WorldWideScience

Sample records for beam energy dependence

  1. Dependence of bunch energy loss in cavities on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  2. On the energy dependence of proton beam extraction with a bent crystal

    CERN Document Server

    Arduini, Gianluigi; Fidecaro, Giuseppe; Gyr, Marcel; Herr, Werner; Klem, J T; Mikkelsen, U; Weisse, E

    1998-01-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators.

  3. Beam energy dependence of two-proton correlations at the AGS

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, J; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J L; Krofcheck, D; Lacey, R A; Lisa, M A; Liu, H; Liu, Y; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N T; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L; Srivastava, B; Stone, N; Symons, T J M; Wang, S; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang, W; Zhang, Y

    1999-01-01

    First measurements of the beam energy dependence of the two proton correlation function in central Au+Au collisions are performed by the E895 Collaboration at the BNL AGS. No significant changes with beam energy were observed. The imaging technique of Brown-Danielewicz is used in order to extract information about the space-time content of the proton source at freeze-out. Extracted source functions show peculiar enhancement at low relative separation.

  4. A microstructure- and surface energy-dependent third-order shear deformation beam model

    Science.gov (United States)

    Gao, X.-L.; Zhang, G. Y.

    2015-08-01

    A new non-classical third-order shear deformation model is developed for Reddy-Levinson beams using a variational formulation based on Hamilton's principle. A modified couple stress theory and a surface elasticity theory are employed. The equations of motion and complete boundary conditions for the beam are obtained simultaneously. The new model contains a material length scale parameter to account for the microstructure effect and three surface elastic constants to describe the surface energy effect. Also, Poisson's effect is incorporated in the new beam model. The current non-classical model recovers the classical elasticity-based third-order shear deformation beam model as a special case when the microstructure, surface energy and Poisson's effects are all suppressed. In addition, the newly developed beam model includes the models considering the microstructure dependence or the surface energy effect alone as limiting cases and reduces to two existing models for Bernoulli-Euler and Timoshenko beams incorporating the microstructure and surface energy effects. To illustrate the new model, the static bending and free vibration problems of a simply supported beam loaded by a concentrated force are analytically solved by directly applying the general formulas derived. For the static bending problem, the numerical results reveal that both the deflection and rotation of the simply supported beam predicted by the current model are smaller than those predicted by the classical model. Also, it is observed that the differences in the deflection and rotation predicted by the two beam models are very large when the beam thickness is sufficiently small, but they are diminishing with the increase in the beam thickness. For the free vibration problem, it is found that the natural frequency predicted by the new model is higher than that predicted by the classical beam model, and the difference is significant for very thin beams. These predicted trends of the size effect at the

  5. Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    CERN Document Server

    Zhang, S; Chen, J H; Zhong, C

    2016-01-01

    Beam energy dependence of correlation lengths (Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. The parameters for the blast-wave model as a function of beam energy are configured by fitting Hanbury-Brown-Twiss radii at each energy point. Transverse momentum dependence of Hanbury-Brown-Twiss radii are presented with the extracted parameters for $\\sqrt{s_{NN}} = $ 200 GeV and 2.76 TeV. From the results it can be found that particle emission duration can not be ignored while calculating Hanbury-Brown-Twiss radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in reverse direction as that in RHIC-STAR measurements.

  6. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  7. On the energy dependence of proton beam extraction with a bent crystal

    Science.gov (United States)

    Arduini, G.; Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.

    1998-03-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators. © 1998

  8. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    Science.gov (United States)

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  9. Beam-Energy and Centrality Dependence of Directed Flow of Identified Particles

    CERN Document Server

    ,

    2015-01-01

    These proceedings present directed flow ($v_1$) measurements in Au+Au collisions from STAR's Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider, for $p$, $\\bar{p}$, $\\Lambda$, $\\bar\\Lambda$, $K^\\pm$, $K^0_S$ and $\\pi^\\pm$. At intermediate centrality, protons show a minimum in directed flow slope, $dv_1/dy\\,|_{y\\leq0.8}$, as a function of beam energy. Proton $dv_1/dy$ changes sign near 10 GeV, and the directed flow for $\\Lambda$ is consistent with the proton result. The directed flow slope for net protons shows a clear minimum at 14.5 GeV and becomes positive at beam energies below 10 GeV and above 30 GeV. New results for net-kaon directed flow slope resemble net protons from high energy down to 14.5 GeV, but remain negative at lower energies. The slope $dv_1/dy$ shows a strong centrality dependence, especially for $p$ and $\\Lambda$ at the lower beam energies. Available model calculations are in poor agreement.

  10. Energy resolution methods efficiency depending on beam source position of potassium clusters in time-of-flight mass spectrometer

    Indian Academy of Sciences (India)

    Ş Şentürk; F Demiray; O Özsoy

    2007-09-01

    Energy resolution of the time-of-flight mass spectrometer was considered. The estimations indicate that the time-lag energy focusing method provides better resolution for the parallel case while the turnaround time is more convenient for the perpendicular position. Hence the applicability of the methods used for the energy resolution depends on beam source arrangement.

  11. Beam energy dependence of pseudorapidity distributions of charged particles produced in heavy-ion collisions at RHIC and LHC energies

    CERN Document Server

    Basu, Sumit; Datta, Kaustuv

    2016-01-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged particle multiplicity and pseudorapidity ($\\eta$) distributions. We have shown that the available experimental data on beam energy and centrality dependence of \\Eta-distributions in heavy-ion (Au+Au or Pb+Pb) collisions from \\sNN=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the \\Eta-distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of \\sNN~=~5.02 TeV, we have obtained the charged particle multiplicity densities, \\Eta-distributions and energy densities for various centralities. Incident...

  12. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  13. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.

  14. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  15. Energy dependence of CP-violation reach for monochromatic neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, Jose [IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot, Valencia (Spain); Espinoza, Catalina [IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot, Valencia (Spain)], E-mail: m.catalina.espinoza@uv.es

    2008-06-26

    The ultimate goal of future neutrino facilities is the determination of CP violation in neutrino oscillations. Besides |U(e3)|{ne}0, this will require precision experiments with a very intense neutrino source and energy control. With this objective in mind, the creation of monochromatic neutrino beams from the electron capture decay of boosted ions by the SPS of CERN has been proposed. We discuss the capabilities of such a facility as a function of the energy of the boost and the baseline for the detector. We compare the physics potential for two different configurations: (I) {gamma}=90 and {gamma}=195 (maximum achievable at present SPS) to Frejus; (II) {gamma}=195 and {gamma}=440 (maximum achievable at upgraded SPS) to Canfranc. We conclude that the SPS upgrade to 1000 GeV is important to reach a better sensitivity to CP violation iff it is accompanied by a longer baseline.

  16. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  17. Linear Energy Transfer-Dependent Change in Rice Gene Expression Profile after Heavy-Ion Beam Irradiation.

    Directory of Open Access Journals (Sweden)

    Kotaro Ishii

    Full Text Available A heavy-ion beam has been recognized as an effective mutagen for plant breeding and applied to the many kinds of crops including rice. In contrast with X-ray or γ-ray, the heavy-ion beam is characterized by a high linear energy transfer (LET. LET is an important factor affecting several aspects of the irradiation effect, e.g. cell survival and mutation frequency, making the heavy-ion beam an effective mutagen. To study the mechanisms behind LET-dependent effects, expression profiling was performed after heavy-ion beam irradiation of imbibed rice seeds. Array-based experiments at three time points (0.5, 1, 2 h after the irradiation revealed that the number of up- or down-regulated genes was highest 2 h after irradiation. Array-based experiments with four different LETs at 2 h after irradiation identified LET-independent regulated genes that were up/down-regulated regardless of the value of LET; LET-dependent regulated genes, whose expression level increased with the rise of LET value, were also identified. Gene ontology (GO analysis of LET-independent up-regulated genes showed that some GO terms were commonly enriched, both 2 hours and 3 weeks after irradiation. GO terms enriched in LET-dependent regulated genes implied that some factor regulates genes that have kinase activity or DNA-binding activity in cooperation with the ATM gene. Of the LET-dependent up-regulated genes, OsPARP3 and OsPCNA were identified, which are involved in DNA repair pathways. This indicates that the Ku-independent alternative non-homologous end-joining pathway may contribute to repairing complex DNA legions induced by high-LET irradiation. These findings may clarify various LET-dependent responses in rice.

  18. Comparison of Energy Dependence of PAGAT Polymer Gel Dosimeter with Electron and Photon Beams using Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    B. Azadbakht

    2012-02-01

    Full Text Available The purpose of this study was to evaluate dependence of PAGAT polymer gel dosimeter 1/T2 on different electron and photon energies for a standard clinically used 60Co therapy unit and an electa linear accelerator.Using MRI, the formulation to give the maximum change in the transverse relaxation rate R2(1/T2 was determined to be 4.5% N,N'-methylen-bis-acrylamide(bis, 4.5% acrylamid(AA, 5% gelatine, 5 mM tetrakis (hydroxymethyl phosphonium chloride (THPC, 0.01 mM hydroquinone (HQ and 86% HPLC(Water. When the preparation of final polymer gel solution is completed, it is transferred into phantoms and allowed to set by storage in a refrigerator at about 4°C. The optimal post-manufacture irradiation and post imaging times were both determined to be 24 h. The sensitivity of PAGAT polymer gel dosimeter with irradiation of photon and electron beams was represented by the slope of calibration curve in the linear region measured for each modality. The response of PAGAT gel with photon and electron beams is very similar in the lower dose region. The R2-dose response was linear up to 30 Gy and the R2-dose response of the PAGAT polymer gel dosimeter is linear between 10 to 30 Gy. In electron beams the R2-dose response for doses less than 3 Gy is not exact, but in photon beams the R2-dose response for doses less than 2Gy is not exact. Dosimeter energy dependence was studied for electron energies of 4, 12 and 18MeV and photon energies of 1.25, 4, 6 and 18 MV. Evaluation of dosimeters were performed on Siemens Symphony, Germany 1.5T Scanner in the head coil. In this study no trend in polymer-gel dosimeter 1/T2 dependence was found on mean energy for electron and photon beams.

  19. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    Science.gov (United States)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  20. Impact parameter and beam energy dependence for azimuthal asymmetry of direct photons and free protons in intermediate energy heavy-ion collisions

    Institute of Scientific and Technical Information of China (English)

    LIU Gui-Hua; MA Yu-Gang; CAI Xiang-Zhou; FANG De-Qing; SHEN Wen-Qing; TIAN Wen-Dong; WANG Kun

    2009-01-01

    Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have calculated the impact parameter and beam energy dependence for azimuthal asymmetry, characterized by directed transverse flow parameter F and elliptic asymmetry coefficient v2, of direct photons and the corresponding free protons in intermediate energy heavy-ion collisions. It is further shown the anti-correlated azimuthal asymmetry between direct photons and free protons.

  1. Time-Dependent Propagation of High-Energy Laser Beams through the Atmosphere: II

    Science.gov (United States)

    2007-11-02

    Equation (Al) can be written <xi> 2 <x. > i = p I dx± dx2 ^1^(^,^2,3)1 , = p I &c1 da?2 x±\\S{x1,x2,z)\\ , ( A4a ) i = 1, 2 (A4b...where "P is the beam power given by P = / dx± dx2 \\${x±,x2)| 2 46- (A5) By differentiating Eqs. ( A4a ) and (A4b) with respect to z and making

  2. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-03-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .

  3. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  4. Pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG passively Q-switched microchip laser

    Science.gov (United States)

    Li, Chao-yu; Dong, Jun

    2016-08-01

    The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.

  5. Rapidity and transverse momentum dependence of pion-pion Bose-Einstein correlations measured at 20, 30, 40, 80, and 158 AGeV beam energy

    CERN Document Server

    Kniege, S; Anticic, T; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P Y; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J; Kniege, Stefan

    2004-01-01

    Preliminary results on pion-pion Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment are presented. Rapidity as well as transverse momentum dependence of the HBT-radii are shown for collisions at 20, 30, 40, 80, and 158 AGeV beam energy. Including results from AGS and RHIC experiments only a weak energy dependence of the radii is observed. Based on hydrodynamical models parameters like lifetime and geometrical radius of the source are derived from the dependence of the radii on transverse momentum.

  6. Two-proton small-angle correlations in central heavy-ion collisions: A beam-energy- and system-size-dependent study

    Energy Technology Data Exchange (ETDEWEB)

    Kotte, R. [Forschungszentrum Rossendorf, IKH, PF 510119, Dresden (Germany); Alard, P.; Barret, V.; Bastid, N.; Crochet, P.; Dupieux, P. [IN2P3/CNRS and Universite Blaise Pascal, Laboratoire de Physique Corpusculaire, Clermont-Ferrand (France); Andronic, A.A. [Institute for Nuclear Physics and Engineering, Bucharest (Romania); Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Basrak, Z.; Caplar, R.; Dzelalija, M.; Gasparic, I. [Rudjer Boskovic Institute Zagreb, Zagreb (Croatia); Benabderrahmane, M.L.; Cordier, E.; Herrmann, N. [Physikalisches Institut der Universitaet Heidelberg, Heidelberg (Germany); Fodor, Z. [Central Research Institute for Physics, Budapest (Hungary); Gobbi, A.; Hartmann, O.N.; Hildenbrand, K.D. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Grishkin, Y. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Hong, B. [Korea University, Seoul (Korea); Kecskemeti, J.; Kim, Y.J.; Kirejczyk, M.; Koczon, P.; Korolija, M.; Kress, T.; Lebedev, A.; Leifels, Y.; Lopez, X.; Merschmeyer, M.; Moesner, J.; Neubert, W.; Pelte, P.; Petrovici, M.; Rami, F.; Reisdorf, W.; De Schauenburg, B.; Schuettauf, A.; Seres, Z.; Sikora, B.; Sim, K.S.; Simion, V.; Siwek-Wilczynska, K.; Smolyankin, V.; Stoicea, G.; Tyminski, Z.; Wagner, P.; Wisniewski, K.; Wohlfarth, D.; Xiao, Z.G.; Yushmanov, Y.; Zhilin, A.

    2005-02-01

    Small-angle correlations of pairs of protons emitted in central collisions of Ca+Ca, Ru+Ru and Au+Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e.system size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations. (orig.)

  7. SU-E-T-515: Investigating the Linear Energy Transfer Dependency of Different PRESAGE Formulations in a Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M [University of Texas MD Anderson Cancer Center, Houston, TX (United States); Alqathami, M; Blencowe, A [The University of South Australia, South Australia, SA (Australia); Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose Previous studies have reported an under-response of PRESAGE in a proton beam as a Result of the extremely high LET in the distal end of the spread out Bragg peak (SOBP). This work is a preliminary investigation to quantify the effect of the formulation, specifically the concentration of halocarbon radical initiator relative to leuco dye, on radical recombination resulting in LET dependence. Methods The traditional PRESAGE formulation developed by Heuris Pharma was altered to constitute radical initiator concentrations of 5, 15, and 30% (low, medium, and high) by weight with all other components balanced to maintain proportionality. Chloroform was specifically examined in this study and all dosimeters were made in-house. Cylindrical PRESAGE dosimeters (3.5cm diameter and 6cm length) were made for each formulation and irradiated by a 200-MeV proton beam to 500 cGy across a 2cm SOBP. Dosimeters were read out using the DMOS optical-CT scanner. The dose distributions were analyzed and dose profiles were used to compare the relative dose response to find the stability across the high-LET region of the SOBP. LET dependence was measured by the variation to ion chamber measurements for the final 25% of the SOBP (∼0.5cm) prior to the distal-90 of each profile. Results Relative to ion chamber data, all PRESAGE dosimeters showed an under-response at the distal end of the SOBP. The medium concentration formulation matched most closely with an average 8.3% under-response closely followed by the low concentration at 12.2% and then the high concentration at 22.8%. In all three cases, the highest points of discrepancy were in the distal most regions. Conclusion The radical initiator concentration in PRESAGE can be tailored to reduce the LET dependence in a proton beam. This warrants further study to quantify comprehensively the effect of concentration of different halocarbon radical initiators on LET dependency. Grant number 5RO1CA100835.

  8. Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-01-01

    We present results of analyses of two-pion interferometry in Au+Au collisions at $\\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass ($m_{T}$) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

  9. ESR spin trapping of radicals in methanol solution irradiated by heavy ion beams. Dependence on specific energy and LET

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiko, E-mail: Nakagawa.Seiko@iri-tokyo.jp [Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064 (Japan); Department of Chemistry, Facility of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Murakami, Takeshi [Research Program for the Application of Heavy Ions in Medical Sciences, Research Center for Charged Particle Therapy, National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2015-08-01

    Highlights: • The relative yield among radicals produced by ion irradiation of methanol was studied. • The ratio varied depending on the LET value, the specific energy and mass of ions. • The recombination of ionic species will occur effectively for Ar and Fe-ion irradiation. - Abstract: Radicals produced by the heavy ion (He, C, Ne, Si, Ar, and Fe) irradiation of methanol were spin trapped with PBN. Three kinds of radicals, PBN-CH{sub 3}O, PBN-CH{sub 2}OH, and PBN-H, were observed similar to those by γ-irradiation. The relative radical yields, PBN-CH{sub 3}O/PBN-CH{sub 2}OH and (PBN-CH{sub 3}O + PBN-CH{sub 2}OH)/PBN-H, varied depending on the LET value, the specific energy and mass of ions.

  10. Exploring the Beam Energy Dependence of Flow-Like Signatures in Small System $d+$Au Collisions

    CERN Document Server

    Koop, J D Orjuela; Yin, P; Nagle, J L

    2015-01-01

    Recent analyses of small collision systems, namely $p+p$ and $p+$Pb at the LHC and $p+$Au, $d+$Au and $^{3}$He+Au at RHIC, have revealed azimuthal momentum anisotropies commonly associated with collective flow in larger systems. Viscous hydrodynamics and parton cascade calculations have proved successful at describing some flow-like observables in these systems. These two classes of calculations also confirm these observables to be directly related to the initial geometry of the created medium. However, the question of whether equilibrium dynamics is the dominant driver of the signal remains open, given the short lifetime of small systems. In this regime, pre-equilibrium dynamics and late stage hadronic interactions are expected to play a significant role. Hence, a beam energy scan of small systems---that amounts to varying the initial temperature and the lifetime of the medium---can provide valuable information to shed light on these issues. In this paper, we present predictions from viscous hydrodynamics (S...

  11. Beam-energy and system-size dependence of the space-time extent of the pion emission source produced in heavy ion collisions

    CERN Document Server

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Alfred, M; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Aramaki, Y; Armendariz, R; Aronson, S H; Asai, J; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Bandara, N S; Bannier, B; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belikov, S; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Bickley, A A; Bing, X; Black, D; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Castera, P; Chang, B S; Charvet, J -L; Chen, C -H; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cleven, C R; Cole, B A; Comets, M P; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; Daugherity, M S; David, G; Deaton, M B; DeBlasio, K; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Ding, L; Dion, A; Do, J H; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; D'Orazio, L; Edwards, S; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gadrat, S; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Gosset, J; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guo, L; Guragain, H; Gustafsson, H -Å; Hachiya, T; Henni, A Hadj; Haegemann, C; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Han, S Y; Hanks, J; Harada, H; Hartouni, E P; Haruna, K; Hasegawa, S; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Huang, J; Huang, S; Ichihara, T; Ichimiya, R; Ide, J; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Inoue, Y; Iordanova, A; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanischev, D; Ivanishchev, D; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Jin, J; Jinnouchi, O; Johnson, B M; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kaneta, M; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kanou, H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khanzadeev, A; Kihara, K; Kijima, K M; Kikuchi, J; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E -J; Kim, H -J; Kim, H J; Kim, K -B; Kim, M; Kim, S H; Kim, Y -J; Kim, Y K; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Kiyomichi, A; Klatsky, J; Klay, J; Klein-Boesing, C; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kochetkov, V; Kofarago, M; Komatsu, Y; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Krizek, F; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, B; Lee, D M; Lee, J; Lee, K; Lee, K B; Lee, K S; Lee, M K; Lee, S H; Lee, S R; Lee, T; Leitch, M J; Leite, M A L; Leitgab, M; Leitner, E; Lenzi, B; Lewis, B; Li, X; Liebing, P; Lim, S H; Levy, L A Linden; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Luechtenborg, R; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Mašek, L; Masui, H; Masumoto, S; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mikeš, P; Miki, K; Miller, A J; Miller, T E; Milov, A; Mioduszewski, S; Mishra, D K; Mishra, M; Mitchell, J T; Mitrovski, M; Miyachi, Y; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, H J; Moon, T; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Norman, B E; Nouicer, R; Novitzky, N; Nyanin, A S; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Oka, M; Okada, K; Omiwade, O O; Onuki, Y; Koop, J D Orjuela; Oskarsson, A; Ouchida, M; Ozaki, H; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, J; Park, S; Park, S K; Park, W J; Pate, S F; Patel, L; Patel, M; Pei, H; Peng, J -C; Pereira, H; Perepelitsa, D V; Perera, G D N; Peresedov, V; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Romana, A; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rowan, Z; Rubin, J G; Rukoyatkin, P; Ružička, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Sakata, H; Sako, H; Samsonov, V; Sano, M; Sano, S; Sarsour, M; Sato, S; Sato, T; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shein, I; Shevel, A; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skutnik, S; Slunečka, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Soumya, M; Sourikova, I V; Sparks, N A; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Tennant, E; Themann, H; Thomas, T L; Timilsina, A; Todoroki, T; Togawa, M; Toia, A; Tojo, J; Tomášek, L; Tomášek, M; Torii, H; Towell, M; Towell, R; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tsuji, T; Vale, C; Valle, H; van Hecke, H W; Vargyas, M; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; Whitaker, S; White, S N; Winter, D; Wolin, S; Wood, J P; Woody, C L; Wright, R M; Wysocki, M; Xia, B; Xie, W; Xue, L; Yalcin, S; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Yoon, I; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zelenski, A; Zhang, C; Zhou, S; Zimányi, J; Zolin, L

    2014-01-01

    Two-pion interferometry measurements are used to extract the Gaussian radii $R_{{\\rm out}}$, $R_{{\\rm side}}$, and $R_{{\\rm long}}$, of the pion emission sources produced in Cu$+$Cu and Au$+$Au collisions at several beam collision energies $\\sqrt{s_{_{NN}}}$ at PHENIX. The extracted radii, which are compared to recent STAR and ALICE data, show characteristic scaling patterns as a function of the initial transverse size $\\bar{R}$ of the collision systems and the transverse mass $m_T$ of the emitted pion pairs, consistent with hydrodynamiclike expansion. Specific combinations of the three-dimensional radii that are sensitive to the medium expansion velocity and lifetime, and the pion emission time duration show nonmonotonic $\\sqrt{s_{_{NN}}}$ dependencies. The nonmonotonic behaviors exhibited by these quantities point to a softening of the equation of state that may coincide with the critical end point in the phase diagram for nuclear matter.

  12. Valley-dependent beam manipulators based on photonic graphene

    Science.gov (United States)

    Deng, Fu-Sheng; Sun, Yong; Dong, Li-Juan; Liu, Yan-Hong; Shi, Yun-Long

    2017-02-01

    Trigonal warping distortion in energy band lifts the degeneracy of two valleys (K and K' points) of graphene. In this situation, electron transport becomes valley dependent, which can be used to design the valley beam splitter, collimator, or guiding device. Here, valley-dependent beam manipulators are designed based on artificial photonic graphene. In this scheme, the finite-size artificial photonic graphene is intentionally designed to realize the novel device functionalities. This kind of valley-dependent beam manipulators can work at an arbitrary range of electromagnetic waves from microwave to visible light. It potentially paves the way for the application of photonic graphene in future integrated photonic devices.

  13. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-03-18

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20  GeV.

  14. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Sánchez, M Calderón de la Barca; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, C; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-01-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\\{2\\}=\\langle \\cos3(\\phi_1-\\phi_2)\\rangle$, where $\\phi_1-\\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\\Delta\\eta = \\eta_1-\\eta_2$. Non-zero {\\vthree} is directly related to the previously observed large-$\\Delta\\eta$ narrow-$\\Delta\\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\\{2\\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\\{2\\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nuc...

  15. Beam characteristics of energy-matched flattening filter free beams

    Energy Technology Data Exchange (ETDEWEB)

    Paynter, D.; Weston, S. J.; Cosgrove, V. P. [St James Institute of Oncology The Leeds Teaching Hospitals NHS Trust, Medical Physics, Leeds LS9 7TF (United Kingdom); Evans, J. A. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds (United Kingdom); Thwaites, D. I. [LIGHT Institute University of Leeds Leeds LS2 9JT, Division of Medical Physics, Leeds, United Kingdom and Institute of Medical Physics, School of Physics, University of Sydney (Australia)

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  16. Polarized beams in high energy circular accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.

    1979-05-01

    In recent years, high energy physicists have become increasingly interested in the possible spin effects at high energies. To study those spin effects, it is desirable to have beams with high energy, high intensity and high polarization. In this talk, we briefly review the present status and the prospects for the near future of high energy polarized beams. 30 refs.

  17. Determination of the LEP beam energy

    CERN Document Server

    Torrence, E

    2000-01-01

    This article describes the determination of the LEP beam energy above the production threshold for W boson pairs. A brief overview of the magnetic extrapolation method is presented which is currently used to determine the LEP beam energy to a relative precision of 2*10/sup -4 /. A new method for beam energy measurements based on an in-line energy spectrometer is presented, and current developments in the commissioning of this device are outlined. (2 refs).

  18. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  19. Energy dependence of polymer gels in the orthovoltage energy range

    Directory of Open Access Journals (Sweden)

    Yvonne Roed

    2014-03-01

    Full Text Available Purpose: Ortho-voltage energies are often used for treatment of patients’ superficial lesions, and also for small- animal irradiations. Polymer-Gel dosimeters such as MAGAT (Methacrylic acid Gel and THPC are finding increasing use for 3-dimensional verification of radiation doses in a given treatment geometry. For mega-voltage beams, energy dependence of MAGAT has been quoted as nearly energy-independent. In the kilo-voltage range, there is hardly any literature to shade light on its energy dependence.Methods: MAGAT was used to measure depth-dose for 250 kVp beam. Comparison with ion-chamber data showed a discrepancy increasing significantly with depth. An over-response as much as 25% was observed at a depth of 6 cm.Results and Conclusion: Investigation concluded that 6 cm water in the beam resulted in a half-value-layer (HVL change from 1.05 to 1.32 mm Cu. This amounts to an effective-energy change from 81.3 to 89.5 keV. Response measurements of MAGAT at these two energies explained the observed discrepancy in depth-dose measurements. Dose-calibration curves of MAGAT for (i 250 kVp beam, and (ii 250 kVp beam through 6 cm of water column are presented showing significant energy dependence.-------------------Cite this article as: Roed Y, Tailor R, Pinksy L, Ibbott G. Energy dependence of polymer gels in the orthovoltage energy range. Int J Cancer Ther Oncol 2014; 2(2:020232. DOI: 10.14319/ijcto.0202.32 

  20. Intermediate energy neutron beams from the MURR.

    Science.gov (United States)

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  1. High energy ion beam analysis at ARRONAX

    Energy Technology Data Exchange (ETDEWEB)

    Koumeir, C.; Haddad, F.; Michel, N. [Subatech, Nantes (France); GIP ARRONAX, Saint-Herblain (France); Guertin, A.; Metivier, V.; Michel, N.; Ragreb, D.; Servagent, N. [Subatech, Nantes (France)

    2013-07-01

    Full text: ARRONAX, acronym for 'Accelerator for Research in Radiochemistry and Oncology at Nantes' is a high energy cyclotron. It is characterized by the acceleration of several types of particle beams: 68 MeV alpha, 15-35 MeV deuterons and 30-68 MeV protons. A platform was implemented on ARRONAX to perform non-destructive materials analysis with X and gamma rays emission (PIXE-PIGE). A proper selection of the projectile type and beam energy allows to analyze heavy and light elements in thin and thick samples. Our research activities are oriented along three axes: 1) Measurements of K X-ray production cross section for various elements to complement the databases at high energy. A first experiment has been conducted to measure these cross sections for copper and gold with protons energy between 34 and 68 MeV. 2) Study of the detection sensitivity which depends on the nuclear background and the Bremsstrahlung radiations. A dedicated shielding has been developed and detection limits below tens of μg/g/μC have been assessed using different referenced samples from IAEA. 3) Determination of concentration profile as function of the depth in a thick target. Using layered samples, we have showed for a target consisting of three different layers, the possibility to determine the sequence and thickness of each layer by using X and gamma rays measured respectively during and after irradiation. During this talk, I will present the characteristics and the capabilities of our platform. In the near future we intend to install the PIGE technique and use it with 15 MeV deuterons to analyze lightweight elements. (author)

  2. Electron Beam Energy Compensation by Controlling RF Pulse Shape

    CERN Document Server

    Kii, T; Kusukame, K; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    We have studied on improvement of electron beam macropulse properties from a thermionic RF gun. Though a thermionic RF gun has many salient features, there is a serious problem that back-bombardment effect worsens quality of the beam. To reduce beam energy degradation by this effect, we tried to feed non-flat RF power into the gun. As a result, we successfully obtained about 1.5 times longer macropulse and two times larger total charge per macropulse. On the other hand, we calculated transient evolution of RF power considering non-constant beam loading. The beam loading is evaluated from time evolution of cathode temperature, by use of one dimensional heat conduction model and electron trajectories' calculations by a particle simulation code. Then we found good agreement between the experimental and calculation results. Furthermore, with the same way, we studied the electron beam output dependence on the cathode radius.

  3. Proton energy dependence of slow neutron intensity

    Energy Technology Data Exchange (ETDEWEB)

    Teshigawara, Makoto; Harada, Masahide; Watanabe, Noboru; Kai, Tetsuya; Sakata, Hideaki; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ooi, Motoki [Hokkaido Univ., Sapporo (Japan)

    2001-03-01

    The choice of the proton energy is an important issue for the design of an intense-pulsed-spallation source. The optimal proton beam energy is rather unique from a viewpoint of the leakage neutron intensity but no yet clear from the slow-neutron intensity view point. It also depends on an accelerator type. Since it is also important to know the proton energy dependence of slow-neutrons from the moderators in a realistic target-moderator-reflector assembly (TMRA). We studied on the TMRA proposed for Japan Spallation Neutron Source. The slow-neutron intensities from the moderators per unit proton beam power (MW) exhibit the maximum at about 1-2 GeV. At higher proton energies the intensity per MW goes down; at 3 and 50 GeV about 0.91 and 0.47 times as low as that at 1 GeV. The proton energy dependence of slow-neutron intensities was found to be almost the same as that of total neutron yield (leakage neutrons) from the same bare target. It was also found that proton energy dependence was almost the same for the coupled and decoupled moderators, regardless the different moderator type, geometry and coupling scheme. (author)

  4. High energy laser beam dump

    Science.gov (United States)

    Halpin, John

    2004-09-14

    The laser beam dump is positioned in a housing. An absorbing glass plate means is operatively connected to the housing. A heat sync means for extracting heat from the absorbing glass plate means is operatively connected to the housing and operatively connected to the absorbing glass plate means.

  5. Dose energy dependence in proton imaging

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Curitiba 80230-901 (Brazil); Paschuk, S.A.; Schelin, H.R.; Rocha, R.L.; Setti, J.A.P.; Klock, M.C.L.; Evseev, I.G. [Federal University of Technology - Parana, Curitiba 80230-901 (Brazil); Yevseyeva, O.I. [Polytechnic Institute of the Rio de Janeiro State University, Nova Friburgo 28610-970 (Brazil)

    2011-10-01

    In the earliest works dedicated to proton radiography and proton computed tomography it was shown that the advantage of image creation using proton beams appears when the energy is chosen as small as possible, but enough to pass the object. This phenomenon is based on the great sensitivity of the energy flux of the proton beam in relation to the length and density of the object at the end of the proton range. However, this fact was proved experimentally only with thin detectors, such as photographic films, which detect only part of the exit energy of protons. Another method which is based on the measurement of total exit energy of protons contains two effects that act in opposite ways: the necessary irradiation dose increases when the energy of the proton is reduced. In this work, the dependence of the irradiation dose on proton initial energy was studied using analytical formulas and computer simulations. The investigation shows that the irradiation dose depends slightly on the proton energy beyond the region at the end of the proton range and increases sharply in it.

  6. Moving core beam energy absorber and converter

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  7. Low energy beam transport system developments

    Energy Technology Data Exchange (ETDEWEB)

    Dudnikov, V., E-mail: vadim@muonsinc.com [Muons, Inc., Batavia, IL 60510 (United States); Han, B.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, TN 37831 (United States); Dudnikova, G. [University of Maryland, College Park, MD 3261 (United States); Institute of Computational Technologies SBRAS, Novosibirsk (Russian Federation)

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  8. Gas Electron multipliers for low energy beams

    CERN Document Server

    Arnold, F; Ropelewski, L; Spanggaard, J; Tranquille, G

    2010-01-01

    Gas Electron Multipliers (GEM) find their way to more and more applications in beam instrumentation. Gas Electron Multiplication uses a very similar physical phenomenon to that of Multi Wire Proportional Chambers (MWPC) but for small profile monitors they are much more cost efficient both to produce and to maintain. This paper presents the new GEM profile monitors intended to replace the MWPCs currently used at CERN’s low energy Antiproton Decelerator (AD). It will be shown how GEMs overcome the documented problems of profile measurements with MWPCs for low energy beams, where the interaction of the beam with the detector has a large influence on the measured profile. Results will be shown of profile measurements performed at 5 MeV using four different GEM prototypes, with discussion on the possible use of GEMs at even lower energies needed at the AD in 2013.

  9. Low Energy High Brilliance Beam Characterization

    CERN Document Server

    Bähr, J

    2005-01-01

    Low energy high brilliance beam characterization plays an important role for electron sources and injectors of Free Electron Lasers (FELs) and electron linear accelerators as for example the future ILC project. The topic is discussed basing on solutions of the PITZ facility (PhotoInjector Test facility Zeuthen) which are compared with methods applied at other facilities. The properties of an electron beam produced at a laser-driven rf-gun is mainly influenced also by characteristics of the laser beam and the electron gun itself. Therefore aspects of diagnostics will be also discussed for the laser, laser beam line and gun as well. The main properties of the electron beam are transverse and longitudinal phase space and charge as well. The measurement of transverse beam size and position, transverse emittance, charge, beam current, and longitudinal phase space will be discussed in detail. The measurements of the transverse emittance at PITZ is based on a single slit method. The measurement of the longitudinal p...

  10. Invariant and energy analysis of an axially retracting beam

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Liu Ming; Zhang Wei; Roderick V.N. Melnik

    2016-01-01

    The mechanism of a retracting cantilevered beam has been investigated by the invariant and energy-based analysis. The time-varying parameter partial differential equation governing the transverse vibrations of a beam with retracting motion is derived based on the momentum theorem. The assumed-mode method is used to truncate the governing partial differential equation into a set of ordinary differential equations (ODEs) with time-dependent coefficients. It is found that if the order of truncation is not less than the order of the initial conditions, the assumed-mode method can yield accurate results. The energy transfers among assumed modes are discussed during retrac-tion. The total energy varying with time has been investigated by numerical and analytical methods, and the results have good agreement with each other. For the transverse vibrations of the axially retracting beam, the adiabatic invariant is derived by both the averaging method and the Bessel function method.

  11. Systematic properties of the Tsallis distribution: Energy dependence of parameters in high energy p–p collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cleymans, J., E-mail: jean.cleymans@gmail.com [UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, Cape (South Africa); Lykasov, G.I. [JINR, Dubna, 141980 Moscow region (Russian Federation); Parvan, A.S. [JINR, Dubna, 141980 Moscow region (Russian Federation); Institute of Applied Physics, Moldova Academy of Sciences, MD-2028 Chisinau, Republic of Moldova (Moldova, Republic of); Sorin, A.S.; Teryaev, O.V. [JINR, Dubna, 141980 Moscow region (Russian Federation); Worku, D. [UCT-CERN Research Centre and Department of Physics, University of Cape Town, Rondebosch 7701, Cape (South Africa)

    2013-06-25

    Changes in the transverse momentum distributions with beam energy are studied using the Tsallis distribution as a parameterization. The dependence of the Tsallis parameters q, T and the volume are determined as a function of beam energy. The Tsallis parameter q shows a weak but clear increase with beam energy with the highest value being approximately 1.15. The Tsallis temperature and volume are consistent with being independent of beam energy within experimental uncertainties.

  12. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  13. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  14. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  15. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  16. Beamed-Energy Propulsion (BEP) Study

    Science.gov (United States)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  17. Energy Absorption Capacity of Composite Beams

    Directory of Open Access Journals (Sweden)

    Arivalagan

    2009-01-01

    Full Text Available Local buckling may occur in the compression flange of rectangular hollow-section beams under cyclic repeated loadingarising from earthquakes. Once a local mechanism forms, residual strength rapidly reduces within a few cycles. This is trueeven for compact sections under static bending. This paper aims to study the experimental behaviour and ultimate momentcapacity of unfilled and concrete-filled rectangular hollow sections subjected to cyclic reversible loading. Two types offiller material were used - normal mix concrete and fly ash concrete. The effect of filler materials, section slenderness, loaddeflectionresponse, moment-strain behaviour, first cycle peak load, ductility, stiffness degradation and energy absorption ofconcrete –filled RHS beams are studied.

  18. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  19. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, Sergei M. [Univ. of Rochester, NY (United States)

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  20. Energy Production Demonstrator for Megawatt Proton Beams

    CERN Document Server

    Pronskikh, Vitaly S; Novitski, Igor; Tyutyunnikov, Sergey I

    2014-01-01

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however...

  1. Rapidity dependence of Bose-Einstein correlations at SPS energies

    CERN Document Server

    Kniege, S; Anticic, T; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csat, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gadysz, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnr, J; Mrwczy, St; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Prindle, D; Phlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczy, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wodarczyk, Z; Zimnyi, J; Kniege, Stefan

    2006-01-01

    This article is devoted to results on pion-pion -Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. Rapidity as well as transverse momentum dependences of the correlation lengths will be shown for collisions at 20A, 30A, 40A, 80A, and 158A GeV beam energy. Only a weak energy dependence of the radii is observed at SPS energies. The kt-dependence of the correlation lengths as well as the single particle mt-spectra will be compared to model calculations. The rapidity dependence is analysed in a range of 2.5 units of rapidity starting at the center of mass rapidity at each beam energy. The correlation lengths measured in the longitudinally comoving system show only a weak dependence on rapidity.

  2. High energy electron beams for ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1994-12-31

    Joining of structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for high temperature joining. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the ceramic. We have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 MPa have been measured. This strength is comparable to that reported in the literature for bonding silicon nitride to molybdenum with copper-silver-titanium braze, but weaker than that reported for Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} with gold-nickel braze. The bonding mechanism appears to be a thin silicide layer.

  3. Study of the Beam Energy Dependence of Azimuthal Anisotropy Coefficients and Non-Flow Effects in Small System d +Au Collisions at RHIC

    Science.gov (United States)

    Yin, Pengqi

    2016-09-01

    Recent measurements of azimuthal anisotropy, v_n, in collision systems such as p,d,3He +Au suggest that a quark gluon plasma (QGP) may be formed in these small systems, which would be an unexpected discovery. However, this QGP lives for a shorter time than in larger A +A systems and it is not clear how the azimuthal anisotropy signals develop. Varying the collision energy in d +Au collisions can help to answer this question. However, non-flow effects are more dominant in small systems and must be accounted for in order to draw conclusions. We will show theoretical calculations of v_2 and v_3 in d +Au using different models at several collision energies, and we will present a method based on reference fitting to estimate the non-flow component in actual measurements so that they might be better compared to the theory. (Based on work published in) Division of Nuclear Physics of the U.S. Department of Energy under Grant No. DE-FG02-00ER41152.

  4. Coupling Impedances of Small Discontinuities: Dependence on Beam Velocity

    CERN Document Server

    Kurennoy, S S

    2006-01-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., S.S. Kurennoy, R.L. Gluckstern, and G.V. Stupakov, Phys. Rev. E 52, 4354 (1995)] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases - circular and rectangular chamber cross sections - are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate ...

  5. Low energy beam transport for HIDIF

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O. E-mail: o.meusel@iap.uni-frankfurt.de; Pozimski, J.; Jakob, A.; Lakatos, A

    2001-05-21

    Low energy beam transport (LEBT) for a heavy ion inertial fusion (HIDIF, I. Hofmann and G. Plass, Report of the European Study Group on Heavy Ion Driven Inertial Fusion for the Period 1995-1998) facility suffers from high space charge forces and high ion mass. Space charge compensation reduces the necessary focusing force of the lenses and the radius of the beam in the LEBT, and therefrom the emittance growth due to aberrations and self fields is reduced. Gabor lenses (D. Gabor, Nature 160 (1947)) providing a stable space charge cloud for focusing and combine strong cylinder symmetric focusing with partly space charge compensation and low emittance growth. A high tolerance against source noise and current fluctuations and reduced investment costs could be other possible advantages. The proof of principle has already been demonstrated (J.A. Palkovic, Measurements on a Gabor lens for Neutralizing and Focusing a 30 keV Proton beam, University of Wisconsin, Madison, 1989; J. Pozimski, P. Gross, R. Doelling and T. Weis, First experimental studies of a Gabor plasma-lens in Frankfurt, Proceedings of the 3rd EPAC Conference, Berlin, 1992). To broaden the experiences and to investigate the realisation of a LEBT concept for the HIDIF injector an experimental program using two Gabor lenses for independent variation of beam radius and envelope angel at RFQ injection was started. Therefrom the first experimental results using a double Gabor lens (DGPL) LEBT system for transporting an high perveance Xe{sup +} beam are presented and the results of numerical simulations are shown.

  6. Energy compensation of slow extracted beams with RF acceleration

    Science.gov (United States)

    Fujimoto, Tetsuya; Souda, Hikaru; Torikoshi, Masami; Kanai, Tatsuaki; Yamada, Satoru; Noda, Koji

    2016-03-01

    In a conventional carbon-ion radiotherapy facility, a carbon-ion beam is typically accelerated up to an optimum energy, slowly extracted from a synchrotron ring by a resonant slow extraction method, and ultimately delivered to a patient through a beam-delivery system. At Japan's Gunma University, a method employing slow-beam extraction along with beam-acceleration has been adopted. This method slightly alters the extracted-beam's energy owing to the acceleration component of the process, which subsequently results in a residual-range variation of approximately 2 mm in water-equivalent length. However, this range variation does not disturb a distal dose distribution with broad-beam methods such as the single beam-wobbling method. With the pencil-beam 3D scanning method, however, such a range variation disturbs a distal dose distribution because the variation is comparable to slice thickness. Therefore, for pencil-beam 3D scanning, an energy compensation method for a slow extracted beam is proposed in this paper. This method can compensate for the aforementioned energy variances by controlling net energy losses through a rotatable energy absorber set fixed between the synchrotron exit channel and the isocenter. Experimental results demonstrate that beam energies can be maintained constant, as originally hypothesized. Moreover, energy-absorber positions were found to be significantly enhanced by optimizing beam optics for reducing beam-size growth by implementation of the multiple-scattering effect option.

  7. Optimized frequency dependent photothermal beam deflection spectroscopy

    Science.gov (United States)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  8. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mahinay, C. L. S., E-mail: cmahinay@nip.upd.edu.ph; Ramos, H. J. [National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Metro Manila (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  9. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  10. Calculation of Electron Beam Potential Energy from RF Photocathode Gun

    CERN Document Server

    Liu Wan Ming; Power, John G; Wang, Haitao

    2005-01-01

    In this paper, we consider the contribution of potential energy to beam dynamics as simulated by PARMELA at low energies (10 - 30MeV). We have developed a routine to calculate the potential energy of the relativistic electron beam using the static coulomb potential in the rest frame (first order approximation as in PARMELA). We found that the potential energy contribution to the beam dynamics could be very significant, particularly with high charge beams generated by an RF photocathode gun. Our results show that when the potential energy is counted correctly and added to the kinetic energy from PARMELA, the total energy is conserved. Simulation results of potential and kinetic energies for short beams (~1 mm) at various charges (1 - 100 nC) generated by a high current RF photocathode gun are presented.

  11. Coupling impedances of small discontinuities: Dependence on beam velocity

    Science.gov (United States)

    Kurennoy, Sergey S.

    2006-05-01

    The beam coupling impedances of small discontinuities of an accelerator vacuum chamber have been calculated [e.g., Kurennoy, Gluckstern, and Stupakov, Phys. Rev. E 52, 4354 (1995)PLEEE81063-651X10.1103/PhysRevE.52.4354] for ultrarelativistic beams using the Bethe diffraction theory. Here we extend the results to an arbitrary beam velocity. The vacuum chamber is assumed to have an arbitrary, but uniform along the beam path, cross section. The longitudinal and transverse coupling impedances are derived in terms of series over cross-section eigenfunctions, while the discontinuity shape enters via its polarizabilities. Simple explicit formulas for two important particular cases—circular and rectangular chamber cross sections—are presented. The impedance dependence on the beam velocity exhibits some unusual features: for example, the reactive impedance, which dominates in the ultrarelativistic limit, can vanish at a certain beam velocity, or its magnitude can exceed the ultrarelativistic value many times. In addition, we demonstrate that the same technique, the field expansion into a series of cross-section eigenfunctions, is convenient for calculating the space-charge impedance of uniform beam pipes with arbitrary cross section.

  12. Dependability analysis of a safety critical system the LHC beam dumping system at CERN

    CERN Document Server

    Filippini, R

    2006-01-01

    This thesis presents the dependability study of the Beam Dumping System of the Large Hadron Collider (LHC), the high energy particle accelerator to be commissioned at CERN in summer 2007. There are two identical, independent LHC Beam Dumping Systems (LBDS), one per LHC beam, each consisting of a series of magnets that extract the particle beam from the LHC ring into the extraction line leading to the absorbing block. The consequences of a failure within the LBDS can be very severe. This risk is reduced by applying redundancy to the design of the most critical components and on-line surveillance that, in case of a detected failure, issues a safe operation abort, called false beam dump. The system has been studied applying Failure Modes Effects and Criticality Analysis (FMECA) and reliability prediction. The system failure processes have been represented with a state transition diagram, governed by a Markov regenerative stochastic process, and analysed for different operational scenarios for one year of operati...

  13. Characterization of the NEPOMUC primary and remoderated positron beams at different energies

    Science.gov (United States)

    Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.

    2016-08-01

    We report on the characterization of the positron beam provided at the open beam port of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ) Garching. The absolute positron flux of the primary beam at 400 eV and 1 keV kinetic energy and of the remoderated beam at 5, 12 and 22 eV were determined. Energy-dependent intensities in the range of (1 - 5) ·108e+ / s and (2 - 6) ·107e+ / s have been observed for the primary and remoderated beam, respectively. We attribute the significant losses for the primary beam, in comparison with the expected value, to the non-adiabatic positron guiding in the beam line. We also measured the longitudinal energy distribution of the remoderated beam, yielding an energy spread below 3.3 eV. The mean transverse energy of the remoderated beam, determined from measurements in different final magnetic fields, was found to be below 1.3 eV. These results are likely to apply to the NEPOMUC beam delivered to other user stations.

  14. Beam Diagnostics Instrumentation for the High Energy Beam Transport Line of I.P.H.I.

    CERN Document Server

    Ausset, P; Coacolo, J L; Lesrel, J; Maymon, J N; Olivier, A; Rouviere, N; Solal-Cohen, M; Vatrinet, L; Yaniche, J F

    2005-01-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay (C.N.R.S/ I.N.2P.3; C.E.A. / D.A.P.N.I.A and C.E.R.N. collaboration). An E.C.R. produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity; centroïd beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described.

  15. Beam diagnostics instrumentation for the high energy beam transfer line of I.P.H.I

    Energy Technology Data Exchange (ETDEWEB)

    Ausset, P.; Berthelot, S.; Coacolo, J.L.; Lesrel, J.; Maymon, J.N.; Olivier, A.; Rouviere, N.; Solal, M.; Vatrinet, L.; Yaniche, J.F. [Institut de Physique Nucleaire, (IN2P3/CNRS) 91 - Orsay (France); Belyaev, G.; Roudskoy, I. [I.T.E.P. Moscow (Russian Federation)

    2005-07-01

    I.P.H.I. is a High Intensity Proton Injector under construction at Saclay. An E.C.R. source produces a 100 keV, 100 mA C.W. proton beam which will be accelerated at 3 MeV by a 4 vanes R.F.Q. operating at 352.2 MHz. Finally, a High Energy Beam Transport Line (H.E.B.T.) will deliver the beam to a beam stopper and will be equipped with appropriate beam diagnostics to carry intensity, centroid beam transverse position, transverse beam profiles, beam energy and energy spread measurements for the commissioning of I.P.H.I. These beam diagnostics will operate under both pulsed and C.W. operation. Transverse beam profile measurements will be acquired under low and high duty factor pulsed beam operation using a slow wire scanner and a C.C.D. camera to image the beam-induced fluorescence. The beam instrumentation of the H.E.B.T. is reviewed and preliminary obtained transverse profile measurements at 100 keV are described. (authors)

  16. Review of intense-ion-beam propagation with a view toward measuring ion energy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.

    1982-08-25

    The subject of this review is intense ion beam propagation and the possibilities of measuring time dependent ion energy in the beam. Propagation effects discussed include charge separation, charge and current autoneutralization, electron thermalization and current neutralization decay. The interaction of a plasma beam with material obstacles, like collimators, and with transverse magnetic fields is also described. Depending on beam energy, density and pulse length, these interactions can include material ablation with plasmadynamic flow and undeflected propagation across transverse magnetic fields by a polarization drift. On the basis of this review I conclude that three diagnostics: a single floating potential probe, net current probes (Faraday cups) and a Rutherford scattering spectrometer appear capable of giving prompt, time dependent ion energy measurements.

  17. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Derenchuk, V; Moore, R [ProNova Solutions, Knoxville, TN (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.

  18. Low energy ion beam dynamics of NANOGAN ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sarvesh, E-mail: sarvesh@iuac.res.in; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  19. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  20. Measurement of the polarisation of a high energy muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Ahmad, S.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, G.; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjoerkholm, P.; Bonner, B.E.; Botton, N. de; Boutemeur, M.; Bradamante, F.; Bressan, A.; Bruell, A.; Buchanan, J.; Bueltmann, S.; Burtin, E.; Cavata, C.; Chen, J.P.; Clement, J.; Clocchiatti, M.; Corcoran, M.D.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; Dantzig, R. van; Day, D.; Demolis, J.M.; Dhawan, S.; Dulya, C.; Dupont, J.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Garabatos, C.; Garzon, J.A.; Gatignon, L.; Gaussiran, T.; Giorgi, M.; Goeler, E. von; Gomez, A.; Gracia, G.; Grosse Perdekamp, M.; Harrach, D. von; Hasegawa, T.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Jong, M. de; Kabuss, E.M.; Kaiser, R.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kisselev, Yu.; Klostermann, L.; Krivokhijine, V.; Kukhtin, V.; Kyynaeraeinen, J.; La; Spin Muon Collaboration (SMC)

    1994-04-11

    A muon beam polarimeter has been built for the SMC experiment at the CERN SPS, for muon energies of 100 to 200 GeV. The beam polarisation is determined from the energy spectrum of positrons from the decay [mu][sup +][yields]e[sup +][nu][sub e] anti [nu][sub [mu

  1. Space charge compensation in low energy proton beams

    CERN Document Server

    Ismail, A B; Uriot, D; Pichoff, N

    2004-01-01

    High power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. In this low energy part, the space charge self force, induced by a high intensity beam, has to be carefully managed. This nonlinear force can generate a high irreversible emittance growth of the beam. To reduce space charge effects, neutralization of the beam charge can be done by capturing some particles of the ionised residual gas in the vacuum chamber. This space charge compensation (SCC) regime complicates the dynamic study. Modelling the beam behaviour in such regime would be a significant contribution to the development of high intensity accelerators. Numerical and experimental study of SCC is in progress on the Saclay High Intensity Proton Injector. Experimental measurements and 2D/3D simulations of proton beam SCC will be presented.

  2. Characterization of low energy radioactive beams using direct reactions

    DEFF Research Database (Denmark)

    Johansen, J.G.; Fraser, M.A.; Bildstein, V.

    2013-01-01

    We demonstrate a new technique to determine the beam structure of low energy radioactive beams using coincidence events from a direct reaction. The technique will be described and tested using Geant4 simulations. We use the technique to determine for the first time the width, divergence and energy...... of an accelerated radioactive beam produced at ISOLDE. We use data from an experiment with an 11Be beam incident on a deuteron target producing 10Be from a (d,t) reaction. The T-REX Si detector array was used for particle detection, but the technique is applicable for other setups....

  3. Modelling polychromatic high energy photon beams by superposition.

    Science.gov (United States)

    Metcalfe, P E; Hoban, P W; Murray, D C; Round, W H

    1989-09-01

    A unified three dimensional superposition approach to dose calculations used in treatment planning of polychromatic high energy photon beams in radiotherapy is developed. The approach we have used involves computing the dose at all points in a medium by superposing the dose spread array (DSA) from the interaction of a photon at a point in the medium with an array of data representing the TERMA (photon fluence times the photon energy) at points in the beam. The polychromatic nature of the beam is accounted for by modelling the beam as having ten spectral components. A "polychromatic dose spread array" (PDSA) for an interaction from a beam with this spectrum was derived. The TERMA array is calculated from a weighted average of the TERMA arrays for the ten photon energies to give a "polychromatic TERMA array". Thus the method accounts for the effect of beam hardening of the TERMA. But it does not account for the effect of beam hardening on the PDSA since a single PDSA (usually for the spectrum at the surface of the medium) is used at all depths. However, by considering measured and calculated beam central axis data, this model is shown to be adequate for computing depth doses for beams in a homogeneous medium penetrating to extreme radiological depths. A computation time advantage is gained because only one superposition per beam is required.

  4. Experimental observation of polarization-dependent optical vortex beams

    CERN Document Server

    Srisuphaphon, S; Photia, T; Temnuch, W; Chiangga, S; Deachapunya, S

    2016-01-01

    We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observation. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.

  5. Detecting electron beam energy shifts with a commercially available energy monitor.

    Science.gov (United States)

    Evans, M D; Moftah, B A; Olivares, M; Podgorsak, E B

    2000-07-01

    Routine electron beam quality assurance requires an accurate, yet practical, method of energy characterization. Subtle shifts in beam energy may be produced by the linac bending magnet assembly, and the sensitivity of a commercially available electron beam energy-monitoring device for monitoring these small energy drifts has been evaluated. The device shows an 11% change in signal for a 2 mm change in the I50 energy parameter for low energy electron beams (in the vicinity of 6 MeV) and a 2.5% change in signal for a 2 mm change in the I50 energy parameter for high energy electron beams (in the vicinity of 22 MeV). Thus the device is capable of detecting small energy shifts resulting from bending magnet drift for all clinically relevant electron beams.

  6. Beam Loss Calibration Studies for High Energy Proton Accelerators

    CERN Document Server

    Stockner, M

    2007-01-01

    CERN's Large Hadron Collider (LHC) is a proton collider with injection energy of 450 GeV and collision energy of 7 TeV. Superconducting magnets keep the particles circulating in two counter rotating beams, which cross each other at the Interaction Points (IP). Those complex magnets have been designed to contain both beams in one yoke within a cryostat. An unprecedented amount of energy will be stored in the circulating beams and in the magnet system. The LHC outperforms other existing accelerators in its maximum beam energy by a factor of 7 and in its beam intensity by a factor of 23. Even a loss of a small fraction of the beam particles may cause the transition from the superconducting to the normal conducting state of the coil or cause physical damage to machine components. The unique combination of these extreme beam parameters and the highly advanced superconducting technology has the consequence that the LHC needs a more efficient beam cleaning and beam loss measurement system than previous accelerators....

  7. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok [Rare Isotope Science Project, Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  8. Beam energy scan with asymmetric collision at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Alessi, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Beebe, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brennan, J. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bruno, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Butler, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Connolly, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); D Ottavio, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Drees, K. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gassner, D. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gu, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Harvey, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hayes, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hulsart, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ingrassia, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jamilkowski, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Laster, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marr, G. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mernick, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Michnoff, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Montag, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Morris, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Naylor, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Nemesure, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sampson, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sandberg, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Schoefer, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Severino, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shrey, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhang, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-11-15

    A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.

  9. Piezoelectric energy harvester having planform-tapered interdigitated beams

    Science.gov (United States)

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  10. Cryogenic Beam Screens for High-Energy Particle Accelerators

    CERN Document Server

    Baglin, V; Tavian, L; van Weelderen, R

    2013-01-01

    Applied superconductivity has become a key enabling technology for high-energy particle accelerators, thus making them large helium cryogenic systems operating at very low temperature. The circulation of high-intensity particle beams in these machines generates energy deposition in the first wall through different processes. For thermodynamic efficiency, it is advisable to intercept these beam-induced heat loads, which may be large in comparison with cryostat heat in-leaks, at higher temperature than that of the superconducting magnets of the accelerator, by means of beam screens located in the magnet apertures. Beam screens may also be used as part of the ultra-high vacuum system of the accelerator, by sheltering the gas molecules cryopumped on the beam pipe from impinging radiation and thus avoiding pressure runaway. Space being extremely tight in the magnet apertures, cooling of the long, slender beam screens also raises substantial problems in cryogenic heat transfer and fluid flow. We present sizing rule...

  11. Linac4 low energy beam measurements with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Scrivens, R., E-mail: richard.scrivens@cern.ch; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T. [CERN, 1211 Geneva 23 (Switzerland)

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  12. Linac4 Low Energy Beam Measurements with Negative Hydrogen

    CERN Document Server

    Scrivens, R; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J B; Lettry, J; Lombardi, A; Midttun, O; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-01-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  13. Linac4 low energy beam measurements with negative hydrogen ions.

    Science.gov (United States)

    Scrivens, R; Bellodi, G; Crettiez, O; Dimov, V; Gerard, D; Granemann Souza, E; Guida, R; Hansen, J; Lallement, J-B; Lettry, J; Lombardi, A; Midttun, Ø; Pasquino, C; Raich, U; Riffaud, B; Roncarolo, F; Valerio-Lizarraga, C A; Wallner, J; Yarmohammadi Satri, M; Zickler, T

    2014-02-01

    Linac4, a 160 MeV normal-conducting H(-) linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H(-) beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  14. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    Science.gov (United States)

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  15. Patient-dependent beam-modifier physics in Monte Carlo photon dose calculations.

    Science.gov (United States)

    Schach von Wittenau, A E; Bergstrom, P M; Cox, L J

    2000-05-01

    Model pencil-beam on slab calculations are used as well as a series of detailed calculations of photon and electron output from commercial accelerators to quantify level(s) of physics required for the Monte Carlo transport of photons and electrons in treatment-dependent beam modifiers, such as jaws, wedges, blocks, and multileaf collimators, in photon teletherapy dose calculations. The physics approximations investigated comprise (1) not tracking particles below a given kinetic energy, (2) continuing to track particles, but performing simplified collision physics, particularly in handling secondary particle production, and (3) not tracking particles in specific spatial regions. Figures-of-merit needed to estimate the effects of these approximations are developed, and these estimates are compared with full-physics Monte Carlo calculations of the contribution of the collimating jaws to the on-axis depth-dose curve in a water phantom. These figures of merit are next used to evaluate various approximations used in coupled photon/electron physics in beam modifiers. Approximations for tracking electrons in air are then evaluated. It is found that knowledge of the materials used for beam modifiers, of the energies of the photon beams used, as well as of the length scales typically found in photon teletherapy plans, allows a number of simplifying approximations to be made in the Monte Carlo transport of secondary particles from the accelerator head and beam modifiers to the isocenter plane.

  16. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-01

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  17. Impacts of gantry angle dependent scanning beam properties on proton PBS treatment.

    Science.gov (United States)

    Lin, Yuting; Clasie, Benjamin; Lu, Hsiao-Ming; Flanz, Jacob; Shen, Tim; Jee, Kyung-Wook

    2017-01-21

    While proton beam models in treatment planning systems are generally assumed invariant with respect to the beam deliveries at different gantry angles. Physical properties of scanning pencil beams can change. The gantry angle dependent properties include the delivered charge to the monitor unit chamber, the spot position and the spot shape. The aim of this study is to investigate the extent of the changes and their dosimetric impacts using historical pencil beam scanning (PBS) treatment data. Online beam delivery records at the time of the patient-specific qualify assurance were retrospectively collected for a total of 34 PBS fields from 28 patients treated at our institution. For each field, proton beam properties at two different gantry angles (the planned and zero gantry angles) were extracted by a newly-developed machine log analysis method and used to reconstruct the delivered dose distributions in the cubic water phantom geometry. The reconstructed doses at the two different angles and a planar dose measurement by a 2D ion-chamber array were compared and the dosimetric impacts of the gantry angle dependency were accessed by a 3D γ-index analysis. In addition, the pencil beam spot size was independently characterized as a function of the gantry angle and the beam energy. The dosimetric effects of the perturbed beam shape were also investigated. Comparisons of spot-by-spot beam positions between both gantry angles show a mean deviation of 0.4 and 0.7 mm and a standard deviation of 0.3 and 0.6 mm for x and y directions, respectively. The delivered giga-protons per spot show a percent mean difference and a standard deviation of 0.01% and 0.3%, respectively, from each planned spot weight. These small deviations lead to an excellent agreement in dose comparisons with an average γ passing rate of 99.1%. When each calculation for both planned and zero gantry angles was compared to the measurement, a high correlation in γ values was also observed, also

  18. Structuring of silicon with low energy focused ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nebiker, P.W.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Muehle, R. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    The defect production in silicon induced by focused ion beam irradiation as a function of energy and projectile mass has been investigated and compared to the measured sputter yield. The aim was to find optimal beam parameters for the structuring of semiconductors with a minimum amount of defects produced per removed atom. (author) 2 figs., 2 refs.

  19. Position and size of the electron beam in the high-energy electron beam ion trap

    CERN Document Server

    Utter, S B; López-Urrutia, J R C; Widmann, K

    1999-01-01

    In the last decade, many spectroscopic studies have been performed using the electron beam ion trap. Often these measurements rely on the electron beam as an effective slit, yet until now, no systematic study of the position and size of the electron beam under various operating conditions has been made. Here, we present a thorough study of the electron beam's position and size (and thus the electron density) as affected by various operating parameters, and give optimal parameter ranges for operating the device as a spectroscopic source. It is shown that the diameter is constant as the energy is varied, which is important for accurate cross-section measurements.

  20. Density Dependence of Nuclear Symmetry Energy

    CERN Document Server

    Behera, B; Tripathy, S K

    2016-01-01

    High density behaviour of nuclear symmetry energy is studied on the basis of a stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral $n+p+e+\\mu$ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars

  1. Density dependence of nuclear symmetry energy

    Science.gov (United States)

    Behera, B.; Routray, T. R.; Tripathy, S. K.

    2016-10-01

    High density behavior of nuclear symmetry energy is studied on the basis of the stiffest density dependence of asymmetric contribution to energy per nucleon in charge neutral n + p + e + μ matter under beta equilibrium. The density dependence of nuclear symmetry energy obtained in this way is neither very stiff nor soft at high densities and is found to be in conformity with recent observations of neutron stars.

  2. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  3. Curvature-dependent surface energy and implications for nanostructures

    Science.gov (United States)

    Chhapadia, P.; Mohammadi, P.; Sharma, P.

    2011-10-01

    At small length scales, several size-effects in both physical phenomena and properties can be rationalized by invoking the concept of surface energy. Conventional theoretical frameworks of surface energy, in both the mechanics and physics communities, assume curvature independence. In this work we adopt a simplified and linearized version of a theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy. Connecting the theory to atomistic calculations and the solution to an illustrative paradigmatical problem of a bent cantilever beam, we catalog the influence of curvature-dependence of surface energy on the effective elastic modulus of nanostructures. The observation in atomistic calculations that the elastic modulus of bent nanostructures is dramatically different than under tension - sometimes softer, sometimes stiffer - has been a source of puzzlement to the scientific community. We show that the corrected surface mechanics framework provides a resolution to this issue. Finally, we propose an unambiguous definition of the thickness of a crystalline surface.

  4. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    Science.gov (United States)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  5. An online, energy-resolving beam profile detector for laser-driven proton beams

    Science.gov (United States)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Karsch, L.; Sobiella, M.; Rehwald, M.; Obst, L.; Schlenvoigt, H.-P.; Schramm, U.

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ˜4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  6. Computer simulations of a low energy proton beam tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Milhoretto, E.; Schelin, H.R.; Setti, J.A.P.; Denyak, V.; Paschuk, S.A.; Basilio, A.C.; Rocha, R.; Ribeiro Junior, S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Curso de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial (CPGEI)]. E-mails: sergei@utfpr.edu.br; edneymilhoretto@yahoo.com; schelin@cpgei.cefetpr.br; Evseev, I.; Yevseyeva, O. [Universidade Estadual do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil)]. E-mail: evseev@iprj.uerj.br; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graducao em Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: ricardo@lin.ufrj.br; Vinagre Filho, U.M. [Instituto de Energia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2007-07-01

    This work presents the recent development of a low energy proton beam tomograph. The proton tomograph prototype (involving UTFPR, UERJ, UFRJ and IEN/CNEN) has been installed and tested at the cyclotron CV-28 of IEN/CNEN. New computer simulations were performed in order to optimize the performance of the scattered proton beam and its aluminum collimator energy losses. The computer code simulates the tomographic measurements with two aluminum collimators (variable aperture from 0.2 mm to 0.4 mm in diameter and variable thickness from 4 mm to 8 mm), a water phantom and a Si(Li) detector. The analysis of the exit beam energy spectra in comparison with a perfectly collimated proton beam made it possible to achieve the best quality of reconstructed tomographic images of water phantom. (author)

  7. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  8. Energy harvesting from controlled buckling of piezoelectric beams

    Science.gov (United States)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  9. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  10. Thermo-mechanical modelling of high energy particle beam impacts

    CERN Document Server

    Scapin, M; Dallocchio, A

    2010-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in LHC in a single beam is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage occurs in a regime where practical experience does not exist. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam, in which 8 bunches irradiate the target directly. The energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA. ...

  11. Inter-dependence not Over-dependence: Reducing Urban Transport Energy Dependence

    Energy Technology Data Exchange (ETDEWEB)

    Saunders, Michael James; Rodrigues da Silva, Antonio Nelson

    2007-07-01

    A major issue of concern in today's world is urban transport energy dependence and energy supply security. In an energy inter-dependent world, energy over-dependence brings risks to urban transport systems. Many urban areas are over-dependent on finite petroleum resources for transport. New technology and the development and integration of renewable resources into transport energy systems may reduce some of the current transport energy dependence of urban areas. However, the most effective means of reducing energy dependence is to first design urban areas for this condition. An urban policy framework is proposed that requires transport energy dependence to be measured and controlled in the urban development process. A new tool has been created for this purpose, the Transport Energy Specification (TES), which measures transport energy dependence of urban areas. This creates the possibility for cities to regulate urban development with respect to energy dependence. Trial assessments were performed in Germany, New Zealand and Brazil; initial analysis by transport and government professionals shows promise of this tool being included into urban policy. The TES combined with a regulatory framework has the potential to significantly reduce transport energy consumption and dependence in urban areas in the future. (auth)

  12. A fast chopper for medium energy beams

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, R. [Fermilab; Wildman, D. [Fermilab

    2014-10-30

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  13. Calculation of the energy deposition in a water beam dump

    CERN Document Server

    Schönbacher, Helmut

    1975-01-01

    The energy deposition per interacting proton in GeV/cm/sup 3/ and the star density in star/cm/sup 3/ have been calculated in a water cylinder with a Monte Carlo computer program. These calculations permit the estimation of the temperature rise, induced radioactivity, etc., in beam dumps of high energy accelerator and storage rings. The calculation assumed a cylinder of different diameters and lengths and an incident proton beam energy of 20, 200, 300 and 400 GeV. (5 refs).

  14. Crossed-beam energy transfer in direct-drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  15. Low-Energy Electron Beam Direct Writing Equipment

    Science.gov (United States)

    Fuse, Takashi; Ando, Atsushi; Kotsugi, Tadashi; Kinoshita, Hidetoshi; Sugihara, Kazuyoshi

    2007-09-01

    We proposed an electron beam direct writing (EBDW) system capable of high throughput and maskless operation based on a novel concept of using both low-energy electron beam (EB) and character projection (CP) system. We fabricated an EB optical column of low-energy EBDW equipment and obtained a resist pattern. We also investigated the beam blur and line width roughness (LWR) of lines and spaces (L/S) formed on a resist to change various EB current densities and convergence half angles. The obtained results show that a Coulomb interaction effect markedly affects the beam blur in our EB optical column. Thus, we reduce the number of sources caused by LWR and developed photoresists to obtain small LWR L/S patterns for achieving a high throughput.

  16. Flexible energy harvesting from hard piezoelectric beams

    Science.gov (United States)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  17. Low energy, high power hydrogen neutral beam for plasma heating

    Science.gov (United States)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  18. Low energy, high power hydrogen neutral beam for plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Deichuli, P.; Davydenko, V.; Ivanov, A., E-mail: ivanov@inp.nsk.su; Mishagin, V.; Sorokin, A.; Stupishin, N. [Budker Institute of Nuclear Physics, Prospect Lavrentieva 11, 630090 Novosibirsk (Russian Federation); Korepanov, S.; Smirnov, A. [Tri Alpha Energy, Inc., Foothill Ranch, California 92610 (United States)

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  19. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  20. Energy distribution of secondary particles in ion beam deposition process of Ag: experiment, calculation and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bundesmann, C.; Feder, R.; Lautenschlaeger, T.; Neumann, H. [Leibniz-Institute of Surface Modification, Leipzig (Germany)

    2015-12-15

    Ion beam sputter deposition allows tailoring the properties of the film-forming, secondary particles (sputtered target particles and backscattered primary particles) and, hence, thin film properties by changing ion beam (ion energy, ion species) and geometrical parameters (ion incidence angle, polar emission angle). In particular, the energy distribution of secondary particles and their influence on the ion beam deposition process of Ag was studied in dependence on process parameters. Energy-selective mass spectrometry was used to measure the energy distribution of sputtered and backscattered ions. The energy distribution of the sputtered particles shows, in accordance with theory, a maximum at low energy and an E{sup -2} decay for energies above the maximum. If the sum of incidence angle and polar emission angle is larger than 90 , additional contributions due to direct sputtering events occur. The energy distribution of the backscattered primary particles can show contributions by scattering at target particles and at implanted primary particles. The occurrence of these contributions depends again strongly on the scattering geometry but also on the primary ion species. The energy of directly sputtered and backscattered particles was calculated using equations based on simple two-particle-interaction whereas the energy distribution was simulated using the well-known Monte Carlo code TRIM.SP. In principal, the calculation and simulation data agree well with the experimental findings. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.

    Science.gov (United States)

    Declercq, Nico Felicien

    2014-02-01

    When a bounded beam is incident on an immersed plate Lamb waves or Rayleigh waves can be generated. Because the amplitude of a bounded beam is not constant along its wave front, a specific beam profile is formed that influences the local efficiency of energy conversion of incident sound into Lamb waves or Rayleigh waves. Understanding this phenomenon is important for ultrasonic immersion experiments of objects because the quality of such experiments highly depends on the amount of energy transmitted into the object. This paper shows by means of experiments based on monochromatic Schlieren photography that the area within the bounded beam responsible for Lamb wave generation differs from that responsible for Rayleigh wave generation. Furthermore it provides experimental verification of an earlier numerical study concerning Rayleigh wave generation.

  2. Phased-Array Antenna Beam Squinting Related to Frequency Dependency of Delay Circuits

    NARCIS (Netherlands)

    Garakoui, S.K.; Klumperink, E.A.M.; Nauta, B.; Vliet, F.E. van

    2011-01-01

    Practical time delay circuits do not have a perfectly linear phase-frequency characteristic. When these delay circuits are applied in a phased-array system, this frequency dependency shows up as a frequency dependent beam direction (“beam squinting”). This paper quantifies beam squinting for a linea

  3. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    Science.gov (United States)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  4. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  5. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  6. American Institute of Beamed Energy Propulsion: An Introduction

    Science.gov (United States)

    Pakhomov, Andrew V.

    2008-04-01

    To date ISBEP remains the main forum addressing the science and engineering of beamed energy propulsion. Hopefully, it will continue to serve BEP community in this capacity for years to come. The need for organization acting beyond ISBEP was discussed since the second symposium. This paper will address the following question: if our community is ready for having its own organization, a BEP institute, what new it should bring comparing to already existing conference. Such organization, an American Institute on Beamed Energy Propulsion (AIBEP) was recently established. The institute is designed as a nonprofit corporation serving the purpose "to promote the ideas, concepts and benefits of beamed-energy propulsion to research community, industry and society at large". The goals of the institute, expected outcomes and benefits of the organization and its membership will be discussed.

  7. The Beam Energy Tracking System of the LHC Beam Dumping System

    CERN Document Server

    Barlow, R A; Carlier, E; Gräwer, G; Voumard, N; Gjelsvik, R

    2005-01-01

    The LHC Beam Dumping System (LBDS) of the Large Hadron Collider (LHC), presently under construction at CERN, will be installed around the straight section 6. It comprises per ring 15 horizontally deflecting extraction kickers, followed by 1 quadrupole, 15 vertically deflecting steel septum magnets, 10 dilution kickers and, in a separate cavern several hundred meters away, an external absorber assembly. A beam dump request can occur at any moment during the operation of the collider, from injection at 450 GeV up to top energy at 7 TeV. The Beam Energy Tracking System (BETS) monitors the deflection strength of each active element of the LBDS with respect to the beam energy in order to guarantee the correct extraction trajectory over the complete operational range and under all operational conditions. Its main functions are the acquisition of the beam energy, the generation of the kick strength reference signals for the extraction and dilution kickers, the continuous checking that the kicker high voltage generat...

  8. High energy electron beam joining of ceramic components

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A. [and others

    1997-07-01

    High strength, hermetic braze joints between ceramic components have been produced using high energy electron beams. With a penetration depth into a typical ceramic of {approximately}1 cm for a 10 MeV electron beam, this method provides the capability for rapid, transient brazing operations where temperature control of critical components is essential. The method deposits energy directly into a buried joint, allowing otherwise inaccessible interfaces to be brazed. Because of transient heating, higher thermal conductivity, lower heat capacity, and lower melting temperature of braze metals relative to the ceramic materials, a pulsed high power beam can melt a braze metal without producing excessive ceramic temperatures. We have demonstrated the feasibility of this process related to ceramic coupons as well as ceramic and glass tubes. The transient thermal response was predicted, using as input the energy absorption predicted from the coupled electron-photon transport analysis. The joining experiments were conducted with an RF Linac accelerator at 10-13 MV. The repetition rate of the pulsed beam was varied between 8 and 120 Hz, the average beam current was varied between 8 and 120 microamps, and the power was varied up to 1.5 kW. These beam parameters gave a beam power density between 0.2 to 2 kW/cm{sup 2}. The duration of the joining runs varied from 5 to 600 sec. Joining experiments have provided high strength between alumina - alumina and alumina - cermet joints in cylindrical geometry. These joints provided good hermetic seals. A series of tests was conducted to determine the minimum beam power and exposure time for producing, a hermetic seal.

  9. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    CERN Document Server

    Bhat, C M; Chaurize, S J; Garcia, F G; Seiya, K; Pellico, W A; Sullivan, T M; Triplett, A K

    2015-01-01

    We have measured the total energy spread (99 persent energy spread) of the Booster beam at its injection energy of 400 MeV by three different methods - 1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, 2) injecting partial turn beam and letting it to debunch, and 3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of RF systems in the ring and in the beam transfer line.

  10. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  11. Mercuric iodide dosimeter response to high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loewinger, E.; Nissenbaum, J.; Schieber, M.M.

    1988-01-01

    Mercuric iodide solid state dosimeter response to high energy electron beams of up to 35 MeV is reported. High sensitivity of up to 1.5 V/cGy was observed with a 200 V external bias, as well as several mV/cGy, with no external bias for small volume (approx. 10 mm/sup 3/) detectors. The physical characteristics of the detector response are discussed, showing the feasibility of mercuric iodide as a reliable dosimeter for high energy electron beams.

  12. The Beamed Energy Technology Working Group, Programs and Goals

    Science.gov (United States)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A brief description of the Beamed Energy Technology Program will be given. Its relationship to the overall Advanced Technology Program at Marshall Space Flight Center will be discussed. A summary description of the known potential benefits and technical issues remaining in the development of a viable system will be presented along with program plans for a NASA Research Announcement in FY03 to begin development of relevant technologies and systems concepts. The results of workshop activity by the Beamed Energy Technology Working Group will be provided.

  13. Narrow beam dosimetry for high energy hadrons and electrons.

    Science.gov (United States)

    Pelliccioni, M; Silari, M; Ulrici, L

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10-400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formulae should prove useful for dosimetric estimations in the case of accidental exposures to high energy beams.

  14. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  15. Evaluation of the energy dependence of ionization chambers pencil type calibrated beam tomography standards; Avaliacao da dependencia energetica de camaras de ionizacao do tipo lapis calibradas em feixes padroes de tomografia

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira; Potiens, Maria da Penha A., E-mail: lpfontes@ipen.br [Instituto de Pesquisas Energeticas e Nucleres (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Instrument Calibration Laboratory of IPEN (LCI - IPEN) performs calibrations of pencil-type ionization chambers (IC) used in measures of dosimetric survey on clinical systems of Computed Tomography (CT). Many users make mistakes when using a calibrated ionization chamber in their CT dosimetry systems. In this work a methodology for determination of factors of correction for quality (Kq) through the calibration curve that is specific for each ionization chamber was established. Furthermore, it was possible to demonstrate the energy dependence on an pencil-type Ionization Chamber(IC) calibrated at the LCI - IPEN. (author)

  16. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    Science.gov (United States)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  17. Control of Beam Energy and Flux Ratio in an Ion-Beam-Background Plasma System Produced in a Double Plasma Device

    Science.gov (United States)

    Wei, Zian; Ma, Jinxiu; Li, Yuanrui; Sun, Yan; Jiang, Zhengqi

    2016-11-01

    Plasmas containing ion beams have various applications both in plasma technology and in fundamental research. The ion beam energy and flux are the two factors characterizing the beam properties. Previous studies have not achieved the independent adjustment of these two parameters. In this paper, an ion-beam-background-plasma system was produced with hot-cathode discharge in a double plasma device separated by two adjacent grids, with which the beam energy and flux ratio (the ratio between the beam flux and total ion flux) can be controlled independently. It is shown that the discharge voltage (i.e., voltage across the hot-cathode and anode) and the voltage drop between the two separation grids can be used to effectively control the beam energy while the flux ratio is not affected by these voltages. The flux ratio depends sensitively on hot-filaments heating current whose influence on the beam energy is relatively weak, and thus enabling approximate control of the flux ratio supported by National Natural Science Foundation of China (Nos. 11575183, 11175177)

  18. Optimization of solenoid based low energy beam transport line for high current H+ beams

    Science.gov (United States)

    Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.

    2015-02-01

    A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.

  19. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  20. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  1. Imprint reduction in rotating heavy ions beam energy deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A., E-mail: antoineclaude.bret@uclm.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Piriz, A.R., E-mail: Roberto.Piriz@uclm.es [ETSI Industriales, Universidad Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Tahir, N.A., E-mail: n.tahir@gsi.de [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2014-01-01

    The compression of a cylindrical target by a rotating heavy ions beam is contemplated in certain inertial fusion schemes or in heavy density matter experiments. Because the beam has its proper temporal profile, the energy deposition is asymmetric and leaves an imprint which can have important consequences for the rest of the process. In this paper, the Fourier components of the deposited ion density are computed exactly in terms of the beam temporal profile and its rotation frequency Ω. We show that for any beam profile of duration T, there exist an infinite number of values of ΩT canceling exactly any given harmonic. For the particular case of a parabolic profile, we find possible to cancel exactly the first harmonic and nearly cancel every other odd harmonics. In such case, the imprint amplitude is divided by 4 without any increase of Ω.

  2. Energy-dependent variability from accretion flows

    OpenAIRE

    Zdziarski, Andrzej A.

    2005-01-01

    We develop a formalism to calculate energy-dependent fractional variability (rms) in accretion flows. We consider rms spectra resulting from radial dependencies of the level of local variability (as expected from propagation of disturbances in accretion flows) assuming the constant shape of the spectrum emitted at a given radius. We consider the cases when the variability of the flow is either coherent or incoherent between different radial zones. As example local emission, we consider blackb...

  3. Prediction of non-identical particle correlations for the Beam Energy Scan program

    CERN Document Server

    Poniatowska, Katarzyna

    2014-01-01

    Femtoscopy of two non-identical particles in heavy ion collisions enables one to study the space-time asymmetry in the particle's emission process. Theoretical studies based on EPOS model performed for collision energies from the Beam Energy Scan program in STAR allow us to investigate the dependence of source sizes and dynamics effects. Obtained information will enable us to predict the collective behaviour of femtoscopic particle's source.

  4. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  5. Symbolic modeling of high energy beam optics

    CERN Document Server

    Autin, Bruno

    1999-01-01

    A classical problem of computational physics consists of finding the minimum of a chi /sup 2/ like function of many variables. Powerful optimization algorithms have been developed but do not guarantee convergence towards an absolute minimum. Analytical methods can improve the insight into a physical problem but calculations quickly exceed the power of a human brain. There comes the interest of optical design of high energy particle accelerators. The physics background is sketched and emphasis is put on the methodology. In practice, algebraic models may not be precise enough but they usually provide excellent initial conditions for a final numerical optimization. (4 refs).

  6. High energy physics with polarized beams and targets. [65 papers

    Energy Technology Data Exchange (ETDEWEB)

    Marshak, M L [ed.

    1976-01-01

    Sixty-six papers are presented as a report on conference sessions held from August 23-27, 1976, at Argonne National Laboratory. Topics covered include: (1) strong interactions; (2) weak and electromagnetic interactions; (3) polarized beams; and (4) polarized targets. A separate abstract was prepared for each paper for ERDA Energy Research Abstracts (ERA) and for the INIS Atomindex. (PMA)

  7. Automation of variable low-energy positron beam experiments

    CERN Document Server

    Jayapandian, J; Amarendra, G; Venugopal-Rao, G; Purniah, B; Viswanathan, B

    2000-01-01

    By exploiting the special BIOS interrupt (INT 1CH) of PC in conjunction with a compatible high-voltage controller card and menu-driven control program, we report here the automation of variable low-energy positron beam experiments. The beam experiment consists of monitoring the Doppler broadening lineshape parameters corresponding to the annihilation 511 keV gamma-ray at various positron beam implantation energies. The variation and monitoring of the sample high voltage, which determines positron beam energy, is carried out using a controller add-on card coupled to a 0-30 kV high-voltage unit. The design features of this controller card are discussed. This controller card is housed in a PC, which also houses a multichannel analyser (MCA) card. The MCA stores the Doppler energy spectrum of the annihilation gamma-ray. The interactive control program, written in Turbo C, carries out the assigned tasks. The design features of the automation and results are presented.

  8. LOW ENERGY BEAM-GAS SPECTROSCOPY OF HIGHLY IONISED ATOMS

    OpenAIRE

    Desesquelles, J.; DENIS A.; Druetta, M.; Martin, S.

    1989-01-01

    Features of low energy beam-gas spectroscopic source are reviewed and compared to those of other light sources. Measurement techniques are surveyed. They include the study of wavelength of heavy multiply charged ions in visible and u.v. ranges from normal excited states, doubly excited states, high n levels and doubly excited Rydberg levels.

  9. MEIC Proton Beam Formation with a Low Energy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  10. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    Science.gov (United States)

    Coopersmith, Jonathan

    2010-05-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  11. Experiments with high-energy neutrino beams.

    Science.gov (United States)

    Steinberger, J

    1989-09-15

    Experiments in which high-energy neutrinos were used as projectiles have made substantial contributions to our understanding of both weak and strong interactions, as well as the structure of hadrons. This article offers some illustrations. It recalls the discovery of the neutral weak current and some experiments on its nature. The sections on charged-current inclusive scattering recall the important role of these experiments in the understanding of the quark structure of the nucleon and the validity of quantum chromodynamics. The section on dimuon production illustrates the role of neutrino experiments in establishing the Glashow-Iliopoulos-Maiani current as well as the measurement of the structure function of the strange quark in the nucleon.

  12. Distance dependence of fluorescence resonance energy transfer

    Indian Academy of Sciences (India)

    R S Swathi; K L Sebastian

    2009-09-01

    Deviations from the usual -6 dependence of the rate of fluorescence resonance energy transfer (FRET) on the distance between the donor and the acceptor have been a common scenario in the recent times. In this paper, we present a critical analysis of the distance dependence of FRET, and try to illustrate the non--6 type behaviour of the rate for the case of transfer from a localized electronic excitation on the donor, a dye molecule to three different energy acceptors with delocalized electronic excitations namely, graphene, a two-dimensional semiconducting sheet and the case of such a semiconducting sheet rolled to obtain a nanotube. We use simple analytic models to understand the distance dependence in each case.

  13. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    Science.gov (United States)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  14. Vibration piezoelectric energy harvester with multi-beam

    Directory of Open Access Journals (Sweden)

    Yan Cui

    2015-04-01

    Full Text Available This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr0.53Ti0.47O3 thin film were measured; XRD (X-ray diffraction pattern and AFM (Atomic Force Microscope image of the PZT thin film were measured, and show that the PZT (Pb(Zr0.53Ti0.47O3 thin film is highly (110 crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm2, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d33 is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency.

  15. Vibration piezoelectric energy harvester with multi-beam

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yan, E-mail: yanc@dlut.edu.cn; Zhang, Qunying, E-mail: zhangqunying89@126.com; Yao, Minglei, E-mail: yaomingleiok@126.com [Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Dong, Weijie, E-mail: dongwj@dlut.edu.cn [School of Electronic and Information Engineering, Dalian University of Technology, 116024, Dalian, Liaoning Province (China); Gao, Shiqiao, E-mail: gaoshq@bit.edu.cn [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, 100081, Beijing Province (China)

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  16. Preliminary investigations on high energy electron beam tomography

    Energy Technology Data Exchange (ETDEWEB)

    Baertling, Yves; Hoppe, Dietrich; Hampel, Uwe

    2010-12-15

    In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP's accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector's response time and signal to noise ratio. (orig.)

  17. Chemically tuned linear energy transfer dependent quenching in a deformable, radiochromic 3D dosimeter

    DEFF Research Database (Denmark)

    Høye, Ellen Marie; Skyt, Peter Sandegaard; Balling, Peter

    2017-01-01

    the observed quenching in proton beams. The dependency of dose response on linear energy transfer, as calculated through Monte Carlo simulations of the dosimeter, was investigated in 60 MeV proton beams. We found that the amount of quenching varied with the chemical composition: peak-to-plateau ratios (1cm...... chemical compositions of the dosimeter showed dose-rate dependency; however this was not dependent on the linear energy transfer. Track-structure theory was used to explain the observed quenching effects. In conclusion, this study shows that the silicone-based dosimeter has potential for use in measuring 3...

  18. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    Science.gov (United States)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values.

  19. Photon beam convolution using polyenergetic energy deposition kernels

    Energy Technology Data Exchange (ETDEWEB)

    Hoban, P.W.; Murray, D.C.; Round, W.H. (Waikato Univ., Hamilton (New Zealand). Dept. of Physics)

    1994-04-01

    In photon beam convolution calculations where polyenergetic energy deposition kernels (EDKs) are used, the primary photon energy spectrum should be correctly accounted for in Monte Carlo generation of EDKs. This requires the probability of interaction, determined by the linear attenuation coefficient, [mu], to be taken into account when primary photon interactions are forced to occur at the EDK origin. The use of primary and scattered EDKs generated with a fixed photon spectrum can give rise to an error in the dose calculation due to neglecting the effects of beam hardening with depth. The proportion of primary photon energy that is transferred to secondary electrons increases with depth of interaction, due to the increase in the ratio [mu][sub ab]/[mu] as the beam hardens. Convolution depth-dose curves calculated using polyenergetic EDKs generated for the primary photon spectra which exist at depths of 0, 20 and 40 cm in water, show a fall-off which is too steep when compared with EGS4 Monte Carlo results. A beam hardening correction factor applied to primary and scattered 0 cm EDKs, based on the ratio of kerma to terma at each depth, gives primary, scattered and total dose in good agreement with Monte Carlo results. (Author).

  20. Spacecraft Power Beaming Using High-Energy Lasers, Experimental Validation

    Science.gov (United States)

    Michael, Sherif

    2008-04-01

    The lifetime of many spacecrafts are often limited by degradation of their electrical power subsystem, e.g. radiation-damaged solar arrays or failed batteries. Being able to beam power from terrestrial sites using high energy lasers, could alleviate this limitation, extending the lifetime of billions of dollars of satellite assets, as well as providing additional energy for electric propulsion that can be used for stationkeeping and orbital changes. In addition, extensive research at the Naval Postgraduate School (NPS) has shown the potential for annealing damaged solar cells using lasers. This paper describes that research and a proposed experiment to demonstrate the relevant concepts of high energy laser power beaming to an NPS-built and operated satellite. Preliminary results of ground experiment of laser illuminations of some of the solar panels of one of the spacecrafts are also presented.

  1. A Beam Interlock System for CERN High Energy Accelerators

    CERN Document Server

    Todd, Benjamin; Schmidt, R

    2006-01-01

    The Large Hadron Collider (LHC) at CERN (The European Organisation for Nuclear Research) is one of the largest and most complicated machines envisaged to date. The LHC has been conceived and designed over the course of the last 25 years and represents the cutting edge of accelerator technology with a collision energy of 14TeV, having a stored beam energy over 100 times more powerful than the nearest competitor. Commissioning of the machine is already nderway and operation with beam is intended for Autumn 2007, with 7TeV operation expected in 2008. The LHC is set to answer some of the fundemental questions in theoretical physics, colliding particles with such high energy that the inner workings of the quantum world can be revealed. Colliding particles together at such high energy makes very high demands on machine operation and protection. The specified beam energy requires strong magnetic fields that are made in superconducting dipole magnets, these magnets are kept only around two degrees above absolute zero...

  2. Focal plane internal energy flows of singular beams in astigmatically aberrated low numerical aperture systems.

    Science.gov (United States)

    Bahl, Monika; Senthilkumaran, P

    2014-09-01

    Singular beams have circulating energy components. When such beams are focused by low numerical aperture systems suffering from astigmatic aberration, these circulating energy components get modified. The phase gradient introduced by this type of aberration splits the higher charge vortices. The dependence of the charge, the aberration coefficient, and the size of the aperture on the nature of the splitting process are reported in this paper. The transverse components of the Poynting vector fields that can be derived from the phase gradient vector field distributions are further decomposed into solenoidal and irrotational components using the Helmholtz-Hodge decomposition method. The solenoidal components relate to the orbital angular momentum of the beams, and the irrotational components are useful in the transport of intensity equations for phase retrieval.

  3. Energy dependence of hadronic observables in central Pb+Pb reactions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kliemant, M; Kniege, S; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Richard, A; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, C; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2005-01-01

    In this contribution the energy dependence of various hadronic observables as measured by the NA49 experiment in the beam energy range between 20 and 158 AGeV is presented. These include m/sub t/ and rapidity distributions, particle ratio fluctuations, as well as HBT radii. The data are put in the context of results from the AGS and RHIC.

  4. Self-similarity of negative particle production from the Beam Energy Scan Program at STAR

    CERN Document Server

    Tokarev, M V

    2015-01-01

    We present the spectra of negative charged particle production in Au+Au collisions from STAR for the first phase of the RHIC Beam Energy Scan Program measured over a wide range of collision energy sqrt s{NN}=7.7-200 GeV, and transverse momentum of produced particle in different centralities at |eta|<0.5. The spectra demonstrate strong dependence on collision energy which enhances with pT. An indication of self-similarity of negative charged particle production in Au+Au collisions is found. The constituent energy loss as a function of energy and centrality of collisions and transverse momentum of inclusive particle was estimated in the $z$-scaling approach. The energy dependence of the model parameters - the fractal and fragmentation dimensions and "specific heat", was studied.

  5. Energy composition of high-energy neutral beams on the COMPASS tokamak

    Directory of Open Access Journals (Sweden)

    Mitosinkova Klara

    2016-12-01

    Full Text Available The COMPASS tokamak is equipped with two identical neutral beam injectors (NBI for additional plasma heating. They provide a beam of deuterium atoms with a power of up to ~(2 × 300 kW. We show that the neutral beam is not monoenergetic but contains several energy components. An accurate knowledge of the neutral beam power in each individual energy component is essential for a detailed description of the beam- -plasma interaction and better understanding of the NBI heating processes in the COMPASS tokamak. This paper describes the determination of individual energy components in the neutral beam from intensities of the Doppler-shifted Dα lines, which are measured by a high-resolution spectrometer viewing the neutral beam-line at the exit of NBI. Furthermore, the divergence of beamlets escaping single aperture of the last accelerating grid is deduced from the width of the Doppler-shifted lines. Recently, one of the NBI systems was modified by the removal of the Faraday copper shield from the ion source. The comparison of the beam composition and the beamlet divergence before and after this modification is also presented.

  6. High-energy tritium beams as current drivers in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  7. Feasibility of ceramic joining with high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Turman, B.N.; Glass, S.J.; Halbleib, J.A.; Helmich, D.R.; Loehman, R.E. [Sandia National Labs., Albuquerque, NM (United States); Clifford, J.R. [Titan Corp., Albuquerque, NM (United States)

    1995-01-01

    Joining structural ceramics is possible using high melting point metals such as Mo and Pt that are heated with a high energy electron beam, with the potential for producing joints with high temperature capability. A 10 MeV electron beam can penetrate through 1 cm of ceramic, offering the possibility of buried interface joining. Because of transient heating and the lower heat capacity of the metal relative to the ceramic, a pulsed high power beam has the potential for melting the metal without decomposing or melting the adjacent ceramic. The authors have demonstrated the feasibility of the process with a series of 10 MeV, 1 kW electron beam experiments. Shear strengths up to 28 NTa have been measured for Si{sub 3}N{sub 4}-Mo-Si{sub 3}N{sub 4}. These modest strengths are due to beam non-uniformity and the limited area of bonding. The bonding mechanism appears to be a thin silicide reaction layer. Si{sub 3}N{sub 4}-Si{sub 3}N{sub 4} joints with no metal layer were also produced, apparently bonded an yttrium apatite grain boundary phase.

  8. Phase rotation of muon beams for producing intense low-energy muon beams

    CERN Document Server

    Neuffer, D; Hansen, G

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  9. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermilab; Bao, Y. [UC, Riverside; Hansen, G. [UC, Riverside

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  10. Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part II: Application to Coupled Timoshenko Beams

    Directory of Open Access Journals (Sweden)

    Young-Ho Park

    2006-01-01

    Full Text Available This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for all kinds of propagating waves in the general, coupled Timoshenko beam structures are derived by the wave transmission approach. In numerical applications, the energy flow solutions using the derived coefficients agree well with the classical solutions for various exciting frequencies, damping loss factors, and coupled Timoshenko beam structures. Additionally, the numerical results for the Timoshenko beam are compared with those for the Euler-Bernoulli beam.

  11. Experimental energy-dependent nuclear spin distributions

    Energy Technology Data Exchange (ETDEWEB)

    Egidy, Till von [Physik-Department, T.U. Muenchen (Germany); Bucurescu, Dorel [National Inst. Phys. and Nucl. Eng., Bucharest (Romania)

    2010-07-01

    A new method is proposed to determine the energy dependent spin distribution in experimental nuclear level schemes. This method compares various experimental and calculated moments in the energy-spin plane in order to obtain the spin-cutoff parameter {sigma} as a function of mass A and excitation energy using a total of 7202 levels with spin assignment in 227 nuclei between F and Cf. A simple formula, {sigma}{sup 2}=0.391 . A{sup 0.675}(E-0.5 .Pa'){sup 0.312}, is proposed up to about 10 MeV which is in very good agreement with experimental {sigma} values and is applied to improve the systematics of level density parameters.

  12. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam with a rotationa......An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... procedure for a particular value of the initial condition is then used to estimate the constants. This semi-analytical representation gives excellent approximations to the exact solutions for the whole range of the oscillation amplitude, reducing the respective error of angular frequency in comparison...

  13. Vibrational Energy Flow Analysis of Corrected Flexural Waves in Timoshenko Beam – Part II: Application to Coupled Timoshenko Beams

    OpenAIRE

    2006-01-01

    This paper presents the methodology for the energy flow analysis of coupled Timoshenko beam structures and various numerical applications to verify the developed methodology. To extend the application of the energy flow model for corrected flexural waves in the Timoshenko beam, which is developed in the other companion paper, to coupled structures, the wave transmission analyses of general coupled Timoshenko beam systems are performed. First, power transmission and reflection coefficients for...

  14. ECR ion source based low energy ion beam facility

    Indian Academy of Sciences (India)

    P Kumar; G Rodrigues; U K Rao; C P Safvan; D Kanjilal; A Roy

    2002-11-01

    Mass analyzed highly charged ion beams of energy ranging from a few keV to a few MeV plays an important role in various aspects of research in modern physics. In this paper a unique low energy ion beam facility (LEIBF) set up at Nuclear Science Centre (NSC) for providing low and medium energy multiply charged ion beams ranging from a few keV to a few MeV for research in materials sciences, atomic and molecular physics is described. One of the important features of this facility is the availability of relatively large currents of multiply charged positive ions from an electron cyclotron resonance (ECR) source placed entirely on a high voltage platform. All the electronic and vacuum systems related to the ECR source including 10 GHz ultra high frequency (UHF) transmitter, high voltage power supplies for extractor and Einzel lens are placed on a high voltage platform. All the equipments are controlled using a personal computer at ground potential through optical fibers for high voltage isolation. Some of the experimental facilities available are also described.

  15. Temperature-dependent energy band gap variation in self-organized InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Inah [CEA/CNRS/UJF Joint Team ' ' Nanophysics and Semiconductors,' ' Institut Neel-CNRS, BP 166, 25 rue des Martyrs, 38042 Grenoble Cedex 9 (France); Dong Song, Jin; Lee, Jungil [Nanophotonics Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2011-10-10

    We investigated the temperature-dependent variation of the photoluminescence emission energy of self-organized InAs/GaAs quantum dots (QDs) grown by conventional Stranski-Krastanov (SK) molecular beam epitaxy and migration-enhanced molecular beam epitaxy (MEMBE) and that of MEMBE InAs QDs in a symmetric and an asymmetric In{sub 0.2}Ga{sub 0.8}As/GaAs well. The temperature-dependent energy variation of each QD is analyzed in low and high temperature regions, including a sigmoidal behavior of conventional SK quantum dots with the well-known Varshni and semi-empirical Fan models.

  16. Microstructure-dependent piezoelectric beam based on modified strain gradient theory

    Science.gov (United States)

    Li, Y. S.; Feng, W. J.

    2014-09-01

    A microstructure-dependent piezoelectric beam model was developed using a variational formulation, which is based on the modified strain gradient theory and the Timoshenko beam theory. The new model contains three material length scale parameters and can capture the size effect, unlike the classical beam theory. To illustrate the new piezoelectric beam model, the static bending and the free vibration problems of a simply supported beam are numerically solved. These results may be useful in the analysis and design of smart structures that are constructed from piezoelectric materials.

  17. Internal energy flows of coma-affected singular beams in low-numerical-aperture systems.

    Science.gov (United States)

    Bahl, Monika; Singh, Brijesh Kumar; Singh, Rakesh Kumar; Senthilkumaran, P

    2015-04-01

    The circulating phase gradient component of a singular beam gets modified when focused by a low-numerical-aperature system suffering from coma aberration. The gradient due to this coma aberration splits the higher charge vortex into elementary vortices and distributes them spatially. This splitting depends on the charge and polarity of the incident singular beam as well as the sign and magnitude of the aberration coefficient. The transverse component of the Poynting vector field distribution at the focal plane is decomposed into the curl or solenoidal component and divergence or irrotational component using the Helmholtz-Hodge decomposition technique. The solenoidal component that relates to the orbital angular momentum carries the circulating energy, while the irrotational component shows the sources and sinks of the energy. Intriguing results of the study of energy flow around the edge dislocations apart from the point phase defects in the irrotational components are also presented.

  18. Highly Compressed Ion Beams for High Energy Density Science

    CERN Document Server

    Friedman, Alex; Briggs, Richard J; Callahan, Debra; Caporaso, George; Celata, C M; Davidson, Ronald C; Faltens, Andy; Grant-Logan, B; Grisham, Larry; Grote, D P; Henestroza, Enrique; Kaganovich, Igor D; Lee, Edward; Lee, Richard; Leitner, Matthaeus; Nelson, Scott D; Olson, Craig; Penn, Gregory; Reginato, Lou; Renk, Tim; Rose, David; Sessler, Andrew M; Staples, John W; Tabak, Max; Thoma, Carsten H; Waldron, William; Welch, Dale; Wurtele, Jonathan; Yu, Simon

    2005-01-01

    The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approa...

  19. Energy-dependent variability from accretion flows

    CERN Document Server

    Zdziarski, A A

    2005-01-01

    We develop a formalism to calculate energy-dependent fractional variability (rms) in accretion flows. We consider rms spectra resulting from radial dependencies of the level of local variability (as expected from propagation of disturbances in accretion flows) assuming the constant shape of the spectrum emitted at a given radius. We consider the cases when the variability of the flow is either coherent or incoherent between different radial zones. As example local emission, we consider blackbody, Wien and thermal Comptonization spectra. In addition to numerical results, we present a number of analytical formulae for the resulting rms. We also find an analytical formula for the disc Wien spectrum, which we find to be a very good approximation to the disc blackbody. We compare our results to the rms spectrum observed in an ultrasoft state of GRS 1915+105.

  20. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    Science.gov (United States)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  1. Beam Dynamics Studies and Design Optimisation of New Low Energy Antiproton Facilities

    CERN Document Server

    Resta-Lopez, Javier; Welsch, Carsten P

    2016-01-01

    Antiprotons, stored and cooled at low energies in a storage ring or at rest in traps, are highly desirable for the investigation of a large number of basic questions on fundamental interactions. This includes the static structure of antiprotonic atomic systems and the time-dependent quantum dynamics of correlated systems. The Antiproton Decelerator (AD) at CERN is currently the worlds only low energy antiproton factory dedicated to antimatter experiments. New antiproton facilities, such as the Extra Low ENergy Antiproton ring (ELENA) at CERN and the Ultra-low energy Storage Ring (USR) at FLAIR, will open unique possibilities. They will provide cooled, high quality beams of extra-low energy antiprotons at intensities exceeding those achieved presently at the AD by factors of ten to one hundred. These facilities, operating in the energy regime between 100 keV down to 20 keV, face several design and beam dynamics challenges, for example nonlinearities, space charge and scattering effects limiting beam life time....

  2. Energy-filtered electron-diffracted beam holography

    Energy Technology Data Exchange (ETDEWEB)

    Herring, R.A. [Center for Advanced Materials and Related Technology, Department of Mechanical Engineering, University of Victoria, P.O. Box. 3055, STN CSC, Victoria, BC, V8N 4T6 (Canada)]. E-mail: rherring@uvic.ca

    2005-10-15

    A method of energy-filtered electron holography is described where any two electron-diffracted beams can be interfered using an electron biprism. A Gatan image filter is used to select the energy loss of the electrons produced in the holograms. Gallium arsenide is used as the TEM specimen. This method of microscopy confirms that fringes extending beyond a limiting aperture were due to inelastically scattered electrons and specifically electrons scattered from the bulk plasmon. The degree of coherence of the zero-loss and energy-loss electrons were high and measured to be {approx}0.3, which was maintained even for the high energy-loss electrons up to 100 eV. Future systematic studies using this method should help understand the Stobbs factor and contribute to the development of quantitative high-resolution electron microscopy.

  3. Energy-filtered electron-diffracted beam holography.

    Science.gov (United States)

    Herring, R A

    2005-10-01

    A method of energy-filtered electron holography is described where any two electron-diffracted beams can be interfered using an electron biprism. A Gatan image filter is used to select the energy loss of the electrons produced in the holograms. Gallium arsenide is used as the TEM specimen. This method of microscopy confirms that fringes extending beyond a limiting aperture were due to inelastically scattered electrons and specifically electrons scattered from the bulk plasmon. The degree of coherence of the zero-loss and energy-loss electrons were high and measured to be approximately 0.3, which was maintained even for the high energy-loss electrons up to 100 eV. Future systematic studies using this method should help understand the Stobbs factor and contribute to the development of quantitative high-resolution electron microscopy.

  4. Electrical and optoelectrical modification of cadmium sulfide nanobelts by low-energy electron beam irradiation

    Science.gov (United States)

    Zhang, Lijie; Liu, Manman; Zhao, Mei; Dong, Youqing; Zou, Chao; Yang, Keqin; Yang, Yun; Huang, Shaoming; Zhu, Da-Ming

    2016-09-01

    In this report, we describe a method for modifying electrical and optoelectrical properties of CdS nanobelts using low-energy (lower than 10 keV) e-beam irradiation in a scanning electron microscope. The electrical conductivity of the nanobelts was dramatically improved via the irradiation of e-beams. The modified conductivity of the nanobelts depends on the energy of the e-beam; it exhibits a larger photocurrent and higher external quantum efficiency but slower time-response than that before the modification. A possible mechanism about the modification is the increase of electron accumulation (injected electrons) in the nanobelts due to e-beam irradiation. In addition, the optoelectrical modification could be caused by the trapped electrons in the nanobelts and the decrease of contact resistance between the nanobelts and metal electrodes induced by e-beam irradiation. The results of this work are significant for the in situ study of semiconductor nanostructures in the electron microscope. Besides, the method of electrical and optoelectrical modification presented here has potential application in electronics and optoelectronics.

  5. Energy flow, energy density of Timoshenko beam and wave mode incoherence

    Science.gov (United States)

    Zhou, Jun; Rao, Zhushi; Ta, Na

    2015-10-01

    Time-averaged energy flow and energy density are of significance in vibration analysis. The wave decomposition method is more fruitful and global in physical sense than the state variables depicted point by point. By wave approach, the Timoshenko beam vibration field is decomposed into two distinct modes: travelling and evanescent waves. Consequently, the power and energy functions defined on these waves' amplitude and phase need to be established. However, such formulas on Timoshenko beam are hardly found in literatures. Furthermore, the incoherence between these two modes is of theoretical and practical significance. This characteristic guarantees that the resultant power or energy of a superposed wave field is equal to the sum of the power or energy that each wave mode would generate individually. Unlike Euler-Bernoulli beam, such incoherence in the Timoshenko beam case has not been theoretically proved so far. Initially, the power and energy formulas based on wave approach and the corresponding incoherence proof are achieved by present work, both in theoretical and numerical ways. Fortunately, the theoretical and numerical results show that the travelling and evanescent wave modes are incoherent with each other both on power and energy functions. Notably, the energy function is unconventional and self-defined in order to obtain the incoherence. Some remarkable power transmission characteristics of the evanescent wave are also illustrated meanwhile.

  6. Evaluation of ion chamber dependent correction factors for ionisation chamber dosimetry in proton beams using a Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Palmans, H. [Ghent Univ. (Belgium). Dept. of Biomedical Physics; Verhaegen, F.

    1995-12-01

    In the last decade, several clinical proton beam therapy facilities have been developed. To satisfy the demand for uniformity in clinical (routine) proton beam dosimetry two dosimetry protocols (ECHED and AAPM) have been published. Both protocols neglect the influence of ion chamber dependent parameters on dose determination in proton beams because of the scatter properties of these beams, although the problem has not been studied thoroughly yet. A comparison between water calorimetry and ionisation chamber dosimetry showed a discrepancy of 2.6% between the former method and ionometry following the ECHED protocol. Possibly, a small part of this difference can be attributed to chamber dependent correction factors. Indications for this possibility are found in ionometry measurements. To allow the simulation of complex geometries with different media necessary for the study of those corrections, an existing proton Monte Carlo code (PTRAN, Berger) has been modified. The original code, that applies Mollire`s multiple scattering theory and Vavilov`s energy straggling theory, calculates depth dose profiles, energy distributions and radial distributions for pencil beams in water. Comparisons with measurements and calculations reported in the literature are done to test the program`s accuracy. Preliminary results of the influence of chamber design and chamber materials on dose to water determination are presented.

  7. An Energy Saving System for a Beam Pumping Unit

    Directory of Open Access Journals (Sweden)

    Hongqiang Lv

    2016-05-01

    Full Text Available Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU based on the Internet of Things (IoT was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  8. An Energy Saving System for a Beam Pumping Unit.

    Science.gov (United States)

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  9. Energy dependence of thermoluminescent response of CaSO{sub 4}:Dy, LiF:Mg and micro LiF:Mg,Ti in clinical beams of electrons by using different simulator objects; Dependencia energetica da resposta TL de dosimetros de CaSO{sub 4}:Dy, LiF:Mg e microLiF:Mg,Ti em feixes clinicos de eletrons utilizando diferentes objetos simuladores

    Energy Technology Data Exchange (ETDEWEB)

    Bravim, Amanda; Campos, Leticia Lucente, E-mail: abravin@ipen.b, E-mail: rsakuraba@einstein.b, E-mail: lcrodri@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Sakuraba, Roberto K.; Cruz, Jose Carlos da, E-mail: rsakuraba@einstein.b, E-mail: josecarlosc@einstein.b [Hospital Israelita Albert Einstein (HIAE), Sao Paulo, SP (Brazil)

    2011-10-26

    Yet not so widely applied in radiotherapy, the calcium sulfate doped with dysprosium (CaSO{sub 4}:Dy) is used in radioprotection and studies has been demonstrated its great potential for the dosimetry in radiotherapy. This work evaluates the energy dependence of the thermoluminescent answer of the CaSO{sub 4}:D, LiF:Mg,Ti (TLD-100) and micro LiF:Mg,Ti in clinical beams of electrons by using water simulators, PMMA and solid water

  10. Radiosurgery with high energy photon beams: a comparison among techniques

    Energy Technology Data Exchange (ETDEWEB)

    Podgorsak, E.B.; Pike, G.B.; Olivier, A.; Pla, M.; Souhami, L.

    1989-03-01

    The presently known radiosurgical techniques with high energy photon beams are based either on the commercially available Gamma unit utilizing 201 stationary cobalt beams or on isocentric linear accelerators. The techniques using linear accelerators are divided into the single plane rotation, the multiple non-coplanar arcs, and the dynamic rotation. A brief description of these techniques is given, and their physical characteristics, such as precision of dose delivery, dose fall-off outside the target volume, and isodose distributions are discussed. It is shown that the multiple non-coplanar arcs technique and the dynamic rotation give dose distributions similar to those of the Gamma unit, which makes these two linear accelerator based techniques attractive alternatives to radiosurgery with the Gamma unit.22 references.

  11. Crystals channel high-energy beams in the LHC

    CERN Multimedia

    CERN Bulletin

    2015-01-01

    Bent crystals can be used to deflect particle beams, as suggested by E. Tsyganov in 1976. Experimental demonstrations have been carried out for four decades in various laboratories worldwide. In recent tests, a bent crystal inserted into the LHC beam halo successfully channelled and deflected 6.5 TeV protons into an absorber, with reduced secondary irradiation.    Quasimosaic crystal for the LHC (developed by PNPI). Bent crystal technology was introduced at CERN and further developed for the LHC by the UA9 Collaboration. For about ten years, experts from CERN, INFN (Italy), Imperial College (UK), LAL (France), and PNPI, IHEP and JINR (Russia) have been investigating the advantages of using bent crystals in the collimation systems of high-energy hadron colliders. A bent crystal replacing the primary collimator can deflect the incoming halo deeply inside the secondary collimators, improving their absorption efficiency. “The bent crystals we have just tested at the world-record en...

  12. Producing titanium-niobium alloy by high energy beam

    Energy Technology Data Exchange (ETDEWEB)

    Sharkeev, Yu. P., E-mail: sharkeev@ispms.tsc.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Golkovski, M. G., E-mail: golkoski@mail.ru [Budker Institute of Nuclear Physics, 11 Akademika Lavrentiev Prosp., Novosibirsk, 630090 (Russian Federation); Glukhov, I. A., E-mail: gia@ispms.tsc.ru; Eroshenko, A. Yu., E-mail: eroshenko@ispms.tsc.ru; Fortuna, S. V., E-mail: s-fortuna@mail.ru [Institute of Strength Physics and Materials Science, SB RAS, 2/4 Akademicheski Prosp., Tomsk, 634055 (Russian Federation); Bataev, V. A., E-mail: bataev@vadm.ustu.ru [Novosibirsk State Technical University, 20 K. Marx Prosp., Novosibirsk, 630073 (Russian Federation)

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  13. Biomaterial imaging with MeV-energy heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Toshio, E-mail: seki@sakura.nucleng.kyoto-u.ac.jp [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Wakamatsu, Yoshinobu; Nakagawa, Shunichiro [Department of Nuclear Engineering, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); Aoki, Takaaki [Department of Electronic Science and Engineering, Kyoto Univ., Nishikyo, Kyoto 615-8510 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan); Ishihara, Akihiko [Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto Univ., Sakyo, Kyoto 606-8501 (Japan); Matsuo, Jiro [Quantum Science and Engineering Center, Kyoto Univ., Uji, Kyoto 611-0011 (Japan); CREST, Japan Science and Technology Agency (JST), Chiyoda, Tokyo 102-0075 (Japan)

    2014-08-01

    The spatial distribution of several chemical compounds in biological tissues and cells can be obtained with mass spectrometry imaging (MSI). In conventional secondary ion mass spectrometry (SIMS) with keV-energy ion beams, elastic collisions occur between projectiles and atoms of constituent molecules. The collisions produce fragments, making the acquisition of molecular information difficult. In contrast, ion beams with MeV-energy excite near-surface electrons and enhance the ionization of high-mass molecules; hence, SIMS spectra of fragment-suppressed ionized molecules can be obtained with MeV-SIMS. To compare between MeV and conventional SIMS, we used the two methods based on MeV and Bi{sub 3}-keV ions, respectively, to obtain molecular images of rat cerebellum. Conventional SIMS images of m/z 184 were clearly observed, but with the Bi{sub 3} ion, the distribution of the molecule with m/z 772.5 could be observed with much difficulty. This effect was attributed to the low secondary ion yields and we could not get many signal counts with keV-energy beam. On the other hand, intact molecular ion distributions of lipids were clearly observed with MeV-SIMS, although the mass of all lipid molecules was higher than 500 Da. The peaks of intact molecular ions in MeV-SIMS spectra allowed us to assign the mass. The high secondary ion sensitivity with MeV-energy heavy ions is very useful in biomaterial analysis.

  14. Evaluation of size dependent design shear strength of reinforced concrete beams without web reinforcement

    Indian Academy of Sciences (India)

    G Appa Rao; S S Injaganeri

    2011-06-01

    Analytical studies on the effect of depth of beam and several parameters on the shear strength of reinforced concrete beams are reported. A large data base available has been segregated and a nonlinear regression analysis (NLRA) has been performed for developing the refined design models for both, the cracking and the ultimate shear strengths of reinforced concrete (RC) beams without web reinforcement. The shear strength of RC beams is size dependent, which needs to be evaluated and incorporated in the appropriate size effect models. The proposed models are functions of compressive strength of concrete, percentage of flexural reinforcement and depth of beam. The structural brittleness of large size beams seems to be severe compared with highly ductile small size beams at a given quantity of flexural reinforcement. The proposed models have been validated with the existing popular models as well as with the design code provisions.

  15. Lattice design and beam dynamics studies of the high energy beam transport line in the RAON heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Jeon, Dong-O

    2015-12-01

    In RAON heavy ion accelerator, beams generated by superconducting electron cyclotron resonance ion source (ECR-IS) or Isotope Separation On-Line (ISOL) system are accelerated by lower energy superconducting linac and high energy superconducting linac. The accelerated beams are used in the high energy experimental hall which includes bio-medical and muon-SR facilities, after passing through the high energy beam transport lines. At the targets of those two facilities, the stable and small beams meeting the requirements rigorously are required in the transverse plane. Therefore the beams must be safely sent to the targets and simultaneously satisfy the two requirements, the achromatic condition and the mid-plane symmetric condition, of the targets. For this reason, the lattice design of the high energy beam transport lines in which the long deflecting sections are included is considered as a significant issue in the RAON accelerator. In this paper, we will describe the calculated beam optics satisfying the conditions and present the result of particle tracking simulations with the designed lattice of the high energy beam transport lines in the RAON accelerator. Also, the orbit distortion caused by the machine imperfections and the orbit correction with correctors will be discussed.

  16. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Energy Technology Data Exchange (ETDEWEB)

    Panettieri, Vanessa [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Duch, Maria Amor [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Jornet, Nuria [Servei de RadiofIsica i Radioproteccio, Hospital de la Santa Creu i San Pau Sant Antoni Maria Claret 167, 08025 Barcelona (Spain); Ginjaume, Merce [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Carrasco, Pablo [Servei de RadiofIsica i Radioproteccio, Hospital de la Santa Creu i San Pau Sant Antoni Maria Claret 167, 08025 Barcelona (Spain); Badal, Andreu [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Ortega, Xavier [Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Ribas, Montserrat [Servei de RadiofIsica i Radioproteccio, Hospital de la Santa Creu i San Pau Sant Antoni Maria Claret 167, 08025 Barcelona (Spain)

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson and Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm{sup 2} and a thickness of 0.5 {mu}m which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water(TM) build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water(TM) cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system

  18. Risk and Machine Protection for Stored Magnetic and Beam Energies

    CERN Document Server

    Todd, B

    2015-01-01

    Risk is a fundamental consideration when designing electronic systems. For most systems a view of risk can assist in setting design objectives, whereas both a qualitative and quantitative understanding of risk is mandatory when considering protection systems. This paper gives an overview of the risks due to stored magnetic and beam energies in high-energy physics, and shows how a risk-based approach can be used to design new systems mitigating these risks, using a lifecycle inspired by IEC 61508. Designing new systems in high-energy physics can be challenging as new and novel techniques are difficult to quantify and predict. This paper shows how the same lifecycle approach can be used in reverse to analyse existing systems, following their operation and first experiences.

  19. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    Science.gov (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  20. Study of Effect of Ion Source Energy Spread on RFQ Beam Dynamics at REX-ISOLDE

    CERN Document Server

    Fraser, M A

    2013-01-01

    With an upgrade to the Electron Beam Ion Source (EBIS) at REX under consideration a study was launched in order to understand the effect of an increased energy spread from the ion source on the beam dynamics of the RFQ. Due to the increased electron beam potential needed to achieve the upgrade’s charge breeding specification it is expected that the energy spread of the beam will increase from today’s estimated value of approximately +-0.1%. It is shown through beam dynamics simulations that the energy spread can be increased to +-1% without significant degradation of the beam quality output by the RFQ.

  1. Replacement of chemical rocket launchers by beamed energy propulsion.

    Science.gov (United States)

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  2. A Device for a Proton Beam Energy Control for Radiotherapy

    CERN Document Server

    Agapov, A V; Molokanov, A G; Shvidkii, S V

    2004-01-01

    A Medical-Technical Facility for hadron radiotherapy based on DLNP JINR phasotron has been constructed and put into operation. Upgrading of methods, hardware and software for radiotherapy is one of the main tasks for further development of the Facility. This article concerns one of the fields of this work, that is the development of equipment for dynamic irradiation of deep lying target - the construction of a device for the proton beam energy control and measurement of its depth-dose curve in a treatment room.

  3. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    Science.gov (United States)

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  4. Monte Carlo Commissioning of Low Energy Electron Radiotherapy Beams using NXEGS Software

    Directory of Open Access Journals (Sweden)

    2004-06-01

    Full Text Available This work is a report on the commissioning of low energy electron beams of a medical linear accelerator for Monte Carlo dose calculation using NXEGS software (NXEGS version 1.0.10.0, NX Medical Software, LLC. A unique feature of NXEGS is automated commissioning, a process whereby a combination of analytic and Monte Carlo methods generates beam models from dosimetric data collected in a water phantom. This study uses NXEGS to commission 6, 9, and 12 MeV electron beams of a Varian Clinac 2100C using three applicators with standard inserts. Central axis depth-dose, primary axis and diagonal beam profiles, and output factors are the measurements necessary for commissioning of the code. We present a comparison of measured dose distributions with the distributions generated by NXEGS, using confidence limits on seven measures of error. We find that confidence limits are typically less than 3% or 3 mm, but increase with increasing source to surface distance (SSD and depth at or beyond R50. We also investigate the dependence of NXEGS' performance on the size and composition of data used to commission the program, finding a weak dependence on number of dose profiles in the data set, but finding also that commissioning data need be measured at only two SSDs.

  5. Enhanced creation of high energy particles in colliding laser beams

    CERN Document Server

    Kuchiev, Michael

    2015-01-01

    The creation of particles by two colliding strong laser beams is considered. It is found that the electron-positron pairs created in the laser field via the Schwinger mechanism may recollide after one or several oscillations in the field. Their collision can take place at high energy, which the pair gains from the field. As a result, high energy gamma quanta can be created by inelastic scattering or annihilation of the pair. Moreover, heavy particles such as muon pairs may also be created via the annihilation $e^+ + e^-\\rightarrow \\mu^+ + \\mu^- $. The probability of $e^-e^+$ collision is greatly enhanced due to a strong alignment of the electron and positron momenta with the electric field. The found muon creation rate exponentially exceeds the rate predicted by the direct Schwinger mechanism for muons, while the photon creation rate exponentially exceeds photon emission due to the fermion oscillation.

  6. Degradation of bimorph piezoelectric bending beams in energy harvesting applications

    Science.gov (United States)

    Pillatsch, P.; Xiao, B. L.; Shashoua, N.; Gramling, H. M.; Yeatman, E. M.; Wright, P. K.

    2017-03-01

    Piezoelectric energy harvesting is an attractive alternative to battery powering for wireless sensor networks. However, in order for it to be a viable long term solution the fatigue life needs to be assessed. Many vibration harvesting devices employ bimorph piezoelectric bending beams as transduction elements to convert mechanical to electrical energy. This paper introduces two degradation studies performed under symmetrical and asymmetrical sinusoidal loading. It is shown that besides a loss in output power, the most dramatic effect of degradation is a shift in resonance frequency which is highly detrimental to resonant harvester designs. In addition, micro-cracking was shown to occur predominantly in piezoelectric layers under tensile stress. This opens the opportunity for increased life time through compressive operation or pre-loading of piezoceramic layers.

  7. Probing the short range spin dependent interactions by polarized {sup 3}He atom beams

    Energy Technology Data Exchange (ETDEWEB)

    Yan, H. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China); Indiana University, Center for Exploration of Energy and Matter, Bloomington, IN (United States); Sun, G.A.; Gong, J.; Pang, B.B.; Wang, Y.; Yang, Y.W.; Zhang, J.; Zhang, Y. [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan (China)

    2014-10-15

    Experiments using polarized {sup 3}He atom beams to search for short range spin dependent forces are proposed. High intensity, high polarization, small beam size {sup 3}He atom beams have been successfully produced and used in surface science researches. By incorporating background reduction designs as combination shielding by μ-metal and superconductor and double beam paths, the precision of spin rotation angle per unit length could be improved by a factor of ∝ 10{sup 4}. By this precision, in combination with a high density and low magnetic susceptibility sample source mass, and reversing one beam path if necessary, sensitivities on three different types of spin dependent interactions could be improved by as much as ∝ 10{sup 2} to ∝ 10{sup 8} over the current experiments at the millimeter range. (orig.)

  8. Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications

    Institute of Scientific and Technical Information of China (English)

    B L Ooi; J M Gilbert; A Rashid A Aziz

    2016-01-01

    Owing to the increasing demand for harvesting energy from environmental vibration for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted considerable interest from various parties and has become one of the most common approaches to converting redundant mechanical energy into electrical energy. As the output voltage produced from a piezoelec-tric material depends largely on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beam that have not yet been discussed in any prior literature. Both analytical and finite-element models are derived and the resultant strain distributions in the beam are computed based on a MATLAB solver and ANSYS finite-element analysis tools. An optimum geome-try for a vibration-based energy harvesting system is verified. Finally, experimental results comparing the power density for triangular and rectangular piezoelectric beams are also pre-sented to validate the findings of the study, and the claim, as suggested in the literature, is verified.

  9. Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications

    Science.gov (United States)

    Ooi, B. L.; Gilbert, J. M.; Aziz, A. Rashid A.

    2016-08-01

    Owing to the increasing demand for harvesting energy from environmental vibration for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted considerable interest from various parties and has become one of the most common approaches to converting redundant mechanical energy into electrical energy. As the output voltage produced from a piezoelectric material depends largely on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beam that have not yet been discussed in any prior literature. Both analytical and finite-element models are derived and the resultant strain distributions in the beam are computed based on a MATLAB solver and ANSYS finite-element analysis tools. An optimum geometry for a vibration-based energy harvesting system is verified. Finally, experimental results comparing the power density for triangular and rectangular piezoelectric beams are also presented to validate the findings of the study, and the claim, as suggested in the literature, is verified.

  10. Energy dependence of collective flow of neutrons and protons in [sup 197]Au + [sup 197]Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, D.; Blaich, T.; Elze, T.W.; Emling, H.; Freiesleben, H.; Grimni, K.; Henning, W.; Holzmann, R.; Keller, J.G.; Klingler, H.; Kratz, J.V.; Kulessa, R.; Lange, S.; Leifels, Y.; Lubkiewicz, E.; Moore, E.F.; Prokopowicz, W.; Schmidt, R.; Schuetter, C.; Spies, H.; Stelzer, K.; Stroth, J.; Wajda, E.; Walus, W.; Zinser, M.; Zude, E.; Alard, J.P.; Basrak, Z.; Bastid, N.; Belayev, I.M.; Bini, M.; Bock, R.; Buta, A.; Caplar, R.; Cerruti, C.; Cindro, N.; Coffin, J.P.; Crouau, M.; Dupieux, P.; Eroe, J.; Fan, Z.G.; Fintz, P.; Fodor, Z.; Freifelder, R.; Fraysse, L.; Frolov, S.; Gobbi, A.; Grigorian, Y.; Guillaume, G.; Herrmann, N.; Hildenbrand, K.D.; Hoelbling, S.; Houari, O.; Jeong, S.C.; Jorio, M.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Kraemer, M.; Kuhn, C.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Matulewicz, T.; Mgebrishvili, G.; Moesner, J.; Moisa, D.; Montarou, G.; Morel, P.; Neubert, W.; Olmi, A.; Pasquali, G.; Pelte, D.; Petrovici, M.; Poggi, G.; FOPI-collaboration

    1994-11-01

    We investigate the beam energy dependence of neutron and proton squeeze-out in collisions of [sup 197]Au + [sup 197]Au at E/A=400-800 MeV. The azimuthal anisotropy that describes the enhanced emission of mid-rapidity neutrons perpendicular to the reaction plane rises strongly with the transverse momentum of the neutrons. This dependence of the azimuthal anisotropy follows a universal curve - independent of beam energy - if the neutron momenta are measured in fractions of the projectile momentum per mass unit. Analogously, the kinetic energy spectra of mid-rapidity neutrons exhibit a universal behaviour as a function of the kinetic energy of the projectile. (orig.)

  11. Analysis of polysilicon micro beams buckling with temperature-dependent properties

    CERN Document Server

    Shamshirsaz, M; Asgari, M B; Tayefeh, M

    2008-01-01

    The suspended electrothermal polysilicon micro beams generate displacements and forces by thermal buckling effects. In the previous electro-thermal and thermo-elastic models of suspended polysilicon micro beams, the thermo-mechanical properties of polysilicon have been considered constant over a wide rang of temperature (20- 900 degrees C). In reality, the thermo-mechanical properties of polysilicon depend on temperature and change significantly at high temperatures. This paper describes the development and validation of theoretical and Finite Element Model (FEM) including the temperature dependencies of polysilicon properties such as thermal expansion coefficient and Young's modulus. In the theoretical models, two parts of elastic deflection model and thermal elastic model of micro beams buckling have been established and simulated. Also, temperature dependent buckling of polysilicon micro beam under high temperature has been modeled by Finite Element Analysis (FEA). Analytical results and numerical results ...

  12. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  13. Energy dependence of pion inelastic scattering to the 1/sup +/ states in /sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Oakley, D.S.; Peterson, R.J.; Rilett, D.J.; Morris, C.L.; Greene, S.J.; Boyer, B.; Johnson, K.; Fuentes, A.H.; McDonald, J.W.; Smithson, M.J.; and others

    1988-12-01

    The energy dependence of cross sections for inelastic pion scattering to the /Delta/ = /Delta/ = /Delta/ = 1 transition at 15.11 MeV in /sup 12/C is found to map very closely the /Delta/ = /Delta/ = /Delta/+1 /pi/-nucleon scattering cross sections at beam energies from 50 to 295 MeV. This free /pi/-nucleon energy dependence is due to the prominent /Delta/sub 3/2,3/2/ resonance, corresponding to the first excited nucleon state, which is mirrored in the /pi/-nucleus system with little alteration.

  14. Future of the beam energy scan program at RHIC

    Directory of Open Access Journals (Sweden)

    Odyniec Grazyna

    2015-01-01

    Full Text Available The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy, suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  15. Influence of thermoluminescent dosimeters energy dependence on the measurement of entrance skin dose in radiographic procedures

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mercia Liane de; Galindo, Renata Sales; Hazin, Clovis Abrahao, E-mail: mercial@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN/NE-CNEN/PE), Recife, PE (Brazil); Maia, Ana Figueiredo [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Nascimento, Natalia Cassia do Espirito Santo; Fragoso, Maria da Conceicao de Farias [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2010-04-15

    Objective: this study was aimed at evaluating the influence of the energy dependence of thermoluminescent materials on the determination of entrance skin dose in patients submitted to conventional radiographic studies (general radiology, mammography and dental radiology). Materials and methods: three different thermoluminescent materials were utilized: LiF:Mg,Ti, LiF:Mg,Cu,P and CaSO{sub 4}:Dy. These materials were exposed to standardized sources of X and gamma radiation and clinical X-ray beams. Results: calibration and energy dependence curves were obtained. All the materials showed a linear response as a function of the air kerma. As far as energy dependence is concerned, the CaSO{sub 4}:Dy and LiF:Mg,Ti samples showed the greatest variation on thermoluminescent responses as a function of the effective radiation beam. Conclusion: the tested materials showed an appropriate performance for detecting X radiation on standard and clinical X-ray beams. Although CaSO{sub 4}:Dy and LiF:Mg,Ti samples present a significant energy dependence in the considered energy range, these materials can be utilized for measuring entrance skin doses, provided appropriate correction factors are applied (author)

  16. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guimei [Peking Univ., Beijing (China)

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  17. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rosenow, U.F.; Islam, M.K.; Gaballa, H.; Rashid, H. (Univ. of Goettingen (Germany, F.R.))

    1991-01-01

    An energy constancy checking method is presented which involves a specially designed wedge-shaped solid phantom in combination with a multiple channel ionization chamber array known as the Thebes device. Once the phantom/beam scanner combination is set up, measurements for all electron energies can be made and evaluated without re-entering the treatment room. This is also valid for the readjustment of beam energies which are found to deviate from required settings. The immediate presentation of the measurements is in the form of crossplots which resemble depth dose profiles. The evaluation of the measured data can be performed using a hand-held calculator, but processing of the measured signals through a PC-type computer is advisable. The method is insensitive to usual fluctuations in beam flatness. The sensitivity and reproducibility of the method are more than adequate. The method may also be used in modified form for photon beams.

  18. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner.

    Science.gov (United States)

    Rosenow, U F; Islam, M K; Gaballa, H; Rashid, H

    1991-01-01

    An energy constancy checking method is presented which involves a specially designed wedge-shaped solid phantom in combination with a multiple channel ionization chamber array known as the Thebes device. Once the phantom/beam scanner combination is set up, measurements for all electron energies can be made and evaluated without re-entering the treatment room. This is also valid for the readjustment of beam energies which are found to deviate from required settings. The immediate presentation of the measurements is in the form of crossplots which resemble depth dose profiles. The evaluation of the measured data can be performed using a hand-held calculator, but processing of the measured signals through a PC-type computer is advisable. The method is insensitive to usual fluctuations in beam flatness. The sensitivity and reproducibility of the method are more than adequate. The method may also be used in modified form for photon beams.

  19. Simulation of Head-on Beam-Beam Limitations in Future High Energy Colliders

    CERN Document Server

    Buffat, Xavier; Florio, Adrien; Pieloni, Tatiana; Tambasco, Claudia

    2016-01-01

    The Future Circular Hadron Collider (FCC-hh) project calls for studies in a new regime of beam-beam interactions. While the emittance damping due to synchrotron radiation is still slower than in past or existing lepton colliders, it is significantly larger than in other hadron colliders. The slow reduction of the emittance is profitable for higher luminosity in term of transverse beam size at the interaction points and also to mitigate long-range beam-beam effects, potentially allowing for a reduction of the crossing angle between the beams during the operation. In such conditions, the strength of head-on beam-beam interactions increases, potentially limiting the beam brightness. 4D weak-strong and strong-strong simulations are performed in order to assess these limitations.

  20. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  1. Energy deposition studies for the LBNE beam absorber

    CERN Document Server

    Rakhno, Igor L; Tropin, Igor S

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system -- all with corresponding radiation shielding -- was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  2. Low-energy Coulomb excitation of Sr,9896 beams

    Science.gov (United States)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  3. Beam energy distribution influences on density modulation efficiency in seeded free-electron lasers

    CERN Document Server

    Wang, Guanglei; Deng, Haixiao; Zhang, Weiqing; Wu, Guorong; Dai, Dongxu; Wang, Dong; Zhao, Zhentang; Yang, Xueming

    2015-01-01

    The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependences of high harmonic micro-bunching in the high-gain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG) and phase-merging enhanced harmonic generation (PEHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs, while they almost have no influence on EEHG and PEHG schemes. A numerical example demonstrates that, with about 84keV RMS uniform and/or saddle slice energy spread, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL f...

  4. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  5. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Science.gov (United States)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  6. Enhanced coherent emission of terahertz radiation by energy-phase correlation in a bunched electron beam.

    Science.gov (United States)

    Doria, A; Gallerano, G P; Giovenale, E; Messina, G; Spassovsky, I

    2004-12-31

    We report the first observation of enhanced coherent emission of terahertz radiation in a compact free electron laser. A radio-frequency (rf) modulated electron beam is passed through a magnetic undulator emitting coherent radiation at harmonics of the rf with a phase which depends on the electron drift velocity. A proper correlation between the energy and phase distributions of the electrons in the bunch has been exploited to lock in phase the radiated field, resulting in over 1 order of magnitude enhancement of the coherent emission.

  7. Pump Intensity Dependence of Two-Beam Coupling in Doped Lithium Niobate Crystals

    Institute of Scientific and Technical Information of China (English)

    Nouel Y.Kamber; XU Jing-Jun; Sonia M. Mikha; SONG Feng; ZHANG Guo-Quan; ZHANG Xin-Zheng; LIU Si-Min; ZHANG Guang-Yin

    2000-01-01

    We demonstrated experimentally the dependence of two-beam coupling on the incident pump intensity in our samples of doped LiNbO3 crystals. Our results show that there is an optimum pump intensity for the signal beam amplification, which can be easily controlled by doping the LiNbO3 crystal with suitable concentrations of Fe and damage-resistant dopants such as Mg, In, and Zn.

  8. Enhancement of resistance against high energy laser pulse injection with chevron beam dump

    Energy Technology Data Exchange (ETDEWEB)

    Yatsuka, Eiichi; Hatae, Takaki [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan); Bassan, Michele; Vayakis, George; Walsh, Michael [ITER Organization, St Paul Lez Durance Cedex, Provence 13067 (France); Itami, Kiyoshi [Japan Atomic Energy Agency, Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. • The absorbed energy density is the correct figure of the laser-induced damage. • Experiments validated the design of a new beam dump called chevron beam dump. • The chevron beam dump would have much longer lifetime than conventional beam dumps. - Abstract: The laser beam dump of the Edge Thomson scattering (ETS) in ITER is being developed and a new type of beam dump called the chevron beam dump was proposed recently. The laser-induced damage on the surface is one of the most severe issues to be overcome. The key concept of the chevron beam dump is to reduce the laser energy absorption per unit area and to absorb the laser beam gradually. The laser irradiation tests onto flat-mirror-molybdenum sample were carried out. It was clarified that the absorbed (rather than incident) energy density of the laser pulses should be the correct figure of merit for the laser-induced damage. Therefore, the concept of the chevron beam dump design, that minimizes the absorbed laser energy density per unit area, was validated experimentally. The chevron beam dump enables us to extend its lifetime drastically relative to conventional beam dumps. Potential methods to improve the laser-induced damage threshold (LIDT) are also discussed in this paper.

  9. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Blais, N.; Podgorsak, E.B. (Montreal General Hospital, PQ (Canada). Dept. of Medical Physics)

    1992-10-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author).

  10. How to measure energy of LEReC electron beam with magnetic spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Seletskiy, S. [Brookhaven National Laboratory (BNL), Upton, NY (United States)

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum [1, 2] or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  11. Dosimetric characteristics of four PTW microDiamond detectors in high-energy proton beams

    Science.gov (United States)

    Marsolat, F.; De Marzi, L.; Patriarca, A.; Nauraye, C.; Moignier, C.; Pomorski, M.; Moignau, F.; Heinrich, S.; Tromson, D.; Mazal, A.

    2016-09-01

    Small diamond detectors are useful for the dosimetry of high-energy proton beams. However, linear energy transfer (LET) dependence has been observed in the literature with such solid state detectors. A novel synthetic diamond detector has recently become commercially available from the manufacturer PTW-Freiburg (PTW microDiamond type 60019). This study was designed to thoroughly characterize four microDiamond detectors in clinical proton beams, in order to investigate their response and their reproducibility in high LET regions. Very good dosimetric characteristics were observed for two of them, with good stability of their response (deviation less than 0.4% after a pre-irradiation dose of approximately 12 Gy), good repeatability (coefficient of variation of 0.06%) and a sensitivity of approximately 0.85 nC Gy-1. A negligible dose rate dependence was also observed for these two microDiamonds with a deviation of the sensitivity less than 0.7% with respect to the one measured at the reference dose rate of 2.17 Gy min-1, in the investigated dose rate range from 1.01 Gy min-1 to 5.52 Gy min-1. Lateral dose profile measurements showed the high spatial resolution of the microDiamond oriented with its stem perpendicular to the beam axis and with its small sensitive thickness of about 1 μm in the scanning profile direction. Finally, no significant LET dependence was found with these two diamond dosimeters in comparison to a reference ionization chamber (model IBA PPC05). These good results were in accordance to the literature. However, this study showed also a non reproducibility between the devices in terms of stability, sensitivity and LET dependence, since the two other microDiamonds characterized in this work showed different dosimetric characteristics making them not suitable for proton beam dosimetry with a maximum difference of the peak-to-plateau ratio of 6.7% relative to the reference ionization chamber in a clinical 138 MeV proton beam.

  12. Beam chopper For the Low-Energy Undulator Test Line (LEUTL) in the APS

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Y.; Wang, J.; Milton, S.; Teng, L. [and others

    1997-08-01

    The low-energy undulator test line (LEUTL) is being built and will be tested with a short beam pulse from an rf gun in the Advanced Photon Source (APS) at the Argonne National Laboratory. In the LEUTL a beam chopper is used after the rf gun to deflect the unwanted beam to a beam dump. The beam chopper consists of a permanent magnet and an electric deflector that can compensate for the magnetic deflection. A 30-kV pulsed power supply is used for the electric deflector. The chopper subsystem was assembled and tested for beamline installation. The electrical and beam properties of the chopper assembly are presented.

  13. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending magnet and an extra multi-harmonic buncher. The total length of this segment is about 7 meters. The beam dynamics in this LEBT has been studied using three-dimensional PIC (particle-in-cell) code BEAMPATH. The simulation results show that the continuous beam from the ion source is first well analyzed by a charge-to-mass selection system, and the beam of the selected charge-to-mass ratio is then efficiently pre-bunched by a multi-harmonic buncher and optimally matched into the RFQ (radio frequency quadrupole) for further acceleration. The principles and effects of the solenoid collimation channel are discussed, and it could limit the beam emittance by changing the aperture size.

  14. Energy Dissipation Capacity of Reinforced Concrete Beams Strengthened with CFRP Strips

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-05-01

    Cyclic loading tests were performed to investigate the energy dissipation capacities of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) strips. Four RC beams were manufactured and three-point loaded. Responses of the strengthened beams to the cyclic loadings were measured, including deflections at the center of their span and strains of the CFRP strips and reinforcing steel rebars. Based on test results, the energy dissipation capacity of the strengthened beams were evaluated in comparison with that of an unstrengthened control beam.

  15. Thermoelastic buckling analysis of pre-twisted functionally graded beams with temperature-dependent material properties

    Science.gov (United States)

    Shenas, Amin Ghorbani; Malekzadeh, Parviz; Ziaee, Sima

    2017-04-01

    As a first endeavor, the thermal buckling behavior of pre-twisted functionally graded (FG) beams with temperature-dependent material properties is investigated. The governing stability equations are derived based on the third-order shear deformation theory (TSDT) in conjunction with the adjacent equilibrium state criterion under the von Kármán's nonlinear kinematic assumptions using the Chebyshev-Ritz method. The Chebyshev polynomials multiplied with some suitable boundary functions are used as the basis functions, which allow one to analyze the beams with different boundary conditions. The extracted system of nonlinear algebraic eigenvalue equations is solved iteratively to obtain the critical temperature rise. The convergence behavior together with accuracy of the solution method and the correctness of formulation are demonstrated through different examples. Then, the influences of the linear and nonlinear variation of the angle of twist along the beam axis, the value of twist angle, length-to-thickness ratio, thickness-to-width ratio, material gradient index and temperature dependence of material properties on the critical temperature rise of the pre-twisted FG beams under different boundary conditions are investigated. It is shown that the pre-twist angle increases the thermal buckling resistance of the pre-twisted FG beams, but the temperature dependence of material properties reduces it.

  16. Full Spectrum Diffused and Beamed Solar Energy Application Using Optical Fibre

    OpenAIRE

    Majumdar, M. R. Dutta; Das, Debasish

    2007-01-01

    Existing solar energy application systems use small fraction of full spectrum of solar energy. So attempts are made to show how full spectrum solar energy can be used for diffused and beamed form of incident solar energy. Luminescent Solar Concentrator (LSC) principle with optical fibre in diffused sun light and dielectric mirror separation technique with optical fibre in beamed form are discussed. Comparison of both the cases are done. Keywords: full spectrum, solar photonics, diffused solar...

  17. Chromatic energy filter and characterization of laser-accelerated proton beams for particle therapy

    Science.gov (United States)

    Hofmann, Ingo; Meyer-ter-Vehn, Jürgen; Yan, Xueqing; Al-Omari, Husam

    2012-07-01

    The application of laser accelerated protons or ions for particle therapy has to cope with relatively large energy and angular spreads as well as possibly significant random fluctuations. We suggest a method for combined focusing and energy selection, which is an effective alternative to the commonly considered dispersive energy selection by magnetic dipoles. Our method is based on the chromatic effect of a magnetic solenoid (or any other energy dependent focusing device) in combination with an aperture to select a certain energy width defined by the aperture radius. It is applied to an initial 6D phase space distribution of protons following the simulation output from a Radiation Pressure Acceleration model. Analytical formula for the selection aperture and chromatic emittance are confirmed by simulation results using the TRACEWIN code. The energy selection is supported by properly placed scattering targets to remove the imprint of the chromatic effect on the beam and to enable well-controlled and shot-to-shot reproducible energy and transverse density profiles.

  18. A Monte Carlo study of the energy dependence of Al2O3: C crystals for real-time in vivo dosimetry in mammography

    DEFF Research Database (Denmark)

    Aznar, M.C.; Medin, J.; Hemdal, B.

    2005-01-01

    large energy dependence in low-energy X-ray beams can be expected. In the present work, the energy dependence of Al2O3:C crystals was modelled with the Monte Carlo code EGSnre using three types of X-ray spectra. The results obtained (5.6-7.3%) agree with a previously determined experimental result (9...

  19. Beam Performance and Luminosity Limitations in the High-Energy Storage Ring (HESR)

    CERN Document Server

    Lehrach, A; Hinterberger, F; Maier, R; Prasuhn, D

    2006-01-01

    The High-Energy Storage Ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron and storage ring in the momentum range from 1.5 to 15 GeV/c. An important feature of this new facility is the combination of phase space cooled beams with dense internal targets (e.g. pellet targets), resulting in demanding beam parameter of two operation modes: high luminosity mode with peak luminosities up to 2*10^32 cm-2 s-1, and high resolution mode with a momentum spread down to 10^-5, respectively. To reach these beam parameters very powerful phase space cooling is needed, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effect of beam-target scattering and intra-beam interaction is investigated in order to study beam equilibria and beam losses for the two different operation modes.

  20. Beam performance and luminosity limitations in the high-energy storage ring (HESR)

    Science.gov (United States)

    Lehrach, A.; Boine-Frankenheim, O.; Hinterberger, F.; Maier, R.; Prasuhn, D.

    2006-06-01

    The high-energy storage ring (HESR) of the future International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is planned as an antiproton synchrotron storage ring in the momentum range 1.5-15 GeV/ c. An important feature of this new facility is the combination of phase space cooled beams and dense internal targets (e.g. pellet targets), which results in demanding beam parameter requirements for two operation modes: high luminosity mode with peak luminosities to 2×10 32 cm -2 s -1, and high-resolution mode with a momentum spread down to 10 -5. To reach these beam parameters one needs a very powerful phase space cooling, utilizing high-energy electron cooling and high-bandwidth stochastic cooling. The effects of beam-target scattering and intra-beam interaction are investigated in order to study beam equilibria and beam losses for the two different operation modes.

  1. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  2. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  3. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  4. A new criterion to describe crossed-beam energy transfer in laser-plasma interactions

    Science.gov (United States)

    Trines, R.; Schmitz, H.; Alves, E. P.; Fiuza, F.; Vieira, J.; Silva, L. O.; Bingham, R.

    2016-10-01

    Crossed-beam energy transfer (CBET) between laser beams in underdense plasma is ubiquitous in both direct-drive and indirect-drive inertial confinement fusion. To understand the impact of this process on the final shape of the laser beams involved, as well as their imprint on either hohlraum walls or target surface, a detailed spatial and temporal description of the crossing beams is needed. We have developed an analytical model and derived new criteria describing both the spatial structure and temporal evolution of the beams after crossing. Numerical simulations have been carried out justifying the analytical model and confirming the criteria. The impact of our results on present and future multi-beam experiments in laser fusion and high-energy-density physics, in particular the ``bursty'' nature of beams predicted to occur in NIF experiments, will be discussed.

  5. Design and delivery of beam monitors for the energy-upgraded linac in J-PARC

    Science.gov (United States)

    Miura, Akihiko; Ouchi, Nobuo; Oguri, Hidetomo; Hasegawa, Kazuo; Miyao, Tomoaki; Ikegami, Masanori

    2015-02-01

    In the J-PARC (Japan Proton Accelerator Research Complex) linac, an energy-upgrade project has started to achieve a design beam power of 1 MW at the exit of the downstream synchrotron. To account for the significant beam parameter upgrades, we will use the newly-fabricated beam monitors for the beam commissioning. This paper discusses the design and assembly of the beam position monitor, phase monitor, current monitor, transverse profile monitor, and beam loss monitor for the energy-upgraded linac. We periodically installed the newly-fabricated monitors for the upgraded beam line, as well as for longitudinal matching, because of the frequency jump between the original RF cavity and the newly-developed cavity. We employed two debunchers to correct for momentum spread and jitter. To account for the new debunchers, we fabricated and installed additional pairs of phase monitors in order to tune the debunchers to the adequate RF set point. Finally, we propose commissioning plans to support the beam monitor check. We will begin to establish the 181-MeV operation to confirm the proper functioning of beam monitors. Herein, we will examine the response to changes of the knobs that control the quadrupole magnets after the energy upgrade. After proper functioning of the beam monitors is confirmed, we will use the new beam monitors to establish the 400-MeV acceleration operation.

  6. Dosimetric properties of radiophotoluminescent glass rod detector in high-energy photon beams from a linear accelerator and cyber-knife.

    Science.gov (United States)

    Arakia, Fujio; Moribe, Nobuyuki; Shimonobou, Toshiaki; Yamashita, Yasuyuki

    2004-07-01

    A fully automatic radiophotoluminescent glass rod dosimeter (GRD) system has recently become commercially available. This article discusses the dosimetric properties of the GRD including uniformity and reproducibility of signal, dose linearity, and energy and directional dependence in high-energy photon beams. In addition, energy response is measured in electron beams. The uniformity and reproducibility of the signal from 50 GRDs using a 60Co beam are both +/- 1.1% (one standard deviation). Good dose linearity of the GRD is maintained for doses ranging from 0.5 to 30 Gy, the lower and upper limits of this study, respectively. The GRD response is found to show little energy dependence in photon energies of a 60Co beam, 4 MV (TPR20(10)=0.617) and 10 MV (TPR(20)10=0.744) x-ray beams. However, the GRD responses for 9 MeV (mean energy, Ez = 3.6 MeV) and 16 MeV (Ez = 10.4 MeV) electron beams are 4%-5% lower than that for a 60Co beam in the beam quality dependence. The measured angular dependence of GRD, ranging from 0 degrees (along the long axis of GRD) to 120 degrees is within 1.5% for a 4 MV x-ray beam. As applications, a linear accelerator-based radiosurgery system and Cyber-Knife output factors are measured by a GRD and compared with those from various detectors including a p-type silicon diode detector, a diamond detector, and an ion chamber. It is found that the GRD is a very useful detector for small field dosimetry, in particular, below 10 mm circular fields.

  7. Periodic position dependence of the energy measured in the CMS electromagnetic calorimeter

    CERN Document Server

    Descamps, Julien

    2006-01-01

    A uniform energy measurement response of the CMS electromagnetic calorimeter ECAL is essential for precision physics at the LHC. The ECAL barrel calorimeter consists of 61200 lead tungstate crystals arranged in a quasi-projective geometry. The energy of photons reaching the ECAL will be reconstructed by summing the channels corresponding to matrices of 3x3 or 5x5 crystals centred on the crystal with the largest energy deposit. The energy measured using such matrices of fixed size has been studied using electron test beam data taken in 2004. The variation of the energy containment with the incident electron impact position on the central crystal leads to a degradation of the energy resolution. A method using only the calorimeter information is presented to correct for the position dependent response. After correction, the energy resolution performance for uniform impact distributions of the electrons on the front face of a crystal approaches that obtained for maximal containment with a central impact. The univ...

  8. Scenario for Precision Beam Energy Calibration in FCC-ee

    CERN Document Server

    Koop, I A

    2015-01-01

    The resonance depolarization method was very successfully used in the experiments at LEP, where the mass of the Z-boson was determined with the relative uncertainty [1, 2]. In the future FCC-ee circular electron-positron collider the luminosity at Z-peak (beam energy 45.5 GeV) is expected be 4-5 orders of magnitude higher and one goal is to perform the same experiments as at LEP, but with much greater accuracy, approaching the level of [3]. Obviously this can be done only by measuring the spin precession frequency. But there are many problems which still need to be solved on the way towards a complete design. The first one: the self-polarization takes too long a time. The Sokolov-Ternov polarization time is about 250 hours at Z-peak. One approach is to install the special field-asymmetric polarizing wigglers to make the self-polarization time much shorter [4, 5] and to utilize only few percent of the polarization degree to measure the resonance spin precession frequency. But these very strong wigglers substan...

  9. Propagation-dependent beam profile distortion associated with the Goos-Hanchen shift.

    Science.gov (United States)

    Wan, Yuhang; Zheng, Zheng; Zhu, Jinsong

    2009-11-09

    The propagation-dependent profile distortion of the reflected beam is studied via deriving the theoretical model of the optical field distribution in both the near and far field. It is shown that strong and fast-varying beam distortions can occur along the propagation path, compared to the profile on the reflecting surface. Numerical simulations for the case of a typical SPR configuration with a sharp angular response curve reveal that, when the phase distribution in the angular range covered by the input beam becomes nonlinear, previous theories based on the linear phase approximation fail to predict the Goos-Hanchen shift and its propagation-dependent variations precisely. Our study could shed light on more accurate modeling of the Goos-Hanchen effect's impact on the relevant photonic devices and measurement applications.

  10. Polarization of high-energy electrons traversing a laser beam

    CERN Document Server

    Kotkin, G L; Serbo, V G

    1998-01-01

    When polarized electrons traverse a region where the laser light is focused their polarization varies even if their energy and direction of motion are not changed. This effect is due to interference of the incoming electron wave and an electron wave scattered at zero angle. Equations are obtained which determine the variation of the electron density matrix, and their solutions are given. The change in the electron polarization depends not only on the Compton cross section but on the real part of the forward Compton amplitude as well. It should be taken into account, for example, in simulations of the $e \\to \\gamma$ conversion for future $\\gamma \\gamma$ colliders.

  11. Low-Energy Plasma Focus Device as an Electron Beam Source

    Directory of Open Access Journals (Sweden)

    Muhammad Zubair Khan

    2014-01-01

    Full Text Available A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5×1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  12. Low-Energy Plasma Focus Device as an Electron Beam Source

    Science.gov (United States)

    Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952

  13. Scale Dependence of Dark Energy Antigravity

    Science.gov (United States)

    Perivolaropoulos, L.

    2002-09-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  14. Scale Dependence of Dark Energy Antigravity

    CERN Document Server

    Perivolaropoulos, L

    2001-01-01

    We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.

  15. The Possibility of Noninvasive Micron High Energy Electron Beam Size Measurement Using Diffraction Radiation

    CERN Document Server

    Naumenko, Gennady; Aryshev, Alexander; Cline, David B; Fukui, Yasuo; Hamatsu, Ryosuke; Hayano, Hitoshi; Karataev, Pavel; Muto, Toshiya; Potylitsyn, Alexander; Ross, Marc; Urakawa, Junji

    2005-01-01

    During the last years a noninvasive method for beam size measurement based on the optical diffraction radiation (ODR) has been in progress (P. Karataev, et al., Physical Review Letters 93, 244802 (2004). However this technique encounters with hard sensitivity limitation for electron energies larger than several GeV. For example, for SLAC conditions the sensitivity of this method is 4 orders smaller than an appropriate one. We suggest to use a "dis-phased" slit target, where two semi-planes are turned with respect to each other at a small "dis-phased" angle. In order to ensure the interference between the diverged radiation beams we use a cylindrical lens. This method has much better sensitivity and resolution. A "dis-phased" angle 10 milliradians gives the optimal sensitivity to 5 microns transversal beam size. The theoretical model for calculating the ODR radiation from such targets (including focusing by cylindrical lens) is presented. It is shown that the sensitivity of this method does not depend on the L...

  16. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Ali Pazirandeh

    2006-06-01

    Full Text Available  In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b, the treatment of deep seated tumors such as gliobelastoma multiform (GBM requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The optimal neutron energy for deep seated tumors depends on the size and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  17. US oil dependency and energy security; Dependance petroliere et securite energetique americaine

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P. [Institut francais des Relations Internationals, 75 - Paris (France)]|[Universite Pierre Mendes-France-IEPE-CNRS, 38 - Grenoble (France)

    2002-07-01

    The three papers of this document were written in the framework of a seminar organized the 30 may 2002 by the IFRI in the framework of its program Energy and Climatic Change. The first presentation deals with the american oil policy since 1980 (relation between the oil dependence and the energy security, the Reagan oil policy, the new oil policy facing the increase of the dependence). The second one deals with the US energy security (oil security, domestic energy security, policy implications). The last presentation is devoted to the US oil dependence in a global context and the problems and policies of international energy security. (A.L.B.)

  18. A Higher-Order Thermomechanical Vibration Analysis of Temperature-Dependent FGM Beams with Porosities

    Directory of Open Access Journals (Sweden)

    Farzad Ebrahimi

    2016-01-01

    Full Text Available In the present paper, thermomechanical vibration characteristics of functionally graded (FG Reddy beams made of porous material subjected to various thermal loadings are investigated by utilizing a Navier solution method for the first time. Four types of thermal loadings, namely, uniform, linear, nonlinear, and sinusoidal temperature rises, through the thickness direction are considered. Thermomechanical material properties of FG beam are assumed to be temperature-dependent and supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM which is modified to approximate the porous material properties with even and uneven distributions of porosities phases. The governing differential equations of motion are derived based on higher order shear deformation beam theory. Hamilton’s principle is applied to obtain the governing differential equations of motion which are solved by employing an analytical technique called the Navier type solution method. Influences of several important parameters such as power-law exponents, porosity distributions, porosity volume fractions, thermal effects, and slenderness ratios on natural frequencies of the temperature-dependent FG beams with porosities are investigated and discussed in detail. It is concluded that these effects play significant role in the thermodynamic behavior of porous FG beams.

  19. Generation of high energy and good beam quality pulses with a master oscillator power amplifier

    Institute of Scientific and Technical Information of China (English)

    Zhigang Li(李志刚); Z.Xiong; Nicholas Moore; Chen Tao; G.C.Lim; Weiling Huang(黄维玲); Dexiu Huang(黄德修)

    2004-01-01

    A high efficiency and high peak power laser system with short-pulse and good beam quality has been demonstrated by using a master oscillator power amplifier with two-pass amplification configuration. The master oscillator, end-pumped with a fiber-coupled laser diode array, provides low power but excellent beam quality pulses, and the amplifier boosts the pulse energy by orders without significant beam quality degradation. Short pulses of 8.5 ns with energy up to 130 mJ and approximately diffraction limited beam quality have been demonstrated.

  20. Summary of monoenergetic neutron beam sources for energies gt 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Brady, F.P.; Romero, J.L. (Univ. of California-Davis, Crocker Nuclear Lab., Davis, CA (US))

    1990-11-01

    This paper examines the production of neutron beams for energies between {approx}20 and 100 MeV. Considerations for obtaining monoenergetic beams as well as some of the limiting factors, such as energy resolution are examined as well. Production cross sections at 0 deg are reviewed for proton- and deuteron-induced reactions on light elements. Some current facilities in the context of neutron beams obtained by collimation, by the associate particle method, and by the use of a beam swinger are also discussed.

  1. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  2. Study of DQE dependence with beam quality on GE essential mammography flat panel.

    Science.gov (United States)

    García-Mollá, Rafael; Linares, Rafael; Ayala, Rafael

    2010-11-25

    This paper deals with the analysis of the behavior of objective image quality parameters for the new GE Senographe Essential FFDM system, in particular its dependence with beam quality. The detector consists of an indirect conversion a-Si flat panel coupled to a CsI:Tl scintillator. The system under study has gone through a series of relevant modifications in flat panel with respect to the previous model (GE Senographe DS 2000). These changes in the detector modify its performance and are intended to favor advanced applications like tomosynthesis, which uses harder beam spectra and lower doses per exposure than conventional FFDM. Although our system does not have tomosynthesis implemented, we noticed that most clinical explorations were performed by automatically selecting a harder spectrum than that of typical use in FFDM (Rh/Rh 28-30 kV instead of Mo/Mo 28 kV). Since flat-panel optimization for tomosynthesis influences the usual FFDM clinical performance, the new detector behavior needed to be investigated. Therefore, the aim of our study is evaluating the dependence of the detector performance for different beam spectra and exposure levels. In this way, we covered the clinical beam quality range (Rh/Rh 28-30 kV) and we extended the study to even harder spectra (Rh/Rh 34 kV). Detector performance is quantified by means of modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE). We found that flat-panel optimization results in slightly - but statistically significant - higher DQE values as beam quality increases, which is contrary to the expected behavior. This positive correlation between beam quality and DQE is also diametrically opposite to that of the previous model by the same manufacturer. As a direct consequence, usual FFDM takes advantage of the changes in the detector, as less exposure is needed to achieve the same DQE if harder beams are used.

  3. Energy-dependent intracellular translocation of proparathormone.

    Science.gov (United States)

    Chu, L L; MacGregor, R R; Cohn, D V

    1977-01-01

    We previously suggested that after synthesis, proparathormone is transferred from rough endoplasmic reticulum to the Golgi region where its conversion to parathormone occurs. We have attempted to define more closely this transfer process. In the first type of study, bovine parathyroid slices were incubated with [3H]leucine for 10 min and then radioisotope labeling was restricted by addition of a large excess of nonradioactive leucine. Under these conditions, more than 90% of the initially labeled proparathormone was converted to parathormone in 40 min. Lowered temperature in the chase period markedly inhibited the conversion. Several chemical agents were employed individually in the chase period to examine their effect on the conversion process. Antimycin A, dinitrophenol, oligomycin, and anaerobiosis (N2) inhibited the conversion, whereas sodium flouride and cycloheximide had no effect. In the second type of study, parathyroid slices were incubated with [3H]leucine for the entire incubation period. Lowered temperature and inhibitors of energy metabolism and microtubular function all lengthened the interval (lag) between the initial synthesis of [3H]parathormone. Cycloheximide, Tris, and chloroquine decreased the rates of protein synthesis and conversion, respectively, but none had any effect on the lag. We interpret the lag to represent the time of transit for proparathormone from rough endoplasmic reticulum to the Golgi region. We conclude that this transfer process is independent of the synthesis of the prohormone and its conversion to the hormone. Moreover, this translocation requires metabolic energy and appears to be mediated by microtubules.

  4. Particle-in-cell mode beam dynamics simulation of the low energy beam transport for the SSC-linac injector

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; HE Yuan; YUAN You-Jin; YAO Qing-Gao; WANG Zhi-Jun; CHANG Wei; LIU Yong; XIA Jia-Wen

    2011-01-01

    A new SSC-linac system (injector into separated sector cyclotron) is being designed in the HIRFL (heavy ion research facility of Lanzhou). As part of SSC-Linac, the LEBT (low energy beam transport) consists of seven solenoids, four quadrupoles, a bending

  5. Strain-dependent conductivity of granular metals prepared by focused particle beam induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Christina; Baranowski, Markus; Huth, Michael [Physikalisches Institut, Goethe-Universitaet, Frankfurt am Main (Germany); Voelklein, Friedemann [Institut fuer Mikrotechnologien, Hochschule RheinMain, Ruesselsheim (Germany)

    2010-07-01

    We report on the strain-dependence of the electrical conductivity of granular metals prepared by focused particle beam induced deposition. The samples were prepared in a dual-beam electron / Ga ion scanning microscope using selected precursors, such as W(CO){sub 6}. Stripe-like deposits were fabricated on dedicated cantilevers pre-patterned with contact pads made from Cr/Au. The cantilever deflection was induced in-situ by means of a four axes nano-manipulator and the conductivity change was recorded by lock-in technique employing a Wheatstone resistance bridge. Current-voltage characteristics and strain-dependence were measured for samples of various thicknesses and composition. For selected samples time-dependent conductivity data were taken as the samples were slowly exposed to air.

  6. International Atomic Energy Agency intercomparison of ion beam analysis software

    Science.gov (United States)

    Barradas, N. P.; Arstila, K.; Battistig, G.; Bianconi, M.; Dytlewski, N.; Jeynes, C.; Kótai, E.; Lulli, G.; Mayer, M.; Rauhala, E.; Szilágyi, E.; Thompson, M.

    2007-09-01

    Ion beam analysis (IBA) includes a group of techniques for the determination of elemental concentration depth profiles of thin film materials. Often the final results rely on simulations, fits and calculations, made by dedicated codes written for specific techniques. Here we evaluate numerical codes dedicated to the analysis of Rutherford backscattering spectrometry, non-Rutherford elastic backscattering spectrometry, elastic recoil detection analysis and non-resonant nuclear reaction analysis data. Several software packages have been presented and made available to the community. New codes regularly appear, and old codes continue to be used and occasionally updated and expanded. However, those codes have to date not been validated, or even compared to each other. Consequently, IBA practitioners use codes whose validity, correctness and accuracy have never been validated beyond the authors' efforts. In this work, we present the results of an IBA software intercomparison exercise, where seven different packages participated. These were DEPTH, GISA, DataFurnace (NDF), RBX, RUMP, SIMNRA (all analytical codes) and MCERD (a Monte Carlo code). In a first step, a series of simulations were defined, testing different capabilities of the codes, for fixed conditions. In a second step, a set of real experimental data were analysed. The main conclusion is that the codes perform well within the limits of their design, and that the largest differences in the results obtained are due to differences in the fundamental databases used (stopping power and scattering cross section). In particular, spectra can be calculated including Rutherford cross sections with screening, energy resolution convolutions including energy straggling, and pileup effects, with agreement between the codes available at the 0.1% level. This same agreement is also available for the non-RBS techniques. This agreement is not limited to calculation of spectra from particular structures with predetermined

  7. Recent developments and research projects at the low-energy RI beam facility CRIB

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H., E-mail: yamag@cns.s.u-tokyo.ac.jp [Center for Nuclear Study (CNS), University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN Campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubono, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502,Japan (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y.K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D.N.; Khiem, L.H.; Duy, N.N. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, HaNoi (Viet Nam)

    2013-12-15

    Highlights: • CRIB is a unique low-energy RI beam separator of the University of Tokyo. • CRIB has been produced various RI beams mainly on the proton-rich side. • The major topics studied at CRIB are resonant scatterings and (alpha, p) reactions. • Strong alpha resonances were observed with {sup 7}Be + alpha resonant scattering. -- Abstract: CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. An overview of the recent developments and status of CRIB, including a detailed summary of beam parameters, is presented. Studies on proton and α resonant scatterings, direct measurements of (α,p) reactions, and other types of measurements (β-decay lifetimes, etc.) have been performed using RI beams at CRIB, motivated by interests in astrophysical reactions and exotic nuclear structure. Among the studies at CRIB, the measurement of {sup 7}Be + α resonant scattering is discussed.

  8. A new beam loss detector for low-energy proton and heavy-ion accelerators

    Science.gov (United States)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  9. Modelling and Testing of the Piezoelectric Beam as Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Koszewnik Andrzej

    2016-12-01

    Full Text Available The paper describes modelling and testing of the piezoelectric beam as energy harvesting system. The cantilever beam with two piezo-elements glued onto its surface is considered in the paper. As result of carried out modal analysis of the beam the natural frequencies and modes shapes are determined. The obtained results in the way mentioned above allow to estimate such location of the piezo-actuator on the beam where the piezo generates maximal values of modal control forces. Experimental investigations carried out in the laboratory allow to verify results of natural frequencies obtained during simulation and also testing of the beam in order to obtain voltage from vibration with help of the piezo-harvester. The obtained values of voltage stored on the capacitor C0 shown that the best results are achieved for the beam excited to vibration with third natural frequency, but the worst results for the beam oscillating with the first natural frequency.

  10. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    Science.gov (United States)

    Murray, Gabriel; Gandhi, Farhan

    2010-04-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer.

  11. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  12. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  13. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  14. A Layer Correlation technique for pion energy calibration at the 2004 ATLAS Combined Beam Test

    CERN Document Server

    INSPIRE-00433248; Abdallah, J.M.; Addy, T.N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T.P.A.; Aleksa, M.; Alexa, C.; Anderson, K.; Andreazza, A.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Atkinson, T.; Baines, J.; Baker, O.K.; Banfi, D.; Baron, S.; Barr, A.J.; Beccherle, R.; Beck, H.P.; Belhorma, B.; Bell, P.J.; Benchekroun, D.; Benjamin, D.P.; Benslama, K.; Bergeaas Kuutmann, E.; Bernabeu, J.; Bertelsen, H.; Binet, S.; Biscarat, C.; Boldea, V.; Bondarenko, V.G.; Boonekamp, M.; Bosman, M.; Bourdarios, C.; Broklova, Z.; Burckhart Chromek, D.; Bychkov, V.; Callahan, J.; Calvet, D.; Canneri, M.; Capeans Garrido, M.; Caprini, M.; Cardiel Sas, L.; Carli, T.; Carminati, L.; Carvalho, J.; Cascella, M.; Castillo, M.V.; Catinaccio, A.; Cauz, D.; Cavalli, D.; Cavalli Sforza, M.; Cavasinni, V.; Cetin, S.A.; Chen, H.; Cherkaoui, R.; Chevalier, L.; Chevallier, F.; Chouridou, S.; Ciobotaru, M.; Citterio, M.; Clark, A.; Cleland, B.; Cobal, M.; Cogneras, E.; Conde Muino, P.; Consonni, M.; Constantinescu, S.; Cornelissen, T.; Correard, S.; Corso Radu, A.; Costa, G.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Cwetanski, P.; Da Silva, D.; Dam, M.; Dameri, M.; Danielsson, H.O.; Dannheim, D.; Darbo, G.; Davidek, T.; De, K.; Defay, P.O.; Dekhissi, B.; Del Peso, J.; Del Prete, T.; Delmastro, M.; Derue, F.; Di Ciaccio, L.; Di Girolamo, B.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Dobos, D.; Dobson, M.; Dolgoshein, B.A.; Dotti, A.; Drake, G.; Drasal, Z.; Dressnandt, N.; Driouchi, C.; Drohan, J.; Ebenstein, W.L.; Eerola, P.; Efthymiopoulos, I.; Egorov, K.; Eifert, T.F.; Einsweiler, K.; El Kacimi, M.; Elsing, M.; Emelyanov, D.; Escobar, C.; Etienvre, A.I.; Fabich, A.; Facius, K.; Fakhr-Edine, A.I.; Fanti, M.; Farbin, A.; Farthouat, P.; Fassouliotis, D.; Fayard, L.; Febbraro, R.; Fedin, O.L.; Fenyuk, A.; Fergusson, D.; Ferrari, P.; Ferrari, R.; Ferreira, B.C.; Ferrer, A.; Ferrere, D.; Filippini, G.; Flick, T.; Fournier, D.; Francavilla, P.; Francis, D.; Froeschl, R.; Froidevaux, D.; Fullana, E.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, M.; Gallop, B.J.; Gameiro, S.; Gan, K.K.; Garcia, R.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Ghodbane, N.; Giakoumopoulou, V.; Giangiobbe, V.; Giokaris, N.; Glonti, G.; Gottfert, T.; Golling, T.; Gollub, N.; Gomes, A.; Gomez, M.D.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gorini, B.; Goujdami, D.; Grahn, K.J.; Grenier, P.; Grigalashvili, N.; Grishkevich, Y.; Grosse-Knetter, J.; Gruwe, M.; Guicheney, C.; Gupta, A.; Haeberli, C.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Hance, M.; Hansen, J.D.; Hansen, P.H.; Hara, K.; Harvey, A., Jr; Hawkings, R.J.; Heinemann, F.E.W.; Henriques Correia, A.; Henss, T.; Hervas, L.; Higon, E.; Hill, J.C.; Hoffman, J.; Hostachy, J.Y.; Hruska, I.; Hubaut, F.; Huegging, F.; Hulsbergen, W.; Hurwitz, M.; Iconomidou-Fayard, L.; Jansen, E.; Jen-La Plante, I.; Johansson, P.D.C.; Jon-And, K.; Joos, M.; Jorgensen, S.; Joseph, J.; Kaczmarska, A.; Kado, M.; Karyukhin, A.; Kataoka, M.; Kayumov, F.; Kazarov, A.; Keener, P.T.; Kekelidze, G.D.; Kerschen, N.; Kersten, S.; Khomich, A.; Khoriauli, G.; Khramov, E.; Khristachev, A.; Khubua, J.; Kittelmann, T.H.; Klingenberg, R.; Klinkby, E.B.; Kodys, P.; Koffas, T.; Kolos, S.; Konovalov, S.P.; Konstantinidis, N.; Kopikov, S.; Korolkov, I.; Kostyukhin, V.; Kovalenko, S.; Kowalski, T.Z.; Kruger, K.; Kramarenko, V.; Kudin, L.G.; Kulchitsky, Y.; Lacasta, C.; Lafaye, R.; Laforge, B.; Lampl, W.; Lanni, F.; Laplace, S.; Lari, T.; Le Bihan, A.C.; Lechowski, M.; Ledroit-Guillon, F.; Lehmann, G.; Leitner, R.; Lelas, D.; Lester, C.G.; Liang, Z.; Lichard, P.; Liebig, W.; Lipniacka, A.; Lokajicek, M.; Louchard, L.; Lourerio, K.F.; Lucotte, A.; Luehring, F.; Lund-Jensen, B.; Lundberg, B.; Ma, H.; Mackeprang, R.; Maio, A.; Maleev, V.P.; Malek, F.; Mandelli, L.; Maneira, J.; Mangin-Brinet, M.; Manousakis, A.; Mapelli, L.; Marques, C.; Marti i Garcia, S.; Martin, F.; Mathes, M.; Mazzanti, M.; McFarlane, K.W.; McPherson, R.; Mchedlidze, G.; Mehlhase, S.; Meirosu, C.; Meng, Z.; Meroni, C.; Mialkovski, V.; Mikulec, B.; Milstead, D.; Minashvili, I.; Mindur, B.; Mitsou, V.A.; Moed, S.; Monnier, E.; Moorhead, G.; Morettini, P.; Morozov, S.V.; Mosidze, M.; Mouraviev, S.V.; Moyse, E.W.J.; Munar, A.; Myagkov, A.; Nadtochi, A.V.; Nakamura, K.; Nechaeva, P.; Negri, A.; Nemecek, S.; Nessi, M.; Nesterov, S.Y.; Newcomer, F.M.; Nikitine, I.; Nikolaev, K.; Nikolic-Audit, I.; Ogren, H.; Oh, S.H.; Oleshko, S.B.; Olszowska, J.; Onofre, A.; Padilla Aranda, C.; Paganis, S.; Pallin, D.; Pantea, D.; Paolone, V.; Parodi, F.; Parsons, J.; Parzhitskiy, S.; Pasqualucci, E.; Passmored, S.M.; Pater, J.; Patrichev, S.; Peez, M.; Perez Reale, V.; Perini, L.; Peshekhonov, V.D.; Petersen, J.; Petersen, T.C.; Petti, R.; Phillips, P.W.; Pina, J.; Pinto, B.; Podlyski, F.; Poggioli, L.; Poppleton, A.; Poveda, J.; Pralavorio, P.; Pribyl, L.; Price, M.J.; Prieur, D.; Puigdengoles, C.; Puzo, P.; Rohne, O.; Ragusa, F.; Rajagopalan, S.; Reeves, K.; Reisinger, I.; Rembser, C.; Bruckman de Renstrom, P.A.; Reznicek, P.; Ridel, M.; Risso, P.; Riu, I.; Robinson, D.; Roda, C.; Roe, S.; Rohne, O.; Romaniouk, A.; Rousseau, D.; Rozanov, A.; Ruiz, A.; Rusakovich, N.; Rust, D.; Ryabov, Y.F.; Ryjov, V.; Salto, O.; Salvachua, B.; Salzburger, A.; Sandaker, H.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Saraiva, J.G.; Sarri, F.; Sauvage, G.; Says, L.P.; Schaefer, M.; Schegelsky, V.A.; Schiavi, C.; Schieck, J.; Schlager, G.; Schlereth, J.; Schmitt, C.; Schultes, J.; Schwemling, P.; Schwindling, J.; Seixas, J.M.; Seliverstov, D.M.; Serin, L.; Sfyrla, A.; Shalanda, N.; Shaw, C.; Shin, T.; Shmeleva, A.; Silva, J.; Simion, S.; Simonyan, M.; Sloper, J.E.; Smirnov, S.Yu; Smirnova, L.; Solans, C.; Solodkov, A.; Solovianov, O.; Soloviev, I.; Sosnovtsev, V.V.; Spano, F.; Speckmayer, P.; Stancu, S.; Stanek, R.; Starchenko, E.; Straessner, A.; Suchkov, S.I.; Suk, M.; Szczygiel, R.; Tarrade, F.; Tartarelli, F.; Tas, P.; Tayalati, Y.; Tegenfeldt, F.; Teuscher, R.; Thioye, M.; Tikhomirov, V.O.; Timmermans, C.J.W.P.; Tisserant, S.; Toczek, B.; Tremblet, L.; Troncon, C.; Tsiareshka, P.; Tyndel, M.; Karagoez Unel, M.; Unal, G.; Unel, G.; Usai, G.; Van Berg, R.; Valero, A.; Valkar, S.; Valls, J.A.; Vandelli, W.; Vannucci, F.; Vartapetian, A.; Vassilakopoulos, V.I.; Vasilyeva, L.; Vazeille, F.; Vernocchi, F.; Vetter-Cole, Y.; Vichou, I.; Vinogradov, V.; Virzi, J.; Vivarelli, I.; de Vivie, J.B.; Volpi, M.; Vu Anh, T.; Wang, C.; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wells, P.S.; Werner, P.; Wheeler, S.; Wiessmann, M.; Wilkens, H.; Williams, H.H.; Wingerter-Seez, I.; Yasu, Y.; Zaitsev, A.; Zenin, A.; Zenis, T.; Zenonos, Z.; Zhang, H.; Zhelezko, A.; Zhou, N.

    2011-01-01

    A new method for calibrating the hadron response of a segmented calorimeter is developed and successfully applied to beam test data. It is based on a principal component analysis of the calorimeter layer energy deposits, exploiting longitudinal shower development information to improve the measured energy resolution. Corrections for invisible hadronic energy and energy lost in dead material in front of and between the calorimeters of the ATLAS experiment were calculated with simulated Geant4 Monte Carlo events and used to reconstruct the energy of pions impinging on the calorimeters during the 2004 Barrel Combined Beam Test at the CERN H8 area. For pion beams with energies between 20 and 180 GeV, the particle energy is reconstructed within 3% and the energy resolution is improved by 11% to 25% compared to the response at the electromagnetic scale.

  15. Energy dependence evaluation of the patient dose calibrator

    Science.gov (United States)

    Costa, N. A.; Potiens, M. P. A.

    2014-02-01

    The aim of this paper was to evaluate the energy dependence of the kerma-area product meter Patient Dose Calibrator (PDC). The research was done using the calculation of the coefficient calibration of the air kerma values of different energies that are related to the radiation qualities provided on the International Standard of the International Electrotechnical Commission IEC 61267 for conventional X-rays, mammography and computerized tomography (CT), established at the Calibration Laboratory of IPEN. The calibration was made using reference ionization chambers with traceability to the Primary Laboratory Physikalisch-Technische Bundesanstalt (PTB), Germany. The energy dependence of the PDC was determined and the results showed that the PDC has small energy dependence, less than 6%, for the range of recommended energy while to the mammography range the values were 16% and for CT qualities the dependence was 1%.

  16. Polarization of high-energy electrons traversing a laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Kotkin, G.L.; Serbo, V.G. [Novosibirsk State Univ. (Russian Federation). Phys. Dept.; Perlt, H. [Institut fuer Theoretische Physik, Leipzig University, 04109, Leipzig, BRD (Germany)

    1998-02-21

    When polarized electrons traverse a region where the laser light is focused their polarization varies even if their energy and direction of motion are not changed. This effect is due to interference of the incoming electron wave and an electron wave scattered at zero angle. Equations are obtained which determine the variation of the electron-density matrix, and their solutions are given. The change in the electron polarization depends not only on the Compton cross section but on the real part of the forward Compton amplitude as well. It should be taken into account, for example, in simulations of the e{yields}{gamma} conversion for future {gamma}{gamma} colliders. (orig.). 16 refs.

  17. Control of beam dynamics in high energy induction linacs

    Science.gov (United States)

    Caporaso, G. J.

    1986-07-01

    The Advent of laser-ion-guiding in the Advanced test Accelerator along with the development of accelerator cavities optimized with respect to beam breakup coupling impedence now make it possible to consider a new class of high current, high emergy linear induction accelerators. The control of the beam breakup and other instabilities by laser guiding and by various magnetic focusing schemes will be discussed along with the scaling laws for the design of such machines to minimize the growth of the beam breakup instability. Many linacs, particularly induction linacs are limited in performance by the beam breakup (BBU) instability. The instability is found in two forms. In the first form the accelerating cavities communicate with one another through interaction with the beam and through propagation of cavity fields through the accelerator structure. In the second form which is the more virulent of the two, the cavities couple to each other only through their interactions with the beam. It is this second form of PPU that will be discussed in this paper.

  18. The properties of low energy neutral particles in a neutral beam source: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-hoon, E-mail: physh@kaist.ac.k [Department of Physics, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Yoo, Suk Jae [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Chang, Choong-Seock [Department of Physics, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Courant Institute of Mathematical Sciences, New York University, Mercer Street, New York, NY 10012 (United States)

    2010-09-01

    Application of a hyperthermal neutral beam source is one of the candidate methods of reducing plasma induced damage problems. The neutral beam is generated by vertical collisions between energetic ions and a reflector composed of metal. However, it is difficult to measure the neutral angle and energy distribution experimentally. We simulate the hyperthermal neutral beam (HNB) generation using a molecular dynamics algorithm. In order to obtain a low energy neutral beam, ions with various energies are vertically projected onto the reflector surface. A rough surface structure that has been experimentally measured is used for a realistic simulation. The energy distributions are obtained and the ratio of energy of reflected neutral particles agrees with experimental data.

  19. Energy Dependence of String Fragmentation Function and φ Meson Production

    Institute of Scientific and Technical Information of China (English)

    SA Ben-Hao; CAI Xu; Chinorat Kobdaj; WANG Zhong-Qi; YAN Yu-Peng; ZHOU Dai-Mei

    2004-01-01

    The φ meson productions in A u+A u and/or P b+Pb collisions at AGS, SPS, RHIC, and LHC energies have been studied systematically with a hadron and string cascade model LUCIAE.After considering the energy dependence of the model parameter α in string fragmentation function and adjusting it to the experimental data of charged multiplicity to a certain extent, the model predictions for φ meson yield, rapidity, and transverse mass distributions are compatible with the experimental data at AGS, SPS and RHIC energies. A calculation for Pb+Pb collisions at LHC energy is given as well. The obtained fractional variable in string fragmentation function shows a saturation in energy dependence. It is discussed that the saturation of fractional variable in string fragmentation function might be a qualitative representation of the energy dependence of nuclear transparency.

  20. Spatial distributions of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence.

    Science.gov (United States)

    Li, Jianlong; Lü, Baida; Zhu, Shifu

    2009-07-06

    The formulas of the energy and energy flux density of partially coherent electromagnetic beams in atmospheric turbulence are derived by using Maxwell's equations. Expressions expressed by elements of electric cross spectral density matrixes of the magnetic and the mutual cross spectral density matrix are obtained for the partially coherent electromagnetic beams. Taken the partially coherent Cosh-Gaussian (ChG) electromagnetic beam as a typical example, the spatial distributions of the energy and energy flux density in atmospheric turbulence are numerically calculated. It is found that the turbulence shows a broadening effect on the spatial distributions of the energy and energy flux density. Some interesting results are obtained and explained with regard to their physical nature.

  1. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    Science.gov (United States)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  2. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non

  3. Non-Gaussian beam dynamics in low energy antiproton storage rings

    Science.gov (United States)

    Resta-López, J.; Hunt, J. R.; Welsch, C. P.

    2016-10-01

    In low energy antiproton facilities, where electron cooling is fundamental, the cooling forces together with heating phenomena causing emittance blow-up, such as Intra Beam Scattering (IBS), result in highly non-Gaussian beam distributions. In these cases, a precise simulation of IBS effects is essential to realistically evaluate the long term beam evolution, taking into account the non-Gaussian characteristics of the beam. Here, we analyse the beam dynamics in the Extra Low ENergy Antiproton ring (ELENA), which is a new small synchrotron currently being constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Simulations are performed using the code BETACOOL, comparing different models of IBS.

  4. Fragmentation Cross Sections of 12C on Different Targets at Beam Energies from 50 to 100 MeV/Nucleon

    Institute of Scientific and Technical Information of China (English)

    BIAN Bao-An; ZHANG Feng-Shou; ZHOU Hong-Yu

    2008-01-01

    The fragmentation cross sections of reactions 12C+2H,12C,14N,16O at beam energies from 50 to 100 MeV/nucleon are investigated using the isospin-dependent Boltzmann-Langevin equation model.It is found that fragment species increase approximately with the increasing target mass.The fragment species and some fragments production cross sections in reactions of 12C+12C,14N,16O show an obvious variation at the beam energies from 50 to 80 MeV/nucleon.However the calculated fragment production cross sections do not change much when the incident energy increases from 80 to 100 MeV/nucleon.

  5. Z-dependence of thick-target bremsstrahlung produced by monoenergetic low-energy electrons

    Science.gov (United States)

    Czarnecki, S.; Short, A.; Williams, S.

    2016-07-01

    The dependence of thick-target bremsstrahlung emitted by low-energy beams of monoenergetic electrons on the atomic number of the target material has been investigated experimentally for incident electron energies of 4.25 keV and 5.00 keV using thick aluminum, copper, silver, tungsten, and gold targets. Experimental data suggest that the intensity of the thick-target bremsstrahlung emitted is more strongly dependent on the atomic number of the target material for photons with energies that are approximately equal to the energy of the incident electrons than at lower energies, and also that the dependence of thick-target bremsstrahlung on the atomic number of the target material is stronger for incident electrons of higher energies than for incident electrons of lower energies. The results of the experiments are compared to the results of simulations performed using the PENELOPE program (which is commonly used in medical physics) and to thin-target bremsstrahlung theory, as well. Comparisons suggest that the experimental dependence of thick-target bremsstrahlung on the atomic number of the target material may be slightly stronger than the results of the PENELOPE code suggest.

  6. The beam energy feedback system for Beijing electron positron collider II linac.

    Science.gov (United States)

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  7. Nuclear Effects in Neutrino Interactions with Minimal Neutrino Energy Dependence -- A NuWro Truth Study

    CERN Document Server

    Pickering, Luke

    2016-01-01

    We present a Monte Carlo truth study examining nuclear effects in charged-current neutrino interactions using observables constructed in the transverse plane. Three distributions are introduced that show very weak dependence on neutrino flux and its associated uncertainty. Measurements comparing these distributions between quasi-elastic-like and single charged pion final states will provide new constraints of nuclear effects. It is suggested that the on-axis position in the NuMI beam provides the correct flux to take advantage of this reduced energy dependence in measuring nuclear effect-generated transverse imbalances.

  8. Cross-beam energy transfer to a single f-20 beam: simulations of previous and upcoming experiments

    Science.gov (United States)

    Chapman, Thomas; Turnbull, David; Kirkwood, Robert; Michel, Pierre; Wilks, Scott; Berger, Richard; Hinkel, Denise; Moody, John; Langer, Steve; Langdon, Bruce; Strozzi, David

    2016-10-01

    Motivated by materials research applications, cross-beam energy transfer can be used to transfer energy from one or more quads of beamlets at the NIF, which have an effective f-number of 8, to a single f-20 beam. Using plasma comprised of a preheated C5H12 gasbag, a preliminary experiment at the NIF demonstrated amplification of a 750 J f-20 beam by a factor of 2 in both power and energy. A witness plate providing gated x-ray images was used to obtain total energies and transmitted spot intensities for the pump quad, seed beamlet, and a calibration quad. These experimental diagnostics offer the opportunity to perform quantitative comparisons with simulations. We use the laser-plasma interaction code pF3D to simulate the energy transfer process, using plasma conditions obtained from the plasma hydrodynamics code HYDRA. Our simulations of the completed single-pump quad experiment recover the measured seed amplification and transmitted spot power distributions. We also show simulation results for the upcoming two-pump quad experiment.

  9. Effect of the density dependent symmetry energy on fragmentation

    CERN Document Server

    Vinayak, Karan Singh

    2011-01-01

    The effect of the density dependence of symmetry energy on fragmentation is studied using isospin-dependent quantum molecular dynamics model(IQMD) Model. We have used the reduced isospin-dependent cross-section with soft equation of state to explain the experimental findings for the system 79_Au^197 + 79_Au^197 for the full colliding geometry. In addition to that we have tried to study the collective response of the momentum dependent interactions(MDI) and symmetry energy towards the multifragmentation

  10. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  11. Electron-beam-induced deposition of platinum at low landing energies

    NARCIS (Netherlands)

    Botman, A.; De Winter, D.A.M.; Mulders, J.J.L.

    2008-01-01

    Electron-beam-induced deposition of platinum from methylcyclopentadienyl-platinum-trimethyl was performed with a focused electron beam at low landing energies, down to 10 eV. The deposition growth rate is maximal at 140 eV, with the process being over ten times more efficient than at 20 kV. No signi

  12. Guide on the use of low energy electron beams for microbiological decontamination of surfaces

    DEFF Research Database (Denmark)

    Miller, Arne; Helt-Hansen, Jakob; Gondim, Ondina

    This Guide describes the validation and routine monitoring of microbiological decontamination of surfaces by low energy electron beams (100-200 keV). The Guide is mainly based on experience gained in connection with installation of electron beam systems for surface decontamination of pre...

  13. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    Science.gov (United States)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  14. Separable representation of energy-dependent optical potentials

    Science.gov (United States)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  15. Energy and charge dependence of the rate of electron-ion recombination in cold magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.; Schuch, R.; Zong, W.; Justiniano, E.; DeWitt, D.R.; Lebius, H.; Spies, W. [Stockholm Univ., Atomic Physics Dept., Stockholm (Sweden)

    1997-07-28

    We have measured electron-ion recombination rates for bare ions of D{sup +}, He{sup 2+}, N{sup 7+}, Ne{sup 10+} and Si{sup 14+} in a storage ring. For the multi-charged ions an unexpected energy dependence was found, showing a strong increase of the measured rates over the calculated radiative recombination rate for electron beam detuning energies below the electron beam transverse temperature. The measured enhanced rates increase approximately as Z{sup 2.8} with the charge state Z. A comparison of these rates with theoretical predictions for collisional-radiative recombination in the cold magnetized electron plasma, in particular three-body recombination including radiative de-excitation of electrons in Rydberg levels, is made. (author).

  16. Sub-microsecond beam notching at low energy

    Energy Technology Data Exchange (ETDEWEB)

    Moehs, D.P.; /Fermilab

    2005-09-01

    A technique for creating a burst of 100 ns notches (beam extinctions) in an H{sup -} beam at 454 kHz has been developed at {le} 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-} 700 volts creating a 1400 volt gradient across the extractor. A beam current reduction of better than 95% has been observed at the end of the Fermilab 400 MeV Linac. Notched multi-turn charge-exchange injection into the Booster, a 400 MeV to 8 GeV synchrotron, has been demonstrated with a charge reduction in the resulting beam gap of 83%. Presently, the trailing edge of the notch may be adversely affected by space charge resulting in a beam recovery with two different time constants. Efforts to minimize this effect are discussed.

  17. Determination of the LEP Beam Energy using Radiative Fermion-pair Events, 2004

    CERN Document Server

    Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2004-01-01

    We present a determination of the LEP beam energy using "radiative return" fermion-pair events recorded at centre-of-mass energies from 183 GeV to 209 GeV. We find no evidence of a disagreement between the OPAL data and the LEP Energy Workings Group's standard calibration. Including the energy- averaged 11 MeV uncertainty in the standard determination, the beam energy we obtain from the OPAL data is higher than that obtained from the LEP calibration by 0+-34(stat.)+-27(syst.)MeV

  18. Energy saving estimation on radiation process. Electron beam curing of paint

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Hideaki (Nihon Parkerizing Co., Ltd., Tokyo); Maekawa, H.; Ito, Y.; Nishikawa, I.; Fujii, H.; Murata, K.

    1982-01-01

    When the quantity of paint used for industrial coating is assumed to be 420,000 tons, it is estimated that the area being coated is 2.8 billion m/sup 2/, the petroleum required for pretreatment steam, drying and baking is 1.68 million tons, and the required amount of energy saving is 120,000 tons per year in terms of petroleum. The authors examined how the adoption of electron beam curing for surface coating contributes to the energy saving. So far, it has been said that electron beam curing is more efficient than thermal or light curing in energy consumption, but the premise condition was not clear. The theoretical energy requirement for thermal curing, light curing and electron beam curing was calculated and compared. The comparison of the measured values was also performed. The amount of energy required for thermal curing, UV light curing and electron beam curing was roughly 100:10:1, and the cost of energy for them was 50:5:1. In spite of the large merit of electron beam curing, it has not spread as expected, because of the repayment cost of the facility and the cost of inert gas required for the process. Energy saving is brought about by electron beam curing, but the overall cost must be examined case by case.

  19. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Science.gov (United States)

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  20. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question.

    Science.gov (United States)

    Yang, X; Brunetti, E; Gil, D Reboredo; Welsh, G H; Li, F Y; Cipiccia, S; Ersfeld, B; Grant, D W; Grant, P A; Islam, M R; Tooley, M P; Vieux, G; Wiggins, S M; Sheng, Z M; Jaroszynski, D A

    2017-03-10

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

  1. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    2011-01-01

    We have studied sulfuric acid aerosol nucleation in an atmospheric pressure reaction chamber using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear contribution from ion-induced nucleation and consider this to be the first unambiguous observation of the ion......-effect on aerosol nucleation using a particle beam under conditions that resemble the Earth's atmosphere. By comparison with ionization using a gamma source we further show that the nature of the ionizing particles is not important for the ion-induced component of the nucleation. This implies that inexpensive...... ionization sources - as opposed to expensive accelerator beams - can be used for investigations of ion-induced nucleation....

  2. Isospin dependence of balance energy in heavy-ion collisions

    CERN Document Server

    Kaur, Varinderjit; Kumar, Suneel

    2011-01-01

    Based on the isospin-dependent quantum molecular dynamics (IQMD) picture, we attempt to understand the nature of transverse flow in $_{28}Ni^{58}+_{28}Ni^{58}$ and $_{26}Fe^{58}+_{26}Fe^{58}$ systems at wide range of energies and impact parameters. The isospin dependence of balance energy in transverse flow is clearly visible. The results are compared with the experimental data available.

  3. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, M. R., E-mail: mrvasquez@coe.upd.edu.ph [Department of Mining, Metallurgical, and Materials Engineering, College of Engineering, University of the Philippines, Diliman, Quezon City 1101 (Philippines); Wada, M. [Graduate School of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  4. Precision shape modification of nanodevices with a low-energy electron beam

    Science.gov (United States)

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  5. Chromaticity of the lattice and beam stability in energy-recovery linacs

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  6. The influence of an extrapolation chamber over the low energy X-ray beam radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Tanuri de F, M. T.; Da Silva, T. A., E-mail: mttf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Pampulha, Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The extrapolation chambers are detectors whose sensitive volume can be modified by changing the distance between the electrodes and has been widely used for beta particles primary measurement system. In this work, was performed a PTW 23392 extrapolation chamber Monte Carlo simulation, by mean the MCNPX code. Although the sensitive volume of an extrapolation chamber can be reduced to very small size, their packaging is large enough to modify the radiation field and change the absorbed dose measurements values. Experiments were performed to calculate correction factors for this purpose. The validation of the Monte Carlo model was done by comparing the spectra obtained with a CdTe detector according to the ISO 4037 criteria. Agreements smaller than 5% for half value layers, 10% for spectral resolution and 1% for mean energy, were found. It was verified that the correction factors are dependent of the X-ray beam quality. (Author)

  7. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    CERN Document Server

    Yang Hai Liang; Zhang Jia Sheng; Huang Jian Jun; Sun Jian Feng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  8. The angular dependence of an Si energy deposition spectrometer response at several radiation sources

    CERN Document Server

    Spurny, F; Trompier, F

    2005-01-01

    An MDU-Liulin spectrometer based on an Si-diode was mainly used during the last few years with the goal to use them for measurements onboard aircraft. To investigate its ability to obtain such measurements, the detector was tested in some radiation reference fields, like /sup 60/Co and other photon beams, neutrons of an AmBe and /sup 252/Cf sources and in high-energy radiation fields at CERN. Due to the high geometrical asymmetry of the Si-diode semiconductor, an angular dependence of the response would be expected. This work presents analyses and discusses the results of angular dependence studies obtained at the different radiation sources mentioned. It was found that these angular dependences vary with the type and energy of radiation. The influence of these variations on the use as a dosimeter onboard aircraft is also studied and discussed.

  9. A novel rice transformation method mediated by low energy ion beam

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Transfer the foreign DNA into rice via ion beam was first reported in 1994 in our lab. In this study, we aimed to establish an efficient transformation system mediated by low energy ion beam. Factors influenced the transformation were carefully investigated, including type of ion, parameters of ion energy, dose and dose rate, and plant genotype and receptors. Molecular and genetic characterization of a large number of these plants (more than 250 independent transgenic plants) provided the basis information of this system.

  10. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  11. A random energy model for size dependence : recurrence vs. transience

    NARCIS (Netherlands)

    Külske, Christof

    1998-01-01

    We investigate the size dependence of disordered spin models having an infinite number of Gibbs measures in the framework of a simplified 'random energy model for size dependence'. We introduce two versions (involving either independent random walks or branching processes), that can be seen as gener

  12. State dependent matrices and balanced energy functions for nonlinear systems

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Gray, W. Steven

    2000-01-01

    The nonlinear extension of the balancing procedure requires the case of state dependent quadratic forms for the energy functions, i.e., the nonlinear extensions of the linear Gramians are state dependent matrices. These extensions have some interesting ambiguities that do not occur in the linear cas

  13. Application of Energy Finite Element Method in Active Vibration Control of Piezoelectric Intelligent Beam

    Directory of Open Access Journals (Sweden)

    Jinhua Xie

    2012-01-01

    Full Text Available Based on the transmission and equilibrium relationship of vibration energy in beam-like structures, the Galerkin weighted residual method was applied to equation discretization. An equivalent transformation of feedback element was suggested to develop the Energy Finite Element model of a composite piezoelectric cantilever beam driven by harmonic excitation on lateral direction, with both systems with and without time delay being studied and the power input estimation of harmonic excitation was discussed for the resolution of Energy Finite Element function. Then the energy density solutions of the piezoelectric coupling beam through Energy Finite Element Method (EFEM and classical wave theory were compared to verify the EFEM model, which presented a good accordance. Further investigation was undertaken about the influence of control parameters including the feedback gain and arrangement of piezoelectric patches on characteristics of system energy density distribution.

  14. High Energy Electron Reconstruction in the BeamCal

    CERN Document Server

    Sailer, Andre

    2016-01-01

    This note discusses methods of particle reconstruction in the forward region detectors of future e+ e− linear colliders such as ILC or CLIC. At the nominal luminosity the innermost electromagnetic calorimeters undergo high particle fluxes from the beam-induced background. In this prospect, different methods of the background simulation and signal electron reconstruction are described.

  15. Wien filter for cooled low-energy radioactive ion beams

    NARCIS (Netherlands)

    Nummela, S; Dendooven, P; Heikkinen, P; Huikari, J; Nieminen, A; Jokinen, A; Rinta-Antila, S; Rubchenya, V.; Aysto, J

    2002-01-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q = +2-->q = +1 charge exchange process in an ion cooler, T

  16. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis.

  17. Implement and commissioning of the beam energy feedback system in BEPCII linac

    CERN Document Server

    Wang, Shaozhe; Liu, Rong; Huang, Xuefang; Qian, Lei

    2016-01-01

    In order to ensure the beam quality and meet the requirements introduced by the BEPCII storage ring, the beam energy feedback system has been developed at the exit of the linac. This paper describes the implementation and commissioning of this system in detail. The energy feedback system consists of an energy measurement unit, an application software and an execution unit. In order to ensure the real-time monitoring and adjustment of beam energy, we need to introduce a non-interceptive type of online beam energy measurement method which is on the first try in China and the effective mechanism of energy adjustment to achieve this goal. The adjustment of energy is achieved by adjusting the output microwave phase of the RF power source station. The system was put into operation in March 16th, 2016 and achieved the desired results. It can effectively eliminate the low point of the injection rate caused by the fluctuation of the beam center energy and has played an important role in maintaining a high constant inj...

  18. Modelling temperature and concentration dependent solid/liquid interfacial energies

    Science.gov (United States)

    Lippmann, Stephanie; Jung, In-Ho; Paliwal, Manas; Rettenmayr, Markus

    2016-01-01

    Models for the prediction of the solid/liquid interfacial energy in pure substances and binary alloys, respectively, are reviewed and extended regarding the temperature and concentration dependence of the required thermodynamic entities. A CALPHAD-type thermodynamic database is used to introduce temperature and concentration dependent melting enthalpies and entropies for multicomponent alloys in the temperature range between liquidus and solidus. Several suitable models are extended and employed to calculate the temperature and concentration dependent interfacial energy for Al-FCC with their respective liquids and compared with experimental data.

  19. Analytical solution for beam with time-dependent boundary conditions versus response spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gou, P.F.; Panahi, K.K. [GE Nuclear Energy, San Jose, CA (United States)

    2001-07-01

    This paper studies the responses of a uniform simple beam for which the supports are subjected to time-dependent conditions. Analytical solution in terms of series was presented for two cases: (1) Two supports of a simple beam are subjected to a harmonic motion, and (2) One of the two supports is stationary while the other is subjected to a harmonic motion. The results of the analytical solution were investigated and compared with the results of conventional response spectrum method using the beam finite element model. One of the applications of the results presented in this paper can be used to assess the adequacy and accuracy of the engineering approaches such as response spectra methods. It has been found that, when the excitation frequency equals the fundamental frequency of the beam, the results from response spectrum method are in good agreement with the exact calculation. The effects of initial conditions on the responses are also examined. It seems that the non-zero initial velocity has pronounced effects on the displacement time histories but it has no effect on the maximum accelerations. (author)

  20. Separable Representation of Energy-Dependent Optical Potentials

    CERN Document Server

    Hlophe, Linda

    2015-01-01

    Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity e...

  1. Charge state dependent fragmentation of gaseous [alpha]-synuclein cations via ion trap and beam-type collisional activation

    Science.gov (United States)

    Chanthamontri, Chamnongsak; Liu, Jian; McLuckey, Scott A.

    2009-06-01

    Ions derived from nano-electrospray ionization (nano-ESI) of [alpha]-synuclein, a 14.5 kDa, 140 amino acid residue protein that is a major component of the Lewy bodies associated with Parkinson's disease, have been subjected to ion trap and beam-type collisional activation. The former samples products from fragmentation at rates generally lower than 100 s-1 whereas the latter samples products from fragmentation at rates generally greater than 103 s-1. A wide range of protein charge states spanning from as high as [M+17H]17+ to as low as [M+4H]4+ have been formed either directly from nano-ESI or via ion/ion proton transfer reactions involving the initially formed protein cations and have been subjected to both forms of collision-induced dissociation (CID). The extent of sequence information (i.e., number of distinct amide bond cleavages) available from either CID method was found to be highly sensitive to protein precursor ion charge state. Furthermore, the relative contributions of the various competing dissociation channels were also dependent upon precursor ion charge state. The qualitative trends in the changes in extent of amide bond cleavages and identities of bonds cleaved with precursor ion charge state were similar for two forms of CID. However, for every charge state examined, roughly twice the primary sequence information resulted from beam-type CID relative to ion trap CID. For example, evidence for cleavage of 86% of the protein amide bonds was observed for the [M+9H]9+ precursor ion using beam-type CID whereas 41% of the bonds were cleaved for the same precursor ion using ion trap CID. The higher energies required to drive fragmentation reactions at rates necessary to observe products in the beam experiment access more of the structurally informative fragmentation channels, which has important implications for whole protein tandem mass spectrometry.

  2. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  3. Wien filter for cooled low-energy radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Nummela, S. E-mail: saara.nummela@phys.jyu.fi; Dendooven, P.; Heikkinen, P.; Huikari, J.; Nieminen, A.; Jokinen, A.; Rinta-Antila, S.; Rubchenya, V.; Aeystoe, J

    2002-04-01

    A Wien filter for cooled radioactive ion beams has been designed at Ion Guide Isotope Separator On Line technique (IGISOL). The purpose of such device is to eliminate doubly charged ions from the mass separated singly charged ions, based on q=+2{yields}q=+1 charge exchange process in an ion cooler. The performance of the Wien filter has been tested off-line with a discharge ion source as well as on-line with a radioactive beam. The electron capture process of cooled q=+2 ions has been investigated in a radiofrequency quadrupole ion cooler with varying partial pressures of nitrogen. Also, the superasymmetric fission production yields of 68

  4. Aerosol nucleation induced by a high energy particle beam

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke; Uggerhøj, Ulrik I.

    atmospheric conditions using a 580 MeV electron beam to ionize the volume of the reaction chamber. We find a clear and significant contribution from ion induced nucleation and consider this to be an unambiguous observation of the ion-effect on aerosol nucleation using a particle beam under conditions not far......The effect of ions in aerosol nucleation is a subject where much remains to be discovered. That ions can enhance nucleation has been shown by theory, observations, and experiments. However, the exact mechanism still remains to be determined. One question is if the nature of the ionization affects...... the nucleation. This is an essential question since many experiments have been performed using radioactive sources that ionize differently than the cosmic rays which are responsible for the majority of atmospheric ionization. Here we report on an experimental study of sulphuric acid aerosol nucleation under near...

  5. Emittance Scanner Optimization for Low Energy Ion Beams

    CERN Document Server

    Stockli, Martin P

    2005-01-01

    Ion beam emittances are normally measured as two-dimensional distributions of the beam current fraction within a window dx centered at position coordinate x and a window dx' centered at trajectory angle x'. Unthresholded rms emittances evaluated from experimental data are very sensitive to noise, bias, and other undesired signals. Undesired signals occur when particles from outside the measured window dx*dx' contribute to the signal from the particles within the measured window. Increasing the window size increases the desired signal while most undesired contributions remain unchanged. However, the decreasing resolution causes an error in the emittance results, especially in the rms emittance. Using theoretical distributions we will present the tradeoff between resolution and accuracy.

  6. Pseudo Slice Energy Spread in Dynamics of Electron Beams Moving through Magnetic Bends

    CERN Document Server

    Li, Rui

    2014-01-01

    In the previous canonical formulation of beam dynamics for an electron bunch moving ultrarelativistically through magnetic bending systems, we have shown that the transverse dynamics equation for a particle in the bunch has a driving term which behaves as the centrifugal force caused by the particle's initial potential energy due to collective particle interactions within the bunch. As a result, the initial potential energy at the entrance of a bending system, which we call pseudo (kinetic) energy, is indistinguishable from the usual kinetic energy offset from the design energy in its perturbation to particle optics through dispersion and momentum compaction. In this paper, in identifying this centrifugal force on particles as the remnant of the CSR cancellation effect in transverse particle dynamics, we show how the dynamics equation in terms of the canonical momentum for beam motion on a curved orbit is related to the Panofsky-Wenzel theorem for wakefields for beam motion on a straight path. It is shown tha...

  7. Calculation of depth-dose distribution of intermediate energy heavy-ion beams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the characteristics of the interactions between intermediate energy heavy-ion beam and target matter, a method to calculate the depth-dose distribution of heavy-ion beams with intermediate energy (10 -100 MeV/u) is presented. By comparing high energy beams where projectile fragmentation is overwhelm ing with lowenergies where energy straggling is the sole factor instead, a crescent energy spread with increasing depth and a simple fragmentation assumption were included for the depth-dose calculation of the intermediate energy beam. Rel ative depth-dose curves of carbon and oxygen ion beams with intermediate energie s were computed according to the method here. Comparisons between the calculated relative doses and measurements are shown. The calculated Bragg curves, especially the upstream and downstream Bragg peaks, agree with the measured data. Differences between the two results appear only around the peak regions because of th e limitations of the calculation and experimental conditions, but the calculated curves generally reproduce the measured data within the experimental errors. Th e reasons for the divergences were analyzed carefully and the magnitudes of the deviations are given.

  8. Beam-dynamics driven design of the LHeC energy-recovery linac

    Science.gov (United States)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  9. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    Science.gov (United States)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  10. Dependence of Mechanical and Thermal Properties of Thermoplastic Composites on Electron Beam Irradiation

    Science.gov (United States)

    Kim, Sok Won; Park, K.; Lee, S. H.; Kang, J. S.; Kang, K. H.

    2007-06-01

    Since the restrictions for environmental protection being strengthened, thermoplastics reinforced with natural fibers (NF’s), such as jute, kenaf, flax, etc. have appeared as alternatives to chemical plastics for automobile interior materials. In this study, the thermal conductivity, tensile strength, and deformation of several kinds of thermoplastic composites composed of 50% polypropylene (PP) and 50% natural fiber (NF) irradiated by an electron beam (energy: 0.5 MeV, dose: 0 20 kGy) were measured. The length and thickness of PP and NF are 80 ± 10 mm and 40 120 μm, respectively. The results show that the thermal conductivity and the tensile strength changed and became minimum, when the dose of the electron beam was 10 kGy. However, the effect of the dose on the deformation was not clear.

  11. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  12. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread

    CERN Document Server

    Olvegård, Maja; Thibaut, Lefevre; Enrico, Bravin

    Olvegård, M. 2013. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1036. 75 pp. Uppsala. ISBN 978-91-554-8646-4. Following the discovery of the Higgs-like boson at the Large Hadron Collider, there is demand for precision measurements on recent findings. The Compact Linear Collider, CLIC, is a candidate for a future linear electron-positron collider for such precision measurements. In CLIC, the beams will be brought to collisions in the multi-TeV regime through high gradient acceleration with high frequency RF power. A high intensity electron beam, the so-called drive beam, will serve as the power source for the main beam, as the drive beam is decelerated in special structures, from which power is extracted and transfered to the main beam. When the drive beam is decelerated the beam quality deteriorates and the momentum spread increases, which make...

  13. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    Science.gov (United States)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-03-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  14. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Institute of Scientific and Technical Information of China (English)

    XIAO Chen; XU Meng-Xin; HE Shou-Bo; XIA Jia-Wen; HE Yuan; YUAN You-Jin; LU Yuan-Rong; LIU Yong; WANG Zhi-Jun; DU Xiao-Nan; YAO Qing-Gao; LIU Ge

    2012-01-01

    A new linear accelerator system,called the SSC-Linac injector,is being designed at HIRFL (the heavy ion research facility of Lanzhou).As part of the SSC-Linac,the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles,a re-buncher and a diagnose box.The total length of this segment is about 1.75 m.The beam dynamics simulation in MEBT has been studied using the TRACK 3D particlein-cell code,and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces,and that most of the particles can be captured by the final sector focusing cyclotronfor further acceleration.The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail,and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  15. A particle-in-cell mode beam dynamics simulation of medium energy beam transport for the SSC-Linac

    Science.gov (United States)

    Xiao, Chen; He, Yuan; Yuan, You-Jin; Lu, Yuan-Rong; Liu, Yong; Wang, Zhi-Jun; Du, Xiao-Nan; Yao, Qing-Gao; Liu, Ge; Xu, Meng-Xin; He, Shou-Bo; Xia, Jia-Wen

    2012-01-01

    A new linear accelerator system, called the SSC-Linac injector, is being designed at HIRFL (the heavy ion research facility of Lanzhou). As part of the SSC-Linac, the medium energy beam transport (MEBT) consists of seven magnetic quadrupoles, a re-buncher and a diagnose box. The total length of this segment is about 1.75 m. The beam dynamics simulation in MEBT has been studied using the TRACK 3D particle-in-cell code, and the simulation result shows that the beam accelerated from the radio frequency quadrupole (RFQ) matches well with the acceptance of the following drift tube linac (DTL) in both the transverse and longitudinal phase spaces, and that most of the particles can be captured by the final sector focusing cyclotron for further acceleration. The longitudinal emittance of the RFQ and the longitudinal acceptance of the DTL was calculated in detail, and a multi-particle beam dynamics simulation from the ion source to the end of the DTL was done to verify the original design.

  16. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.c [Faculty of Maths and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xu, W. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-10-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  17. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  18. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    CERN Document Server

    Peroni, L; Dallocchio, A

    2011-01-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV pro...

  19. History-Dependent Problems with Applications to Contact Models for Elastic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bartosz, Krzysztof; Kalita, Piotr; Migórski, Stanisław; Ochal, Anna, E-mail: ochal@ii.uj.edu.pl [Jagiellonian University, Faculty of Mathematics and Computer Science (Poland); Sofonea, Mircea [Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (France)

    2016-02-15

    We prove an existence and uniqueness result for a class of subdifferential inclusions which involve a history-dependent operator. Then we specialize this result in the study of a class of history-dependent hemivariational inequalities. Problems of such kind arise in a large number of mathematical models which describe quasistatic processes of contact. To provide an example we consider an elastic beam in contact with a reactive obstacle. The contact is modeled with a new and nonstandard condition which involves both the subdifferential of a nonconvex and nonsmooth function and a Volterra-type integral term. We derive a variational formulation of the problem which is in the form of a history-dependent hemivariational inequality for the displacement field. Then, we use our abstract result to prove its unique weak solvability. Finally, we consider a numerical approximation of the model, solve effectively the approximate problems and provide numerical simulations.

  20. On the Casimir Energy of Frequency Dependent Interactions

    CERN Document Server

    Graham, N; Weigel, H

    2014-01-01

    Vacuum polarization (or Casimir) energies can be straightforwardly computed from scattering data for static field configurations whose interactions with the fluctuating field are frequency independent. In effective theories, however,such interactions are typically frequency dependent. As a consequence, the relationship between scattering data and the Green's function is modified, which may or may not induce additional contributions to the vacuum polarization energy. We discuss several examples that naturally include frequency dependent interactions: (i) scalar electrodynamics with a static background potential, (ii) an effective theory that emerges from integrating out a heavy degree of freedom, and (iii) quantum electrodynamics coupled to a frequency dependent dielectric material. In the latter case, we argue that introducing dissipation as required by the Kramers-Kronig relations requires the consideration of the Casimir energy within a statistical mechanics formalism, while in the absence of dissipation we...

  1. Fiscal 1998 research report. Application technology of next-generation high-density energy beams; 1998 nendo chosa hokokusho. Jisedai komitsudo energy beam riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Survey was made on application technologies of next- generation high-density energy beams. For real application of laser power, application to not exciting source of YAG crystal but machining directly is highly efficient. For generation of semiconductor laser high-power coherent beam, phase synchronization and summing are large technological walls. Short pulse, high intensity and high repeatability are also important. Since ultra-short pulse laser ends before heat transfer to the periphery, it is suitable for precise machining, in particular, ultra-fine machining. To use beam sources as tool for production process, development of transmission, focusing and control technologies, and optical fiber and device is indispensable. Applicable fields are as follows: machining (more than pico seconds), surface modification (modification and functionalization of tribo- materials and biocompatible materials), complex machining, fabrication of quantum functional structured materials (thin film, ultra-fine particle), agriculture, ultra-precise measurement, non-destructive measurement, and coherent chemistry in chemical and environment fields. (NEDO)

  2. Design of the low energy beam transport line for the China spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; OUYANG Hua-Fu; FU Shi-Nian; ZHANG Sua-Shun; HE Wei

    2008-01-01

    The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper.The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.

  3. Design of low energy beam transport for new LANSCE H+ injector

    Science.gov (United States)

    Batygin, Y. K.; Draganic, I. N.; Fortgang, C. M.; Garnett, R. W.; Kurennoy, S. S.; McCrady, R. C.; O'Hara, J. F.; Rybarcyk, L. J.

    2014-07-01

    The present LANSCE injector utilizes two 750-keV Cockcroft-Walton (CW) based injectors for simultaneous injection of H+ and H- beams into 800-MeV accelerator. To reduce long-term operational risks, the new project to replace the existing H+ CW injector with a Radio-Frequency Quadrupole (RFQ) accelerator is underway [1]. The new injector requires a Low-Energy Beam Transport (LEBT). An ion source and 2-solenoid magnetic LEBT have been designed and optimized to transport beams over a wide range of space-charge neutralization and transverse emittance, while allowing sufficient space for diagnostics and a beam deflector. The design layout minimizes the beam size in the LEBT and potential emittance growth due to solenoid aberrations and nonlinear space-charge forces. This paper describes the details of the LEBT design activity.

  4. Design of low energy beam transport for new LANSCE H{sup +} injector

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Y.K., E-mail: batygin@lanl.gov; Draganic, I.N.; Fortgang, C.M.; Garnett, R.W.; Kurennoy, S.S.; McCrady, R.C.; O’Hara, J.F.; Rybarcyk, L.J.

    2014-07-01

    The present LANSCE injector utilizes two 750-keV Cockcroft–Walton (CW) based injectors for simultaneous injection of H{sup +} and H{sup −} beams into 800-MeV accelerator. To reduce long-term operational risks, the new project to replace the existing H{sup +} CW injector with a Radio-Frequency Quadrupole (RFQ) accelerator is underway [1]. The new injector requires a Low-Energy Beam Transport (LEBT). An ion source and 2-solenoid magnetic LEBT have been designed and optimized to transport beams over a wide range of space-charge neutralization and transverse emittance, while allowing sufficient space for diagnostics and a beam deflector. The design layout minimizes the beam size in the LEBT and potential emittance growth due to solenoid aberrations and nonlinear space-charge forces. This paper describes the details of the LEBT design activity.

  5. The Beam Instrumentation and Diagnostic Challenges for LHC Operation at high Energy

    CERN Document Server

    Jones, OR

    2014-01-01

    This contribution will present the role of beam diagnostics in facing the challenges posed by running the LHC close to its design energy of 7TeV. Machine protection will be ever more critical, with the quench level of the magnets significantly reduced, so relying heavily on the beam loss system, abort gap monitor, interlocks on the beam position and fast beam current change system. Non-invasive profile monitoring also becomes more of a challenge, with standard synchrotron light imaging limited by diffraction and rest gas ionization monitoring dominated by space charge effects. There is also a requirement to better understand beam instabilities, of which several were observed during Run I, leading to the need for synchronised bunch-by-bunch, turn-by-turn information from many distributed instrumentation systems. All of these challenges will be discussed along with the strategies adopted to overcome them.

  6. Searching for Minimum in Dependence of Squared Speed-of-Sound on Collision Energy

    Directory of Open Access Journals (Sweden)

    Fu-Hu Liu

    2016-01-01

    Full Text Available Experimental results of the rapidity distributions of negatively charged pions produced in proton-proton (p-p and beryllium-beryllium (Be-Be collisions at different beam momentums, measured by the NA61/SHINE Collaboration at the super proton synchrotron (SPS, are described by a revised (three-source Landau hydrodynamic model. The squared speed-of-sound parameter cs2 is then extracted from the width of rapidity distribution. There is a local minimum (knee point which indicates a softest point in the equation of state (EoS appearing at about 40A GeV/c (or 8.8 GeV in cs2 excitation function (the dependence of cs2 on incident beam momentum (or center-of-mass energy. This knee point should be related to the searching for the onset of quark deconfinement and the critical point of quark-gluon plasma (QGP phase transition.

  7. Separated high-energy electron beams using synchrotron radiation

    CERN Document Server

    Farley, F J M; Picasso, Emilio

    1972-01-01

    Electrons with kinetic energy in the 100 GeV range may be separated from other particles by using their energy-loss due to synchrotron radiation in a high-field magnet. In this paper the associated fluctuations in energy and angle are shown to be small enough for the method to be useful. Detailed design formulae are presented for several magnet configurations. (7 refs).

  8. BROADBAND CONCEPT OF ENERGY HARVESTING IN BEAM VIBRATING SYSTEMS FOR POWERING SENSORS

    Directory of Open Access Journals (Sweden)

    Andrzej Rysak

    2014-09-01

    Full Text Available Recent demand for powering small sensors for wireless health monitoring triggered activities in the field of small size efficient energy harvesting devices. We examine energy harvesting in an aluminium beam with a piezoceramic patch subjected to kinematic harmonic excitation and impacts. Due to a mechanical stopper applied, inducing a hardening effect in the spring characteristic of the beam resonator, we observed a broader frequency range for the fairly large power output. Impact nonlinearities caused sensitivity to initial conditions and appearance of multiple solutions. The occurrence of resonant solution associated with impacts increased efficiency of the energy harvesting process.

  9. Normalization of energy-dependent gamma survey data.

    Science.gov (United States)

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  10. Time dependent thermal lensing measurements of V-T energy transfer from highly excited NO2

    Science.gov (United States)

    Toselli, Beatriz M.; Walunas, Theresa L.; Barker, John R.

    1990-04-01

    The vibrational relaxation of NO2 (excited at 21,631/cm) by Ar, Kr, and Xe is investigated experimentally using the time-dependent thermal lensing (TDTL) apparatus and methods described by Barker and Rothem (1982) and Barker and Toselli (1989). The theoretical basis of TDTL is reviewed; the techniques used to analyze the TDTL signals and determine the beam size are discussed; and the results are presented in extensive tables and graphs and characterized in detail. The bulk average energy transfer per collision is shown to depend strongly on the vibrational energy, and a sharp increase above about 10,000/cm is tentatively attributed to large-amplitude vibration associated with coupled electronic states. Ar deactivation of NO2 (010) is found to have a V-T rate constant of (5.1 + or - 1.0) x 10 to the -14th cu cm/sec.

  11. Comparing Ray-Based and Wave-Based Models of Cross-Beam Energy Transfer

    Science.gov (United States)

    Follett, R. K.; Edgell, D. H.; Shaw, J. G.; Froula, D. H.; Myatt, J. F.

    2016-10-01

    Ray-based models of cross-beam energy transfer (CBET) are used in radiation-hydrodynamics codes to calculate laser-energy deposition. The accuracy of ray-based CBET models is limited by assumptions about the polarization and phase of the interacting laser beams and by the use of a paraxial Wentzel-Kramers-Brillouin (WKB) approximation. A 3-D wave-based solver (LPSE-CBET) is used to study the nonlinear interaction between overlapping laser beams in underdense plasma. A ray-based CBET model is compared to the wave-based model and shows good agreement in simple geometries where the assumptions of the ray-based model are satisfied. Near caustic surfaces, the assumptions of the ray-based model break down and the calculated energy transfer deviates from wave-based calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  13. A Space Charge Compensation Study of Low Energy Hydrogen Ion Beams

    CERN Document Server

    Ben-Ismail, A; Uriot, D; Pichoff, Nicolas

    2005-01-01

    High-power accelerators are being studied for several projects including accelerator driven neutron or neutrino sources. The low energy part of these facilities has to be carefully optimized to match the beam requirements of the higher energy parts. The complexity of high intensity beam dynamics in the low energy line is essentially due to the non-linear space charge effects. The PIC code CARTAGO* has been developed in order to simulate the beam transport at low energy including the temporal evolution effects of the space charge compensation. This paper relates the structure and the numerical methods of a 2D (r,z) new version of the code. The effects of the longitudinal space charge, the image charge and external 2D (r,z) magnetic field were included. The results of H+

  14. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, David Juarez [Univ. of Guanajuato (Mexico)

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  15. Low-energy electron beams through ultra-thin foils, applications for electron microscopy

    NARCIS (Netherlands)

    Van Aken, R.H.

    2005-01-01

    This thesis has discussed two electron microscopy applications that make use of ultra-thin foils: the tunnel junction emitter and the low-energy foil corrector. Both applications have in common that the electron beam is sent through the thin foil at low energy. Part of the electrons will scatter in

  16. Primary Beam Air Kerma Dependence on Distance from Cargo and People Scanners

    Energy Technology Data Exchange (ETDEWEB)

    Strom, Daniel J.; Cerra, Frank

    2016-06-01

    The distance dependence of air kerma or dose rate of the primary radiation beam is not obvious for security scanners of cargo and people in which there is relative motion between a collimated source and the person or object being imaged. To study this problem, one fixed line source and three moving-source scan-geometry cases are considered, each characterized by radiation emanating perpendicular to an axis. The cases are 1) a stationary line source of radioactive material, e.g., contaminated solution in a pipe; 2) a moving, uncollimated point source of radiation that is shuttered or off when it is stationary; 3) a moving, collimated point source of radiation that is shuttered or off when it is stationary; and 4) a translating, narrow “pencil” beam emanating in a flying-spot, raster pattern. Each case is considered for short and long distances compared to the line source length or path traversed by a moving source. The short distance model pertains mostly to dose to objects being scanned and personnel associated with the screening operation. The long distance model pertains mostly to potential dose to bystanders. For radionuclide sources, the number of nuclear transitions that occur a) per unit length of a line source, or b) during the traversal of a point source, is a unifying concept. The “universal source strength” of air kerma rate at a meter from the source can be used to describe x-ray machine or radionuclide sources. For many cargo and people scanners with highly collimated fan or pencil beams, dose varies as the inverse of the distance from the source in the near field and with the inverse square of the distance beyond a critical radius. Ignoring the inverse square dependence and using inverse distance dependence is conservative in the sense of tending to overestimate dose.

  17. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  18. Note: high-efficiency energy harvester using double-clamped piezoelectric beams.

    Science.gov (United States)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-01

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  19. The edge transient-current technique (E-TCT) with high energy hadron beam

    Energy Technology Data Exchange (ETDEWEB)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor [J. Stefan Institute, Ljubljana (Slovenia); Mikuž, Marko [J. Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Muškinja, Miha; Zavrtanik, Marko [J. Stefan Institute, Ljubljana (Slovenia)

    2016-09-21

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  20. The edge transient-current technique (E-TCT) with high energy hadron beam

    Science.gov (United States)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  1. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Neil, E-mail: neil.richmond@stees.nhs.uk [Department of Medical Physics, The James Cook University Hospital, Middlesbrough (United Kingdom); Allen, Vince [The Northern Centre for Cancer Care, The Freeman Hospital, Newcastle upon Tyne (United Kingdom); Daniel, Jim [Department of Medical Physics, The James Cook University Hospital, Middlesbrough (United Kingdom); Dacey, Rob [The Northern Centre for Cancer Care, The Freeman Hospital, Newcastle upon Tyne (United Kingdom); Walker, Chris [Department of Medical Physics, The James Cook University Hospital, Middlesbrough (United Kingdom)

    2015-04-01

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (S{sub c}) and total scatter (S{sub cp}) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (S{sub p}) data. The similarities and differences between S{sub p} of flattened and FFF beams are described. S{sub c} and S{sub cp} data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam S{sub p} and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm{sup 2}. For the FFF beams, S{sub p} was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm{sup 2}. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm{sup 2} for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam S{sub p} increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis.

  2. Medium and high energy electron beam processing system

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Masayuki [Nissin-High Voltage Co., Ltd., Kyoto (Japan)

    2003-02-01

    Electron Beam Processing System (EPS) is a useful and powerful tool for industrial irradiation process. The specification of EPS is decided by consideration to irradiate what material with how thick and wide, how much dose, how to handle, in what atmosphere. In designing an EPS, it is necessary to consider safety measure such as x-ray shielding, ozone control and interlock system. The initial costs to install typical EPS are estimated for acceleration voltages from 500 kV to 5 MV, including following items; those are electron beam machine, x-ray shielding, auxiliary equipment, material handling, survey for installation, ozone exhaust duct, cooling water system, wiring and piping. These prices are reference only because the price should be changed for each case. The price of x-ray shielding should be changed by construction cost. Auxiliary equipment includes window, cooling blower, ozone exhaust blower and SF6 gas handling equipment. In installation work at site, actual workers of 3 - 4 persons for 2 months are necessary. Material handling system is considered only rolls provided in the shielding room as reference. In addition to the initial installation, operators and workers may be required to wear a personal radiation monitor. An x-ray monitor of suitable design should be installed outside the shield room to monitor x-ray level in the working area. (Y. Tanaka)

  3. Crystallographic dependence of photocatalytic activity of WO3 thin films prepared by molecular beam epitaxy.

    Science.gov (United States)

    Li, Guoqiang; Varga, Tamas; Yan, Pengfei; Wang, Zhiguo; Wang, Chongmin; Chambers, Scott A; Du, Yingge

    2015-06-21

    We investigated the impact of crystallographic orientation on the photocatalytic activity of single crystalline WO3 thin films prepared by molecular beam epitaxy on the photodegradation of rhodamine B (RhB). A clear effect is observed, with (111) being the most reactive surface, followed by (110) and (001). Photoreactivity is directly correlated with the surface free energy determined by density functional theory calculations. The RhB photodegradation mechanism is found to involve hydroxyl radicals in solution formed from photo-generated holes and differs from previous studies performed on nanoparticles and composites.

  4. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    Science.gov (United States)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  5. Three-Dimensional Modeling of Polarization Effects on Cross-Beam Energy Transfer in OMEGA Implosions

    Science.gov (United States)

    Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J.; Froula, D. H.

    2016-10-01

    Beamlet spot images are used to diagnose cross-beam energy transfer (CBET) during OMEGA direct-drive implosions. The spots are, in essence, the end point of beamlets of light originating from different regions of each beam profile and following paths determined by refraction. The intensity of each spot varies because of absorption and CBET along that path. When each beam is linearly polarized, the image is asymmetric in terms of spot intensities. A 3-D CBET postprocessor for hydrodynamics codes is used to model the intensity, wavelength, and polarization of light from each beam. Rotation of polarization caused by CBET is tracked. The model is benchmarked using a 3-D wave-based solver for simplified CBET geometries. For linearly polarized beams in OMEGA implosions, the model predicts that polarization effects will result in asymmetric polarization and unabsorbed light profiles that are different for each beam. An asymmetric beamlet spot image similar to that recorded is predicted by the CBET model for linearly polarized beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Experiments with low energy ion beam transport into toroidal magnetic fields

    CERN Document Server

    Joshi, N; Meusel, O; Ratzinger, U

    2016-01-01

    The stellarator-type storage ring for accumulation of multi- Ampere proton and ion beams with energies in the range of $100~AkeV$ to $1~AMeV$ is designed at Frankfurt university. The main idea for beam confinement with high transversal momentum acceptance was presented in EPAC2006. This ring is typically suited for experiments in plasma physics and nuclear astrophysics. The accumulator ring with a closed longitudinal magnetic field is foreseen with a strength up to $6-8~T$. The experiments with two room temperature 30 degree toroids are needed. The beam transport experiments in toroidal magnetic fields were first described in EPAC2008 within the framework of a proposed low energy ion storage ring. The test setup aims on developing a ring injection system with two beam lines representing the main beam line and the injection line. The primary beam line for the experiments was installed and successfully commissioned in 2009. A special diagnostics probe for \\textit{"in situ"} ion beam detection was installed.This...

  7. Design of a compact Faraday cup for low energy, low intensity ion beams

    Science.gov (United States)

    Cantero, E. D.; Sosa, A.; Andreazza, W.; Bravin, E.; Lanaia, D.; Voulot, D.; Welsch, C. P.

    2016-01-01

    Beam intensity is one of the key parameters in particle accelerators, in particular during machine commissioning, but also during operation for experiments. At low beam energies and low intensities a number of challenges arise in its measurement as commonly used non-invasive devices are no longer sensitive enough. It then becomes necessary to stop the beam in order to measure its absolute intensity. A very compact Faraday cup for determining ion beam currents from a few nanoamperes down to picoamperes for the HIE-ISOLDE post-accelerator at CERN has been designed, built and tested with beam. It has a large aperture diameter of 30 mm and a total length of only 16 mm, making it one of the most compact designs ever used. In this paper we present the different steps that were involved in the design and optimization of this device, including beam tests with two early prototypes and the final monitor. We also present an analysis of the losses caused by secondary particle emission for different repelling electrode voltages and beam energies. Finally, we show that results obtained from an analytical model for electron loss probability combined with Monte Carlo simulations of particles trajectories provide a very good agreement with experimental data.

  8. Resonant principle for operation of energy recuperator for a magnetized electron beam: A numerical simulation

    Science.gov (United States)

    Arzhannikov, A. V.; Astrelin, V. T.; Koidan, V. S.; Sinitsky, S. L.

    2002-04-01

    The problem of energy recuperator for a high current sheet electron beam used to drive a millimeter-waves generator is considered. There are two main obstacles to solving the problem. The first one is the presence of a magnetic field guiding beam electrons. The second obstacle is significant energy and angular spreads of the electrons in the waste beam. To overcome these obstacles, we suggest a novel scheme of a recuperator. The main idea of the proposed scheme is the use of a decelerating electrical field together with a guiding magnetic field that has longitudinal and spatial periodic transverse components. Resonance of a bounce electron motion with the cyclotron motion in this field gives a strong increase in the Larmour radius of electrons with the energy in a narrow interval. The decelerated electrons with the resonance energy fall away from the beam and are absorbed by a collector at a proper potential. It is shown that efficiency of this novel scheme can reach about 80% even if the sheet beam has a broad energy spectrum.

  9. Noninvasive measurement of micron electron beam size of high energy using diffraction radiation

    CERN Document Server

    Naumenko, G A

    2003-01-01

    Treatments of the usage of diffraction radiation from the relativistic electrons moving though a conductive slit for the transverse beam size measurement encounter hard limitation of the method sensitivity for the electron energy larger than 1 GeV. We consider in this article a possibility of application of the artificial phase shift, which can take place when transverse electron position varies. This allows us to realize the measurements of transverse size of supper-relativistic electron beams with the small emittance.

  10. Studies on alpha-induced astrophysical reactions using the low-energy RI beam separator CRIB

    Directory of Open Access Journals (Sweden)

    Yamaguchi H.

    2014-03-01

    Full Text Available Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator, which is a low-energy RI beam separator at Center for Nuclear Study (CNS of the University of Tokyo. Two major methods to study them are the α resonant scattering, and direct measurements of (α,p reactions using an active or inactive helium gas target. Among the recent studies at CRIB, the measurement of 7Be+α resonant scattering is discussed.

  11. Energy regeneration model of self-consistent field of electron beams into electric power*

    Science.gov (United States)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  12. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    Science.gov (United States)

    Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.

    2016-10-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  13. High efficiency energy extraction from a relativistic electron beam in a strongly tapered undulator

    CERN Document Server

    Sudar, Nicholas; Duris, Joe; Gadjev, Ivan; Polyaniy, Mikhail; Pogorelsky, Igor; Fedurin, Mikhail; Swinson, Christina; Babzien, Marcus; Kusche, Karl; Gover, Avi

    2016-01-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54 cm long strongly tapered helical magnetic undulator, extracting over 30$\\%$ of the initial electron beam energy to coherent radiation. These results demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  14. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential.

    Science.gov (United States)

    Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng

    2015-04-20

    We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

  15. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail: jjc6z@virginia.edu, E-mail: mgupta@virginia.edu, E-mail: scudiero@wsu.edu [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)

    2015-06-15

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  16. Energy-Dependent Fission Q Values Generalized for All Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  17. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    CERN Document Server

    Baffes, C; Leibfritz, J; Oplt, S; Rakhno, I

    2013-01-01

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type RF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a Helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. In addition, the potential for radiation-induced degradation of the graphite is discussed.

  18. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  19. Path dependence in energy systems and economic development

    Science.gov (United States)

    Fouquet, Roger

    2016-08-01

    Energy systems are subject to strong and long-lived path dependence, owing to technological, infrastructural, institutional and behavioural lock-ins. Yet, with the prospect of providing accessible cheap energy to stimulate economic development and reduce poverty, governments often invest in large engineering projects and subsidy policies. Here, I argue that while these may achieve their objectives, they risk locking their economies onto energy-intensive pathways. Thus, particularly when economies are industrializing, and their energy systems are being transformed and are not yet fully locked-in, policymakers should take care before directing their economies onto energy-intensive pathways that are likely to be detrimental to their long-run prosperity.

  20. Inertial fusion energy target injection, tracking, and beam pointing

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  1. Time-dependent reliability of corrosion-affected RC beams. Part 3: Effect of corrosion initiation time and its variability on time-dependent failure probability

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Kapilesh, E-mail: kapil_66@barc.gov.i [Architecture and Civil Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Mori, Yasuhiro [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8603 (Japan); Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2011-05-15

    This paper forms the third part of a study which addresses time-dependent reliability analyses of reinforced concrete (RC) beams affected by reinforcement corrosion. Parts 1 and 2 of the reliability study are presented in companion papers. Part 1 of the reliability study presents evaluation of probabilistic descriptions for time-dependent strengths of a typical simply supported corrosion-affected RC beam. These probabilistic descriptions, i.e., mean and coefficient of variation (c.o.v.) for the time-dependent strengths are presented for two limit states: (a) flexural failure; and (b) shear failure. Part 2 of the reliability study presents evaluation of time-dependent failure probability for the considered RC beam by utilizing the information on probabilistic descriptions for time-dependent strengths available in Part 1. Evaluation of time-dependent failure probability considering the variability in time-dependent strengths and/or time-dependent degradation functions is also presented. This paper investigates the effects of time to corrosion initiation and its variability on failure probability of the same RC beam presented in companion papers. By considering variability in the identified variables that could affect the expected time of first corrosion, simple estimations are presented for mean time to corrosion initiation and variability associated with time to corrosion initiation. Evaluation of time-dependent failure probability for the beam is presented by considering estimated probabilistic descriptions, i.e., mean and c.o.v. for time to corrosion initiation. Parametric analyses show that failure probability for the beam is sensitive to the mode of strength degradation and time to corrosion initiation.

  2. Limiting technologies for particle beams and high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Panofsky, W.K.H.

    1985-07-01

    Since 1930 the energy of accelerators had grown by an order of magnitude roughly every 7 years. Like all exponential growths, be they human population, the size of computers, or anything else, this eventually will have to come to an end. When will this happen to the growth of the energy of particle accelerators and colliders. Fortunately, as the energy of accelerators has grown the cost per unit energy has decreased almost as fast as has the increase in energy. The result is that while the energy has increased so dramatically the cost per new installation has increased only by roughly an order of magnitude since the 1930's (corrected for inflation), while the number of accelerators operating at the frontier of the field has shrunk. As is shown in the by now familiar Livingston chart this dramatic decrease in cost has been achieved largely by a succession of new technologies, in addition to the more moderate gains in efficiency due to improved design, economies of scale, etc. We are therefore facing two questions: (1) Is there good reason scientifically to maintain the exponential growth, and (2) Are there new technologies in sight which promise continued decreases in unit costs. The answer to the first question is definitely yes; the answer to the second question is maybe.

  3. SU‐C‐105‐05: Reference Dosimetry of High‐Energy Electron Beams with a Farmer‐Type Ionization Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B; Rogers, D [Carleton University, Ottawa, ON (Canada)

    2013-06-15

    Purpose: To investigate gradient effects and provide Monte Carlo calculated beam quality conversion factors to characterize the Farmer‐type NE2571 ion chamber for high‐energy reference dosimetry of clinical electron beams. Methods: The EGSnrc code system is used to calculate the absorbed dose to water and to the gas in a fully modeled NE2571 chamber as a function of depth in a water phantom. Electron beams incident on the surface of the phantom are modeled using realistic BEAMnrc accelerator simulations and electron beam spectra. Beam quality conversion factors are determined using calculated doses to water and to air in the chamber in high‐energy electron beams and in a cobalt‐60 reference field. Calculated water‐to‐air stopping power ratios are employed for investigation of the overall ion chamber perturbation factor. Results: An upstream shift of 0.3–0.4 multiplied by the chamber radius, r-cav, both minimizes the variation of the overall ion chamber perturbation factor with depth and reduces the difference between the beam quality specifier (R{sub 5} {sub 0}) calculated using ion chamber simulations and that obtained with simulations of dose‐to‐water in the phantom. Beam quality conversion factors are obtained at the reference depth and gradient effects are optimized using a shift of 0.2r-cav. The photon‐electron conversion factor, k-ecal, amounts to 0.906 when gradient effects are minimized using the shift established here and 0.903 if no shift of the data is used. Systematic uncertainties in beam quality conversion factors are investigated and amount to between 0.4 to 1.1% depending on assumptions used. Conclusion: The calculations obtained in this work characterize the use of an NE2571 ion chamber for reference dosimetry of high‐energy electron beams. These results will be useful as the AAPM continues to review their reference dosimetry protocols.

  4. Time-dependent reliability of corrosion-affected RC beams-Part 1: Estimation of time-dependent strengths and associated variability

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Kapilesh, E-mail: kapilesh_66@yahoo.co.u [Architecture and Civil Engineering Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Mori, Yasuhiro [Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8603 (Japan); Ghosh, A.K. [Reactor Safety Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India)

    2011-05-15

    Research highlights: Predictive models for corrosion-induced damages in RC structures. Formulations for time-dependent flexural and shear strengths of corroded RC beams. Methodology for mean and c.o.v. for time-dependent strengths of corroded RC beams. Simple estimation of mean and c.o.v. for flexural strength with loss of bond. - Abstract: The structural deterioration of reinforced concrete (RC) structures due to reinforcement corrosion is a major worldwide problem. Damages to RC structures due to reinforcement corrosion manifest in the form of expansion, cracking and eventual spalling of the cover concrete; thereby resulting in serviceability and durability degradation of such structures. In addition to loss of cover, RC structure may suffer structural damages due to loss of reinforcement cross-sectional area, and loss of bond between corroded reinforcement and surrounding cracked concrete, sometimes to the extent that the structural failure becomes inevitable. This paper forms the first part of a study which addresses time-dependent reliability analyses of RC beams affected by reinforcement corrosion. In this paper initially the predictive models are presented for the quantitative assessment of time-dependent damages in RC beams, recognized as loss of mass and cross-sectional area of reinforcing bar, loss of concrete section owing to the peeling of cover concrete, and loss of bond between corroded reinforcement and surrounding cracked concrete. Then these models have been used to present analytical formulations for evaluating time-dependent flexural and shear strengths of corroded RC beams, based on the standard composite mechanics expressions for RC sections. Further by considering variability in the identified basic variables that could affect the time-dependent strengths of corrosion-affected RC beams, the estimation of statistical descriptions for the time-dependent strengths is presented for a typical simply supported RC beam. The statistical descriptions

  5. Rare isotope beam energy measurements and scintillator developments for ReA3

    Science.gov (United States)

    Lin, Ling-Ying

    The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations. A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with

  6. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams

    Science.gov (United States)

    Ebrahimi, Farzad; Reza Barati, Mohammad; Haghi, Parisa

    2016-11-01

    In this paper, the thermo-elastic wave propagation analysis of a temperature-dependent functionally graded (FG) nanobeam supported by Winkler-Pasternak elastic foundation is studied using nonlocal elasticity theory. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The temperature field has a nonlinear distribution called heat conduction across the nanobeam thickness. Temperature-dependent material properties change gradually in the spatial coordinate according to the Mori-Tanaka model. The governing equations of the wave propagation of the refined FG nanobeam are derived by using Hamilton's principle. The analytic dispersion relation of the embedded nonlocal functionally graded nanobeam is obtained by solving an eigenvalue problem. Numerical examples show that the wave characteristics of the functionally graded nanobeam are related to the temperature distribution, elastic foundation parameters, nonlocality and material composition.

  7. Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions

    CERN Document Server

    Lungwitz, B; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flier, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Ga´zdzicki, M; Genchev, V; Georgopoulos, G; Gładysz, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Włodarczyk, Z; Wojtaszek, A; Yoo, I K; Zimányi, J; Lungwitz, Benjamin

    2006-01-01

    The energy dependence of multiplicity fluctuations was studied for the most central $Pb+Pb$ collisions at $20A$, $30A$, $40A$, $80A$ and $158A$ GeV by the NA49 experiment at the CERN SPS. The multiplicity distribution for negatively and positively charged hadrons is significantly narrower than Poisson one for all energies. No significant structure in energy dependence of the scaled variance of multiplicity fluctuations is observed. The measured scaled variance is lower than the one predicted by the grand-canonical formulation of the hadron-resonance gas model. The results for scaled variance are in approximate agreement with the string-hadronic model UrQMD.

  8. An efficient method for evaluating energy-dependent sum rules

    CERN Document Server

    Dinur, Nir Nevo; Bacca, Sonia; Barnea, Nir

    2014-01-01

    Energy-dependent sum rules are useful tools in many fields of physics. In nuclear physics, they typically involve an integration of the response function over the nuclear spectrum with a weight function composed of integer powers of the energy. More complicated weight functions are also encountered, e.g., in nuclear polarization corrections of atomic spectra. Using the Lorentz integral transform method and the Lanczos algorithm, we derive a computationally efficient technique for evaluating such sum rules that avoids the explicit calculation of both the continuum states and the response function itself. Our numerical results for electric dipole sum rules of the Helium-4 nucleus with various energy-dependent weights show rapid convergence with respect to the number of Lanczos steps. This demonstrates the usefulness of the method in a variety of electroweak reactions.

  9. Energy and time of flight measurements of REX-ISOLDE stable beams using Si detectors

    CERN Document Server

    Cantero, E D; Fraser, M A; Lanaia, D; Sosa, A; Voulot, D; Zocca, F

    2014-01-01

    In this paper we present energy and time spectroscopy measurements for the stable beams of REX-ISOLDE obtained using Si detectors. By using an alpha source as a calibration reference, the absolute energy E of stable beam particles (A/q = 4) was determined in spectroscopy mode in the energy range 1 MeV < E < 8 MeV (0.30 MeV/u < E/A < 1.87 MeV/u). The time of flight of the beam particles (2.18 MeV/u < E/A < 2.27 MeV/u) was determined by installing identical Si detectors in two diagnostic boxes separated by 7.7 m. The results obtained with these two techniques are compared with the values obtained by dipole scans using a bending magnet. The measurements took place between January and February of 2013.

  10. Time-delayed beam splitting with energy separation of x-ray channels

    CERN Document Server

    Stetsko, Yuri P; Stephenson, G Brian

    2013-01-01

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. For energy separation the back-reflectors are set at slightly different temperatures and angular deviations from exact backscattering. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities. The delay line can be made more compact by adding a fourth crystal.

  11. High-Energy Molecular Beam Source Using a Non-Diaphragm Type Small Shock Tube

    Science.gov (United States)

    Yoshimoto, Yuta; Miyoshi, Nobuya; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2010-11-01

    The molecular beam technique is one of the powerful tools to analyze gas-surface interactions. In order to generate high-energy molecular beam in a range of 1 - 5 eV, which corresponds to the typical activation energy of surface reactions, we are developing a beam source using a non-diaphragm type shock tube, which can operate at a repetition rate high enough for efficient data acquisition. We made the volume of a tube much smaller than that of conventional ones so that the evacuation time between each shot becomes as short as possible. Our measurement of shock Mach numbers showed that even small diameter (2 or 4 mm) tubes, in which the wall boundary layer has a large influence on the propagation of shock waves, could generate molecular beam with the translational energy of more than 1 eV. This is because the reduction of shock formation distance by rapid opening of the valve, which separates a high pressure room from a low pressure room, weakened the effect of viscous damping on the accelerating shock wave. In addition, the convergent shock tubes of which diameters linearly decrease from 4 to 2 mm exhibited higher Mach numbers than straight ones. This indicates that the application of the convergent tube with the optimized geometry would be promising for generating high-energy molecular beam.

  12. Energy dependence of hadron polarization in $e^+e^-\\to hX$ at high energies

    CERN Document Server

    Chen, Kai-bao; Zhou, Ya-jin; Liang, Zuo-tang

    2016-01-01

    The longitudinal polarization of hyperons in $e^+e^-$ annihilation at high energies depends on the longitudinal polarization of the quark produced at the $e^+e^-$ annihilation vertex whereas the spin alignment of vector mesons is independent of it. They exhibit very much different energy dependences. We use the longitudinal polarization of the Lambda hyperon and the spin alignment of $K^*$ as examples and present numerical results of energy dependences. We present the results at the leading twist with perturbative QCD evolutions of fragmentation functions at the leading order.

  13. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  14. Self-similar approach to the explosion of droplets by a high energy laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Chitanvis, S.M.

    1987-09-25

    We have constructed a model in which a small droplet is exploded by the absorption of energy from a high energy laser beam. The beam flux is so high that we assume the formation of a plasma. We have a single-fluid model of a plasma droplet interacting with laser radiation. Selfsimilarity is invoked to reduce the spherically symmetric problem involving hydrodynamics and Maxwell's equations to quadrature. We show analytically that our model reproduces in a qualitative manner certain features observed experimentally by Eickmans et al.

  15. Implications of increased beam energy on QPS, EE, time constants, PC

    CERN Document Server

    Steckert, J

    2011-01-01

    Increasing the beam energy of LHC is coupled with an increase in current in the main dipole and quadrupole circuits. This paper will show the implications of increased beam energy on the circuit protection (CP) systems. Relevant system details and their limits will be discussed for several operational scenarios. The main focus lays on the system’s behavior during the fast power abort (FPA) which is the most challenging mode of operation. Furthermore measures to mitigate the EM-transients during FPAs are shown.

  16. Nuclear fragmentation of high-energy heavy-ion beams in water.

    Science.gov (United States)

    Schardt, D; Schall, I; Geissel, H; Irnich, H; Kraft, G; Magel, A; Mohar, M F; Munzenberg, G; Nickel, F; Scheidenberger, C; Schwab, W; Sihver, L

    1996-01-01

    As a part of the physical-technical program of the heavy-ion therapy project at GSI we have investigated the nuclear fragmentation of high-energy ion beams delivered by the heavy-ion synchrotron SIS, using water as a tissue-equivalent target. For a direct comparison of fragmentation properties, beams of 10B, 12C, 14N, and 16O were produced simultaneously as secondary beams from a primary 18O beam and separated in flight by magnetic beam analysis. The Z-distributions of beam fragments produced in the water target were measured via energy loss in a large ionisation chamber and a scintillator telescope. From these data we obtained both total and partial charge-changing cross sections. In addition we have performed Bragg measurements using two parallel-plate ionization chambers and a water target of variable length. The detailed shape of the measured Bragg curves and the measured cross sections are in good agreement with model calculations based on semi-empirical formulae.

  17. Design and analysis of a connected broadband multi-piezoelectric-bimorph- beam energy harvester.

    Science.gov (United States)

    Zhang, Haifeng; Afzalul, Karim

    2014-06-01

    The rapid growth of remote, wireless, and microelectromechanical system (MEMS) devices over the past decades has motivated the development of a self-powered system that can replace traditional electrochemical batteries. Piezoelectric energy harvesters are ideal for capturing energy from mechanical vibrations in the ambient environment. Numerous studies have been made of this application of piezoelectric energy conversion; however, the narrow frequency operation band has limited its application to generate useful power. In this paper, a broadband energy harvester with an array/matrix of piezoelectric bimorphs connected by springs has been designed and analyzed based on the 1-D piezoelectric beam equations. The predicted result shows that the operational frequency band can be enlarged significantly by carefully adjusting the small end masses, length of the beam and spring stiffness. An optimal selection of the load impedance to realize the maximum power output is discussed. The results provide an important foundation for future broadband energy harvester design.

  18. Vibration energy harvesting by a Timoshenko beam model and piezoelectric transducer

    Science.gov (United States)

    Stoykov, S.; Litak, G.; Manoach, E.

    2015-11-01

    An electro-mechanical system of vibrational energy harvesting is studied. The beam is excited by external and kinematic periodic forces and damped by an electrical resistor through the coupled piezoelectric transducer. Nonlinearities are introduced by stoppers limiting the transverse displacements of the beam. The interaction between the beam and the stoppers is modeled as Winkler elastic foundation. The mechanical properties of the piezoelectric layer are taken into account and the beam is modeled as a composite structure. For the examined composite beam, the geometrically nonlinear version of the Timoshenko's beam theory is assumed. The equations of motion are derived by the principle of virtual work considering large deflections. An isogeometric approach is applied for space discretization and B-Splines are used as shape functions. Finally, the power output and the efficiency of the system due to harmonic excitations are discussed. The influence of the position of the stoppers and their length on the dynamics of the beam and consequently on the power output are analyzed and presented.

  19. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    Science.gov (United States)

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  20. Determination of the Beam-Spin Asymmetry of Deuteron Photodisintegration in the Energy Region $E_\\gamma=1.1-2.3$ GeV

    CERN Document Server

    Zachariou, Nicholas; Ivanov, Nikolay Ya; Sargsian, Misak M; Avakian, Robert; Feldman, Gerald; Nadel-Turonski, Pawel; Adhikari, K P; Adikaram, D; Anderson, M D; Pereira, S Anefalos; Avakian, H; Badui, R A; Baltzell, N A; Battaglieri, M; Baturin, V; Bedlinskiy, I; Biselli, A S; Briscoe, W J; Brooks, W K; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Compton, N; Contalbrigo, M; Cortes, O; Crede, V; D'Angelo, A; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Forest, T A; Fradi, A; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glazier, D I; Golovatch, E; Gothe, R W; Griffioen, K A; Guidal, M; Hafidi, K; Hanretty, C; Harrison, N; Hattawy, M; Hicks, K; Ho, D; Holtrop, M; Hughes, S M; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, F J; Kubarovsky, V; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mattione, P T; McKinnon, B; Mineeva, T; Mirazita, M; Mokeeev, V I; Montgomery, R A; Moutarde, H; Camacho, C Munoz; Net, L A; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Phelps, W; Phillips, J J; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Senderovich, I; Sharabian, Y G; Skorodumina, Iu; Smith, G D; Sober, D I; Sokhan, D; Sparveris, N; Stepanyan, S; Strauch, S; Sytnik, V; Taiuti, M; Tian, Ye; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D; Wei, X; Wood, M H; Zana, L; Zhang, J; Zhao, Z W; Zonta, I

    2015-01-01

    The beam-spin asymmetry, $\\Sigma$, for the reaction $\\gamma d\\rightarrow pn$ has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, $\\theta_{c.m.}$, between $25^\\circ$ and $160^\\circ$. These are the first measurements of beam-spin asymmetries at $\\theta_{c.m.}=90^\\circ$ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than $\\theta_{c.m.}=90^\\circ$. The angular and energy dependence of $\\Sigma$ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  1. Energy loss of intergalactic pair beams: Particle-in-Cell simulation

    CERN Document Server

    Kempf, Andreas; Spanier, Felix

    2016-01-01

    The change of the distribution function of electron-positron pair beams determines whether GeV photons can be produced as secondary radiation from TeV photons. We will discuss the instabilities driven by pair beams. The system of a thermal proton-electron plasma and the electron-positron beam is collision free. We have, therefore, used the Particle-in-Cell simulation approach. It was necessary to alter the physical parameters, but the ordering of growth rates has been retained. We were able to show that plasma instabilities can be recovered in particle-in-cell simulations, but their effect on the pair distribution function is negligible for beam-background energy density ratios typically found in blazars.

  2. A variational energy approach for electromechanical analysis of thick piezoelectric beam

    Institute of Scientific and Technical Information of China (English)

    LAU C.W.H.; LIM C.W; LEUNG A.Y.T.

    2005-01-01

    A new two dimensional coupled electromechanical model for athick, laminated beam with piezoelectric and isotropic lamina subjected to static external electric loading is developed. The model combined the first order shear deformation theory for the relatively thick elastic core and linear piezoelectric theory for the piezoelectric lamina. The actuation response is induced through the application of extemal electric voltage. Rayleigh-Ritz method is adopted to model the displacement and potential fields of the beam and governing equations were finally derived from the variational energy principle. The model allows the piezoelectric lamina to be formulated via a two-dimensional model because of the strong electro-mechanical coupling and the presence of a two-dimensional electric field. Numerical examples of piezoelectric laminated beam are presented. It is shown in this paper that a one-dimensional model for the piezoelectric beam-like layer is inadequate.

  3. Low energy ion beam induced changes in structural and thermal properties of polycarbonate

    Science.gov (United States)

    Reheem, A. M. Abdel; Atta, A.; Maksoud, M. I. A. Abdel

    2016-10-01

    The aim of the present study is extended for obtaining relation between the collision of ion beam with polycarbonate polymer (PC) and the introduced modification of technological applications. Polycarbonate films are irradiated by a 6 keV argon ion beam extracted from locally design cold cathode ion source with different ion fluences. The films are characterized using X-ray Diffraction (XRD), Mechanical tester, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The increase in ion beam irradiation leads to an increase in the tensile strength and reduction in elongation at break for PC. TGA Analysis shows that the thermal decomposition temperature of irradiated polycarbonate changes with ion fluence. The DSC graphs show improvements in thermal stability with increase in the activation energy after ion beam irradiation. Ion penetration depths and distributions of scattered atoms are calculated using SRIM Monte Carlo simulation programs.

  4. Simulations of the high energy beam transport section (HEBT) at FRANZ

    Energy Technology Data Exchange (ETDEWEB)

    Hinrichs, Ole; Claessens, Christine; Heilmann, Manuel; Meusel, Oliver; Noll, Daniel; Reifarth, Rene; Schmidt, Stefan; Schwarz, Malte; Sonnabend, Kerstin [Goethe-Universitaet Frankfurt (Germany)

    2014-07-01

    The Frankfurt Neutron Source at the Stern-Gerlach-Zentrum (FRANZ) currently under construction will deliver a proton beam of up to 20 mA constant current with energies between 1.8 MeV and 2.2 MeV. This facility aims at exploring proton- and neutron-induced reactions of astrophysical interest. The high proton flux is well suited for studying nuclear reactions related to the nucleosynthesis of the p-nuclei, which might yield hints on the physics of type Ia supernovae. Furthermore, FRANZ will offer the opportunity to measure radiative neutron capture reactions for unstable branch point nuclei of the s-process. We will present the current status of the beam line up to the BaF{sub 2} calorimeter. This contribution focuses on simulations to optimise beam transport and phase space distribution with respect to an optimised beam spot size.

  5. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    Science.gov (United States)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  6. Distributed energy storage: Time-dependent tree flow design

    Science.gov (United States)

    Bejan, A.; Ziaei, S.; Lorente, S.

    2016-05-01

    This article proposes "distributed energy storage" as a basic design problem of distributing energy storage material on an area. The energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The flow is time-dependent. Several scenarios are analyzed: sensible-heat storage, latent-heat storage, exergy storage vs energy storage, and the distribution of a finite supply of heat transfer surface between the source fluid and the distributed storage material. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to "invade" the area is cumulative (the sum of the storage times required at each storage site) and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Directions for future designs of distributed storage and retrieval are outlined in the concluding section.

  7. Improved Beam Jitter Control Methods for High Energy Laser Systems

    Science.gov (United States)

    2009-12-01

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for public...Gyro FSM Fast Steering Mirror FX-LMS Filtered-X Least Mean Squares FX-RLS Filtered-X Recursive Least Square HEL High Energy Laser JCT

  8. On the polarized beam acceleration in medium energy synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  9. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Science.gov (United States)

    Maj, Omar; Mariani, Alberto; Poli, Emanuele; Farina, Daniela

    2013-04-01

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  10. The wave energy flux of high frequency diffracting beams in complex geometrical optics

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Omar; Poli, Emanuele [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Mariani, Alberto [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Farina, Daniela [Istituto di Fisica del Plasma ' P. Caldirola,' Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, via R. Cozzi 53, I-20125 Milano (Italy)

    2013-04-15

    We consider the construction of asymptotic solutions of Maxwell's equations for a diffracting wave beam in the high frequency limit and address the description of the wave energy flux transported by the beam. With this aim, the complex eikonal method is applied. That is a generalization of the standard geometrical optics method in which the phase function is assumed to be complex valued, with the non-negative imaginary part accounting for the finite width of the beam cross section. In this framework, we propose an argument which simplifies significantly the analysis of the transport equation for the wave field amplitude and allows us to derive the wave energy flux. The theoretical analysis is illustrated numerically for the case of electron cyclotron beams in tokamak plasmas by using the GRAY code [D. Farina, Fusion Sci. Technol. 52, 154 (2007)], which is based upon the complex eikonal theory. The results are compared to those of the paraxial beam tracing code TORBEAM [E. Poli et al., Comput. Phys. Commun. 136, 90 (2001)], which provides an independent calculation of the energy flow.

  11. Imperative function of electron beams in low-energy plasma focus device

    Indian Academy of Sciences (India)

    M Z Khan; L K Lim; S L Yap; C S Wong

    2015-12-01

    A 2.2 kJ plasma focus device was analysed as an electron beam and an X-ray source that operates with argon gas refilled at a specific pressure. Time-resolved X-ray signals were observed using an array of PIN diode detectors, and the electron beam energy was detected using a scintillator-assisted photomultiplier tube. The resultant X-rays were investigated by plasma focus discharge for pressures ranging from 1.5 mbar to 2.0 mbar. This range corresponded to the significant values of X-ray yields and electron beam energies from the argon plasma. The electron temperature of argon plasma at an optimum pressure range was achieved by an indirect method using five-channel BPX65 PIN diodes of aluminum foils with different thicknesses. X-ray yield, electron beam energy, and electron temperature of argon plasma were achieved at 1.5–2.0 mbar because of the strong bombardment of the energetic electron beam.

  12. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    Science.gov (United States)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  13. Energy dependent transport length scales in strongly diffusive carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lassagne, B [Laboratoire National des Champs Magnetiques Pulses, UMR5147 143 avenida de rangueil, 31400 Toulouse (France); Raquet, B [Laboratoire National des Champs Magnetiques Pulses, UMR5147 143 avenida de rangueil, 31400 Toulouse (France); Broto, J M [Laboratoire National des Champs Magnetiques Pulses, UMR5147 143 avenida de rangueil, 31400 Toulouse (France); Gonzalez, J [Centro de Estudios de Semiconductores Facultad de Ciencias, Departamento de Fisica, Universidad de Los Andes, Merida (Venezuela)

    2006-05-17

    We report magneto-transport measurements in parallel magnetic field and {mu}-Raman spectroscopy on diffusive multiwall carbon nanotubes. The disorder effects on the characteristic transport lengths are probed by combining applied magnetic field and back-gate tuning of the Fermi level. Modulations of the differential conductance versus energy depict the modulation of the strength of the weak localization. Both the electronic mean free path and the phase coherence length are found to be energy dependent. The role of disorder in the density of states and in the characteristic transport lengths is discussed.

  14. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  15. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    Science.gov (United States)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  16. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  17. Study of the energy dependence of the underlying event in proton-antiproton collisions

    Science.gov (United States)

    Aaltonen, T.; Albrow, M.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucá, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-11-01

    We study charged particle production (pT>0.5 GeV /c , |η |<0.8 ) in proton-antiproton collisions at total center-of-mass energies √{s }=300 GeV , 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η -ϕ space: "toward", "away", and "transverse." The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the "underlying event." The transverse region is divided into a MAX and MIN transverse region, which helps separate the "hard component" (initial and final-state radiation) from the "beam-beam remnant" and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event is studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  18. Study of the energy dependence of the underlying event in proton-antiproton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nodulman, L.; Aaltonen, T; Albrow, M; Amerio, S.; Amidei, D; Anastassov, A.; Annovi, A; Antos, J; Apollinari, G.; Appel, J A; Arisawa, T

    2015-11-23

    We study charged particle production (p(T) > 0.5 GeV/c, vertical bar eta vertical bar < 0.8) in proton-antiproton collisions at total center-of-mass energies root s = 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta - phi space: "toward", "away", and "transverse." The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the "underlying event." The transverse region is divided into a MAX and MIN transverse region, which helps separate the "hard component" (initial and final-state radiation) from the "beam-beam remnant" and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event is studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  19. Energy based model for temperature dependent behavior of ferromagnetic materials

    Science.gov (United States)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-03-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from 5 K to 300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior.

  20. Energy and Isotope Dependence of Neutron Multiplicity Distributions

    CERN Document Server

    Lestone, J P

    2014-01-01

    Fission neutron multiplicity distributions are known to be well reproduced by simple Gaussian distributions. Many previous evaluations of multiplicity distributions have adjusted the widths of Gaussian distributions to best fit the measured multiplicity distributions Pn. However, many observables do not depend on the detailed shape of Pn, but depend on the first three factorial moments of the distributions. In the present evaluation, the widths of Gaussians are adjusted to fit the measured 2nd and 3rd factorial moments. The relationships between the first three factorial moments are estimated assuming that the widths of the multiplicity distributions are independent of the initial excitation energy of the fissioning system. These simple calculations are in good agreement with experimental neutron induced fission data up to an incoming neutron energy of 10 MeV.

  1. Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry

    Science.gov (United States)

    Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław

    2014-08-01

    The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.

  2. Enhanced relativistic-electron-beam energy loss in warm dense aluminum.

    Science.gov (United States)

    Vaisseau, X; Debayle, A; Honrubia, J J; Hulin, S; Morace, A; Nicolaï, Ph; Sawada, H; Vauzour, B; Batani, D; Beg, F N; Davies, J R; Fedosejevs, R; Gray, R J; Kemp, G E; Kerr, S; Li, K; Link, A; McKenna, P; McLean, H S; Mo, M; Patel, P K; Park, J; Peebles, J; Rhee, Y J; Sorokovikova, A; Tikhonchuk, V T; Volpe, L; Wei, M; Santos, J J

    2015-03-01

    Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11}  A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

  3. Probing the energy flow in Bessel light beams using atomic photoionization

    Science.gov (United States)

    Surzhykov, A.; Seipt, D.; Fritzsche, S.

    2016-09-01

    The growing interest in twisted light beams also requires a better understanding of their complex internal structure. Particular attention is currently being given to the energy circulation in these beams as usually described by the Poynting vector field. In the present study we propose to use the photoionization of alkali-metal atoms as a probe process to measure (and visualize) the energy flow in twisted light fields. Such measurements are possible since the angular distribution of photoelectrons, emitted from a small atomic target, appears sensitive to and is determined by the local direction of the Poynting vector. To illustrate the feasibility of the proposed method, detailed calculations were performed for the ionization of sodium atoms by nondiffractive Bessel beams.

  4. Time-delayed beam splitting with energy separation of x-ray channels

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, Yuri P.; Shvyd' ko, Yuri V.; Brian Stephenson, G. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2013-10-21

    We introduce a time-delayed beam splitting method based on the energy separation of x-ray photon beams. It is implemented and theoretically substantiated on an example of an x-ray optical scheme similar to that of the classical Michelson interferometer. The splitter/mixer uses Bragg-case diffraction from a thin diamond crystal. Another two diamond crystals are used as back-reflectors. Because of energy separation and a minimal number (three) of optical elements, the split-delay line has high efficiency and is simple to operate. Due to the high transparency of diamond crystal, the split-delay line can be used in a beam sharing mode at x-ray free-electron laser facilities.

  5. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  6. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    Science.gov (United States)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  7. Acceleration of dust grains by means of the high energy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Khorashadizadeh, S.M., E-mail: smkhorashadi@birjand.ac.ir [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Sabzinezhad, F. [Physics Department, University of Birjand, Birjand (Iran, Islamic Republic of); Niknam, A.R., E-mail: a-niknam@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2013-11-08

    The acceleration of charged dust grains by a high energy ion beam is investigated by obtaining the dispersion relation. The Cherenkov and cyclotron acceleration mechanisms of dust grains are compared with each other. The role of dusty plasma parameters and the magnetic field strength in the acceleration process are discussed. In addition, the stimulated waves by an ion beam in a fully magnetized dust–ion plasma are studied. It is shown that these waves are unstable at different angles with respect to the external magnetic field. It is also indicated that the growth rates increase by either increasing the ion and dust densities or decreasing the magnetic field strength. Finally, the results of our research show that the high energy ion beam can accelerate charged dust grains.

  8. A high energy, heavy ion microprobe for ion beam research on the tandem accelerator at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Siegele, R.; Dytlewski, N.

    1996-04-01

    A comprehensive review is given on the production and use of heavy ion beams with spot sizes of a few {mu}m. The development of a high energy, heavy ion microprobe at ANSTO and its possible applications are discussed. The microprobe is designed to focus a wide range of ion beam types, from light ions such as protons up to ions as heavy as iodine. Details of the ion beam optics, optical calculations and a description of the proposed microbeam design are given. The unique combination of high energy, heavy ions and improved detection systems will provide high sensitivity elemental composition and depth profiling information, allowing surface topography and 3D surface reconstruction to be performed on a broad range of materials. 86 refs., 5 tabs., 15 figs.

  9. Novel correction method for X-ray beam energy fluctuation of high energy DR system with a linear detector

    Institute of Scientific and Technical Information of China (English)

    YANG Min; CHEN Hao; MENG Fan-Yong; WEI Dong-Bo

    2011-01-01

    A high energy digital radiography (DR) testing system has generated diverse scientific and technological interest in the field of industrial non-destructive testing.However,due to the limitations of manufacturing technology for accelerators,an energy fluctuation of the X-ray beam exists and leads to bright and dark streak artifacts in the DR image.Here we report the utilization of a new software-based method to correct the fluctuation artifacts.The correction method is performed using a high pass filtering operation to extract the high frequency information that reflects the X-ray beam energy fluctuation,and then subtracting it from the original image.Our experimental results show that this method is able to rule out the artifacts effectively and is readily implemented on a practical scanning system.

  10. Energy dependence of $\\phi$ meson production in central Pb+Pb collisions at $\\sqrt{s_{NN}}$=6 to 17 GeV

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csató, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gál, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Galadysz, E; Grebieszkow, K; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V I; Kollegger, T; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Kresan, D; Laszlo, A; Lacey, R; Van Leeuwen, M; Lévai, Peter; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Nicolic, V; Pálla, G; Panagiotou, A D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Pühlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Walodarczyk, Z; Yoo, I K; Zimányi, J

    2008-01-01

    Phi meson production is studied by the NA49 collaboration in central Pb+Pb collisions at 20A, 30A, 40A, 80A and 158A GeV beam energy. The data are compared to measurements at lower and higher energies and to microscopic and thermal models. The energy dependence of yields and spectral distributions is compatible with the assumption that partonic degrees of freedom set in at low SPS energies.

  11. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  12. Simulation of the secondary electrons energy deposition produced by proton beams in PMMA: influence of the target electronic excitation description

    Science.gov (United States)

    Dapor, Maurizio; Abril, Isabel; de Vera, Pablo; Garcia-Molina, Rafael

    2015-06-01

    We have studied the radial dependence of the energy deposition of the secondary electron generated by swift proton beams incident with energies T = 50 keV-5 MeV on poly(methylmethacrylate) (PMMA). Two different approaches have been used to model the electronic excitation spectrum of PMMA through its energy loss function (ELF), namely the extended-Drude ELF and the Mermin ELF. The singly differential cross section and the total cross section for ionization, as well as the average energy of the generated secondary electrons, show sizeable differences at T ⩽ 0.1 MeV when evaluated with these two ELF models. In order to know the radial distribution around the proton track of the energy deposited by the cascade of secondary electrons, a simulation has been performed that follows the motion of the electrons through the target taking into account both the inelastic interactions (via electronic ionizations and excitations as well as electron-phonon and electron trapping by polaron creation) and the elastic interactions. The radial distribution of the energy deposited by the secondary electrons around the proton track shows notable differences between the simulations performed with the extended-Drude ELF or the Mermin ELF, being the former more spread out (and, therefore, less peaked) than the latter. The highest intensity and sharpness of the deposited energy distributions takes place for proton beams incident with T ~ 0.1-1 MeV. We have also studied the influence in the radial distribution of deposited energy of using a full energy distribution of secondary electrons generated by proton impact or using a single value (namely, the average value of the distribution); our results show that differences between both simulations become important for proton energies larger than ~0.1 MeV. The results presented in this work have potential applications in materials science, as well as hadron therapy (due to the use of PMMA as a tissue phantom) in order to properly consider the

  13. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    Science.gov (United States)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  14. Design of medium energy beam transport line between the RFQ and the Linac in the radioactive ion beam facility at VECC, Kolkata

    Indian Academy of Sciences (India)

    S Dechoudhury; Vaishali Naik; Manas Mondal; Hemendra Kumar Pandey; Avik Chatterjee; Dirtha Sanyal; Debasis Bhowmick; Alok Chakrabarti

    2010-09-01

    The design of a medium energy beam transport (MEBT) line comprising of a re-buncher and four quadrupoles, two upstream and the other two downstream of the re-buncher, has been presented. The design was done to ensure almost 100% transport of heavy-ion beams of about 99 keV/u energy from RFQ having a / not less than 1/14 through the re-buncher and then through IH Linac of about 0.6 m length in which beam would be accelerated to about 185 keV/u. The re-buncher has been designed to operate at 37.8 MHz, the resonating frequency of both the RFQ and the IH Linac. The entire beam line has been installed and recently O5+ beam from RFQ has been transported through the re-buncher and subsequently accelerated in the IH Linac successfully.

  15. Development of Non-Conservative Joints in Beam Networks for Vibration Energy Flow Analysis

    Directory of Open Access Journals (Sweden)

    Jee-Hun Song

    2007-01-01

    Full Text Available Our work aims to find a general solution for the vibrational energy flow through a plane network of beams on the basis of an energy flow analysis. A joint between two semi-infinite beams are modeled by three sets of springs and dashpots. Thus, the results can incorporate the case of complaint and non-conservative in all the three degrees of freedom. In the cases of finite coupled structures connected at a certain angle, the derived non-conservative joints and developed wave energy equation were applied. The joint properties, the frequency, the coupling angle, and the internal loss factor were changed to evaluate the proposed methods for predicting medium-to-high frequency vibrational energy and intensity distributions.

  16. Collision energy dependence of elliptic flow splitting between particles and their antiparticles from an extended multiphase transport model

    CERN Document Server

    Xu, Jun

    2016-01-01

    Based on an extended multiphase transport model, which includes mean-field potentials in both the partonic and hadronic phases, uses the mix-event coalescence, and respects charge conservation during the hadronic evolution, we have studied the collision energy dependence of the elliptic flow splitting between particles and their antiparticles. This extended transport model reproduces reasonably well the experimental data at lower collision energies but only describes qualitatively the elliptic flow splitting at higher beam energies. The present study thus indicates the existence of other mechanisms for the elliptic flow splitting besides the mean-field potentials and the need of further improvements of the multiphase transport model.

  17. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermilab; Alvarez, M. [Fermilab; Andrews, R. [Fermilab; Carneiro, J.-P. [Fermilab; Chen, A. [Fermilab; Hanna, B. [Fermilab; Prost, L. [Fermilab; Scarpine, V. [Fermilab; D' Arcy, R. [University Coll. London; Wiesner, C. [Goethe U., Frankfurt (main)

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  18. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  19. Low energy high current pulsed electron beam treatment for improving surface microstructure and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J; Allain-Bonasso, N; Zhang, X D; Hao, S Z; Grosdider, T; Dong, C [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, UMR-CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Zou, J X, E-mail: jiang.wu@univ-metz.fr, E-mail: thierry.grosdidier@univ-metz.fr [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-06-15

    Low energy high current pulsed electron beam (LEHCPEB) is a fairly new technique for surface modifications authorizing improvement in wear and corrosion properties as well as texture changes and hardening. This contribution highlights some microstructure modifications encountered at the surface of HCPEB treated steels and bulk metallic glasses taking into account the effects of surface melting and the effects of the induced stress.

  20. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    Science.gov (United States)

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations.

  1. Electric and Magnetic Field Measurements in High Energy Electron Beam Diode Plasmas using Optical Spectroscopy

    Science.gov (United States)

    Johnston, Mark; Patel, Sonal; Kiefer, Mark; Biswas, S.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Yitzhak

    2016-10-01

    The RITS accelerator (5-11MV, 100-200kA) at Sandia National Laboratories is being used to evaluate the Self-Magnetic Pinch (SMP) diode as a potential flash x-ray radiography source. This diode consists of a small, hollowed metal cathode and a planar, high atomic mass anode, with a small vacuum gap of approximately one centimeter. The electron beam is focused, due to its self-field, to a few millimeters at the target, generating bremsstrahlung x-rays. During this process, plasmas form on the electrode surfaces and propagate into the vacuum gap, with a velocity of a 1-10 cm's/microseconds. These plasmas are measured spectroscopically using a Czerny-Turner spectrometer with a gated, ICCD detector, and input optical fiber array. Local magnetic and electric fields of several Tesla and several MV/cm were measured through Zeeman splitting and Stark shifting of spectral lines. Specific transitions susceptible to quantum magnetic and electric field effects were utilized through the application of dopants. Data was analyzed using detailed, time-dependent, collisional-radiative (CR) and radiation transport modeling. Recent results will be presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. High-energy proton beam analysis of geological materials

    Science.gov (United States)

    Halden, Norman M.

    1993-05-01

    Partitioning of trace elements between mineral phases reflects the physical, chemical and kinetic conditions of crystallization. Variations in environmental conditions during growth often result in complex and small-scale chemical zoning in minerals. The low abundance of trace elements and their spatial inhomogeneity on a μm scale makes their analysis by a muprobe technique essential for addressing many petrological problems. μ-PIXE (2-3 MeV) has been successfully applied to many mineralogical problems and is rapidly becoming a routine analytical tool for geologists. High-energy PIXE (40-60 MeV) provides a new dimension in mineralogical analysis. The K X-rays for many petrologically important trace elements occur in the 25-90 keV region, here the X-rays are not affected by interference from the X-rays of more abundant geochemically coherent elements. Furthermore, the K X-ray spectrum for an element is less complex than its corresponding L X-ray spectrum so data reduction is simplified. The use of high energy protons for elemental analysis makes high-energy PIGE accessible, here on-line emission of γ-rays can be used to provide information on element (or in some cases isotope) concentrations. For the analysis of chemically complex materials such as rocks and minerals it is necessary to thoroughly characterize the material beforehand such that likely proton induced reactions can be predicted. Nuclear reactions produced by proton interaction with mineral samples occur during on-line exposure of the sample. The by-products of such reactions may have significant half-lives which will make them amenable to off-line analysis. One such case is where Pt undergoes (p, xn) reactions to form Au which then decays back to Pt via electron capture. The off-line spectrum after such a run contains Au X-rays and the background to such spectra is low, which raises the possibility that this form of analysis will provide low detection limits. This is the proton analogue of neutron

  3. Dependence of alanine gel dosimeter response as a function of photon clinical beams dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleber Feijo, E-mail: cleber.feijo@famesp.com.br [Faculdade Metodo de Sao Paulo (FAMESP), SP (Brazil); Campos, Leticia Lucente, E-mail: Icrodri@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-11-01

    Gel dosimetry is a new area developed by Gore, it is ery useful for application in radiotherapy because using NMR imaging as evaluation technique is possible to evaluate three dimensional absorbed dose distribution. The measure technique is based on difference of ferrous (Fe{sup 2+}) and ferric (Fe{sup 3+}) ) ions concentration that can be measured also by spectrophotometry technique. The Alanine gel dosimeter was developed at IPEN. The alanine is an amino acid and tissue equivalent material that presents significant improvement on previous alanine dosimetry systems. The addition of Alanine increases the production of ferric ions in the solution. This work aims to study the dose rate dependence of photon clinical beams radiation on the alanine gel dosimeter optical response, as well as the response repeatability and gel production reproducibility, since this property is very important for characterization and standardization of any dosimeter. (author)

  4. Membrane Thickness Dependence of Nanopore Formation with a Focused Helium Ion Beam

    Directory of Open Access Journals (Sweden)

    Furat Sawafta

    2014-05-01

    Full Text Available Solid-state nanopores are emerging as a valuable tool for the detection and characterization of individual biomolecules. Central to their success is the realization of fabrication strategies that are both rapid and flexible in their ability to achieve diverse device dimensions. In this paper, we demonstrate the membrane thickness dependence of solid-state nanopore formation with a focused helium ion beam. We vary membrane thickness in situ and show that the rate of pore expansion follows a reproducible trend under all investigated membrane conditions. We show that this trend shifts to lower ion dose for thin membranes in a manner that can be described quantitatively, allowing devices of arbitrary dimension to be realized. Finally, we demonstrate that thin, small-diameter nanopores formed with our approach can be utilized for high signal-to-noise ratio resistive pulse sensing of DNA.

  5. Parametric dependence of energy harvesting performance with an oscillating hydrofoil

    Science.gov (United States)

    Strom, Benjamin; Kim, Daegyoum; Mandre, Shreyas; Breuer, Kenneth

    2014-11-01

    We report on experiments on tidal energy conversion from a open channel water flow using an oscillating hydrofoil. The hydrofoil is operated at high angles of attack such that the formation and capture of a leading edge vortex greatly enhances the energy conversion efficiency. A computer-controlled pitch and heave system allows for arbitrary position profiles to be imposed. Force and torque measurements are used to determine the energy harvesting efficiency as a function of Reynolds number, pitch and heave amplitudes, phase shift, the location of the pitching axis, position profile, and the cross sectional shape of the hydrofoil. PIV measurements are used to capture the vortex dynamics and these results are compared to the computational results of Frank and Franck (2013). Efficiency was found to be most sensitive to pitch amplitude, pitching axis and phase shift with relatively little dependence on Reynolds number, heave amplitude, and foil shape. Work supported by DOE-ARPAe.

  6. Evaluation of the energy dependence of a zinc oxide nanofilm X-ray detector

    Energy Technology Data Exchange (ETDEWEB)

    Valenca, C.P.V., E-mail: claudia.cpvv@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil); Silveira, M.A.L.; Macedo, M.A., E-mail: odecamm@gmail.com [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil); Santos, L.A.P, E-mail: lasantos@scients.com.br [Centro Regional de Ciencias Nucleares (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    International organizations of human health and radiation protection have recommended certain care for using of the X-ray as a diagnosis tool to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, electronic semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can conclude that the ZnO device can be used as a diagnostic X-ray detector with an appropriate calibration. (author)

  7. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    OpenAIRE

    Ali Pazirandeh; Elham Shekarian

    2006-01-01

     In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b), the treatment of deep seated tumors such as gliobelastoma multiform (GBM) requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage...

  8. Production of high-energy colliding. gamma gamma. and. gamma. e beams with a high luminosity at VLEPP accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F.; Kotkin, G.L.; Serbo, V.G.; Tel' nov, V.I.

    1981-11-05

    Colliding ..gamma gamma.. and ..gamma..e beams with an energy and luminosity of the same order of magnitude as for e/sup +/e/sup -/ beams can be produced by scattering a laser light at the accelerators with colliding e/sup +/e/sup -/ beams with an energy > or approx. =100 GeV. Such accelerators are currently in the design stage.

  9. MO-F-CAMPUS-T-05: Design of An Innovative Beam Monitor for Particle Therapy for the Simultaneous Measurement of Beam Fluence and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, R; Guarachi, L Fanola; Monaco, V; Anvar, M Varasteh; Cirio, R [Istituto Nazionale di Fisica Nucleare (INFN), Turin (Italy); University of Torino, Turin (Italy); Cartiglia, N; Cenna, F; Giordanengo, S; Marchetto, F; Vignati, A [Istituto Nazionale di Fisica Nucleare (INFN), Turin (Italy); Ferrero, M [University of Torino, Turin (Italy)

    2015-06-15

    Purpose: Monitoring the prescribed dose in particle therapy is typically carried out by using parallel plate ionization chambers working in transmission mode. The use of gas detectors has several drawbacks: they need to be calibrated daily against standard dosimeters and their dependence on beam quality factors need to be fully characterized and controlled with high accuracy. A detector capable of single particle counting is proposed which would overcome all these limitations. Combined with a gas ionization chamber, it will allow determining the average particle stopping power, thus providing an effective method for the online verification of the selected particle energy and range. Methods: Low-Gain Avalanche Detectors (LGADs) are innovative n-in-p silicon sensors with moderate internal charge multiplication occurring in the strong field generated by an additional p+ doping layer implanted at a depth of a few µm in the bulk of the sensor. The increased signal-to-noise ratio allows designing very thin, few tens of microns, segmented LGADs, called Ultra Fast Silicon Detectors (UFSD), optimized for very fast signal, which would be suitable for charged particle counting at high rates. A prototype UFSD is being designed for this purpose. Results: Different LGAD diodes have been characterized both in laboratory and beam tests, and the results compared both with those obtained with similar diodes without the gain layer and with a program simulating the signal in the sensors. The signal is found to be enhanced in LGADs, while the leakage current and the noise is not affected by the gain. Possible alternative designs and implementations are also presented and discussed. Conclusion: Thanks to their excellent counting capabilities, UFSD detectors are a promising technology for future beam monitor devices in hadron-therapy applications. Studies are ongoing to better understand their properties and optimize the design in view of this application.

  10. Excitation energy dependence of fission in the mercury region

    CERN Document Server

    McDonnell, J D; Sheikh, J A; Staszczak, A; Warda, M

    2014-01-01

    Background: Recent experiments on beta-delayed fission reported an asymmetric mass yield in the neutron-deficient nucleus 180Hg. Earlier experiments in the mass region A=190-200 close to the beta-stability line, using the (p,f) and (\\alpha,f) reactions, observed a more symmetric distribution of fission fragments. While the beta-delayed fission of 180Hg can be associated with relatively low excitation energy, this is not the case for light-ion reactions, which result in warm compound nuclei. Purpose: To elucidate the roles of proton and neutron numbers and excitation energy in determining symmetric and asymmetric fission yields, we compute and analyze the isentropic potential energy surfaces of 174,180,198Hg and 196,210Po. Methods: We use the finite-temperature superfluid nuclear density functional theory, for excitation energies up to E*=30MeV and zero angular momentum. For our theoretical framework, we consider the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Results: Fo...

  11. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    Science.gov (United States)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  12. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    Energy Technology Data Exchange (ETDEWEB)

    Krakau, Steffen; Schlickeiser, Reinhard [Institut fur Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum (Germany)

    2015-05-01

    The linear instability of an ultrarelativistic hadron beam (Γ{sub b} ∼ 10{sup 6}) in the unmagnetized intergalactic medium is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times which are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilize and can propagate with nearly no energy loss through the intergalactic medium.

  13. Radiation hygienization of cattle and swine slurry with high energy electron beam

    Science.gov (United States)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-06-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms.

  14. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  15. An improved small-deflection electromechanical model for piezoelectric bending beam actuators and energy harvesters

    Science.gov (United States)

    Tabesh, Ahmadreza; Fréchette, Luc G.

    2008-10-01

    The analytical model presented in this paper describes the energy conversion mechanism of a piezoelectric beam (bimorph) under small-deflection static and vibrating conditions. The model provides an improved approach to design and analyze the performance of piezoelectric actuators and energy harvesters (sensors). Conventional models assume a linear voltage distribution over the piezoelectric beam thickness, which is shown here to be invalid. The proposed modeling method improves accuracy by using a quadratic voltage distribution. The equivalent capacitance of a beam shows a 40% discrepancy between a conventional model and the proposed model for PZT5A material. This inaccuracy level is not negligible, especially when the design of micro-power electrical energy harvesting is concerned. The method solves simultaneously the solid mechanics and Maxwell's equations with the constitutive equations for piezoelectric materials. The paper also proposes a phasor-based procedure for measuring the damping of a piezoelectric beam. An experimental setup is developed to verify the validity of the model. The experimental results confirm the accuracy of the improved model and also reveal limitations in using models for small deflections.

  16. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  17. Development of the techniques for food processing with low-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Todoroki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-02-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of {gamma}-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of {gamma}-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  18. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  19. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  20. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  1. A Study of the Energy Dependence of the Underlying Event in Proton-Antiproton Collisions

    CERN Document Server

    Aaltonen, Timo Antero; Amerio, Silvia; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Marchese, Luigi Marchese; Deninno, Maria Maddalena; Devoto, Francesco; D'Errico, Maria; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; D'Onofrio, Monica; Donati, Simone; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grosso-Pilcher, Carla; Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Soo Bong; Kim, Shin-Hong; Kim, Young-Kee; Kim, Young-Jin; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucà, Alessandra; Lucchesi, Donatella; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Margaroli, Fabrizio; Marino, Christopher Phillip; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Prokoshin, Fedor; Pranko, Aliaksandr Pavlovich; Ptohos, Fotios K; Punzi, Giovanni; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Shreyber-Tecker, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Sorin, Maria Veronica; Song, Hao; Stancari, Michelle Dawn; St Denis, Richard Dante; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Vázquez-Valencia, Elsa Fabiola; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2015-01-01

    We study charged particle production in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta-phi space; toward, away, and transverse. The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the underlying event. The transverse region is divided into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  2. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC

    CERN Document Server

    Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Balewski, J; Banerjee, A; Barnovska, Z; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Sánchez, M Calderóndela Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Das, S; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Grosnick, D; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Haque, R; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, W; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Don, D M M D Madagodagettige; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Munhoz, M G; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Peterson, A; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandacz, A; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen,, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2013-01-01

    We report the beam energy (\\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\\sigma), skewness (S), and kurtosis (\\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\\sigma and \\kappa\\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are co...

  3. Electron Beam Irradiation Dose Dependently Damages the Bacillus Spore Coat and Spore Membrane

    Directory of Open Access Journals (Sweden)

    S. E. Fiester

    2012-01-01

    Full Text Available Effective control of spore-forming bacilli begs suitable physical or chemical methods. While many spore inactivation techniques have been proven effective, electron beam (EB irradiation has been frequently chosen to eradicate Bacillus spores. Despite its widespread use, there are limited data evaluating the effects of EB irradiation on Bacillus spores. To study this, B. atrophaeus spores were purified, suspended in sterile, distilled water, and irradiated with EB (up to 20 kGy. Irradiated spores were found (1 to contain structural damage as observed by electron microscopy, (2 to have spilled cytoplasmic contents as measured by spectroscopy, (3 to have reduced membrane integrity as determined by fluorescence cytometry, and (4 to have fragmented genomic DNA as measured by gel electrophoresis, all in a dose-dependent manner. Additionally, cytometry data reveal decreased spore size, increased surface alterations, and increased uptake of propidium iodide, with increasing EB dose, suggesting spore coat alterations with membrane damage, prior to loss of spore viability. The present study suggests that EB irradiation of spores in water results in substantial structural damage of the spore coat and inner membrane, and that, along with DNA fragmentation, results in dose-dependent spore inactivation.

  4. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  5. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  6. Change of texture, microdeformation and hardness in surface layer of TiNi alloy depending on the number of pulses of electron beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Meisner, L. L., E-mail: llm@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Markov, A. B., E-mail: a.markov@hq.tsc.ru; Yakovlev, E. V., E-mail: yakovev@lve.hcei.tsc.ru; Ozur, G. E., E-mail: ozur@lve.hcei.tsc.ru [Institute of High Current Electronics SB RAS, Tomsk, 634055 (Russian Federation); Rotshtein, V. P., E-mail: vrotshtein@yahoo.com [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tomsk State Pedagogical University, Tomsk, 634050 (Russian Federation); Mironov, Yu. P., E-mail: myp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    This work comprises a study of the influence of the pulse number of low-energy high-current electron beam (LEHCEB) exposure on the value and character of distribution of residual elastic stresses, texturing effects and the relationship between structural-phase states and physical and mechanical properties of the modified surface layers of TiNi alloy. LEHCEB processing of the surface of TiNi samples was carried out using a RITM-SP [3] installation. Energy density of electron beam was constant at E{sub s} = 3.9 ± 0.5 J/cm{sup 2}; pulse duration was 2.8 ± 0.3 μs. The number of pulses in the series was changeable, (n = 2–128). It was shown that as the result of multiple LEHCEB processing of TiNi samples, hierarchically organized multilayer structure is formed in the surface layer. The residual stress field of planar type is formed in the modified surface layer as following: in the direction of the normal to the surface the strain component ε{sub ⊥} < 0 (compressing strain), and in a direction parallel to the surface, the strain component ε{sub ||} > 0 (tensile deformation). Texturing effects and the level of residual stresses after LEHCEB processing of TiNi samples with equal energy density of electron beam (∼3.8 J/cm{sup 2}) depend on the number of pulses and increase with the rise of n > 10.

  7. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Zheng H.

    2016-01-01

    Full Text Available We study the dipole response associated with the Pygmy Dipole Resonance (PDR and the Isovector Giant Dipole Resonance (IVGDR, in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence, in the neutron-rich systems 68Ni, 132Sn and 208Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation.We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF with Random Phase Approximation (RPA calculations.

  8. Effects of symmetry energy and momentum dependent interaction on low-energy reaction mechanisms

    CERN Document Server

    Zheng, H; Baran, V; Burrello, S

    2015-01-01

    We study the dipole response associated with the Pygmy Dipole Resonance (PDR) and the Isovector Giant Dipole Resonance (IVGDR), in connection with specific properties of the nuclear effective interaction (symmetry energy and momentum dependence), in the neutron-rich systems $^{68}$Ni, $^{132}$Sn and $^{208}$Pb. We perform our investigation within a microscopic transport model based on the Landau-Vlasov kinetic equation. We observe that the peak energies of PDR and IVGDR are shifted to higher values when employing momentum dependent interactions, with respect to the results obtained neglecting momentum dependence. The calculated energies are close to the experimental values and similar to the results obtained in Hartree-Fock (HF) with Random Phase Approximation (RPA) calculations.

  9. Tension-dependent Free Energies of Nucleosome Unwrapping

    CERN Document Server

    Lequieu, Joshua; Schwartz, David C; de Pablo, Juan J

    2016-01-01

    Nucleosomes form the basic unit of compaction within eukaryotic genomes and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome, and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails are crucial f...

  10. An atomic clockwork using phase dependent energy shifts

    CERN Document Server

    De Munshi, D; Mukherjee, M

    2011-01-01

    A frequency stabilized laser referenced to an unperturbed atomic two level system acts as the most accurate clock with femtosecond clock ticks. For any meaningful use, a Femtosecond Laser Frequency Comb (FLFC) is used to transfer the atomic clock accuracy to electronically countable nanosecond clock ticks. Here we propose an alternative clockwork based on the phenomenon that when an atomic system is slowly evolved in a cyclic path, the atomic energy levels gather some phase called the geometric phase. This geometric phase dependent energy shift has been used here to couple the two frequency regimes in a phase coherent manner. It has also been shown that such a technique can be implemented experimentally, bypassing the highly involved setup of a FLFC.

  11. Energy-Momentum of a Stationary Beam of Light in Teleparallel Gravity

    CERN Document Server

    Aydogdu, O; Aydogdu, Oktay; Salti, Mustafa

    2006-01-01

    In this paper, we utilize the teleparallel gravity analogs of the energy and momentum definitions of Bergmann-Thomson and Landau-Lifshitz in order to explicitly evaluate the energy distribution(due to matter and fields including gravity) based on the Bonnor space-time. it is shown that for a stationary beam of light, these energy-momentum definitions give the same result. Furthermore, this result supports the viewpoint of Cooperstock and also agree with the previous works by Bringley and Gad.

  12. Effects of high-energy-pulse-electron beam radiation on biomacromolecules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To study the molecular mechanism of high mutation frequency induced by high-energy-pulse-electron (HEPE) beam radiation, the effects of HEPE radiation on yeast cells, plasma membrane, plasmid DNA, and protein activity were investigated by means of cell counting, gel electrophoresis, AO/EB double fluorescent staining, etc. The results showed that the viability of yeast cells declined statistically with increase of absorbed doses. The half lethal dose (LD50) was 134 Gy. HEPE beam radiation had little influence on the function of plasma membrane and protein, while it could induce much DNA damage of single strand breaks (SSB) and double strand breaks (DSB) that were required for gene mutation. The G-value for DSB formation of HEPE beam radiation in aqueous solution was 5.7 times higher than that caused by 60Co gamma rays. HEPE can be a new effective method for induced mutation breeding and deserves further research in the future.

  13. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    Science.gov (United States)

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz.

  14. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    Science.gov (United States)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  15. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aichao; Li, Ping, E-mail: liping@cqu.edu.cn; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng [Research Center of Sensors and Instruments, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  16. Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.

    1988-03-01

    Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm/sup 2/ for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications.

  17. Energy Dependence of Inclusive Spectra in $e^{+} e^{-}$ Annihilation

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, P S; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    Inclusive charged hadron distributions as obtaind from the DELPHI measurements at 130, 136, 161, 172 and 183 GeV are presented as a function of the variables rapidity, $\\xi_p$, $p$ and transversal momenta. Data are compared with event generators and with MLLA calculations, in order to examine the hypothesis of local parton hadron duality. The differential momentum spectra show an indication for coherence effects in the production of soft particles. The relation between the energy dependence of the charged multiplicity and the rapidity distribution is examined.

  18. DEPENDENCE OF DAMPING CHARACTERISTICS OF A BEAM WITH DAMPING RUBBER MAGNETIC POWDER ON RUBBER PROPERTY

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Zeng He; Huiming Zheng; Ning Zhang

    2008-01-01

    A cantilever beam with Damping Material Applying Rubber Magnetic Powder (DRM)has been investigated.Two methods are selected to hold DRM to a vibrating steel beam,one is to attach DRM by the magnetic attractive force (called DRM beam) and the other by adhesive bonding (called AB-DRM beam).Different from the damping property of AB-DRM beam caused by shear deformation of damping material,the damping property of DRM beam is characterized by the sliding frictional loss together with the internal loss of damping material.The authors established a formulation to predict the damping characteristics of DRM beam,which was validated experimentally.It is found that rubber material loss factor/β has a decisive influence on damping improvement of DRM beam versus AB-DRM beam.If/β is smaller than the critical value around 0.8255,a valid range of vibratory amplitude always exists in which DRM beam can achieve better damping than AB-DRM beam;conversely,if/β is bigger than the critical value,the valid range does not exist when slide occurs.Such results are used to determine the merits and limitations of DRM and develop design guidelines.

  19. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Wei; MA Zhong-Quan; WANG Ye; WANG De-Ming

    2006-01-01

    The deposited energy during film growth with ion bombardment, correlated to the atomic displacement on the surface monolayer and the underlying bulk, has been calculated by a simplified ion-solid interaction model under binary collision approximation. The separated damage energies caused by Ar ion, different for the surface and the bulk, have been determined under the standard collision cross section and a well-defined surface and bulk atom displacement threshold energy of titanium nitride (TiN). The optimum energy scope shows that the incident energy of Ar+ around 110eV for TiN (111) and 80eV for TiN (200) effectively enhances the mobility of adatom on surface but excludes the damage in underlying bulk. The theoretical prediction and the experimental result are in good agreement in low energy ion beam-assisted deposition.

  20. Analyzer of high-load electron beams with resolution in two energy components, space and time

    Directory of Open Access Journals (Sweden)

    Alexander V. Arkhipov

    2015-03-01

    Full Text Available The new apparatus is developed for experimental determination of electron energy and spatial distributions in dense medium-energy long-pulsed magnetically confined beams – typically, 10 A/cm2, 60 keV, 100 µs, 0.1 T. To provide most detailed and unambiguous information, direct electrostatic cut-off method is used for electron energy analysis. In combination with variation of the magnetic field in the analysis area, this method allows to determine both (axial and transverse components of electron energy. Test experiments confirmed ∼1% energy resolution being predicted from calculations, accounting for electrode shapes, space-charge effects and non-adiabatic energy transfer effects in varied magnetic field. Space and time resolution of the apparatus are determined by the input aperture size (∼1 mm and cut-off electric field pulse-length (∼5–10 µs respectively.

  1. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam

    Science.gov (United States)

    Lourenço, A.; Thomas, R.; Homer, M.; Bouchard, H.; Rossomme, S.; Renaud, J.; Kanai, T.; Royle, G.; Palmans, H.

    2017-04-01

    The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, {{k}\\text{fl}} , needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The {{k}\\text{fl}} term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the {{k}\\text{fl}} due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.

  2. Energy dependent sticking coefficients of trimethylamine on Si(001)-Influence of the datively bonded intermediate state on the adsorption dynamics

    Science.gov (United States)

    Lipponer, M. A.; Reutzel, M.; Dürr, M.; Höfer, U.

    2016-11-01

    The adsorption dynamics of the datively bonded trimethylamine (TMA) on Si(001) was investigated by means of molecular beam techniques. The initial sticking probability s0 of TMA on Si(001) was measured as a function of kinetic energy at two different surface temperatures (230 and 550 K). At given surface temperature, s0 was found to decrease with increasing kinetic energy (0.1 to 0.6 eV) indicating a non-activated reaction channel. At increased surface temperature, s0 is reduced due to the onset of desorption into the gas phase. The energy dependence of s0 is compared to the results for the adsorption of tetrahydrofuran (THF) on Si(001), which reacts via a datively bonded intermediate into a covalently bound final state. As s0 follows the same energy dependence both for TMA and THF, the datively bonded intermediate state is concluded to dominate the reaction dynamics in the latter case as well.

  3. Nonlinear and long-term beam dynamics in low energy storage rings

    Science.gov (United States)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2013-06-01

    Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. T