy and trustworthiness,are discussed.

  1. Energy and energy width measurement in the FNAL antiproton accumulator

    Energy Technology Data Exchange (ETDEWEB)

    Church, M.; Hsueh, S.; Rapidis, P.; Werkema, S.

    1991-10-01

    The Fermilab Antiproton Accumulator has recently been used to produce Charmonium resonances (charm quark, anti-charm quark bound states) in proton-antiproton annihilations using an internal H{sub 2} gas jet target. A measurement of the resonance mass and width may be obtained from a precise knowledge of the antiproton beam energy and energy spread. The beam energy is measured to an accuracy of 1 part in 10{sup 4} in the range 6.3 Gev to 4.1 Gev by measuring the orbit length and revolution frequency of the beam. The beam momentum spread is measured to an accuracy of 10% by measuring the beam frequency spread and the parameter {eta} = (P{sub beam}/F{sub rev}){center dot}(dF{sub rev}/dP{sub beam}). These two measurement techniques are described in this report.

  2. Measurements of Dose-Averaged Linear Energy Transfer Distributions in Water Using CR-39 Plastic Nuclear Track Detector for Therapeutic Carbon Ion Beams

    Science.gov (United States)

    Kohno, Ryosuke; Yasuda, Nakahiro; Takeshi, Himukai; Kase, Yuki; Ochiai, Keiko; Komori, Masataka; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2005-12-01

    A CR-39 plastic nuclear track detector was used as a linear energy transfer (LET) detector for carbon ion radiotherapy. We compared dose-averaged LET distributions in water obtained using the CR-39 detector for a monoenergetic beam and spread-out Bragg peak beam by calculations using the one-dimensional heavy-ion transport code used in the current heavy-ion treatment planning. We confirmed that the CR-39 detector could measure the high LET particles that are dominant contributors to dose-averaged LET. On the other hand, the CR-39 result was overestimated in the tail region of the distal edge in depth-dose distributions, due to its detection limit for lower LET particles. However, physical dose in the region is quite small. Namely, the effect of this difference on the biological dose distribution is also small. These results demonstrate that the CR-39 detector is a useful detector for measuring the LET distribution in carbon ion radiotherapy.

  3. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Science.gov (United States)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  4. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  5. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    International Nuclear Information System (INIS)

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described

  6. Electrical measurement techniques for pulsed high current electron beams

    International Nuclear Information System (INIS)

    The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed

  7. Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos

    CERN Document Server

    Chiba, Masami; Tanikawa, Takahiro; Yano, Hiroyuki; Yabuki, Fumiaki; Yasuda, Osamu; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Watanabe, Souichirou; Utsumi, Michiaki; Fujii, Masatoshi

    2013-01-01

    We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock salt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consis...

  8. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  9. Turbulence measurements using six lidar beams

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    components of the Reynolds stress tensor, which arises because, in a VAD scan the lidar beams are combined to obtain different components of the wind field. In this work we demonstrate theoretically, how the contamination by the cross components can be avoided by using the measured variances of the line......-of-sight velocities of six lidar beams. Under certain assumptions the volume averaging can then be avoided using the ensemble averaged line-ofsight Doppler velocity spectra. In this way, we can then in principle measure the true turbulence using six lidar beams....

  10. Low energy ion beam dynamics of NANOGAN ECR ion source

    Science.gov (United States)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  11. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (γ) emitted from the surface of the detector upon impact of an atom. The method employed to determine γ and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper.

  12. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (gamma) emitted from the surface of the detector upon impact of an atom. The method employed to determine gamma and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper

  13. Development of an external Faraday cup for beam current measurements

    International Nuclear Information System (INIS)

    In general, beam current measurements are very important for many kinds of experiments using highly energetic particle beams at accelerators, such as cyclotrons, linacs, etc. The Faraday cup is known to be one of the most popular beam current measurement tools. We developed an external Faraday cup to measure the beam current at a dedicated beam line for low-flux experiments installed at the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences (KIRAMS). It was designed for external beam current measurements and is composed of a vacuum chamber, an entrance window, a collimator, a electrostatic suppressor ring, and a cup. The window is made of 75-um-thick Kapton film, and the diameter of the collimator is 10 mm or 20 mm. The ring and the cup has 5-cm inner diameters, and the thickness of the bottom of the cup is 2 cm, which is enough to absorb the total proton energy up to 45 MeV. Using this external Faraday cup, we measured the beam current from the cyclotron, and we compared measured flux to the results from film dosimetry using GAF films.

  14. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  15. Shaping and measuring picosecond charged particle beams

    International Nuclear Information System (INIS)

    The joint use of subharmonic beam buncher and pulse deflector is an efficient method of high current, picosecond pulse shaping of a beam. The method permits to obtain picosecond pulse current at narrow enough energy spectrum and maximum pulse current of a beam. To realize the method a system for shaping picosecond pulse current of a beam has been developed. For the subharmonic bunching a coaxial resonator with capacitive load is used. A pulse deflector is developed and tested for shaping pulse current of 3-5 ns duration with the energy 50-300 keV and current up to 2A. The length of the deflector plates is 10 cm. A nanosecond modulator with a ferrite shaper is developed and manufactured. A system for deflector modulator pulse synchronization is developed. The block-diagram of a magnetooptical monitor is presented

  16. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  17. Measurements of bone mineral density in the lumbar spine and proximal femur using lunar prodigy and the new pencil-beam dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    We evaluated the correlation of the absolute bone mineral density (BMD) values of the lumbar spine and standard sites of the proximal femur obtained from a Lunar Prodigy and the newly developed pencil-beam dual-energy X-ray absorptiometry (Dexxum). Between June 2008 and December 2008, 79 Korean volunteers were enrolled. Measurements were obtained on the same day using both densitometers. The absolute BMD values (g/cm2) from the two densitometers were evaluated using Pearson's correlation analysis with Bonferroni's correction for the three clinically important sites. In order to evaluate precision, we performed duplicate Dexxum measurements, and calculated the within-subject coefficient of variation (WSCV). The Pearson's correlation coefficient (r) of BMD values for the total proximal femur, femoral neck, and lumbar spine by the two densitometers were 0.926, 0.948, and 0.955 respectively, and the null hypotheses of r = 0.8 were all rejected (p < 0.001 by one-sided Z-test with Fisher's z-transformation for each site). The T-scores (r ≥ 0.842) and Z-scores (r ≥ 0.709) also showed strong positive correlations. The duplicate BMD values of Dexxum showed a high level of precision (WSCV ≤ 4.27%). Dexxum measurements of BMD, T-scores, and Z-scores showed a strong linear correlation with those measured on Lunar Prodigy. (orig.)

  18. Processes leading to enhanced energy deposition by particle beams

    International Nuclear Information System (INIS)

    Range shortening of electron and proton beams due to target temperature and density effects is calculated. The effect on target hydrodynamics is calculated for a proton beam. The effect of the penetration of an electron beam self magnetic field into the target is shown to cause effective range shortening. Enhanced energy deposition by a pinched electron beam in a foil target is studied numerically and experimentally. The target expansion velocity measured by laser flash photography is used to determine the enhancement factor. Bremsstrahlung measurements are used to study the electron trajectories

  19. Measuring emittance using beam position monitors

    International Nuclear Information System (INIS)

    The Los Alamos Advanced Free Electron Laser uses a high charge (greater than InC), low emittance (normalized rams emittance less than 5π mm mrad) photoinjector driven accelerator. The high brightness achieved is due, in large part, to the rapid acceleration of the electrons to relativistic velocities. As a result, the beam does not have time to thermalize its distribution and its universe profile is, in general, non-Gaussian. This, coupled with the very high brightness, makes it difficult to measure the transverse emittance. Techniques used must be able to withstand the rigors of very intense electron beams, and not be reliant on Gaussian assumptions. Beam position monitors are ideal for this. They are not susceptible to beam damage, and it has been shown previously that they can be used to measure the transverse emittance of a beam with a Gaussian profile. However, this Gaussian restriction is not necessary and, in fact, a transverse emittance measurement using beam position monitors is independent of the beam's distribution

  20. First Beam Measurements with the LHC Synchrotron Light Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Thibaut; /CERN; Bravin, Enrico; /CERN; Burtin, Gerard; /CERN; Guerrero, Ana; /CERN; Jeff, Adam; /CERN; Rabiller, Aurelie; /CERN; Roncarolo, Federico; /CERN; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  1. In-beam spectroscopy of low energy conversion electrons with a recoil shadow method - a new possibility for subnanosecond lifetime measurements

    International Nuclear Information System (INIS)

    An electron spectrometer consisting of an electron transport system with normal conducting solenoidal coils and a Si(Li)-detector as the energy dispersive element is described. It can be used for in beam spectroscopy of electrons in three different modes. The first one is the usual broad range mode with a low energy cut off of the transmission performed by a tantalum disk between target and detector. The second one is the lens spectrometer mode. An envelope baffle system permits electron detection in a momentum band Δp/p = 0.12 . To cover a large energy range the magnet current is sweeped. In the third mode - the recoil shadow method - a longitudinal semicylindrical baffle between target and Si(Li)-detector allows spectroscopy of delayed electrons emitted from recoil nuclei in flight. Special features of this method are high transmission, and strong suppression of the prompt delta-electron background. Lifetime measurements based on the detection of conversion electrons are possible by variation of the target position. This was tested with the 152Sm(16O,xn)sup(168-x)Yb compound nuclear reaction at a recoil velocity vsub(r) = 0.01 c, where half lives between 0.1 ns and 1 ns were determined. (orig.)

  2. Prospects for measuring G{sub M{sub N}} in CLAS with higher CEBAF beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, W. [CEBAF, Newport News, VA (United States)

    1994-04-01

    The possibility exists for extending a planned measurement of the neutron magnetic form factor to higher values of momentum transfer. The theoretical interest and the experimental method are described. Problems associated with higher Q{sup 2} measurements are discussed. It is concluded that measurements of moderate precision may be possible up to a Q{sup 2} of 8-9.5 GeV{sup 2}, more than doubling the range of the data currently available.

  3. Techniques for intense-proton-beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1998-12-31

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H{sup +} cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H{sup {minus}}, pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA.

  4. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    International Nuclear Information System (INIS)

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 1350 from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D1+(E):D2+(E):D3+(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed

  5. Walking beam pumping unit system efficiency measurements

    International Nuclear Information System (INIS)

    The cost of electricity used by walking beam pumping units is a major expense in producing crude oil. However, only very limited information is available on the efficiency of beam pumping systems and less is known about the efficiency of the various components of the pumping units. This paper presents and discusses measurements that have been made on wells at several Shell locations and on a specially designed walking beam pump test stand at Lufkin Industries. These measurements were made in order to determine the overall system efficiency and efficiency of individual components. The results of this work show that the overall beam pumping system efficiency is normally between 48 and 58 percent. This is primarily dependent on the motor size, motor type, gearbox size, system's age, production, pump size, tubing size, and rod sizes

  6. Low energy beam transport for HIDIF

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O. E-mail: o.meusel@iap.uni-frankfurt.de; Pozimski, J.; Jakob, A.; Lakatos, A

    2001-05-21

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Gross, R. Doelling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe{sup +} beam are presented and the results of numerical simulations are shown.

  7. Beam dynamics in high energy particle accelerators

    CERN Document Server

    Wolski, Andrzej

    2014-01-01

    Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams.

  8. Investigation and realization at the Saclay linear accelerator of a line from a tagged photon beam bremsstrahlung in a wide energy range: Application to the measurement of the total cross section of the photofission (γ, f) of uranium 238

    International Nuclear Information System (INIS)

    A monochromatic tagged photon facility is described. The source is produced by tagging the photons from a continuous bremsstrahlung spectrum resulting from a monoenergetic electron beam traversing a thin target. A magnetic spectrometer is used to detect and measure the energy of the tagged electrons associated with the tagged photons. Tagging system characteristics include: 16 adjacent paths; a tagged energy range equal to 20% to 80% of the energy of the electrons of the incident beam; a constant relative resolution of the tagged energy bands equal to ±4%. The acquisition system is described and an example of the use of the system (measurement of the total cross section of photofission of U238 between 20 and 120 MeV) is shown. Tests show that the system can cover a range of monochromatic photon energy from 12 to 176 MeV, divided into 32 energy bands, with only two adjustements to the accelerator

  9. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  10. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  11. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  12. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  13. NBS (National Bureau of Standards) measurement services: Fricke dosimetry in high-energy electron beams. Final report

    International Nuclear Information System (INIS)

    The NBS Fricke-Dosimetry Service (advertised in NBS Special Publication 250, 1986-1988 and earlier editions) is described in detail. After a brief historical introduction and description of the service, the theoretical basis (including what quantities are measured, how, and why) and the philosophy of internal quality checks are discussed in some detail. This is followed by a description of the physical setup and of the step-by-step operating and reporting procedures. Throughout the section, there is reference to sample records of past performance, in order to facilitate continuity of operation in the case of personnel changes. The document concludes with a discussion of the uncertainties involved in the measurement quality-assurance service, safety considerations, and an appendix containing samples of all form letters and of the final report mailed to the participants

  14. Evaluation of beam energy fluctuation caused by phase noise

    International Nuclear Information System (INIS)

    The stability of RF signal sources is quite important for accelerators which have to provide very high quality beams. The RF sources for XFELs, for example, have to satisfy the integrated phase fluctuation less than several tens femtoseconds. The SSB noises of RF reference signal dominate the short-term instabilities of the RF phase of the carrier RF. This phase modulation finally results in the beam energy fluctuation. This presentation gives a quantitative evaluation of the beam energy fluctuations in an electron linear accelerator caused by phase noises comparing a theoretical analysis and experimental results: A simple model, which represents actual RF phase transmission in transmission lines of an electron linac, was introduced to understand how phase noises result the relative phase deference between a beam bunch and accelerating RF fields. In the experiments, we measured the enhanced beam energy fluctuations by modulating the phase of the reference RF signals with an external signal. (author)

  15. Ion Beam Energy Calibration Method for Accelerator

    International Nuclear Information System (INIS)

    Ion beam energy calibration methods, i e : nuclear reaction method, magnetic field method and calorimeter method were elaborated and studied from its advantage and disadvantage in this paper. Ion beam energy calibration method for accelerator using the method of magnetic field on 3 MV Tandem Accelerator have been carried out at Tiara, JAERI, Japan. The result showed that the energy of ion beam current is 43.56 keV. The result of study conclude that nuclear reaction method generally used to calibrate ion beam energy at the accelerator of energy larger than 2 MeV, calorimetric method for the accelerator electron including linac, magnetic field method for all particle type of accelerator. (author)

  16. Low energy beam transport system developments

    International Nuclear Information System (INIS)

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H− beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H− beams, but such gas densities cause unacceptably high H− beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H− beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed

  17. Low energy beam transport system developments

    Science.gov (United States)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-01

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H- beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H- beams, but such gas densities cause unacceptably high H- beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H- beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  18. Surface and buildup region dose measurements with Markus parallel-plate ionization chamber, Gafchromic EBT3 film and MOSFET detector for high energy photon beams

    CERN Document Server

    Akbas, Ugur; Koksal, Canan; Bilge, Hatice

    2016-01-01

    The aim of the study was to investigate surface and buildup region doses for 6 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV photon beams at 100 cm source-detector distance (SDD) for 5x5, 10x10 and 20x20 cm2 field sizes and 0, 30, 60, 80 and 90 beam angles. The surface doses for 10x10 cm2 field size were found to be 20.33%, 18.80% and 25.48% for Markus chamber, EBT3 film and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary, thus the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry, and must be taken into account.

  19. Surface and Buildup Region Dose Measurements with Markus Parallel-Plate Ionization Chamber, GafChromic EBT3 Film, and MOSFET Detector for High-Energy Photon Beams

    Directory of Open Access Journals (Sweden)

    Ugur Akbas

    2016-01-01

    Full Text Available The aim of the study was to investigate surface and buildup region doses for 6 MV and 15 MV photon beams using a Markus parallel-plate ionization chamber, GafChromic EBT3 film, and MOSFET detector for different field sizes and beam angles. The measurements were made in a water equivalent solid phantom at the surface and in the buildup region of the 6 MV and 15 MV photon beams at 100 cm source-detector distance for 5 × 5, 10 × 10, and 20 × 20 cm2 field sizes and 0°, 30°, 60°, and 80° beam angles. The surface doses using 6 MV photon beams for 10 × 10 cm2 field size were found to be 20.3%, 18.8%, and 25.5% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface doses using 15 MV photon beams for 10 × 10 cm2 field size were found to be 14.9%, 13.4%, and 16.4% for Markus chamber, EBT3 film, and MOSFET detector, respectively. The surface dose increased with field size for all dosimeters. As the angle of the incident radiation beam became more oblique, the surface dose increased. The effective measurement depths of dosimeters vary; thus, the results of the measurements could be different. This issue can lead to mistakes at surface and buildup dosimetry and must be taken into account.

  20. Low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D.; Formanoy, I.; Brandenburg, S.

    2006-01-01

    This paper describes the redesign of the low-energy beam line at KVI. Redesigned and properties of the optical elements of the transport beam line is done by using the code COSY INFINITY in the third-order of approximation. The effects of fringe fields of the optical elements are also taken into acc

  1. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  2. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  3. Bunch shape measurement of CW heavy-ion beam

    International Nuclear Information System (INIS)

    An accurate bunch shape measurement is one of the most important tasks during the fine tuning of multi-cavity accelerators. A device for the measurement of bunch time structure of cw heavy-ion beams with time resolution ∼20 picoseconds was developed, constructed and commissioned at ATLAS which is a 50 MV superconducting heavy-ion linac. The Bunch Shape Monitor (BSM) is based on the analysis of secondary electrons produced by a primary beam hitting a tungsten wire to which a potential of -10 kV is applied. In a BSM the longitudinal distribution of charge of the primary beam is coherently transformed into a spatial distribution of low energy secondary electrons through transverse rf modulation. The distribution of secondary electrons is detected by a chevron MCP coupled to a phosphor screen. The signal image on the screen is measured by use of a CCD camera connected to a PC. This BSM analyzes cw beams rather than pulsed beams studied by a previous device [1]. Design features of the BSM and the beam measurement results are reported

  4. Beam parametr measurements for the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Blocker, C.; Breidenbach, M.

    1981-01-01

    A stable, closely-controlled, high-intensity, single-bunch beam will be required for the SLAC Linear Collider. The characteristics of short-pulse, low-intensity beams in the SLAC linac have been studied. A new, high-intensity thermionic gun, subharmonic buncher and S-band buncher/accelerator section were installed recently at SLAC. With these components, up to 10/sup 11/ electrons in a single S-band bunch are available for injection into the linac. the first 100-m accelerator sector has been modified to allow control of short-pulse beams by a model-driven computer program. Additional instrumentation, including a computerized energy analyzer and emittance monitor have been added at the end of the 100-m sector. The beam intensity, energy spectrum, emittance, charge distribution and the effect of wake fields in the first accelerator sector have been measured. The new source and beam control system are described and the most recent results of the beam parameter measurements are discussed.

  5. Compressed beam directed particle nuclear energy generator

    International Nuclear Information System (INIS)

    This invention relates to the generation of energy from the fusion of atomic nuclei which are caused to travel towards each other along collision courses, orbiting in common paths having common axes and equal radii. High velocity fusible ion beams are directed along head-on circumferential collision paths in an annular zone wherein beam compression by electrostatic focusing greatly enhances head-on fusion-producing collisions. In one embodiment, a steady radial electric field is imposed on the beams to compress the beams and reduce the radius of the spiral paths for enhancing the particle density. Beam compression is achieved through electrostatic focusing to establish and maintain two opposing beams in a reaction zone

  6. Signal processing for beam position measurement

    CERN Document Server

    Vos, L

    1997-01-01

    The spectrum of the signals generated by beam position monitors can be very large. It is the convolution product of the bunch spectrum and the transfer function of the monitor including the transmission cable. The rate of information flow is proportional to the bandwidth and the maximum amplitude rating of monitor complex. Technology is progressing at a good pace and modern acquisition capabilities are such that nearly all the information contained in the spectrum can be acquired with a reasonable resolution [1]. However, the cost of such a system is enormous and a major part of the information is superfluous. The objective of a beam position measurement system is generally restricted to trajectory measurements of a portion of the beam that is much larger than the finer details that can be observed with the bare signal generated by the position monitor. Closed orbit measurements are a simple derivation product of the trajectory and will not be considered further. The smallest beam portion that is of practical...

  7. Beam lifetime measurement and analysis in Indus-2 electron storage ring

    Indian Academy of Sciences (India)

    Pradeep Kumar; A D Ghodke; Gurnam Singh

    2013-05-01

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam lifetime are also presented. An equation of stable beam current decay is evolved and this equation closely follows the observed beam current decay pattern. It shows that the beam is stable and the beam current decay is due to the beam–residual gas interaction (vacuum lifetime) and electron–electron interaction within a bunch (Touschek lifetime). The estimated vacuum, Touschek and total beam lifetimes from analytical formulations are also compared with the measured beam lifetime.

  8. PHENIX Experiment Results from the RHIC Beam Energy Scan Program

    CERN Document Server

    ,

    2013-01-01

    The PHENIX Experiment at RHIC has conducted a beam energy scan at several collision energies in order to search for signatures of the QCD critical point and the onset of deconfinement. PHENIX has conducted measurements of transverse energy production, muliplicity fluctuations, the skewness and kurtosis of net charge distributions, Hanbury-Brown Twiss correlations, charged hadron flow, and energy loss. The data analyzed to date show no significant indications of the presence of the critical point.

  9. Compact 180 deg magnetic energy analyzer for relativistic electron beams

    International Nuclear Information System (INIS)

    A compact, 180 deg deflection magnetic energy analyzer has been designed and used to measure the energy spectrum of the beam produced by the Tesla Transformer-Pulse forming line type Relativistic Electron Beam (REB) generator being used in the FEL experiments that are currently underway at Institute for Plasma Research. Relativistic electron beams have been used in many applications ranging from free-electron lasers to virtual cathode oscillators and other high power microwave devices. In all these cases, it is required that the electron beam is propagated without considerable loss across a drift region and it is also imperative that accurate energy measurements are required for dependable estimates and analysis regarding the output parameters of the system. In the case of a free-electron laser, the output wavelength of the FEL has a strong dependence on the beam energy and hence it is important to determine as accurately as possible, the energy of the electron beam in order to accurately estimate the FEL radiation frequency

  10. Precision luminosity measurement at LHCb with beam-gas imaging

    CERN Document Server

    Barschel, Colin

    The luminosity is the physical quantity which relates the cross-section to the production rate in collider experiments. The cross-section being the particle physics observable of interest, a precise determination of the luminosity is required. This work presents the absolute luminosity calibration results performed at the Large Hadron Collider beauty (LHCb) experiment at CERN using a novel method based on beam-gas interactions with data acquired at a center of mass energy $\\sqrt{s}=8$ TeV and $\\sqrt{s}=2.76$ TeV. Reconstructed beam-gas interaction vertices in LHCb are used to measure the beam profiles, thus making it possible to determine the beams overlap integral. An important element of this work was to install and use a neon gas injection system to increase the beam-gas interaction rate. The precision reached with the beam-gas imaging method relies on the two-dimensional beam shape determination developed in this work. For such precision, the interaction vertex resolution is an important ingredient. There...

  11. Computer simulations of a low energy proton beam tomograph

    International Nuclear Information System (INIS)

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  12. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  13. Beam dynamics simulations and measurements at the Project X Test Facility

    International Nuclear Information System (INIS)

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  14. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  15. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  16. Uses of Monochromized Thermal Neutron Beams for Nuclear Data Measurements

    International Nuclear Information System (INIS)

    The aims of the present paper are two folds: to explore the newly installed a high resolution neutron powder diffactometer (namely SAND) facility in the radial beam port-2 of 3 MW TRIGA Mark-II research reactor of Bangladesh Atomic Energy Commission (BAEC) and to assess the possibility of measuring neutron capture cross sections for various targets using the reflected monochromized neutron beam of energy 0.03339 eV from this newly installed facility. Several irradiations of Sm2O3 with pure Au-foils were performed to optimize the experimental conditions for the measurements of neutron capture cross section data at 0.03339 eV from SAND. The neutron flux was found to be ~1.0×105 n/cm2/sec in SAND at 3 MW. Results revealed that SAND is an excellent facility to perform neutron capture cross section data measurements. (author)

  17. Measurements of Spatial Dose Distributions of Proton Beam with the Use of Radiochromic Films

    CERN Document Server

    Mumot, M; Mytsin, G V

    2006-01-01

    A radiochromic film (RCF) is investigated for use in proton beam dosimetry in a water phantom. Investigations have been performed to measure the sensitivity of the RCF and its dependence on changing energy of the beam and on linear energy transfer (LET). Experiments were carried out with both unmodulated and modulated proton beams. The results show that the sensitivity of the RCF decreases with increasing LET and this effect increases errors of measurements for lower energies of the beam. Nevertheless, the radiochromic film seems to be an adequate detector for dosimetry in phantom measurements where high spatial resolution is required. The correction of the film sensitivity in the Bragg peak region is advisable.

  18. Measurement with hadron beams at COMPASS

    CERN Document Server

    Ferrero, Andrea

    2005-01-01

    The physics program of the COMPASS experiment at CERN focuses on the investigation of the hadron structure and spectroscopy, using both leptonic and hadronic probes. The COMPASS experiment has collected so far mostly data with polarized muon beams of 160 GeV, but also a pilot data taking with negative hadron beams of 190 GeV has been successfully completed at the end of the 2004 run. The main physics objectives of this pilot run are the study of soft pion-nuclei interactions. The predictions of the Chiral Perturbation Theory for the electric and magnetic polarizabilities of the pion will be verified through the study of the Primakoff scattering of 190 GeV pions on thin lead targets. A sample corresponding to an integrated beam flux of more than 10$^{11}$ pions has been collected for this purpose, and an equivalent sample with the muon beam of 190 GeV has been collected in the same experimental conditions to correct possible systematic effects. In parallel to the polarizability measurements, first data have al...

  19. Finite Pluricomplex energy measures

    OpenAIRE

    Di Nezza, Eleonora

    2015-01-01

    We investigate probability measures with finite pluricomplex energy. We give criteria insuring that a given measure has finite energy and test these on various examples. We show that this notion is a biholomorphic but not a bimeromorphic invariant.

  20. Beam position measurement in the CEBAF recirculating linacs by use of pseudorandom pulse sequences

    International Nuclear Information System (INIS)

    The recirculating linear accelerator at CEBAF presents unique problems in beam position measurement. As many as five beams with different energies may be simultaneously in the linac. Modulation of the beam intensity by pseudorandom pulse sequences offers a simple, effective method for distinguishing between the individual beamlets

  1. Linac4 45 keV Proton Beam Measurements

    CERN Document Server

    Bellodi, G; Hein, L M; Lallement, J-B; Lombardi, A M; Midttun, O; Scrivens, R; Posocco, P A

    2013-01-01

    Linac4 is a 160 MeV normal-conducting H- linear accelerator, which will replace the 50 MeV proton Linac2 as injector for the CERN proton complex. Commissioning of the low energy part - comprising the H - source, a 45 keV Low Energy Beam Transport line (LEBT), a 3 MeV Radiofrequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) - will start in fall 2012 on a dedicated test stand installation. In preparation to this, preliminary measurements were taken using a 45 keV proton source and a temporary LEBT setup, with the aim of characterising the output beam by comparison with the predictions of simulations. At the same time this allowed a first verification of the functionalities of diagnostics instrumentation and acquisition software tools. Measurements of beam profile, emittance and intensity were taken in three different setups: right after the source, after the first and after the second LEBT solenoids respectively. Particle distributions were reconstructed from emittance scan...

  2. Constraining sterile neutrinos with a low energy beta-beam

    OpenAIRE

    Agarwalla, Sanjib K.; Huber, Patrick; Link, Jonathan M.

    2009-01-01

    We show that a low energy beta-beam facility can be used to search for sterile neutrinos by measuring the disappearance of electron anti-neutrinos. This channel is particularly sensitive since it allows to use inverse beta decay as detection reaction; thus it is free from hadronic uncertainties, provided the neutrino energy is below the pion production threshold. This corresponds to a choice of the Lorentz gamma=30 for the 6He parent ion. Moreover, a disappearance measurement allows the const...

  3. Constraining sterile neutrinos with a low energy beta-beam

    OpenAIRE

    Agarwalla, Sanjib Kumar

    2010-01-01

    We study the possibility to use a low energy beta-beam facility to search for sterile neutrinos by measuring the disappearance of electron anti-neutrinos. This channel is particularly sensitive since it allows to use inverse beta decay as detection reaction; thus it is free from hadronic uncertainties, provided the neutrino energy is below the pion production threshold. This corresponds to a choice of the Lorentz gamma=30 for the 6He parent ion. Moreover, a disappearance measurement allows th...

  4. The beam energy calibration system for the BEPC-II collider

    CERN Document Server

    Achasov, M N; Mo, Xiaohu; Muchnoi, N Yu; Qin, Qing; Qu, Huamin; Wang, Yifang; Xu, Jinqiang

    2008-01-01

    This document contains a proposal of the BEPC-II collider beam energy calibration system (IHEP, Beijing). The system is based on Compton backscattering of carbon dioxide laser radiation, producing a beam of high energy photons. Their energy spectrum is then accurately measured by HPGe detector. The high-energy spectrum edge will allow to determine the average electron or positron beam energy with relative accuracy about 3x10^-5.

  5. Cherenkov detector for beam quality measurement

    Science.gov (United States)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  6. Crossed-beam energy transfer in direct-drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  7. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A., E-mail: akihiro@nifs.ac.jp; Ido, T.; Kato, S.; Hamada, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kurachi, M.; Makino, R. [Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Nishizawa, A. [Pesco Corporation Limited, Toki, Gifu 509-5123 (Japan)

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  8. Fluidic energy harvesting beams in grid turbulence

    Science.gov (United States)

    Danesh-Yazdi, A. H.; Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2015-08-01

    Much of the recent research involving fluidic energy harvesters based on piezoelectricity has focused on excitation through vortex-induced vibration while turbulence-induced excitation has attracted very little attention, and virtually no previous work exists on excitation due to grid-generated turbulence. The present experiments involve placing several piezoelectric cantilever beams of various dimensions and properties in flows where turbulence is generated by passive, active, or semi-passive grids, the latter having a novel design that significantly improves turbulence generation compared to the passive grid and is much less complex than the active grid. We experimentally show for the first time that the average power harvested by a piezoelectric cantilever beam placed in decaying isotropic, homogeneous turbulence depends on mean velocity, velocity and length scales of turbulence as well as the electromechanical properties of the beam. The output power can be modeled as a power law with respect to the distance of the beam from the grid. Furthermore, we show that the rate of decay of this power law closely follows the rate of decay of the turbulent kinetic energy. We also introduce a forcing function used to model approximately the turbulent eddies moving over the cantilever beam and observe that the feedback from the beam motion onto the flow is virtually negligible for most of the cases considered, indicating an effectively one-way interaction for small-velocity fluctuations.

  9. Beam monitor system for high-energy beam transportation at HIMAC

    International Nuclear Information System (INIS)

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x105 and 1x106 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are used for continuously monitoring the beam during treatments, which play a role in keeping qualities of the treatments. The monitor system has been designed to meet requirements for medical uses, and works in a stable and reliable manner and satisfies the requirements. (author)

  10. Measurement of photoneutron doses in and out of high-energy X-ray beam of a SATURNE-20 medical linear accelerator by ECE polycarbonate detectors

    CERN Document Server

    Sohrabi, M

    1999-01-01

    Photoneutron contaminations in and out of high energy X-ray beams of the medical linear accelerator SATURNE 20 (CGR) of the Radiotherapy Department of Omeed Hospital in Isfahan, Iran, have been determined using 250 mu m polycarbonate (PC) dosimeters, in strips or in sheets, processed by electrochemical etching (ECE) using specially designed ECE chambers to etch larger sheets. A two dimensional or topographical distribution of neutron contamination was also determined in a full size beam. The neutron dose equivalents (Hn) in the beam of 18 MV X-rays at 80 cm FSD were determined to be linear functions of X-ray dose equivalents (Hx) up to 1400 cSv. The distribution of the Hn at different X-ray doses showed bell-shape profiles with maxima at the isocenter. The ratios of dose equivalents of neutrons to those of X-rays increased as the field size increased having values of 0.22%, 0.28%, 0.31% and 0.37% for field sizes of 10x10, 20x20, 30x30, and 40x40 cm sup 2 respectively. Although such neutron dose equivalents ca...

  11. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  12. Research on Brightness Measurement of Intense Electron Beam

    CERN Document Server

    Wang, Yuan; Zhang, Huang; Yang, GuoJun; Li, YiDing; Li, Jin

    2015-01-01

    The mostly research fasten on high emission density of injector to study electron beam's brightness in LIA. Using the injector(2MeV) was built to research brightness of multi-pulsed high current(KA) electron beam, and researchs three measurement method (the pepper-pot method, beam collimator without magnetic field, beam collimator with magnetic field method) to detect beam's brightness with time-resolved measurement system.

  13. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  14. Low energy, high power hydrogen neutral beam for plasma heating.

    Science.gov (United States)

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  15. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; Denis, A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  16. Measurement of / values using proton beam

    Indian Academy of Sciences (India)

    G A V Ramanamurthy; K Ramachandra Rao; Y Rama Krishna; P Venkateswarlu; K Bhaskara Rao; P V Ramana Rao; S Venkata Ratnam; V Seshagiri Rao; G J Nagaraju; S Bhuloka Reddy

    2001-05-01

    The / intensity ratios are measured in some 3 shell elements by using a 2 MeV proton beam along with a high resolution Si(Li) detector. The present / intensity ratios are in good agreement with Scofield modified theoretical values, thus supporting the basic assumptions in that theory. From the present / intensity ratios, it is evident that due to chemical effects, the experimental / intensity ratios will be increased while they will be decreased due to the presence of simultaneous -shell vacancies which are produced due to proton excitation.

  17. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    International Nuclear Information System (INIS)

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10-9 cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for MCU

  18. Superintense ion beam with high energy density

    Science.gov (United States)

    Dudnikov, Vadim; Dudnikova, Galina

    2008-04-01

    The energy density of ion beam accumulated in a storage ring can be increased dramatically with using of space charge compensation as was demonstrated in experiments [1]. The intensity of said superintense beam can be far greater than a space charge limit without space charge compensation. The model of secondary plasma build up with secondary ion-electron emission as a source of delayed electrons has been presented and discussed. This model can be used for explanation of bunched beam instability with electron surviving after gap, for prediction of e-cloud generation in coasting and long bunches beam, and can be important for pressure rise in worm and cold sections of storage rings. A fast desorption by ion of physically adsorbed molecules can explain a ``first pulse Instability''. Application of this model for e-p instability selfstabilization and superintense circulating beam accumulation is considered. Importance of secondary plasma for high perveance ion beam stabilization in ion implantation will be considered. Preliminary results of simulation of electron and ion accumulation will be presented. [1]. Belchenko et al., Xth International Particle Accelerator Conference, Protvino, 1977, Vol. 2, p. 287.

  19. Linac3 LEBT beam measurements during the 2014-2015 Argon ion run

    CERN Document Server

    Bellodi, Giulia; Maintrot, Marc; Toivanen, Ville Aleksi; CERN. Geneva. ATS Department

    2016-01-01

    Between Spring 2014 and Spring 2015, LINAC3 delivered a beam of Argon ions. A campaign of beam studies was launched with the aim of better understanding the present limitations in the machine performance in the framework of the requested intensity goals as defined by the LHC Injectors Upgrade project. Measurements were mostly focused on beam characterization in the low energy part of Linac3 (LEBT), where performance in operation is mostly limited (in terms of beam transmission). Systematic quadrupole scans provided indirect measurement of the beam transverse emittance and were used as input to improve and refine the accelerator and beam description parameters used in simulations. IBSimu studies of beam formation and extraction at the source were interfaced with particle tracking with the 3D code PATH, and the resulting predictions found good validation in the beam measurements taken during this campaign.

  20. Development of High Intensity Beam Emittance Measurement Unit

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and HIBEMU-4 (slit-wire type, two directions). For HIBEMU-2 and HIBEMU-3, more recent work has been done on software redesign in order to measure beam emittance and to draw phase diagram more efficiently and precisely. Software for control and data processing of them were developed in Labveiw environment, trying to improve calculation rationality and to offer user-friendly interface. Mechanical modification was also done for HIBEMU-3, mainly concentrating on the protection of Faraday cups from being overheated by the high intensity beam and also from interference of secondary electrons. This paper will also cover the mechanical structure as well as the software development of HIBEMU-4, which is a two-direction emittance scanner newly designed and manufactured for the high energy beam transport (HEBT) of Peking University Neutron Imaging FaciliTY (PKUNIFTY). At the end of this paper, comparison and analysis of the three HIBEMUs are given to draw forth better design of the future emittance measurement facility.

  1. SPT hammer energy measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, W.D.; Salomone, L.A.

    1982-04-01

    A field measurement system and procedure which measures the energy delivered by a drill rig system was developed and successfully used to study the factors which affect delivered energy. Results are presented which indicate that the energy delivered by certain drill rig systems varies widely in engineering practice. The energy delivered to the drill stem varied with the number of turns of rope around the cathead, the fall height, drill rig type, hammer type, and operator characteristics. 17 refs.

  2. Energy Absorption Capacity of Composite Beams

    Directory of Open Access Journals (Sweden)

    Arivalagan

    2009-01-01

    Full Text Available Local buckling may occur in the compression flange of rectangular hollow-section beams under cyclic repeated loadingarising from earthquakes. Once a local mechanism forms, residual strength rapidly reduces within a few cycles. This is trueeven for compact sections under static bending. This paper aims to study the experimental behaviour and ultimate momentcapacity of unfilled and concrete-filled rectangular hollow sections subjected to cyclic reversible loading. Two types offiller material were used - normal mix concrete and fly ash concrete. The effect of filler materials, section slenderness, loaddeflectionresponse, moment-strain behaviour, first cycle peak load, ductility, stiffness degradation and energy absorption ofconcrete –filled RHS beams are studied.

  3. Energy spread of ion beams generated in multicusp ion sources

    International Nuclear Information System (INIS)

    For the production of future microelectronics devices, various alternate methods are currently being considered to replace the presently used method of lithography with ion beam lithography. One of these methods is the Ion Projection Lithography (IPL), which aims at the possibility of projecting sub-0.25 μm patterns of a stencil mask onto a wafer substrate. In order to keep the chromatic aberrations below 25 nm, an ion source which delivers a beam with energy spread of less than 3 eV is desired. For this application, multicusp ion sources are being considered. We measure the longitudinal energy spread of the plasma ions by using a two-grid electrostatic energy analyzer. The energy spread of the extracted beam is measured by a high-voltage retarding-field energy analyzer. In order to obtain the transverse ion temperature, a parallel-plate scanner is being set up to study the beam emittance. In this paper, comparisons are made for different ion source configurations

  4. Beam monitor system for high-energy beam transportation at HIMAC

    CERN Document Server

    Torikoshi, M; Takada, E; Kanai, T; Yamada, S; Ogawa, H; Okumura, K; Narita, K; Ueda, K; Mizobata, M

    1999-01-01

    Heavy-Ion Medical Accelerator in Chiba (HIMAC) provides ion beams for radiotherapy of cancers and for other basic researches. High-energy beam transport lines deliver the beams to three treatment rooms and two experiment rooms with the aid of 41 beam monitor units. Each monitor unit consists of a wire grid as a profile monitor, or a combined unit in which the wire grid and a parallel plate ionization chamber are united for an additional measurement of a beam intensity. They are operated in a mixed gas of 80% Ar and 20% CO sub 2. The gas gain of the wire grid achieves about 8000 at an applied voltage of -2700 V. Dynamic ranges of the wire gird and the parallel plate ionization chamber were measured to be 8x10 sup 5 and 1x10 sup 6 in test using ion beams, respectively. A control system of these monitor units offers easy operation, so that operators are almost free from miss-operations. The monitor units are interlocked with a system which protects patients from the undesired irradiation. Five wire grids are use...

  5. Vibration piezoelectric energy harvester with multi-beam

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yan, E-mail: yanc@dlut.edu.cn; Zhang, Qunying, E-mail: zhangqunying89@126.com; Yao, Minglei, E-mail: yaomingleiok@126.com [Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Dong, Weijie, E-mail: dongwj@dlut.edu.cn [School of Electronic and Information Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Gao, Shiqiao, E-mail: gaoshq@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing Province (China)

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  6. Effects of horizontal injection angle displacements on energy measurements with parallel plate energy analyzer

    International Nuclear Information System (INIS)

    A formula including correction due to change of beam injection angle is derived for measurements of beam energy using parallel plate energy analyzers. The formula is mainly aimed for potential measurements in high temperature plasma with heavy ion beam probes. (author)

  7. Measurement of beam power and profile for DNB on HT-7 tokamak

    International Nuclear Information System (INIS)

    In normal experimental operation, a diagnostic neutral beam (DNB) can produce 6 A of extracted beam current in hydrogen at an energy of 49 keV with a pulse length of 100 ms. Hydrogen and deuterium beams can be produced as well. The diagnostic neutral beam has been added to the diagnostic set so that charge-exchange recombination spectroscopy (CXRS) can be used to acquire ion temperature and rotation. The beam power and beam profile distribution of the DNB injection can be obtained with a thermocouple probe measurement system on the HT-7 superconducting tokamak. The thermocouple probe measurement system with 13 thermocouples crossly distributed on the probe plate was used to measure the temperature rise of each coppery target, so the profile distribution of the ion/neutral beam was obtained by calculation. In this paper, the structure of the probe plate on the DNB for HT-7 tokamak and some measurement results are presented

  8. Pockels cell voltage probe for noninvasive electron-beam measurements

    International Nuclear Information System (INIS)

    Accurate measurements of beam position and current are critical for the operation of the high-energy electron accelerators used for radiographic applications. Traditional short-pulse (e.g., 70 ns) machines utilize B-dot loops to monitor these parameters with great success. For long-pulse (e.g, 2 μs) accelerators, beam position and current measurements become more challenging and may require new technology. A novel electro-optic voltage probe has been developed for this application and provides the advantages of complete galvanic isolation, excellent low-frequency performance, and no time integration requirement. The design of a prototype sensor is presented along with preliminary accelerator test data. (c) 2000 Optical Society of America

  9. Time-energy relation of the nTOF neutron beam: energy standards revisited

    International Nuclear Information System (INIS)

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the nTOF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of 193Ir, which is commonly considered as an energy standard

  10. Effects of tidal forces on the beam energy in LEP

    International Nuclear Information System (INIS)

    The e+e- collider LEP is used to investigate the Z particle and to measure its energy and width. This requires energy calibrations with ∼20 ppm precision achieved by measuring the frequency of a resonance which destroys the transverse beam polarization established by synchrotron radiation. To make this calibration valid over a longer period all effects causing an energy change have to be corrected for. Among those are the terrestrial tides due to the Moon and Sun. They move the Earth surface up and down by as much as ∼0.25 m which represents a relative local change of the Earth radius of 0.04 ppm. This motion has also lateral components resulting in a change of the LEP circumference (Cc=26.7 km) by a similar relative amount. Since the length of the beam orbit is fixed by the constant RF-frequency the change of the machine circumference will force the beam to go off-center through the quadrupoles and receive an extra deflection leading to an energy change given by ΔCc/Cc ∼ -αc ΔE/E. With the momentum compaction αc = 1.85 · 10-4 for the present LEP optics this gives tide-driven p.t.p. energy excursion up to about 220 ppm, corresponding to ∼18.5 MeV for the Z energy. A beam energy measurement carried out over a 24 hour period perfectly confirmed the effects expected from a more detailed calculation of the tides. A corresponding correction can be applied to energy calibrations

  11. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    Science.gov (United States)

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2008-12-01

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  12. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  13. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  14. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuldyuld@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► An ion beam deceleration lens was designed and constructed. ► The deceleration lens was installed and tested. ► The decelerated ion beam energy was measured using an electrical field. ► Decelerated ultra-low-energy ion beam bombarded naked DNA. ► Ion beam with energy of a few tens of eV could break DNA strands. -- Abstract: Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  15. Measurements of yields of fission products in the reaction of {sup 238}U with high-energy p, d and n beams

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, J.A.; Ahmad, I.; Back, B.B. [and others

    1995-08-01

    An experiment was performed at the Michigan State University cyclotron to determine the yields of neutron-rich fission products in the reaction of {sup 238}U with 100-MeV neutrons, 200-MeV deuterons and 200-MeV protons. Several 1-mm-thick {sup 238}U foils were irradiated for 100-second intervals sequentially for each configuration and the ten spectra were added for higher statistics. The three successive spectra, each for a 40 s period, were accumulated for each sample. Ten foils were irradiated. Successive spectra allowed us to determine approximate half-lives of the gamma peaks. Several arrangements, which were similar to the setup we plan to use in our radioactive beam proposal, were used for the production of fission products. For the high-energy neutron irradiation, U foils were placed after a 5-inch-long, 1-inch-diameter Be cylinder which stopped the 200-MeV deuteron beam generating 100-MeV neutrons. Arrangements for deuteron irradiation included direct irradiation of U foils, placing U foils after different lengths of (0.5 inch, 1.0 inch and 1.5 inch) 2-inch diameter U cylinder. Since the deuteron range in uranium is 17 mm, some of the irradiations were due to the secondary neutrons from the deuteron-induced fission of U. Similar arrangements were also used for the 200-MeV proton irradiation of the {sup 238}U foils. In all cases, several neutron-rich fission products were identified and their yields determined. In particular, we were able to observe Sn in all the runs and determine its yield. The data show that with our proposed radioactive device we will be able to produce more than 10{sup 12} {sup 132}Sn atoms per second in the target. Assuming an overall efficiency of 1 %, we will be able to deliver one particle nanoampere of {sup 132}Sn beam at a target location. Detailed analysis of the {gamma}-ray spectra is in progress.

  16. Some probe experiments on a high energy cesium ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Hubach, R. A.; Peppin, G. B.

    1963-03-31

    A probe has been developed which is, in effect, a directional Langmuir probe. The directional quality is necessary for use in a beam of high energy ions to eliminate the effects of the streaming ions on the probe operation. This probe has been utilized to measure the back-streaming (albedo) electron component to verify the bottle model of space-charge neutralization. It has also been possible to infer the density of slow ions in the beam created by gas ionization and to infer a value of the cross section for such gas ionization which .agrees with the anticipated value. (auth)

  17. Development of a transverse beam emittance and Twiss parameters measurement system for transport line-1

    International Nuclear Information System (INIS)

    Beam Transport Line-1 (TL-1) in Indus Accelerator Complex at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore is being used to transport 20 MeV, 30 mA beam from the injector Microton exit point to the Booster Synchrotron where energy of electron beam is raised from 20 MeV to 450 MeV for injection into Indus-1 storage ring and 550 MeV to Indus-2 storage ring. It is important to measure the transverse beam emittance and Twiss parameters at Microton beam exit point for beam optics optimization in the transport line and to judge the beam quality. A transverse emittance and Twiss parameters measurement system using quadrupole scan method has been developed and tested. The system uses the electron beam images from the existing scintillator based beam profile monitor installed in TL-1 for beam size measurement. We have developed MATLAB codes that can extract transverse beam size and estimate transverse beam emittance. This paper describes the measurement method, software and some initial results obtained using this system. (author)

  18. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    OpenAIRE

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the pha...

  19. Plasma studies and beam emittance measurements of 2.45 GHz microwave ion source at VECC

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source operating at VECC is able to produce a total beam current of ∼ 12 mA at a beam energy of 75 KeV with a microwave power of 400 W as described in. In order to optimize the performance of the ion source, we have conducted systematic studies with the variation of ion source gas flow rate, magnetic field, extraction voltage, suppressor voltage, microwave power etc. The total extracted beam current was recorded as a function of each of the earlier mentioned parameters. Moreover, we have studied the effect on extracted beam current and its transmission in the beam transport line due to dielectric and water introduction into the plasma chamber. In the best setting, we have found a total extracted beam current of 12.5 mA with a beam transmission of 70 %. Furthermore, we have also studied the extracted beam current and its transmission in the beam transport line using aluminum plasma chamber of different diameters. Finally, we have estimated the beam emittance by solenoid scan technique of a neutralized 75 KeV, 5 mA proton beam by measuring beam profile using a non-interceptive residual gas fluorescence monitor. The measured normalized rms emittance of the neutralized beam is 0.05 mm-mrad, which seems to be quite reasonable. (author)

  20. Spiral design and beam dynamics for a variable energy cyclotron

    International Nuclear Information System (INIS)

    Beam-orbit studies were performed for the conversion of the SREL synchrocyclotron magnet for use as a room temperature, multiparticle, isochronous cyclotron. Based on model magnet measurements of field profiles for 8 to 230K gauss hill fields, a four sector spiral pole tip design has been realized which allows all isotope species of heavy ion beams to be accelerated to required final energies. The total spiral angle of 380 allows injection of the beams from the MP tandem into the cyclotron through a valley. The two valey RF system of 140 kV peak accelerates beams on harmonic numbers 2, 3, 4, 6 and 10 at 14 to 21 MHz. Computer calculations indicated acceptable ν/sub z/, ν/sub r/ and phase space beam characteristics and passing of resonances for typical beams considered: 16O at 8 and 150 MeV/amu, 60Ni at 100 MeV/amu and 238U at 2.5 and 16 MeV/amu. Single turn extraction is achieved with electrostatic deflection

  1. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  2. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...... material are the radiation stability of this material and the fact that identical phantoms can be made for irradiation of other dosimeters for calibration. This provides a precise tool for establishing traceability of dose measurements at industrial electron electron accelerators....

  3. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  4. Laser beam complex amplitude measurement by phase diversity

    OpenAIRE

    Védrenne, Nicolas; Mugnier, Laurent M.; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-01-01

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken ...

  5. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  6. Measuring the orbital angular momentum of electron beams

    OpenAIRE

    Giulio Guzzinati; Laura Clark; Armand B\\xe9ch\\xe9; Jo Verbeeck

    2014-01-01

    Abstract: The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife ed...

  7. Electron beam accelerator energy control system

    International Nuclear Information System (INIS)

    A control system has been developed for the energy control of the electron beam accelerator using PLC. The accelerating voltage of 3 MV has been obtained by using parallel coupled voltage multiplier circuit. A autotransformer controlled variable 0-10 KV DC is fed to a tube based push pull oscillator to generate 120 Khz, 10 KV AC. Oscillator output voltage is stepped up to 0-300 KV/AC using a transformer. 0-300 KVAC is fed to the voltage multiplier column to generate the accelerating voltage at the dome 0-3 MV/DC. The control system has been designed to maintain the accelerator voltage same throughout the operation by adjusting the input voltage in close loop. Whenever there is any change in the output voltage either because of beam loading or arcing in the accelerator. The instantaneous accelerator voltage or energy is a direct proportional to 0-10 KVDC obtained from autotransformer. A PLC based control system with user settable energy level has been installed for 3 MeV, EB accelerator. The PLC takes the user defined energy value through a touch screen and compares it to the actual accelerating voltage (obtained using resistive divider). Depending upon the error the PLC generates the pulses to adjust the autotransformer to bring the actual voltage to the set value within the window of error (presently set to +/- 0.1%). (author)

  8. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  9. Measurement of neutral beam power and beam profile distribution on DNB

    International Nuclear Information System (INIS)

    The injection power of a diagnostic neutral beam (DNB) can be obtained with the thermocouple probe measurement system on the Hefei superconducting Tokamak-7 (HT-7). With the 49 kv, 6 A, 100 ms pulse charge of an acceleration electrode, a thermocouple probe measurement system with 13 thermocouples crossly distributed on a coppery heat target was used to measure the temperature rise of the target, and the maximum measured temperature rise was 14 degree C. And the neutral beam power of 160 kW and beam profile distribution was obtained by calculation. The total neutral beam power of 130 kW was also obtained by integral calculation with the temperature rise on the heat section board. The difference between the two means was analyzed. The experiment results shows that the method of heat section board with thermocouple probe is one of the effective ways to measure the beam power and beam profile distribution. (authors)

  10. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    CERN Document Server

    Sikora, John P

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. This paper describes a technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length, as well as greatly improving the signal to noise ratio.

  11. Absolute beam flux measurement at NDCX-I using gold-melting calorimetry technique

    International Nuclear Information System (INIS)

    We report on an alternative way to measure the absolute beam flux at the NDCX-I, LBNL linear accelerator. Up to date, the beam flux is determined from the analysis of the beam-induced optical emission from a ceramic scintilator (Al-Si). The new approach is based on calorimetric technique, where energy flux is deduced from the melting dynamics of a gold foil. We estimate an average 260 kW/cm2 beam flux over 5 (micro)s, which is consistent with values provided by the other methods. Described technique can be applied to various ion species and energies.

  12. Measurement of accelerated electron beam current at the Erevan synchrotron

    International Nuclear Information System (INIS)

    A system which ensures high accuracy of accelerated electro n beam current measurement at the synchrotron is described. The expected limits for the frequency characteristic of the measured magnitude, i.e. current of accelerated electron beam, are analyzed. A structure of measurement devices ensuring a necessary frecuency range for measured signals is chosen. A magnetoinduction feedback converter operating in aperiodic mode is taken as a primary beam current monitor. The parameters of the converter with a coincidence amplifier were calculated with a computer. Oscillograms of accelerated electron beam current corresponding to different operational modes of the synchrotron are presented

  13. Thai Research Reactor (TRR-1/M1) Neutron Beam Measurements

    International Nuclear Information System (INIS)

    Full text: Neutron beam tube of neutron radiography facility at Thai Research Reactor (TRR-1/M1) Thailand Institute of Nuclear Technology (public organization) is a divergent beam. The rectangular open-end of the beam tube is 16 cm x 17 cm while the inner-end is closed to the reactor core. The neutron beam size was measured using 20 cm x 40 cm neutron imaging plate. The measurement at the position 100 cm from the end of the collimator has shown that the beam size was 18.2 cm x 19.0 cm. Gamma ray in neutron the beam was also measured by the identical position using industrial X ray film. The area of gamma ray was 27.8 cm x 31.1 cm with the highest intensity found to be along the neutron beam circumference

  14. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Liu, Shan; Cornebise, Patrick; Faus-Golfe, Angeles; Fuster-Martínez, Nuria; Griesmayer, Erich; Guler, Hayg; Kubytskyi, Viacheslav; Sylvia, Christophe; Toshiaki, Tauchi; Terunuma, Nobuhiro; Bambade, Philip

    2015-01-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of $\\sim10^6$ has been successfully demonstrated and confirmed for the first time by simultaneous beam core ($\\sim10^9$ electrons) and beam halo ($\\sim10^3$ electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of the diamond sensors using an $\\alpha$ source as well as using the electron beams at PHIL, a low energy ($< 10$ MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results ...

  15. Precision timing measurements for high energy photons

    Science.gov (United States)

    Anderson, Dustin; Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian; Ronzhin, Anatoly; Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm3 lutetium-yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm3 LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  16. Precision timing measurements for high energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dustin, E-mail: djanders@caltech.edu [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Apreysan, Artur; Bornheim, Adi; Duarte, Javier; Newman, Harvey; Pena, Cristian [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States); Ronzhin, Anatoly [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Spiropulu, Maria; Trevor, Jason; Xie, Si; Zhu, Ren-Yuan [California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125 (United States)

    2015-07-01

    Particle colliders operating at high luminosities present challenging environments for high energy physics event reconstruction and analysis. We discuss how timing information, with a precision on the order of 10 ps, can aid in the reconstruction of physics events under such conditions. We present calorimeter based timing measurements from test beam experiments in which we explore the ultimate timing precision achievable for high energy photons or electrons of 10 GeV and above. Using a prototype calorimeter consisting of a 1.7×1.7×1.7 cm{sup 3} lutetium–yttrium oxyortho-silicate (LYSO) crystal cube, read out by micro-channel plate photomultipliers, we demonstrate a time resolution of 33.5±2.1 ps for an incoming beam energy of 32 GeV. In a second measurement, using a 2.5×2.5×20 cm{sup 3} LYSO crystal placed perpendicularly to the electron beam, we achieve a time resolution of 59±11 ps using a beam energy of 4 GeV. We also present timing measurements made using a shashlik-style calorimeter cell made of LYSO and tungsten plates, and demonstrate that the apparatus achieves a time resolution of 54±5 ps for an incoming beam energy of 32 GeV.

  17. Spheromak Energy Transport Studies via Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

    2008-02-11

    Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

  18. Theoretical study of cylindrical energy analyzers for MeV range heavy ion beam probes

    International Nuclear Information System (INIS)

    A cylindrical energy analyzer with drift spaces is shown to have a second order focusing for beam incident angle when the deflection angle is properly chosen. The analyzer has a possibility to be applied to MeV range heavy ion beam probes, and will be also available for accurate particle energy measurements in many other fields. (author)

  19. Aspects on the optimal photon beam energy for radiation therapy

    International Nuclear Information System (INIS)

    The selection of optimal photon beam energy is investigated both for realistic clinical bremsstrahlung beams and for monoenergetic photon beams. The photon energies covered in this investigation range from 60Co to bremsstrahlung and monoenergetic beams with maximum energies up to 50 MeV. One head and neck tumor and an advanced cervix tumor are investigated and the influence of beam direction is considered. It is shown that the use of optimized intensity modulated photon beams significantly reduces the need of beam energy selection. The most suitable single accelerator potential will generally be in the range 6-15 MV for both superficially located and deep-seated targets, provided intensity-modulated dose delivery is employed. It is also shown that a narrow penumbra region of a photon beam ideally should contain low-energy photons (≤4 MV), whereas the gross tumor volume, particularly when deep-seated targets are concerned, should be irradiated by high-energy photons. The regions where low photon energies are most beneficial are where organs at risk are laterally close to the target volume. The situation is completely changed when uniform or wedged beams are used. The selection of optimal beam energy then becomes a very important task in line with the experience from traditional treatment techniques. However, even with a large number of uniform beam portals, the treatment outcome is substantially lower than with a few optimized intensity-modulated beams. (orig.)

  20. Low-energy radioactive ion beam production of 22Mg

    International Nuclear Information System (INIS)

    The 22Mg nucleus plays an important role in nuclear astrophysics, specially in the 22Mg(α,p)25Al and proton capture 22Mg(p,γ)23Al reactions. It is believed that 22Mg is a waiting point in the αp-process of nucleosynthesis in novae. We proposed a direct measurement of the 22Mg+α resonance reaction in inverse kinematics using a radioactive ion (RI) beam. A 22Mg beam of 3.73 MeV/u was produced at CRIB (Center for Nuclear Study (CNS) low-energy RI Beam) facility of the University of Tokyo located at RIKEN (Japan) in 2011. In this paper we present the results about the production of the 22Mg beam used for the direct measurement of the scattering reaction 22Mg(α,α)22Mg, and the stellar reaction 22Mg(α,p)25Al in the energy region concerning an astrophysical temperature of T9=1–3 GK

  1. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  2. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  3. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  4. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  5. Charge-exchanged beam measurement by using a grid-biased Faraday cup

    International Nuclear Information System (INIS)

    A method for neutral beam measurement by using a Faraday cup is proposed in this paper. The method enables us to detect neutral beams by controlling secondary electrons by using a biasing grid in front of the Faraday cup. A procedure is also proposed for in situ determination of the secondary electron emission coefficient of the Faraday cup. Experimental results show that appropriate emission coefficients are determined for helium beams with energies of 2-10 keV. The neutral flux charge-exchanged from a helium ion beam passing through a helium gas is also measured. Saturation of the neutral flux is observed above the pressure expected from the solution of a rate equation. The method is promising for neutral beam measurement, especially for small current-neutral beams. (author)

  6. On the absorbed dose determination method in high energy electrons beams

    International Nuclear Information System (INIS)

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  7. Use of beam emittance measurements in matching problems

    International Nuclear Information System (INIS)

    The CERN new 50 MeV linac should operate with a computer-aided beam matching in which the transverse criteria are based on measured r.m.s. values of beam co-ordinates in phase space. The collected data, however, need to undergo an intermediate treatment before significant results can be obtained and then used in computations. Some examples from the experimental study programme are given and the role of automated beam emittance measurements in matching problems discussed. (author)

  8. Third-order moment effect of beam position measurements

    International Nuclear Information System (INIS)

    Third-order moments of beam charge distribution cause unwanted errors in beam positions measured by a beam position monitor with two or four electrodes. These errors can be reduced or corrected by adding or subtracting third-order moment terms in difference equations of signal voltages output from electrodes. In the case of a six-electrode beam position monitor with circular cross-section which is used in SPring-8 linear accelerator errors calculated with and without correction are 24 μm and 360 μm at a simulated beam position of x = 3 mm, y = 3 mm apart form a duct center. (author)

  9. Time-resolved energy spectrum of a pseudospark-produced electron beam

    International Nuclear Information System (INIS)

    For the first time a time-resolved energy spectrum of a pseudospark-produced electron beam is constructed. A small portion of electron beam sampled at its axis is injected into a vacuum and the electrons passed through a negatively biased electrode are measured by a Faraday cup. The time-resolved energy spectrum is determined by analyzing the Faraday cup current waveforms measured at various bias voltages. The resultant spectrum reveals that the instantaneous beam energy is nearly monoenergetic. The energy is monotonically decreasing in time and resembles the anode-cathode voltage waveform. This suggests that electrons are accelerated by the full instantaneous anode-cathode voltage

  10. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  11. Improved beam spot measurements in the 2nd generation proton beam writing system

    International Nuclear Information System (INIS)

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm

  12. Feasibility of ceramic joining with high energy electron beams

    International Nuclear Information System (INIS)

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si3N4-Mo-Si3N4. These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si3N4-Si3N4 joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase

  13. Experimental device for measurement of dielectronic recombination cross section of C3+: method of confluent beam method

    International Nuclear Information System (INIS)

    Description of an instrumental device allowing dielectronic recombination cross section measurement is presented. Recombination of C3+ for high quantum number is studied. This device, using the confluent beam method, entailed the development of an electron gun producing weakly divergent beam. A detector of highly excited ion allowing a quick and accurate measurement of ion beam energy is described in detail. Beam-residual gas interaction mechanisms are studied and instrumental incertitudes are calculated

  14. Laser Doppler instrument measures fluid velocity without reference beam

    Science.gov (United States)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  15. Beam position and phase measurements of microampere beams at the Michigan State University REA3 facility

    CERN Document Server

    Crisp, J; Durickovic, B; Kiupel, G; Krause, S; Leitner, D; Nash, S; Rodriguez, J A; Russo, T; Webber, R; Wittmer, W; Eddy, N; Briegel, C; Fellenz, B; Slimmer, D; Wendt, M

    2013-01-01

    A high power CW, heavy ion linac will be the driver accelerator for the Facility for Rare Isotope Beams (FRIB) being designed at Michigan State University (MSU). The linac requires a Beam Position Monitoring (BPM) system with better than 100 micron resolution at 100 microamperes beam current. A low beam current test of the candidate technology, button pick-ups and direct digital down-conversion signal processing, was conducted in the ReA3 re-accelerated beam facility at Michigan State University. The test is described. Beam position and phase measurement results, demonstrating ~250 micron and ~1.5 degree resolution in a 45 kHz bandwidth for a 1.0 microampere beam current, are reported.

  16. Beam optical measurements at the piotron of the SIN

    International Nuclear Information System (INIS)

    In this publication investigations of magnetoptical properties of the superconducting pion irradiation facility of the Swiss Institute of Nuclear Research are reported. This facility called 'Piotron' has been used for cancer therapy with negative pions since 1980. The Piotron has 60 identical beams bended to the tumour by two sets of 60 superconducting coils. Using szintillation counters and multiwire proportional chambers mounted on a high precision device the following physical parameters were measured: muon and electroncontamination, beam size and phase space distributions for all 60 beams. For a single beam these parameters have also been measured as a function of pion momentum, momentum width or pion production targets. (orig./HSI)

  17. Measuring charge density of electron beam single nanosecond pulses

    International Nuclear Information System (INIS)

    A description is presented of a probe design and electrometric repeater circuit and technique for measuring the charge (current) density of electron beam single pulses by integrating current at a reference capacitor with a subsequent registering of voltage across the capacitor. The probe consists of a band-type signal electrodes and two oval cross-section sleeves: external and internal with larger and smaller rectangular openings, respectively. The external sleeve has antidynatron grid located over the hole. The design employs integer nickel sleever - the cores of electron tube cathodes. The signal electrode is made of nickel band 0.15 mm thick. The probe elements are insulated from each other along the whole length with a layer of teflon band (30 μm), with rectangular openings cut in compliance with the sleeve openings. The measurement range is from 0.4x10-9 to 1x10-7 C/cm2. The rated accuracy of measurements is no worse than +-5% for the beam energy of 0.2 to 3 KeV. The ultimate parameters the charge density -6 C/cm2 and direct current density 3 mA/cm2 - are specified by the breakdown voltage (200 V) of the input capacitor and probe insulation

  18. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  19. Muon flux measurement with silicon detectors in the CERN neutrino beams

    International Nuclear Information System (INIS)

    The neutrino beam installations at the CERN SPS accelerator are described, with emphasis on the beam monitoring systems. Especially the muon flux measurement system is considered in detail, and the calibration procedure and systematic aspects of the measurements are discussed. An introduction is given to the use of silicon semiconductor detectors and their related electronics. Other special chapters concern non-linear phenomena in the silicon detectors, radiation damage in silicon detectors, energy loss and energy deposition in silicon and a review of energy loss phenomena for high energy muons in matter. (orig.)

  20. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    International Nuclear Information System (INIS)

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a 3He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed

  1. Measurement of neutron yield by 62 MeV proton beam on a thick beryllium target

    Energy Technology Data Exchange (ETDEWEB)

    Osipenko, M., E-mail: osipenko@ge.infn.it [INFN, sezione di Genova, 16146 Genova (Italy); Ripani, M. [INFN, sezione di Genova, 16146 Genova (Italy); Alba, R. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Ricco, G. [INFN, sezione di Genova, 16146 Genova (Italy); Schillaci, M. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Barbagallo, M. [INFN, sezione di Bari, 70126 Bari (Italy); Boccaccio, P. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Celentano, A. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy); Colonna, N. [INFN, sezione di Bari, 70126 Bari (Italy); Cosentino, L.; Del Zoppo, A.; Di Pietro, A. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Esposito, J. [INFN, Laboratori Nazionali di Legnaro, 35020 Legnaro (Italy); Figuera, P.; Finocchiaro, P. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Kostyukov, A. [Moscow State University, Moscow 119992 (Russian Federation); Maiolino, C.; Santonocito, D.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, 95123 Catania (Italy); Viberti, C.M. [Dipartimento di Fisica dell' Università di Genova, 16146 Genova (Italy)

    2013-09-21

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0° to 150° and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their time of flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a {sup 3}He detector was used. The obtained data are in good agreement with previous measurements at 0° using 66 MeV proton beam, covering neutron energies >10MeV, as well as with measurements at few selected angles using protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60–70 MeV beam energy range. A comparison of measured yields to MCNP, FLUKA and Geant4 Monte Carlo simulations was performed.

  2. Space-charge neutralization experiment with a low-energy proton beam

    International Nuclear Information System (INIS)

    The mechanism of space-charge neutralization of a low-energy proton beam is investigated both experimentally and theoretically. In the experiment, the transverse profile of a 500 keV proton beam delivered by a duoplasmatron source is accurately measured at the end of a 3 m long drift space. Profile measurements are performed by an imaging technique using a scintillating screen and an intensified CCD camera. Measurement results done with different beam intensities (between 0.5 and 15 mA) and various residual-gas pressures are described. They show that, at high beam current an increase of the gas pressure results in a reduction of the beam spot, which indicates an increase of the value of the neutralization coefficient. On the other hand, the behavior is the opposite at low beam current: the beam size increases with the gas pressure. An interpretation of these experimental results is proposed. (author)

  3. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Science.gov (United States)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  4. Energy Beam Highways Through the Skies

    Science.gov (United States)

    Myrabo, Leik N.

    1996-01-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  5. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  6. The Saturne beam measurement system for orbit corrections and high and low intensity beam acceleration

    International Nuclear Information System (INIS)

    This paper summarizes the dipolar and multipolar correction system and the main beam diagnostics of Saturne II: wide-band RF electrostatic pick-up electrode for observation of bunches, beam position and tune measurement systems, special electrodes for observation of emittance blow-up when particles cross a resonance line. For low intensity beams, special electrodes and electronics have been developed. All this instrumentation is computer controlled

  7. Measurement of proton-beam parameters by means of digital television diagnostic system

    International Nuclear Information System (INIS)

    A method is described for measurement of the parameters of pulse-packet beams by means of a digital television diagnostic system. Results of tests of the system in measurement of the parameters of a proton beam with an energy of 1.35 GeV in the U-70 circular accelerator and results of measurements of the energy spectrum of the 30-MeV proton beam of the LU-30 linear accelerator are given. The possibility is shown of using the system to measure the integrated characteristics of an entire beam-pulse packet as well as the characteristics of individual pulses with a period of 60 msec. 6 refs., 4 figs., 1 tab

  8. Measuring the quantum statistics of an atom laser beam

    OpenAIRE

    Bradley, A. S.; Olsen, M. K.; Haine, S. A.; Hope, J. J.

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, ...

  9. Measurement of the spin asymmetry of the beam in the polarized virtual Compton scattering on the proton. Study of the nucleon's energy spectra through the QCD-type potential model

    International Nuclear Information System (INIS)

    The first part of this work presents the analysis and results of the VCS-SSA (virtual Compton scattering - single spin asymmetry) experiment at MAMI (Mainz). It was carried out with beam energy 883 MeV and longitudinal polarization (about 80%), at virtual photon four-momentum transfer squared (Q2 = 0.35 GeV2) to measure the beam asymmetry in the ep → epγ and ep → epπ0 reactions. The asymmetry obtained in photon (resp. pion) electro-production is between 0-15% (resp. 0-2%). The dispersion relation model for virtual Compton scattering and MAID model (for π0) reproduce the amplitude globally but not completely the shape of the asymmetry. Perhaps this discrepancy is due to an imperfect parameterization of some pion production multipoles (γ*N → πN). The second part is dedicated to the study of the nucleon energy spectrum in ground-state L=0 and excited-state L=1 in the quark model, using the Coulomb + linear potential type (CL) and a relativistic correction. The hyperfine correction is applied to discriminate the nucleon masses. The values of the mass found for the proton and the Δ(1232) are respectively equal to (968 MeV, 1168 MeV), and the masses of the excited states are between 1564 - 1607 MeV. This part is completed by an application of the CL model to an approximate calculation of generalized polarizabilities of the proton. (author)

  10. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  11. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mahinay, C. L. S., E-mail: cmahinay@nip.upd.edu.ph; Ramos, H. J. [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Metro Manila (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  12. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    International Nuclear Information System (INIS)

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  13. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Osipenko, M; Alba, R; Ricco, G; Barbagallo, M; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, L; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Santonocito, D; Schillaci, M; Scuderi, V; Viberti, C M

    2013-01-01

    The design of a low-power prototype of neutron amplifier recently proposed within the INFN-E project indicated the need for more accurate called for detailed data on the neutron yield produced by a proton beam with energy of about 70 MeV impinging on a thick Beryllium target. Such measurement was performed at the LNS superconducting cyclotron, covering a wide angular range from 0 to 150 degrees and a complete neutron energy interval from thermal to beam energy. Neutrons with energy above 0.5 MeV were measured by liquid scintillators exploiting their Time of Flight to determine the kinetic energy. For lower energy neutrons, down to thermal energy, a $^3$He detector was used. The obtained data are in good agreement with previous measurements at 0 degree with 66 MeV proton beam, covering neutron energies >10 MeV, as well as with measurements at few selected angles with protons of 46, 55 and 113 MeV energy. The present results extend the neutron yield data in the 60-70 MeV beam energy range. A comparison of measu...

  14. Beam size measurement of the stored electron beam at the APS storage ring using pinhole optics

    International Nuclear Information System (INIS)

    Beam sizes of the stored electron beam at the APS storage ring were measured using pinhole optics and bending magnet x-rays in single-bunch and low-current mode. A pinhole of 25 μm and a fast x-ray imaging system were located 23.8 m and 35.4 m from the source, respectively. The x-ray imaging system consists of a CdWO4 scintillation crystal 60 μm thick, an optical imaging system, and a CCD detector. A measurement time of a few tenths of a second was obtained on a photon beam of E>30 keV produced in a bending magnet from a 7-GeV electron beam of 2mA current. The measured vertical and horizontal sizes of the electron beam were in reasonable agreement with the expected values

  15. Molecular Ion Beam Transportation for Low Energy Ion Implantation

    International Nuclear Information System (INIS)

    A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B10H14) and carborane (C2B10H12) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

  16. Application of ps-streak camera in accelerator study. Measurement of longitudinal profile of electron-beam bunch

    International Nuclear Information System (INIS)

    The system for measurement of longitudinal profile of electron-beam bunch of electron accelerator with ps-streak camera has been constructed. Using this system, the length of electron-beam bunch have measured at Beijing Free Electron Laser Facility (BFEL) and Beijing Electron Positron Collider (BEPC) in Inst. of High Energy Physics of China Academy of Sciences, and Electron-Beam Injector for L-Band RF-Linac (LBINJ) in China Institute of Atomic Energy

  17. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  19. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  20. Measurement of power density distribution and beam waist simulation for electron beam

    International Nuclear Information System (INIS)

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics. - Highlights: ► We build a framework for measuring power density distribution for electron beam. ► We capture actual electron and build transient spatial power distribution for EB. ► Tracing algorithm of power density contour for cross-section was designed. ► The volume and waist of the beam are reconstructed in 4D mode. ► Geometry measurement is finished which is befit for designing of process welding.

  1. Energy loss mechanism of a gold ion beam on a tandem acceleration system

    International Nuclear Information System (INIS)

    Heavy ion beam probe (HIBP) is used as a reliable method to measure plasma potential and its fluctuation in magnetically confined fusion plasma. The origins of the energy spread on a tandem accelerator system are the fluctuation of acceleration voltage, the energy spread of negative ions produced in an ion source, and the energy broadening caused in a charge stripping gas cell. In the present work, the experimental and theoretical studies mainly on the second and third problems were carried out. A tandem acceleration test stand was constructed, which consists of a negative gold ion source, a tandem acceleration system, a movable Faraday cup and an energy analyzer. The energy spectra of the Au- beam extracted from the ion source were measured. The energy shift between the primary negative ion beam and the positive ion beam converted in a gas cell at small gas thickness was measured. The energy loss spectra and the energy broadening of Au+ beam are explained. A simple model is proposed by using the semi-classical internal energy transfer function of Firsov and the scattering by the unified potential of Ziegler. The energy broadening of Au+ beam produced by a tandem system can be estimated by the present theoretical prediction. (K.I.)

  2. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  3. Preliminary Measurement of Beam Power Transmission in KSTAR Neutral Beam Test-Stand

    International Nuclear Information System (INIS)

    A neutral beam test-stand (NBTS) was constructed to develop 300-sec deuterium beam extraction of 120 kV/65 A as an auxiliary heating system of KSTAR. The ion source is composed of a plasma generator and a tetrode accelerator. The beamline components include an optical multi-channel analyzer (OMA) duct, a neutralizer, a bending magnet (BM), an ion dump, a calorimeter, and a cryo-sorption pump system. Beam deposition along the NBTS has been measured by water flow calorimetry (WFC) and 96 % of the extracted beam power (Vacc·Iacc) was counted for a beam of 97 kV/22.2 A. Maximum power transmission efficiency, which is the ratio of transmitted power on the calorimeter to the extracted beam power, was 0.77 with an optimum perveance of 1.1 microperv

  4. Measuring the Orbital Angular Momentum of Electron Beams

    CERN Document Server

    Guzzinati, Giulio; Béché, Armand; Verbeeck, Jo

    2014-01-01

    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.

  5. Scintillation light produced by low-energy beams of highly-charged ions

    OpenAIRE

    M. Vogel; Winters, D.F.A.; Ernst, H.; H. Zimmermann; Kester, O.

    2007-01-01

    Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and ...

  6. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.;

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated....... The applicability of the International Standards Organization 11146 : 1999 standard for$M^2$measurement of the beam quality of HC-PCFs is discussed. Because they are dependent on the measurement parameters, such as choice of aperturing scheme and the axis of measurement,$M^2$values could vary from 1.......32 to 3.17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  7. Report on specification of the electron beam parameter suitable for emittance measurements

    CERN Document Server

    Malka, V

    2009-01-01

    The all optical external injection scheme that we will use with two colliding laser pulses allows a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. The charge and relative energy spread are also controllable by tuning parameters such as the injection intensity and its polarization. We report here on the control of the e-beam parameters, on the e-beam parameters that will be used for the conception and design of the emittance meter and on the experimental arrangement on which emittance measurement experiments will be achieved.

  8. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  9. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  10. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  11. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u

    Science.gov (United States)

    Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.

    2016-06-01

    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.

  12. Nuclear fragmentation of high-energy light-ion beams in water

    International Nuclear Information System (INIS)

    Light-ion beams ranging between carbon and neon with energies of a few hundred MeV/u offer favorable conditions for the treatment of deep-seated tumors. Nuclear fragmentation experiments are presented to study favorable therapy beams simultaneously in thick water target. Comparative measurements with 10B, 12C, 14N, 16O beams are described. (R.P.) 5 refs.; 4 figs

  13. Calculation of energy spectra for the therapeutic electron beams from depth-dose curves

    International Nuclear Information System (INIS)

    In this note the algorithm for calculation of the electron energy spectrum from the depth-dose curve was tested by data on a 4 MeV linear accelerator with scanning beam. A Perspex phantom with cellulose triacetate dosimetric films was irradiated on a conveyor moving perpendicularly to the area of beam scanning, thus simulating irradiation by broad beam. Excellent agreement between measured and calculated spectra is claimed. (U.K.)

  14. High-energy beams of radioactive nuclei and their biomedical applications

    International Nuclear Information System (INIS)

    Several exploratory measurements have been conducted with radioactive beams to test the feasibility of using these beams to measure effective stopping power of heterogeneous media for heavy charged particles. Such measurements will provide direct information on the average electron density and average stopping number of a target with an unknown heterogeneous beam path. This information, once obtained with a suitable radioactive beam, can be used in equations to calculate the energy of any heavy particle of therapeutic choice so that the Bragg peak of the therapeutic beam can be placed on the tumor volume. A beam of high-energy heavy ions was collimated to a diameter of 1.58 cm (PEBA has a good positional accuracy as long as the beam diameter is less than 2 cm), and made to enter target materials (mixed or homogeneous) positioned between the detector banks and centered along the beam axis. Measurements have been made with 11C and 19Ne beams, but the short half-life of 19Ne (19 sec) allows prompt repeated measurements, making that nucleus very interesting for these purposes. Only the results obtained with it are reported

  15. Beam Emittance Measurement for PLS-II Linac

    CERN Document Server

    Lee, Byung-Joon; Park, Chong do; Chunjarean, SomJai; Kim, Changbum

    2016-01-01

    The PLS-II has a 100 MeV pre-injector for the 3 GeV Linac. A thermionic gun produces electron charge of 200 pC with a bunch duration of 500 ps by a 250 ps triggering pulser. At the pre-injector, one of the most important beam parameters to identify the beam quality is a transverse emittance of electron bunches. Therefore we measure the beam emittance and twiss functions at 100 MeV in order to match the beam optics to beam transport line and go through it to the storage ring. To get the transverse emittance measurement, well-known technique, quadrupole scan, is used at the pre-injector. The emittance were 0.591 mm-mrad in horizontal and 0.774 mm-mrad in vertical direction.

  16. Basic oscillation measurables in the neutrino pair beam

    Science.gov (United States)

    Asaka, T.; Tanaka, M.; Yoshimura, M.

    2016-09-01

    It was recently shown that the neutrino-pair emission may occur with large rates, their energy being extended to GeV region, if appropriate heavy ions are circulated in a quantum state of mixture. In the present work it is further demonstrated that the vector current contribution of neutrino interaction with electrons in ion, not necessarily suppressed in high atomic number ions, gives rise to the oscillating component, even when a single neutrino is detected alone. On the other hand, the single neutrino detection in Z-boson decay does not show the oscillating component, as known for some time. CP violation measurements in the neutrino pair beam may become a possibility, along with determination of mass hierarchical patterns.

  17. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    A visual diagnostic technique has been developed to monitor and study ion-beam structure, shape, and size along a transport line. In this technique, a commercially available fluorescent screen is used in conjunction with a video camera. The visual representation of the beam structure is digitized enhanced through false-color coding, and displayed on a TV monitor for on-line viewing. The digitized information is stored for further off-line processing (e.g.,extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of measuring transverse emittance (or angular spread). This technique allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position)

  18. Device for the measurement of density distribution and cross section geometry of a particle beam

    International Nuclear Information System (INIS)

    This invention relates to a device for the measurement of relative density distribution and for the presentation of cross section geometry of accelerated proton, deuteron or other light particle beams during their application. A target is used for the measurement which can remain in the particle beam during irradiation and which absorbs only a small part of kinetic energy. The target has a thickness of at least 10 μm and is fixed within the beam tube system. It consists of a metal or carbon foil. A gas target is applicable, too

  19. Confined nanoparticle measurement using Bessel Beam Microscopy

    Science.gov (United States)

    Chakraborty, Chumki; Snoeyink, Craig

    2015-11-01

    With the advent of Lab-on-chip technologies, study of near surface phenomenon has gained a lot of importance due to their huge impact on bulk fluid properties. Such studies demand imaging techniques with utmost precision to capture the intricate details of the interface. But, resolution for most of the optical imaging systems is limited due to the light spreading effects of diffraction. This diffraction limited resolution, can be improved by the use of Bessel Beam microscopy. Bessel beam imaging technique when combined with a TIRF (Total Internal Reflection Fluorescence) system can be used for high resolution particle tracking experiments, to reveal detailed information about near surface particle positions and motions with their velocity profile and distribution. With the experimental set up combining these two powerful tools, we plan to present our particle tracking velocimetry results in the interface regime of confined nanoparticles in a binary fluid mixture. Such a study can contribute towards a better understanding of near surface fluid-particle interfaces.

  20. Measuring the phase of the scattering amplitude with vortex beams

    OpenAIRE

    Ivanov, I. P.

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interfere...

  1. A device for a proton beam energy control for radiotherapy

    International Nuclear Information System (INIS)

    A Medical-Technical Facility for hadron radiotherapy based on the JINR DLNP phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of a deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room. (author)

  2. Measurement of Neutral Particle Contamination in the MICE Muon Beam

    CERN Document Server

    Fletcher, Rob Roy; Hanson, Gail

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is being built at the ISIS proton synchrotron at Rutherford Appleton Laboratory (RAL) to measure ionization cooling of a muon beam. During recent data-taking, it was determined that there is a significant background contamination of neutral particles populating the MICE muon beam. This contamination creates unwanted triggers in MICE, thus reducing the percentage of useful data taken during running. This paper describes the analysis done with time-of-flight detectors, used to measure and identify the source of the contamination in both positive and negative muon beams.

  3. Measurement of acceleration and orbital angular momentum of Airy beam and Airy-vortex beam by astigmatic transformation.

    Science.gov (United States)

    Singh, Brijesh Kumar; Remez, Roei; Tsur, Yuval; Arie, Ady

    2015-11-15

    Special beams, including the Airy beam and the vortex-embedded Airy beam, draw much attention due to their unique features and promising applications. Therefore, it is necessary to devise a straightforward method for measuring these peculiar features of the beams with ease. Hence we present the astigmatic transformation of Airy and Airy-vortex beam. The "acceleration" coefficient of the Airy beam is directly determined from a single image by fitting the astigmatically transformed beam to an analytic expression. In addition, the orbital angular momentum of optical vortex in Airy-vortex beam is measured directly using a single image. PMID:26565887

  4. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  5. New experimental measurements of electron clouds in ion beams with large tune depression

    International Nuclear Information System (INIS)

    We study electron clouds in high perveance beams (K = 8E-4) with a large tune depression of 0.2 (defined as the ratio of a single particle oscillation response to the applied focusing fields, with and without space charge). These 1 MeV, 180 mA, K+ beams have a beam potential of +2 kV when electron clouds are minimized. Simulation results are discussed in a companion paper [J-L. Vay, this Conference]. We have developed the first diagnostics that quantitatively measure the accumulation of electrons in a beam [1]. This, together with measurements of electron sources, will enable the electron particle balance to be measured, and electron-trapping efficiencies determined. We, along with colleagues from GSI and CERN, have also measured the scaling of gas desorption with beam energy and dE/dx [2]. Experiments where the heavy-ion beam is transported with solenoid magnetic fields, rather than with quadrupole magnetic or electrostatic fields, are being initiated. We will discuss initial results from experiments using electrode sets (in the middle and at the ends of magnets) to either expel or to trap electrons within the magnets. We observe electron oscillations in the last quadrupole magnet when we flood the beam with electrons from an end wall. These oscillations, of order 10 MHz, are observed to grow from the center of the magnet while drifting upstream against the beam, in good agreement with simulations

  6. Measurement of H- beam emittance in axial injection channel of DC-72 cyclotron

    International Nuclear Information System (INIS)

    A method of measuring the ion beam transversal emittance in the axial injection channel of DC-72 cyclotron is given. It is based on the gradient method using the standard rotating wire scanner for measurement of the transversal ion beam dimensions. This method was worked out for ion beam currents up to 1000 μA and allows one to reconstruct emittance with an accuracy about 30%. The method takes into account the ion beam self-charge, which is essential. It is not always a success to obtain an axial-symmetric ion beam in experiments. Therefore, a new experimental data processing method of measuring the transversal emittance for a non-axial-symmetric ion beam was suggested. The formulae for determination of the RMS dispersions of the ion beam dimensions in the rotation coordinate system by signals from the scanner wire are given. The measurements of the RMS emittances εx,y were carried out in the test stand of the injection channel of DC-72 cyclotron with the H- ion beam current of 180 μA and kinetic energy of ions of 16.82 keV. The results of the experimental data processing are adduced

  7. In-site measurement of intensity of proton beam using film scintillator

    International Nuclear Information System (INIS)

    In proton single-event-effects experiments, and proton accelerators for advanced researches, precise measurement of proton beam current is important for reliability and accuracy of the experiments. Traditional detection methods, such as Faraday cup, Si (Au) surface barrier detector, and diamond detector, are of beam-block type measurements, where changes in proton beam current can hardly be monitored in-site. In this paper, film scintillators are used to detect the proton beam. Protons travel through the film scintillator, deposit part of the energy and make the scintillator emit lights, which are collected by a photomultiplier tube. Response of the film scintillator to protons are calculated and verified by experiments with proton beams at 3-10 MeV from the 2 x 6 MeV tandem accelerator at Peking University. (authors)

  8. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    Science.gov (United States)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  9. Error analysis in reactor-core neutron beam density measurements by gold-foil activation

    Energy Technology Data Exchange (ETDEWEB)

    Prokof' ev, Y.A.; Bondarenko, L.N.; Rogok, E.V.; Spivak, P.E.

    1986-09-01

    The most accurate method for neutron density measurements, where the spectrum cut-off energy is appreciably lower than the gold cross-section resonance energy, is by gold-foil activation. The authors show that this method also makes it possible to measure core-beam neutron densities with high accuracy, even though this requires taking into account the gold-activation contribution of epithermal neutrons from 3.10/sup 4 -/b neutron capture at 4.8 eV and inserting the appropriate corrections in the measurement results. The activation method was experimentally used for precision measurement of the reactor-core beam density in the study of the beam neutron half-life. Data are presented which show that the additive error is within the +/-0.5 measurement error.

  10. Measurement of electron beam bunch phase length by rectangular cavities

    International Nuclear Information System (INIS)

    An analysis of a phase length of electron bunches with the help of crossed rectangular resonators with the Hsub(102) oscillation type has been made. It has been shown that the electron coordinates after the duplex resonator are described by an ellipse equation for a non-modulated beam. An influence of the initial energy spread upon the electron motion has been studied. It has been ascertained that energy modulation of the electron beam results in displacement of each electron with respect to the ellipse which is proportional to modulation energy, i.e. an error in determination of the phase length of an electron bunch is proportional to the beam energy spread. Relations have been obtained which enable to find genuine values of phases of the analyzed electrons with an accuracy up to linear multipliers

  11. High frequency energy measurements

    International Nuclear Information System (INIS)

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  12. Dose rate and beam profile measurement of proton beam using a flat panel detector

    Science.gov (United States)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  13. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  14. Temperature Measurement and Water Flow Calorimetry for the Neutral Beam Test Stand Operation at KAERI

    International Nuclear Information System (INIS)

    Temperature measurements during the beam line operation of the neutral beam test stand(NB-TS) is very important for the estimation of the absorbed energy by the beam line components such calorimeter and also for the temperature monitoring of the various components, and have been accomplished by the utilization of many of the thermocouples(TCs) installed onto the NB-TS and the data acquisition system(DAQ) based on the National Instruments' (NI) SCXI system. Preliminary estimations of the absorbed energy by the calorimeter during the beam extraction have been made. Greater efforts for the noise reduction in the TC signal acquisition has been made with partial success. We present the status of the temperature measurement and water flow calorimetry(WFC) related to the NB-TS operations

  15. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Energy Technology Data Exchange (ETDEWEB)

    Carnelli, P.F.F. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Buenos Aires (Argentina); Almaraz-Calderon, S. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Rehm, K.E., E-mail: rehm@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Albers, M.; Alcorta, M.; Bertone, P.F.; Digiovine, B.; Esbensen, H. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Fernández Niello, J. [Laboratorio TANDAR, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires (Argentina); Universidad Nacional de San Martín, Campus Miguelete, B1650BWA San Martín, Buenos Aires (Argentina); Henderson, D.; Jiang, C.L. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Lai, J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Marley, S.T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R.C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel); Ugalde, C. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the {sup 10,13,15}C+{sup 12}C fusion reactions at energies around the Coulomb barrier.

  16. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    International Nuclear Information System (INIS)

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier

  17. Multi-Sampling Ionization Chamber (MUSIC) for measurements of fusion reactions with radioactive beams

    Science.gov (United States)

    Carnelli, P. F. F.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Alcorta, M.; Bertone, P. F.; Digiovine, B.; Esbensen, H.; Fernández Niello, J.; Henderson, D.; Jiang, C. L.; Lai, J.; Marley, S. T.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Paul, M.; Ugalde, C.

    2015-11-01

    A detection technique for high-efficiency measurements of fusion reactions with low-intensity radioactive beams was developed. The technique is based on a Multi-Sampling Ionization Chamber (MUSIC) operating as an active target and detection system, where the ionization gas acts as both target and counting gas. In this way, we can sample an excitation function in an energy range determined by the gas pressure, without changing the beam energy. The detector provides internal normalization to the incident beam and drastically reduces the measuring time. In a first experiment we tested the performance of the technique by measuring the 10,13,15C+12C fusion reactions at energies around the Coulomb barrier.

  18. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams

    International Nuclear Information System (INIS)

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (Sc) and total scatter (Scp) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (Sp) data. The similarities and differences between Sp of flattened and FFF beams are described. Sc and Scp data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam Sp and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm2. For the FFF beams, Sp was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm2. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm2 for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam Sp increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis

  19. RF broad-beam low-energy ion source with electron compensation

    Directory of Open Access Journals (Sweden)

    Zykov A. V.

    2010-03-01

    Full Text Available Characteristics of single-grid RF ion source with 250 mm beam diameter and 1A beam current have been studied. Energy distribution functions of electrons and ions emitted by the source have been measured. It is shown that the emitted electron current is sufficient for full ion beam current compensation. The technique of ion to electron current ratio control allowing to change this ratio in wide range is proposed. Using the ICP in the source allows to rich high current density in the low ion energy range with the possibility of independent control of ion energy and current density.

  20. Beam-beam interaction in high energy linear electron-positron colliders

    International Nuclear Information System (INIS)

    The interaction of high energy electron and positron beams in a linear collider has been investigated using a macroparticle Monte Carlo method based on a Cloud-In-Cells plasma simulation scheme. Density evolutions, luminosities, energy and angular distributions for electrons (positrons) and synchrotron photons are calculated. Beside beams with a symmetric transverse profile also flat beams are considered. A reasonably good agreement to alternative computer calculations as well as to an analytical approximation for the energy spectrum of synchrotron photons has been obtained. (author)

  1. Study on electron beam in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  2. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  3. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.;

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...... of an accelerated radioactive beam produced at ISOLDE. We use data from an experiment with an 11Be beam incident on a deuteron target producing 10Be from a (d,t) reaction. The T-REX Si detector array was used for particle detection, but the technique is applicable for other setups....

  4. Operational Performance of the LHC Proton Beams with the SPS Low Transition Energy Optics

    CERN Document Server

    Papaphilippou, Y; Argyropoulos, T; Bartmann, W; Bartosik, H; Bohl, T; Bracco, C; Cettour-Cave, S; Cornelis, K; Drosdal, L; Esteban Muller, J; Goddard, B; Guerrero, A; H¨ofle, W; Kain, V; Rumolo, G; Salvant, B; Shaposhnikova, E; Timko, H; Valuch, D; Vanbavinckhove, G; Wenninger, J; Gianfelice-Wendt, E

    2013-01-01

    An optics in the SPS with lower integer tunes (20 versus 26) was proposed and introduced in machine studies since 2010, as a measure for increasing transverse and longitudinal instability thresholds, especially at low energy, for the LHC proton beams. After two years of machine studies and careful optimisation, the new Q20 optics became operational in September 2012 and steadily delivered beam to the LHC until the end of the run. This paper reviews the operational performance of the Q20 optics with respect to transverse and longitudinal beam characteristics in the SPS, enabling high brightness beams injected into the LHC. Aspects of longitudinal beam stability, transmission, high-energy orbit control and beam transfer are discussed.

  5. Beam Normal Single Spin Asymmetry Measurements from QWeak

    CERN Document Server

    Waidyawansa, Buddhini P

    2016-01-01

    The Q weak experiment has made several interesting beam normal single spin asymmetry measurements. Preliminary result from a 3.2% measurement of the beam normal single spin asymmetry in elastic e+p scattering at E = 1.155 GeV and {\\theta} lab = 7.8(deg) is presented. We have also made measurements of this asymmetry in elastic and inelastic scattering in the Delta resonance region from Hydrogen, Aluminum and Carbon targets and e+e scattering from Hydrogen target. Some initial results from these measurements are also presented.

  6. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  7. Demonstration of large electron-beam energy extraction by a tapered-wiggler free-electron laser

    International Nuclear Information System (INIS)

    Electron-beam energy spectral measurements were made on a tapered-wiggler free-electron laser amplifier. A 10 MeV electron beam from a traveling-wave linear accelerator interacted in a tapered-wiggler with an intense 10.6μm CO/sub 2/ laser beam. The electron spectra show a 4 percent net energy loss and a 9 percent peak loss. Measurements of electron energy spectra, extraction efficiency as a function of electron-beam energy, and extraction efficiency as a function of optical power are presented and are consistent with theoretically predicted performance

  8. Beam emittance measurements and simulations of injector line for radio frequency quadrupole.

    Science.gov (United States)

    Mathew, Jose V; Rao, S V L S; Pande, Rajni; Singh, P

    2015-07-01

    A 400 keV deuteron (D(+)) radio frequency quadrupole (RFQ) accelerator has been designed, built, and commissioned at the Bhabha Atomic Research Centre, India. A beam line has been developed for injecting deuterons into the 400 keV RFQ. This comprises of a RF plasma ion source and a low energy beam transport (LEBT) system, consisting of two solenoid magnets and two steerer magnets. The ion source is characterized in terms of transverse beam emittance. A slit-wire scanner based emittance measurement setup has been developed for the transverse emittance measurements of H(+) and D(+) beams. The measured emittance values are found to be well within the acceptance value for the RFQ. These measured emittance parameters are used to optimize the solenoid fields in LEBT to match the beam from the ion source to RFQ. TRACEWIN simulation code is used for the beam transport simulations. The simulations show 99% transmission of D(+) beam through the RFQ, while 95% transmission has been measured experimentally. PMID:26233371

  9. Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in π0 photoproduction off the proton

    International Nuclear Information System (INIS)

    At the electron accelerator ELSA a linearly polarised tagged photon beam is produced by coherent bremsstrahlung off a diamond crystal. Orientation and energy range of the linear polarisation can be deliberately chosen by accurate positioning of the crystal with a goniometer. The degree of polarisation is determined by the form of the scattered electron spectrum. Good agreement between experiment and expectations on the basis of the experimental conditions is obtained. Polarisation degrees of Pγ=40 % are typically achieved at half of the primary electron energy. The determination of Pγ is confirmed by measuring the beam asymmetry, Σ, in π0 photoproduction and by a comparison of the results to independent measurements using laser backscattering. (orig.)

  10. Beam-quality measurements on heavy ion therapeutic beam of HIMAC

    International Nuclear Information System (INIS)

    Fluence spectra of fragment particles caused by spallation reactions between heavy ion beams and PMMA (polymethyl methacrylate; Lucite) target were measured with ΔE-E counter telescope method for each fragmented element. Measurements were carried out for carbon beams of 290 MeV/nucleon and 400 MeV/nucleon at Heavy Ion Medical Accelerator in Chiba (HIMAC), and 135 MeV/nucleon carbon beam at RIKEN Ring Cyclotron with changing the thickness of target material. Incident beam was broadened with a pair of wobbler magnets and a scatterer, in the same way of clinical trials which have been carrying out at HIMAC. Results were compared with the calculational expectations. (author)

  11. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  12. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  13. In situ measurement of neutral beam components using the Doppler-shifted Hα emissions in Heliotron E

    International Nuclear Information System (INIS)

    The density fraction of energy components (E,E/2,E/3,E/18) of the neutral beam was measured at the plasma center, using the Doppler-shifted Hα emissions, which were excited by electron and proton collisions in the plasma. This measurement will be useful in understanding the heating process by neutral beam injection. (author)

  14. Audit of high energy therapy beams in hospital oncology departments by the National Radiation Laboratory

    International Nuclear Information System (INIS)

    In 1993 the output of every high energy radiotherapy beam used clinically in New Zealand was measured by National Radiation Laboratory (NRL) staff using independent dosimetry equipment. The purpose of this was to audit the dosimetry that is used by hospital physicists for the basis of patient treatments, and to uncover any errors that may be clinically significant. This report analyses the uncertainties involved in comparing the NRL and hospital measurements, and presents the results of the 1993 audit. The overall uncertainty turns out to be about 1.5%. The results for linear accelerator photon beams are consistent with a purely random variation within this uncertainty. Electron beams show some small errors beyond the expected uncertainty. Gamma beams have the potential to be the most accurately measured, but in practice are less accurately measured than linear accelerator beams. None of the disagreements indicated an error of clinical significance. 8 refs., 3 figs., 2 tabs

  15. The calculation of mean energy for electron beam in the energy range of radio therapy in light media

    International Nuclear Information System (INIS)

    A Gaussian distribution for electron energy is deduced by Fokker-Planck approximation to the Boltzmann equation for high-energy electrons penetrating in multi-constituents media, then a recursion-iteration algorithm for the mean energy calculation of high-energy electron beam is obtained after introducing the modified CSDA mean energy and using Yang's multiple scattering theory. Some calculational results of this algorithm are also given in the article, and compared with corresponding data of Monte Carlo simulations and experimental measurements. The comparison shows that the algorithm can precisely predict the mean energy of high-energy electron beam penetrating in light media. Furthermore, two common formulae for electron beam mean energy calculation in radiotherapy dose algorithms. i.e., the Harder formula and Brahme formula, are discussed, and a more accurate semi-empirical formula is recommended as well

  16. Development of Temperature Measurements and Calorimetry for the Neutral Beam Test Stand Operation at KAERI

    International Nuclear Information System (INIS)

    Operation of the Neutral Beam Test Stand(NB-TS) at Korea Atomic Energy Research Institute(KAERI) now reaches to 80 kV-20A for about 10 seconds. Experiments with this kind of enormous power and energy necessarily entail many temperature measurements at various locations of the system, and most of the beam line components require to be monitored of their temperatures. We have been implementing temperature measurement utilizing K-Type and T-Type thermocouples(TCs) and a Pt-100 resistance temperature detector for the instrumentation and control and for establishing calorimetry during the operation of the NB-TS facility

  17. Alpha-particle diagnostics with high energy neutral beams

    International Nuclear Information System (INIS)

    We have examined the feasibility of alpha-particle diagnostics using a high energy neutral beam on the R-tokamak, a planned device at IPP-Nagoya, Japan, for reacting plasma experiments. In this method, injected neutral particles neutralize alpha particles so as to escape from the magnetically confined plasma through double charge exchange processes, He++ + A0 -- → He0 + A++. Requirements for a probing beam are dis cussed from viewpoints of penetration of an injected beam in the plasma and a neutralization efficiency of alpha particles in a wide velocity range. Either a Li0 beam or a He0 beam in the ground state, produced from a negative ion beam is suitable. A method to neutralize a He- beam into the ground state through an auto-detachment process is proposed. (author)

  18. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  19. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    International Nuclear Information System (INIS)

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20GeV and 180GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by between 11% and 25% compared to the resolution at the electromagnetic scale.

  20. A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Göttfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Härtel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Krüger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmored, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Røhne, O.; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P A; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C J W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by 11% to 25% compared to the response at the electromagnetic scale.

  1. Characterizing the intensity of heavy ion beam by measuring its high frequency electromagnetic component

    International Nuclear Information System (INIS)

    As any particle accelerator, GANIL (Grand Accelerateur National d'Ions Lourds) must be controlled and particularly monitored in real time. This monitoring of the beam is done by measuring its intensity. This measurement is carried out by means of Low Frequency Intensity Transformers (TI-BF). The operation mode of this beam catchers entails a 9% beam loss. In addition, such catchers are not able to measure easily low intensities. More an more the search for rare events requires higher beam intensity to raise the event occurrence probability. The projects THI (Transport des Hautes Intensities), Transport of High Intensity, and S.P.I.R.A.L. (Source de Production d'Ions Radioactifs Acceleres en Ligne), Source of On-Line Accelerated Radioactive Ions, provide beams of 6 kW power, usually limited to 400 W. Such powers can entail in case of high energy beams a degradation of materials. The emergency warning systems must be triggered instantaneously. Mechanical shock - sensitive (low frequency) TI-BF transformers are not compatible with such requirements. The High Frequency Intensity Transformers (TI-HF) are able of measuring ion packages. This characteristic allows avoiding the 9% loss of beam. Moreover, the response time fulfill the requirements of emergency triggering. Finally, the TI-HF have a dynamic better than TI-BF

  2. Defects around self-organized InAs quantum dots measured by slow positron beam

    International Nuclear Information System (INIS)

    Self-organized InAs quantum dots (QDs) have been fabricated by molecular beam epitaxy. The authors try to use a slow positron beam to detect defects in and around self-organized QDs, and point defects are observed in GaAs cap layer above QDs. For the self-organized InAs QDs without strain-reducing layer, it is free of defects. However, by introducing a strain-reducing layer, the density of point defects around larger sized InAs QDs increased. The above results suggest that low energy positron beam measurements may be a good approach to detect depth profiles of defects in QD materials

  3. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    Science.gov (United States)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  4. Design and development of DCCT for measurement of beam current

    International Nuclear Information System (INIS)

    Charged Particle beams in accelerators need measurement of beam current during operations and diagnostics. The beam passes through a resonant cavity that is excited at a fixed resonant frequency and is maintained at a vacuum level as high as 10E-8 Ton. Non-intrusive method is needed for beam current measurement. DCCT is a non-intrusive, accurate and stable device that is widely used for measurement of the beam intensity in particle accelerators. DCCT is based on principle of flux gate magnetometers. It consists of magnetic modulator, magnetizing coils, sense coils, back end and front end electronics. A prototype DCCT for vacuum chamber of 24 mm nominal inner diameter is designed and developed at CnID. During laboratory experiments beam current is simulated by passing DC current generated by stable current source along the axis of the DCCT. In absence of beam current sense coils senses zero voltage. Even harmonics are generated at the output winding when DC current is passed and the magnitude of the 2nd harmonic gives the corresponding value of the beam current. The prototype DCCT is designed for 0.5 mA to 10 mA range with resolution better than 0.1 mA. This paper describes the magnetic, electronics and mechanical design of the prototype DCCT which is optimized for amplitude and frequency of magnetizing current. The dependence of the amplitude and frequency of the magnetizing current on the second harmonic is discussed in detail. Shielding to external noise is provided with help of high permeability soft magnetic material. A compensation core with coil is used to determine the direction/charge of the beam. The current in this coil is tuned to reduce the 2nd harmonics generated due to beam current, back to zero. The value of this current gives magnitude of the beam current and its polarity gives information on direction/charge of the beam. Front and back end electronics designed for prototype DCCT is also discussed. It is planned to deploy the developed DCCT in Linac

  5. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    International Nuclear Information System (INIS)

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation

  6. Development of multi-bunch beam energy compensation method

    International Nuclear Information System (INIS)

    A method to compensate for beam loading effects in a multi-bunch beam is under development at Accelerator Test Facility (ATF) in KEK. In this paper we describe the rf high power test for ΔT energy compensation by using the SLED cavities. In this ΔT (early injection and amplitude modulation) energy compensation method, the input waveform into accelerating structure is changed by controlling the rf phase and combining the rf-power from two klystrons with a 3 dB hybrid combiner to compensate multi-bunch beam energy for various beam currents. In this test, an arbitrary waveform was generated by changing the rotating speed of the each klystron phase into the opposite direction and the beam test will be done soon. (author)

  7. Analyzer of energy spectra of a magnetized relativistic electron beam

    International Nuclear Information System (INIS)

    Analyzer of magnetized REB instant energy spectrum is described. The analyzer operation principle is based on the application of a sharp change of the direction of force lines of a magnetic field which is non-adiabatic for the beam electrons. The analyzer design is described, the main factors effecting the energy resolution are considered. The analyzer serviceability is examined in the course of experiments on plasma heating using a heavy-current microsecond REB at the GOL-3 device. The analyzer energy resolution which does not exceed 10% at 0.8 MeV energy and 20% at 0.3 MeV is determined. Beam energy spectra are obtained in one of the regimes of beam interaction with plasma. The efficiency of beam interaction with plasma determined using the analyzer achieves 30%. 10 refs.; 7 figs

  8. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    International Nuclear Information System (INIS)

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation

  9. Measured radiation and background levels during transmission of megawatt electron beams through millimeter apertures

    International Nuclear Information System (INIS)

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 mev electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 mev operation

  10. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  11. Review of Recent Results from the RHIC Beam Energy Scan

    CERN Document Server

    Kumar, Lokesh

    2013-01-01

    We review recent results from the RHIC beam energy scan (BES) program, aimed to study the Quantum Chromodynamics (QCD) phase diagram. The main goals are to search for the possible phase boundary, softening of equation of state or first order phase transition, and possible critical point. Phase-I of the BES program has recently concluded with data collection for Au+Au collisions at center-of-mass energies ($\\sqrt{s_{NN}}$) of 7.7, 11.5, 19.6, 27, and 39 GeV. Several interesting results are observed for these lower energies where the net-baryon density is high at the mid-rapidity. These results indicate that the matter formed at lower energies (7.7 and 11.5 GeV) is hadron dominated and might not have undergone a phase transition. In addition, the centrality dependence of freeze-out parameters is observed for the first time at lower energies, slope of directed flow for (net)-protons measured versus rapidity shows an interesting behavior at lower energies, and higher moments of net-proton show deviation from Skel...

  12. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  13. Measurement of surface phonon dispersion relations for LiF, NaF, and KCl through energy-analysed inelastic scattering of a helium atomic beam

    International Nuclear Information System (INIS)

    A crystal surface terminates abruptly one dimension of lattice periodicity, constituting a lattice defect with concomitant localized modes of vibration, termed surface phonons. Such surface phonons have previously been investigated in the long wavelength, non-dispersive regime. The present work reports the first observation of surface phonons in the short wavelength, dispersive range. The data allow for the first time a surface phonon dispersion curve to be plotted completely from origin to edge of the surface Brillouin zone. Measurements were made of phonons along the (anti GAMMA anti M) and (anti GAMMA anti X) azimuths of the LiF(001) surface and along the azimuth of NaF(001) and KC1(001) surfaces. The results are in substantial agreement with theoretical predictions, although for LiF the measured Rayleigh dispersion curve at M lies appreciably below the theoretical value, possibly reflecting the effects of surface relaxation. (orig.)

  14. Measurement of the calorimetric energy scale in MINOS

    OpenAIRE

    Hartnell, Jeffrey John.; Weber, Alfons; Pearce, Geoff; Litchfield, Peter; Alfons Weber; Geoff Pearce; Peter Litchfield

    2005-01-01

    MINOS is a long-baseline neutrino oscillation experiment. A neutrino beam is created at the Fermi National Accelerator Laboratory in Illinois and fired down through the Earth. Measurements of the energy spectra and composition of the neutrino beam are made both at the source using the Near detector and 735 km away at the Soudan Underground Laboratory in Minnesota using the Far detector. By comparing the spectrum and flavour composition of the neutrino beam between the two dete...

  15. Production of low-energy neutral oxygen beams by grazing-incidence neutralization

    International Nuclear Information System (INIS)

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded

  16. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    Science.gov (United States)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  17. Time-energy relation of the n{sub T}OF neutron beam: energy standards revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, G.; Colonna, N. E-mail: nicola.colonna@ba.infn.it; Marrone, S.; Tagliente, G.; Heil, M.; Cano-Ott, D.; Mosconi, M.; Moreau, C.; Mengoni, A.; Abbondanno, U.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Angelopoulos, A.; Assimakopoulos, P.; Badurek, G.; Baumann, P.; Becvar, F.; Benlliure, J.; Berthomieux, E.; Bisceglie, E.; Calvino, P.; Capote, R.; Cennini, P.; Chepel, V.; Chiaveri, E.; Coceva, C.; Cortes, G.; Cortina, D.; Couture, A.; Cox, J.; Dababneh, S.; Dahlfors, M.; David, S.; Dolfini, R.; Domingo-Pardo, C.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Frais-Koelbl, H.; Furman, W.I.; Goncalves, I.F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Herrera-Martinez, A.; Ioannides, K.G.; Isaev, S.; Jericha, E.; Kaeppeler, F.; Kadi, Y.; Karamanis, D.; Ketlerov, V.; Kitis, G.; Koehler, P.E.; Konovalov, V.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, M.I.; Lozano, M.; Lukic, S.; Marganiec, J.; Mastinu, P.F.; Milazzo, P.M.; Molina-Coballes, A.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Paradela, C.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Peskov, V.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Policarpo, A.; Pretel, C.; Quesada, J.M.; Rapp, W.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Savvidis, E.; Soares, J.C.; Stephan, C.; Tain, J.L.; Tassan-Got, L.; Tavora, L.M.N.; Terlizzi, R.; Tsangas, N.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wendler, H.; Wiescher, M.; Wisshak, K

    2004-10-21

    The accurate determination of neutron cross-sections as a function of the neutron energy at a time-of-flight facility requires a precise knowledge of the time-energy relation for the neutron beam. For the n{sub T}OF neutron beam at CERN, produced by spallation of high-energy protons on a Pb target, the time-energy relation is connected to the production mechanism and to the subsequent moderation process. A calibration of the neutron energy scale is proposed based on detailed Monte Carlo simulations of the facility. This time-energy relation has been experimentally validated by means of dedicated measurements of standard energy resonances, from 1 eV to approximately 1 MeV. On the basis of the present measurements, it is proposed to correct the energy of the 1.3 eV resonance of {sup 193}Ir, which is commonly considered as an energy standard.

  18. Beam energy loss to parasitic modes in SPEAR II

    International Nuclear Information System (INIS)

    The energy loss due to the excitation of parasitic modes in the SPEAR II rf cavities and vacuum chamber components has been measured by observing the shift in synchronous phase angle as a function of circulating beam current and accelerating cavity voltage. The resulting parasitic mode loss resistance is 5 Mω at a bunch length of 6.5 cm. The loss resistance varies with bunch length σ/sub z/ approximately as exp(/minus/0.3 σ/sub z/). If the measured result is compared with reasonable theoretical predictions, we infer that the major portion of the parasitic loss takes place in ring vacuum components rather than in the rf cavities. 7 refs., 5 figs., 2 tabs

  19. Presumption of the energy-spectrum of high-energy electron beam based on the beta-distribution model

    International Nuclear Information System (INIS)

    The energy spectra of high-energy electron beams used in radiotherapy are the most important data for evaluating absorbed doses and/or dose distributions in the body of a patient. However, it is impossible to measure the actual spectra of a high-energy electron beam. In this study, we suggest a method to presume the spectra of high-energy electron beams by use of the beta distribution model. The procedure of this method is as follows: (1) the spectrum of the high-energy electron beam was assumed to have a maximum energy Emax, and α, β parameters of the beta probability density function. (2) The percentage depth dose (PDD) based on the assumed spectrum was calculated by a Monte Carlo simulation. (3) The best matching energy spectrum was searched in comparison with the experimental PDD curves. Finally, the optimal energy spectrum of the electron beam was estimated after reiterating the process from (1) to (3). With our method, the measured PDD curves were optimally simulated following the experimental data. It appeared that the assumed spectra approximated well to the actual spectra. However, the error between the assumed and experimental data was observed in the region under the incident surface. We believe this was due to the influence of low-energy electrons scattered at installed collimators, etc. In order to simulate PDDs in this region accurately, a further correction process is required for a spectrum based on the beta distribution model. (author)

  20. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Queralt, I., E-mail: iqueralt@ija.csic.e [Institute of Earth Sciences ' Jaume Almera' , Spanish Council for Scientific Research, Sole Sabaris s/n. 08028 Barcelona (Spain); Ibanez, J.; Margui, E. [Institute of Earth Sciences ' Jaume Almera' , Spanish Council for Scientific Research, Sole Sabaris s/n. 08028 Barcelona (Spain); Pujol, J. [Fischer Instruments SA, Almogavers St., 157, 08018, Barcelona (Spain)

    2010-07-15

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  1. Fast Beam Intensity Measurements for the LHC

    CERN Document Server

    Belohrad, D

    Particle accelerators are constructed and operated for a wide variety of applications. In particle physics - the branch of physics that studies the elementary constituents of matter and forces between them - high energy accelerators are used to look deep into the structure of matter. Medical particle accelerators are used for example in medicine to treat tumours [31], in imaging techniques such as Positron Emission Tomography (PET) [24], or for the radio-isotopes production. They also serve in many other industrial branches, e.g. geology, radiocarbon dating [39], molecular complex spectroscopy, lithography, food preservation etc. The eld of accelerator technology draws knowledge and expertise from a wide range of scientic disciplines and uses the latest technical knowledge. The incomplete list of covered disciplines includes mathematics, physics, electronics, computing, electromagnetic eld technology, microwave technology, cryogenics, vacuum technology, special materials, mechanical engineering or civil engin...

  2. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  3. Direct measurement of electron beam quality conversion factors using water calorimetry

    International Nuclear Information System (INIS)

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol. General

  4. Measuring beam intensity and lifetime in BESSY II

    CERN Document Server

    Bakker, R; Kuske, P; Kuszynski, J

    2000-01-01

    The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.

  5. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    Science.gov (United States)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  6. Unprecedented intensity of a low-energy positron beam

    Energy Technology Data Exchange (ETDEWEB)

    Hugenschmidt, C. [Technische Universitaet Muenchen, ZWEFRM II/E21, Lichtenbergstrasse 1, 85747 Garching (Germany)], E-mail: Christoph.Hugenschmidt@frm2.tum.de; Loewe, B.; Mayer, J.; Piochacz, C.; Pikart, P.; Repper, R.; Stadlbauer, M.; Schreckenbach, K. [Technische Universitaet Muenchen, ZWEFRM II/E21, Lichtenbergstrasse 1, 85747 Garching (Germany)

    2008-08-11

    A new in-pile {gamma}-converter and Pt-moderator was recently installed at the neutron induced positron source NEPOMUC. The intensity of the moderated positron beam is unprecedented and amounts to (9.0{+-}0.8)x10{sup 8} moderated positrons per second at an energy of 1 keV. Hence, the beam facility NEPOMUC provides the world highest intensity of a monoenergetic positron beam reported so far. Up to now, no degradation of the positron yield has been observed for several weeks of operation. Thus, the long-term stability of the positron beam enables experiments with high reliability.

  7. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    Science.gov (United States)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  8. An online, energy-resolving beam profile detector for laser-driven proton beams.

    Science.gov (United States)

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  9. In-air RBS measurements at the LAMFI external beam setup

    Energy Technology Data Exchange (ETDEWEB)

    Silva, T. F.; Added, N.; Moro, M. V.; Trindade, G. F.; Santos, H. C.; Rodrigues, C. L.; Rizzutto, M. A.; Tabacniks, M. H. [Institute of Physics, University of São Paulo, SP, 05508-090 (Brazil)

    2014-11-11

    This work describes new developments in the external beam setup of the Laboratory of Material Analysis with Ion Beams of the University of São Paulo (LAMFI-USP). This setup was designed to be a versatile analytical station to analyze a broad range of samples. In recent developments, we seek the external beam Rutherford Backscattering Spectroscopy (RBS) analysis to complement the Particle Induced X-ray Emission (PIXE) measurements. This work presents the initial results of the external beam RBS analysis as well as recent developments to improve the energy resolution RBS measurements, in particular tests to seek for sources of resolution degradation. These aspects are discussed and preliminary results of in-air RBS analysis of some test samples are presented.

  10. Bunch Shape Measurement of 181 MeV Beam in J-PARC Linac

    Science.gov (United States)

    Miura, Akihiko; Feschenko, Alexander V.; Mirzojan, Alexander N.; Miyao, Tomoaki; Ouchi, Nobuo; Maruta, Tomofumi; Liu, Yong; Oguri, Hidetomo; Ikegami, Masanori; Hasegawa, Kazuo

    In the Japan Proton Accelerator Research Complex linac, an energy upgrade project was started in 2009 using annular-ring coupled structure (ACS) linac cavities. We decided to use bunch shape monitors (BSM) for monitoring longitudinal beam width measurement to achieve longitudinal matching using two bunchers located upstream of the ACS cavities, where the radio frequency jumps from 324 to 972 MHz. Three BSMs were fabricated and installed in the original beam line. The BSMs were commissioned with the beam and their operability was demonstrated. In this study, we introduce the mechanism of the BSMs, its operability, measurement results with the 181 MeV beam, and consistency check with the respective cavity amplitude. Furthermore, we describe the operational vacuum conditions and outline the improvements to the BSMs' vacuum system.

  11. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  12. Determination of the LEP beam energy through {zeta}{gamma} events and the measurements of 3 neutral gauge bosons in the ALEPH experiment; Determination de l'energie du faisceau du LEP a l'aide des evenements {zeta}{gamma} et mesures de couplages a trois bosons de jauge neutres dans l'experience ALEPH

    Energy Technology Data Exchange (ETDEWEB)

    Trocme, B

    2001-04-01

    After six years of data taking at Z peak, LEP beam energy continuously raised to finally reach 104.5 GeV, allowing notably W pairs production. Z resonance remains however important trough radiative return process; a hard photon being emitted in initial state, the centre of mass energy is reduced to an effective value close to Z mass. These events taken by Aleph experiment between 1998 and 2000 have been analysed following two distinct approaches, that are detailed in this thesis. With nearly 700 pb{sup -1} taken by each experiment, it is obvious that final W mass measurement- one major goal of LEP2 program- will be dominated by systematic error, with a large contribution from the uncertainty on the LEP beam energy. A fit of the radiative return peak position allows an original determination of the latter. Being not only a single measurement, this method is also a powerful tool to check techniques used in W mass measurement. Moreover, Z{gamma} events final states are similar to processes with a vertex involving three neutral gauge bosons. Anomalous production cross section, as well as deformed kinematic distributions, can be a probe of new physic that lies at much higher energy scales. A search for such phenomena has also been performed. (author)

  13. Measuring the phase of the scattering amplitude with vortex beams

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, for meson production in the resonance region and for the physics of nucleon resonances. Although the required parameters of the vortex beams have not yet been achieved experimentally, they deserves further dedicated experimental research due to the high expected physics pay-off.

  14. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  15. Characterization of different beam shapes for piezoelectric energy harvesting

    International Nuclear Information System (INIS)

    This paper deals with the analysis of different beam shapes for piezoelectric energy harvesters. The theory is based on the well-established Rayleigh–Ritz method for piezoelectric compound structures. It is validated by experiments with triangular-shaped and rectangular-shaped beams. It turns out that triangular-shaped beams are more effective than rectangular-shaped ones in terms of curvature homogeneity independent of the proof mass. This effect is opposed by the adverse mass distribution and the increased stiffness of triangular-shaped beams. Therefore, the overall efficiency is only weakly influenced by the beam shape. Nevertheless triangular-shaped beams drastically outperform rectangular ones in terms of tolerable excitation amplitude and maximum output power

  16. Beam-Based Alignment Measurements of the LANSCE Linac

    CERN Document Server

    McCrady, R C

    2004-01-01

    We have made measurements of the alignment of the LANSCE Drift Tube linac (DTL) and Side Coupled linac (SCL) using beam position measurements and analyzing them with linear models. In the DTL, we varied the injection steering, measured the beam position after each DTL tank, and analyzed the data with a linear model using R-matrices that were computed by the Trace-3D computer program. The analysis model allowed for tank-to-tank misalignments. The measurements were made similarly in the SCL, where the analysis model allowed for misalignments of each quadrupole doublet lens. We present here the analysis techniques, the resulting alignment measurements and comparisons to measurements made with optical instruments.

  17. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  18. Calculation of depth-dose distribution of intermediate energy heavy-ion beams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10 -100 MeV/u) is presented. By comparing high energy beams where projectile fragmentation is overwhelm ing with lowenergies where energy straggling is the sole factor instead, a crescent energy spread with increasing depth and a simple fragmentation assumption were included for the depth-dose calculation of the intermediate energy beam. Rel ative depth-dose curves of carbon and oxygen ion beams with intermediate energie s were computed according to the method here. Comparisons between the calculated relative doses and measurements are shown. The calculated Bragg curves, especially the upstream and downstream Bragg peaks, agree with the measured data. Differences between the two results appear only around the peak regions because of th e limitations of the calculation and experimental conditions, but the calculated curves generally reproduce the measured data within the experimental errors. Th e reasons for the divergences were analyzed carefully and the magnitudes of the deviations are given.

  19. Beam impedance measurements on the ALS sector tank

    International Nuclear Information System (INIS)

    The 10 m long ALS curved sector tank is formed from two shells out of which the beam chamber is machined. Vacuum pumping and photon stops are located in an antechamber connected to the beam tube through a 1cm slot. In order to determine whether the beam is significantly coupled to the antechamber, measurements of longitudinal beam impedance were performed up to 26 GHz, well above the cutoff frequency of the beam pipe. Two different schemes were used: In the first, the wire method was adapted for use above cutoff; in the second, the impedance was detected from the response to TM-waves propagated in the aperture without a wire. Temperature at various locations in the setup was recorded for later phase corrections. Antennas were placed in the antechamber to detect radiated power or possible resonances. A reference measurement was made with the slot sealed by a flexible gasket of knitted wire. The seal was then removed and the response with antechamber recorded. The response was checked by inserting obstacles of known impedance. Both measurement methods provided low numbers with Z/n<0.001 Ohm over the whole frequency range. No resonances attributable to the antechamber were observed. 3 refs., 6 figs

  20. Beam Energy Scan at RHIC and z-Scaling

    International Nuclear Information System (INIS)

    Beam Energy Scan (BES) data obtained at RHIC are briefly reviewed. Method of data analysis (z-scaling approach) based on self-similarity and locality of constituent interactions in hadron and nucleus collisions at high energy is described. The method is applied for analysis of BES data to search for signatures of phase transition and Critical Point (CP). Some results of analysis of hadron spectra measured in heavy ion collisions (HIC) at RHIC over a wide range of the energy √(sNN)=7.7–200 GeV are presented. Microscopic scenario of constituent interactions in the framework of this approach is discussed. Dependence of the energy loss on the momentum of the produced hadron, energy and centrality of the collision is studied. Self-similarity of the constituent interactions in terms of momentum fractions is used to characterize the nuclear medium by a “specific heat” and the colliding nuclei by fractal dimensions. Kinematic regions which are assumed to be most preferable for search for signatures of phase transition of nuclear matter produced in HIC in BES are discussed

  1. Energy balance measurement

    DEFF Research Database (Denmark)

    Dhurandhar, N V; Schoeller, D; Brown, A W;

    2015-01-01

    Energy intake (EI) and physical activity energy expenditure (PAEE) are key modifiable determinants of energy balance, traditionally assessed by self-report despite its repeated demonstration of considerable inaccuracies. We argue here that it is time to move from the common view that self......-reports of EI and PAEE are imperfect, but nevertheless deserving of use, to a view commensurate with the evidence that self-reports of EI and PAEE are so poor that they are wholly unacceptable for scientific research on EI and PAEE. While new strategies for objectively determining energy balance are in their...... of energy balance....

  2. Channeling of high energy beams in nanotubes

    CERN Document Server

    Bellucci, S; Chesnokov, Yu A; Guidi, V; Scandale, Walter; Chesnokov, Yu. A.

    2003-01-01

    We present simulations of particle beam channeling in carbon nanotubes and evaluate the possibilities for experimental observation of channeling effect in straight and bent nanotubes at IHEP and LNF. Different particle species are considered: protons of 1.3 and 70 GeV, and positrons of 0.5 GeV. Predictions are made for the experiments, with analysis of requirements on the quality of nanosamples and resolution of the experimental set-up. Based on Monte Carlo simulations, the capabilities of nanotube channeling technique for particle beam steering are discussed.

  3. Anomalous broadening of energy distributions in photoemitted electron beams

    Science.gov (United States)

    Guidi, Vincenzo

    1996-06-01

    Photoemission is widely used to generate electron beams with an energy spread lower than by thermoemission. However, when a photocathode is illuminated by a multimode laser this feature is lost and an electron beam with several eV of energy spread is produced. We have developed an explanation for this anomalous behavior pointing out its origin in the combined effect of charge relaxation, taking place within the beam, together with the modulation of the laser power imposed by laser modes. The model permits a correct interpretation overall experimental evidences.

  4. Uncorrelated Energy Spread and Longitudinal Emittance of a Photoinjector Beam

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Stupakov, G.; Wu, J.; /SLAC

    2005-05-25

    Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.

  5. Measurement of transverse beam parameters at X-ray diagnostic beamlines in Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Indus-2 is a 3rd generation synchrotron radiation source at RRCAT, Indore with 2.5 GeV energy and 200 mA beam current. The average beam sizes of electron beam are a few hundred micrometers (∼ 250 μn) in the transverse plane. In Indus-2, various types of diagnostic devices have been installed in the storage ring for the measurement of beam orbit, beam profile, beam current, tune etc. To further enhance the performance of the beam diagnostic system, two diagnostic beamlines have been designed and developed viz. X-ray diagnostic beamline (X-DBL) and visible diagnostic beamline (V- DBL). Beamline BL-24 at 10° port of bending magnet (DP-10) of Indus-2 storage ring has been developed as X-DBL. X-DBL is based on x-ray imaging (8-18 keV) with a pinhole array system. It is primarily used for beam size, beam emittance and beam position measurement. In X-ray diagnostic beamline a LabVIEW based graphical user interface (Gill) has been developed for online image processing and measurement of various beam parameters. Beamline is used routinely for the online measurements of beam sizes, beam emittance and beam stability. Measured data is analyzed to find changes in SR source point parameters under different conditions of the beam operation. In the present optics setting, typical measured beam size (RMS) is 440 ± 20 μnm horizontal and 55 ± 5 μm vertical, and correspondingly typical measured emittance is 155 ± 20 nm rad horizontal and 0.4 ± 0.05 nm rad vertical during the natural decay of beam current from 120 mA to 40 mA. Beam position remains stable within ± 20 μm horizontal and ± 15 μm vertical during the natural decay of beam current in Indus-2. Photon beam position (at 8 m from source point) remains stable within ± 20 μm during this natural decay of beam current. In this paper various measurement results of the beamline are described. (author)

  6. Measurement of the mean radial position of a lead ion beam in the CERN PS

    CERN Document Server

    Belleman, J; González, J; Johnston, S; Schulte, E C; Thivent, E

    1996-01-01

    The intensity of the lead ion beam in the PS, nominally 4×108 charges of Pb53+ per bunch, is too low for the closed orbit measurement system. However, for successful acceleration it is sufficient to know the mean radial position (MRP). A system was thus designed for simultaneous acquisition of revolution frequency and magnetic field. The frequency measurement uses a direct digital synthesiser (DDS), phase-locked to the beam signal from a special high-sensitivity pick-up. The magnetic field is obtained from the so-called B-train. From these two values, the MRP is calculated. The precision depends on the frequency measurement and on the accuracy of the value for the magnetic field. Furthermore, exact knowledge of the transition energy is essential. This paper describes the hardware and software developed for the MRP system, and discusses the issue of calibration, with a proton beam, of the B measurement.

  7. Performance of New and Upgraded Detectors for Luminosity and Beam Condition Measurement at CMS

    CERN Document Server

    Leonard, Jessica Lynn

    2015-01-01

    The beam monitoring and luminosity systems of the CMS experiment are enhanced by several new and upgraded sub-detectors to match the challenges of the LHC operation and physics program at increased energy and higher luminosity. A dedicated pixelated luminosity telescope is installed for a fast and precise luminosity measurement. This detector measures coincidences between several three-layer telescopes of silicon pixel detectors to arrive at luminosity for each colliding LHC bunch pair. An upgraded fast beam conditions monitor measures the particle flux using single crystalline diamond sensors. It is equipped with a dedicated front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background, thus serving as online luminosity measurement. A new beam-halo monitor at larger radius exploits Cerenkov light from fused silica to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles....

  8. Plasma-parameter measurements using neutral-particle-beam attenuation

    International Nuclear Information System (INIS)

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane

  9. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok [Institute for Basic Science, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon (Korea, Republic of)

    2016-02-15

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  10. Design of a molecular beam surface scattering apparatus for velocity and angular distribution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ceyer, S.T.; Siekhaus, W.J.; Somorjai, G.A.

    1981-09-01

    A molecular beam surface scattering apparatus designed for the study of corrosion and catalytic surface reactions is described. The apparatus incorporates two molecular or atomic beams aimed at a surface characterized by low energy electron diffraction (LEED) and Auger electron spectroscopy (AES), a rotatable, differentially pumped quadrupole mass spectrometer, and a versatile manipulator. Angular distributions and energy distributions as a function of angle and independent of the surface residence time can be measured. Typical data for the oxidation of deuterium to D/sub 2/O on a Pt(111) crystal surface are presented.

  11. DESIGN OF A MOLECULAR BEAM SURFACE SCATTERING APPARATUS FOR VELOCITY AND ANGULAR DISTRIBUTION MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Ceyer, S. T.; Siekhaus, W. J.; Somorjai, G. A.

    1980-11-01

    A molecular beam surface scattering apparatus designed for the study of corrosion and catalyticsurfacereactions is described. The apparatus incorporates two molecular or atomic beams aimed at a surface characterized by low energy electron diffraction (LEED) and Auger electron spectroscopy (AES), a rotatable, differentially pumped quadrupole mass spectrometer, and a versatile manipulator. Angular distributions and energy distributions as a funcion of angle and independent of the surface residence time can be measured. Typical data for the oxidation of deuterium to D{sub 2}O on a Pt(lll) crystal surface are presented.

  12. Phase space measurements at non-accessible point on the beam path of an accelerator facility

    International Nuclear Information System (INIS)

    The optimization of beam lines for particles extracted from accelerator facilities requires the knowledge of beam parameters. A method for the measurement of phase space and beam intensity distribution is represented. This method depends on the setting of quadrupole lenses that allows the imaging of beam profiles at arbitrary positions along the beam path on the same multi-wire proportional chamber, where the intensity distribution can be evaluated. The necessary focusing powers for a certain imaging task are calculated in a thin lens approximation. The corresponding focusing power for thick quadrupole lenses are calculated using the PC transport program. A comparison of the calculated focusing powers for thin and thick lenses reveals deviations at the highest field strengths, due to saturation effect. The position of the beam waist in normal and angular space is directly calculated and visualized. The horizontal and vertical waist positions are found to be rather independent of the beam energy. Extensive calculation was done to study the effect of a reduced aperture on the maximum beam emittances aax and aay of the extracted particles. The main result shows that the maximum emittance passing through depends on the waist distant and the diameter of the reduced aperture. (orig.)

  13. CMS Run-2 Instrumentation for beam radiation and luminosity measurement using novel detector technologies

    Science.gov (United States)

    Gomez Espinosa, Alejandro; CMS Collaboration Collaboration

    2016-03-01

    The higher energy and luminosity for Run 2 at the LHC initiated the development of dedicated technologies for beam radiation monitoring and luminosity measurement. A dedicated pixel luminosity detector measures coincidences in several three layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. The full pixel data is also read out at a lower rate to reconstruct charged particle tracks for monitoring and beam spot determination. The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC, produced in 130 nm CMOS technology, for excellent time resolution. A new beam-halo monitor exploits Cerenkov light production in fused quartz crystals to provide direction sensitivity and excellent time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems include dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All sub-detectors have been taking data from the first day of LHC operation in April 2015. Detector performance results from the 2015 LHC Run II will be presented.

  14. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.;

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found that for...... photon energies and at scattering angles close to 90...

  15. Measurement and evaluation methods for beam characterization of commercial excimer lasers

    Science.gov (United States)

    Albrecht, Hans Stephen; Rebhan, Ulrich; Mann, Klaus R.; Ohlenbusch, J.

    1996-11-01

    This paper describes the specific requirements for measurement of excimer laser beam profiles for standardized characterization 'of commercial excimer lasers. A corresponding measurement system is presented which allows a simultaneous characterization of energy density distribution in the near field as well as in the focal plane of a lens (far field). Specially adapted UV-cameras make possible sings pulse diagnostic. Beam widths are calculated from the digitized camera data by different methods corresponding to the proposals of ISO 11146 (second moment, moving knife edge, and moving slit) and the results are compared. In particular, the influence of background signals as well as the typical shape of energy density distribution in the near field to the determined beam widths are analyzed.

  16. CSR routine for low energy electron beam in GPT

    International Nuclear Information System (INIS)

    General Particle Tracer (GPT) is a particle tracking code, which includes 3D space charge effect based on nonequidistant multigrid Poisson solver or point-to-point method. It is used to investigate beam dynamics in ERL and FEL injectors. We have developed a new routine to simulate coherent synchrotron radiation (CSR) in GPT based on the formalism of Sagan. The routine can calculate 1D-wake functions for arbitrary beam trajectories as well as CSR shielding effect. In particular, the CSR routine does not assume ultrarelativistic electron beam and is therefore applicable at low beam energies in the injector. Energy loss and energy spread caused by CSR effect were checked for a simple circular orbit, and compared with analytic formulas. (author)

  17. Density and potential measurements in an intense ion beam-generated plasma

    International Nuclear Information System (INIS)

    Neutral beams are created by intense large area ion beams which are neutralized in a gas cell. The interaction of the beam with the gas cell creates a plasma. Such a plasma is studied here. The basic plasma parameters, electron temperature, density, and plasma potential, are measured as a function of beam current and neutral gas pressure. These measurements are compared to a model based on the solution of Poisson's equation. Because of the cylindrical geometry the equation cannot be solved analytically. Details of the numerical method are presented. Three refinements to existing models have been added. (1) The beam creates ions by charge exchange as well as by ionization. (2) In the ionization process most of the ions are born at rest but some of the ions are born through a molecular dissociation process which provides them with substantial energy. (3) Electrons are trapped in the potential well of the system. Their distribution will be truncated by the well and the usual Boltzmann relation for the density variation with potential will be altered slightly. Analytical expressions for these effects are obtained and included in the computer generated solution. The model and data are in good agreement only when locally determined beam current profiles are used in the solution. These profiles are broader than those determined from beam dump calorimetry

  18. A layer correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    OpenAIRE

    Abat, E.; Abdallah, J. M.; Addy, T. N.; Adragna, P.; Aharrouche, M.; Ahmad, A; Akesson, T. P. A.; Aleksa, M.; Alexa, C; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.

    2016-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of energy deposits in the calorimeter layers, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Gea...

  19. Nonlinear optical beam manipulation and high energy beam propagation through the atmosphere; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    Science.gov (United States)

    Fisher, Robert A.; Wilson, Leroy E.

    Various papers on nonlinear optical beam manipulation and high-energy beam propagation through the atmosphere are presented. Individual topics addressed include: suppression of Raman amplification using large Stokes seeds, review of multiple-short-pulse SBS experiments and theory, laser-induced gratings for beam manipulation in a gas, considerations for computing realistic atmospheric distortion parameter profiles, effect of turbulent diffusion on laser propagation, use of multiple photon processes in krypton for laser guiding of electron beams, effect of ionization on intense electron beam propagation in low-pressure media, lidar measurements of the troposphere and middle atmosphere, seasonal and diurnal changes in cloud obscuration to visible and IR energy transmission, new cloud composite climatologies using meteorological satellite imagery, effect of neutral atmospheric structure on beam propagation, small-scale electron density fluctuations in a disturbed ionospheric environment, and SDIO radio frequency communications in a structured environment.

  20. Short Electron Beam Bunch Characterization Through Measurement of Terahertz Radiation

    CERN Document Server

    Zhang, Shukui; Douglas, David; Shinn, Michelle D; Williams, Gwyn

    2004-01-01

    Characterization of the electron beam bunch length of the upgrade FEL at Jefferson Lab was performed by analyzing the FTIR spectra of the coherent terahertz pulses. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the optical transition radiation. The limitations of the different methods to such a characterization are presented in this paper.

  1. Computer and network applications in beam measurement system of accelerator

    International Nuclear Information System (INIS)

    The applications of computer and its network in beam measurement system for Beijing Electron Positron Collider (BEPC) are described. It includes the instrumentation interfaces, the hardware and software implementations for the network connection between microcomputers and VAX series minicomputers. The communication program using Windows socket, a network programming interface for Microsoft Windows, are also described

  2. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten;

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD-chip impleme...

  3. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and...

  4. Preparation of a beam quality indicator for effective energy determinations of continuum beams: establishment of traceability

    CERN Document Server

    Matsubayashi, M; Kobayashi, H

    1999-01-01

    A new beam quality indicator (BQI) was designed and fabricated to determine effective energies of beams extracted from neutron radiography facilities. Performances of the five new BQIs were compared with the original BQI which was recently proposed and tested by various beams. Non-filtered thermal neutrons, filtered thermal neutrons, and cold neutrons from a guide tube were used in the performance test program. The new BQIs were also examined by four different detection systems using a combination of a Gd converter and a X-ray film, a neutron imaging plate, a cooled charge coupled device camera, and a silicon intensified target tube camera.

  5. Energy harvesting from controlled buckling of piezoelectric beams

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  6. Neutrino velocity measurement with the OPERA experiment in the CNGS beam

    International Nuclear Information System (INIS)

    The thesis concerns the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam. There are different theoretical models that allow for Lorentz violating effects which can be investigated with measurements on terrestrial neutrino beams. The MINOS experiment published in 2007 a measure on the muon neutrinos over a distance of 730 km finding a deviation with respect to the expected time of flight of 126 ns with a statistical error of 32 ns and a systematic error of 64 ns. The OPERA experiment observes as well muon neutrinos 730 km away from the source, with a sensitivity significantly better than MINOS thanks to the higher number of interactions in the detector due to the higher energy beam and the much more sophisticated timing system explicitly upgraded in view of the neutrino velocity measurement. This system is composed by atomic cesium clocks and GPS receivers operating in 'common view mode'. Thanks to this system a time-transfer between the two sites with a precision at the level of 1 ns is possible. Moreover, a Fast Waveform Digitizer was installed along the proton beam line at CERN in order to measure the internal time structure of the proton pulses that are sent to the CNGS target. The result on the neutrino velocity is the most precise measurement so far with terrestrial neutrino beams: the neutrino time of flight was determined with a statistical uncertainty of about 10 ns and a systematic uncertainty smaller than 20 nano-seconds. (author)

  7. Emittance measurements of high current heavy ion beams using a single shot pepperpot system

    International Nuclear Information System (INIS)

    The new 1.4 MeV/u high current injector for the Unilac successfully commissioned in 1999 is now accelerating heavy ions close to the calculated intensities. For example an 40Ar1+ beam with 8 emA allows to fill the GSI synchrotron to its inherent intensity limit. For emittance measurements of such intense beams a single shot pepperpot system has been developed. An overview of the hard- and software including mathematical algorithms is given. Results of emittance measurements at different intensities and energies are presented. The influence of stripping and related space charge effects on the emittance could be investigated

  8. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to nbL = 3 x 1013 cm-2. An equal electron line-density, neL = nbL, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10-4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10-4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 1013 to 1016 cm-2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (neL approximately nbL). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, neL increases to about 10 nbL. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  9. Thermo-mechanical modelling of high energy particle beam impacts

    CERN Document Server

    Scapin, M; Dallocchio, A

    2010-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in LHC in a single beam is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage occurs in a regime where practical experience does not exist. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam, in which 8 bunches irradiate the target directly. The energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA. ...

  10. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  11. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  12. On the propagation of a low energy oxygen ion beam

    International Nuclear Information System (INIS)

    Positive ion beams, in the range from about tens eV to several hundred eV are frequently used in RIE and RIBE etching systems. The experimental limitations in this energy range are severe and there are still many unsolved problems. Optimal ion beam focusing and maximum current beam at the substrate target are assured by the adequate ion beam neutralization. The electrons from the target plasma and also the secondary ones resulted from the ion-grid and ion-neutral interactions form a negative space charge that is involved in the ion beam neutralization. After the extraction, both the angular divergence and damping of the beam are essential to settle the position of the substrate. The beam angular divergence is established by the ion trajectories in the extraction region and also is strongly influenced by the ion beam neutralization. The shape and thickness of the space charge near the grid, which in turn is determined by the beam intensity, grid characteristics and target plasma parameters is necessary to be investigated. Positive ion bombardment plays an important role in the plasma treatments of polymers. This was the reason that investigations about the surface modifications of polymers in a positive oxygen ion beam-low density plasma (IB-LDP) system were carried out by our group [2-6]. In such system the electrons of the low-density target plasma neutralize the positive space charge of the beam and also that brought by the beam onto the polymer (insulator) surface. Results concerning the investigations of the IB-LDP system, in oxygen, by Langmuir probe method, in different experimental conditions are given in the present paper. They are compared with those obtained by using Monte Carlo method for elementary processes (ion charge transfer, electronic ionisation) in 'particle in cell' numerical simulation. (authors)

  13. Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    CERN Document Server

    Zhang, S; Chen, J H; Zhong, C

    2016-01-01

    Beam energy dependence of correlation lengths (Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. The parameters for the blast-wave model as a function of beam energy are configured by fitting Hanbury-Brown-Twiss radii at each energy point. Transverse momentum dependence of Hanbury-Brown-Twiss radii are presented with the extracted parameters for $\\sqrt{s_{NN}} = $ 200 GeV and 2.76 TeV. From the results it can be found that particle emission duration can not be ignored while calculating Hanbury-Brown-Twiss radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in reverse direction as that in RHIC-STAR measurements.

  14. The software for the CERN LEP beam orbit measurement system

    International Nuclear Information System (INIS)

    The Beam Orbit Measurement (BOM) system of LEP consists of 504 pickups, distributed all around the accelerator, that are capable of measuring the positions of the two beams. Their activity has to be synchronized, and the data produced by them have to be collected together, for example to form a 'closed orbit measurement' or a 'trajectory measurement'. On the user side, several clients can access simultaneously the results from this instrument. An automatic acquisition mode, and an 'on request' one, can run in parallel. This results in a very flexible and powerful system. The functionality of the BOM system is fully described, as well as the structure of the software processes which constitute the system, and their interconnections. Problems solved during the implementation are emphasized. (author)

  15. A Measure of Flow Vorticity with Helical Beams of Light

    CERN Document Server

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  16. Setup for the Nuclotron beam time structure measurements

    CERN Document Server

    Isupov, A Yu; Reznikov, S G

    2015-01-01

    The setups for precision measurements of the time structure of Nuclotron internal and slowly extracted beams are described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufactured at JINR. The data acquisition system software is implemented using the ngdp framework under the Unix-like operating system (OS) FreeBSD to allow the easy network distribution of the online data. It is demonstrated that the described setups are suitable for the continuous Nuclotron beam quality monitoring.

  17. Measurement of nuclear cross sections using radioactive beams

    International Nuclear Information System (INIS)

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a 6 He nuclear radioactive beam (β emitting with half life 806.7 ms) for the study of the reaction 6 + 209 Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  18. Energy Absorption Capacity of Composite Beams

    OpenAIRE

    Arivalagan; Kandasamy

    2009-01-01

    Local buckling may occur in the compression flange of rectangular hollow-section beams under cyclic repeated loadingarising from earthquakes. Once a local mechanism forms, residual strength rapidly reduces within a few cycles. This is trueeven for compact sections under static bending. This paper aims to study the experimental behaviour and ultimate momentcapacity of unfilled and concrete-filled rectangular hollow sections subjected to cyclic reversible loading. Two types offiller material we...

  19. Vibration compensating beam scanning interferometer for surface measurement

    OpenAIRE

    Jiang, Xiang; Martin, Haydn; Wang, Kaiwei

    2007-01-01

    Light beam scanning using a dispersive element and wavelength tuning is coupled with fibre-optic interferometry to realize a new surface measurement instrument. The instrument is capable of measuring nano-scale surface structures and form deviation. It features active vibration compensation and a small optical probe size that may be placed remotely from the main apparatus. Active vibration compensation is provided by the multiplexing of two interferometers with near common paths. Closed loop ...

  20. A correlated study between effective total macroscopic cross sections and effective energies for neutron beams with continuous spectra

    CERN Document Server

    Kobayashi, H

    1999-01-01

    Two practically useful quantities have been introduced to characterize a continuous-energy-spectrum neutron beam and to describe transmission phenomena of the beam in the field of quantitative neutron radiography. These quantities are the effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section as defined for a monochromatic energy. Four neutron beams have been used to measure ETM cross sections at effective energies of 29.8, 17.2, 9.8 meV, and at the In resonance energy of 1.46 eV. Results are studied as a function of estimated effective energy, where the effective energy was estimated by a beam quality indicator (BQI) which has been proposed recently. Validity of ETM cross sections as a function of the effective energy is discussed and correlated with recent nuclear data.

  1. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2016-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  2. Study of absorbed dose distribution to high energy electron beams

    International Nuclear Information System (INIS)

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author)

  3. Electron beam pumping of CdZnSe quantum well laser structures using a variable energy electron beam

    Science.gov (United States)

    Trager-Cowan, C.; Bagnall, D. M.; McGow, F.; McCallum, W.; O'Donnell, K. P.; Smith, P. C.; Wright, P. J.; Cockayne, B.; Prior, K. A.; Mullins, J. T.; Horsburgh, G.; Cavenett, B. C.

    1996-02-01

    In this paper we present experimental results on electron beam pumping of MBE and MOVPE lasers with CdZnSe single quantum wells. Laser emission in the gree and blue occurs under pulsed excitation, with threshold power densities typically less than 2 kW/cm 2 at low temperatures. Threshold curves obtained at different electron beam energies show that there is an optimum electron beam energy for wells at a given depth below the surface. This suggests that it is possible to match the electron beam energy to a given structure. Results are broadly consistent with Monte Carlo calculations of the depth dependence of the energy deposition of the electron beam.

  4. Measurement of microwave radiation from electron beam in the atmosphere

    Science.gov (United States)

    Ohta, I. S.; Akimune, H.; Fukushima, M.; Ikeda, D.; Inome, Y.; Matthews, J. N.; Ogio, S.; Sagawa, H.; Sako, T.; Shibata, T.; Yamamoto, T.

    2016-02-01

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 1018 eV air shower was estimated to be 3.96×10-16 W m-2 Hz-1 with a 95% confidence level.

  5. Toroidal AC transformer for beam intensity measurements in CSR

    International Nuclear Information System (INIS)

    The intensity of a pulsed beam of charged particles in the Cooling Storage Ring Project of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) will be measured with a toroidal current transformer. By comparing and analyzing the properties of kinds of magnetic cores, a strip wound toroidal core is adopted, which is made of a high-permeability alloy and can measure a pulsed beam with frequency range of 0.2 to 2 MHz. The permeability of Fe-based nanocrystalline alloy varying with frequency is measured and the noises in the circuit are analyzed. By adding a low-noise operational amplifier into the circuit, the current down to 1 μA can be detected

  6. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  7. Beam Intensity and Energy Control for the SPIRAL2 Facility

    OpenAIRE

    Jamet, C.; André, T.; Ducoudret, B.; Doutressoulles, C.; Le Coz, W.; Ledu, G.; Leloir, S.; Loret, S.

    2012-01-01

    TUPB029 - ISBN 878-3-95450-122-9 International audience The first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current...

  8. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    Science.gov (United States)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  9. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  10. Pin diode calibration - beam overlap monitoring for low energy cooling

    Energy Technology Data Exchange (ETDEWEB)

    Drees, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  11. Combination of the H1 and ZEUS inclusive cross-section measurements at proton beam energies of 460 GeV and 575 GeV and tests of low Bjorken-x phenomenological models

    International Nuclear Information System (INIS)

    A combination is presented of the inclusive neutral current e±p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies Ep of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV2 ≤ Q2 ≤ 110 GeV2, small values of Bjorken-x, 2.8.10-5 ≤ x ≤ 1.5.10-2, and high inelasticity y ≤ 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function FL is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of FL is improved at medium Q2 compared to the published results of the H1 collaboration.

  12. Combination of the H1 and ZEUS inclusive cross-section measurements at proton beam energies of 460 GeV and 575 GeV and tests of low Bjorken-x phenomenological models

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Pavel

    2013-06-15

    A combination is presented of the inclusive neutral current e{sup {+-}}p scattering cross section data collected by the H1 and ZEUS collaborations during the last months of the HERA II operation period with proton beam energies E{sub p} of 460 and 575 GeV. The kinematic range of the cross section data covers low absolute four-momentum transfers squared, 1.5 GeV{sup 2} {<=} Q{sup 2} {<=} 110 GeV{sup 2}, small values of Bjorken-x, 2.8.10{sup -5} {<=} x {<=} 1.5.10{sup -2}, and high inelasticity y {<=} 0.85. The combination algorithm is based on the method of least squares and takes into account correlations of the systematic uncertainties. The combined data are used in the QCD fits to extract the parton distribution functions. The phenomenological low-x dipole models are tested and parameters of the models are obtained. A good description of the data by the dipole model taking into account the evolution of the gluon distribution is observed. The longitudinal structure function F{sub L} is extracted from the combination of the currently used H1 and ZEUS reduced proton beam energy data with previously published H1 nominal proton beam energy data of 920 GeV. A precision of the obtained values of F{sub L} is improved at medium Q{sup 2} compared to the published results of the H1 collaboration.

  13. Measurement of Pionic 121Sn atoms at the RI beam factory

    International Nuclear Information System (INIS)

    We have measured the energy spectrum of pionic 121Sn atoms by missing-mass spectroscopy of the 122Sn(d, 3He) reaction near the π − emission threshold. The measurement serves as a pilot experiment for high precision systematic spectroscopy of deeply bound pionic atoms in a new pionic Atom Factory project (piAF) at the RI beam factory (RIBF) of RIKEN. The status of the analysis is reported.

  14. Precision measurement of transverse velocity distribution of a strontium atomic beam

    OpenAIRE

    F. Gao; Liu, H.; P. Xu; Tian, X.; Y Wang; Ren, J; Haibin Wu; Hong Chang

    2014-01-01

    We measure the transverse velocity distribution in a thermal Sr atomic beam precisely by velocity-selective saturated fluorescence spectroscopy. The use of an ultrastable laser system and the narrow intercombination transition line of Sr atoms mean that the resolution of the measured velocity can reach 0.13 m/s, corresponding to 90$\\mu K$ in energy units. The experimental results are in very good agreement with the results of theoretical calculations. Based on the spectroscopic techniques use...

  15. Beam energy scan using a viscous hydro+cascade model

    CERN Document Server

    Karpenko, Iu A; Huovinen, P; Petersen, H

    2013-01-01

    Following the experimental program at BNL RHIC, we perform a similar "energy scan" using 3+1D viscous hydrodynamics coupled to the UrQMD hadron cascade, and study the collision energy dependence of pion and kaon rapidity distributions and $m_T$-spectra, as well as charged hadron elliptic flow. To this aim the equation of state for finite baryon density from a Chiral model coupled to the Polyakov loop is employed for hydrodynamic stage. 3D initial conditions from UrQMD are used to study gradual deviation from boost-invariant scaling flow. We find that the inclusion of shear viscosity in the hydrodynamic stage of evolution consistently improves the description of the data for Pb-Pb collisions at CERN SPS, as well as of the elliptic flow measurements for Au-Au collisions in the Beam Energy Scan (BES) program at BNL RHIC. The suggested value of shear viscosity is $\\eta/s\\ge0.2$ for $\\sqrt{s_{NN}}=6.3\\dots39$ GeV.

  16. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  17. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  18. Probing the high-density behavior of nuclear symmetry energy with high-energy radioactive beams

    CERN Document Server

    Li, B A

    2003-01-01

    Central collisions induced by high energy radioactive beams can be used as a novel means to obtain crucial information about the high density ({\\rm HD}) behaviour of nuclear symmetry energy. This information is critical for understanding several key issues in astrophysics. Within an isospin-dependent hadronic transport model using phenomenological equations of state ({\\rm EOS}) for dense neutron-rich matter, we investigate several experimental probes of the HD behavior of nuclear symmetry energy, such as, the $\\pi^-$ to $\\pi^+$ ratio, neutron-proton differential flow and its excitation function. Measurements of these observables will provide the first terrestrial data to constrain stringently the HD behaviour of nuclear symmetry energy and thus also the {\\rm EOS} of dense neutron-rich matter.

  19. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  20. Measurements of beam-ion confinement during tangential beam-driven instabilities in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    During tangential injection of neutral beams into low density tokamak plasmas with β > 1% in the Princeton Beta Experiment (PBX), instabilities are observed that degrade the confinement of beam ions. Neutron, charge-exchange, and diamagnetic loop measurements are examined in order to identify the mechanism or mechanisms responsible for the beam-ion transport. The data suggest a resonant interaction between the instabilities and the parallel energetic beam ions. Evidence for some nonresonant transport also exists

  1. U.S. heavy ion beam science towards inertial fusion energy

    International Nuclear Information System (INIS)

    Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments. (author)

  2. Generation of a pulsed low-energy electron beam using the channel spark device

    Science.gov (United States)

    Elgarhy, M. A. I.; Hassaballa, S. E.; Rashed, U. M.; ElSabbagh, M. M.; Soliman, H. M.; Saudy, A. H.

    2015-12-01

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  3. Generation of a pulsed low-energy electron beam using the channel spark device

    Energy Technology Data Exchange (ETDEWEB)

    Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.; ElSabbagh, M. M.; Saudy, A. H. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Soliman, H. M. [Plasma and Nuclear Fusion Department, Atomic Energy Authority, Enshas (Egypt)

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  4. Generation of a pulsed low-energy electron beam using the channel spark device

    International Nuclear Information System (INIS)

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance

  5. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    International Nuclear Information System (INIS)

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies

  6. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    Science.gov (United States)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  7. Electron beam charge measurement on PHIL photo-injector using a microcontroller based system

    International Nuclear Information System (INIS)

    PHIL [1] is an electron beam accelerator at LAL. It produces low energy (E < 5 MeV) and high current (maximum 2nC/bunch, 10 ps duration) electron bunch at a repetition frequency of 5Hz. The beam charge measurements are performed by two Faraday Cups (FC) at both ends of the beam line and also with two Integrating Current Transformer (ICT), installed immediately after the RF gun and at the end of the straight beam line (see figure 1). Extracted signals from the ICT and FC, are processed by electronic circuits, displayed on an oscilloscope, and used to calculate the beam charge manually using the oscilloscope features. This operation is not accurate, does't permit to follow and save the temporal evolution of the charge and cannot be integrated in the control command system. To overcome this problem, a new approach was adopted, based on two systems: - An electronic back-end to integrate the signal from coming the charge measurement systems (20ns large pulse), and outputs a large duration signal (around 400μs) whose amplitude is proportional to the beam charge. - A microcontroller is used to acquire the integrated signal with a repetition rate of 5Hz, make the analog-digital conversion, and calculate the mean beam charge. The output signal can be sent to the control command system for displaying and to automate other process, especially the measurements of the beam charge versus RF/Laser phase. This system offers good accuracy, with a resolution of around 1pC, and can be easily integrated in the control command system

  8. Design of a compact Faraday cup for low energy, low intensity ion beams

    Science.gov (United States)

    Cantero, E. D.; Sosa, A.; Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D.; Welsch, C. P.

    2016-01-01

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  9. Pressure History Measurement in a Microwave Beaming Thruster

    International Nuclear Information System (INIS)

    In a microwave beaming thruster with a 1-dimensional nozzle, plasma and shock wave propagates in the nozzle absorbing microwave power. In this study, pressure histories in the thruster are measured using pressure gauges. Measured pressure history at the thruster wall shows constant pressure during plasma propagation in the nozzle. The result of measurement of the propagating velocities of shock wave and plasma shows that both propagate in the same velocity. These result shows that thrust producing model of analogy of pulse detonation engine is successful for the 1D thruster

  10. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    Science.gov (United States)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  11. Exploring the energy/beam current parameter space for the isotope production facility (IPF) at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Gulley, Mark S [Los Alamos National Laboratory; Bach, Hong [Los Alamos National Laboratory; Nortier, Francis M [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Bitteker, Leo J [Los Alamos National Laboratory; John, Kevin D [Los Alamos National Laboratory; Valdez, Frank O [Los Alamos National Laboratory; Seifter, Achim [Los Alamos National Laboratory

    2010-09-07

    IPF has recently investigated isotope production with proton beams at energies other than the 100-MeV currently available to the IPF beam line. To maximize the yield of a particular isotope, it is necessary to measure the production rate and cross section versus proton beam energy. Studies were conducted at 800 MeV and 197 MeV to determine the cross section of Tb-159. Also, the ability to irradiate targets at different proton beam energies opens up the possibility of producing other radioisotopes. A proof-of-principle test was conducted to develop a 40-MeV tune in the 100-MeV beam line. Another parameter explored was the beam current, which was raised from the normal limit of 250 {mu}A up to 356 {mu}A via both power and repetition rate increase. This proof-of-principle test demonstrated the capability of the IPF beam line for high current operation with potential for higher isotope yields. For the full production mode, system upgrades will need to be in place to operate at high current and high duty factor. These activities are expected to provide the data needed for the development of a new and unique isotope production capability complementing the existing 100-MeV IPF facility.

  12. The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment

    CERN Document Server

    Mitchell, J T

    2012-01-01

    The PHENIX Experiment at RHIC has conducted a beam energy scan at several collision energies in order to search for signatures of the QCD critical point and the onset of deconfinement. PHENIX has conducted measurements of transverse energy production, muliplicity fluctuations, and the skewness and kurtosis of net charge distributions. The data analyzed to date show no significant indications of the presence of the critical point.

  13. Energy recuperation of intense proton beam compensated by slow electrons

    International Nuclear Information System (INIS)

    Experimental studies of direct transformation (recuperation) of intense ion beam energy are described. In a recuperator low-energy electrons of a beam are separated by a grid unit and ions are detected by one of the three types of collectors: plane, ''Faraday cylinder'' with a grid in the input hole and without it. The transformation of proton beam energy with current density up to 150 mA/cm2 at current pulse duration of 300 μ and power of ∼ 0.5 kW is realized with the efficiency of 70%, at power up to 30 kW - with the efficiency of about 50%. The investigation results can be used for the development of recuperation systems in thermonuclear facilities

  14. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  15. American Institute of Beamed Energy Propulsion: An Introduction

    Science.gov (United States)

    Pakhomov, Andrew V.

    2008-04-01

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose "to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large". The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed.

  16. American Institute of Beamed Energy Propulsion: An Introduction

    International Nuclear Information System (INIS)

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose 'to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large'. The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed

  17. Staging laser plasma accelerators for increased beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  18. Modeling crossed-beam energy transfer for inertial confinement fusion

    Science.gov (United States)

    Marion, D. J. Y.; Debayle, A.; Masson-Laborde, P.-E.; Loiseau, P.; Casanova, M.

    2016-05-01

    We developed a numerical code that describes both the energy transfer occurring when two or more laser beams overlap in a weakly non-homogeneous plasma, and the beam energy losses associated with the electron-ion collisions. The numerical solutions are validated with both the exact analytical solutions in homogeneous plasmas, and with new approximate analytical solutions in non-homogeneous plasmas that include the aforementioned inverse bremsstrahlung effect. Comparisons with kinetic particle-in-cell simulations are satisfactory, provided the acoustic wave-breaking limit and the self-focusing regime are not reached. An application of the Cross-Beam Energy Transfer model is shown for a typical case of indirect-drive implosion in a gold hohlraum.

  19. Staging laser plasma accelerators for increased beam energy

    OpenAIRE

    Panasenko, Dmitriy

    2010-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, ...

  20. Beam profile measurement of ES-200 using secondary electron emission monitor

    Directory of Open Access Journals (Sweden)

    E Ebrahimi Basabi

    2015-09-01

    Full Text Available Up to now, different designs have been introduced for measurement beam profile accelerators. Secondary electron emission monitors (SEM are one of these devices which have been used for this purpose. In this work, a SEM has been constructed to measure beam profile of ES-200 accelerator, a proton electrostatic accelerator which is installed at SBU. Profile grid for both planes designed with 16 wires which are insulated relative to each other. The particles with maximum energy of 200 keV and maximum current of 400 μA are stopped in copper wires. Each of the wires has an individual current-to-voltage amplifier. With a multiplexer, the analogue values are transported to an ADC. The ADCs are read out by a microcontroller and finally profile of beam shows by a user interface program