WorldWideScience

Sample records for beam emittance measurements

  1. Beam emittance measurements in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Zelenski,A.; Bazilevsky, A.; Bunce, G.; Gill, R.; Huang, H.; Makdisi, Y.; Morozov, B.; Nemesure, S.; Russo, t.; Steski, D.; Sivertz, M.

    2009-05-04

    The RHIC proton polarimeters can operate in scanning mode, giving polarization profiles and transverse beam intensity profile (beam emittance) measurements. The polarimeters function as wire scanners, providing a very good signal/noise ratio and high counting rate. This allows accurate bunch-by-bunch emittance measurements during fast target sweeps (<1 s) through the beam. Very thin carbon strip targets make these measurements practically non-destructive. Bunch by bunch emittance measurements are a powerful tool for machine set-up; in RHIC, individual proton beam transverse emittances can only be measured by CNI polarimeter scans. We discuss the consistency of these measurements with Ionization Profile Monitors (IPMs) and vernier scan luminosity measurements. Absolute accuracy limitations and cross-calibration of different techniques are also discussed.

  2. Beam emittance measurements at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

    2008-01-01

    We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

  3. Emittance measurements of low-energy beam line at KVI

    NARCIS (Netherlands)

    Toprek, D; Formanoy, [No Value

    2006-01-01

    In this paper is represented the results of beam profile measurements of He-3(+) beam delivered from ECR ion source at KVI. The beam emittance is estimated by varying quadrupole method. The estimated values for the beam emittance at the different profile grid locations along the transport beam line

  4. Emittance Measurements for Beams Extracted from LECR3 Ion Source

    Institute of Scientific and Technical Information of China (English)

    CaoYun; ZhaoHongwei; MaLei; ZhangZimin

    2003-01-01

    High quality ion beams are required by IMP cyclotron and atomic physics research, so it is important to research and measure beam emitt ance of ECR ion source. Intense beams extracted from ECR ion source usually have low energy, so it is suitable to use Electric-Sweep Scanner to measure the emittance. This kind of measurement is popularly used at ECR ion source, and it has some prominent merits such as high accuracy, very short time of data processing and easy expressing of the emittance pattern. So we designed and built this emittance scanner to measure emittance of the ion beams produced by LECR3 ion source. The structure of the ESS is shown in Fig.l, and the photo of the ESS is shown in Fig.2.

  5. Beam Emittance Measurement for PLS-II Linac

    CERN Document Server

    Lee, Byung-Joon; Park, Chong do; Chunjarean, SomJai; Kim, Changbum

    2016-01-01

    The PLS-II has a 100 MeV pre-injector for the 3 GeV Linac. A thermionic gun produces electron charge of 200 pC with a bunch duration of 500 ps by a 250 ps triggering pulser. At the pre-injector, one of the most important beam parameters to identify the beam quality is a transverse emittance of electron bunches. Therefore we measure the beam emittance and twiss functions at 100 MeV in order to match the beam optics to beam transport line and go through it to the storage ring. To get the transverse emittance measurement, well-known technique, quadrupole scan, is used at the pre-injector. The emittance were 0.591 mm-mrad in horizontal and 0.774 mm-mrad in vertical direction.

  6. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    Science.gov (United States)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  7. Absolute beam emittance measurements at RHIC using ionization profile monitors

    Energy Technology Data Exchange (ETDEWEB)

    Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Connolly, R [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Summers, T. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Tepikian, S. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  8. Use of beam emittance measurements in matching problems

    International Nuclear Information System (INIS)

    The CERN new 50 MeV linac should operate with a computer-aided beam matching in which the transverse criteria are based on measured r.m.s. values of beam co-ordinates in phase space. The collected data, however, need to undergo an intermediate treatment before significant results can be obtained and then used in computations. Some examples from the experimental study programme are given and the role of automated beam emittance measurements in matching problems discussed. (author)

  9. Development of High Intensity Beam Emittance Measurement Unit

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Three sets of High Intensity Beam Emittance Measurement Units (HIBEMUs) are being developed at Peking University. They are HIBEMU-2 (slit-wire type, one direction), HIBEMU-3 (Allison scanner type, one direction) and HIBEMU-4 (slit-wire type, two directions). For HIBEMU-2 and HIBEMU-3, more recent work has been done on software redesign in order to measure beam emittance and to draw phase diagram more efficiently and precisely. Software for control and data processing of them were developed in Labveiw environment, trying to improve calculation rationality and to offer user-friendly interface. Mechanical modification was also done for HIBEMU-3, mainly concentrating on the protection of Faraday cups from being overheated by the high intensity beam and also from interference of secondary electrons. This paper will also cover the mechanical structure as well as the software development of HIBEMU-4, which is a two-direction emittance scanner newly designed and manufactured for the high energy beam transport (HEBT) of Peking University Neutron Imaging FaciliTY (PKUNIFTY). At the end of this paper, comparison and analysis of the three HIBEMUs are given to draw forth better design of the future emittance measurement facility.

  10. Beam Emittance Measurement with Laser Wire Scanners in the ILC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Agapov, I.; /CERN; Blair, G.A.; /Royal Holloway, U. of London; Woodley, M.; /SLAC

    2008-02-01

    Accurate measurement of the beam phase-space is essential for the next generation of electron accelerators. A scheme for beam optics optimization and beam matrix reconstruction algorithms for the diagnostics section of the beam delivery system of the International Linear Collider based on laser-wire beam profile monitors are discussed. Possible modes of operation of the laser-wire system together with their corresponding performance are presented. Based on these results, prospects for reconstructing the ILC beam emittance from representative laser-wire beam size measurements are evaluated.

  11. A transverse emittance and acceptance measurement system in a low-energy beam transport line

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, H., E-mail: kashiwagi.hirotsugu@jaea.go.jp; Miyawaki, N.; Kurashima, S.; Okumura, S. [Department of Advanced Radiation Technology, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    A transverse beam emittance and acceptance measurement system has been developed to visualize the relationship between the injected beam emittance and the acceptance of a cyclotron. The system is composed of a steering magnet, two pairs of slits to limit the horizontal and vertical phase-space, a beam intensity detector just behind the slits for the emittance measurement, and a beam intensity detector in the cyclotron for the acceptance measurement. The emittance is obtained by scanning the slits and measuring the beam intensity distribution. The acceptance is obtained by measuring the distribution of relative beam transmission by injecting small emittance beams at various positions in a transverse phase-space using the slits. In the acceptance measurement, the beam from an ion source is deflected to the defined region by the slits using the steering magnet so that measurable acceptance area covers a region outside the injection beam emittance. Measurement tests were carried out under the condition of accelerating a beam of {sup 16}O{sup 6+} from 50.2 keV to 160 MeV. The emittance of the injected beam and the acceptance for accelerating and transporting the beam to the entrance of the extraction deflector were successfully measured. The relationship between the emittance and acceptance is visualized by displaying the results in the same phase-plane.

  12. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    OpenAIRE

    G. Golovin; Banerjee, S.; Liu, C; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; P. Seller; Umstadter, D.

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of ...

  13. Simple emittance measurement of negative hydrogen ion beam using pepper-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Hamabe, M.; Tsumori, K.; Takeiri, Y.; Kaneko, O.; Asano, E.; Kawamoto, T.; Kuroda, T. [National Inst. for Fusion Science, Nagoya (Japan); Guharay, S.K.

    1997-02-01

    A simple apparatus for emittance measurement using pepper-pot method is developed. The pepper-pot patterns are directly exposed and recorded on a Kapton foil. Using this apparatus, emittance was measured in the case of the negative hydrogen (H{sup -}) beam from the large negative ion source, which is the 1/3 scaled test device for the negative-ion-based neutral beam injection (N-NBI) on the Large Helical Device (LHD). As the consequence of the first trial, the 95% normalized emittance value is measured as 0.59 mm mrad. (author)

  14. H- beam emittance measurements for the penning and the asymmetric, grooved magnetron surface-plasma sources

    International Nuclear Information System (INIS)

    Beam-intensity and emittance measurements show that the H- beam from our Penning surface-plasma source (SPS) has twice the intensity and ten times the brightness of the H- beam from an asymmetric, grooved magnetron SPS. We deduce H- ion temperatures of 5 eV for the Penning SPS and 22 eV for the asymmetric, grooved magnetron

  15. Emittance measurements of high current heavy ion beams using a single shot pepperpot system

    International Nuclear Information System (INIS)

    The new 1.4 MeV/u high current injector for the Unilac successfully commissioned in 1999 is now accelerating heavy ions close to the calculated intensities. For example an 40Ar1+ beam with 8 emA allows to fill the GSI synchrotron to its inherent intensity limit. For emittance measurements of such intense beams a single shot pepperpot system has been developed. An overview of the hard- and software including mathematical algorithms is given. Results of emittance measurements at different intensities and energies are presented. The influence of stripping and related space charge effects on the emittance could be investigated

  16. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  17. Beam profile and emittance measurement in the CUTE-FEL setup

    International Nuclear Information System (INIS)

    Measurement of the size and profile of the electron beam in the CUTE-FEL setup has been performed in order to quantify the beam parameters. Since the CUTE-FEL employs a high charge beam, an optimization of beam parameters was performed to minimize the phosphor and CCD camera saturation. Neutral Density (ND) filters were employed to avoid CCD camera saturation. Measurement of beam emittance has also been performed by the pepper-pot technique using a new diagnostic chamber fabricated and installed in the beamline for the purpose. This paper discusses these beam characterization experiments. (author)

  18. Report on specification of the electron beam parameter suitable for emittance measurements

    CERN Document Server

    Malka, V

    2009-01-01

    The all optical external injection scheme that we will use with two colliding laser pulses allows a way to stabilize the injection of electrons into the plasma wave, and to easily tune the energy of the output beam by changing the longitudinal position of the injection. The charge and relative energy spread are also controllable by tuning parameters such as the injection intensity and its polarization. We report here on the control of the e-beam parameters, on the e-beam parameters that will be used for the conception and design of the emittance meter and on the experimental arrangement on which emittance measurement experiments will be achieved.

  19. Emittance reconstruction from measured beam sizes in ATF2 and perspectives for ILC

    Science.gov (United States)

    Faus-Golfe, A.; Navarro, J.; Fuster Martinez, N.; Resta Lopez, J.; Giner Navarro, J.

    2016-05-01

    The projected emittance (2D) and the intrinsic emittance (4D) reconstruction method by using the beam size measurements at different locations is analyzed in order to study analytically the conditions of solvability of the systems of equations involved in this process. Some conditions are deduced and discussed, and general guidelines about the locations of the measurement stations have been obtained to avoid unphysical results. The special case of the multi-Optical Transition Radiation system (m-OTR), made of four measurement stations, in the Extraction Line (EXT) of Accelerator Test Facility 2 (ATF2) has been simulated in much detail and compared with measurements. Finally a feasibility study of a multi-station system for fast transverse beam size measurement, emittance reconstruction and coupling correction in the Ring to Main Linac (RTML) of International Linear Collider (ILC) Diagnostic sections of the RTML has been discussed in detail.

  20. Experimental measurement of emittance growth in mismatched space-charge-dominated beams

    International Nuclear Information System (INIS)

    Using the Single Beam Transport Experiment (SBTE) at LBL, we have measured the emittance of a well-matched 4.6-mA beam of 122-keV Cs+ to be conserved from injection into through exit from an 80-lens segment of the AG focussing channel. We then mismatched the beam into the same channel such that the maximum (minimum) radius of the beam at the midplane between lenses was about 1.5 (0.5) times the former value. We caused mismatches in the envelope of the beam in both transverse dimensions (labeled a and b) in modes both symmetric (δa = δb) and antisymmetric (δa = -δb). We found the mismatch amplitude to decay during the beam transit through the channel for both modes of mismatch, although more so for the antisymmetric mode. We also found the emittance of the symmetrically mismatched beam to be the same as for the matched beam, while the emittance of the antisymmetrically mismatched beam grew by as much as a factor of four over that for the matched beam

  1. Plasma studies and beam emittance measurements of 2.45 GHz microwave ion source at VECC

    International Nuclear Information System (INIS)

    A 2.45 GHz microwave ion source operating at VECC is able to produce a total beam current of ∼ 12 mA at a beam energy of 75 KeV with a microwave power of 400 W as described in. In order to optimize the performance of the ion source, we have conducted systematic studies with the variation of ion source gas flow rate, magnetic field, extraction voltage, suppressor voltage, microwave power etc. The total extracted beam current was recorded as a function of each of the earlier mentioned parameters. Moreover, we have studied the effect on extracted beam current and its transmission in the beam transport line due to dielectric and water introduction into the plasma chamber. In the best setting, we have found a total extracted beam current of 12.5 mA with a beam transmission of 70 %. Furthermore, we have also studied the extracted beam current and its transmission in the beam transport line using aluminum plasma chamber of different diameters. Finally, we have estimated the beam emittance by solenoid scan technique of a neutralized 75 KeV, 5 mA proton beam by measuring beam profile using a non-interceptive residual gas fluorescence monitor. The measured normalized rms emittance of the neutralized beam is 0.05 mm-mrad, which seems to be quite reasonable. (author)

  2. Overview of laserwire beam profile and emittance measurements for high power proton accelerators

    CERN Document Server

    Gibson, S M; Bosco, A; Gabor, C; Pozimski, J; Savage, P; Hofmann, T

    2013-01-01

    Laserwires were originally developed to measure micron-sized electron beams via Compton scattering, where traditional wire scanners are at the limit of their resolution. Laserwires have since been applied to larger beamsize, high power H$^-$ ion beams, where the non-invasive method can probe beam densities that would damage traditional diagnostics. While photo-detachment of H$^-$ ions is now routine to measure beam profiles, extending the technique to transverse and longitudinal emittance measurements is a key aim of the laserwire emittance scanner under construction at the Front End Test Stand (FETS) at the RAL. A pulsed, 30 kHz, 8kW peak power laser is fibrecoupled to motorized collimating optics, which controls the position and thickness of the laserwire delivered to the H- interaction chamber. The laserwire slices out a beamlet of neutralized particles, which propagate to a downstream scintillator and camera. The emittance is reconstructed from 2D images as the laserwire position is scanned. Results from ...

  3. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    Science.gov (United States)

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-01-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays. PMID:27090440

  4. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging.

    Science.gov (United States)

    Golovin, G; Banerjee, S; Liu, C; Chen, S; Zhang, J; Zhao, B; Zhang, P; Veale, M; Wilson, M; Seller, P; Umstadter, D

    2016-04-19

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  5. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

    Science.gov (United States)

    Golovin, G.; Banerjee, S.; Liu, C.; Chen, S.; Zhang, J.; Zhao, B.; Zhang, P.; Veale, M.; Wilson, M.; Seller, P.; Umstadter, D.

    2016-04-01

    The recent combination of ultra-intense lasers and laser-accelerated electron beams is enabling the development of a new generation of compact x-ray light sources, the coherence of which depends directly on electron beam emittance. Although the emittance of accelerated electron beams can be low, it can grow due to the effects of space charge during free-space propagation. Direct experimental measurement of this important property is complicated by micron-scale beam sizes, and the presence of intense fields at the location where space charge acts. Reported here is a novel, non-destructive, single-shot method that overcame this problem. It employed an intense laser probe pulse, and spectroscopic imaging of the inverse-Compton scattered x-rays, allowing measurement of an ultra-low value for the normalized transverse emittance, 0.15 (±0.06) π mm mrad, as well as study of its subsequent growth upon exiting the accelerator. The technique and results are critical for designing multi-stage laser-wakefield accelerators, and generating high-brightness, spatially coherent x-rays.

  6. Initial Emittance Measurements of the Fermilab Linac Beam Using the MTA Beamline

    CERN Document Server

    Johnstone, C

    2012-01-01

    The MTA beam line has been specifically designed to facilitate measurements of the Fermilab Linac beam emittance and properties utilizing a long, 10m, element-free straight. Linac beam is extracted downstream of the 400-MeV electrostatic chopper located in the Booster injection line. This chopper cannot be utilized for MTA beam, and therefore the entire Linac beam pulse is directed into the MTA beamline. Pulse length manipulation is provided by the 750-keV electrostatic chopper at the upstream end of the Linac and, using this device, beam can be delivered from 8 {\\mu}sec up to the full 50 {\\mu}sec Linac pulse length. The 10 m emittance measurement straight exploits and begins at the 12' shield wall that separates the MTA Experimental Hall and beamline stub from the Linac enclosure. A quadrupole triplet has been installed upstream of the shield wall in order to focus a large, 1.5-2" (~95% width) beam through the shield wall and onto a profile monitor located at the exit of the shielding. Another profile monito...

  7. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  8. Emittance measurements on ETA and ATA

    International Nuclear Information System (INIS)

    Emittance measurements on beams produced by the ETA and ATA accelerators are discussed. Emittance and brightness are defined. The significance of emittance for a beam in an accelerator and in gas is discussed. Various measurement techniques and results are presented and contrasted. Implicit calculations of emittance are also reported. Finally, the measurement of the time variation of emittance is discussed and the techniques to be used on the upcoming ATA experiments are outlined

  9. Measurement of emittance and emittance reduction in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Palladino, Vittorio [Univ. and Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Napoli, Complesso Universitario di Monte Sant' Angelo, via Cintia, I-80126, Napoli (Italy); Verguilov, Vassil [Departement de physique nucleaire et corpusculaire - DPNC, Geneva University, 24, Quai Ernest Ansermet, 1211 Geneve 4 (Switzerland)

    2010-07-01

    MICE is building at RAL a muon beam with tunable emittance and an array of detectors capable to measure the emittance of the beam before and after any ionization cooling device that will be designed in the future. This talk will present the details of the measurements of beam emittance and of emittance reduction, the tracking and particle identification instrumentation used for this purpose, the physical observables and the techniques being prepared to provide convincing evidence of effective ionisation cooling. After the measurement of the transverse cooling performances of the cooling cell designed in early feasibility studies of a neutrino factory, the MICE beam and emittance measurement devices will remain as a facility for the study of new candidate cooling cell prototypes, including exchange between transverse and longitudinal emittance cooling. Some of those emerging options will also be briefly mentioned. (author)

  10. Measurement of X-ray beam emittance using crystal optics at an X-ray undulator beamline

    CERN Document Server

    Kohmura, Y; Awaji, M; Tanaka, T; Hara, T; Goto, S; Ishikawa, T

    2000-01-01

    We present a method of using crystal optics to measure the emittance of the X-ray source. Two perfect crystals set in (++) configuration work as a high-resolution collimator. The phase-space diagram (i.e. beam cross-section and angular distribution) could be determined without any assumptions on the light source. When the measurement is done at short wavelength radiation from undulator, the electron beam emittance is larger than the diffraction limit of the X-rays. Therefore, the electron beam emittance could be estimated. The measurement was done with the hard X-rays of 18.5 and 55 keV from an undulator beamline, BL 47XU, of SPring-8. The horizontal emittance of the X-ray beam was estimated to be about 7.6 nmrad, close to the designed electron beam emittance of the storage ring (7 nmrad). Some portions of the instrumental functions, such as the scattering by filters and windows along the beamline and the slight bent of the crystal planes of the monochromator, could not be precisely evaluated, but an upper li...

  11. 低能离子束横向发射度的测量及分析%Measuring and Analyzing Transverse Low-Energy Ion Beam Emittances

    Institute of Scientific and Technical Information of China (English)

    M.P.Stockli

    2007-01-01

    The transverse emittance of an ion beam describes its transverse size as the particles are transported from a source to a target.It allows for predicting beam losses in limiting apertures and the beam focus size at the target.Various definitions and issues are discussed.The most common and emerging measuring techniques are presented,including their advantages.Several methods of emittance data analysis,their accuracy and trustworthiness,are discussed.

  12. Measurement of the transverse four-dimensional beam rms-emittance of an intense uranium beam at 11.4 MeV/u

    Science.gov (United States)

    Xiao, C.; Groening, L.; Gerhard, P.; Maier, M.; Mickat, S.; Vormann, H.

    2016-06-01

    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Usually pepper-pots are used for measuring these beam parameters. However, for ions their application is limited to energies below 150 keV/u. This contribution is on measurements of the full transverse four-dimensional second-moments beam matrix of high intensity uranium ions at an energy of 11.4 MeV/u. The combination of skew quadrupoles with a slit/grid emittance measurement device has been successfully applied.

  13. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  14. Energy measurement and longitudinal beam emittance reconstruction in L4T line

    CERN Document Server

    Meng, C; Garoby, R; Lallement, JB; Lombardi, A; Tang, J Y; Yarmohammadi Satri, M; CERN. Geneva. ATS Department

    2013-01-01

    LINAC4 is a new linear accelerator for H- ion which will replace proton Linac2 as injector for the CERN proton accelerator complex. LINAC4 accelerates H− ions from 45 keV to 160 MeV in a sequence of normal conducting structures. Then, H- ions with a kinetic energy of 160 MeV will be sent to the PS Booster. This note describes two energy measurement methods and a improved method that will be used for longitudinal emittance reconstruction with space charge by multi-particle tracking code and the expected results.

  15. Method of the ion beam emittance measurement in the injection beam line of DC-72 cyclotron in the presence of its space charge using the scanner to determine beam dimensions

    CERN Document Server

    Kasarinov, N Y; Kalagin, I V; Kazacha, V I

    2002-01-01

    The gradient method for measuring the transversal emittance of a high current ion beam in the injection channel of the cyclotron DC-72 is considered. The standard scanner is proposed for measuring the transversal dimensions of the beam. The formulae for determination of the mean square beam dimensions by current signals from the scanner needle are adduced. The method of the emittance recovery for axial-symmetric ion beam is set for the case when the space charge effect is essential. The algorithm for tuning of the quadrupole lenses in the injection channel of the cyclotron DC-72 for obtaining the axial-symmetric ion beam is proposed. The evaluations of the expected accuracy of the proposed method for the emittance recovery have been carried out.

  16. High Power Beam Test and Measurement of Emittance Evolution of a 1.6-Cell Photocathode RF Gun at Pohang Accelerator Laboratory

    Science.gov (United States)

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Parc, Yong-Woon; Hong, Ju-Ho; Huang, Jung-Yun; Xiang, Dao; Wang, Xijie; Ko, In Soo

    2007-04-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement.

  17. Emittance growth from electron beam modulation

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  18. Transverse Phase Space Reconstruction and Emittance Measurement of Intense Electron Beams using a Tomography Technique

    International Nuclear Information System (INIS)

    Tomography is the technique of reconstructing an image from its projections. It is widely used in the medical community to observe the interior of the human body by processing multiple x-ray images taken at different angles, A few pioneering researchers have adapted tomography to reconstruct detailed phase space maps of charged particle beams. Some questions arise regarding the limitations of tomography technique for space charge dominated beams. For instance is the linear space charge force a valid approximation? Does tomography equally reproduce phase space for complex, experimentally observed, initial particle distributions? Does tomography make any assumptions about the initial distribution? This study explores the use of accurate modeling with the particle-in-cell code WARP to address these questions, using a wide range of different initial distributions in the code. The study also includes a number of experimental results on tomographic phase space mapping performed on University of Maryland Electron Ring (UMER)

  19. Emittance Measurements of the Electron Beam at PITZ for the Commissioning Phase of the European XFEL

    OpenAIRE

    Vashchenko, G.; Asova, G.; Khojoyan, M; Kourkafas, G.; Kraslinikov, M.; Malyutin, D.; Melkumyan, D.; Oppelt, A.; Otevrel, M.; Renier, Y.; Rublack, T.; Stephan, F.; Bakr, M.; Zhao, Q.; Lishilin, O.

    2015-01-01

    For the operation of free electron lasers (FELs) like the European XFEL and FLASH located at DESY, Hamburg Site,high quality electron beams are required already from the source. The Photo Injector Test facility at DESY, ZeuthenSite (PITZ), was established to develop, characterize and optimize electron sources for such FELs. Last year the workat PITZ focused on the optimization of a photo injector operated very close to the startup parameters of the EuropeanXFEL. This implies photocathode lase...

  20. Microwave measurements and beam dynamics simulations of the BNL/SLAC/UCLA emittance-compensated 1.6-cell photocathode rf gun

    Science.gov (United States)

    Palmer, Dennis T.; Miller, Roger H.; Winick, Herman; Wang, Xi J.; Batchelor, Kenneth; Woodle, Martin H.; Ben-Zvi, Ilan

    1995-09-01

    A dedicated low energy (2 to 10 MeV) experimental beam line is now under construction at Brookhaven National Laboratory/Accelerator Test Facility (BNL/ATF) for photocathode RF gun testing and photoemission experiments. Microwave measurements of the 1.6 cell photocathode RF gun have been conducted along with beam dynamics simulations of the emittance compensated low energy beam. These simulations indicate that the 1.6 cell photocathode RF gun in combination with solenoidal emittance compensation will be capable of producing a high brightness beam with a normalization rms emittance of (epsilon) n,rms approximately equals 1 (pi) mm mrad. The longitudinal accelerating field Ez has been measured as a function of azimuthal angle in the full cell of the cold test model for the 1.6 cell BNL/SLAC/UCLA #3 S-band RF Gun using a needle rotation/frequency perturbation technique. These measurements were conducted before and after symmetrizing the full cell with a vacuum pump out port and an adjustable short. Two different waveguide to full cell coupling schemes were studied. Experimental and theoretical studies of the field balance versus mode separation were conducted. The dipole mode of the full cell using the (theta) - coupling scheme is an order of magnitude less severe before symmetrization than the Z- coupling scheme. The multi-pole contribution to the longitudinal field asymmetry are calculated using standard Fourier series techniques for both coupling schemes. The Panofsky- Wenzel theorem is used in estimating the transverse emittance due to the multipole components of Ez. Detailed beam dynamics simulations were performed for the 1.6 cell photocathode RF gun injector using a solenoidal emittance compensation technique. The design of the experimental line along with a proposed experimental program using the 1.6 cell photocathode RF gun developed by the BNL/SLAC/UCLA RF gun collaboration is presented. This experimental program includes measurements of beam loading caused

  1. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  2. Quadrupole Transfer Function for Emittance Measurement

    CERN Document Server

    Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang

    2008-01-01

    Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.

  3. Longitudinal emittance measurements at REX-ISOLDE

    CERN Document Server

    Fraser, M A; Jones, R.M.; Jones, R M; Pasini, M; Posocco, P A; Voulot, D; Wenander, F

    2012-01-01

    We report on measurements of the longitudinal emittance at the Radioactive ion beam EXperiment (REX) at ISOLDE, CERN. The rms longitudinal emittance was measured as 0.34 ± 0.08 π ns keV/u at the output of the RFQ and as 0.36 ± 0.04π ns keV/u in front of the third 7-gap split-ring resonator (7G3) using the three-gradient technique; systematic errors are not included but are estimated at approximately 10%. The 86% emittance was measured a factor of approximately 4.4 times larger than the rms emittance at 1.48 ± 0.2 and 1.55 ± 0.12π ns keV/u at the RFQ and 7G3, respectively. The REX switchyard magnet was used as a spectrometer to analyse the energy spread of the beam as it was manipulated by varying the voltage of the rebuncher (ReB) and 7G3 cavities operating at non-accelerating phases. The transfer matrix for a multi-gap bunching cavity is derived and suitably truncated to allow for the accurate reconstruction of the beam parameters from measurement. The technique for measuring the energy spread was rig...

  4. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  5. Transverse Emittance Measurement and Preservation at the LHC

    CERN Document Server

    AUTHOR|(CDS)2082907

    The Large Hadron Collider (LHC) at CERN is a high energy storage ring that provides proton and heavy ion collisions to study fundamental particle physics. The luminosity production is closely linked to emittance preservation in the accelerator. The transverse emittance is the phase space density of the beam and should be conserved when the particle beam is transformed through the accelerator. Perturbing effects, however, can lead to emittance increase and hence luminosity degradation. Measuring the emittance growth is a complex task with high intensity beams and changing energies. The machine optics and the transverse beam size have to be measured as accurately as possible. Beta function measurements with k-modulation will be discussed. With this method the quadrupole focussing strength is varied and the resulting tune change is traced to determine the beta function at the quadrupole. A new k-modulation measurement tool was developed for the LHC. The fully automatic and online measurement system takes constra...

  6. Low emittance electron beam optics commissioning in Indus-2

    International Nuclear Information System (INIS)

    Currently Indus-2 is normally operated with beam emittance of 85 nmrad at 2.0 GeV. In order to reduce the beam emittance to half of this value its dispersion function has been modified by properly choosing the quadrupoles strengths of the lattice. At this low beam emittance optics dynamic aperture reduces and may not be sufficient for beam injection thus a procedure has been evolved and implemented to shift the beam emittance of stored beam at 2.0 GeV. (author)

  7. Spectral beam combining of multi-single emitters

    Science.gov (United States)

    Wang, Baohua; Guo, Weirong; Guo, Zhijie; Xu, Dan; Zhu, Jing; Zhang, Qiang; Yang, Thomas; Chen, Xiaohua

    2016-03-01

    Spectral beam combination expands the output power while keeps the beam quality of the combined beam almost the same as that of a single emitter. Spectral beam combination has been successfully achieved for high power fiber lasers, diode laser arrays and diode laser stacks. We have recently achieved the spectral beam combination of multiple single emitter diode lasers. Spatial beam combination and beam transformation are employed before beams from 25 single emitter diode lasers can be spectrally combined. An average output power about 220W, a spectral bandwidth less than 9 nm (95% energy), a beam quality similar to that of a single emitter and electro-optical conversion efficiency over 46% are achieved. In this paper, Rigorous Coupled Wave analysis is used to numerically evaluate the influence of emitter width, emitter pitch and focal length of transform lens on diffraction efficiency of the grating and spectral bandwidth. To assess the chance of catastrophic optical mirror damage (COMD), the optical power in the internal cavity of a free running emitter and the optical power in the grating external cavity of a wavelength locked emitter are theoretically analyzed. Advantages and disadvantages of spectral beam combination are concluded.

  8. Beam emittance reconstructions at the KFUPM 350 keV ion accelerator

    International Nuclear Information System (INIS)

    We successfully reconstructed the horizontal and vertical beam emittances of a 160 keV low-intensity deuteron ion beam from the Energy Research Laboratory's low intensity duoplasmatron deuteron ion source. Reconstructions were made from horizontal and vertical beam width measurements. These measurements were done using only one quadrupole triplet and a beam profile monitor situated towards the end of the 45 beam line of the 350 kV ion accelerator. The deuteron beam emittances were εh = 67 π mm-mrad and εv = 4π mm-mrad at 90% of the beam. (orig.)

  9. Calculated and measured emittance of sputter-type negative-ion source

    International Nuclear Information System (INIS)

    A method for calculating the beam current and emittance of a negative ion beam from a sputter-type source is described. Calculations are compared to measured emittance. The dependence of the emittance on ion source parameters such as cathode shape, exit aperture diameter, and cathode voltage is discussed

  10. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  11. FXR LIA Optimization - Time-resolved OTR Emittance Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, J; Ong, M; Wargo, P; LeSage, G

    2005-07-21

    The Flash X-Ray Radiography (FXR) facility at Lawrence Livermore National Laboratory utilizes a high current, long pulse linear induction accelerator to produce high doses of x-ray radiation. Accurate characterization of the transverse beam emittance is required in order to facilitate accelerator modeling and tuning efforts and, ultimately, to optimize the final focus spot size, yielding higher resolution radiographs. In addition to conventional magnet scan, pepper-pot, and multiple screen techniques, optical transition radiation (OTR) has been proven as a useful emittance measurement diagnostic and is particularly well suited to the FXR accelerator. We shall discuss the time-resolved emittance characterization of an induction linac electron beam using OTR, and we will present our experimental apparatus and analysis software. We shall also develop the theoretical background of beam emittance and transition radiation.

  12. A Program to Generate a Particle Distribution from Emittance Measurements

    CERN Document Server

    Bouma, DS; Lallement, JB

    2010-01-01

    We have written a program to generate a particle distribution based on emittance measurements in x-x’ and y-y’. The accuracy of this program has been tested using real and constructed emittance measurements. Based on these tests, the distribution generated by the program can be used to accurately simulate the beam in multi-particle tracking codes, as an alternative to a Gaussian or uniform distribution.

  13. Characterizing and Optimizing Photocathode Laser Distributions for Ultra-low Emittance Electron Beam Operations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bohler, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gilevich, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ratner, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vetter, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-12-07

    Photocathode RF gun has been widely used for generation of high-brightness electron beams for many different applications. We found that the drive laser distributions in such RF guns play important roles in minimizing the electron beam emittance. Characterizing the laser distributions with measurable parameters and optimizing beam emittance versus the laser distribution parameters in both spatial and temporal directions are highly desired for high-brightness electron beam operation. In this paper, we report systematic measurements and simulations of emittance dependence on the measurable parameters represented for spatial and temporal laser distributions at the photocathode RF gun systems of Linac Coherent Light Source. The tolerable parameter ranges for photocathode drive laser distributions in both directions are presented for ultra-low emittance beam operations.

  14. Effect of strong solenoidal focusing on beam emittance of low-energy intense proton beam in the SARAF LEBT

    Science.gov (United States)

    Shor, A.; Weissman, L.

    2016-07-01

    Influence of strong solenoidal beam focusing on beam emittance was studied at the SARAF LEBT beam line using 5 mA 20 keV proton quasi-DC beams. The measurements show that within the experimental uncertainties, emittance does not change over the whole focusing range. Detailed beam dynamics simulations were performed to achieve better understanding of the experimental results. The experimental and simulation results are fully consistent with the assumption of nearly full space charge neutralization for the quasi-DC proton beam.

  15. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation

    DEFF Research Database (Denmark)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine;

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte...

  16. Demonstration of Cathode Emittance Dominated High Bunch Charge Beams in a DC gun-based Photoinjector

    CERN Document Server

    Gulliford, Colwyn; Bazarov, Ivan; Dunham, Bruce; Cultrera, Luca

    2015-01-01

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (greater than or equal to 100 pC) beams produced in the DC gun-based Cornell Energy Recovery Linac Photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittance measured at 9-9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs (ERLs) and Free Electron Lasers (FELs).

  17. Demonstration of cathode emittance dominated high bunch charge beams in a DC gun-based photoinjector

    International Nuclear Information System (INIS)

    We present the results of transverse emittance and longitudinal current profile measurements of high bunch charge (≥100 pC) beams produced in the DC gun-based Cornell energy recovery linac photoinjector. In particular, we show that the cathode thermal and core beam emittances dominate the final 95% and core emittances measured at 9–9.5 MeV. Additionally, we demonstrate excellent agreement between optimized 3D space charge simulations and measurement, and show that the quality of the transverse laser distribution limits the optimal simulated and measured emittances. These results, previously thought achievable only with RF guns, demonstrate that DC gun based photoinjectors are capable of delivering beams with sufficient single bunch charge and beam quality suitable for many current and next generation accelerator projects such as Energy Recovery Linacs and Free Electron Lasers

  18. Beam emittance reduction during operation of Indus-2

    Science.gov (United States)

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  19. Beam emittance reduction during operation of Indus-2

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, Ali Akbar, E-mail: fakhri@rrcat.gov.in; Kant, Pradeep; Ghodke, A. D.; Singh, Gurnam [Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)

    2015-11-15

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed.

  20. Beam emittance reduction during operation of Indus-2

    International Nuclear Information System (INIS)

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed

  1. Beam emittance reduction during operation of Indus-2.

    Science.gov (United States)

    Fakhri, Ali Akbar; Kant, Pradeep; Ghodke, A D; Singh, Gurnam

    2015-11-01

    Indus-2 storage ring is a 2.5 GeV third generation synchrotron radiation source. This source was commissioned using a moderate optics. Beam injection was accomplished using an off momentum electron beam to avoid difficulties faced in storage of beam at 550 MeV. The injection procedure and relevant beam dynamical studies are discussed. The switch over from the moderate optics to low emittance optics is done at 2.5 GeV after storing the electron beam. The procedure evolved to reduce the beam emittance and its implementation during the operation is discussed. PMID:26628127

  2. Scaled, circular-emitter Penning SPS for intense H- beams

    International Nuclear Information System (INIS)

    The Los Alamos versions of the Penning Surface-Plasma Source (SPS) routinely generate H- ion beams with pulsed currents over 100 mA. However, these sources employ geometries that result in the extraction of slit beams (0.5 x 10 mm2). Our modeling with the SNOW code indicates that the beam from a 5.4-mm-diam circular emitter will have lower emittance and divergence for transport to and injection into our radio-frequency quadrupole (RFQ) accelerator. This paper describes a newly constructed Penning SPS that has most of its discharge chamber dimensions scaled up by a factor of 4 to accommodate this circular emitter

  3. Innovative energy efficient low-voltage electron beam emitters

    International Nuclear Information System (INIS)

    Advanced electron beams (AEB) has developed a modular, low voltage (80-125 keV), high beam current (up to 40 ma), electron emitter with typically 25 cm of beam width, that is housed in an evacuated, returnable chamber that is easy to plug in and connect. The latest in nanofabrication enables AEB to use an ultra-thin beam window. The power supply for AEB's emitter is based on solid-state electronics. This combination of features results in a remarkable electrical efficiency. AEB's electron emitter relies on a touch screen, computer control system. With 80 μm of unit density beam penetration, AEB's electron emitter has gained market acceptance in the curing of opaque, pigmented inks and coatings used on flexible substrates, metals and fiber composites and in the curing of adhesives in foil based laminates

  4. Emittance measurements for the Illinois/CEBAF polarized electron source

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, B.M.; Cardman, L.S. [Illinois Univ., Urbana, IL (United States); Sinclair, C.K. [Continuous Electron Beam Accelerator Facility, Newport News, VA (United States)

    1995-01-01

    The transverse thermal properties of the electrons photoemitted from GaAs determine the intrinsic beam emittance, an important quantity in applications such as polarized electron sources and high-brightness sources. In this paper, emittance measurements using the Illinois/CEBAF polarized electron source are described. The emittance was measured as a function of both the laser beam spot size and laser wavelength at low currents. The data was used to infer the transverse thermal energy of the electrons photoemitted from GaAs for wavelengths between 514 and 840 nm. Near the bandgap the transverse energy is {approximately}34 meV, a factor of 3 lower than that of the beam from a typical thermionic electron gun. 8 refs., 2 figs.

  5. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    A visual diagnostic technique has been developed to monitor and study ion-beam structure, shape, and size along a transport line. In this technique, a commercially available fluorescent screen is used in conjunction with a video camera. The visual representation of the beam structure is digitized enhanced through false-color coding, and displayed on a TV monitor for on-line viewing. The digitized information is stored for further off-line processing (e.g.,extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of measuring transverse emittance (or angular spread). This technique allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position)

  6. Time-Resolved Emittance Characterization of an Induction Linac Beam using Optical Transition Radiation

    CERN Document Server

    Le Sage, G P

    2002-01-01

    An induction linac is used by Lawrence Livermore National Laboratory to perform radiographic testing at the Flash X-ray Radiography facility. Emittance characterization is important since x-ray spot size impacts the resolution of shadow-graphs. Due to the long pulse length, high current, and beam energy, emittance measurement using Optical Transition Radiation is an attractive alternative for reasons that will be described in the text. The utility of OTR-based emittance measurement has been well demonstrated for both RF and induction linacs. We describe the time-resolved emittance characterization of an induction linac electron beam. We have refined the optical collection system for the induction linac application, and have demonstrated a new technique for probing the divergence of a subset of the beam profile. The experimental apparatus, data reduction, and conclusions will be presented. Additionally, a new scheme for characterizing the correlation between beam divergence and spatial coordinates within the b...

  7. Emittance measurements results with upgraded setup at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Vashchenko, Grygorii; Asova, Galina; Gross, Matthias; Hakobyan, Levon; Isaev, Igor; Ivanisenko, Yevgeniy; Khojoyan, Martin; Klemz, Guido; Krasilnikov, Mikhail; Mahgoub, Mahmoud; Malyutin, Dmitriy; Otevrel, Marek; Petrosyan, Bagrat; Riechter, Dieter; Rimjaem, Sakhorn; Shapovalov, Andrey; Stephan, Frank [DESY, Zeuthen (Germany); Nozdrin, Mikhail [JINR, Dubna (Russian Federation); Templin, Horst-Ingo; Will, Ingo [MBI, Berlin (Germany)

    2012-07-01

    The photo injector test facility at DESY, Zeuthen site, PITZ develops and characterizes photoelectron sources for linac driven free electron lasers (FELs) such as FLASH and the European XFEL. The main goal of the PITZ is to obtain electron beams with low transverse normalize emittance which is necessary for the successful operation of SASE FEL. Major parts of the facility - gun and booster cavities, photocathode laser system were upgraded in 2010 in order to improve the photo injector performance. A slit technique is used at PITZ to reconstruct the transverse phase space of the electron beam. Many machine parameters were tuned to optimize the beam emittance for a wide range of the bunch charge - from 20 pC to 2 nC. Measured emittance depending on various machine parameters like a gun launching phase, booster gradient, laser spot size on the cathode and main solenoid current is presented.

  8. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  9. Beam dynamics in rf guns and emittance correction techniques

    Science.gov (United States)

    Serafini, Luca

    1994-02-01

    In this paper we present a general review of beam dynamics in a laser-driven rf gun. The peculiarity of such an accelerating structure versus other conventional multi-cell linac structures is underlined on the basis of the Panofsky-Wenzel theorem, which is found to give a theoretical background for the well known Kim's model. A basic explanation for some proposed methods to correct rf induced emittance growth is also derived from the theorem. We also present three emittance correction techniques for the recovery of space-charge induced emittance growth, namely the optimum distributed disk-like bunch technique, the use of rf spatial harmonics to correct spherical aberration induced by space charge forces and the technique of emittance filtering by clipping the electron beam. The expected performances regarding the beam quality achievable with different techniques, as predicted by scaling laws and simulations, are analyzed, and, where available, compared to experimental results.

  10. Measurement of Transverse Emittance in the Fermilab Booster.

    Science.gov (United States)

    Graves, William Sproull

    A new beam profile monitor has been built and installed in the Fermilab Booster synchrotron. It nondestructively measures the beam's vertical density distribution on a fast turn-by-turn basis. This enables one to measure the beam's transverse emittance and to observe emittance growth as it occurs. For high intensities (>2 times 10^{12 } protons), the normalized 95% emittance was observed to grow from 6pi mm-mrad at injection to 16pi mm-mrad at extraction. The initial (beam losses are shown to be caused by the space charge tune shift onto integer and 1/2 integer resonance lines. The growth near injection accounts for approximately 40% of the observed emittance increase throughout the acceleration cycle. The remaining 60% is due to two factors: slow linear growth due to betatron-motion driven by noise in the rf system; and faster growth after the transition energy that is caused by coupling of the longitudinal beam motion into the transverse planes.

  11. On the focused beam parameters of an electron gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S.; Rempe, N.; Beniyash, A.; Murray, N.

    2014-11-01

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented.

  12. On the focused beam parameters of an electron gun with a plasma emitter

    International Nuclear Information System (INIS)

    The report presents the measurement results of the focused beam brightness in the electron gun with plasma emitter. The beam brightness was approximately 1010 A·m-2·sr-1 under the beam power up to 4 kW and an electron energy of 60 keV at the focal distance of 0.5 m. Qualitative assessment of the beam parameters was performed by welding test pieces. The results describing the possibility in principle of using the guns with a plasma emitter in nonvacuum technological devices are presented

  13. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  14. Emittance Measurements from a Laser Driven Electron Injector

    International Nuclear Information System (INIS)

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 π mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the laser and electron beam at the GTF. A convolved measurement of the relative timing between the laser and the rf phase in the gun shows that the jitter is less than 2.5 ps rms. Emittance measurements of the electron beam at 35 MeV are reported as a function of the (Gaussian) pulse length and transverse profile of the laser as well as the charge of the electron beam at constant phase and gradient in both the gun and linac. At 1 nC the emittance was found to be ∼ 13 π mm-mrad for 5 ps and 8 ps long laser pulses. At 0.5 nC the measured emittance decreased approximately 20% in the 5 ps case and 40% in the 8 ps case. These measurements are between 40-80% higher than simulations for similar experimental conditions. In addition, the thermal emittance of the electron beam was measured to be 0.5 π mm-mrad

  15. Emittance preservation during bunch compression with a magnetized beam

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  16. Emittance preservation during bunch compression with a magnetized beam

    Science.gov (United States)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  17. A method to measure the nonlinear force caused emittance growth in a RF photoinjector

    Institute of Scientific and Technical Information of China (English)

    Li Zheng-Hong; Yang Zhen-Ping

    2006-01-01

    Based on the multi-slit method, a new method is introduced to measure the non linear force caused emittance growth in a RF photoinjector. It is possible to reconstruct the phase space of a beam under some conditions by the multi-slit method. Based on the reconstructed phase space, besides the emittance, the emittance growth from the distortion of the phase space can also be measured. The emittance growth results from the effects of nonlinear force acting on electron, which is very important for the high quality beam in a RF photoinjector.

  18. Ion beam emittance from an ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, P., E-mail: p.spaedtke@gsi.de; Lang, R.; Mäder, J.; Maimone, F.; Schlei, B. R.; Tinschert, K. [Gesellschaft für Schwerionenforschung (GSI), Darmstadt (Germany); Biri, S.; Rácz, R. [MTA Atomki, Debrecen (Hungary)

    2016-02-15

    Simulation of ion beam extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) is a fully 3 dimensional problem, even if the extraction geometry has cylindrical symmetry. Because of the strong magnetic flux density, not only the electrons are magnetized but also the Larmor radius of ions is much smaller than the geometrical dimension of the plasma chamber (Ø 64 × 179 mm). If we assume that the influence of collisions is small on the path of particles, we can do particle tracking through the plasma if the initial coordinates of particles are known. We generated starting coordinates of plasma ions by simulation of the plasma electrons, accelerated stochastically by the 14.5 GHz radio frequency power fed to the plasma. With that we were able to investigate the influence of different electron energies on the extracted beam. Using these assumptions, we can reproduce the experimental results obtained 10 years ago, where we monitored the beam profile with the help of viewing targets. Additionally, methods have been developed to investigate arbitrary 2D cuts of the 6D phase space. To this date, we are able to discuss full 4D information. Currently, we extend our analysis tool towards 5D and 6D, respectively.

  19. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  20. Dependence of simulated positron emitter yields in ion beam cancer therapy on modeling nuclear fragmentation.

    Science.gov (United States)

    Lühr, Armin; Priegnitz, Marlen; Fiedler, Fine; Sobolevsky, Nikolai; Bassler, Niels

    2014-01-01

    In ion beam cancer therapy, range verification in patients using positron emission tomography (PET) requires the comparison of measured with simulated positron emitter yields. We found that (1) changes in modeling nuclear interactions strongly affected the positron emitter yields and that (2) Monte Carlo simulations with SHIELD-HIT10Areasonably matched the most abundant PET isotopes (11)C and (15)O. We observed an ion-energy (i.e., depth) dependence of the agreement between SHIELD-HIT10Aand measurement. Improved modeling requires more accurate measurements of cross-section values.

  1. Transverse Emittance reconstruction in presence of space charge and application to the 50 MeV beam of Linac4

    CERN Document Server

    Garcia Tudela, M; Posocco, P A

    2011-01-01

    During the commissioning stage of Linac4 a test bench is planned to be used in order to characterize the 50 MeV beam after the DTL. Among other parameters, it will be possible to measure the transverse emittance using both the 3 monitors and the quadrupole scan method. As the space charge effects are not negligible at this energy, classical techniques of emittance reconstruction become questionable and a different approach based on recursive beam dynamics simulations must be applied.

  2. High-Precision Resonant Cavity Beam Position, Emittance And Third-Moment Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Barov, N.; Kim, J.S.; Weidemann, A.W.; /FARTECH, San Diego; Miller, R.H.; Nantista, C.D.; /SLAC

    2006-03-14

    Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc., in collaboration with SLAC, is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short-range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standing-wave structure further enhances signal strength and improves the resolution of the device. An estimated resolution is better than 1 {micro}m in rms beam size and better than 1 nm in beam position.

  3. Emittance Measurements from a Laser Driven Electron Injector

    CERN Document Server

    Reis, D

    2003-01-01

    The Gun Test Facility (GTF) at the Stanford Linear Accelerator Center was constructed to develop an appropriate electron beam suitable for driving a short wavelength free electron laser (FEL) such as the proposed Linac Coherent Light Source (LCLS). For operation at a wavelength of 1.5 (angstrom), the LCLS requires an electron injector that can produce an electron beam with approximately 1 pi mm-mrad normalized rms emittance with at least 1 nC of charge in a 10 ps or shorter bunch. The GTF consists of a photocathode rf gun, emittance-compensation solenoid, 3 m linear accelerator (linac), drive laser, and diagnostics to measure the beam. The rf gun is a symmetrized 1.6 cell, s-band high gradient, room temperature, photocathode structure. Simulations show that this gun when driven by a temporally and spatially shaped drive laser, appropriately focused with the solenoid, and further accelerated in linac can produce a beam that meets the LCLS requirements. This thesis describes the initial characterization of the ...

  4. Beam emittance investigation in high brightness injector using different driver laser profiles

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam emittance plays an important role in any accelerator, and it is a main parameter to judge the performance of an accelerator. Emittance optimization is an indispensable part in conditioning and operation of the facility. For a laser-driven high brightness injector, different time structure of the laser pulse has different effects on transverse emittance. In order to compare Gaussian and flat-top laser pulse, systematic simulations of 500 pC have been done. From the simulation results, one can see that flat-top pulse laser will yield smaller minimal transverse beam size and transverse beam emittance than Gaussian pulse laser.

  5. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    International Nuclear Information System (INIS)

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes

  6. Thermal Emittance Measurement of the Cs2Te Photocathode in FZD Superconducting RF

    CERN Document Server

    Xiang, R; Michel, P; Murcek, P; Teichert, J

    2010-01-01

    The thermal emittance of the photocathode is an interesting physical property for the photoinjector, because it decides the minimum emittance the photoinjector can finally achieve. In this paper we will report the latest results of the thermal emittance of the Cs2Te photocathode in FZD Superconducting RF gun. The measurement is performed with solenoid scan method with very low bunch charge and relative large laser spot on cathode, in order to reduce the space charge effect as much as possible, and meanwhile to eliminate the wake fields and the effect from beam halos.

  7. Focusing of ion beam with limit emittance by accelerator tube of electrostatic accelerator

    International Nuclear Information System (INIS)

    Focusing of nonrelativistic ion beam with finite emittance by accelerator tube is considered. Analytical relation between positions of the entrance and exit crossovers as a function of the beam emittance and the accelerator tube parameters was obtained. The comparison of conditions providing crossover to crossover transformation and conditions of entrance crossover optical image forming was carried out. 10 refs.; 3 figs

  8. Thermal emittance measurements of a cesium potassium antimonide photocathode

    OpenAIRE

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-01-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56+/-0.03 mm-mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  9. Thermal emittance measurements of a cesium potassium antimonide photocathode

    Science.gov (United States)

    Bazarov, Ivan; Cultrera, Luca; Bartnik, Adam; Dunham, Bruce; Karkare, Siddharth; Li, Yulin; Liu, Xianghong; Maxson, Jared; Roussel, William

    2011-05-01

    Thermal emittance measurements of a CsK2Sb photocathode at several laser wavelengths are presented. The emittance is obtained with a solenoid scan technique using a high voltage dc photoemission gun. The thermal emittance is 0.56±0.03 mm mrad/mm(rms) at 532 nm wavelength. The results are compared with a simple photoemission model and found to be in a good agreement.

  10. Miniature electron beam column with a silicon micro field emitter

    International Nuclear Information System (INIS)

    Silicon micro field emitters (Si-MFEs) are expected to be promising as electron sources for their high brightness and ease in making arrayed microcolumns due to small physical size. We have developed a Si-MFE electron gun assembly that produces an electron beam of 1 keV. All components including the Si acceleration electrode are mounted on an integrated circuit (IC) package stem (TO-8) by anodic and eutectic bonding. A high brightness (75 μA/sr) and a long lifetime (>1000 h) have been observed. To overcome the intrinsic emission instability of Si-MFEs, we developed a simple feedback circuit which controls an extraction voltage. The source position shift and the aberration coefficient change caused by stabilization were evaluated analytically and found to be negligible due to the scaling law as applied to micron size. We confirmed that the total emission fluctuation could be stabilized to less than 1% by detecting the absorption current but also found that this detection should be done in the electron beam column to stabilize the probe current due to the instability of the emission angle. Using the Si-MFE electron gun along with a miniature electron beam column 5 cm in length, we evaluated the electron optical properties and succeeded in demonstrating a scanning electron microscope operation with a resolution less than 0.5 μm. copyright 1997 American Vacuum Society

  11. Emittance growth and instability induced by space charge effect during final beam bunching in HIF accelerator system

    Science.gov (United States)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-06-01

    Beam dynamics and emittance growth are investigated by using particle-in-cell simulations during a final beam bunching for a driver system of inertial fusion driven by intense heavy ion beams. Space-charge-dominated beams are transported by a transverse confinement lattice with longitudinal compression, and the emittance increases along the longitudinal beam bunching. Dipole oscillations are excited due to the initial displacement of the beam center. The displacement causes the additional emittance growth during the final beam bunching.

  12. Ion beam measurements at the superconducting ECR ion source SECRAL

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Jan; Rossbach, Jon; Lang, Ralf; Maimone, Fabio; Spaedtke, Peter; Tinschert, Klaus [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Sun, Liangting; Cao, Yun; Zhao, Hongwei [Institute of Modern Physics, Lanzhou, GS (China)

    2009-08-15

    Measurement of the charge-state distribution, the beam profile, the beam emittance of the named ion source are presented. Furthermore computer simulations of the magnetic flux-density distribution in this source are described. (HSI)

  13. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread

    CERN Document Server

    Olvegård, Maja; Thibaut, Lefevre; Enrico, Bravin

    Olvegård, M. 2013. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1036. 75 pp. Uppsala. ISBN 978-91-554-8646-4. Following the discovery of the Higgs-like boson at the Large Hadron Collider, there is demand for precision measurements on recent findings. The Compact Linear Collider, CLIC, is a candidate for a future linear electron-positron collider for such precision measurements. In CLIC, the beams will be brought to collisions in the multi-TeV regime through high gradient acceleration with high frequency RF power. A high intensity electron beam, the so-called drive beam, will serve as the power source for the main beam, as the drive beam is decelerated in special structures, from which power is extracted and transfered to the main beam. When the drive beam is decelerated the beam quality deteriorates and the momentum spread increases, which make...

  14. Investigation of slice emittance using an energy-chirped electron beam in a dispersive section for photo injector characterization at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Ivanisenko, Yevgeniy

    2012-06-15

    This work describes a transverse slice emittance diagnostics with an RMS temporal resolution down to 2 ps that was implemented at the Photo Injector Test facility in Zeuthen (PITZ). The measurements were performed for several bunch charges generated by a laser pulse that has a flat-top temporal profile of 21-22 ps FWHM duration. This diagnostics allows to study the beam projected emittance compensation with a solenoid magnetic field experimentally and therefore contributes to the beam emittance optimization for the needs of short wavelength linac-based FELs in particular. The diagnostics is based upon the usage of electron bunches which have a correlation between the longitudinal position and the momentum of the bunch particles. This property allows to convert the bunch longitudinal distribution into a transverse one in a dipole magnet. A slit with a narrow opening at the dipole exit selects a fraction of the particle ensemble, a slice, which emittance is analyzed at a screen downstream. Slit scan and quadrupole scan techniques can be used to measure the emittance of the slices. In the experiments it was found that the slice emittance values are 5-10% lower than the projected emittance values, indicating a good effectivity of the solenoid compensation. The emittance obtained using quadrupole scan technique has shown different results when compared to slit scan technique due to a beam halo. The observed beam halo in phase space contributes up to 40% of the emittance value while having only 10% of the bunch charge.

  15. Investigation of slice emittance using an energy-chirped electron beam in a dispersive section for photo injector characterization at PITZ

    International Nuclear Information System (INIS)

    This work describes a transverse slice emittance diagnostics with an RMS temporal resolution down to 2 ps that was implemented at the Photo Injector Test facility in Zeuthen (PITZ). The measurements were performed for several bunch charges generated by a laser pulse that has a flat-top temporal profile of 21-22 ps FWHM duration. This diagnostics allows to study the beam projected emittance compensation with a solenoid magnetic field experimentally and therefore contributes to the beam emittance optimization for the needs of short wavelength linac-based FELs in particular. The diagnostics is based upon the usage of electron bunches which have a correlation between the longitudinal position and the momentum of the bunch particles. This property allows to convert the bunch longitudinal distribution into a transverse one in a dipole magnet. A slit with a narrow opening at the dipole exit selects a fraction of the particle ensemble, a slice, which emittance is analyzed at a screen downstream. Slit scan and quadrupole scan techniques can be used to measure the emittance of the slices. In the experiments it was found that the slice emittance values are 5-10% lower than the projected emittance values, indicating a good effectivity of the solenoid compensation. The emittance obtained using quadrupole scan technique has shown different results when compared to slit scan technique due to a beam halo. The observed beam halo in phase space contributes up to 40% of the emittance value while having only 10% of the bunch charge.

  16. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    International Nuclear Information System (INIS)

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations. ((orig.))

  17. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    Science.gov (United States)

    Teng, Chen; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  18. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Science.gov (United States)

    Groening, L.; Barth, W.; Bayer, W.; Clemente, G.; Dahl, L.; Forck, P.; Gerhard, P.; Hofmann, I.; Riehl, G.; Yaramyshev, S.; Jeon, D.; Uriot, D.

    2008-09-01

    Transverse emittance growth along the Alvarez drift tube linac (DTL) section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  19. Initial observations of high-charge, low-emittance electron beams at HIBAF (High Brightness Accelerator FEL)

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Feldman, R.B.; Carsten, B.E.; Feldman, D.W.; Sheffield, R.L.; Stein, W.E.; Johnson, W.J.; Thode, L.E.; Bender, S.C.; Busch, G.E.

    1990-01-01

    We report our initial measurements of bright (high-charge, low-emittance) electron beams generated at the Los Alamos High Brightness Accelerator FEL (HIBAF) Facility. Normalized emittance values of less than 50 {pi} mm-mrad for charges ranging from 0.7 to 8.7 nC were obtained for single micropulses at a y-waist and at an energy of 14.7 MeV. These measurements were part of the commissioning campaign on the HIBAF photoelectric injector. Macropulse measurements have also been performed and are compared with PARMELA simulations. 5 refs., 8 figs., 3 tabs.

  20. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  1. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  2. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  3. Monolithic integration of a quantum emitter with a compact on-chip beam-splitter

    Energy Technology Data Exchange (ETDEWEB)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Coles, R. J.; O' Hara, J.; Royall, B.; Fox, A. M.; Skolnick, M. S. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Clarke, E. [Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-06-09

    A fundamental component of an integrated quantum optical circuit is an on-chip beam-splitter operating at the single-photon level. Here, we demonstrate the monolithic integration of an on-demand quantum emitter in the form of a single self-assembled InGaAs quantum dot (QD) with a compact (>10 μm), air clad, free standing directional coupler acting as a beam-splitter for anti-bunched light. The device was tested by using single photons emitted by a QD embedded in one of the input arms of the device. We verified the single-photon nature of the QD signal by performing Hanbury Brown-Twiss measurements and demonstrated single-photon beam splitting by cross-correlating the signal from the separate output ports of the directional coupler.

  4. MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    CERN Document Server

    Bravar, U; Karadzhov, Y; Kolev, D; Russinov, I; Tsenov, R; Wang, L; Xu, F Y; Zheng, S X; Bertoni, R; Bonesini, M; Mazza, R; Palladino, V; Cecchet, G; de Bari, A; Capponi, M; Iaciofano, A; Orestano, D; Pastore, F; Tortora, L; Ishimoto, S; Suzuki, S; Yoshimura, K; Mori, Y; Kuno, Y; Sakamoto, H; Sato, A; Yano, T; Yoshida, M; Filthaut, F; Vretenar, M; Ramberger, S; Blondel, A; Cadoux, F; Masciocchi, F; Graulich, J S; Verguilov, V; Wisting, H; Petitjean, C; Seviour, R; Ellis, M; Kyberd, P; Littlefield, M; Nebrensky, J J; Forrest, D; Soler, F J P; Walaron, K; Cooke, P; Gamet, R; Alecou, A; Apollonio, M; Barber, G; Dobbs, A; Dornan, P; Fish, A; Hare, R; Jamdagni, A; Kasey, V; Khaleeq, M; Long, K; Pasternak, J; Sakamoto, H; Sashalmi, T; Blackmore, V; Cobb, J; Lau, W; Rayner, M; Tunnell, C D; Witte, H; Yang, S; Alexander, J; Charnley, G; Griffiths, S; Martlew, B; Moss, A; Mullacrane, I; Oats, A; York, S; Apsimon, R; Alexander, R J; Barclay, P; Baynham, D E; Bradshaw, T W; Courthold, M; Hayler, R Edgecock T; Hills, M; Jones, T; McNubbin, N; Murray, W J; Nelson, C; Nicholls, A; Norton, P R; Prior, C; Rochford, J H; Rogers, C; Spensley, W; Tilley, K; Booth, C N; Hodgson, P; Nicholson, R; Overton, E; Robinson, M; Smith, P; Adey, D; Back, J; Boyd, S; Harrison, P; Norem, J; Bross, A D; Geer, S; Moretti, A; Neuffer, D; Popovic, M; Qian, Z; Raja, R; Stefanski, R; Cummings, M A C; Roberts, T J; DeMello, A; Green, M A; Li, D; Sessler, A M; Virostek, S; Zisman, M S; Freemire, B; Hanlet, P; Huang, D; Kafka, G; Kaplan, D M; Snopok, P; Torun, Y; Onel, Y; Cline, D; Lee, K; Fukui, Y; Yang, X; Rimmer, R A; Cremaldi, L M; Hart, T L; Summers, D J; Coney, L; Fletcher, R; Hanson, G G; Heidt, C; Gallardo, J; Kahn, S; Kirk, H; Palmer, R B; C11-08-09

    2011-01-01

    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) de...

  5. Attribute measure recognition approach and its applications to emitter recognition

    Institute of Scientific and Technical Information of China (English)

    GUAN Xin; HE You; YI Xiao

    2005-01-01

    This paper studies the emitter recognition problem. A new recognition method based on attribute measure for emitter recognition is put forward. The steps of the method are presented. The approach to determining the weight coefficient is also discussed. Moreover, considering the temporal redundancy of emitter information detected by multi-sensor system, this new recognition method is generalized to multi-sensor system. A method based on the combination of attribute measure and D-S evidence theory is proposed. The implementation of D-S reasoning is always restricted by basic probability assignment function. Constructing basic probability assignment function based on attribute measure is presented in multi-sensor recognition system. Examples of recognizing the emitter purpose and system are selected to demonstrate the method proposed. Experimental results show that the performance of this new method is accurate and effective.

  6. On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zenghai; Zhou, Feng; Vlieks, Arnold; Adolphsen, Chris; /SLAC

    2011-06-23

    The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun being jointly designed with LLNL, and X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.

  7. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  8. Extremely low vertical-emittance beam in accelerator-test facility at KEK

    International Nuclear Information System (INIS)

    Electron beams with the lowest, normalized transverse emittance recorded so far were produced and confirmed in single-bunch-mode operation of the Accelerator Test Facility at KEK. We established a tuning method of the damping rings which achieves a small vertical dispersion and small x-y orbit coupling. The vertical emittance was less than 1 percent of the horizontal emittance. At the zero-intensity limit, the vertical normalized emittance was less than 2.8 x 10-8 rad m at beam energy 1.3 GeV. At high intensity, strong effects of intrabeam scattering were observed, which had been expected in view of the extremely high particle density due to the small transverse emittance

  9. Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project

    Science.gov (United States)

    Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.

    2016-04-01

    The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.

  10. On the measurement of positron emitters with Ge detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peyres, Virginia, E-mail: virginia.peyres@ciemat.e [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain); Garcia-Torano, Eduardo [Ciemat, Laboratorio de Metrologia de Radiaciones Ionizantes, Avda. Complutense 22, Madrid 28040 (Spain)

    2011-05-01

    This paper discusses the problems related to the measurement of positron emitters with germanium detectors. Five positron emitters with important applications in nuclear medicine ({sup 22}Na, {sup 18}F, {sup 11}C, {sup 13}N and {sup 68}Ga) have been studied. Measurements and Monte Carlo simulations have been used to determine the optimal conditions of measurement in gamma-ray spectrometry systems. The results obtained indicate that adding adequate absorbers, detection efficiencies are close to those of gamma emitters of similar energy measured in the same conditions, which allows a rapid calibration of a Ge-based spectrometry system. More accurate results are also presented using a detailed Monte Carlo simulation. Comparison to experimental data shows a good agreement.

  11. Emittance Measurements at the Langley Chemical Physics Laboratory

    Science.gov (United States)

    Lewis, B. W.

    1960-01-01

    Total hemispherical emittance measurements are made routinely for materials which may be heated by electrical resistance methods over the temperature range of 600 degrees to 2,000 F by using a black-body reference method. This employs a conical black body and a thermopile detector with a calcium fluoride lens. Emittance is obtained by measuring the radiant flux from the specimen strip and comparing it with the flux from an equal area of the black-body cone at the same temperature. The temperature measurements are made by use of thermocouples. It is planned to extend the temperature range of this type of measurement to temperatures above 2,000 F. Another technique has been investigated for measuring emittance of materials not amenable to electrical heating or thermocouple attachment. This method uses a black-body-cavity furnace similar to that used in reference 5 to measure emittance of transparent materials such as glass. The method employs a heated black-body cavity in which the semicircular specimen is allowed to come to the equilibrium temperature of the cavity and then is rotated in front of a water-cooled viewing port where a sensitive thermistor detector alternately views the specimen surface and the black-body cavity. The ratio of the two readings gives the specimen emittance directly, for the temperature of the black body. The detector output is recorded on a fast Brown self-balancing potentiometer. The furnace is provided with a water-cooled blackened shutter which may be inserted behind the specimen to eliminate any transmitted black-body radiation if the specimen is transparent. This apparatus is capable of measuring total normal emittance over the temperature range of 1,000 degrees to 2,000 F. Preliminary data for boron nitride specimens of two thicknesses are shown where total normal emittance is plotted against temperature for two experimental conditions: (1) black-body radiation incident on the back of the specimen and (2) no black-body radiation

  12. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ``fundamental`` limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  13. The generation and acceleration of low emittance flat beams for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.

    1991-11-01

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of {gamma}{epsilon}{sub x} = 3{times}10{sup {minus}6} m-rad and {gamma}{epsilon}{sub y} = 3{times}10{sup {minus}8} m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future.

  14. The generation and acceleration of low emittance flat beams for future linear colliders

    International Nuclear Information System (INIS)

    Many future linear collider designs call for electron and positron beams with normalized rms horizontal and vertical emittances of γεx = 3x10-6 m-rad and γεy = 3x10-8 m-rad; these are a factor of 10 to 100 below those observed in the Stanford Linear Collider. In this dissertation, we examine the feasibility of achieving beams with these very small vertical emittances. We examine the limitations encountered during both the generation and the subsequent acceleration of such low emittance beams. We consider collective limitations, such as wakefields, space charge effects, scattering processes, and ion trapping; and also how intensity limitations, such as anomalous dispersion, betatron coupling, and pulse-to-pulse beam jitter. In general, the minimum emittance in both the generation and the acceleration stages is limited by the transverse misalignments of the accelerator components. We describe a few techniques of correcting the effect of these errors, thereby easing the alignment tolerances by over an order of magnitude. Finally, we also calculate ''fundamental'' limitations on the minimum vertical emittance; these do not constrain the current designs but may prove important in the future

  15. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    International Nuclear Information System (INIS)

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  16. Longitudinal emittance measurements in the Booster and AGS during the 2014 RHIC gold run

    Energy Technology Data Exchange (ETDEWEB)

    Zeno, K. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-18

    This note describes longitudinal emittance measurements that were made in the Booster and AGS during the 2014 RHIC Gold run. It also contains an overview of the longitudinal aspects of their setup during this run. Each bunch intended for RHIC is composed of beam from 4 Booster cycles, and there are two of them per AGS cycle. For each of the 8 Booster cycles required to produce the 2 bunches in the AGS, a beam pulse from EVIS is injected into the Booster and captured in four h=4 buckets. Then those bunches are accelerated to a porch where they are merged into 2 bunches and then into 1 bunch.

  17. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    OpenAIRE

    Helfenstein, P.; Guzenko, V.A.; Fink, H W; Tsujino, S

    2013-01-01

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leadi...

  18. Software Tools for Emittance Measurement and Matching for 12 GeV CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Dennis L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-05-01

    This paper discusses model-driven setup of the Continuous Electron Beam Accelerator Facility (CEBAF) for the 12GeV era, focusing on qsUtility. qsUtility is a set of software tools created to perform emittance measurements, analyze those measurements, and compute optics corrections based upon the measurements.qsUtility was developed as a toolset to facilitate reducing machine configuration time and reproducibility by way of an accurate accelerator model, and to provide Operations staff with tools to measure and correct machine optics with little or no assistance from optics experts.

  19. Optical emitter and amplifier by utilizing traveling electron beam

    OpenAIRE

    Yamada, Minoru; Kuwamura, Yuji

    2008-01-01

    Optical emission and amplification by a travelling electron beam adjacent to a high refractive index waveguide in vacuum was theoretically predicted and experimentally confirmed. Experimentally observed characteristics were compared with theoretical examinations. ©2008 IEEE.

  20. Formation of compressed flat electron beams with high transverse-emittance ratios

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J. [Fermilab; Institute of Fluid Physics, CAEP, China; Piot, P. [Northern Illinois University; Fermilab; Mihalcea, D. [Northern Illinois University; Prokop, C. R. [Northern Illinois University

    2014-08-01

    Flat beams—beams with asymmetric transverse emittances—have important applications in novel light-source concepts and advanced-acceleration schemes and could possibly alleviate the need for damping rings in lepton colliders. Over the last decade, a flat beam generation technique based on the conversion of an angular-momentum-dominated beam was proposed and experimentally tested. In this paper we explore the production of compressed flat beams. We especially investigate and optimize the flat beam transformation for beams with substantial fractional energy spread. We use as a simulation example the photoinjector of Fermilab’s Advanced Superconducting Test Accelerator. The optimizations of the flat beam generation and compression at Advanced Superconducting Test Accelerator were done via start-to-end numerical simulations for bunch charges of 3.2 nC, 1.0 nC, and 20 pC at ~37 MeV. The optimized emittances of flat beams with different bunch charges were found to be 0.25 μm (emittance ratio is ~400), 0.13 μm, 15 nm before compression, and 0.41 μm, 0.20 μm, 16 nm after full compression, respectively, with peak currents as high as 5.5 kA for a 3.2-nC flat beam. These parameters are consistent with requirements needed to excite wakefields in asymmetric dielectric-lined waveguides or produce significant photon flux using small-gap micro-undulators.

  1. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  2. System for transporting an electron beam to the atmosphere for a gun with a plasma emitter

    Science.gov (United States)

    Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.

    2016-06-01

    We report on the results of simulation of the gas flow in a gun with a plasma emitter and in the system for extracting the electron beam to the atmosphere, constructed on the basis of standard gasdynamic windows (GDWs). The design of the gun and GDWs is described. Calculations are performed for a pressure of about 10-3 Torr in the electron beam generation range. It is shown that the pressure drop to the atmospheric pressure in the system of electron beam extraction to the atmosphere can be ensured by two GDW stages evacuated by pumps with optimal performance.

  3. A Laboratory Goniometer System for Measuring Reflectance and Emittance Anisotropy

    Directory of Open Access Journals (Sweden)

    Arjan de Jong

    2012-12-01

    Full Text Available In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it much faster than other goniometers. In addition, the presented set-up enables assessment of anisotropic reflectance and emittance behaviour of soils, leaves and small canopies. Mounting a spectrometer enables acquisition of either hemispherical measurements or measurements in the horizontal plane. Mounting a thermal camera allows directional observations of the thermal emittance. This paper also presents three showcases of these different measurement set-ups in order to illustrate its possibilities. Finally, suggestions for applying this instrument and for future research directions are given, including linking the measured reflectance anisotropy with physically-based anisotropy models on the one hand and combining them with field goniometry measurements for joint analysis with remote sensing data on the other hand. The speed and flexibility of the system offer a large added value to the existing pool of laboratory goniometers.

  4. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Science.gov (United States)

    Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  5. Low emittance pion beams generation from bright photons and relativistic protons

    CERN Document Server

    Serafini, L; Petrillo, V

    2015-01-01

    Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via photo-production in a highly relativistic Lorentz boosted frame: the main advantage is the low emittance attainable and a TeV-class energy for the generated pions, that may be an interesting option for the production of low emittance muon and neutrino beams. We will describe the kinematics of the two classes of dominant events, i.e. the pion photo-production and the electron/positron pair production, neglecting other small cross-section possible events like Compton and muon pair production. Based on the phase space distributions of the pion and muon beams we will analyze the pion beam brightness achievable in three examples, based on advanced high efficiency high repetition rate FELs coupled to LHC or Future Circular Collider (FCC) proton beams, together with the stud...

  6. Compact Measurement Station for Low Energy Proton Beams

    CERN Document Server

    Yildiz, H; Oz, S; Yasatekin, B; Turemen, G; Ogur, S; Sunar, E; Aydin, Y A; Dimov, V A; Unel, G; Alacakir, A

    2016-01-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  7. Simulations of beam emittance growth from the collectiverelaxation of space-charge nonuniformities

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Steven M.; Grote, David P.; Davidson, Ronald C.

    2004-05-01

    Beams injected into a linear focusing channel typically have some degree of space-charge nonuniformity. For unbunched beams with high space-charge intensity propagating in linear focusing channels, Debye screening of self-field interactions tends to make the transverse density profile flat. An injected particle distribution with a large systematic charge nonuniformity will generally be far from an equilibrium of the focusing channel and the initial condition will launch a broad spectrum of collective modes. These modes can phase-mix and experience nonlinear interactions which result in an effective relaxation to a more thermal-equilibrium-like distribution characterized by a uniform density profile. This relaxation transfers self-field energy from the initial space-charge nonuniformity to the local particle temperature, thereby increasing beam phase space area (emittance growth). Here they employ two-dimensional electrostatic particle in cell (PIC) simulations to investigate the effects of initial transverse space-charge nonuniformities on the equality of beams with high space-charge intensity propagating in a continuous focusing channel. Results are compared to theoretical bounds of emittance growth developed in previous studies. Consistent with earlier theory, it is found that a high degree of initial distribution nonuniformity can be tolerated with only modest emittance growth and that beam control can be maintained. The simulations also provide information on the rate of relaxation and characteristic levels of fluctuations in the relaxed states. This research suggests that a surprising degree of initial space-charge nonuniformity can be tolerated in practical intense beam experiments.

  8. Short-lived positron emitters in beam-on PET imaging during proton therapy

    International Nuclear Information System (INIS)

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8–15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed. (paper)

  9. Short-lived positron emitters in beam-on PET imaging during proton therapy

    Science.gov (United States)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  10. Stable two-plane focusing for emittance-dominated sheet-beam transport

    Science.gov (United States)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    Two-plane focusing of sheet electron beams will be an essential technology for an emerging class of high-power, 100 to 300 GHz rf sources [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172]. In these devices, the beam has a unique asymmetry in which the transport is emittance dominated in the sheet’s thin dimension and space-charge dominated in the sheet’s wide dimension. Previous work has studied the stability of the transport of beams in the emittance-dominated regime for both wiggler and periodic permanent magnet (PPM) configurations with single-plane focusing, and has found that bigger envelope scalloping occurs for equilibrium transport, as compared to space-charge dominated beams [Carlsten et al., this issue, Phys. Rev. ST Accel. Beams 8, 062001 (2005), PRABFM, 1098-4402]. In this paper, we describe the differences in transport stability when two-plane focusing is included. Two-plane wiggler focusing degrades the transport stability slightly, whereas two-plane PPM focusing greatly compromises the transport. On the other hand, single-plane PPM focusing can be augmented with external quadrupole fields to provide weak focusing in the sheet’s wide dimension, which has stability comparable to two-plane wiggler transport.

  11. Influence of the electron beam emittance on the polarization of a laser--electron X-ray generator

    CERN Document Server

    Artyukov, I A; Feshchenko, R M

    2016-01-01

    In this paper we analyze the polarization of the X-ray radiation coming from laser--electron X-ray generator (LEXG). We obtain general relations connecting the polarization state of outgoing X-ray radiation to the polarization state of laser beam as well as to the parameters of electron beam. We demonstrate that finite electron beam emittance causes a partial depolarization of initially fully polarized X-ray radiation even when the laser beam is fully polarized. We demonstrate with a number of numerical experiments that finite electron beam emittance can in some cases fundamentally alter the polarization state of X-ray radiation as compared to the polarization state of X-ray radiation scattered by electron beam with a zero emittance. Possible applications of polarized LEXG's radiation are discussed.

  12. X-ray Fresnel diffractometry for micron light source size measurement of ultralow-emittance next-generation storage ring

    International Nuclear Information System (INIS)

    A novel emittance diagnostics technique with high sensitivity using X-ray Fresnel diffraction by a single slit has been developed to measure micron-order electron beam sizes at insertion devices (IDs) of photon beamlines. The X-ray Fresnel diffractometry (XFD) is promising for diagnostics of next-generation light sources, where a tuning of ultra-low emittance at IDs is essentially important to ensure the absence of degradation of brilliance and transverse coherence of radiation at beamlines due to distortion of lattice functions. The validity of the new method was theoretically and experimentally studied at SPring-8. The achievable resolution of XFD is also discussed. (author)

  13. Variation of beam emittance during the accelerator cycle of the synchrotron for INDUS-I and INDUS-II

    International Nuclear Information System (INIS)

    The variation of radial and vertical emittance with time is discussed for the synchrotron of INDUS-I and INDUS-II for the acceleration cycle of 1.5 Hz and 2.0 Hz. If adequate provision of time is made for radiation damping at the peak energy, the beam attains the equilibrium value of beam emittance at the extraction point for both the cases. Vertical emittance in both the cases is either less or equal to the natural value. (author). 3 tabs

  14. Beam emittance growth in a proton storage ring employing charge exchange injection

    International Nuclear Information System (INIS)

    Recently, it has been shown that very large currents can be accumulated in medium energy proton storage rings by multiturn injection of an H- beam through a charge stripping medium. Since the particles are injected continuously into the same phase space, it is possible to increase the circulating beam brightness with respect to that of the incoming beam by a large factor. The stored protons pass repeatedly through the stripper, however, so that this phase space is gradually enlarged by scattering. The dependence of the circulating beam phase space (emittance) growth rate on the nature of the scattering process and on where it occurs in the storage ring matrix is considered. Since the motivation for this work arose in connection with the design of the proposed high-current storage ring at LAMPF, the results are focused on the specific parameters of that device. (U.S.)

  15. Upgrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    CERN Document Server

    Lumpkin, A H; Ruan, J; Santucci, J; Sun, Y -E; Thurman-Keup, R; Edwards, H; 10.1103/PhysRevSTAB.14.060704

    2012-01-01

    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An on-going program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.

  16. Ugrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H.; Johnson, A.S.; Ruan, J.; Santucci, J.; Sun, Y.-E.; Thurman-Keup, R.; Edwards, H.; /Fermilab

    2011-01-01

    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An ongoing program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.

  17. Measurement of the microwave emitter's inhomogeneity using optical fiber DTS

    Science.gov (United States)

    Jaros, Jakub; Papes, Martin; Liner, Andrej; Vašinek, Vladimir; Smira, Pavel; Nasswettrova, Andrea; Cubik, Jakub; Kepak, Stanislav

    2014-06-01

    Researcher's teams were dealing with the microwave emitter's inhomogeneity problem since the microwaves were used. One possible way, how to measure electromagnetic field is the measurement on inhomogeneous temperature distribution on the irradiated sample, which can cause problems as in other material processing, so in the undesirable change of properties and even security. Inhomogeneity of electromagnetic field is specific by creating spots with higher or lower temperature called "hot spots". This inhomogeneity strongly affects the temperature distribution in the cross section of the material and its resultant heating. Given the impossibility of using classical electronic devices with metal temperature sensors were various indirect methods used in the past. This paper deals with experimental measurement of the microwave emitter's inhomogeneity (2.45 GHz) using the optical fiber DTS. The greatest advantage of this sensor system is just in using of the optical fiber (electromagnetic resistance, small size, safety using in inflammable and explosive area, easy installation). Due to these properties of the optical fiber sensor it's possible to measure the temperature of the sample in real time. These sensor are able to measure the temperature along the fiber, in some cases they use nonlinear effect in optical fiber (Raman nonlinear effect). The verification of non-homogeneity consists in experimental measuring of the temperature distribution within the wooden sample. The method is based on heat exchange in an isolated system where wooden sample serves as an absorber of the irradiated energy. To identify locations with different power density was used DTS system, based on nonlinear phenomena in optical fibers.

  18. Theory and measurement of emittance properties for radiation thermometry applications.

    Science.gov (United States)

    Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    Some basic concepts of radiation physics are briefly reviewed to provide an introduction to the radiative properties - including emittance, reflectance, absorptance, and transmittance - their definitions, interrelations, theory and methods of measurement. Analyzed data showing typical characteristics of temperature and wavelength dependence, surface effects and environmental influences on the radiation properties of selected classes of materials are presented. Emphasis is placed on those emittance properties of particular interest to conventional radiation thermometry applications, but sufficient generality on all properties is presented to be useful for new or unusual techniques where a more detailed understanding of the behavior of materials is desirable. Data sources are identified to assist the reader in locating property information. It is the intention of the paper to give the reader a background to become more fully aware of the pitfalls, limitations, but of course, advantages in the use of data from the literature. The paper is written in the form of an abbreviated review fully documenting the more important topics and concepts which can only be treated briefly.

  19. Emittance dependence on anode morphology of an ion beam provided by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Velardi, L.; Delle Side, D.; Nassisi, V., E-mail: vincenzo.nassisi@le.infn.it

    2014-07-15

    Highlights: •We studied the characteristics of ion beams generated by laser ablation. •We varied the geometric configuration of the extracting electrode. •The emittance evaluation was performed by the pepper pot method utilizing radio-chromic films. -- Abstract: In this work, we studied the characteristics of ion beams generated by Platone accelerator in different anode configurations. The accelerator is a laser ion source with two gaps which accelerate the ions in cascade. The laser is a ns pulsed KrF able to apply irradiances of 10{sup 9}–10{sup 10} W/cm{sup 2}. The target ablated was pure disk of Cu. The accelerating voltage applied in this work was 60 kV. The emittance evaluation was performed by the pepper pot method utilizing radio-chromic films, EBT Gafchromic, as sensible targets. The study was performed by varying the geometric configuration of the anode (the extracting electrode), modifying the hole morphology, e.g. a plane and curved grid were mounted in order to change the extraction configuration. The results were compared with the ones obtained with the extraction hole without any grid. For the normalized emittance the lowest value was 0.20π mm mrad.

  20. Emittance investigation of RF photo-injector

    CERN Document Server

    Yang Mao Rong; Li Zheng; Li Ming; Xu Zhou

    2002-01-01

    A high-power laser beam illuminates a photocathode surface placed on an end wall of an RF cavity. The emitted electrons are accelerated immediately to a relativistic energy by the strong RF find in the cavity. But space charge effect induces beam emittance growth especially near the cathode where the electrons are still nonrelativistic. The author analyzes the factors which lead the transverse emittance growth and method how to resolve this problem. After introducing solenoidal focusing near the photocathode, the beam emittance growth is suppressed dramatically. The beam emittance is given also after compensation and simulation results. The measurements show these results are coincident

  1. Free-energy formula for emittance-growth estimation in intense mismatched beams

    Science.gov (United States)

    Osaki, Kazuya; Okamoto, Hiromi

    2015-09-01

    We construct a theoretical model that allows a quick estimate of emittance growth in an intense charged-particle beam initially mismatched to an external linear focusing potential. The present theory is a natural generalization of Reiser's free-energy model for coasting round beams in a uniform focusing channel. The free energy generated by a spatial mismatch, i.e. a discrepancy between the ideal beam size and an actual beam size, is calculated for an ellipsoidal bunch with an arbitrary aspect ratio. Following Reiser's prescription, we assume that the excess free energy is converted into root-mean-squared emittance growth. Multi-particle simulations are performed for comparison with theoretical predictions, which indicates that an initially mismatched bunch eventually settles into a sort of thermally anisotropic state when the mismatch is large. It is shown that the free-energy formula can explain simulation results over a wide range of parameters if the degree of the temperature anisotropy in the final state is properly incorporated into the theory.

  2. Possible operation of the European XFEL with ultra-low emittance beams

    International Nuclear Information System (INIS)

    Recent successful lasing of the Linac Coherent Light Source (LCLS) in the hard x-ray regime and the experimental demonstration of a possibility to produce low-charge bunches with ultra-small normalized emittance have lead to the discussions on optimistic scenarios of operation of the European XFEL. In this paper we consider new options that make use of low-emittance beams, a relatively high beam energy, tunable-gap undulators, and a multibunch capability of this facility. We study the possibility of operation of a spontaneous radiator (combining two of them, U1 and U2, in one beamline) in the SASE mode in the designed photon energy range 20-90 keV and show that it becomes possible with ultra-low emittance electron beams similar to those generated in LCLS. As an additional attractive option we consider the generation of powerful soft X-ray and VUV radiation by the same electron bunch for pump-probe experiments, making use of recently invented compact afterburner scheme. We also propose a betatron switcher as a simple, cheap, and robust solution for multi-color operation of SASE1 and SASE2 undulators, allowing to generate 2 to 5 X-ray beams of different independent colors from each of these undulators for simultaneous multi-user operation. We describe a scheme for pump-probe experiments, based on a production of two different colors by two closely spaced electron bunches (produced in photoinjector) with the help of a very fast betatron switcher. Finally, we discuss how without significant modifications of the layout the European XFEL can become a unique facility that continuously covers with powerful, coherent radiation a part of the electromagnetic spectrum from far infrared to gamma-rays. (orig.)

  3. Simulation Study on the Emittance Compensation of Off-axis Emitted Beam in RF Photoinjector

    CERN Document Server

    Huang, Rui-Xuan; Jia, Qi-Ka; Papadopoulos, Christos; Sannibale, Fernando

    2016-01-01

    To make full use of photocathode material and improve its quantum efficiency lifetime, it can be necessary to operate laser away from the cathode center in photoinjectors. In RF guns, the off-axis emitted beam will see a time-dependent RF effect, which would generate a significant growth in transverse emittance. It has been demonstrated that such an emittance growth can be almost completely compensated by orienting the beam on a proper orbit in the downstream RF cavities along the injector. In this paper we analyze in detail the simulation techniques used in reference[1] and the issues associated with them. The optimization of photoinjector systems involving off-axis beams is a challenging problem. To solve this problem, one needs advanced simulation tools including both genetic algorithms and an efficient algorithm for 3D space charge. In this paper, we report on simulation studies where the two codes ASTRA and IMPACT-T are used jointly to overcome these challenges, in order to optimize a system designed to ...

  4. Effect of nonlinear radiofrequency electromagnetic fields on the emittance of bunched beams

    Science.gov (United States)

    Phadte, D. S.; Patidar, C. B.

    2013-07-01

    Gap transformations are frequently used in ion Linac codes, to efficiently describe the particle dynamics. Using similar approach, we analyze the uniformly bunched beam passing through an axis-symmetric radiofrequency (RF) cavity. The method can be used for other distributions as well using a similar six dimensional analysis. The effect of non-linear RF field in radial and axial directions in an RF cavity and the finite phase width of the bunch, on the transverse and longitudinal emittance growth have been studied. The expressions obtained have been verified for the two types of cavity cells namely the zero mode DTL and pi mode CCL type used frequently in ion linacs. The results are seen to be valid for the entire maximum phase acceptance up to 360 degrees. Simulations with the equivalent beams of non-uniform distributions namely Waterbag and Gaussian show that at synchronous phases closer to the wave crest, the results give a good approximation of emittance growth in both planes for non-uniform beams.

  5. In situ measurements of the spectral emittance of coal ash deposits

    International Nuclear Information System (INIS)

    The spectral emittance of deposits left by bituminous and sub-bituminous coals under oxidizing conditions have been measured in situ. Pulverized coal is injected into a down-fired entrained-flow reactor. Ash accumulates on a probe in the reactor effluent and radiation emitted by the ash layer is recorded using a Fourier transform infrared (FTIR) spectrometer. Values for the spectral emissive power emitted by the ash and the surface temperature of the ash are extracted from these data. These results are then used to calculate the spectral emittance of the deposit. The spectral emittances of ash deposits formed by burning Illinois no. 6 (bituminous) coal and Powder River Basin (sub-bituminous) coal were measured between 3000 and 500 wavenumbers. The spectral emittance of the deposit left by the bituminous coal has a constant value of approximately 0.46 between 3000 and 2400 wavenumbers. Between 2200 and 1200 wavenumbers, the spectral emittance of the deposit increases from approximately 0.47 to approximately 0.61. Between 1200 and 500 wavenumbers, the spectral emittance is relatively constant at 0.61. The spectral emittance of the deposit left by the sub-bituminous coal is also relatively constant between 3000 and 2400 wavenumbers at a value of 0.29. Between 2200 and 500 wavenumbers, the spectral emittance of deposits from the sub-bituminous coal increases from approximately 0.29 to 0.55. Differences between these spectral emittance measurements and those measured ex situ illustrate the importance of making in situ measurements. Band emittances were calculated using the measured spectral emittances, and band emittances of the deposits are reported as functions of temperature.

  6. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    Science.gov (United States)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  7. Accuracy determination of the CERN Linac4 emittance measurements at the test bench for 3 and 12 Mev

    CERN Document Server

    Roncarolo, F; Bravin, E; Raich, U

    2010-01-01

    The CERN LINAC4 commissioning will start in 2011, at first in a laboratory test stand where the 45 KeV Hsource is already installed and presently tested, and later in the LINAC4 tunnel. A movable diagnostics bench will be equipped with the necessary sensors capable of characterizing the H- beam in different stages, from 3 MeV up to the first DTL tank at 12 MeV. In this paper we will discuss the accuracy of the transverse emittance measurement that will be performed with the slit-grid method. The system’s mechanical and geometric parameters have been determined in order to achieve the required resolution and sensitivity. Space charge effects during the beam transfer from the slit to the grid and scattering effects at the slit have been considered to determine the overall emittance measurement accuracy.

  8. Study of the time and space distribution of {beta}{sup +} emitters from 80MeV/u carbon ion beam irradiation on PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Collamati, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Napoli, M. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Di Domenico, A.; Faccini, R.; Ferroni, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); Gauzzi, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Iarocci, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per l' Ingegneria, Sapienza Universita di Roma, Roma (Italy); Marafini, M., E-mail: michela.marafini@roma1.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Roma (Italy); Mattei, I. [Dipartimento di Fisica, Roma Tre Universita di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Paoloni, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); and others

    2012-07-15

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511keV photons produced by positrons annihilation from {beta}{sup +} emitters created by the beam. This paper reports rate measurements of the 511keV photons emitted after the interactions of a 80MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the {beta}{sup +} rate was parametrized and the dominance of {sup 11}C emitters over the other species ({sup 13}N, {sup 15}O, {sup 14}O) was observed, measuring the fraction of carbon ions activating {beta}{sup +} emitters to be (10.3{+-}0.7) Multiplication-Sign 10{sup -3}. The average depth in the PMMA of the positron annihilation from {beta}{sup +} emitters was also measured, D{sub {beta}{sup +}}=5.3{+-}1.1mm, to be compared to the expected Bragg peak depth D{sub Bragg}=11.0{+-}0.5mm obtained from simulations.

  9. Study of the time and space distribution of $\\beta^+$ emitters from $80\\ \\mega\\electronvolt/$u carbon ion beam irradiation on PMMA

    CERN Document Server

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2012-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear $511\\ \\kilo\\electronvolt$ photons produced by positrons annihilation from $\\beta^+$ emitters created by the beam. This paper reports rate measurements of the $511\\ \\kilo\\electronvolt$ photons emitted after the interactions of a $80\\ \\mega\\electronvolt / u$ fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the $\\beta^+$ rate was parametrized and the dominance of $^{11}C$ emitters over the other species ($^{13}N$, $^{15}O$, $^{14}O$) was observed, measuring the fraction of carbon ions activating $\\beta^+$ emitters $A_0=(10.3\\pm0.7)\\cdot10^{-3}$. The average depth in the PMMA of the positron annihilation from $\\beta^+$ emitters was also meas...

  10. Emittance optimisation in the Drive Beam Recombination Complex at CTF3

    CERN Document Server

    Gamba, D

    2014-01-01

    According to the Conceptual Design Report, the power to accelerate the main colliding beams of CLIC is taken from parallel high intensity (100 A), low energy (2.37 GeV) beams. These beams are generated by long trains, accelerated by conventional klystrons and then time-compressed in the so called Drive-Beam Recombination Complex (DBRC). A scaled version of the DBRC has been built at the CLIC Test Facility (CTF3) at CERN in order to prove its principle and study any arising feasibility issues. One of the main constraints is the emittance control during the recombination process. This work presents an overview of the studies ongoing at CTF3, keeping in view possible improvements of the nominal CLIC design. In particular, a generic feedback algorithm to solve (quasi-)linear systems has been implemented and used in order to optimize the process by tuning the energy of the beam and steer the orbits in the different lines, as well matching the design dispersion. Current results and possible room for further optimiz...

  11. Smith-Purcell experiment utilizing a field-emitter array cathode measurements of radiation

    CERN Document Server

    Ishizuka, H; Yokoo, K; Shimawaki, H; Hosono, A

    2001-01-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mmx25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 mu A up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 mu m period, 30 deg. blaze and a 0.2 mu m thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80 deg. relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 ...

  12. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology?

    Directory of Open Access Journals (Sweden)

    Hong Song

    2012-06-01

    Full Text Available Alpha-particle emitter labeled monoclonal antibodies are being actively developed for treatment of metastatic cancer due to the high linear energy transfer (LET and the resulting greater biological efficacy of alpha-emitters. Our knowledge of high LET particle radiobiology derives primarily from accelerated heavy ion beam studies. In heavy ion beam therapy of loco-regional tumors, the modulation of steep transition to very high LET peak as the particle approaches the end of its track (known as the Bragg peak enables greater delivery of biologically potent radiation to the deep seated tumors while sparing normal tissues surrounding the tumor with the relatively low LET track segment part of the heavy ion beam. Moreover, fractionation of the heavy ion beam can further enhance the peak-to-plateau relative biological effectiveness (RBE ratio. In contrast, internally delivered alpha particle radiopharmaceutical therapy lack the control of Bragg peak energy deposition and the dose rate is determined by the administered activity, alpha-emitter half-life and biological kinetics of the radiopharmaceutical. The therapeutic ratio of tumor to normal tissue is mainly achieved by tumor specific targeting of the carrier antibody. In this brief overview, we review the radiobiology of high LET radiations learned from ion beam studies and identify the features that are also applicable for the development of alpha-emitter labeled antibodies. The molecular mechanisms underlying DNA double strand break repair response to high LET radiation are also discussed.

  13. Minimization of the emittance growth of multi-charge particle beams in the charge stripping section of RAON

    International Nuclear Information System (INIS)

    The charge stripping section of the Rare isotope Accelerator Of Newness (RAON), which is one of the critical components to achieve a high power of 400 kW with a short lianc, is a source of transverse emittance growth. The dominant effects are the angular straggling in the charge stripper required to increase the charge state of the beam and chromatic aberrations in the dispersive section required to separate the selected ion beam from the various ion beams produced in the stripper. Since the main source of transverse emittance growth in the stripper is the angular straggling, it can be compensated for by changing the angle of the phase ellipse. Therefore the emittance growth is minimized by optimizing the Twiss parameters at the stripper. The emittance growth in the charge selection section is also minimized by the correction of high-order aberrations using six sextupole magnets. In this paper, we present a method to minimize the transverse emittance growth in the stripper by changing the Twiss parameters and in the charge selection section by using sextupole magnets

  14. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    Energy Technology Data Exchange (ETDEWEB)

    Helfenstein, P.; Guzenko, V. A.; Tsujino, S. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen-PSI (Switzerland); Fink, H.-W. [Physik Institut, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2013-01-28

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leading to a net enhancement of the current density. Furthermore, a noble gas conditioning process was successfully applied to the double-gate device to improve the beam uniformity in-situ with orders of magnitude increase of the active emission area. The results show that the proposed double-gate field emission cathodes are promising for high current and high brightness electron beam applications such as free-electron lasers and THz power devices.

  15. Electron beam collimation with a 40 000 tip metallic double-gate field emitter array and in-situ control of nanotip sharpness distribution

    Science.gov (United States)

    Helfenstein, P.; Guzenko, V. A.; Fink, H.-W.; Tsujino, S.

    2013-01-01

    The generation of highly collimated electron beams from a double-gate field emitter array with 40000 metallic tips and large collimation gate apertures is reported. Field emission beam measurements demonstrated the reduction of the beam envelope down to the array size by applying a negative potential to the on-chip gate electrode for the collimation of individual field emission beamlets. Owing to the optimized gate structure, the concomitant decrease of the emission current was minimal, leading to a net enhancement of the current density. Furthermore, a noble gas conditioning process was successfully applied to the double-gate device to improve the beam uniformity in-situ with orders of magnitude increase of the active emission area. The results show that the proposed double-gate field emission cathodes are promising for high current and high brightness electron beam applications such as free-electron lasers and THz power devices.

  16. Emittance measurements basing on probe-slit method for a high current grid-controlled pulse electron gun

    International Nuclear Information System (INIS)

    Single slit and probe method has been used for measuring the beam emittance of an electron gun. A movable slit 0.1 mm wide is used for sampling. A probe 0.1 mm in diameter parallel to the slit and moving at a constant velocity, is used to catch the beam through the slit. Using geometrical relation, the divergence r1' and r2' of the beam through the slit can be calculated. In the device used, the distance between the slit and the probe is 59 mm, the angle resolution is 3.4 mrad, and the maximum system acceptance is 6.4 x 10-1 cm · rad. A mechanism is designed to adjust the depth of parallelism between the slit and probe in order to improve the measurement accuracy. There is a water cooled structure in the slit plate, which can bear higher beam power. With fine shielding and rational second-electron suppressor, the current of the order of 10-10 A has been clearly measured. The relative error of the measured phase plots is about 8%. The system is useful to study the effects on the emittance, of electron energy, the grid pulse voltage, cathode temperature and pulse current intensity

  17. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  18. Scalable Focused Ion Beam Creation of Nearly Lifetime-Limited Single Quantum Emitters in Diamond Nanostructures

    CERN Document Server

    Schröder, Tim; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Pacheco, Jose L; Camacho, Ryan M; Bielejec, Edward S; Sipahigil, Alp; Evans, Ruffin E; Sukachev, Denis D; Nguyen, Christian T; Lukin, Mikhail D; Englund, Dirk

    2016-01-01

    The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate direct, maskless creation of atom-like single silicon-vacancy (SiV) centers in diamond nanostructures via focused ion beam implantation with $\\sim 32$ nm lateral precision and $< 50$ nm positioning accuracy relative to a nanocavity. Moreover, we determine the Si+ ion to SiV center conversion yield to $\\sim 2.5\\%$ and observe a 10-fold conversion yield increase by additional electron irradiation. We extract inhomogeneously broadened ensemble emission linewidths of $\\sim 51$ GHz, and close to lifetime-limited single-emitter transition linewidths down to $126 \\pm13$ MHz corresponding to $\\sim 1.4$-times the natural linewidth. This demonstration of deterministic creation of optically coherent solid-state single quantum systems is an important step towards development o...

  19. High-precision half-life and branching-ratio measurements for superallowed Fermi β+ emitters at TRIUMF – ISAC

    Directory of Open Access Journals (Sweden)

    Laffoley A. T.

    2014-03-01

    Full Text Available A program of high-precision half-life and branching-ratio measurements for superallowed Fermi β emitters is being carried out at TRIUMF’s Isotope Separator and Accelerator (ISAC radioactive ion beam facility. Recent half-life measurements for the superallowed decays of 14O, 18Ne, and 26Alm, as well as branching-ratio measurements for 26Alm and 74Rb are reported. These results provide demanding tests of the Standard Model and the theoretical isospin symmetry breaking (ISB corrections in superallowed Fermi β decays.

  20. Emittance measurements of CESR using the emitted radiation from a short-period undulator

    International Nuclear Information System (INIS)

    The horizontal and vertical emittance of the Cornell Electron Storage Ring (CESR) was measured using the radiation emitted from a short-period (3.3 cm) 123-pole undulator. Average horizontal and vertical emittances measured by this technique were 80 nm-rad and 1.75 nm-rad, respectively. These compare favorably with the results from a charge-coupled device (CCD) system routinely used at CESR and with the calculated values of 65 nm-rad and ∼1 nm-rad for the horizontal and vertical emittances respectively

  1. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  2. Acceleration of Ultra-Low Emittance Proton and Ion Beams with High Intensity Lasers

    Science.gov (United States)

    Cowan, Thomas E.

    2002-11-01

    Intense beams of several MeV protons and ions, generated by the interaction of high-intensity short pulse lasers with thin foils, have been observed by many researchers in recent years.(S.P. Hatchett et al., Phys. Plasmas 7, 2076 (2000); T.E. Cowan et al., Nucl. Inst. Meth. A 455, 130 (2000); R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000); S.C. Wilks et al., Phys. Plasmas 8, 532 (2000); E. Clark et al., Phys. Rev. Lett. 84, 670 (2000).) In experiments performed at the 100 TW LULI laser, we have succeeded to control the ion acceleration process to produce ultra high quality proton beams, whose transverse emittance is laser-plasma interaction, of the transport of MA currents of relativistic electrons through the target substrate, and of the surface topology and source material layering on the target foil rear-surface.(M. Roth et al., Phys. Rev. ST Accel. Beams 5, 061002 (2002).) By varying the source material, we also accelerated light ion beams, such as He-like fluorine, to over 5 MeV/nucleon.(M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).) From PIC simulations we understand the highest-energy and lowest-divergence proton acceleration as a transient laser-driven virtual cathode effect occurring at the target rear-surface. We have also confirmed the acceleration of ions from the front surface (A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000).), which we find exhibits an intense low-energy component, but only a tenuous high-energy component, in agreement with PIC simulations. This work was performed with corporate support of General Atomics.

  3. Beam diffusion measurements using collimator scans in the LHC

    CERN Document Server

    Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander

    2013-01-01

    The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.

  4. Slice emittance measurement for photocathode RF gun with solenoid scanning and RF deflecting cavity

    Science.gov (United States)

    Li, Chen; Huang, WenHui; Du, YingChao; Yan, LiXin; Tang, ChuanXiang

    2011-12-01

    The radiation of high-gain short-wavelength free-electron laser depends on the slice transverse emittance of the electron bunch. This essay introduces the method of slice emittance measurement, and shows the brief setup of this experiment using the solenoid scanning and RF deflecting cavity at Tsinghua University. The preliminary experimental results show that the slice rms emittance of the electron bunch generated by photocathode RF gun has considerable variations along the bunch and is typically less than 0.55 mm mrad for the laser rms radius of 0.4 mm.

  5. Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam

    CERN Document Server

    Benedetto, Elena; Schulte, Daniel; Rumolo, Giovanni

    2005-01-01

    The electron cloud may cause transverse single-bunch instabilities of proton beams such as those in the Large Hadron Collider (LHC) and the CERN Super Proton Synchrotron (SPS). We simulate these instabilities and the consequent emittance growth with the code HEADTAIL, which models the turn-by-turn interaction between the cloud and the beam. Recently some new features were added to the code, in particular, electric conducting boundary conditions at the chamber wall, transverse feedback, and variable beta functions. The sensitivity to several numerical parameters has been studied by varying the number of interaction points between the bunch and the cloud, the phase advance between them, and the number of macroparticles used to represent the protons and the electrons. We present simulation results for both LHC at injection and SPS with LHC-type beam, for different electron-cloud density levels, chromaticities, and bunch intensities. Two regimes with qualitatively different emittance growth are observed: above th...

  6. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    International Nuclear Information System (INIS)

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET–CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator

  7. Emittance growth in linear induction accelerators

    CERN Document Server

    Ekdahl, C A; Schulze, M E; Carlson, C A; Frayer, D K; Mostrum, C; Thoma, C H

    2014-01-01

    The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT Axis-II LIA we measure an emittance higher than predicted by theoretical simulations, and even though this axis produces sub-millimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell (PIC) codes, although most of these are discounted based on beam measurements. The most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.

  8. Transverse beam size measurement system using visible synchrotron radiation at HLS II

    Science.gov (United States)

    Tang, Kai; Sun, Bao-Gen; Yang, Yong-Liang; Lu, Ping; Tang, Lei-Lei; Wu, Fang-Fang; Cheng, Chao-Cai; Zheng, Jia-Jun; Li, Hao

    2016-09-01

    An interferometer system and an imaging system using visible synchrotron radiation (SR) have been installed in the Hefei Light Source (HLS) II storage ring. Simulations of these two systems are given using Synchrotron Radiation Workshop (SRW) code. With these two systems, the beam energy spread and the beam emittance can be measured. A detailed description of these two systems and the measurement method is given in this paper. The measurement results of beam size, emittance and energy spread are given at the end. Supported by National Natural Science Foundation of China (11105141, 11175173) and Upgrade Project of Hefei Light Source

  9. Self-consistent simulation of the CSR effect on beam emittance

    International Nuclear Information System (INIS)

    When a microbunch with high charge traverses a curved trajectory, the curvature-induced Coherent Synchrotron Radiation (CSR) and space-charge forces may cause serious emittance degradation. Earlier analyses based on rigid-line charge model are helpful in understanding the mechanism of this curvature-induced bunch self-interaction. In reality, however, the bunch has finite transverse size and its dynamics respond to the CSR force. In this paper, we present the first self-consistent simulation for the study of the impact of CSR on beam optics. With the bunch represented by a set of macroparticles, the dynamics of the bunch under the influence of the CSR force are simulated, where the CSR force in turn depends on the history of bunch charge distribution and current density in accordance to causality. This simulation is bench-marked with previous analytical results for a rigid-line bunch. The algorithm applied in the simulation will be presented, along with the simulation results obtained for bending systems in the Jefferson Lab FEL lattice

  10. Feasibility of optical diffraction radiation for a non-invasive low-emittance beam diagnostics

    CERN Document Server

    Urakawa, J; Kubo, K; Kuroda, S; Terunuma, N; Kuriki, M; Okugi, T; Naito, T; Araki, S; Potylitsin, A P; Naumenko, G A; Karataev, P; Potylitsyna, N A; Vnukov, I; Hirose, T; Hamatsu, R; Muto, T; Ikezawa, M; Shibata, Y

    2001-01-01

    A 'proof-of-principle' experiment on the optical diffraction radiation (ODR) as a single-pulse beam profile monitor is planned using an electron beam extracted from the KEK-ATF damping ring. The main goals of this experiment are the following: (i) To measure the yield and the angular distributions of the optical diffraction radiation from a large-size target at different wavelengths, impact parameters and beam characteristics for a comparison with analogous characteristics of optical transition radiation from a foil with identical optical parameters and for a verification of the model assumption (perfectly conducting semi-infinite target). (ii) To investigate the ODR angular distributions from a tilted target with a slit for observing the interference effects. (iii) To compare the results obtained by simulations based on classical approaches, taking into account the optical characteristics of the equipment and the beam parameters. (iv) To estimate the prospects of using ODR as a new non-invasive tool for ultr...

  11. Precision Branching Ratio Measurement for the Superallowed &+circ; Emitter ^62Ga

    Science.gov (United States)

    Finlay, Paul; Svensson, C. E.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leslie, J. R.; Mattoon, C.; Morton, A. C.; Pearson, C. J.; Ressler, J. J.; Sarazin, F.; Savajols, H.

    2007-10-01

    A high-precision branching ratio measurement for the superallowed &+circ; emitter ^62Ga has been made using the 8π γ-ray spectrometer in conjunction with the SCintillating Electron-Positron Tagging ARray (SCEPTAR) as part of an ongoing experimental program in superallowed Fermi beta decay studies at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, Canada, which delivered a high-purity beam of ˜10^4 ^62Ga/s in December 2005. The present work represents the highest statistics measurement of the ^62Ga superallowed branching ratio to date. 25 γ rays emitted following non-superallowed decay branches of ^62Ga have been identified and their intensities determined. These data yield a superallowed branching ratio with 10-4 precision, and our observed branch to the first nonanalogue 0^+ state sets a new upper limit on the isospin-mixing correction δC1^1. By comparing our ft value with the world average Ft, we make stringent tests of the different calculations for the isospin-symmetry-breaking correction δC, which is predicted to be large for ^62Ga.

  12. Beam parametr measurements for the SLAC linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, J.E.; Blocker, C.; Breidenbach, M.

    1981-01-01

    A stable, closely-controlled, high-intensity, single-bunch beam will be required for the SLAC Linear Collider. The characteristics of short-pulse, low-intensity beams in the SLAC linac have been studied. A new, high-intensity thermionic gun, subharmonic buncher and S-band buncher/accelerator section were installed recently at SLAC. With these components, up to 10/sup 11/ electrons in a single S-band bunch are available for injection into the linac. the first 100-m accelerator sector has been modified to allow control of short-pulse beams by a model-driven computer program. Additional instrumentation, including a computerized energy analyzer and emittance monitor have been added at the end of the 100-m sector. The beam intensity, energy spectrum, emittance, charge distribution and the effect of wake fields in the first accelerator sector have been measured. The new source and beam control system are described and the most recent results of the beam parameter measurements are discussed.

  13. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Energy Technology Data Exchange (ETDEWEB)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.; Nakagawa, T. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Tzoganis, V. [Nishina Center for Accelerator Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Cockcroft Institute, Daresbury, Warrington WA4 4AD (United Kingdom); Department of Physics, University of Liverpool, Liverpool, Merseyside L69 3BX (United Kingdom)

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  14. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    Science.gov (United States)

    Nagatomo, T.; Tzoganis, V.; Kase, M.; Kamigaito, O.; Nakagawa, T.

    2016-02-01

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO2 (quartz), KBr, Eu-doped CaF2, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavy 12C4+, 16O4+, and 40Ar11+ ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.

  15. Beam measurements on Argonne linac for collider injector design

    International Nuclear Information System (INIS)

    The 20 MeV electron linac at Argonne produces 5 x 1010 electrons in a single bunch. This amount of charge per bunch is required for the proposed single pass collider at SLAC. For this reason the characteristics of the beam from this machine are of interest. The longitudinal charge distribution has been measured by a new technique. The technique is a variation on the deduction of bunch shape from a spectrum measurement. Under favorable conditions a resolution of about 10 of phase is possible, which is considerably better than can be achieved with streak cameras. The bunch length at 4.5 x 1010e- per bunch was measured to be 150 FWHM. The transverse emittance has also been measured using standard techniques. The emittance is 16 mm-mrad at 17.2 MeV. (Auth.)

  16. Beam measurements on Argonne linac for collider injector design

    International Nuclear Information System (INIS)

    The 20 MeV electron linac at Argonne produces 5 x 1010 electrons in a single bunch. This amount of charge per bunch is required for the proposed single pass collider at SLAC. For this reason the characteristics of the beam from this machine are of interest. The longitudinal charge distribution has been measured by a new technique. The technique is a variation on the deduction of bunch shape from a spectrum measurement. Under favorable conditions a resolution of about 10 of phase is possible, which is considerably better than can be achieved with streak cameras. The bunch length at 4.5 x 1010 e- per bunch was measured to be 150 FWHM. The transverse emittance has also been measured using standard techniques. The emittance is 16 mm-mrad at 17.2 MeV

  17. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  18. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams.

    Science.gov (United States)

    Bauer, J; Unholtz, D; Kurz, C; Parodi, K

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β(+) activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β(+) activity induced in the investigated

  19. An experimental approach to improve the Monte Carlo modelling of offline PET/CT-imaging of positron emitters induced by scanned proton beams

    Science.gov (United States)

    Bauer, J.; Unholtz, D.; Kurz, C.; Parodi, K.

    2013-08-01

    We report on the experimental campaign carried out at the Heidelberg Ion-Beam Therapy Center (HIT) to optimize the Monte Carlo (MC) modelling of proton-induced positron-emitter production. The presented experimental strategy constitutes a pragmatic inverse approach to overcome the known uncertainties in the modelling of positron-emitter production due to the lack of reliable cross-section data for the relevant therapeutic energy range. This work is motivated by the clinical implementation of offline PET/CT-based treatment verification at our facility. Here, the irradiation induced tissue activation in the patient is monitored shortly after the treatment delivery by means of a commercial PET/CT scanner and compared to a MC simulated activity expectation, derived under the assumption of a correct treatment delivery. At HIT, the MC particle transport and interaction code FLUKA is used for the simulation of the expected positron-emitter yield. For this particular application, the code is coupled to externally provided cross-section data of several proton-induced reactions. Studying experimentally the positron-emitting radionuclide yield in homogeneous phantoms provides access to the fundamental production channels. Therefore, five different materials have been irradiated by monoenergetic proton pencil beams at various energies and the induced β+ activity subsequently acquired with a commercial full-ring PET/CT scanner. With the analysis of dynamically reconstructed PET images, we are able to determine separately the spatial distribution of different radionuclide concentrations at the starting time of the PET scan. The laterally integrated radionuclide yields in depth are used to tune the input cross-section data such that the impact of both the physical production and the imaging process on the various positron-emitter yields is reproduced. The resulting cross-section data sets allow to model the absolute level of measured β+ activity induced in the investigated

  20. Emittance measurement of a DC gun for Smith-Purcell Backward Wave Oscillator FEL

    International Nuclear Information System (INIS)

    A Terahertz light source using Smith-Purcell Backward Wave Oscillator FEL(S-P BWO-FEL) has been studied at Laboratory of Nuclear Science, Tohoku University. The DC gun employs a high voltage of 50 kV to extract electrons, which is suitable to drive S-P BWO-FEL. A numerical simulation using a 3-D finite deference time domain (FDTD) method implies the S-P BWO-FEL oscillation at the terahertz wavelength region. Emittance measurement has been performed by means of the double slit method. The deduced normalized rms emittance is about 2πmm mrad. We will present the result of emittance measurement and analysis results. (author)

  1. LEDA beam diagnostics instrumentation: Beam current measurement

    International Nuclear Information System (INIS)

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7 MeV and current of 100 mA operating in either a pulsed or cw mode. Two types of current measurements are used. The first is an AC or pulsed-current measurement which uses three LANL built toroids. They are placed in the beamline in such a way as to measure important transmission parameters and act as a differential current-loss machine protection system. The second system is a DC current measurement used to measure cw beam characteristics and uses toroids from Bergoz Inc. There are two of these systems, so they can also be used for transmission measurements. The AC system uses custom processing electronics whereas the DC system uses a modified Bergoz registered electronics system. Both systems feature data acquisition via a series of custom TMS320C40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of these systems, the calibration technique, the differential current loss measurements and fast-protection processing, current droop characteristics for the AC system, and existing system noise levels. This paper will also cover the DSP system operations and their interaction with the main accelerator control system

  2. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  3. Using Spread Spectrum Transform for Fast and Robust Simultaneous Measurement in Active Sensors with Multiple Emitters

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob

    2002-01-01

    We present a signal processing algorithm for making robust and simultaneous measurements in an active sensor, which has one or more emitters and a receiver, and which employs some sort of signal processing hardware. Robustness means low sensitivity to time and frequency localized disturbances......, and to white noise. This is achieved partly by using a orthogonal spread spectrum transform for modulating the signals transmitted from the emitters to the receiver, and partly by using a number of transmission channels. The method is fast since the signals are short, and since the method does not rely......-cost active sensors....

  4. Nano-modulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    CERN Document Server

    Nanni, Emilio A; Moncton, David E

    2015-01-01

    A new method for generation of relativistic electron beams with current modulations at nanometer scale and below is presented. The current modulation is produced by diffracting relativistic electrons in perfect crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a device based on inverse Compton scattering with total length of a few meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  5. Beam Measurements in Storage Rings

    Science.gov (United States)

    Hofmann, Albert

    1996-05-01

    Beam measurements in storage rings are made to diagnose performance limitations and to gain knowledge of the beam behavior in view of improvements and to the benefit for other machines. In beam optics the measurement of the orbit or the trajectory with beam position monitors distributed around the ring reveals deflection errors. The overall focusing is checked by measuring the betatron frequency (tune) using a pulse or continuous excitation of the oscillation. Observing this oscillation with all the beam position monitors around the ring the beta function and the betatron phase advance are obtained. This measurement done for different momenta, i.e. RF-frequencies, gives the local chromaticity and its correction. The tune dependence on quadrupole strength gives the value of the local beta function. Synchrotron radiation is a powerful diagnostics tool and can give the beam cross section. Beam instabilities are investigated with similar methods. The growth or damping rates and frequencies of betatron and synchrotron oscillations, observed as a function of intensity, give a convolution of the resistive and reactive part of the transverse and longitudinal impedance with the spectrum of the oscillation mode. Coupled bunch instabilities are caused by narrow band impedances at particular frequencies while single traversal effects, including energy loss and bunch lengthening, are due to a broad band impedance. A model of the impedance can be constructed from such measurements done with different bunch lengths, tunes and other parameters. In some cases the element causing an instability can be identified. The dependence of the orbit and phase advance around the ring on intensity can give the location of impedances. To probe the impedance at very high frequencies the effects on very short bunches or the energy loss of a continuous beam due to its Schottky noise are measured. The beam energy, usually known from magnetic measurements, can be obtained directly with high

  6. The RHIC p-Carbon CNI Polarimeter Upgrade For The Beam Polarization And Intensity Measurements

    International Nuclear Information System (INIS)

    Proton polarization measurements in the AGS and RHIC (Relativistic Heavy Ion Collider at the beam energies 24-250 GeV) are based on proton-carbon and proton-proton elastic scattering in the Coulomb Nuclear Interference (CNI) region. Polarimeter operation in the scanning mode also gives polarization profile and beam intensity profile (beam emittance) measurements. Bunch by bunch emittance measurement is a very powerful tool for machine setup. Presently, the polarization and beam intensity profile measurements (in both vertical and horizontal planes) are restricted by the long target switching time and possible target destruction during this complicated motion. The RHIC polarimeters were operated near the limit of the counting rate for present silicon strip detectors. The ongoing polarimeter upgrade for the 2009 run will address all these problems. The upgrade should allow significant reduction of the polarization measurement errors by making feasible the complete polarization measurements, which includes polarization profiles in both the horizontal and vertical planes.

  7. MD 400: LHC emittance growth in presence of an external source of noise during collision

    CERN Document Server

    Barranco Garcia, Javier; Pieloni, Tatiana; Tambasco, Claudia; Trad, Georges; Valuch, Daniel; Betz, Michael; Wendt, Manfred; Pojer, Mirko; Solfaroli Camillocci, Matteo; Salvachua Ferrando, Belen Maria; Fuchsberger, Kajetan; Albert, Markus; Qiang, Ji; CERN. Geneva. ATS Department

    2016-01-01

    The interplay between head-on beam-beam interaction and external sources of noise can be a significant source of emittance growth, especially when considering large beam-beam tune shifts as for the HL-LHC upgrade project. In this experiment the emittance growth of colliding bunches with different brightness and therefore different beam-beam parameters in the presence of an external white noise source with different amplitudes is measured for different gains of the transverse feedback.

  8. Double Emittance Exchanger as a Bunch Compressor for the MaRIE XFEL electron beam line at 1GeV

    Energy Technology Data Exchange (ETDEWEB)

    Malyzhenkov, Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Northern Illinois Univ., DeKalb, IL (United States); Yampolsky, Nikolai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlsten, Bruce Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-22

    We demonstrate an alternative realization of a bunch compressor (specifically the second bunch compressor for the MaRIE XFEL beamline, 1GeV electron energy) using a double emittance exchanger (EEX) and a telescope in the transverse phase space.We compare our results with a traditional bunch compressor realized via chicane, taking into account the nonlinear dynamics, Coherent Synchrotron Radiation (CSR) and Space Charge (SC) effects. In particular, we use the Elegant code for tracking particles through the beam line and analyze the eigen-emittances evolution to separate the influence of the CSR/SC effects from the nonlinear dynamics effects. We optimize the scheme parameters to reach a desirable compression factor and minimize the emittance growth. We observe dominant CSR-effects in our scheme resulting in critical emittance growth and introduce alternative version of an emittance exchanger with a reduced number of bending magnets to minimize the impact of CSR effects.

  9. A laboratory goniometer system for measuring reflectance and emittance anisotropy

    NARCIS (Netherlands)

    Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.; Schaepman, M.E.; Schaepman-Strub, G.; Jalink, H.; Schoor, van der R.; Jong, de A.

    2012-01-01

    In this paper, a laboratory goniometer system for performing multi-angular measurements under controlled illumination conditions is described. A commercially available robotic arm enables the acquisition of a large number of measurements over the full hemisphere within a short time span making it mu

  10. Development of a MEMS electrostatic condenser lens array for nc-Si surface electron emitters of the Massive Parallel Electron Beam Direct-Write system

    Science.gov (United States)

    Kojima, A.; Ikegami, N.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Yoshida, S.; Totsu, K.; Koshida, N.; Esashi, M.

    2016-03-01

    Developments of a Micro Electro-Mechanical System (MEMS) electrostatic Condenser Lens Array (CLA) for a Massively Parallel Electron Beam Direct Write (MPEBDW) lithography system are described. The CLA converges parallel electron beams for fine patterning. The structure of the CLA was designed on a basis of analysis by a finite element method (FEM) simulation. The lens was fabricated with precise machining and assembled with a nanocrystalline silicon (nc-Si) electron emitter array as an electron source of MPEBDW. The nc-Si electron emitter has the advantage that a vertical-emitted surface electron beam can be obtained without any extractor electrodes. FEM simulation of electron optics characteristics showed that the size of the electron beam emitted from the electron emitter was reduced to 15% by a radial direction, and the divergence angle is reduced to 1/18.

  11. COMPASS measurements with hadron beams

    International Nuclear Information System (INIS)

    Muon and hadron beams from the CERN Super Proton Synchrotron are used in the COMPASS experiment for high-energy scattering reactions off fixed targets, aiming at measurements of non-perturbative aspects of quantum chromodynamics. With pion beams, the meson spectrum can be examined via diffractive dissociation, where the existence of hybrid or exotic states is a much discussed issue. The double-diffractive process of central production, which can be measured also with a proton beam, is a promising approach for the search for glueballs. At extremely small momentum transfer, electromagnetic processes are accessible via the Primakoff effect and aim at the determination of QCD low energy constants as the pion polarisability and the chiral anomaly. The muon program, focused on deep inelastic scattering, took place in the years 2002 to 2007. During this time, in autumn 2004, also a first pilot run with a pion beam was taken with the focus on diffractive and Primakoff measurements. Preliminary results and conclusions are presented. Data taking with a pion beam was resumed in 2008, where large statistics for diffractive scattering was collected. First insights, also in view of the findings of previous experiments, are presented, as well as the planning for continuation of data taking in 2009.

  12. Transverse emittance measurements on an S-band photoinjector rf electron gun

    CERN Document Server

    Schmerge, J F; Clendenin, J E; Decker, Franz Josef; Dowell, D H; Gierman, S M; Limborg, C G; Murphy, B F

    2002-01-01

    Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent, X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the proposed Linac Coherent Light Source at SLAC. The transverse emittance measurements are made at nearly 30 MeV by measuring the spot size on a YAG screen using the quadrupole scan technique. The emittance was measured to vary from 1 to 3.5 mm-mrad as the charge is increased from 50 to 350 pC using a laser pulse width of 2 ps FWHM. The measurements are in good agreement with simulation results using the LANL version of PARMELA.

  13. Noninvasive measurement of micron electron beam size of high energy using diffraction radiation

    CERN Document Server

    Naumenko, G A

    2003-01-01

    Treatments of the usage of diffraction radiation from the relativistic electrons moving though a conductive slit for the transverse beam size measurement encounter hard limitation of the method sensitivity for the electron energy larger than 1 GeV. We consider in this article a possibility of application of the artificial phase shift, which can take place when transverse electron position varies. This allows us to realize the measurements of transverse size of supper-relativistic electron beams with the small emittance.

  14. Courant-Snyder invariant density screening method for emittance analysis

    Institute of Scientific and Technical Information of China (English)

    SUN Ji-Lei; TANG Jing-Yu; JING Han-Tao

    2011-01-01

    Emittance is an important characteristic of describing charged particle beams.In hadron accelerators,we often meet irregular beam distributions that are not appropriately described by a single rms emittance or 95% emittance or total emittance.In this paper,it is pointed out that in many cases a beam halo should be described with very different Courant-Snyder parameters from the ones used for the beam core.A new method - the Courant-Snyder invariant density screening method - is introduced for analyzing emittance data clearly and accurately.The method treats the emittance data from both measurements and numerical simulations.The method uses the statistical distribution of the beam around each particle in phase space to mark its local density parameter,and then uses the density distribution to calculate the beam parameters such as the Courant-Snyder parameters and emittance for different beam boundary definitions.The method has been used in the calculations for.beams from different sources,and shows its advantages over other methods.An application code based on the method including the graphic interface has also been designed.

  15. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  16. Design and gamma sensitivity measurement of a novel dual-emitter vacuum Compton detector

    Institute of Scientific and Technical Information of China (English)

    Han He-Tong; Wang Qun-Shu; Xia Liang-Bin; Guan Xing-Yin; Zhang Zi-Chuan

    2009-01-01

    A novel dual-emitter vacuum Compton detector (D-VCD) with higher gamma ray detecting efficiency is proposed. The emitters are made of Ta-A1 clad metal. The gamma ray sensitivity is studied by Monte Carlo simulation using the MCNP code. A comparison between calculations and results measured by using the 1.25 MeV gamma ray of Co-60 is also performed. Experimental sensitivities for two sample D-VCDs with the same materials and structures are 1.92×10~(-20) and 2.02×10~(-20)C·cm~2/MeV separately. which are consistent with the simulation result of 1.98×10~(-20)C·cm~2/MeV and are 4 times higher than that of VCD with a single Fe emitter. According to the simulation results, in a gamma energy range from 0.5 to 3 MeV, the maximum sensitivity variance for the D-VCD is less than 15%, and less than 5% in a range from 1 to 2 MeV in particular. The novel D-VCD is applicable to the detection of intense pulse gamma rays.

  17. Measurement of the tradeoff between intrinsic emittance and quantum efficiency from a NaKSb photocathode near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Maxson, Jared, E-mail: jmm586@cornell.edu; Cultrera, Luca; Gulliford, Colwyn; Bazarov, Ivan [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States)

    2015-06-08

    We measure the tradeoff between the quantum efficiency and intrinsic emittance from a NaKSb photocathode at three increasing wavelengths (635, 650, and 690 nm) at or below the energy of the bandgap plus the electron affinity, hν≤E{sub g}+E{sub a}. These measurements were performed using a high voltage dc gun for varied photocathode surface fields of 1.4−4.4 MV/m. Measurements of intrinsic emittance are performed using two different methods and were found to agree. At the longest wavelength available, 690 nm, the intrinsic emittance was 0.26 μm/mm-rms with a quantum efficiency of ∼10{sup −4}. The suitability of NaKSb emitting at threshold for various low emittance applications is discussed.

  18. Wide-range Vacuum Measurements from MWNT Field Emitters Grown Directly on Stainless Steel Substrates.

    Science.gov (United States)

    Zhang, Jian; Li, Detian; Zhao, Yangyang; Cheng, Yongjun; Dong, Changkun

    2016-12-01

    The field emission properties and the vacuum measurement application are investigated from the multi-walled carbon nanotubes (MWNTs) grown directly on catalytic stainless steel substrates. The MWNT emitters present excellent emission properties after the acid treatment of the substrate. The MWNT gauge is able to work down to the extreme-high vacuum (XHV) range with linear measurement performance in wide range from 10(-11) to 10(-6) Torr. A modulating grid is attempted with improved gauge sensitivity. The extension of the lower pressure limit is attributed largely to low outgassing effect due to direct growth of MWNTs and justified design of the electron source. PMID:26738501

  19. A low-emittance lattice for SPEAR

    Science.gov (United States)

    Safranek, J.; Wiedemann, H.

    1992-08-01

    The design and implementation of a low emittance lattice for the SPEAR storage ring including measurements of the performance of the lattice are presented [J. Safranek, Ph.D. thesis, Stanford University, 1991]. The low emittance lattice is designed to optimize the performance of SPEAR as a synchrotron radiation source while keeping SPEAR hardware changes at a minimum. The horizontal emittance of the electron beam in the low emittance lattice is reduced by a factor of 4 from the previous lattice. This reduces the typical horizontal source size and divergence of the photon beams by a factor of 2 each and increases the photon beam brightness. At 3 GeV the horizontal emittance is 129π nm rad, which makes the low emittance lattice the lowest emittance, running synchrotron radiation source in the world in the 1.5 to 4.0 GeV energy range for the emittance scaled to 3 GeV. The measured vertical emittance was reduced to half that typically seen at SPEAR in the past. The brightness of the photon beams was further increased by reducing βy at the insertion devices to 1.1 m and reducing the energy dispersion at the insertion devices by more than a factor of 2 on average. The horizontal dispersion at the rf cavities was reduced by a factor of nearly 4 which gives much less problems with synchrobetatron resonances. The dynamic and physical apertures of the lattice are large, giving long beam lifetimes and easy injection of electrons. The measurements of the linear optics and intensity dependent phenomena gave reasonable agreement with the design. The overall performance of the machine was very good. Injection rates of 10 to 20 mA/min and larger were achieved routinely, and 100 mA total current was stored. Repeated ramping of stored beam from the injection energy of 2.3 GeV to the running energy of 3.0 GeV was achieved with very little beam loss. This low emittance configuration is expected to be the operating configuration for SPEAR starting in January 1992.

  20. LHC Beam Instrumentation: Beam Profile Measurements (2/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  1. Stability of an emittance-dominated sheet-electron beam in planar wiggler and periodic permanent magnet structures with natural focusing

    Science.gov (United States)

    Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.

    2005-06-01

    A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of

  2. Direct Observation of Ultralow Vertical Emittance using a Vertical Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Kent

    2015-09-17

    In recent work, the first quantitative measurements of electron beam vertical emittance using a vertical undulator were presented, with particular emphasis given to ultralow vertical emittances [K. P. Wootton, et al., Phys. Rev. ST Accel. Beams, 17, 112802 (2014)]. Using this apparatus, a geometric vertical emittance of 0.9 ± 0.3 pm rad has been observed. A critical analysis is given of measurement approaches that were attempted, with particular emphasis on systematic and statistical uncertainties. The method used is explained, compared to other techniques and the applicability of these results to other scenarios discussed.

  3. Production of clinically useful positron emitter beams during carbon ion deceleration

    Science.gov (United States)

    Lazzeroni, M.; Brahme, A.

    2011-03-01

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy 11C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary 12C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The 11C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary 11C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum 11C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C2H4). The purpose of the first section is to achieve a fast initial 11C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated 11C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary 12C beam can be increased by an order of magnitude, a sufficient intensity of the secondary 11C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the

  4. Measurement of longitudinal phase space in an accelerated H- beam using a laser-induced neutralization method

    International Nuclear Information System (INIS)

    Laser-induced neutralization of H- ions is a process that can be used to measure the longitudinal phase space of accelerated H- beams. The laser-induced neutralization diagnostic approach (LINDA) measures the longitudinal emittance of an H- beam by photoneutralizing different phase slices of beam microbunches and analyzing the energy distribution of the neutral slices. A LINDA system utilizing a pulsed laser and time-of-flight analysis has successfully measured longitudinal emittance of the 5 MeV H- beam exiting the drift-tube linac of the Los Alamos Accelerator Test Stand. Design considerations associated with the LINDA laser-based emittance measuring system are given. The present LINDA system is described and its limitations are discussed. Experimental results are given from an application of the LINDA system to the measurement of longitudinal emittance growth in a drift space and following insertion into the beamline of beam transport elements comprising a single-arm funnel. A new system is proposed which uses a mode-locked laser and spectrometer to improve resolution and shorten measurement time. (orig.)

  5. Beam energy online measurement of BEPCII LINAC

    CERN Document Server

    Wang, Shao-Zhe; Chi, Yun-Long

    2015-01-01

    This paper describes beam energy online measurement of BEPCII linac, presents the calculation formula and some of the results. The method mentioned here measures the beam energy by acquiring beam positions in the horizontal direction with three beam position monitors (BPM) eliminating the effect of orbit fluctuation, which is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in the end of this paper.

  6. FEL gain taking into account diffraction and electron beam emittance; generalized Madey's theorem

    International Nuclear Information System (INIS)

    We derive a formula for the free electron laser gain in the small-signal, low-grain regime which resembles closely the 1-D formula but taking into account the effect of wave diffraction and electron beam divergence and betatron motion. The formula is cast in a form which exhibits clearly the role of the transverse phase space distribution of photons and electrons. 8 refs

  7. Tuning the Magnetic Transport of an Induction LINAC using Emittance

    Energy Technology Data Exchange (ETDEWEB)

    Houck, T L; Brown, C G; Ong, M M; Paul, A C; Wargo, P E; Zentler, J M

    2006-08-11

    The Lawrence Livermore National Laboratory Flash X-Ray (FXR) machine is a linear induction accelerator used to produce a nominal 18 MeV, 3 kA, 65 ns pulse width electron beam for hydrodynamic radiographs. A common figure of merit for this type of radiographic machine is the x-ray dose divided by the spot area on the bremsstrahlung converter where a higher FOM is desired. Several characteristics of the beam affect the minimum attainable x-ray spot size. The most significant are emittance (chaotic transverse energy), chromatic aberration (energy variation), and beam motion (transverse instabilities and corkscrew motion). FXR is in the midst of a multi-year optimization project to reduce the spot size. This paper describes the effort to reduce beam emittance by adjusting the fields of the transport solenoids and position of the cathode. If the magnetic transport is not correct, the beam will be mismatched and undergo envelope oscillations increasing the emittance. We measure the divergence and radius of the beam in a drift section after the accelerator by imaging the optical transition radiation (OTR) and beam envelope on a foil. These measurements are used to determine an emittance. Relative changes in the emittance can be quickly estimated from the foil measurements allowing for an efficient, real-time study. Once an optimized transport field is determined, the final focus can be adjusted and the new x-ray spot measured. A description of the diagnostics and analysis is presented.

  8. Emittance and Phase Space Tomography for the Fermilab Linac

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F.G.G.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moore, C.D.; /Fermilab; Newhart, D.L.; /Fermilab

    2012-05-01

    The Fermilab Linac delivers a variable intensity, 400-MeV beam to the MuCool Test Area experimental hall via a beam line specifically designed to facilitate measurements of the Linac beam emittance and properties. A 10 m, dispersion-free and magnet-free straight utilizes an upstream quadrupole focusing triplet in combination with the necessary in-straight beam diagnostics to fully characterize the transverse beam properties. Since the Linac does not produce a strictly elliptical phase space, tomography must be performed on the profile data to retrieve the actual particle distribution in phase space. This is achieved by rotating the phase space distribution using different waist focusing conditions of the upstream triplet and performing a deconvolution of the profile data. Preliminary measurements using this diagnostic section are reported here. These data represent a first-pass measurement of the Linac emittance based on various techniques. It is clear that the most accurate representation of the emittance is given by the 3-profile approach. Future work will entail minimizing the beam spot size on MW5 to test and possibly improve the accuracy of the 2-profile approach. The 95% emittance is {approx} 18{pi} in the vertical and {approx} 13{pi} in the horizontal, which is especially larger than anticipated - 8-10{pi} was expected. One possible explanation is that the entire Linac pulse is extracted into the MTA beamline and during the first few microseconds, the feed forward and RF regulation are not stable. This may result in a larger net emittance observed versus beam injected into Booster, where the leading part of the Linac beam pulse is chopped. Future studies will clearly entail a measurement of the emittance vs. pulse length. One additional concern is that the Linac phase space is most likely aperture-defined and non-elliptical in nature. A non-elliptical phase-space determination would require a more elaborate analysis and provide another explanation of the

  9. Intracavity contacts for nitride based monolithic surface emitters by focused ion beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Fandrich, Malte; Dartsch, Heiko; Tessarek, Christian; Aschenbrenner, Timo; Hommel, Detlef [Institut fuer Festkoerperphysik - Halbleiterepitaxie, Universitaet Bremen (Germany)

    2010-07-01

    The realization of electrically driven nitride based vertical-cavity surface-emitting lasers (VCSELs) is challenging due to limitations in the conductivity of the distributed Bragg reflectors (DBRs). Therefore monolithic approaches are based on a doped cavity and one or two undoped DBRs. This requires the use of technologically complex intracavity contacts. The presented process yields intracavity contacts applicable to monolithically grown VCSEL structures. Initially mesas are structured by photolithography and chemical assisted ion beam etching. The precise structuring of the prestructured mesas is performed in a focused ion beam system (FIB), where the micropillars are thinned stepwise down to a diameter of 0.5-5 {mu}m. The contacting of the pillars is realized by FIB deposited metal and insulator structures. Insulator separated Pt ring-contacts connect the micropillars with large-scale contact pads. This procedure was applied to a VCSEL structure consisting of a bottom AlInN/GaN-DBR with 40 pairs, a p/n-doped 5 {lambda} GaN-cavity with embedded InGaN quantum dots and a top 10 pair AlInN/GaN-DBR. The developed contacting structure enables a current up to 15 mA through the cavity which documents the capability for the electrical operation of VCSEL devices.

  10. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  11. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  12. Suppression of Divergence of Low Energy Ion Beams by Space Charge Neutralization with Low Energy Electrons Emitted from Field Emitter Arrays

    International Nuclear Information System (INIS)

    Suppression of divergence of low energy neon ion beam was experimentally demonstrated by neutralizing the space charge of ion beam with low energy electrons emitted from silicon field emitter arrays (Si-FEAs). Treatment of the FEAs with trifluoromethane plasma realized surface carbonization which was efficient to elongate the lifetime of the FEA and to improve the electron energy distribution. Together with the improvement of the performance of Si-FEA, we have developed a novel electron deceleration system to produce low energy electrons. A low energy neon ion beam was produced and the beam property was investigated with and without the electron supply from surface carbonized Si-FEA (Si:C-FEA). As a result, the divergence of the neon ion beam was largely suppressed with presence of the electrons.

  13. Low-emittance Storage Rings

    CERN Document Server

    Wolski, A

    2014-01-01

    The effects of synchrotron radiation on particle motion in storage rings are discussed. In the absence of radiation, particle motion is symplectic, and the beam emittances are conserved. The inclusion of radiation effects in a classical approximation leads to emittance damping: expressions for the damping times are derived. Then, it is shown that quantum radiation effects lead to excitation of the beam emittances. General expressions for the equilibrium longitudinal and horizontal (natural) emittances are derived. The impact of lattice design on the natural emittance is discussed, with particular attention to the special cases of FODO-, achromat- and theoretical-minimum-emittance-style lattices. Finally, the effects of betatron coupling and vertical dispersion (generated by magnet alignment and lattice tuning errors) on the vertical emittance are considered.

  14. Measurement of transverse beam parameters at X-ray diagnostic beamlines in Indus-2 synchrotron radiation source

    International Nuclear Information System (INIS)

    Indus-2 is a 3rd generation synchrotron radiation source at RRCAT, Indore with 2.5 GeV energy and 200 mA beam current. The average beam sizes of electron beam are a few hundred micrometers (∼ 250 μn) in the transverse plane. In Indus-2, various types of diagnostic devices have been installed in the storage ring for the measurement of beam orbit, beam profile, beam current, tune etc. To further enhance the performance of the beam diagnostic system, two diagnostic beamlines have been designed and developed viz. X-ray diagnostic beamline (X-DBL) and visible diagnostic beamline (V- DBL). Beamline BL-24 at 10° port of bending magnet (DP-10) of Indus-2 storage ring has been developed as X-DBL. X-DBL is based on x-ray imaging (8-18 keV) with a pinhole array system. It is primarily used for beam size, beam emittance and beam position measurement. In X-ray diagnostic beamline a LabVIEW based graphical user interface (Gill) has been developed for online image processing and measurement of various beam parameters. Beamline is used routinely for the online measurements of beam sizes, beam emittance and beam stability. Measured data is analyzed to find changes in SR source point parameters under different conditions of the beam operation. In the present optics setting, typical measured beam size (RMS) is 440 ± 20 μnm horizontal and 55 ± 5 μm vertical, and correspondingly typical measured emittance is 155 ± 20 nm rad horizontal and 0.4 ± 0.05 nm rad vertical during the natural decay of beam current from 120 mA to 40 mA. Beam position remains stable within ± 20 μm horizontal and ± 15 μm vertical during the natural decay of beam current in Indus-2. Photon beam position (at 8 m from source point) remains stable within ± 20 μm during this natural decay of beam current. In this paper various measurement results of the beamline are described. (author)

  15. Emittance growth in the DARHT Axis-II Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  16. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    CERN Document Server

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  17. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Benedetti, Carlo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bulanov, Stepan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Min [Shanghai Jiao Tong Univ. (China); Esarey, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Geddes, Cameron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vay, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Lule [Shanghai Jiao Tong Univ. (China); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  18. Interlaboratory comparison of techniques for measuring lung burdens of low-energy photon-emitters

    International Nuclear Information System (INIS)

    An interlaboratory exercise was conducted to assess techniques of detection and calibration in the direct measurement of lung contamination with plutonium and other nuclides emitting only low-energy X-rays. Three volunteers, of small intermediate and large physique, inhaled an aerosol incorporating 103Pd, a 20-keV X-ray emitter, and visited 13 other laboratories in the U.K., Europe and North America. Participants in the exercise were asked to estimate each subject's lung content, using their procedures for assessing burdens of plutonium, and their estimates were compared with values derived independently from measurements of 51Cr, also incorporated in the inhaled particles, by gamma-ray spectrometry. Laboratories' calibration procedures were in most cases based on elaborate thorax phantoms, and these generally led to underestimates of the subjects' contents, in some cases by a factor of three or more; only one such laboratory produced estimates in satisfactory agreement with the independently known values. The phoswich detectors, employed by most participants, appeared to be more sensitive than gas counters. If a standard configuration were required, offering the highest sensitivity in most situations, the choice would be a pair of 12-cm diameter phoswich detectors viewing the left and right anterior surfaces of the upper thorax. No improvement in sensitivity would result from increasing the size, although larger units may offer other advantages. (author)

  19. Overview of LHC Beam Loss Measurements

    CERN Document Server

    Dehning, B; Effinger, E; Emery, J; Fadakis, E; Holzer, E B; Jackson, S; Kruk, G; Kurfuerst, C; Marsili, A; Misiowiec, M; Nebot Del Busto, E; Nordt, A; Priebe, A; Roderick, C; Sapinski, M; Zamantzas, C; Grishin, V; Griesmayer, E

    2011-01-01

    The LHC beam loss monitoring system provides measurements with an update rate of 1 Hz and high time resolution data by event triggering. These informations are used for the initiation of beam aborts, fixed displays and the off line analysis. The analysis of fast and localized loss events resulted in the determination of its rate, duration, peak amplitudes, its scaling with intensity, number of bunches and beam energy. The calibration of the secondary shower beam loss signal in respect to the needed beam energy deposition to quench the magnet coil is addressed at 450GeV and 3.5T eV . The adjustment of collimators is checked my measuring the loss pattern and its variation in the collimation regions of the LHC. Loss pattern changes during a fill allow the observation of non typical fill parameters.

  20. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G. [Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Singh, P. [Bhabha Atomic Research Centre, Mumbai (India)

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  1. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring.

    Science.gov (United States)

    Kumar, Pradeep; Ghodke, A D; Karnewar, A K; Holikatti, A C; Yadav, S; Puntambekar, T A; Singh, G; Singh, P

    2013-12-01

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  2. Low-emittance tuning at the Cornell Electron Storage Ring

    CERN Document Server

    Shanks, James; Sagan, David

    2013-01-01

    In 2008 the Cornell Electron/Positron Storage Ring (CESR) was reconfigured from an electron/positron collider to serve as a testbed for the International Linear Collider (ILC) damping rings. One of the primary goals of the CESR Test Accelerator (CesrTA) project is to develop low emittance tuning techniques to achieve sub-10pm geometric vertical emittance at 2.085 GeV. This paper discusses the tuning methods used at CesrTA to achieve low-emittance conditions. A minimum vertical emittance of 8.7 +2.9/-3.4(sys) +/-0.2(stat) pm has been achieved at 2.085 GeV. In various configurations and beam energies the correction technique routinely achieves vertical emittance <15 pm after correction. Beam-based measurement and correction requires about 15 minutes. Simulations modeling the effects of magnet misalignments, BPM errors, and emittance correction algorithm suggest the residual vertical emittance measured at the conclusion of the tuning procedure is dominated by sources other than optics errors and misalignments...

  3. K130 beam current measurement system

    Science.gov (United States)

    Gustafsson, J.; Kotilainen, P.; Hänninen, V.; Liukkonen, E.; Kaski, K.

    1994-03-01

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyväskylä, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC.

  4. K130 beam current measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, J. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Kotilainen, P. (Microelectronics Lab., Tampere Univ. of Technology (Finland)); Haenninen, V. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Liukkonen, E. (Jyvaeskylae Univ. (Finland). Dept. of Physics); Kaski, K. (Microelectronics Lab., Tampere Univ. of Technology (Finland))

    1994-03-22

    A measurement system for very low currents, developed to be used in the K130 cyclotron at University of Jyvaeskylae, is described. The beam intensity measurement is implemented with a current preamplifier and signal multiplexor. The measurement is controlled and visualised with a commercial data acquisition card integrated in a PC. (orig.)

  5. An ion guide for the production of a low energy ion beam of daughter products of {alpha}-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Tordoff, B. [Nuclear Physics Group, Schuster Laboratory, Brunswick Street, University of Manchester, Manchester M13 9PL (United Kingdom)]. E-mail: bwt@phys.jyu.fi; Eronen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Elomaa, V.V. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Gulick, S. [Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Hager, U. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Karvonen, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Kessler, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Lee, J. [Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montreal, QC, Canada H3A 2T8 (Canada); Moore, I. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Popov, A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350 (Russian Federation); Rahaman, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Sonoda, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Aystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland)

    2006-11-15

    A new ion guide has been modeled and tested for the production of a low energy ({approx}40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the {alpha}-decay of a {sup 233}U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of {sup 229}Th{sup +} (0.06%), {sup 221}Fr{sup +} (6%) and {sup 217}At{sup +} (6%) beams have been measured. A detailed study of the electric field and gas flow influence on the ion guide efficiency is described for two differing electric field configurations.

  6. An Ion Guide for the Production of a Low Energy Ion Beam of Daughter Products of $\\alpha$-Emitters

    CERN Document Server

    Tordoff, B; Elomaa, V V; Gulick, S; Hager, U; Karvonen, P; Kessler, T; Lee, J; Moore, I; Popov, A; Rahaman, S; Rinta-Antila, S; Sonoda, T; Äystö, J

    2006-01-01

    A new ion guide has been modeled and tested for the production of a low energy ($\\approx$ 40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the $\\alpha$-decay of a $^{233}$U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of $^{229}$Th$^{+}$ (0.06%), $^{221}$Fr$^{+}$ (6%), and $^{217}$At$^{+}$ (6%) beams have been measured. A detailed study of the electric field and gas flow influence on the ion guide efficiency is described for two differing electric field configurations.

  7. Thermal emittance measurements on candidate refractory materials for application in nuclear space power systems

    International Nuclear Information System (INIS)

    The development of a highly efficient General Purpose Heat Source (GPHS) space power system requires that all of the available thermal energy from the GPHS modules be utilized in the most thermally efficient manner. This includes defining the heat transfer/thermal gradient profile between the surface of the GPHS's and the surface of the energy converter's hot end whose geometry is dependent on the converter technology selected. Control of the radiant heat transfer between these two surfaces is done by regulating how efficiently the selected converter's hot end surface can reject heat compared to a perfect blackbody, i.e. its infrared emittance. Several refractory materials of interest including niobium-1% zirconium, molybdenum-44.5% rhenium and L-605 (a cobalt-based alloy) were subjected to various surface treatments (grit blasting with either SiC or WC particulates) and heat treatments (up to 1198 K for up to 3000 hours). Room temperature infrared emittance values were then obtained using two different infrared reflectometers. Grit blasting with either SiC or WC tended to increase the emittance of flat or curved L-605 coupons by ∼0.2-0.3 independent of heat treatment. Heat treating L-605 coupons under 773 K for up to 2000 hours had only a slight effect on their emittance, while heat treating L-605 coupons at 973 K for over 150 hours appeared to significantly increase their emittance. For the temperatures and times studied here, the emittance values obtained on niobium-1% zirconium and molybdenum-44.5% rhenium coupons were independent of heat treat times and temperatures (except for the niobium-1% zirconium coupon that was heat treated at 1198 K for 150 hours)

  8. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance, envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin

  9. Development of C-band deflector for slice emittance monitoring of new electron gun

    International Nuclear Information System (INIS)

    The advanced RF electron gun was installed for an electronic source of a high charge and a low emittance in KEK e+/e- Linac, and the sliced bunch monitor is needed to achieve the required emittance for the SuperKEKB injection. In the KEK-Linac, we are monitoring using a fluorescent plate on the beam line. It is possible to measure the projection emittance of the beam in this way, however it is not possible to measure the slice emittance. To develop an electron gun which can be generating a beam of super-low emittance corresponding to SuperKEKB, monitoring of the slice emittance is required. The slice of time direction on a beam can be acquired by measuring the beam sliced with the RF-deflector using a fluorescent plate. RF-deflector performance is square root of RF frequency, has developed a high-powered ones corresponding to 10 GeV beam using X-band frequency at near the end of KEK-Linac. However, because the beam energy is about 10 MeV at the RF gun exit, enough resolution is obtained even by low energy. So, we have developed a new low energy RF-deflector using C-band frequency. (author)

  10. Experimental studies on coherent synchrotron radiaiton in the emittance exchange line at the Fermilab A0 Photoinjector

    International Nuclear Information System (INIS)

    Future accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. Coherent synchrotron radiation (CSR) in the dipoles could limit the performance of the emittance exchanger. In this paper, we report the experimental studies on measuring CSR and its effects on the beam at the A0 photoinjector in the emittance exchange line. After reporting the CSR power measurements, we report on the diagnostic scheme based on a weak skew quad in the emittance exchange line to study the CSR effects on the beam and other beam dynamics. In this work, we have reported on CSR measurements and the effect of skew quad on the dogleg line with the 5-cell turned on and off. We plan to study CSR effects on the bunch with the 5-cell on at larger chirp. This is will not only increase the CSR self-effect but also reduce the beamsize at the screen for convenient beamsize measurements.

  11. Tomographic measurement of the phase space distribution of a space-charge-dominated beam

    Science.gov (United States)

    Stratakis, Diktys

    Many applications of accelerators, such as free electron lasers, pulsed neutron sources, and heavy ion fusion, require a good quality beam with high intensity. In practice, the achievable intensity is often limited by the dynamics at the low-energy, space-charge dominated end of the machine. Because low-energy beams can have complex distribution functions, a good understanding of their detailed evolution is needed. To address this issue, we have developed a simple and accurate tomographic method to map the beam phase using quadrupole magnets, which includes the effects from space charge. We extend this technique to use also solenoidal magnets which are commonly used at low energies, especially in photoinjectors, thus making the diagnostic applicable to most machines. We simulate our technique using a particle in cell code (PIC), to ascertain accuracy of the reconstruction. Using this diagnostic we report a number of experiments to study and optimize injection, transport and acceleration of intense space charge dominated beams. We examine phase mixing, by studying the phase-space evolution of an intense beam with a transversely nonuniform initial density distribution. Experimental measurements, theoretical predictions and PIC simulations are in good agreement each other. Finally, we generate a parabolic beam pulse to model those beams from photoinjectors, and combine tomography with fast imaging techniques to investigate the time-sliced parameters of beam current, size, energy spread and transverse emittance. We found significant differences between the slice emittance profiles and slice orientation as the beam propagates downstream. The combined effect of longitudinal nonuniform profiles and fast imaging of the transverse phase space provided us with information about correlations between longitudinal and transverse dynamics that we report within this dissertation.

  12. Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

    CERN Document Server

    Javadi, Alisa; Sapienza, Luca; Thyrrestrup, Henri; Lodahl, Peter

    2013-01-01

    Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light can be efficiently confined by random multiple scattering leading to Anderson localization. Here we investigate the effect of such disorder-induced cavities on the emission dynamics of single quantum dots embedded in disordered photonic-crystal waveguides. We present time-resolved measurements of both the total emission from Anderson-localized cavities and from single emitters that are coupled to the cavities. We observe both strongly inhibited and enhanced decay rates relative to the rate of spontaneous emission in a homogeneous medium. From a statistical analysis, we report an average Purcell factor of 2 in without any control on the quantum dot - cavity detuning. By spectrally tuning individual quantum dots into resonance with Anderson-localized modes, a maximum...

  13. Beam Loss Diagnostics Based on Pressure Measurements

    CERN Document Server

    Weinrich, U

    2003-01-01

    The GSI is operating a heavy ion synchrotron, which is currently undergoing an upgrade towards higher beam intensities. It was discovered that beam losses induce a significant pressure increase in the vacuum system. In order to detect the time constants of the pressure increase and decrease, fast total pressure measurements were put into operation. With the recently installed partial pressure diagnostics it is also possible to follow up which types of molecules are released. The presentation will focus on the different techniques applied as well as on some measurement results. The potential and difficulties of this diagnostic tool will also be discussed.

  14. Vertical Beam Size Measurement by Streak Camera under Colliding and Single Beam Conditions in KEKB

    CERN Document Server

    Ikeda, Hitomi; Fukuma, Hitoshi; Funakoshi, Yoshihiro; Hiramatsu, Shigenori; Mitsuhashi, Toshiyuki; Ohmi, Kazuhito; Uehara, Sadaharu

    2005-01-01

    Beam behavior of KEKB was studied by measurement of the beam size using a streak camera. Effect of the electron-cloud and the parasitic collision on the vertical beam size was examined in beam collision. We intentionally injected a test bunch of positrons after 2 rf buckets of a bunch to enhance the electron cloud effect and changed electron beam conditions to see the beam-beam effect. The beam size was also measured with a single positron beam and compared with that during collision. The result of the measurement is reported in this paper.

  15. ABSOLUTE MEASUREMENT OF THE GANIL BEAM ENERGY

    NARCIS (Netherlands)

    CASANDJIAN, JM; MITTIG, W; BEUNARD, R; GAUDARD, L; LEPINESZILY, A; VILLARI, ACC; AUGER, G; BIANCHI, L; CUNSOLO, A; FOTI, A; LICHTENTHALER, R; PLAGNOL, E; SCHUTZ, Y; SIEMSSEN, RH; WIELECZKO, JP

    1993-01-01

    The energy of the GANIL cyclotron beam was measured on-line during the Pb-208 + Pb-208 elastic scattering experiment ''Search for Color van der Waals Force in the Pb-208 + Pb-208 Mott scattering'' with an absolute precision of 7 x 10(-5) at approximately 1.0 GeV, which represents an improvement of o

  16. Turbulence measurements using six lidar beams

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob

    2012-01-01

    components of the Reynolds stress tensor, which arises because, in a VAD scan the lidar beams are combined to obtain different components of the wind field. In this work we demonstrate theoretically, how the contamination by the cross components can be avoided by using the measured variances of the line...

  17. High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.

  18. Signal processing for beam position measurement

    CERN Document Server

    Vos, L

    1997-01-01

    The spectrum of the signals generated by beam position monitors can be very large. It is the convolution product of the bunch spectrum and the transfer function of the monitor including the transmission cable. The rate of information flow is proportional to the bandwidth and the maximum amplitude rating of monitor complex. Technology is progressing at a good pace and modern acquisition capabilities are such that nearly all the information contained in the spectrum can be acquired with a reasonable resolution [1]. However, the cost of such a system is enormous and a major part of the information is superfluous. The objective of a beam position measurement system is generally restricted to trajectory measurements of a portion of the beam that is much larger than the finer details that can be observed with the bare signal generated by the position monitor. Closed orbit measurements are a simple derivation product of the trajectory and will not be considered further. The smallest beam portion that is of practical...

  19. Wavelength locking of single emitters and multi-emitter modules: simulation and experiments

    Science.gov (United States)

    Yanson, Dan; Rappaport, Noam; Peleg, Ophir; Berk, Yuri; Dahan, Nir; Klumel, Genady; Baskin, Ilya; Levy, Moshe

    2016-03-01

    Wavelength-stabilized high-brightness single emitters are commonly used in fiber-coupled laser diode modules for pumping Yb-doped lasers at 976 nm, and Nd-doped ones at 808 nm. We investigate the spectral behavior of single emitters under wavelength-selective feedback from a volume Bragg (or hologram) grating (VBG) in a multi-emitter module. By integrating a full VBG model as a multi-layer thin film structure with commercial raytracing software, we simulated wavelength locking conditions as a function of beam divergence and angular alignment tolerances. Good correlation between the simulated VBG feedback strength and experimentally measured locking ranges, in both VBG misalignment angle and laser temperature, is demonstrated. The challenges of assembling multi-emitter modules based on beam-stacked optical architectures are specifically addressed, where the wavelength locking conditions must be achieved simultaneously with high fiber coupling efficiency for each emitter in the module. It is shown that angular misorientation between fast and slow-axis collimating optics can have a dramatic effect on the spectral and power performance of the module. We report the development of our NEON-S wavelength-stabilized fiber laser pump module, which uses a VBG to provide wavelength-selective optical feedback in the collimated portion of the beam. Powered by our purpose-developed high-brightness single emitters, the module delivers 47 W output at 11 A from an 0.15 NA fiber and a 0.3 nm linewidth at 976 nm. Preliminary wavelength-locking results at 808 nm are also presented.

  20. Modeling and analysis of all the positron emitters simulation steps generated during the treatment phase in proton-therapy - from the beam to the PET camera - for the follow-up of the irradiations

    International Nuclear Information System (INIS)

    The proton-therapy is an innovative technique for cancer treatment in critical areas, such as the eye or the head. Even though the interaction of protons with human tissues is a well-known physical phenomenon which gives rise to the proton-therapy, there are uncertainties on the proton trajectory due to heterogeneities in the irradiated tissue, the calculation of the beam parameters in the planning treatment affects the theoretical benefits of the protons and the chosen dose delivery process. Thus, methods for irradiation quality control have been suggested. Most of them rely on utilizing the mapping of the positron emitters generated during the irradiation. They are detectable and quantifiable thanks to the use of the PET (positron emitter tomography), a medical imaging technique mainly used for the cancer expansion assessment. PET acquisitions were proposed and then realized on phantoms and patients after proton-therapy. The quality control relies on comparing the measured radioactive distribution to the simulated β+ distribution. The modeling of the positron activity generated by protons in the irradiated area can be divided into three steps: the simulation of the proton beam, the modeling of the proton interactions in the irradiated object and the modeling of the PET acquisition. Different ways of simulating these steps are possible. This PhD work suggests different ways of modeling the three steps and evaluates theirs benefits for the irradiation quality control. We have restrained our evaluation to the verification of the proton range and to the uncertainties related to the proton range. This research work utilizes on irradiations in homogenous and inhomogeneous areas in a head model. We have compared the uncertainties on the proton range measured thanks to the following β+ distributions: 1) A β+ distribution obtained by modeling the irradiation with a proton beam simulated analytically and simulated using the complete Monte Carlo method; 2) A Monte Carlo

  1. Transverse beam shape measurements of intense proton beams using optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  2. Measuring the polarization of a rapidly precessing deuteron beam

    Science.gov (United States)

    Bagdasarian, Z.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Dietrich, J.; Dymov, S.; Eversmann, D.; Fanourakis, G.; Gaisser, M.; Gebel, R.; Gou, B.; Guidoboni, G.; Hejny, V.; Kacharava, A.; Kamerdzhiev, V.; Lehrach, A.; Lenisa, P.; Lorentz, B.; Magallanes, L.; Maier, R.; Mchedlishvili, D.; Morse, W. M.; Nass, A.; Oellers, D.; Pesce, A.; Prasuhn, D.; Pretz, J.; Rathmann, F.; Shmakova, V.; Semertzidis, Y. K.; Stephenson, E. J.; Stockhorst, H.; Ströher, H.; Talman, R.; Thörngren Engblom, P.; Valdau, Yu.; Weidemann, C.; Wüstner, P.

    2014-05-01

    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum Jülich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by resorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will produce sizable magnitudes when the phase is left free to vary. An analysis procedure is described that matches the time dependence of the horizontal polarization to templates based on emittance-driven polarization loss while correcting for the positive bias. This information will be used to study ways to extend the horizontal polarization lifetime by correcting spin tune spread using ring sextupole fields and thereby to support the feasibility of searching for an intrinsic electric dipole moment using polarized beams in a storage ring. This paper is a combined effort of the Storage Ring EDM collaboration and the JEDI collaboration.

  3. Conception and optimisation of a new apparatus for the radioactive aerosols alpha emitters measurement in real time

    International Nuclear Information System (INIS)

    The measurement of the atmospheric contaminations due to artificial radioelements alpha emitters (239 Pu, 241 Am, 244 Cm,...) is a very difficult problem to resolve because of the three following reasons: the nature of the radiation to detect; very small activities, which correspond to LDCA; existence in the atmosphere of descendants radon and thoron, which are alpha emitters too. To avoid the drawbacks that the present apparatus present, we have conceived, realised and focused a new apparatus based on the following principals: aerosols collection by gas jet technic on solid state support and measurement in real time under a few millibar pression using a solid detector. First of all, we have tried to make the aerosol collection rate better studying the collector nature and dimension influence, the distance between the collector and the gas jet exit and the air flow. Using different supports, we have shown that the energy resolution is not depending on the support nature, but it depends very much on atmospheric conditions. Direct measurements of the radioactive samples are made by the annular detector insered between the nozzle and the collector. The good resolution, the efficacity and the discrimination of natural and artificial contaminations show off the feasibility of this apparatus

  4. Measurement with hadron beams at COMPASS

    CERN Document Server

    Ferrero, Andrea

    2005-01-01

    The physics program of the COMPASS experiment at CERN focuses on the investigation of the hadron structure and spectroscopy, using both leptonic and hadronic probes. The COMPASS experiment has collected so far mostly data with polarized muon beams of 160 GeV, but also a pilot data taking with negative hadron beams of 190 GeV has been successfully completed at the end of the 2004 run. The main physics objectives of this pilot run are the study of soft pion-nuclei interactions. The predictions of the Chiral Perturbation Theory for the electric and magnetic polarizabilities of the pion will be verified through the study of the Primakoff scattering of 190 GeV pions on thin lead targets. A sample corresponding to an integrated beam flux of more than 10$^{11}$ pions has been collected for this purpose, and an equivalent sample with the muon beam of 190 GeV has been collected in the same experimental conditions to correct possible systematic effects. In parallel to the polarizability measurements, first data have al...

  5. Developments of fast emittance monitors for ion sources at RCNP

    Energy Technology Data Exchange (ETDEWEB)

    Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K. [Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047 (Japan)

    2016-02-15

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  6. Developments of fast emittance monitors for ion sources at RCNP

    Science.gov (United States)

    Yorita, T.; Hatanaka, K.; Fukuda, M.; Shimada, K.; Yasuda, Y.; Saito, T.; Tamura, H.; Kamakura, K.

    2016-02-01

    Recently, several developments of low energy beam transport line and its beam diagnostic systems have been performed to improve the injection efficiency of ion beam to azimuthally varying field cyclotron at Research Center for Nuclear Physics, Osaka University. One of those is the fast emittance monitor which can measure within several seconds for the efficient beam development and a Pepper-Pot Emittance Monitor (PPEM) has been developed. The PPEM consists of pepper-pot mask, multichannel plate, fluorescent screen, mirror, and CCD camera. The CCD image is taken via IEEE1394b to a personal computer and analyzed immediately and frequently, and then real time measurement with about 2 Hz has been achieved.

  7. Cherenkov detector for beam quality measurement

    Science.gov (United States)

    Orfanelli, S.

    2016-07-01

    A new detector to measure the machine induced background at larger radii has been developed and installed in the CMS experiment at the LHC. It consists of forty modules, each comprising a quartz bar read out by a photomultiplier tube. Since Cherenkov radiation is emitted in a forward cone around the charged particle trajectory, these detectors can distinguish between the arrival directions of the machine induced background and the collision products. The back-end electronics consists of a uTCA readout with excellent time resolution. The installation in the CMS is described and first commissioning measurements with the LHC beams in Run II are presented.

  8. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    Science.gov (United States)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  9. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio

    2014-01-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of tran...

  10. Impact of beam-beam effects on precision luminosity measurements at the ILC

    CERN Document Server

    Rimbault, C; Mönig, K; Schulte, D

    2007-01-01

    In this paper, the impact of beam-beam effects on the precision luminosity measurement at the International Linear Collider is investigated quantitatively for the first time. GUINEA-PIG, a beam-beam interaction simulation tool, is adapted to treat the space charge effects affecting the Bhabha events used in this measurement. The biases due to the resulting changes in kinematics are evaluated for different center-of-mass energies and beam parameters.

  11. ''Blood flow measurements in the irradiated pig skin using β emitters radionuclides''

    International Nuclear Information System (INIS)

    Non invasive methods of study of the skin blood flow are numerous, but generally do not give any indication on the cutaneous micro-circulatory flow, except for cutaneous laser Doppler. The isotopic exploration of the skin with injected γ radionuclides, even of weak energy, doe snot allow to characterize the skin blood flow, because of the important contribution of the subcutaneous tissues. The use of β emitters energy spectrum, analyzed by different quantitative methods, are proportional to the thickness of the screen localized between the radioactive source and detector. Using simple and complex phantoms composed of tissue equivalent screens, with 32P sources placed at different depths, it was possible to study the degradation of β spectra, simulating respectively the sub-epidermis and sub-dermis vascular levels. A modelization and an experimental study in-vivo are proposed in this work, with 32P phosphate administered intravenously in pigs. (author)

  12. Definition and measurement of the beam propagation factor M2 for chromatic laser beams

    Institute of Scientific and Technical Information of China (English)

    Tao Fang; Xin Ye; Jinfu Niu; Jianqiu Xu

    2006-01-01

    The concept of the beam propagation factor M2 is extended for chromatic laser beams. The definition of the beam propagation factor can be generalized with the weighted effective wavelength. Using the new definition of factor M2, the propagation of chromatic beams can be analyzed by the beam propagation factor M2 as same as that of monochromatic beams. A simple method to measure the chromatic beam factor M2 is demonstrated. The chromatic factor M2 is found invariable while the laser beam propagates through the dispersion-free ABCD system.

  13. Research on Brightness Measurement of Intense Electron Beam

    CERN Document Server

    Wang, Yuan; Zhang, Huang; Yang, GuoJun; Li, YiDing; Li, Jin

    2015-01-01

    The mostly research fasten on high emission density of injector to study electron beam's brightness in LIA. Using the injector(2MeV) was built to research brightness of multi-pulsed high current(KA) electron beam, and researchs three measurement method (the pepper-pot method, beam collimator without magnetic field, beam collimator with magnetic field method) to detect beam's brightness with time-resolved measurement system.

  14. Efficient upconversion polymer-inorganic nanocomposite thin film emitters prepared by the double beam matrix assisted pulsed laser evaporation (DB-MAPLE)

    Science.gov (United States)

    Darwish, Abdalla M.; Burkett, Allan; Blackwell, Ashley; Taylor, Keylantra; Walker, Vernell; Sarkisov, Sergey; Koplitz, Brent

    2014-09-01

    We report on fabrication and investigation of optical and morphological properties of highly efficient (a quantum yield of 1%) upconversion polymer-inorganic nanocomposite thin film emitters prepared by the new technique of double beam matrix assisted pulsed laser evaporation (DB-MAPLE). Polymer poly(methyl methacrylate) (PMMA) host was evaporated on a silicon substrate using a 1064-nm pulsed laser beam using a target made of frozen (to the temperature of liquid nitrogen) solution of PMMA in chlorobenzene. Concurrently, the second 532-nm pulsed beam from the same laser was used to impregnate the polymer host with the inorganic nanoparticulate made of the rare earth upconversion compounds NaYF4: Yb3+, Er3+, NaYF4: Yb3+, Ho3+, and NaYF4: Yb3+, Tm3+. The compounds were initially synthesized using the wet process, baked, and compressed in solid pellet targets. The proposed DB-MAPLE method has the advantage of making highly homogeneous nanocomposite films with precise control of the doping rate due to the optimized overlapping of the plumes produced by the ablation of the organic and inorganic target with the infrared and visible laser beams respectively. X-ray diffraction, electron and atomic force microscopy, and optical fluorescence spectroscopy indicated that the inorganic nanoparticulate preserved its crystalline structure and upconversion properties (strong emission in green, red, and blue bands upon illumination with 980-nm laser diode) after being transferred from the target in the polymer nanocomposite film. The produced films can be used in applications varying from the efficiency enhancement of the photovoltaic cells, optical sensors and biomarkers to anti-counterfeit labels.

  15. Microstructure cantilever beam for current measurement

    Directory of Open Access Journals (Sweden)

    M.T.E. Khan

    2010-01-01

    Full Text Available Most microelectromechanical systems (MEMS sensors are based on the microcantilever technology, which uses a broad range of design materials and structures. The benefit ofMEMStechnology is in developing devices with a lower cost, lower power consumption, higher performance and greater integration. A free-end cantilever beam with a magnetic material mass has been designed using MEMS software tools. The magnetic material was used to improve the sensitivity of the cantilever beam to an externally-applied magnetic field. The cantilever was designed to form a capacitance transducer, which consisted of variable capacitance where electrical and mechanical energies were exchanged. The aim of this paper was to analyse the system design of the microcantilever when subjected to a magnetic field produced by a current-carrying conductor. When the signal, a sinusoidal current with a constant frequency, was applied, the cantilever beam exhibited a vibration motion along the vertical axis when placed closer to the line current. This motion created corresponding capacitance changes and generated a voltage output proportional to the capacitive change in the signal-processing circuitry attached to the microcantilever. The equivalent massspring system theory was used to describe and analyse the effect of the natural frequency of the system vibrations and motion due to the applied magnetic field, in a single-degree of freedom. The main application of this microcantilever is in current measurements to develop a non-contact current sensor mote.

  16. On formation of the asymptotic spectrum of delayed neutron emitters in measuring the VVER-1000 scram system effectiveness

    Science.gov (United States)

    Shishkov, L. K.; Zizin, M. N.

    2014-12-01

    The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the "new" prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of the kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.

  17. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  18. Measurement of / values using proton beam

    Indian Academy of Sciences (India)

    G A V Ramanamurthy; K Ramachandra Rao; Y Rama Krishna; P Venkateswarlu; K Bhaskara Rao; P V Ramana Rao; S Venkata Ratnam; V Seshagiri Rao; G J Nagaraju; S Bhuloka Reddy

    2001-05-01

    The / intensity ratios are measured in some 3 shell elements by using a 2 MeV proton beam along with a high resolution Si(Li) detector. The present / intensity ratios are in good agreement with Scofield modified theoretical values, thus supporting the basic assumptions in that theory. From the present / intensity ratios, it is evident that due to chemical effects, the experimental / intensity ratios will be increased while they will be decreased due to the presence of simultaneous -shell vacancies which are produced due to proton excitation.

  19. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  20. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    International Nuclear Information System (INIS)

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10-9 cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for MCU

  1. Beam instrumentation performance overview

    CERN Document Server

    Sapinski, M

    2012-01-01

    The 2011 run has proven that LHC can operate safely and stably with higher bunch intensity and smaller transverse emittance than foreseen in the Technical Design Report. In this presentation the performance of the Beam Position Monitoring (BPM) system is discussed. The improvements to the system, those made during the last year and those expected to be done for 2012 run are presented. The status of the three types of devices measuring the transverse beam emittance, wire scanners (BWS), synchrotron radiation monitors (BSRT) and beam gas ionization monitors (BGI), are shown. The control room applications are reviewed and a set of improvements proposed by the operation team is presented.

  2. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Behrens, C. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Coffee, R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Decker, F. -J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Emma, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Field, C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helml, W. [Technische Univ. Munchen, Garching (Germany); Huang, Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krejcik, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krzywinski, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Loos, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lutman, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Marinelli, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Maxwell, T. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  3. Computer based software applications developed to support LEHIPA commissioning activities and beam profile measurements at LEHIPA and FOTIA

    International Nuclear Information System (INIS)

    During integration of LEHlPA some systems required quick development of computer based software for monitoring, logging and precise controlling of their components. VB.NET tool was used for number of such applications. Some of these are: Precise control of adjustable tuners for LEHIPA RFQ tuning, Automated control and data acquisition of Linear Scanner of LEHIPA LEBT for beam profile measurement, Automated control and data acquisition of Slit and Linear Scanner based emittance measurement at LEHIPA LEBT, Automated control and data acquisition of Slit and Linear Scanner based emittance measurement at FOTIA, Real time plotting and monitoring of Vacuum gauges and thermal sensors. This paper discusses the development, integration and testing experiences of these applications. (author)

  4. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  5. Realisation of a ultra-high vacuum system and technique development of microscopical emitters preparation in silicium. First measurements of field emission current and field photoemission

    International Nuclear Information System (INIS)

    The development of research in the domain of photocathode (electron sources) illuminated by laser light to produce intense multiple bunches of electrons in short time is needed by many applications as linear collider e+e-, free electron laser, lasertron, etc... In this way, after a study of field emission, of photoemission and of photofield emission, we prepared microscopical emitters in silicium heavy and weakly doped a boron using a technique of microlithography. Then, we realized a system of ultra-high vacuum of studying property of emission from photocathodes realized. The experiment results obtained in field emission and photofield emission have shown that a behaviour unexpected for P-silicium tips array compared to P+-silicon tips array. With P-type silicon, a quantum yield of 21 percent has been measured for laser power of 140 mW and for applied field of 1.125 x 107 V/m and an instantaneous response to laser light beam has been observed. It has been noted that presence of oxyde at the surface of photocathode limits extensively the emission current. The fluctuations of emission current are due to quality of vacuum

  6. Preservation of beam loss induced quenches, beam lifetime and beam loss measurements with the HERAp beam-loss-monitor system

    Science.gov (United States)

    Wittenburg, Kay

    1994-06-01

    The beam-loss-monitors (BLMs) in the HERA-proton-ring (HERAp) must fulfill the following requirements: They have to measure losses sensitive and fast enough to prevent the superconducting magnets from beam loss induced quenching; the dynamic range of the monitors must exceed several decades in order to measure losses during beam lifetimes of hundreds of hours as well as the much stronger losses that may quench superconducting magnets; they have to be insensitive to the synchrotron radiation of the adjacent electron-ring (HERAe); and their radiation hardness must allow a monitor-lifetime of a few years of HERA operation. These requirements are well satisfied by the HERAp-BLM-System.

  7. ECR [electron cyclotron resonance] ion source beams for accelerator applications: Final report

    International Nuclear Information System (INIS)

    Reliable, easily operated ion sources are always in demand for accelerator applications. This paper reports on a systematic study of ion-beam characterisrtics and optimization of beam quality for production of light ion beams in an ECR ion source. Of particular interest is the optimization of beam brightness (defined as ion current divided by the square of the emittance), which is typically used as a figure-of-merit for accelerator-quality beams. Other areas to be discussed include the measurement of beam emittance values, the effects of various source parameters on emittances, and scaling effects from operating the same ECR source at different frequencies. 4 refs., 4 figs

  8. Electron Cloud at Low Emittance in CesrTA

    International Nuclear Information System (INIS)

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud's effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results.

  9. Electron Cloud at Low Emittance in CesrTA

    CERN Document Server

    Palmer, Mark; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; Livezey, Jesse; Lyndaker, Aaron; Makita, Junki; McDonald, Michael; Medjidzade, Valeri; Meller, Robert; O'Connell, Tim; Peck, Stuart; Peterson, Daniel; Ramirez, Gabriel; Rendina, Matthew; Revesz, Peter; Rider, Nate; Rice, David; Rubin, David; Sagan, David; Savino, James; Schwartz, Robert; Seeley, Robert; Sexton, James; Shanks, James; Sikora, John; Smith, Eric; Strohman, Charles; Williams, Heather; Antoniou, Fanouria; Calatroni, Sergio; Gasior, Marek; Jones, Owain Rhodri; Papaphilippou, Yannis; Pfingstner, Juergen; Rumolo, Giovanni; Schmickler, Hermann; Taborelli, Mauro; Asner, David; Boon, Laura; Garfinkel, Arthur; Byrd, John; Celata, Christine; Corlett, John; De Santis, Stefano; Furman, Miguel; Jackson, Alan; Kraft, Rick; Munson, Dawn; Penn, Gregory; Plate, David; Venturini, Marco; Carlson, Benjamin; Demma, Theo; Dowd, Rohan; Flanagan, John; Jain, Puneet; Kanazawa, Ken-ichi; Kubo, Kiyoshi; Ohmi, Kazuhito; Sakai, Hiroshi; Shibata, Kyo; Suetsugu, Yusuke; Tobiyama, Makoto; Gonnella, Daniel; Guo, Weiming; Harkay, Katherine; Holtzapple, Robert; Jones, James; Wolski, Andrzej; Kharakh, David; Ng, Johnny; Pivi, Mauro; Wang, Lanfa; Ross, Marc; Tan, Cheng-Yang; Zwaska, Robert; Schachter, Levi; Wilkinson, Eric

    2010-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud’s effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results

  10. Electron Cloud at Low Emittance in CesrTA

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, Mark; /Cornell U., CLASSE; Alexander, James; /Cornell U., CLASSE; Billing, Michael; /Cornell U., CLASSE; Calvey, Joseph; /Cornell U., CLASSE; Conolly, Christopher; /Cornell U., CLASSE; Crittenden, James; /Cornell U., CLASSE; Dobbins, John; /Cornell U., CLASSE; Dugan, Gerald; /Cornell U., CLASSE; Eggert, Nicholas; /Cornell U., CLASSE; Fontes, Ernest; /Cornell U., CLASSE; Forster, Michael; /Cornell U., CLASSE; Gallagher, Richard; /Cornell U., CLASSE; Gray, Steven; /Cornell U., CLASSE; Greenwald, Shlomo; /Cornell U., CLASSE; Hartill, Donald; /Cornell U., CLASSE; Hopkins, Walter; /Cornell U., CLASSE; Kreinick, David; /Cornell U., CLASSE; Kreis, Benjamin; /Cornell U., CLASSE; Leong, Zhidong; /Cornell U., CLASSE; Li, Yulin; /Cornell U., CLASSE; Liu, Xianghong; /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /Cornell U., CLASSE /CERN /CERN /CERN /CERN /CERN /CERN; /more authors..

    2012-07-06

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud's effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results.

  11. Faraday Cup - it is used to measure beam intensities at low energy beams.

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    A Faraday Cup is used to measure beam intensities at low energy beams. An electrically isolated metallic electrode intercepts the beam and captures all its charges. These charges are integrated using an current sensitive amplifier. When the beam impinges onto the electrode surface low energy electrons are liberated. In order to prevent these electrons from escaping the cup and thus falsifying the measurement, a repeller electrode with negative potential pushes the electrons back onto the electrode.

  12. Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility

    CERN Document Server

    Schietinger, T; Aiba, M; Arsov, V; Bettoni, S; Beutner, B; Calvi, M; Craievich, P; Dehler, M; Frei, F; Ganter, R; Hauri, C P; Ischebeck, R; Ivanisenko, Y; Janousch, M; Kaiser, M; Keil, B; Löhl, F; Orlandi, G L; Loch, C Ozkan; Peier, P; Prat, E; Raguin, J -Y; Reiche, S; Schilcher, T; Wiegand, P; Zimoch, E; Anicic, D; Armstrong, D; Baldinger, M; Baldinger, R; Bertrand, A; Bitterli, K; Bopp, M; Brands, H; Braun, H H; Brönnimann, M; Brunnenkant, I; Chevtsov, P; Chrin, J; Citterio, A; Divall, M Csatari; Dach, M; Dax, A; Ditter, R; Divall, E; Falone, A; Fitze, H; Geiselhart, C; Guetg, M W; Hämmerli, F; Hauff, A; Heiniger, M; Higgs, C; Hugentobler, W; Hunziker, S; Janser, G; Kalantari, B; Kalt, R; Kim, Y; Koprek, W; Korhonen, T; Krempaska, R; Laznovsky, M; Lehner, S; Pimpec, F Le; Lippuner, T; Lutz, H; Mair, S; Marcellini, F; Marinkovic, G; Menzel, R; Milas, N; Pal, T; Pollet, P; Portmann, W; Rezaeizadeh, A; Ritt, S; Rohrer, M; Schär, M; Schebacher, L; Scherrer, St; Schmidt, V Schlott T; Schulz, L; Smit, B; Stadler, M; Steffen, B; Stingelin, L; Sturzenegger, W; Treyer, D M; Trisorio, A; Tron, W; Vicario, C; Zennaro, R; Zimoch, D

    2016-01-01

    The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics meas...

  13. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  14. Investigations on the transverse phase space at a photo injector for minimized emittance

    International Nuclear Information System (INIS)

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs2Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  15. Investigations on the transverse phase space at a photo injector for minimized emittance

    Energy Technology Data Exchange (ETDEWEB)

    Miltchev, V.

    2006-08-15

    Radio frequency photoinjectors are electron sources able to generate beams of extremely high brightness, which are applicable to linac driven Free Electron Lasers (FEL). Because of the high phase space density, the dynamics of the electron beam is dominated by space charge interactions between the particles. This thesis studies the transverse phase space of space charge dominated electron beams produced by the Photo Injector Test Facility in Zeuthen (PITZ). The operation conditions for minimizing the transverse emittance are studied experimentally, theoretically and in simulations. The influence of the longitudinal profile of the driving UV laser pulse on the transverse emittance is investigated. Emphasis is placed on the experimental study of the emittance as a function of different machine parameters like the laser beam spot size, the amplitude of the focusing magnetic field, the rf phase and the electron bunch charge. First investigations on the thermal emittance for Cs{sub 2}Te photocathodes under rf operating conditions are presented. Measurements of the thermal emittance scaling with the photocathode laser spot size are analyzed. The significance of the applied rf field in the emittance formation process is discussed. (orig.)

  16. Measuring the electron beam energy in a magnetic bunch compressor

    International Nuclear Information System (INIS)

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 μm precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  17. Accurate estimation of the RMS emittance from single current amplifier data

    International Nuclear Information System (INIS)

    This paper presents the SCUBEEx rms emittance analysis, a self-consistent, unbiased elliptical exclusion method, which combines traditional data-reduction methods with statistical methods to obtain accurate estimates for the rms emittance. Rather than considering individual data, the method tracks the average current density outside a well-selected, variable boundary to separate the measured beam halo from the background. The average outside current density is assumed to be part of a uniform background and not part of the particle beam. Therefore the average outside current is subtracted from the data before evaluating the rms emittance within the boundary. As the boundary area is increased, the average outside current and the inside rms emittance form plateaus when all data containing part of the particle beam are inside the boundary. These plateaus mark the smallest acceptable exclusion boundary and provide unbiased estimates for the average background and the rms emittance. Small, trendless variations within the plateaus allow for determining the uncertainties of the estimates caused by variations of the measured background outside the smallest acceptable exclusion boundary. The robustness of the method is established with complementary variations of the exclusion boundary. This paper presents a detailed comparison between traditional data reduction methods and SCUBEEx by analyzing two complementary sets of emittance data obtained with a Lawrence Berkeley National Laboratory and an ISIS H- ion source

  18. Measuring the orbital angular momentum of electron beams

    OpenAIRE

    Giulio Guzzinati; Laura Clark; Armand B\\xe9ch\\xe9; Jo Verbeeck

    2014-01-01

    Abstract: The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, and diffraction from a knife ed...

  19. Laser beam complex amplitude measurement by phase diversity

    OpenAIRE

    Védrenne, Nicolas; Mugnier, Laurent M.; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-01-01

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named CAMELOT for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken ...

  20. Description of laser transport and delivery system for the FETS laserwire emittance scanner

    CERN Document Server

    Bosco, A; Emery, S; Gibson, S M; Pozimski, J K; Savage, P; Letchford, A P; Gabor, C; Hofmann, T

    2013-01-01

    A beam emittance monitor for H- beams based on laserinduced ions neutralization is being developed at the Front End Test Stand (FETS) at the Rutherford Appleton Laboratory (RAL). In this paper we present a full account of the laser system that will be used for the photodetachment experiment, the optical transport system and the final delivery assembly. All the relevant measurements such as power, spatial and temporal characteristics of the laser, fiber coupling efficiency and final delivery laser beam parameters will be reported.

  1. Remote sensing measurements of real world high exhaust emitters. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    McClintock, P.

    1999-03-12

    Remote sensing measurements were taken at five primary sites in the Denver area between April 1997 and March 1998 using an RS2000 unit capable of measuring HC, CO, and NO. The RD unit also measures vehicle speed and acceleration to permit determination of the vehicle operating condition and captures an image of the vehicle plate for identification. RSD measurements were compared to results from subsequent IM240 tests for 10,000 vehicles. When average emissions measured by IM240 and RSD for each model year were plotted against each other, an excellent correlation was observed with an r{sub 2} of 0.93 for HC and 0.99 for CO. Despite the older technology NO channel, an r{sub 2} of 0.99 was obtained for NO. These results suggest that RSD measurements can be used to assess fleet emissions.

  2. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  3. Ultra Low Emittance Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson,J.

    2008-06-23

    This paper outlines the special issues for reaching sub-nm emittance in a storage ring. Effects of damping wigglers, intra-beam scattering and lifetime issues, dynamic aperture optimization, control of optics, and their interrelations are covered in some detail. The unique choices for the NSLS-II are given as one example.

  4. Beam tests of phosphorescent screens

    International Nuclear Information System (INIS)

    Twelve phosphorescent screens were beam tested for linearity, uniformity, low radiation damage and a suitable emitted wavelength for use with television cameras. One screen was chosen for the construction of several intercepting profile monitors which were used during the SLC Ten Sector Tests to measure the emittance and wakefield effects of a damped electron beam

  5. On the preservation of single- and multi-bunch emittance in linear accelerators

    International Nuclear Information System (INIS)

    This document is concentrated on the investigation of the dynamics of a particle beam in a linear accelerator. We numerically simulate a number of effects and evaluate the severity of their impact on the beam. Furthermore, we examine the applicability of several correction techniques aiming at the suppression or correction of the effects diluting the beam emittance. First, there is the issue of single-bunch dynamics : we see that wake field effects and dispersive errors can cause a significant emittance growth. Secondly, long range dipole wakes and dispersive effects arising from the energy spread between different bunches will cause relative offsets between the individual bunches and likewise result in emittance growth. Finally, we observe interactions between the single-bunch and multi-bunch dynamics in a bunch train, which further aggravate these effects. The corrective measures against emittance growth are first tested with respect to individual effects relating to issues of single- or multi-bunch dynamics. Later, these different correction techniques are joined to one machine tuning procedure that will be applied in order to achieve good emittance preservation for operation of the accelerator with a full beam consisting of the full number of bunches. The performance of this procedure is tested in simulations of the combined single- and multi-bunch dynamics. Finally, tolerances on the machine alignment as well as machine and beam parameters are established. (orig.)

  6. LHC Beam Instrumentation: Beam Position and Intensity Measurements (1/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  7. LHC Beam Instrumentation: Beam Loss and Tune Measurements (3/3)

    CERN Document Server

    CERN. Geneva

    2014-01-01

    The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades.

  8. Beam induced vacuum measurement error in BEPC II

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    When the beam in BEPCII storage ring aborts suddenly, the measured pressure of cold cathode gauges and ion pumps will drop suddenly and decrease to the base pressure gradually. This shows that there is a beam induced positive error in the pressure measurement during beam operation. The error is the difference between measured and real pressures. Right after the beam aborts, the error will disappear immediately and the measured pressure will then be equal to real pressure. For one gauge, we can fit a non-linear pressure-time curve with its measured pressure data 20 seconds after a sudden beam abortion. From this negative exponential decay pumping-down curve, real pressure at the time when the beam starts aborting is extrapolated. With the data of several sudden beam abortions we have got the errors of that gauge in different beam currents and found that the error is directly proportional to the beam current, as expected. And a linear data-fitting gives the proportion coefficient of the equation, which we derived to evaluate the real pressure all the time when the beam with varied currents is on.

  9. Measurements on wave propagation characteristics of spiraling electron beams

    Science.gov (United States)

    Singh, A.; Getty, W. D.

    1976-01-01

    Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.

  10. Methods of Radioactivity Measurement for Beta Emitter Radionuclides of 14C, 36Cl and 90Sr in Area Geometric Using 2π Proportional Counter

    International Nuclear Information System (INIS)

    The radioactivity measurement of beta emitter of 14C, 36Cl and 90Sr in area geometric have been carried out by 2π proportional counter in Center for Technology of Safety and Metrology Radiation-BATAN. The measurement is needed to get standard methods for standardized of beta emitter in area geometric without destructing of the sample. The Measurement is carried out by 2π proportional counter using gas flow system of P10 in order that ionization process to be passed continuously. To prevent damage. the sources covered with very thin foil layer. Detection efficiencies are determined by variation of beta discriminator. The activities of sources are determined by extrapolation methods to 100 % of efficiencies. The results measurements are fairly good by (5954 ± 62) Bq for 14C ; (5175 ± 49) Bq for 36Cl and (1619 ± 23) Bq for 90Sr. (author)

  11. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    OpenAIRE

    Muchnoi, N.; Schreiber, H. J.; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitiv...

  12. R&D of the Fluoroscopes of 100 MeV Cyclotron Beam Lines

    Institute of Scientific and Technical Information of China (English)

    YIN; Meng; GUAN; Feng-ping; XIE; Huai-dong; ZHENG; Xia; XING; Jian-sheng; LV; Yin-long

    2013-01-01

    Beijing Radioactive Ion-beam Facility(BRIF)consists of a 100 MeV H-cyclotron CYCIAE-100and nine beam lines.All the beam lines provide the channels of the proton beam or the neutron beam to the terminal of physics experiment.There are many beam diagnosis monitors distributing along the beam lines,including,Faraday cups,beam position monitors,fluoroscopes,collimators,emittance measurement

  13. First measurements with the test stand for optical beam tomography

    OpenAIRE

    Wagner, Christopher; Meusel, Oliver; Ulrich, Ratzinger; Reichau, Hermine

    2011-01-01

    A test stand for optical beam tomography was developed. As a new non-destructive beam-diagnostic system for high current ion beams, the test stand will be installed in the low energy beam transport section (LEBT) of the Frankfurt Neutron Source (FRANZ) behind the chopper system. The test stand consists of a rotatable vacuum chamber with a mounted CCD camera. The maximum rotation angle amounts to 270°. In a first phase the optical beam profile measurement and 3D density reconstruction is teste...

  14. Performance comparisons of low emittance lattices

    International Nuclear Information System (INIS)

    In this paper, the results of a performance analysis of several low emittance electron storage ring lattices provided by various members of the Lattice Working Group are presented. Altogether, four lattices were investigated. There are two different functions being considered for the low beam emittance rings discussed here. The first is to serve as a Damping Ring (DR), i.e., to provide the emittance damping required for a high energy linear collider. The second is to provide beams for a short wavelength Free Electron Laser (FEL), which is envisioned to operate in the wavelength region near 40 A

  15. Luminosity measurement and beam condition monitoring at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jessica Lynn [DESY, Zeuthen (Germany)

    2015-07-01

    The BRIL system of CMS consists of instrumentation to measure the luminosity online and offline, and to monitor the LHC beam conditions inside CMS. An accurate luminosity measurement is essential to the CMS physics program, and measurement of the beam background is necessary to ensure safe operation of CMS. In expectation of higher luminosity and denser proton bunch spacing during LHC Run II, many of the BRIL subsystems are being upgraded and others are being added to complement the existing measurements. The beam condition monitor (BCM) consists of several sets of diamond sensors used to measure online luminosity and beam background with a single-bunch-crossing resolution. The BCM also detects when beam conditions become unfavorable for CMS running and may trigger a beam abort to protect the detector. The beam halo monitor (BHM) uses quartz bars to measure the background of the incoming beams at larger radii. The pixel luminosity telescope (PLT) consists of telescopes of silicon sensors designed to provide a CMS online and offline luminosity measurement. In addition, the forward hadronic calorimeter (HF) will deliver an independent luminosity measurement, making the whole system robust and allowing for cross-checks of the systematics. Data from each of the subsystems will be collected and combined in the BRIL DAQ framework, which will publish it to CMS and LHC. The current status of installation and commissioning results for the BRIL subsystems are given.

  16. Design of measurement equipment for high power laser beam shapes

    DEFF Research Database (Denmark)

    Hansen, K. S.; Olsen, F. O.; Kristiansen, Morten;

    2013-01-01

    To analyse advanced high power beam patterns, a method, which is capable of analysing the intensity distribution in 3D is needed. Further a measuring of scattered light in the same system is preferred. This requires a high signal to noise ratio. Such a system can be realised by a CCD......-chip implemented in a camera system. Most available CCD-based systems do however suffer from a low maximum intensity threshold. Therefore attenuation is needed. This paper describes the construction of such a beam analysing system where beam patterns produced by single mode fiber laser on a diffractic optical...... element can be evaluated using a CCD based camera. The system is tested with various DOE’s for evaluation of efficiency and measurement of scattered light with success. Also tests with capturing beam caustics of focused laser beams from which beam parameters has been fitted and compared with measurements...

  17. Beam position and phase measurements of microampere beams at the Michigan State University REA3 facility

    CERN Document Server

    Crisp, J; Durickovic, B; Kiupel, G; Krause, S; Leitner, D; Nash, S; Rodriguez, J A; Russo, T; Webber, R; Wittmer, W; Eddy, N; Briegel, C; Fellenz, B; Slimmer, D; Wendt, M

    2013-01-01

    A high power CW, heavy ion linac will be the driver accelerator for the Facility for Rare Isotope Beams (FRIB) being designed at Michigan State University (MSU). The linac requires a Beam Position Monitoring (BPM) system with better than 100 micron resolution at 100 microamperes beam current. A low beam current test of the candidate technology, button pick-ups and direct digital down-conversion signal processing, was conducted in the ReA3 re-accelerated beam facility at Michigan State University. The test is described. Beam position and phase measurement results, demonstrating ~250 micron and ~1.5 degree resolution in a 45 kHz bandwidth for a 1.0 microampere beam current, are reported.

  18. Simulations of beam-beam and beam-wire interactions in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

    2009-02-01

    The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

  19. Use of proportional gas scintillator in absolute measurements of alpha-gamma emitter activities

    International Nuclear Information System (INIS)

    The absolute activity of U-235 contained in a U3 O8 sample was measured utilizing a sum-coincidence circuit which selects only the alpha particles which are simultaneous with the 143 KeV and 186 KeV gamma radiations from the Th-231 (product nucleus). The alpha particles were detected by means of a new type of a gas scintillating chamber, in which the light emitted by excitation of the gas atoms, due to the passage of a charged incoming particle, has its intensity increased by the action of an applied electric field. The gamma radiations were detected by means of a NaI(Tl) 1'' x 11/2'' scintillation detector. The value obtained for the half-life of U-235 was compared with the data available from various observers which used different experimental techniques. It is shown tht the results, are in excellent agreement with the best international data available on the subject and that, therefore, the sum-coincidence technique constitutes an important method for such measurements. (Author)

  20. Angular-momentum-dominated electron beams and flat-beam generation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yin-e

    2005-06-01

    In the absence of external forces, if the dynamics within an electron beam is dominated by its angular momentum rather than other effects such as random thermal motion or self Coulomb-repulsive force (i.e., space-charge force), the beam is said to be angular-momentum-dominated. Such a beam can be directly applied to the field of electron-cooling of heavy ions; or it can be manipulated into an electron beam with large transverse emittance ratio, i.e., a flat beam. A flat beam is of interest for high-energy electron-positron colliders or accelerator-based light sources. An angular-momentum-dominated beam is generated at the Fermilab/NICADD photoinjector Laboratory (FNPL) and is accelerated to an energy of 16 MeV. The properties of such a beam is investigated systematically in experiment. The experimental results are in very good agreement with analytical expectations and simulation results. This lays a good foundation for the transformation of an angular-momentum-dominated beam into a flat beam. The round-to-flat beam transformer is composed of three skew quadrupoles. Based on a good knowledge of the angular-momentum-dominated beam, the quadrupoles are set to the proper strengths in order to apply a total torque which removes the angular momentum, resulting in a flat beam. For bunch charge around 0.5 nC, an emittance ratio of 100 {+-} 5 was measured, with the smaller normalized root-mean-square emittance around 0.4 mm-mrad. Effects limiting the flat-beam emittance ratio are investigated, such as the chromatic effects in the round-to-flat beam transformer, asymmetry in the initial angular-momentum-dominated beam, and space-charge effects. The most important limiting factor turns out to be the uncorrelated emittance growth caused by space charge when the beam energy is low, for example, in the rf gun area. As a result of such emittance growth prior to the round-to-flat beam transformer, the emittance ratio achievable in simulation decreases from orders of thousands to

  1. Measuring the mode volume of plasmonic nanocavities using coupled optical emitters

    CERN Document Server

    Russell, Kasey J; Hu, Evelyn; 10.1103/PhysRevB.85.245445

    2012-01-01

    Metallic optical systems can confine light to deep sub-wavelength dimensions, but verifying the level of confinement at these length scales typically requires specialized techniques and equipment for probing the near-field of the structure. We experimentally measured the confinement of a metal-based optical cavity by using the cavity modes themselves as a sensitive probe of the cavity characteristics. By perturbing the cavity modes with conformal dielectric layers of sub-nm thickness using atomic layer deposition, we find the exponential decay length of the modes to be less than 5% of the free-space wavelength (\\lambda) and the mode volume to be of order \\lambda^3/1000. These results provide experimental confirmation of the deep sub-wavelength confinement capabilities of metal-based optical cavities.

  2. Directional couplers with integrated carbon nanotube incandescent light emitters

    OpenAIRE

    Fechner, Randy G.; Pyatkov, Felix; Khasminskaya, Svetlana; Flavel, Benjamin S.; Krupke, Ralph; Pernice, Wolfram H. P.

    2016-01-01

    We combine on-chip single-walled carbon nanotubes (SWNTs) emitters with directional coupling devices as fundamental building blocks for carbon photonic systems. These devices are essential for studying the emission properties of SWNTs in the few photon regime for future applications in on-chip quantum photonics. The combination of SWNTs with on-chip beam splitters herein provides the basis for correlation measurements as necessary for nanoscale source characterization. The employed fabricatio...

  3. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  4. Laser Doppler instrument measures fluid velocity without reference beam

    Science.gov (United States)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  5. Multibunch Emittance Preservation in CLIC

    CERN Document Server

    Guignard, Gilbert

    1996-01-01

    In high-frequency linacs, where the wakefields are strong, the stability of a train of bunches is critical. The beam break-up due to long range wakefields induces a decoherence of the bunch oscillations and a consequent blow-up of the effective betatron emittances of the whole train. Since the Compact Linear Collider (CLIC) study now includes several bunches per pulse, it is important to analyse numerically and theoretically this emittance blow-up. possibilities of controlling the beam break-up without upsetting the single bunch stability have been considered: first a multibunch generalization of the BNS damping principle, secondly an attenuation of the long-range fields, and thirdly an increase of the focusing in order to overconstrain the beam. Simulation codes have been written for both checking the theoretical predictions and investigating the requirements associated with a possible application to the main linac. Animated graphics make it possible to get a didactic display of the multibunch instability.

  6. Measurements and simulations of focused beam for orthovoltage therapy

    International Nuclear Information System (INIS)

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface

  7. Measuring the electron beam energy in a magnetic bunch compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-09-15

    Within this thesis, work was carried out in and around the first bunch compressor chicane of the FLASH (Free-electron LASer in Hamburg) linear accelerator in which two distinct systems were developed for the measurement of an electron beams' position with sub-5 {mu}m precision over a 10 cm range. One of these two systems utilized RF techniques to measure the difference between the arrival-times of two broadband electrical pulses generated by the passage of the electron beam adjacent to a pickup antenna. The other system measured the arrival-times of the pulses from the pickup with an optical technique dependent on the delivery of laser pulses which are synchronized to the RF reference of the machine. The relative advantages and disadvantages of these two techniques are explored and compared to other available approaches to measure the same beam property, including a time-of-flight measurement with two beam arrival-time monitors and a synchrotron light monitor with two photomultiplier tubes. The electron beam position measurement is required as part of a measurement of the electron beam energy and could be used in an intra-bunch-train beam-based feedback system that would stabilize the amplitude of the accelerating field. By stabilizing the accelerating field amplitude, the arrival-time of the electron beam can be made more stable. By stabilizing the electron beam arrival-time relative to a stable reference, diagnostic, seeding, and beam-manipulation lasers can be synchronized to the beam. (orig.)

  8. Measurement of diagnostic neutral beam parameters on J-TEXT

    Science.gov (United States)

    Wang, J. R.; Cheng, Z. F.; Li, Z.; Li, Y.; Luo, J.; Zhang, X. L.; Zhuang, G.

    2016-11-01

    A Doppler frequency shift spectrum (DFSS) system composed of two spectrometers has been developed for the joint Texas experimental tokamak to measure diagnostic neutral beam parameters including the beam energy fractions, intensity distributions, and divergences. The beam energy fractions are derived from measurements of H-alpha (Hα) emission using collisional excitation cross sections. The beam intensity distributions are obtained using an 11-channel measurement with a reconstruction technique. The beam divergences are obtained from spectrum broadening and geometric calculations. The results of preliminary investigations indicate that the DFSS system works well and can be used to obtain all of these parameters simultaneously. According to the preliminary experiment, the one-third energy fraction has the largest proportion (about 45%) of the beam energy and the full energy fraction is about 10%. The beam diameter is about 8.1 cm at a distance of 2.04 m from the accelerator. The beam divergence angle is about 3.3°. The current beam parameters are insufficient for charge-exchange measurements.

  9. Electron beam energy QA - a note on measurement tolerances.

    Science.gov (United States)

    Meyer, Juergen; Nyflot, Matthew J; Smith, Wade P; Wottoon, Landon S; Young, Lori; Yang, Fei; Kim, Minsun; Hendrickson, Kristi R G; Ford, Eric; Kalet, Alan M; Cao, Ning; Dempsey, Claire; Sandison, George A

    2016-01-01

    Monthly QA is recommended to verify the constancy of high-energy electron beams generated for clinical use by linear accelerators. The tolerances are defined as 2%/2 mm in beam penetration according to AAPM task group report 142. The practical implementation is typically achieved by measuring the ratio of readings at two different depths, preferably near the depth of maximum dose and at the depth corresponding to half the dose maximum. Based on beam commissioning data, we show that the relationship between the ranges of energy ratios for different electron energies is highly nonlinear. We provide a formalism that translates measurement deviations in the reference ratios into change in beam penetration for electron energies for six Elekta (6-18 MeV) and eight Varian (6-22 MeV) electron beams. Experimental checks were conducted for each Elekta energy to compare calcu-lated values with measurements, and it was shown that they are in agreement. For example, for a 6 MeV beam a deviation in the measured ionization ratio of ± 15% might still be acceptable (i.e., be within ± 2 mm), whereas for an 18 MeV beam the corresponding tolerance might be ± 6%. These values strongly depend on the initial ratio chosen. In summary, the relationship between differences of the ionization ratio and the corresponding beam energy are derived. The findings can be translated into acceptable tolerance values for monthly QA of electron beam energies. PMID:27074488

  10. Theoretical analysis of some problems in the measurement of beam divergence angle for EAST neutral beam injector

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Beam angular divergence is one of the indicators to evaluate the beam quality. Operating parameters of the beam extraction system could be adjusted to gain better beam quality following the measurement results, which will be helpful not only to study the transmission characteristics of the beam and the power distribution on the heat load components, but also to understand the real-time working condition of the ion source and beam extraction system. This study includes: (1) the theoretical analysis of beam extraction pulse duration for measurement of beam angular divergence; (2) the theoretical analysis of beam intensity distribution during beam transmission for Experimental Advanced Superconducting Tokomak (EAST) neutral beam injector. Those theoretical analyses could point the way to the measurement of beam divergence angle for EAST neutral beam injector.

  11. Measuring the quantum statistics of an atom laser beam

    OpenAIRE

    Bradley, A. S.; Olsen, M. K.; Haine, S. A.; Hope, J. J.

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, ...

  12. Wire Scanner Beam Profile Measurements for the LANSCE Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, John D. [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing beam profile measurement systems, commonly known as Wire Scanners (WS). Using the principal of secondary electron emission, the WS measurement system moves a wire or fiber across an impinging particle beam, sampling a projected transverse-beam distribution. Because existing WS actuators and electronic components are either no longer manufactured or home-built with antiquated parts, a new WS beam profile measurement is being designed, fabricated, and tested. The goals for these new WS's include using off-the-shelf components while eliminating antiquated components, providing quick operation while allowing for easy maintainability, and tolerating external radioactivation. The WS measurement system consists of beam line actuators, a cable plant, an electronics processor chassis, and software located both in the electronics chassis (National Instruments LabVIEW) and in the Central Control Room (EPICS-based client software). This WS measurement system will measure Hand H{sup +} LANSCE-facility beams and will also measure less common beams. This paper describes these WS measurement systems.

  13. Comparison between 50 W tapered laser arrays and tapered single emitters

    Science.gov (United States)

    Scholz, Christian; Boucke, Konstantin; Poprawe, Reinhart; Keleman, Marc T.; Weber, Jürgen; Mikulla, Michael; Weimann, Günter

    2006-02-01

    During the last few years high power diode laser arrays have become well established for direct material processing due to their high efficiency of more than 50%. But standard broad-area waveguide designs are susceptible to modal instabilities and filamentations resulting in low beam qualities. The beam quality increases by more than a factor of four by using tapered laser arrays, but so far they suffer from lower efficiencies. Therefore tapered lasers are mainly used today as single emitters in external resonator configurations. With increased output power and lifetime, they will be much more attractive for material processing and for pumping of fiber amplifiers. High efficiency tapered mini bars emitting at a wavelength of 980 nm are developed, and in order to qualify the bars, the characteristics of single emitters and mini bars from the same wafer have been compared. The mini bars have a width of 6 mm with 12 emitters. The ridge waveguide tapered lasers consist of a 500 μm long ridge and a 2000 μm long tapered section. The results show very similar behavior of the electro-optical characteristics and the beam quality for single emitters and bars. Due to different junction temperatures, different slope efficiencies were measured: 0.8 W/A for passively cooled mini bars and 1.0 W/A for actively cooled mini-bars and single emitters. The threshold current of 0.7 A per emitter is the same for single emitters and emitter arrays. Output powers of more than 50 W in continuous wave mode for a mini bar with standard packaging demonstrates the increased power of tapered laser bars.

  14. Experimental study of proton beam halo in mismatched beams

    International Nuclear Information System (INIS)

    We report measurements of transverse beam-halo formation in mismatched proton beams in a 52-quadrupole FODO-transport channel following the 6.7 MeV RFQ at the Low-Energy Demonstration Accelerator (LEDA) at Los Alamos. Beam profiles in both transverse planes were measured using a new diagnostic device that consists of a movable carbon filament for measurement of the beam core, and scraper plates for measurement of the outer part of the distributions. The initial results indicate a surprisingly strong growth rate of the rms emittance even for the modest space-charge tune depressions of the experiment. Our results are consistent with the complete transfer of free energy of the mismatched beams into emittance growth within 10 envelope oscillations for both the breathing and the quadrupole modes.

  15. Beam position measurements of Indus-2 using X-Ray beam position monitor

    International Nuclear Information System (INIS)

    A staggered pair metal blade X-ray beam position monitor (XBPM) is designed, fabricated and commissioned on Indus-2 bending magnet front end. Calibration of XBPM is done by scanning the metal blades in the path of synchrotron radiation and by giving controlled electron asymmetric bump. The vertical beam position stability of the source measured during various injections and storages are reported.

  16. Measurement of power density distribution and beam waist simulation for electron beam

    International Nuclear Information System (INIS)

    The study aims to measure the power density distribution of the electron beam (EB) for further estimating its characteristics. A compact device combining deflection signal controller and current signal acquisition circuit of the EB was built. A software modelling framework was developed to investigate structural parameters of the electron beam. With an iterative algorithm, the functional relationship between the electron beam power and its power density was solved and the corresponding contour map of power density distribution was plotted through isoline tracking approach. The power density distribution of various layers of cross-section beam was reconstructed for beam volume by direct volume rendering technique. The further simulation of beam waist with all-known marching cubes algorithm reveals the evolution of spatial appearance and geometry measurement principle was explained in detail. The study provides an evaluation of promising to replace the traditional idea of EB spatial characteristics. - Highlights: ► We build a framework for measuring power density distribution for electron beam. ► We capture actual electron and build transient spatial power distribution for EB. ► Tracing algorithm of power density contour for cross-section was designed. ► The volume and waist of the beam are reconstructed in 4D mode. ► Geometry measurement is finished which is befit for designing of process welding.

  17. Matching of horizontal and vertical emittances using a thin scatterer

    International Nuclear Information System (INIS)

    An isocentric superconducting rotating-gantry for heavy-ion therapy is being developed at NIRS. This rotating gantry can transport heavy ions having 430 MeV/u to an isocenter with irradiation angles of over ±180 degrees, and is further capable of performing fast raster-scanning irradiation. In the treatment using the rotating gantry, it is important to obtain a circular beam spot at the isocenter independent of the gantry angle. To accomplish this, we initially determined phase-space distributions of extracted beams from the HIMAC synchrotron ring, and further, matching of horizontal and vertical emittances using a thin scatterer was performed. We report results of the phase-space measurements as well as the emittance matching. (author)

  18. Enhancing the accelerated beam current in the booster synchrotron by optimizing the transport line beam propagation

    Indian Academy of Sciences (India)

    Saini R S; Tyagi Y; Ghodke A D; Puntambekar T A

    2016-04-01

    In this paper, we present the results of transverse beam emittance and twiss parameter measurement of an electron beam, delivered by a 20 MeV microtron which is used as a pre-injector system for a booster synchrotron in the Indus Accelerator Facility at RRCAT Indore. Based on these measured beam parameters, beam optics of a transport line was optimized and its results are alsodiscussed in this paper. This beam transport line is used to transport the electron beam from the 20MeV microtron to the booster synchrotron. The booster synchrotron works as a main injector for Indus-1 and Indus-2 synchrotron radiation facilities. To optimize the beam optics of a transport linefor proper beam transmission through the line as well as to match the beam twiss parameters at the beam injection point of another accelerator, it is necessary to know the transverse beam emittance and twiss parameters of the beam coming from the first one. A MATLAB-based GUI program has been developed to calculate the beam emittance and twiss parameters, using quadrupole scanmethod. The measured parameters have been used for beam transport line optimization and twiss parameters matching at booster injection point. After this optimization, an enhancement of ∼50% beam current has been observed in the booster synchrotron.

  19. Laser Beam Caustic Measurement with Focal Spot Analyser

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Gong, Hui; Bagger, Claus

    2005-01-01

    In industrial applications of high power CO2-lasers the caustic characteristics of the laser beam have great effects on the performance of the lasers. A welldefined high intense focused spot is essential for reliable production results. This paper presents a focal spot analyser that is developed...... for measuring the beam profiles of focused high power CO2-lasers....

  20. Electron Beam Lifetime in SPEAR3: Measurement and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Corbett, J.; Huang, X.; Lee, M.; Lui, P.; /SLAC; Sayyar-Rodsari, B.; /Pavilon Tech., Austin

    2007-12-19

    In this paper we report on electron beam lifetime measurements as a function of scraper position, RF voltage and bunch fill pattern in SPEAR3. We then outline development of an empirical, macroscopic model using the beam-loss rate equation. By identifying the dependence of loss coefficients on accelerator and beam parameters, a numerically-integrating simulator can be constructed to compute beam decay with time. In a companion paper, the simulator is used to train a parametric, non-linear dynamics model for the system [1].

  1. Measuring the Orbital Angular Momentum of Electron Beams

    CERN Document Server

    Guzzinati, Giulio; Béché, Armand; Verbeeck, Jo

    2014-01-01

    The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks, diffraction from geometric apertures, diffraction from a knife-edge and the application of an astigmatic lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting numerical simulations.

  2. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%. PMID:26192526

  3. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  4. Measurements with radioactive beams at ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K. E.

    1998-08-06

    Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F (T{sub 1/2} = 110 min) and {sup 56}Ni (T{sub 1/2} = 6.1d) were produced and the reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed.

  5. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  6. Beam Loss Patterns at the LHC Collimators Measurements & Simulations

    CERN Document Server

    Böhlen, Till Tobias

    2008-01-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) detects particle losses of circulating beams and initiates an emergency extraction of the beam in case that the BLM thresholds are exceeded. This protection is required as energy deposition in the accelerator equipment due to secondary shower particles can reach critical levels; causing damage to the beam-line components and quenches of superconducting magnets. Robust and movable beam line elements, so-called collimators, are the aperture limitations of the LHC. Consequently, they are exposed to the excess of lost beam particles and their showers. Proton loss patterns at LHC collimators have to be determined to interpret the signal of the BLM detectors and to set adequate BLM thresholds for the protection of collimators and other equipment in case of unacceptably increased loss rates. The first part of this work investigates the agreement of BLM detector measurements with simulations for an LHC-like collimation setup. The setup consists ...

  7. Measuring Beam Quality of Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Shephard, J.D.; Roberts, John; Jones, J.D.C.;

    2006-01-01

    In this paper, the authors measure the quality of the delivered beam from hollow core photonic crystal fibers (HC-PCFs). The$M^2$parameter is determined, and the near- to far-field transition is examined. The influence on these properties due to the presence of a core surround mode is evaluated....... The applicability of the International Standards Organization 11146 : 1999 standard for$M^2$measurement of the beam quality of HC-PCFs is discussed. Because they are dependent on the measurement parameters, such as choice of aperturing scheme and the axis of measurement,$M^2$values could vary from 1.......32 to 3.17 for the same output beam. This highlights the need for careful consideration when measuring and describing the beam quality delivered by these novel photonic fibers....

  8. Techniques for intense-proton-beam profile measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1998-12-31

    In a collaborative effort with industry and several national laboratories, the Accelerator Production of Tritium (APT) facility and the Spallation Neutron Source (SNS) linac are presently being designed and developed at Los Alamos National Laboratory (LANL). The APT facility is planned to accelerate a 100-mA H{sup +} cw beam to 1.7 GeV and the SNS linac is planned to accelerate a 1- to 4-mA-average, H{sup {minus}}, pulsed-beam to 1 GeV. With typical rms beam widths of 1- to 3-mm throughout much of these accelerators, the maximum average-power densities of these beams are expected to be approximately 30- and 1-MW-per-square millimeter, respectively. Such power densities are too large to use standard interceptive techniques typically used for acquisition of beam profile information. This paper summarizes the specific requirements for the beam profile measurements to be used in the APT, SNS, and the Low Energy Development Accelerator (LEDA)--a facility to verify the operation of the first 20-MeV section of APT. This paper also discusses the variety of profile measurement choices discussed at a recent high-average-current beam profile workshop held in Santa Fe, NM, and will present the present state of the design for the beam profile measurements planned for APT, SNS, and LEDA.

  9. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (γ) emitted from the surface of the detector upon impact of an atom. The method employed to determine γ and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper.

  10. Production, Characterization, and Measurement of H(D) Beams on the ORNL Merged-Beams Experiment

    International Nuclear Information System (INIS)

    Total cross section measurements of electron capture processes are being studied for low-energy, Aq++H(D) collisions using the Ion-Atom Merged-Beams apparatus at the Multicharged Ion Research Facility (MIRF) at Oak Ridge National Laboratory (ORNL). On this apparatus, a modified Faraday cup detector is used to measure the intensity of the neutral beam. The conversion of the measured electrical current to the true neutral particle beam current is necessary to accurately determine the true cross section values. Inherent in this conversion process is the number of secondary electrons (gamma) emitted from the surface of the detector upon impact of an atom. The method employed to determine gamma and its role in the absolute electron capture measurements at ORNL-MIRF are presented. With a recent upgrade to the apparatus, the neutral beam H(D) production technique has been improved and is discussed in detail in this paper

  11. ILC Beam Energy Measurement by means of Laser Compton Backscattering

    CERN Document Server

    Muchnoi, N; Viti, M

    2008-01-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered $\\gamma$-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of $10^{-4}$ or bette...

  12. Low Emittance X-FEL Development

    CERN Document Server

    Li, K S B; Anghel, A; Bakker, R J; Böge, M; Candel, A E; Dehler, M; Ganter, R; Gough, C; Ingold, G; Leemann, S C; Pedrozzi, M; Raguin, J Y; Rivkin, L; Schlott, V; Streun, A; Wrulich, A F

    2005-01-01

    The Paul Scherrer Institute (PSI) in Switzerland currently develops a Low-Emittance electron-Gun (LEG) based on field-emitter technology [1]. The target is a normalized transverse emittance of 5 10(-8) m rad or less. Such a source is particularly interesting for FELs that target wavelengths below 0.3 nm since it permits a reduction of the required beam-energy and hence, a reduction of the construction- and operational costs of X-ray FELs. That is, for the case that this initial low emittance can be maintained throughout the accelerator. Here we present a concept for a 0.1 nm X-FEL based on LEG, which can be located close to the Swiss Light Source (SLS). Special attention goes to the maintenance of the emittance during the process of acceleration and bunch-compression, in particular in the regimes where either space-charge forces or coherent-synchrotron radiation are of importance.

  13. Measuring the Proton Beam Polarization From The Source To RHIC

    Science.gov (United States)

    Makdisi, Yousef I.

    2008-02-01

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  14. Measuring the proton beam polarization from the source to RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    Makdisi,Y.

    2007-09-10

    Polarimeters are necessary tools for measuring the beam polarization during the acceleration process as well as a yardstick for performing spin physics experiments. In what follows, I will describe the principles of measuring the proton beam polarization and the techniques that are employed at various energies. I will present a tour of the polarimetry employed at the BNL Relativistic Heavy Ion collider (RHIC) polarized proton complex as it spans the full spectrum from the source to collider energies.

  15. Measuring the phase of the scattering amplitude with vortex beams

    OpenAIRE

    Ivanov, I. P.

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interfere...

  16. Measuring the quantum statistics of an atom laser beam

    CERN Document Server

    Bradley, A S; Hope, J J; Olsen, M K

    2006-01-01

    We propose and analyse a scheme for measuring the quadrature statistics of an atom laser beam using extant optical homodyning and Raman atom laser techniques. Reversal of the normal Raman atom laser outcoupling scheme is used to map the quantum statistics of an incoupled beam to an optical probe beam. A multimode model of the spatial propagation dynamics shows that the Raman incoupler gives a clear signal of de Broglie wave quadrature squeezing for both pulsed and continuous inputs. Finally, we show that experimental realisations of the scheme may be tested with existing methods via measurements of Glauber's intensity correlation function.

  17. Recent Advances in Beam Diagnostic Techniques

    Science.gov (United States)

    Fiorito, R. B.

    2002-12-01

    We describe recent advances in diagnostics of the transverse phase space of charged particle beams. The emphasis of this paper is on the utilization of beam-based optical radiation for the precise measurement of the spatial distribution, divergence and emittance of relativistic charged particle beams. The properties and uses of incoherent as well as coherent optical transition, diffraction and synchrotron radiation for beam diagnosis are discussed.

  18. Dose rate and beam profile measurement of proton beam using a flat panel detector

    Science.gov (United States)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  19. Measurements of Terahertz Generation in a Metallic, Corrugated Beam Pipe

    CERN Document Server

    Bane, K L F; Fedurin, M; Kusche, K; Swinson, C; Xiang, D

    2016-01-01

    A method for producing narrow-band THz radiation proposes passing an ultra-relativistic beam through a metallic pipe with small periodic corrugations. We present results of a measurement of such an arrangement at Brookhaven's Accelerator Test Facility (ATF). Our pipe was copper and was 5 cm long; the aperture was cylindrically symmetric, with a 1 mm (radius) bore and a corrugation depth (peak-to-peak) of 60 um. In the experiment we measured both the effect on the beam of the structure wakefield and the spectral properties of the radiation excited by the beam. We began by injecting a relatively long beam compared to the wavelength of the radiation to excite the structure, and then used a downstream spectrometer to infer the radiation wavelength. This was followed by injecting a shorter bunch, and then using an interferometer (also downstream of the corrugated pipe) to measure the spectrum of the induced THz radiation.

  20. Measurements of Beam Ion Loss from the Compact Helical System

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan

    2010-02-03

    Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.

  1. Beam emittance forming line of the cw race-track microtron of the Institute of Nuclear Physics of Moscow State University (INP MSU)

    Energy Technology Data Exchange (ETDEWEB)

    Alimov, A.S.; Gevorkyan, V.G.; Gorbatov, Yu.I.; Gribov, I.V.; Ibadov, A.Kh.; Ishkhanov, B.S.; Korneenkov, V.A.; Lazutin, E.V.; Makulbekov, E.A.; Piskarev, I.M.

    1989-06-01

    The transverse and longitudinal emittance forming line (EFL) of the race-track microtron of INP MSU is described. The work presents the principles of operation, parameters of EFL elements, description of rf power supply system and automated control system. The method of EFL tuning and experimental results are discussed.

  2. Precision Measurements with High Energy Neutrino Beams

    CERN Document Server

    Conrad, J M; Bolton, T; Conrad, Janet M.; Shaevitz, Michael H.; Bolton, Tim

    1998-01-01

    Neutrino scattering measurements offer a unique tool to probe the electroweak and strong interactions as described by the Standard Model (SM). Electroweak measurements are accessible through the comparison of neutrino neutral- and charged-current scattering. These measurements are complimentary to other electroweak measurements due to differences in the radiative corrections both within and outside the SM. Neutrino scattering measurements also provide a precise method for measuring the F_2(x,Q^2) and xF_3(x,Q^2 structure functions. The predicted Q^2 evolution can be used to test perturbative Quantum Chromodynamics as well as to measure the strong coupling constant, alpha _s, and the valence, sea, and gluon parton distributions. In addition, neutrino charm production, which can be determined from the observed dimuon events, allows the strange-quark sea to be investigated along with measurements of the CKM matrix element |V_{cd}| and the charm quark mass.

  3. Electron beam experiments at Maryland University

    International Nuclear Information System (INIS)

    An experimental study of the stability of intense electron beams is described. The purpose is to determine the emittance growth associated with aberrations arising from the non-uniform transverse density distribution in the beam, and to compare measurements with the results of computer simulations

  4. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  5. Measurements of beam halo diffusion and population density in the Tevatron and in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab

    2015-03-01

    Halo dynamics influences global accelerator performance: beam lifetimes, emittance growth, dynamic aperture, and collimation efficiency. Halo monitoring and control are also critical for the operation of high-power machines. For instance, in the high-luminosity upgrade of the LHC, the energy stored in the beam tails may reach several megajoules. Fast losses can result in superconducting magnet quenches, magnet damage, or even collimator deformation. The need arises to measure the beam halo and to remove it at controllable rates. In the Tevatron and in the LHC, halo population densities and diffusivities were measured with collimator scans by observing the time evolution of losses following small inward or outward collimator steps, under different experimental conditions: with single beams and in collision, and, in the case of the Tevatron, with a hollow electron lens acting on a subset of bunches. After the LHC resumes operations, it is planned to compare measured diffusivities with the known strength of transverse damper excitations. New proposals for nondestructive halo population density measurements are also briefly discussed.

  6. Low emittance upgrade for CANDLE project

    CERN Document Server

    Zanyan, G S

    2015-01-01

    To improve the performance of CANDLE synchrotron light source and stay competitive with recently proposed low emittance upgrade programs in the world we have developed new low emittance lattices for CANDLE booster and storage ring. These lattices have been designed taking into account the new developments in magnet fabrication technology and the multi-bend achromat concept. The main design considerations, the linear and non-linear beam dynamics aspects of the modified lattices are presented.

  7. Beam Normal Single Spin Asymmetry Measurements from QWeak

    CERN Document Server

    Waidyawansa, Buddhini P

    2016-01-01

    The Q weak experiment has made several interesting beam normal single spin asymmetry measurements. Preliminary result from a 3.2% measurement of the beam normal single spin asymmetry in elastic e+p scattering at E = 1.155 GeV and {\\theta} lab = 7.8(deg) is presented. We have also made measurements of this asymmetry in elastic and inelastic scattering in the Delta resonance region from Hydrogen, Aluminum and Carbon targets and e+e scattering from Hydrogen target. Some initial results from these measurements are also presented.

  8. Simulation and Measurements of Beam Losses on LHC Collimators During Beam Abort Failures

    CERN Document Server

    Lari, L; Bruce, R; Goddard, B; Redaelli, S; Salvachua, B; Valentino, G; Faus-Golfe, A

    2013-01-01

    One of the main purposes of tracking simulations for collimation studies is to produce loss maps along the LHC ring, in order to identify the level of local beam losses during nominal and abnormal operation scenarios. The SixTrack program is the standard tracking tool used at CERN to perform these studies. Recently, it was expanded in order to evaluate the proton load on different collimators in case of fast beam failures. Simulations are compared with beam measurements at 4 TeV. Combined failures are assumed which provide worst-case scenarios of the load on tungsten tertiary collimators.

  9. Beam-quality measurements on heavy ion therapeutic beam of HIMAC

    International Nuclear Information System (INIS)

    Fluence spectra of fragment particles caused by spallation reactions between heavy ion beams and PMMA (polymethyl methacrylate; Lucite) target were measured with ΔE-E counter telescope method for each fragmented element. Measurements were carried out for carbon beams of 290 MeV/nucleon and 400 MeV/nucleon at Heavy Ion Medical Accelerator in Chiba (HIMAC), and 135 MeV/nucleon carbon beam at RIKEN Ring Cyclotron with changing the thickness of target material. Incident beam was broadened with a pair of wobbler magnets and a scatterer, in the same way of clinical trials which have been carrying out at HIMAC. Results were compared with the calculational expectations. (author)

  10. Aberration Corrected Emittance Exchange

    CERN Document Server

    Nanni, Emilio A

    2015-01-01

    Full exploitation of emittance exchange (EEX) requires aberration-free performance of a complex imaging system including active radio-frequency (RF) elements which can add temporal distortions. We investigate the performance of an EEX line where the exchange occurs between two dimensions with normalized emittances which differ by orders of magnitude. The transverse emittance is exchanged into the longitudinal dimension using a double dog-leg emittance exchange setup with a 5 cell RF deflector cavity. Aberration correction is performed on the four most dominant aberrations. These include temporal aberrations that are corrected with higher order magnetic optical elements located where longitudinal and transverse emittance are coupled. We demonstrate aberration-free performance of emittances differing by 4 orders of magnitude, i.e. an initial transverse emittance of $\\epsilon_x=1$ pm-rad is exchanged with a longitudinal emittance of $\\epsilon_z=10$ nm-rad.

  11. Measurement and simulation of the TRR BNCT beam parameters

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad

    2016-09-01

    Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.

  12. Upgrade of Beam Energy Measurement System at BEPC-II

    CERN Document Server

    Zhang, Jian-Yong; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M N; Krasnov, A A; Muchnoi, N Yu; Pyata, E E; Mamoshkina, E V; Harris, F A

    2015-01-01

    The beam energy measurement system is of great importance and profit for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. Many advanced techniques and precise instruments are employed to realize the highly accurate measurement of positron/electron beam energy. During five year's running period, in order to meet the requirement of data taking and improve the capacity of measurement itself, the upgradation of system is continued, which involve the component reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the purchase of electric cooling system for high purity germanium detector, and the improvement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and efficient measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

  13. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    International Nuclear Information System (INIS)

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 1350 from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D1+(E):D2+(E):D3+(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed

  14. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  15. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  16. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  17. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  18. First Beam Measurements with the LHC Synchrotron Light Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Thibaut; /CERN; Bravin, Enrico; /CERN; Burtin, Gerard; /CERN; Guerrero, Ana; /CERN; Jeff, Adam; /CERN; Rabiller, Aurelie; /CERN; Roncarolo, Federico; /CERN; Fisher, Alan; /SLAC

    2012-07-13

    The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

  19. Measuring beam intensity and lifetime in BESSY II

    CERN Document Server

    Bakker, R; Kuske, P; Kuszynski, J

    2000-01-01

    The measurement of the intensity of the beam in the transfer lines and the storage ring are based on current transformers. The pulsed current in the transfer lines is measured with passive Integrating Beam Current Transformers (ICT). The bunch charge is transferred to a DC-voltage and sampled with a multifunction I/O-board of a PC. The beam current of the storage ring is measured with a high precision Parametric Current Transformer (PCT) and sampled by a high quality digital volt meter (DVM). A stand alone PC is used for synchronisation, real-time data acquisition and signal processing. Current and lifetime data are updated every second and send via CAN- bus to the BESSY II control system. All PC programs are written in LabVIEW.

  20. Three-dimensional measurement of a tightly focused laser beam

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xie

    2013-02-01

    Full Text Available The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.

  1. Measuring the phase of the scattering amplitude with vortex beams

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the scattering amplitude changes with the scattering angle. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, for meson production in the resonance region and for the physics of nucleon resonances. Although the required parameters of the vortex beams have not yet been achieved experimentally, they deserves further dedicated experimental research due to the high expected physics pay-off.

  2. Micro computer aided beam transport for the SF cyclotron

    International Nuclear Information System (INIS)

    An improvement of the beam transport system for the SF cyclotron is described. The system was designed to handle on-line alignment of the beam extracted from the SF cyclotron onto the optical axis of the transport line. It also enables to measure the beam emittance. The measurement of the emittance parameters is in particular necessary to calculate the beam optics. The calculation has been modified to become easy to handle. With the help of the computer-aided on-line beam profile measurement system, the operation of the beam transport system is very subservient to shorten the beam-tuning time and to improve the beam-transmission efficiency and the quality. (author)

  3. High-precision absolute measurement of CEBAF beam mean energy

    International Nuclear Information System (INIS)

    The absolute measurement of the beam mean energy with an accuracy of one part in 104 or higher is an important demand of the CEBAF Hall A physics program. This accuracy may reduce the uncertainty in the d(e, e'p)p cross section δσ/σ to 1%. The need for such an accurately calibrated beam is not particular to CEBAF; at other electron facilities uncertainty in the incident energy has proven to be among the dominant sources of systematic error. The following methods for solving the problem were considered at both CEBAF and the Yerevan Physics Institute during 1990--1991: Backscattering of a plane electromagnetic wave by the relativistic electron beam. Calculations show that the intensity of the backscattered radiation in a bandwidth of 10-4 near the maximum frequency is about 1 photon per second at 4 GeV and 0.3 mA. Magnetic spectrometers performing as three- and four-magnet chicanes with appropriate detector systems. Such a system was used at SLAC for absolute measurement of the SLC beams energy, where a maximum accuracy of 5 x 10-4 was achieved. Calculations show that a similar accuracy can be achieved for the CEBAF beam in both proposed systems. Measurement of the vertical distribution of synchrotron radiation. Calculations indicate that precision of about 2.5 x 10-5 is achievable for CEBAF

  4. TPV Systems with Solar Powered Tungsten Emitters

    International Nuclear Information System (INIS)

    A solar TPV generator development and characterization are presented. A double stage sunlight concentrator ensures 4600x concentration ratio. TPV modules based on tungsten emitters and GaSb cells were designed, fabricated and tested at indoor and outdoor conditions. The performance of tungsten emitter under concentrated solar radiation was analyzed. Emitter temperatures in the range of 1400-2000 K were measured, depending on the emitter size. The light distribution in the module has been characterized, 1x1 cm GaSb TPV cells were fabricated with the use of the Zn-diffusion and LPE technologies. The cell efficiency of 19% under illumination by a tungsten emitter (27% under spectra cut-off at λ > 1820 nm) heated up to 1900-2000 K had been derived from experimentally measured PV parameters. The series connection of PV cells was ensured by the use of BeO ceramics. The possibilities of system performance improvement are discussed

  5. A new luminescence beam profile monitor for intense proton and heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  6. Experimental study of coherent synchrotron radiation in the emittance exchange line at the A0-photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, Jayakar C.T.; Thurman-Keup, R.; Johnson, A.; Lumpkin, A.H.; Edwards, H.; Ruan, J.; Santucci, J.; Sun, Y.E.-; Church, M.; /Fermilab; Piot, P.; /Fermilab /Northern Illinois U.

    2010-08-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchanger to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at A0 photoinjector.

  7. Experimental study of coherent synchrotron radiation in the emittance exchange line at the A0-photoinjector

    CERN Document Server

    Thangaraj, Jayakar C T; Johnson, A; Lumpkin, A H; Edwards, H; Ruan, J; Santucci, J; Sun, Y E -; Church, M; Piot, P

    2012-01-01

    Next generation accelerators will require a high current, low emittance beam with a low energy spread. Such accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. One of the goals of the Fermilab A0 photoinjector is to investigate the transverse to longitudinal emittance exchange principle. Coherent synchrotron radiation could limit high current operation of the emittance exchanger. In this paper, we report on the preliminary experimental and simulation study of the coherent synchroton radiation (CSR) in the emittance exchange line at the A0 photoinjector.

  8. Short Electron Beam Bunch Characterization Through Measurement of Terahertz Radiation

    CERN Document Server

    Zhang, Shukui; Douglas, David; Shinn, Michelle D; Williams, Gwyn

    2004-01-01

    Characterization of the electron beam bunch length of the upgrade FEL at Jefferson Lab was performed by analyzing the FTIR spectra of the coherent terahertz pulses. The results are compared with autocorrelation from a scanning polarization autocorrelator that measures the optical transition radiation. The limitations of the different methods to such a characterization are presented in this paper.

  9. Beam asymmetry $\\Sigma$ measurements on the $\\pi^-$ photoproduction off neutrons

    CERN Document Server

    Mandaglio, G; Manganaro, M; Bellini, V; Bocquet, J P; Casano, L; D'Angelo, A; Di Salvo, R; Fantini, A; Franco, D; Gervino, G; Ghio, F; Giardina, G; Girolami, B; Giusa, A; Ignatov, A; Lapik, A; Sandri, P Levi; Lleres, A; Moricciani, D; Mushkarenkov, A N; Nedorezov, V; Randieri, C; Rebreyend, D; Rudnev, N V; Russo, G; Schaerf, C; Sperduto, M L; Sutera, M C; Turinge, A; Vegna, V; Briscoe, W J; Strakovsky, I I

    2010-01-01

    The $\\Sigma$ beam asymmetry in the photoproduction of negative pions from quasi-free neutrons in a deuterium target was measured at Graal in the energy interval 700 - 1500 MeV and a wide angular range, using polarized and tagged photons. The results are compared with recent partial wave analyses.

  10. Electron density measurements during ion beam transport on Gamble II

    International Nuclear Information System (INIS)

    High-sensitivity laser interferometry was used to measure the electron density created when an intense proton beam (100 kA, 1 MeV, 50 ns) from the Gamble II generator was transported through low-pressure gas as part of a project investigating Self-Pinched Transport (SPT) of intense ion beams. This measurement is non-perturbing and sufficiently quantitative to allow benchmarking of codes (particularly IPROP) used to model beam-gas interaction and ion-beam transport. Very high phase sensitivity is required for this measurement. For example, a 100-kA, 1-MeV, 10-cm-radius proton beam with uniform current density has a line-integrated proton density equal to nbL = 3 x 1013 cm-2. An equal electron line-density, neL = nbL, (expected for transport in vacuum) will be detected as a phase shift of the 1.064 microm laser beam of only 0.05degree, or an optical path change of 1.4 x 10-4 waves (about the size of a hydrogen atom). The time-history of the line-integrated electron density, measured across a diameter of the transport chamber at 43 cm from the input aperture, starts with the proton arrival time and decays differently depending on the gas pressure. The gas conditions included vacuum (10-4 Torr air), 30 to 220 mTorr He, and 1 Torr air. The measured densities vary by three orders of magnitude, from 1013 to 1016 cm-2 for the range of gas pressures investigated. In vacuum, the measured electron densities indicate only co-moving electrons (neL approximately nbL). In He, when the gas pressure is sufficient for ionization by beam particles and SPT is observed, neL increases to about 10 nbL. At even higher pressures where electrons contribute to ionization, even higher electron densities are observed with an ionization fraction of about 2%. The diagnostic technique as used on the SPT experiment will be described and a summary of the results will be given. The measurements are in reasonable agreement with theoretical predictions from the IPROP code

  11. Experimental results of the laserwire emittance scanner for LINAC4 at CERN

    Science.gov (United States)

    Hofmann, Thomas; Boorman, Gary E.; Bosco, Alessio; Bravin, Enrico; Gibson, Stephen M.; Kruchinin, Konstantin O.; Raich, Uli; Roncarolo, Federico; Zocca, Francesca

    2016-09-01

    Within the framework of the LHC Injector Upgrade (LIU), the new LINAC4 is currently being commissioned to replace the existing LINAC2 proton source at CERN. After the expected completion at the end of 2016, the LINAC4 will accelerate H- ions to 160 MeV. To measure the transverse emittance of the H- beam, a method based on photo-detachment is proposed. This system will operate using a pulsed laser with light delivered via an optical fibre and subsequently focused onto the H- beam. The laser photons have sufficient energy to detach the outer electron and create H0/e- pairs. In a downstream dipole, the created H0 particles are separated from the unstripped H- ions and their distribution is measured with a dedicated detector. By scanning the focused laser beam across the H- beam, the transverse emittance of the H- beam can be reconstructed. This paper will first discuss the concept, design and simulations of the laser emittance scanner and then present results from a prototype system used during the 12 MeV commissioning of the LINAC4.

  12. A Measure of Flow Vorticity with Helical Beams of Light

    CERN Document Server

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  13. The software for the CERN LEP beam orbit measurement system

    International Nuclear Information System (INIS)

    The Beam Orbit Measurement (BOM) system of LEP consists of 504 pickups, distributed all around the accelerator, that are capable of measuring the positions of the two beams. Their activity has to be synchronized, and the data produced by them have to be collected together, for example to form a 'closed orbit measurement' or a 'trajectory measurement'. On the user side, several clients can access simultaneously the results from this instrument. An automatic acquisition mode, and an 'on request' one, can run in parallel. This results in a very flexible and powerful system. The functionality of the BOM system is fully described, as well as the structure of the software processes which constitute the system, and their interconnections. Problems solved during the implementation are emphasized. (author)

  14. Imaging and Measuring Electron Beam Dose Distributions Using Holographic Interferometry

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images and measur......Holographic interferometry was used to image and measure ionizing radiation depth-dose and isodose distributions in transparent liquids. Both broad and narrowly collimated electron beams from accelerators (2–10 MeV) provided short irradiation times of 30 ns to 0.6 s. Holographic images...... and measurements of absorbed dose distributions were achieved in liquids of various densities and thermal properties and in water layers thinner than the electron range and with backings of materials of various densities and atomic numbers. The lowest detectable dose in some liquids was of the order of a few k...

  15. Setup for the Nuclotron beam time structure measurements

    CERN Document Server

    Isupov, A Yu; Reznikov, S G

    2015-01-01

    The setups for precision measurements of the time structure of Nuclotron internal and slowly extracted beams are described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufactured at JINR. The data acquisition system software is implemented using the ngdp framework under the Unix-like operating system (OS) FreeBSD to allow the easy network distribution of the online data. It is demonstrated that the described setups are suitable for the continuous Nuclotron beam quality monitoring.

  16. Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams

    Science.gov (United States)

    Parodi, K.; Crespo, P.; Eickhoff, H.; Haberer, T.; Pawelke, J.; Schardt, D.; Enghardt, W.

    2005-06-01

    At the experimental carbon ion tumour therapy facility at GSI Darmstadt, in-beam positron emission tomography (PET) is used to monitor the dose delivery precision. A dual head positron camera has been assembled from commercial detector components in order to measure the β+-activity, induced by the irradiation, simultaneously to the dose application. Despite the positive clinical impact, the image quality is limited by the low counting statistics, orders of magnitude below that in standard PET applications to nuclear medicine. This paper investigates the origin for the noisy acquisition during particle extraction from the synchrotron of GSI. The results demonstrate the failure of standard random correction techniques due to a γ-ray background correlated in time with the carbon ion beam microstructure. This prevents the use of data acquired during beam extraction for imaging. The loss of counting statistics is expected to rise further at the future hospital-based facility at Heidelberg, due to a more efficient utilisation of the accelerator resulting in shorter beam pauses and a reduced treatment time. In this respect, this paper provides the basis for a new data acquisition concept tailored to the unconventional application of in-beam PET imaging to therapy monitoring at radiofrequency pulsed radiation sources.

  17. Observations and diagnostics in high brightness beams

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bisesto, F.; Castellano, M.; Chiadroni, E.; Pompili, R.; Shpakov, V.

    2016-09-01

    The brightness is a figure of merit largely used in the light sources, like FEL (Free Electron Lasers), but it is also fundamental in several other applications, as for instance Compton backscattering sources, beam driven plasma accelerators and THz sources. Advanced diagnostics are essential tools in the development of high brightness beams. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement.

  18. Vibration compensating beam scanning interferometer for surface measurement

    OpenAIRE

    Jiang, Xiang; Martin, Haydn; Wang, Kaiwei

    2007-01-01

    Light beam scanning using a dispersive element and wavelength tuning is coupled with fibre-optic interferometry to realize a new surface measurement instrument. The instrument is capable of measuring nano-scale surface structures and form deviation. It features active vibration compensation and a small optical probe size that may be placed remotely from the main apparatus. Active vibration compensation is provided by the multiplexing of two interferometers with near common paths. Closed loop ...

  19. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  20. Toroidal AC transformer for beam intensity measurements in CSR

    International Nuclear Information System (INIS)

    The intensity of a pulsed beam of charged particles in the Cooling Storage Ring Project of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) will be measured with a toroidal current transformer. By comparing and analyzing the properties of kinds of magnetic cores, a strip wound toroidal core is adopted, which is made of a high-permeability alloy and can measure a pulsed beam with frequency range of 0.2 to 2 MHz. The permeability of Fe-based nanocrystalline alloy varying with frequency is measured and the noises in the circuit are analyzed. By adding a low-noise operational amplifier into the circuit, the current down to 1 μA can be detected

  1. High intensity ion beam injection into the 88-inch cyclotron

    OpenAIRE

    Wutte, Daniela; Clark, Dave J.; Laune, Bernard; Leitner, Matthaeus A.; Lyneis, Claude M.

    2000-01-01

    Low cross section experiments to produce super-heavy elements have increased the demand for high intensity heavy ion beams at energies of about 5 MeV/nucleon at the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. Therefore, efforts are underway to increase the overall ion beam transmission through the axial injection line and the cyclotron. The ion beam emittance has been measured for various ion masses and charge states. Beam transport simulations including space charge ...

  2. Study on the Beam Quality of Uncoupled Laser Diode Arrays

    Institute of Scientific and Technical Information of China (English)

    GAO Chunqing; WEI Guanghui

    2001-01-01

    The beam quality of uncoupled laser diode array is studied theoretically and experimentally. By calculating the second order moments of the beam emitted from the laser diode array, the dependence of the M2-factor of the laser diode array on the M2-factor of the single emitter, the ratio of the emitting region to the non-emitting space, and the number of emitters, has been deduced. From the measurement of the beam propagation the M2-factor of a laser diode bar is experimentally determined. The measured M2-factor of the laser diode bar agrees with the theoretical prediction.

  3. Turbulence measurement with a two-beam nacelle lidar

    DEFF Research Database (Denmark)

    Wagner, Rozenn; Sathe, Ameya; Mioullet, A.;

    The analysis of the turbulence intensity measurement is performed for a lidar measuring horizontally with two beams. First the turbulence intensity measured by such a system was evaluated theoretically. The Mann model of turbulence was used to evaluate the true value of the turbulence intensity...... of the wind speed and the main effects of the lidar measurement principles on turbulence intensity measurement were modeled: - A lidar senses the wind speed over the probe volume acting as a low pass-filter and thus cannot resolve high frequency turbulence; - The horizontal wind speed is retrieved from...... the combination of the radial speeds measured along two line-of-sights with different orientations; this results in the contamination of the lidar turbulence intensity measurement from the transverse component of the wind field. Secondly, the theoretical results were compared to experimental measurements. A two...

  4. Beam Measurement Systems for the CERN Antiproton Decelerator (AD)

    CERN Document Server

    Angoletta, Maria Elena; Ludwig, M; Marqversen, O; Odier, P; Pedersen, F; Raich, U; Søby, L; Tranquille, G; Spickermann, T

    2001-01-01

    The new, low-energy antiproton physics facility at CERN has been successfully commissioned and has been delivering decelerated antiprotons at 100 MeV/c since July 2000. The AD consists of one ring where the 3.5 GeV/c antiprotons produced from a production target are injected, rf manipulated, stochastically cooled, decelerated (with further stages involving additional stochastic and electron cooling and rf manipulation) and extracted at 100 MeV/c. While proton test beams of sufficient intensity could be used for certain procedures in AD commissioning, this was not possible for setting-up and routine operation. Hence, special diagnostics systems had to be developed to obtain the beam and accelerator characteristics using the weak antiproton beams of a few 10E7 particles at all momenta from 3.5 GeV/c down to 100 MeV/c. These include systems for position measurement, intensity, beam size measurements using transverse aperture limiters and scintillators and Schottky-based tools. This paper gives an overall view of...

  5. Measurements and modeling of coherent synchrotron radiation and its impact on the Linac Coherent Light Source electron beam

    Science.gov (United States)

    Bane, K. L. F.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Nuhn, H.-D.; Ratner, D.; Stupakov, G.; Turner, J.; Welch, J.; Wu, J.

    2009-03-01

    In order to reach the high peak current required for an x-ray free electron laser, two separate magnetic dipole chicanes are used in the Linac Coherent Light Source accelerator to compress the electron bunch length in stages. In these bunch compressors, coherent synchrotron radiation (CSR) can be emitted either by a short electron bunch or by any longitudinal density modulation that may be on the bunch. In this paper, we report detailed measurements of the CSR-induced energy loss and transverse emittance growth in these compressors. Good agreement is found between the experimental results and multiparticle tracking studies. We also describe direct observations of CSR at optical wavelengths and compare with analytical models based on beam microbunching.

  6. CSR-induced emittance growth in achromats: Linear formalism revisited

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.

    2015-09-11

    We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.

  7. Recent developments of low-emittance electron gun for accelerator

    International Nuclear Information System (INIS)

    Recent developments of low-emittance electron guns for accelerator are reviewed. In the accelerator field, DC biased triode thermionic gun (Pierce type gun) has been widely used and is still conventional. On the other hand, because of strong demands on the high brightness electron beam by FEL and other advanced accelerator concepts based on linear accelerator, the low emittance beam generation becomes one of the most important issue in the accelerator science. The R and D effort is 'accelerated' by two technological innovations, photo-cathode and RF gun. They made a large improvement on the beam emittance. After the explanations on the technical and physical aspects of the low emittance electron beam generation, advanced electron sources for accelerators are reviewed. (author)

  8. CSR-induced emittance growth in achromats: Linear formalism revisited

    Science.gov (United States)

    Venturini, M.

    2015-09-01

    We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.

  9. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  10. Optical beam diagnostics at the Electron Stretcher Accelerator ELSA; Optische Strahldiagnose an der Elektronen-Stretcher-Anlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Zander, Sven

    2013-10-15

    At the ELectron Stretcher Accelerator ELSA, a resonant excitation of the horizontal particle oscillations is used to extract the electrons to the experiments. This so-called resonance extraction influences the properties of the extracted beam. The emittance, as a number of the beam quality, was determined by using synchrotron light monitors. To enable broad investigations of the emittance a system of synchrotron light monitors was set up. This system was used to measure the influence of the extraction method on the emittance. Time resolved measurements were conducted to investigate the development of the emittance during an accelerator cycle. To improve the optical beam diagnostics a new beamline to an external laboratory was constructed. There, a new high resolution synchrotron light monitor was commissioned. In addition, a streak camera has been installed to enable longitudinal diagnostics of the beam profiles. First measurements of the longitudinal charge distribution with a time resolution in the range of a few picoseconds were conducted successfully.

  11. Measurements of temperature profiles in gases by laser beam deflection

    OpenAIRE

    Lin Zhang; Petit, Jean-Pierre; Taine, J.

    1989-01-01

    The determination of temperature profiles in gases is based on the light beam deflection due to the refractive index gradient induced by a temperature gradient at constant pressure. The geometry considered for the system is a cylinder of arbitrary section characterized by isothermal generative lines. A parameter estimation method and a parabolical trajectory method are considered to treat experimental data. The measurement technique is then applied to laminar natural convection flow along a v...

  12. Setup for the Nuclotron beam time structure measurements

    OpenAIRE

    Isupov, A. Yu.; Ladygin, V. P.; Reznikov, S. G.

    2015-01-01

    The setups for precise measurements of the time structure of Nuclotron internal and slowly extracted beams are described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufactured at JINR. The data acquisition system software is implemented using the ngdp framework under the Unix-like operating system (OS) FreeBSD to allow the easy network distribution of the online data. It is demonstrated that the described setups a...

  13. Ballasted and electrically steerable carbon nanotube field emitters

    Science.gov (United States)

    Cole, M. T.; Li, C.; Qu, K.; Zhang, Y.; Wang, B.; Pribat, D.; Milne, W. I.

    2012-09-01

    Here we present our on-going efforts toward the development of stable ballasted carbon nanotube-based field emitters employing hydrothermally synthesized zinc oxide nanowires and thin film silicon-on-insulator substrates. The semiconducting channel in each controllably limits the emission current thereby preventing detrimental burn-out of individual emitters that occurs due to unavoidable statistical variability in emitter characteristics, particularly in their length. Fabrication details and emitter characterization are discussed in addition to their field emission performance. The development of a beam steerable triode electron emitter formed from hexagonal carbon nanotube arrays with central focusing nanotube electrodes, is also described. Numerical ab-initio simulations are presented to account for the empirical emission characteristics. Our engineered ballasted emitters have shown some of the lowest reported lifetime variations (sources.

  14. An Observation of a Transverse to Longitudinal Emittance Exchange at the Fermilab A0 Photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Koeth, Timothy W [State Univ. of New Jersey, New Brunswick, NJ (United States)

    2009-05-01

    An experimental program to perform a proof of principle of transverse to longitudinal emittance exchange (ϵxin ↔ ϵzout and ϵxin ↔ ϵzout) has been developed at the Fermilab A0 Photoinjector. A new beamline, including two magnetic dogleg channels and a TM110 deflecting mode radio frequency cavity, were constructed for the emittance exchange experiment. The first priority was a measurement of the Emittance Exchange beamline transport matrix. The method of difference orbits was used to measure the transport matrix. Through varying individual beam input vector elements, such as xin, x'in, yin, y'in, zin, or δin, and measuring the changes in all of the beam output vector's elements, xout, x'out, yout, y'out, zout, δout, the full 6 x 6 transport matrix was measured. The measured emittance exchange transport matrix was in overall good agreement with our calculated transport matrix. A direct observation of an emittance exchange was performed by measuring the electron beam's characteristics before and after the emittance exchange beamline. Operating with a 14.3 MeV, 250pC electron bunch, ϵzin of 21.1 ± 1.5 mm • mrad was observed to be exchanged with ϵxout of 20.8 ± 2.00 mm • mrad. Diagnostic limitations in the ϵzout measurement did not account for an energy-time correlation, thus potentially returning values larger than the actual longitudinal emittance. The ϵxin of 4.67 ± 0.22 mm • mrad was observed to be exchanged with ϵzout of 7.06 ± 0.43 mm • mrad. The apparent ϵzoutgrowth is consistent with calculated values in which the correlation term is neglected.

  15. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  16. Characterisation of the Muon Beams for the Muon Ionisation Cooling Experiment

    CERN Document Server

    Adams, D; Alekou, A; Apollonio, M; Asfandiyarov, R; Back, J; Barber, G; Barclay, P; de Bari, A; Bayes, R; Baynham, D E; Bertoni, R; Blackmore, V J; Blondel, A; Blot, S; Bogomilov, M; Bonesini, M; Booth, C N; Bowring, D; Boyd, S; Bradshaw, T W; Bravar, U; Bross, A D; Capponi, M; Carlisle, T; Cecchet, G; Charnley, G; Cobb, J H; Colling, D; Collomb, N; Coney, L; Cooke, P; Courthold, M; Cremaldi, L M; DeMello, A; Dick, A; Dobbs, A; Dornan, P; Fayer, S; Filthaut, F; Fish, A; Fitzpatrick, T; Fletcher, R; Forrest, D; Francis, V; Freemire, B; Fry, L; Gallagher, A; Gamet, R; Gourlay, S; Grant, A; Graulich, J S; Griffiths, S; Hanlet, P; Hansen, O M; Hanson, G G; Harrison, P; Hart, T L; Hartnett, T; Hayler, T; Heidt, C; Hills, M; Hodgson, P; Hunt, C; Iaciofano, A; Ishimoto, S; Kafka, G; Kaplan, D M; Karadzhov, Y; Kim, Y K; Kolev, D; Kuno, Y; Kyberd, P; Lau, W; Leaver, J; Leonova, M; Li, D; Lintern, A; Littlefield, M; Long, K; Lucchini, G; Luo, T; Macwaters, C; Martlew, B; Martyniak, J; Middleton, S; Moretti, A; Moss, A; Muir, A; Mullacrane, I; Nebrensky, J J; Neuffer, D; Nichols, A; Nicholson, R; Nugent, J C; Onel, Y; Orestano, D; Overton, E; Owens, P; Palladino, V; Palmer, R B; Pasternak, J; Pastore, F; Pidcott, C; Popovic, M; Preece, R; Prestemon, S; Rajaram, D; Ramberger, S; Rayner, M A; Ricciardi, S; Richards, A; Roberts, T J; Robinson, M; Rogers, C; Ronald, K; Rubinov, P; Rucinski, R; Rusinov, I; Sakamoto, H; Sanders, D A; Santos, E; Savidge, T; Smith, P J; Snopok, P; Soler, F J P; Summers, D J; Takahashi, M; Tarrant, J; Taylor, I; Tortora, L; Torun, Y; Tsenov, R; Tunnell, C D; Vankova, G; Verguilov, V; Virostek, S; Vretenar, M; Walaron, K; Watson, S; White, C; Whyte, C G; Wilson, A; Wisting, H; Zisman, M

    2013-01-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  17. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.; Barclay, P.; Bayliss, V.; Bradshaw, T.W.; Courthold, M.; Francis, V.; Fry, L.; Hayler, T.; Hills, M.; Lintern, A.; Macwaters, C.; Nichols, A.; Preece, R.; Ricciardi, S.; Rogers, C.; Stanley, T.; Tarrant, J.; Watson, S.; Wilson, A. [Harwell Oxford, STFC Rutherford Appleton Laboratory, Didcot (United Kingdom); Adey, D.; Back, J.; Boyd, S.; Harrison, P.; Pidcott, C.; Taylor, I. [University of Warwick, Department of Physics, Coventry (United Kingdom); Alekou, A.; Apollonio, M.; Barber, G.; Colling, D.; Dobbs, A.; Dornan, P.; Fayer, S.; Fish, A.; Hunt, C.; Leaver, J.; Long, K.; Martyniak, J.; Middleton, S.; Pasternak, J.; Richards, A.; Santos, E.; Savidge, T.; Takahashi, M. [Imperial College London, Department of Physics, Blackett Laboratory, London (United Kingdom); Asfandiyarov, R.; Blondel, A.; Graulich, J.S.; Karadzhov, Y.; Verguilov, V.; Wisting, H. [Universite de Geneve, DPNC, Section de Physique, Geneva (Switzerland); De Bari, A.; Cecchet, G. [Sezione INFN Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Pavia (Italy); Bayes, R.; Forrest, D.; Nugent, J.C.; Soler, F.J.P.; Walaron, K. [The University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bertoni, R.; Bonesini, M.; Lucchini, G. [Sezione INFN Milano Bicocca (Italy); Dipartimento di Fisica G. Occhialini, Milano (Italy); Blackmore, V.J.; Carlisle, T.; Cobb, J.H.; Lau, W.; Rayner, M.A.; Tunnell, C.D. [University of Oxford, Department of Physics, Oxford (United Kingdom); Blot, S.; Kim, Y.K. [University of Chicago, Enrico Fermi Institute, Chicago, IL (United States); Bogomilov, M.; Kolev, D.; Rusinov, I.; Tsenov, R.; Vankova, G. [St. Kliment Ohridski University of Sofia, Department of Atomic Physics, Sofia (Bulgaria); Booth, C.N.; Hodgson, P.; Nicholson, R.; Overton, E.; Robinson, M.; Smith, P.J. [University of Sheffield, Department of Physics and Astronomy, Sheffield (United Kingdom); Bowring, D.; DeMello, A.; Gourlay, S.; Li, D.; Prestemon, S.; Virostek, S.P.; Zisman, M.S. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Bravar, U. [University of New Hampshire, Durham, NH (United States); Bross, A.D.; Fitzpatrick, T.; Leonova, M.; Moretti, A.; Neuffer, D.; Popovic, M.; Rubinov, P.; Rucinski, R. [Fermilab, Batavia, IL (United States); Capponi, M.; Iaciofano, A.; Orestano, D.; Pastore, F.; Tortora, L. [Sezione INFN Roma Tre e Dipartimento di Fisica, Roma (Italy); Charnley, G.; Collomb, N.; Gallagher, A.; Grant, A.; Griffiths, S.; Hartnett, T.; Martlew, B.; Moss, A.; Muir, A.; Mullacrane, I.; Owens, P.; White, C. [STFC Daresbury Laboratory, Cheshire (United Kingdom); Coney, L.; Fletcher, R.; Hanson, G.G.; Heidt, C. [University of California, Riverside, CA (United States); Cooke, P.; Gamet, R. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Cremaldi, L.M.; Hart, T.L.; Luo, T.; Sanders, D.A.; Summers, D.J. [University of Mississippi, Oxford, MS (United States); Dick, A.J.; Ronald, K.; Whyte, C.G. [University of Strathclyde, Department of Physics, Glasgow (United Kingdom); Filthaut, F. [NIKHEF, Amsterdam (Netherlands); Freemire, B.; Hanlet, P.; Kafka, G.; Kaplan, D.M.; Rajaram, D.; Snopok, P.; Torun, Y. [Illinois Institute of Technology, Chicago, IL (United States); Hansen, O.M.; Ramberger, S.; Vretenar, M. [CERN, Geneva (Switzerland); Ishimoto, S. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Kuno, Y.; Sakamoto, H. [Osaka University, Graduate School of Science, Department of Physics, Toyonaka, Osaka (Japan); Kyberd, P.; Littlefield, M.; Nebrensky, J.J. [Brunel University, Uxbridge (United Kingdom); Onel, Y. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States); Palladino, V. [Universita Federico II, Sezione INFN Napoli (Italy); Dipartimento di Fisica, Napoli (Italy); Palmer, R.B. [Brookhaven National Laboratory, Upton, NY (US); Roberts, T.J. [Muons, Inc., Batavia, IL (US); Collaboration: The MICE Collaboration

    2013-10-15

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.2-2.3 {pi} mm-rad horizontally and 0.6-1.0 {pi} mm-rad vertically, a horizontal dispersion of 90-190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE. (orig.)

  18. Emittance compensation of CW DC-gun photoinjector

    International Nuclear Information System (INIS)

    Emittance growth induced by space charge effect is very important, especially for CW DC-gun photoinjector. In this work, the linear space charge force and its effect on electron beam transverse emittance are studied, and the principle and properties of emittance compensation by solenoid are analyzed. The CAEP DC-gun photoinjector with a solenoid is also simulated by code Parmela. Simulated results indicate that the normalized transverse emittance of an 80 pC bunch at the 350 keV DC-gun ex-it is 5.14 mm · mrad. And after compensated by a solenoid, it becomes 1.27 mm · mrad. The emittance of beam is well compensated. (authors)

  19. Transverse Beam Matching Application for SNS

    CERN Document Server

    Chu, Chungming; Jeon Dong Oh; Plum, Michael

    2005-01-01

    An automated transverse beam matching application has been developed for the Spallation Neutron Source (SNS) beam transport lines. The application is written within the XAL Java framework and the matching algorithm is based on the simplex optimization method. Other functionalities, such as emittance calculated from profile monitor measurements (adopted from a LANL Fortran code), profile monitor display, and XAL on-line model calculation, are also provided by the application. Test results obtained during the SNS warm linac commissioning will be reported. A comparison between the emittances obtained from this application and an independent Trace-3D routine will also be shown.

  20. A hydrogen ion beam method of molecular density measurement inside a 4.2-K beam tube

    International Nuclear Information System (INIS)

    In our first experiments on synchrotron radiation-induced photodesorption in a 4.2-K beam tube, the moleculm density was measured by room temperature ion gauges and RGAs outside the beam tube. The molecular density inside the 4.2-K beam tube was therefore unknown, since the mean molecular speed of photodesorbed molecules had not been measured. To determine the density inside the 4.2-K beam tube we have developed a direct method of measurement utilizing the neutralization of H+ beams, which are proportional to gas density. The hydrogen ion beams (up to 20 keV, ∼1 μA) are extracted from an rf ion source and guided into the cold beam tube by a bending magnet. The H0 and H- produced in the beam tube are magnetically separated from H- and detected with secondary electron multipliers (SEMs). Small superconducting dipole magnets located near the center of the beam tube allow a ∼20-cm segment of the injected ion beam to be offset a few mm from the injection axis; detection of H0 and H- produced along this offset segment provides a localized density measurement. If necessary, detector background due to synchrotron radiation photons can be discriminated against by gating the detector on between the bursts of synchrotron radiation. The experimental setup and initial data will be presented

  1. A hydrogen ion beam method of molecular density measurement inside a 4.2-K beam tube

    Energy Technology Data Exchange (ETDEWEB)

    Alinovsky, N.; Anashin, V.; Beschasny, P. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)] [and others

    1994-06-01

    In our first experiments on synchrotron radiation-induced photodesorption in a 4.2-K beam tube, the moleculm density was measured by room temperature ion gauges and RGAs outside the beam tube. The molecular density inside the 4.2-K beam tube was therefore unknown, since the mean molecular speed of photodesorbed molecules had not been measured. To determine the density inside the 4.2-K beam tube we have developed a direct method of measurement utilizing the neutralization of H{sup +} beams, which are proportional to gas density. The hydrogen ion beams (up to 20 keV, {approximately}1 {mu}A) are extracted from an rf ion source and guided into the cold beam tube by a bending magnet. The H{sup 0} and H{sup {minus}} produced in the beam tube are magnetically separated from H{sup {minus}} and detected with secondary electron multipliers (SEMs). Small superconducting dipole magnets located near the center of the beam tube allow a {approximately}20-cm segment of the injected ion beam to be offset a few mm from the injection axis; detection of H{sup 0} and H{sup {minus}} produced along this offset segment provides a localized density measurement. If necessary, detector background due to synchrotron radiation photons can be discriminated against by gating the detector on between the bursts of synchrotron radiation. The experimental setup and initial data will be presented.

  2. Cascaded injection resonator for coherent beam combining of laser arrays

    Science.gov (United States)

    Kireev, Vassili [Sunnyvale, CA; Liu, Yun; Protopopescu, Vladimir [Knoxville, TN; Braiman, Yehuda [Oak Ridge, TN

    2008-10-21

    The invention provides a cascaded injection resonator for coherent beam combining of laser arrays. The resonator comprises a plurality of laser emitters arranged along at least one plane and a beam sampler for reflecting at least a portion of each laser beam that impinges on the beam sampler, the portion of each laser beam from one of the laser emitters being reflected back to another one of the laser emitters to cause a beam to be generated from the other one of the laser emitters to the beam reflector. The beam sampler also transmits a portion of each laser beam to produce a laser output beam such that a plurality of laser output beams of the same frequency are produced. An injection laser beam is directed to a first laser emitter to begin a process of generating and reflecting a laser beam from one laser emitter to another laser emitter in the plurality. A method of practicing the invention is also disclosed.

  3. Dynamic steering beams for efficient force measurement in optical manipulation

    Institute of Scientific and Technical Information of China (English)

    Xiaocong Yuan; Yuquan Zhang; Rui Cao; Xing Zhao; Jing Bu; Siwei Zhu

    2011-01-01

    @@ An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported.Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium.The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force.The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead.The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.%An efficient and inexpensive method that uses a glass plate mounted onto a motorized rotating stage as a beam-steering device for the generation of dynamic optical traps is reported. Force analysis reveals that there are drag and trapping forces imposed on the bead in the opposite directions, respectively, in a viscous medium. The trapped bead will be rotated following the beam's motion before it reaches the critical escape velocity when the drag force is equal to the optical trapping force. The equilibrium condition facilitates the experimental measurement of the drag force with potential extensions to the determination of the viscosity of the medium or the refractive index of the bead. The proposed technique can easily be integrated into conventional optical microscopic systems with minimum modifications.

  4. Time-resolved measure technique for electron beam envelope basing on synchronous framing and streaking principle

    CERN Document Server

    Xiaoguo, Jiang; Zhiyong, Yang; Huang, Zhang; Yi, Wang; Tao, Wei

    2015-01-01

    The time-resolved electron beam envelope parameters including sectional distribution and position are important and necessary for the study of beam transmission characteristics in the magnetic field and verifying the magnetic field setup rationality. One kind of high time-resolved beam envelope measurement system has developed recently. It is mainly constituted of high framing camera and streak camera. It can obtain 3 panoramic images of the beam and the time continuous information of the given beam cross section at one time. The recently obtained data has proved that several fast vibration of beam envelope along the diameter direction occur during the rising edge and the falling edge of the electron beam. The vibration period is about several nanoseconds. The effect of magnetic field on the electron beam is also observed and verified. The beam debug experiments have proved that the existing beam transmission design is reasonable and viable. The beam envelope measurement system will establish a good foundatio...

  5. Correction of beam-beam effects in luminosity measurement at ILC

    CERN Document Server

    Lukic, S

    2015-01-01

    Three methods for handling beam-beam effects in luminosity measurement at ILC are tested and evaluated in this work. The first method represents an optimization of the LEPtype asymmetric selection cuts that reduce the counting biases. The second method uses the experimentally reconstructed shape of the √ s ′ spectrum to determine the Beamstrahlung component of the bias. The last, recently proposed, collision-frame method relies on the reconstruction of the collision-frame velocity to define the selection function in the collision frame both in experiment and in theory. Thus the luminosity expression is insensitive to the difference between the CM frame of the collision and the lab frame. The collision-frame method is independent of the knowledge of the beam parameters, and it allows an accurate reconstruction of the luminosity spectrum above 80% of the nominal CM energy. However, it gives no precise infromation about luminosity below 80% of the nominal CM energy. The compatibility of diverse selection cut...

  6. Beam energy absolute measurement using K-edge absorption spectrometers

    International Nuclear Information System (INIS)

    A method is presented of absolute energy measurement with an accuracy of triangle Ε ∼ 10-4Εo by direct measurement of the bend angle in a high-precision magnetic dipole using two opposite-direction short (about 2 mm long) high-field-intensity magnets (bar Β dipole much-lt Βshortmag) installed at each end and two K-edge absorption spectrometers. Using these spectrometers and the hard x-ray synchrotron radiation created by the short magnets, a bend angle of 4.5 arc deg for the CEBAF energy bandwidth can be measured with an accuracy of a few units of 10-6 rad, and the main sources of systematic errors are the absolute measurement of the field integral and the determination of the centroid of the synchrotron beam at a wavelength equal to the K-edge absorption of the chosen substance

  7. Nondestructive Measurement of Orbital Angular Momentum for an Electron Beam

    Science.gov (United States)

    Larocque, Hugo; Bouchard, Frédéric; Grillo, Vincenzo; Sit, Alicia; Frabboni, Stefano; Dunin-Borkowski, Rafal E.; Padgett, Miles J.; Boyd, Robert W.; Karimi, Ebrahim

    2016-10-01

    Free electrons with a helical phase front, referred to as "twisted" electrons, possess an orbital angular momentum (OAM) and, hence, a quantized magnetic dipole moment along their propagation direction. This intrinsic magnetic moment can be used to probe material properties. Twisted electrons thus have numerous potential applications in materials science. Measuring this quantity often relies on a series of projective measurements that subsequently change the OAM carried by the electrons. In this Letter, we propose a nondestructive way of measuring an electron beam's OAM through the interaction of this associated magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and only minimal energy losses upon the measurement, and, hence, the nondestructive nature of the proposed technique.

  8. Upgrade of beam energy measurement system at BEPC-II

    Science.gov (United States)

    Zhang, Jian-Yong; Cai, Xiao; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M. N.; Krasnov, A. A.; Muchnoi, N. Yu.; Pyata, E. E.; Mamoshkina, E. V.; Harris, F. A.

    2016-07-01

    The beam energy measurement system is of great importance for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. In order to meet the requirements of data taking and improve the measurement accuracy, the system has continued to be upgraded, which involves the updating of laser and optics subsystems, replacement of a view-port of the laser to the vacuum insertion subsystem, the use of an electric cooling system for a high purity germanium detector, and improvement of the data acquisition and processing subsystem. The upgrade system guarantees the smooth and efficient measurement of beam energy at BEPC-II and enables accurate offline energy values for further physics analysis at BES-III. Supported in part by National Natural Science Foundation of China (NSFC)(11375206, 10775142, 10825524, 11125525, 11235011), the Ministry of Science and Technology of China (2015CB856700, 2015CB856705), State key laboratory of particle and detection and electronics; and the CAS Center for Excellence in Particle Physics (CCEPP); the RFBR grant(14-02-00129-a), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, part of this work related to the design of ZnSe viewports is supported by the Russian Science Foundation (14-50-00080)

  9. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  10. Beam lifetime measurement and analysis in Indus-2 electron storage ring

    Indian Academy of Sciences (India)

    Pradeep Kumar; A D Ghodke; Gurnam Singh

    2013-05-01

    In this paper, the beam lifetime measurement and its theoretical analysis are presented using measured vacuum pressure and applied radio frequency (RF) cavity voltage in Indus-2 electron storage ring at 2 GeV beam energy. Experimental studies of the effect of RF cavity voltage and bunched beam filling pattern on beam lifetime are also presented. An equation of stable beam current decay is evolved and this equation closely follows the observed beam current decay pattern. It shows that the beam is stable and the beam current decay is due to the beam–residual gas interaction (vacuum lifetime) and electron–electron interaction within a bunch (Touschek lifetime). The estimated vacuum, Touschek and total beam lifetimes from analytical formulations are also compared with the measured beam lifetime.

  11. Characterization of electron bunches from field emitter array cathodes for use in next-generation x-ray free electron lasers

    International Nuclear Information System (INIS)

    PSI is interested in developing an x-ray free electron laser (X-FEL) as a companion radiation source to the existing Swiss Light Source. In order to achieve radiation wavelengths as low as 1 Α, the X-FEL requires excellent electron beam quality and high beam energy. The energy requirements and thus the size and cost of the project can be reduced considerably if an ultra-low emittance electron source is developed. Therefore PSI has started the Low Emittance Gun Project with the aim to design a novel type of electron source that will deliver an electron beam with unprecedented emittance at high peak currents to the linear accelerator of the proposed X-FEL. A source candidate for such a gun is field emission from cold cathodes. In order to gain first experience with field emission guns, investigate the dynamics of space charge dominated electron beams and to develop diagnostics capable of resolving ultra-low emittances, it was decided to build a 100 keV DC gun test stand. In the scope of this thesis, the test stand has been designed, assembled and commissioned. For the first time, transverse phase space measurements of bunches emitted by field emitter arrays in pulsed DC accelerating fields have been performed. (author)

  12. Substrate heating measurements in pulsed ion beam film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Olson, J.C.; Davis, H.A.; Rej, D.J.; Waganaar, W.J. [Los Alamos National Lab., NM (United States); Tallant, D.R. [Cornell Univ., Ithaca, NY (United States). Materials Science and Engineering Dept.; Thompson, M.O. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01

    Diamond-like Carbon (DLC) films have been deposited at Los Alamos National Laboratory by pulsed ion beam ablation of graphite targets. The targets were illuminated by an intense beam of hydrogen, carbon, and oxygen ions at a fluence of 15-45 J/cm{sup 2}. Ion energies were on the order of 350 keV, with beam current rising to 35 kA over a 400 ns ion current pulse. Raman spectra of the deposited films indicate an increasing ratio of sp{sup 3} to sp{sup 2} bonding as the substrate is moved further away from the target and further off the target normal. Using a thin film platinum resistor at varying positions, we have measured the heating of the substrate surface due to the kinetic energy and heat of condensation of the ablated material. This information is used to determine if substrate heating is responsible for the lack of DLC in positions close to the target and near the target normal. Latest data and analysis will be presented.

  13. Performance comparisons of low emittance lattices

    International Nuclear Information System (INIS)

    The results of a performance analysis of four low emittance electron storage ring lattices provided to the authors by various members of the Lattice Working Group is presented. Altogether, four lattices were investigated. The beam energies of the four lattices are, respectively, 1.1, 2, 3, 4 GeV). A brief summary of the lattice parameters relevant to this study is given. The performance issues studied include an estimation of the longitudinal emittance expected for each lattice based on the effects of the longitudinal microwave instability, an estimation of the transverse emittance growth of the (required) dense bunches under the influence of intrabeam scattering (IBS), and an estimate of the Touschek lifetime. The analysis described here has been carried out with the LBL accelerator physics code ZAP

  14. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  15. Vacuum Chamber for the Measurement System of the Beam Energy

    Science.gov (United States)

    Abakumova, E.; Achasov, M.; Dong, HaiYi; Qu, HuaMin; Krasnov, A.; Kosarev, A.; Muchnoi, N.; Pyata, E.; Xiao, Qiong; Mo, XiaoHu; Wang, YiFang; Zhukov, A.

    Vacuum chamber for the beam energy measurement system based on the Compton backscattering method is presented. The main elements of the chamber are GaAs entrance viewport and a copper mirror. The viewport design provides baking out of the vacuum chamber up to 250 °C. To produce the viewport, an original technology based on brazing GaAs plate by lead has been developed. The vacuum chambers were installed at the BEPC-II and VEPP-4 M colliders. After installation the residual gas pressure is about 10-10 Torr.

  16. Direct reaction measurements with a 132Sn radioactive ion beam

    OpenAIRE

    Jones, K L; Adekola, A. S.; Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; K.A. Chipps; Cizewski, J. A.; Erikson, L.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, R.L.; Liang, J. F.; Livesay, R.; Ma, Z.

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-t...

  17. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    Science.gov (United States)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  18. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  19. Measurement and Simulation of Beam Centering on CYCIAE-10

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The beam centering is very important for the compact cyclotron, especially for the cyclotrons with the axial injection. It is critical that the cyclotron has a good beam centering to increase the beam current and reduce the beam loss. In the accelerating process,

  20. Space Charge Effects in Rectilinear Motion Emittance

    CERN Document Server

    Chen, C

    2000-01-01

    This report summarizes the presentations and discussions over a wide range of topics in Working Group I at the Second ICFA Advanced Accelerator Workshop on Physics of High-Brightness Beams held at University of California at Los $9 Angeles (UCLA), November 9-12, 1999. Latest developments towards to a better understanding of high-brightness photoinjectors were reported. The design and commissioning of the Los Alamos National Laboratory (LANL) Low-Energy $9 Demonstration Accelerator (LEDA) Radio-Frequency Quadrupole (RFQ) were reported. The problem of beam halo formation was discussed in both beam transport systems and the SLAC 50 MW 11.4 GHz periodic permanent magnet (PPM) focusing $9 klystron amplifier. A new class of corkscrewing elliptic beam equilibria was reported, and applications of such novel beam equilibria in controlling of charge-density and velocity fluctuations, beam halo formation and emittance $9 growth were discussed. Pattern formation in proton rings was also discussed.

  1. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  2. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    BACKGROUND. Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. AIM. To discuss practical precautions for handling beta emitters...... on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure....

  3. Device for measuring charge density distribution in charged particle beams

    International Nuclear Information System (INIS)

    A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat

  4. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  5. Beam Measurements of a CLOUD (Cosmics Leaving OUtdoor Droplets) Chamber

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    A striking correlation has recently been observed between global cloud cover and the flux of incident cosmic rays. The effect of natural variations in the cosmic ray flux is large, causing estimated changes in the Earth's energy radiation balance that are comparable to those attributed to greenhouse gases from the burning of fossil fuels since the Industrial Revolution. However a direct link between cosmic rays and cloud formation has not been unambiguously established. We therefore propose to experimentally measure cloud (water droplet) formation under controlled conditions in a test beam at CERN with a CLOUD chamber, duplicating the conditions prevailing in the troposphere. These data, which have never been previously obtained, will allow a detailed understanding of the possible effects of cosmic rays on clouds and confirm, or otherwise, a direct link between cosmic rays, global cloud cover and the Earth's climate. The measurements will, in turn, allow more reliable calculations to be made of the residual e...

  6. Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel

    Science.gov (United States)

    Richmond, Joseph C.; Stewart, James E.

    1959-01-01

    The normal spectral emittance of Inconel and type 321 stainless steel with different surface treatments was measured at temperatures of 900, 1,200, 1,500, and 1,800 F over a wavelength range of 1.5 to 15 microns. The measurements involved comparison of the radiant energy emitted by the heated specimen with that emitted by a comparison standard at the same temperature by means of a recording double-beam infrared spectrophotometer. The silicon carbide comparison standard had previously been calibrated against a laboratory black-body furnace. Surface treatments included electropolishing, sandblasting, electro-polishing followed by oxidation in air for 1/2 hour at 1,800 F, sandblasting followed by oxidation in air for 1/2 hour at 1,800 F, application of National Bureau of Standards coating A-418, and application of NBS ceramic coating N-143. The normal spectral emittance of both alloys in the electropolished condition was low and decreased very slightly with increasing wavelength while in the sandblasted condition it was somewhat higher and did not vary appreciably with wavelength. The oxidation treatment greatly increased the normal spectral emittance of both the electropolished and sandblasted type 321 stainless steel specimens and of the electropolished Inconel specimens and introduced some spectral selectivity into the curves. The oxidation increased the normal spectral emittance of the sandblasted Inconel specimens only moderately. Of the specimens to which a coating about 0.002 inch thick was applied, those coated with A-418 had higher emittance at all wavelengths than did those coated with N-143, and the coated specimens of Inconel had higher spectral emittance at all wavelengths than did the corresponding specimens of type 321 stainless steel. Both coatings were found to be partially transparent to the emitted energy at this thickness but essentially opaque at a thickness of 0.005 inch. Coated specimens with 0.005 inch or more of coating did not show the effect

  7. Analysis of the Influence of Fibre Diameter on Wirescanner Beam Profile Measurements

    CERN Document Server

    King, Quentin

    1988-01-01

    It is often important to be able to measure beam profiles in regions where the beam size is very small. Following concern that the profile measurement might be affected by having a beam size of the same order as the diameter of the wirescanner fibre, the effect was analysed numerically, and the results are presented.

  8. Extraction and low energy beam transport from a surface ion source at the TRIUMF-ISAC facility

    Science.gov (United States)

    Sen, A.; Ames, F.; Bricault, P.; Lassen, J.; Laxdal, A.; Mjos, A.

    2016-06-01

    A large fraction of radioactive beams produced and delivered at TRIUMF's isotope separator and accelerator facility, ISAC, are using either a surface ion source or a resonant ionization laser ion source, which share a common design. To characterize the operation of the ion sources, simulations were performed to determine the ion beam optics and beam envelope properties of the extracted beam. Furthermore ion-optics calculations were performed to determine the transmission parameters through the mass separator magnet. Emittances are measured in the ISAC low energy beam line right after the mass separator. The recent addition of a channeltron to the Allison emittance meter scanner now allows us to measure emittances for ion beams with intensities as low as 105 ions/s. This is particularly useful for establishing high resolution, high throughput mass separator tunes for radioactive isotope beams. This paper discusses emittance measurements of low intensity beams, typical emittance scans for the surface ion source and the resonant laser ionized source for different source parameters. The observed results are compared to the simulations and discussed.

  9. Optimization of a charge-state analyzer for ECRIS beams

    CERN Document Server

    Saminathan, S; Kremers, H R; Mironov, V; Mulder, J; Brandenburg, S

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He-ion beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 pi mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations...

  10. Beam halo study on ATF damping ring

    CERN Document Server

    Wang, Dou; Yokoya, Kaoru; Naito, Takashi; Gao, Jie

    2016-01-01

    Halo distribution is a key topic for background study. This paper has developed an analytical method to give an estimation of ATF beam halo distribution. The equilibrium particle distribution of the beam tail in the ATF damping ring is calculated analytically with different emittance and different vacuum degree. The analytical results agree the measurements very well. This is a general method which can be applied to any electron rings.

  11. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study.

  12. Transport and emittance study for 18 GHz superconducting-ECR ion source at RCNP.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Kibayashi, M; Morinobu, S; Tamii, A

    2012-02-01

    As the upgrade program of the azimuthally varying field (AVF) cyclotron is at the cyclotron facility of the RCNP, Osaka University for the improvement of the quality, stability, and intensity of accelerated beams, an 18 GHz superconducting (SC) ECR ion source has been installed to increase beam currents and to extend the variety of ions, especially for highly charged heavy ions which can be accelerated by RCNP AVF cyclotron. The production development of several ions such as B, O, N, Ne, Ar, Ni, Kr, and Xe has been performed by Yorita et al. [Rev. Sci. Instrum. 79, 02A311(2008); 81, 02A332 (2010)]. Further studies for the beam transport have been done in order to improve the beam current more for injection of cyclotron. The effect of field leakage of AVF main coil is not negligible and additional steering magnet has been installed and then beam transmission has been improved. The emittance monitor has also been developed for the purpose of investigating correlation between emittance of beam from ECR ion sources and injection efficiency. The monitor consists with BPM82 with rotating wire for fast measurement for efficient study. PMID:22380182

  13. EBL Constraints Using a Sample of TeV Gamma-Ray Emitters Measured with the MAGIC Telescopes

    CERN Document Server

    Mazin, D; Ramazani, V Fallah; Hassan, T; Moralejo, A; Rosillo, M Nievas; Vanzo, G; Acosta, M Vázquez

    2016-01-01

    MAGIC is a stereoscopic system of two Imaging Atmospheric Cherenkov Telescopes operating in the very high energy (VHE) range from about 50 GeV to over 50 TeV. The VHE gamma-ray spectra measured at Earth carry an imprint of the extragalactic background light (EBL) and can be used to study the EBL density and its evolution in time. In the last few years, precision measurements of several blazars in the redshift range from z=0.03 up to z=0.9 were performed with MAGIC obtaining strong limits on the EBL density from single sources. In this paper, we present the results from a combined likelihood analysis using this broad redshift range sample of blazars allowing us to probe the EBL at different wavelengths. The implications on the EBL models and perspectives for future observations with MAGIC are also discussed.

  14. Multi-beam Measurements of Langmuir Turbulence at HAARP

    Science.gov (United States)

    Adham, N.; Sheerin, J. P.; Watanabe, N.; Rayyan, N.; Spry, D.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2012-12-01

    We report the results from a recent series of campaigns employing the HAARP HF transmitter to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Short pulse, low duty cycle experiments demonstrate control and suppression of artificial field-aligned irregularities (AFAI). This allows the isolation of ponderomotive plasma turbulence effects. New multi-beam measurements of the plasma line spectra demonstrate marked dependence on the aspect angle of the HF pump beam and the pointing of the MUIR diagnostic radar. Refraction is shown to play an important role in the observed plasma line spectral density as a function of zenith angle including the discovery of a second region of strong turbulence displaced southward from the primary HF interaction region along the geomagnetic field line. Background ionospheric conditions are also observed to have a significant effect. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  15. Investigations in CO2 laser beam caustics measuring techniques

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Bagger, Claus

    2004-01-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved....

  16. Absolute measurement of {beta} emitters with a 4 {pi} counter; Mesure absolue des emetteurs {beta} au compteur 4 {pi}

    Energy Technology Data Exchange (ETDEWEB)

    Le Gallic, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    The object of this work is to investigate the conditions under which the activity of {beta}-emitting radionuclides may be measured with a maximum of precision, and as a result to study the relevant corrections. The various problems relating to activity measurements with a 4 {pi} counter have been examined successively: - comparison of 4 {pi}, GM and proportional counters; - study of the preparation of sources; - corrections on the counting of sources; - self-absorption; - correction for absorption. The precision obtained on these measurements varies from 1.2 to 3 per cent, with the result that the 4 {pi} counter can be considered a very satisfactory calibration instrument. (author) [French] Le but de ce travail est de rechercher les conditions permettant d'obtenir avec le maximum de precision, la mesure de l'activite des radionuclides se desintegrant par emission et par consequent d'etudier les corrections qui s'y rapportent. Nous avons examine successivement les differents problemes se rapportant aux mesures d'activite au compteur 4 {pi}: - Comparaison des compteurs 4 {pi}, GM et proportionnel; - etude de la preparation des sources; - corrections sur la numeration des sources; - auto-absorption; - correction d'absorption. La precision obtenue dans ces mesures, variant de 1,2 a 3 pour cent, on peut donc considerer le compteur 4 {pi} comme un instrument d'etalonnage tres satisfaisant. (auteur)

  17. Investigations in CO2 laser beam caustics measuring techniques

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Bagger, Claus

    2004-01-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved.......The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 which are describing test methods for laser beam parameters have been approved....

  18. Cancer from internal emitters

    International Nuclear Information System (INIS)

    Irradiation from internal emitters, or internally deposited radionuclides, is an important component of radiation exposures encountered in the workplace, home, or general environment. Long-term studies of human populations exposed to various internal emitters by different routes of exposure are producing critical information for the protection of workers and members of the general public. The purpose of this report is to examine recent developments and discuss their potential importance for understanding lifetime cancer risks from internal emitters. The major populations of persons being studied for lifetime health effects from internally deposited radionuclides are well known: Lung cancer in underground miners who inhaled Rn progeny, liver cancer from persons injected with the Th-containing radiographic contrast medium Thorotrast, bone cancer from occupational or medical intakes of 226Ra or medical injections of 224Ra, and thyroid cancer from exposures to iodine radionuclides in the environment or for medical purposes

  19. The first muon beam measurement at the MuSIC

    International Nuclear Information System (INIS)

    Beam tests with a low current proton beam have been carried out to estimate an achievable muon yield of the MuSIC. Preliminary analysises result that more than 108 muons/s is achievable with a 392 MeV, 1 μA proton beam. (author)

  20. Emittance growths in resonance crossing at FFAGs

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab; Pang, X.; Wang, F.; Wang, X.; Lee, S.Y.; /Indiana U.

    2007-10-01

    Scaling laws of the emittance growth for a beam crossing the 6th-order systematic space-charge resonances and the random-octupole driven 4th-order resonance are obtained by numerical multi-particle simulations. These laws can be important in setting the minimum acceleration rate and maximum tolerable resonance strength for the design of non-scaling fixed-field alternating gradient accelerators.

  1. PENCIL LEAD FIELD EMITTER

    OpenAIRE

    Khairnar, R.; Joag, D.

    1989-01-01

    Field electron emission from 2H and HB grades of pencil lead has been studied. The pencil lead field emitter is found to obey the Fowler-Nordheim characteristics. The emission current fluctuations are found to increase with the residual gas pressure and the emission current. The current density of the order of 106 amp/cm2 could be drawn from these emitters. The emission stability over the operation of six hours has been found to be reasonably good. The field ion microscopy of the 2H and HB gr...

  2. RFI emitter location techniques

    Science.gov (United States)

    Rao, B. L. J.

    1973-01-01

    The possibility is discussed of using Doppler techniques for determining the location of ground based emitters causing radio frequency interference with low orbiting satellites. An error analysis indicates that it is possible to find the emitter location within an error range of 2 n.mi. The parameters which determine the required satellite receiver characteristic are discussed briefly along with the non-real time signal processing which may by used in obtaining the Doppler curve. Finally, the required characteristics of the satellite antenna are analyzed.

  3. Reduction of bend-plane emittance growth in a chicane pulse compressor

    CERN Document Server

    Dowell, D H

    1999-01-01

    Emittance preservation in beam bending systems is vitally important in the production of bright, high-current electron microbunches. Generally, the emittance increase occurs in the bend plane and results from changes in the microbunch energy distribution as the beam transits the bend. This redistribution of electron energies increases the beam's divergence, and hence the emittance, by spoiling the achromatic transport of the bending system. In this paper we investigate the correlated emittance growth in a three dipole chicane compressor due to coherent synchrotron radiation (CSR). Breaking the symmetry of the chicane partially cancels the CSR-induced correlation thereby reducing the bend plane emittance growth. The consequences of this emittance compensation scheme are discussed.

  4. Basic oscillation measurables in the neutrino pair beam

    Science.gov (United States)

    Asaka, T.; Tanaka, M.; Yoshimura, M.

    2016-09-01

    It was recently shown that the neutrino-pair emission may occur with large rates, their energy being extended to GeV region, if appropriate heavy ions are circulated in a quantum state of mixture. In the present work it is further demonstrated that the vector current contribution of neutrino interaction with electrons in ion, not necessarily suppressed in high atomic number ions, gives rise to the oscillating component, even when a single neutrino is detected alone. On the other hand, the single neutrino detection in Z-boson decay does not show the oscillating component, as known for some time. CP violation measurements in the neutrino pair beam may become a possibility, along with determination of mass hierarchical patterns.

  5. Plunger lifetime measurements after Coulomb excitation at intermediate beam energies

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)

    2008-07-01

    Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.

  6. Basic oscillation measurables in the neutrino pair beam

    Directory of Open Access Journals (Sweden)

    T. Asaka

    2016-09-01

    Full Text Available It was recently shown that the neutrino-pair emission may occur with large rates, their energy being extended to GeV region, if appropriate heavy ions are circulated in a quantum state of mixture. In the present work it is further demonstrated that the vector current contribution of neutrino interaction with electrons in ion, not necessarily suppressed in high atomic number ions, gives rise to the oscillating component, even when a single neutrino is detected alone. On the other hand, the single neutrino detection in Z-boson decay does not show the oscillating component, as known for some time. CP violation measurements in the neutrino pair beam may become a possibility, along with determination of mass hierarchical patterns.

  7. Ion beam properties after mass filtering with a linear radiofrequency quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, R., E-mail: Rafael.Ferrer@fys.kuleuven.be [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Kwiatkowski, A.A.; Bollen, G.; Lincoln, D.L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, East Lansing, MI 48824 (United States); Morrissey, D.J.; Pang, G.K. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Chemistry, East Lansing, MI 48824 (United States); Ringle, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Savory, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, East Lansing, MI 48824 (United States); Schwarz, S. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States)

    2014-01-21

    The properties of ion beams passing through a linear radiofrequency quadrupole mass filter were investigated with special attention to their dependence on the mass resolving power. Experimentally, an increase of the transverse emittance was observed as the mass-to-charge selectivity of the mass filter was raised. The experimental behavior was confirmed by beam transport simulations. -- Highlights: • The ion-optical properties of a Quadrupole Mass Filter (QMF) are presented. • Measured beam emittances follow a trend to larger values for smaller A/Q ratios and increasing mass resolution. • The experimental behavior was confirmed by beam transport simulations. • The use of a QMF for mass filtering comes at the cost of emittance growth of the ion beam.

  8. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    Science.gov (United States)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  9. Study of ultra-low emittance design for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. -H.; Huang, X.; Safranek, J.; /SLAC

    2015-09-17

    Since its 2003 construction, the SPEAR3 synchrotron light source at SLAC has continuously improved its performance by raising beam current, top-off injection, and smaller emittance. This makes SPEAR3 one of the most productive light sources in the world. Now, to further enhance the performance of SPEAR3, we are looking into the possibility of converting SPEAR3 to an ultra-low emittance storage ring within its site constraint.

  10. Optimization of the emittance of electrons (positrons) storage rings

    International Nuclear Information System (INIS)

    An important parameter of the source characteristics of a synchrotron radiation facility, is the beam emittance. The general structure presently adopted, is of the achromatic arc, or adapted dispersion type. This structure allows analytical treatment of dispersion and β function in the arcs, and then, the minimization of the dimension invariant. Practical formulae are given, allowing scaling of momentum compaction factor, minimum emittance limit and β value in the magnets. Limitations in chromaticity correction possibilities are also discussed

  11. High-current lanthanum-hexaboride electron emitter for a quasi-stationary arc plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Davydenko, V. I., E-mail: V.I.Davydenko@inp.nsk.su; Ivanov, A. A., E-mail: A.A.Ivanov@inp.nsk.su; Shul’zhenko, G. I. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-11-15

    A high-current electron emitter on the basis of lanthanum hexaboride is developed for quasi-stationary arc plasma generators of ion sources. The emitter consists of a set of LaB{sub 6} washers interleaved with washers made of thermally extended graphite. The emitter is heated by the current flowing through the graphite washers. The thermal regime of emitter operation during plasma generation is considered. The emitter has been successfully used in the ion sources of the diagnostic injectors of fast hydrogen atomic beams.

  12. Activity measurement of gamma-ray emitters in aerosol filters exposed in Lithuania, in March–April 2011

    International Nuclear Information System (INIS)

    Two aerosol sampling stations in Lithuania were simultaneously used for assessing consequences of the accident at the Fukushima Dai-ichi nuclear power plant. The maximum activity concentrations of 129mTe, 131I, 134Cs and 137Cs were 0.59±0.06, 3.5±0.3, 0.90±0.08, 0.90±0.07 mBq m−3 at station #1 in Vilnius, and 0.29±0.03, 1.0±0.1, 0.41±0.04, 0.41±0.04 mBq m−3 at station #2 in northeastern part of Lithuania, respectively. - Highlights: • Daily and weekly samples were analyzed by the gamma-ray spectrometry using different HPGe detectors and measuring geometries. • Corrections of 8–12% for the true coincidence-summing in 134Cs decay were applied. • The activity ratio 134Cs/137Cs was found to be in the range 0.99–1.09. • This result is consistent with published data on Fukushima radioactive release

  13. Prototype system for phase advance measurements of LHC small beam oscillations

    CERN Document Server

    Olexa, J; Brezovic, Z; Gasior, M

    2013-01-01

    Magnet lattice parameters of the Large Hadron Collider (LHC) are measured by exciting beam transverse oscillations that allow measuring their phase advance using the beam position measurement (BPM) system. However, the BPM system requires millimetre oscillation amplitudes, with which nominal high intensity beams would cause large particle loss, dangerous for the LHC superconducting magnets. Therefore, such measurements cannot be done often, as they require special low intensity beams with important set-up time. After its first long shut-down the LHC will be equipped with new collimators with embedded BPMs, for which a new front-end electronics has been developed. Its main processing channels based on compensated diode detectors are designed for beam orbit measurement with sub-micrometre resolution. It is planned to extend this system by adding dedicated channels optimised for phase advance measurement, allowing continuous LHC optics measurement with much smaller beam excitation. This subsystem will be based o...

  14. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab

    2011-03-01

    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  15. Simulation and measurement of an electron beam in a wiggler magnetic field

    International Nuclear Information System (INIS)

    Sources of high quality beams of spinning electron beams are critical to efficient free electron devices including FELs, CARMs and gyrotrons. Bifilar helical wigglers can take a beam with little perpendicular momentum and add perpendicular momentum, spinning up the beam. The effect of the electron beam self fields on the beam quality will be important. A computer simulation has been written which can simulate the behavior of electron beams in the wiggler region including the effects of the beam self-electric fields. The equations used in the code are described. Several tests of the code are presented. Results of simulation of a bifilar helical wiggler are described. Measurement of beam parameters is also necessary. A design for a capacitive axial velocity probe is presented. The probe has been built but is still untested due to problems with a leaky flange. 15 refs

  16. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Liu, Shan; Cornebise, Patrick; Faus-Golfe, Angeles; Fuster-Martínez, Nuria; Griesmayer, Erich; Guler, Hayg; Kubytskyi, Viacheslav; Sylvia, Christophe; Toshiaki, Tauchi; Terunuma, Nobuhiro; Bambade, Philip

    2015-01-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of $\\sim10^6$ has been successfully demonstrated and confirmed for the first time by simultaneous beam core ($\\sim10^9$ electrons) and beam halo ($\\sim10^3$ electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of the diamond sensors using an $\\alpha$ source as well as using the electron beams at PHIL, a low energy ($< 10$ MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results ...

  17. MD 382: Beam Transfer Function and diffusion mechanisms

    CERN Document Server

    Tambasco, Claudia; Buffat, Xavier; Crouch, Matthew; Pieloni, Tatiana; Boccardi, Andrea; Fuchsberger, Kajetan; Gasior, Marek; Kotzian, Gerd; Lefevre, Thibaut; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Giachino, Rossano; CERN. Geneva. ATS Department

    2016-01-01

    The Beam Transfer Function (BTF) measurements have been previously tested in the LHC during MD block 1 and 2. Different machine configurations (i.e. energy, beam intensity, emittance etc...) have been tested to determine a safe set-up (excitation amplitude) of the system to be completely transparent to the beam (no emittance blow-up neither losses). The aim of this experiment in MD block 3 was to characterize the Stability Diagram (SD) in the presence of diffusion mechanisms induced by excited resonances due to beam-beam long range and Landau octupole interplay. During the experiment, BTF measurements have been acquired at flat top for different settings of Landau octupole current, different chromaticity values and transverse feedback gains. In this note the description of the experiment is presented together with some preliminary results.

  18. Analysis of emittance compensation and simulation results to photo-cathode RF gun

    CERN Document Server

    LiuShengGuang

    2002-01-01

    The emittance compensation technology will be used on the photo-cathode RF gun for Shanghai SDUV-FEL. The space charge force and its effect on electron beam transverse emittance in RF gun is studied, the principle of emittance compensation in phase-space is discussed. The authors have designed a compensation solenoid and calculated its magnetic field distribution. Its performance has been studied by the code PARMELA. A simulation result indicates that the normalized transverse RMS emittance for electron beam of 1.5 nC is 1.612 pi mm centre dot mrad, electron energy E = 5.71 MeV

  19. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  20. Beam Parameter Measurement and Control at the SNS Target

    CERN Document Server

    Plum, Michael; McManamy, Tom

    2005-01-01

    The spallation neutron production target at the SNS facility is designed for 1.4 MW beam power. Both beam position and profile must be carefully controlled within narrow margins to avoid damage to the target. The position must be within 2 mm of the target center, and 90% of the beam must be within the nominal 70 mm x 200 mm spot size, without exceeding 0.18 A/m2

  1. First Measurement of Beam-Recoil Observables Cx and Cz

    Energy Technology Data Exchange (ETDEWEB)

    R. Bradford; R.A. Schumacher; G. Adams; M.J. Amaryan; P. Ambrozewicz; E. Anciant; M. Anghinolfi; B. Asavapibhop; G. Asryan; G. Audit; H. Avakian; H. Bagdasaryan; N. Baillie; J.P. Ball; N.A. Baltzell; S. Barrow; V. Batourine; M. Battaglieri; K. Beard; I. Bedlinskiy; M. Bektasoglu; M. Bellis; N. Benmouna; B.L. Berman; N. Bianchi; A.S. Biselli; B.E. Bonner; S. Bouchigny; S. Boiarinov; D. Branford; W.J. Briscoe; W.K. Brooks; S. B¨ultmann; V.D. Burkert; C. Butuceanu; J.R. Calarco; S.L. Careccia; D.S. Carman; B. Carnahan; S. Chen; P.L. Cole; A. Coleman; P. Collins; P. Coltharp; D. Cords; † P. Corvisiero; D. Crabb; H. Crannell; V. Crede; J.P. Cummings; R. De Masi; E. De Sanctis; R. De Vita; P.V. Degtyarenko; H. Denizli; L. Dennis; A. Deur; K.V. Dharmawardane; R. Dickson; C. Djalali; G.E. Dodge; J. Donnelly; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; O.P. Dzyubak; H. Egiyan; ; K.S. Egiyan; L. El Fassi; L. Elouadrhiri; A. Empl; P. Eugenio; R. Fatemi; G. Fedotov; G. Feldman; R.J. Feuerbach; T.A. Forest; H. Funsten; M. Garcon; G. Gavalian; ; G.P. Gilfoyle; K.L. Giovanetti; F.X. Girod; J.T. Goetz; A. Gonenc; R.W. Gothe; K.A. Griffioen; M. Guidal; M. Guillo; N. Guler; L. Guo; V. Gyurjyan; C. Hadjidakis; K. Hafidi; H. Hakobyan; R.S. Hakobyan; J. Hardie; D. Heddle; F.W. Hersman; K. Hicks; I. Hleiqawi; M. Holtrop; J. Hu; M. Huertas; C.E. Hyde-Wright; Y. Ilieva; D.G. Ireland; B.S. Ishkhanov; E.L. Isupov; M.M. Ito; D. Jenkins; H.S. Jo; K. Joo; H.G. Juengst; N. Kalantarians; J.D. Kellie; M. Khandaker; K.Y. Kim; K. Kim; W. Kim; A. Klein; F.J. Klein; M. Klusman; M. Kossov; L.H. Kramer; V. Kubarovsky; J. Kuhn; S.E. Kuhn; S.V. Kuleshov; J. Lachniet; J.M. Laget; J. Langheinrich; D. Lawrence; A.C.S. Lima; K. Livingston; H.Y. Lu; K. Lukashin; M. MacCormick; J.J. Manak; C. Marchand; N. Markov; S. McAleer; B. McKinnon; J.W.C. McNabb; B.A. Mecking; M.D. Mestayer; C.A. Meyer; T. Mibe; K. Mikhailov; M. Mirazita; R. Miskimen; V. Mokeev; K. Moriya; S.A. Morrow; M. Moteabbed; V. Muccifora; J. Mueller; G.S. Mutchler; P. Nadel-Turonski; J. Napolitano; R. Nasseripour; N. Natasha; S. Niccolai; G. Niculescu; I. Niculescu; B.B. Niczyporuk; M.R. Niroula; R.A. Niyazov; M. Nozar; G.V. O’Rielly; M. Osipenko; A.I. Ostrovidov; K. Park; E. Pasyuk; C. Paterson; S.A. Philips; J. Pierce; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; I. Popa; S. Pozdniakov; B.M. Preedom; J.W. Price; Y. Prok; D. Protopopescu; L.M. Qin; B.P. Quinn; B.A. Raue; G. Riccardi; G. Ricco; M. Ripani; B.G. Ritchie; F. Ronchetti; G. Rosner; P. Rossi; D. Rowntree; P.D. Rubin; F. Sabatie; J. Salamanca; C. Salgado; J.P. Santoro; ; V. Sapunenko; V.S. Serov; A. Shafi; Y.G. Sharabian; J. Shaw; N.V. Shvedunov; S. Simionatto; A.V. Skabelin; E.S. Smith; L.C. Smith; D.I. Sober; D. Sokhan; M. Spraker; A. Stavinsky; S.S. Stepanyan; S. Stepanyan; B.E. Stokes; P. Stoler; I.I. Strakovsky; S. Strauch; M. Taiuti; S. Taylor; D.J. Tedeschi; U. Thoma; R. Thompson; A. Tkabladze; S. Tkachenko; L. Todor; C. Tur; M. Ungaro; M.F. Vineyard; A.V. Vlassov; K. Wang; D.P. Watts; L.B. Weinstein; H. Weller; D.P. Weygand; M. Williams; E. Wolin; M.H. Wood; A. Yegneswaran; J. Yun; L. Zana; J. Zhang; B. Zhao; and Z.W. Zhao

    2007-03-01

    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\\vec\\gamma + p \\to K^+ + \\vec\\Lambda$ and $\\vec\\gamma + p \\to K^+ + \\vec\\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\\cos\\theta_{K^+}^{c.m.}< +0.95$. For the $\\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\\it total} $\\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.

  2. High brightness beams and applications

    International Nuclear Information System (INIS)

    This paper describes the present research on attaining intense bright electron beams. Thermionic systems are briefly covered. Recent and past results from the photoinjector programs are given. The performance advantages and difficulties presently faced by researchers using photoinjectors is discussed. The progress that has been made in photocathode materials, both in lifetime and quantum efficiency, is covered. Finally, a discussion of emittance measurements of photoinjector systems and how the measurement is complicated by the non-thermal nature of the electron beam is presented

  3. Measuring Broadband IR Irradiance in the Direct Solar Beam (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 um and 50 um, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and are calibrated with traceability to consensus reference, yet are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degrees to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  4. Measuring Broadband IR Irradiance in the Direct Solar Beam (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Reda, I.; Konings, J.; Xie, Y.; Dooraghi, M.; Sengupta, M.

    2015-03-01

    Solar and atmospheric science radiometers, e.g. pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference, which is maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, developed to measure extended broadband direct solar irradiance beyond the ultraviolet and infrared bands below and above 0.2 micrometers and 50 micrometers, respectively. On the other hand, pyranometers and pyrheliometers are developed to measure broadband shortwave irradiance from approximately 0.3 micrometers to 3 micrcometers, while the present photovoltaic cells are limited to approximately 0.3 micrometers to 1 micrometers. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus reference, yet calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster shows a method to measure the broadband IR irradiance in the direct solar beam from 3 micrometers to 50 micrometers, as first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The irradiance was measured from sunrise to sunset for 5 days when the sun disk was cloudless; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 for solar zenith angle from 80 degres to 16 degrees respectively; estimated uncertainty is 1.5 Wm-2.

  5. Measurements of an ion beam diameter extracted into air through a glass capillary

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Natsuko, E-mail: fujita.natsuko@jaea.go.jp [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Yamaki, Atsuko [Graduate School of Humanities and Sciences, Nara Women’s University, Nara, 630 8506 (Japan); Ishii, Kunikazu; Ogawa, Hidemi [Department of Physics, Nara Women’s University, Nara, 630 8506 (Japan)

    2013-11-15

    To establish techniques for in-air materials analysis using a glass capillary, we studied the beam distribution extracted in air as a function of the distance between the exit of the capillary and the target. We measured three-dimensional intensity distributions of the extracted beams, and compared the observed results with the model calculation. The comparison showed that the glass capillary technique is designed to reduce a divergence of the beam extracted into the air by a beam-focusing effect.

  6. Research on Radar Emitter Attribute Recognition Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described in detail. A new attribute recognition method based on attribute measure is presented in this paper. Application example is given, which demonstrates this new method is accurate and effective. Moreover, computer simulation for recognizing the emitter purpose is selected, and compared with classical statistical pattern recognition through simulation. The excellent experimental results demonstrate that this is a brand-new attribute recognition method as compared to existing statistical pattern recognition techniques.

  7. Investigation of the accuracy of M2 measurement of CO2 laser beams

    Science.gov (United States)

    Ward, Brooke A.; Assa, Shlomo; Davis, Brian W.; Edwards, Christopher B.; Muys, Peter F.

    1995-04-01

    The propagation parameters of CO2 laser beams have been investigated using second moment and knife-edge width measurement techniques. The characteristics of two laser types have been measured: a low power stabilized single frequency instrument and a prototype 3 kW laser. The propagation parameters have been estimated by using two commercial beam analyzing instruments: a rotating drum knife-edge device and a 2D array scanner. The propagation of errors through the analysis procedures has been investigated. The experiments were designed to assess the viability of the draft ISO standard for the measurement of beam width and propagation characteristics of real laser beams. Uncertainties in the estimated beam parameters, resulting from the propagation of errors, are taken into account when assessing the relative merits of the width measurement procedures. It was found that, for the high quality laser beam investigated, there were some small but systematic variations in estimating the width of waists of subject laser beams. In the case of the lower quality, high power laser beam, both the knife-edge and second moment techniques produced estimates of the input beam waist properties that were within the experimental uncertainty limits but again some inconsistency was displayed. It is suggested that the source of the inconsistency is diffraction by hard-edge apertures in the beam path. Nevertheless, the ISO standard procedures are judged to be suitable for the measurement of important beam parameters with an accuracy that is sufficient for the majority of industrial applications.

  8. A New Doppler Shift Spectroscopy for Measurement of Neutral Beam Profile

    Institute of Scientific and Technical Information of China (English)

    SHI Yue-Jiang; GAO Xiang; WAN Bao-Nian; WANG Guang-Qi; FU Jia; WU Zhen-Wei; CHANG Jia-Feng; SUN Dan-Peng; GAO Wei; HUANG Juan; ZHOU Qian

    2007-01-01

    A new diagnostic based on Doppler shift is designed to measure the power profile of a hydrogen or deuterium neutral beam on the magnetic confined fusion machines. The interference niters and multi-channel photon detector array (PDA) are the main components of this diagnosis. The multi-channel PDA measures the line integrated Doppler Ha signal emitted by the neutral beam at one section in two directions. The local intensity of neutral beam can be obtained with the tomography technique. Compared to the conventional calorimeter diagnoses, this diagnosis can provide the beam profile without blocking the injection of neutral beam.

  9. Measurement of Velocity Distribution in Atomic Beam by Diode Laser with Narrow Line width

    Institute of Scientific and Technical Information of China (English)

    CHEN Jingbiao; WANG Fengzhi; YANG Donghai; WANG YiQiu

    2001-01-01

    In this paper, by using the detecting laser beam interacts with the atomic beam at a sharp angle and the Doppler frequency shift effect, the velocity distribution in cesium atomic beam is measured with a diode laser of narrow linewidth of 1 MHz. The effects of the atomic natural line width and cycling transition detecting factor on the measured results have been analyzed. Finally, the measured results have been compared with the theoretical calculation.

  10. AN APPARATUS FOR MEASURING HEMISPHERICAL EMITTANCE OF SS-AlN SOLAR ABSORBING COATINGS USING A CALORIMETRIC TECHNIQUE%量热法SS-AlN太阳吸收涂层半球发射比测量装置

    Institute of Scientific and Technical Information of China (English)

    周旭; 郭帅; 王双; 池华敬; 陈革; 章其初

    2013-01-01

    An apparatus for measuring hemispherical emittance of SS-AlN solar absorbing coatings using a calorimetric technique has been laboratory-made.Three heaters,spaced by 3mm ceramic rings,heated with DC power supplies,were inserted inside the SS-AlN vacuum collector tube.Measuring the power dissipated in the central heater at the constant temperature for a vacuum solar collector tube,thus hemispherical emittance of the solar coating on the outside surface of an inner tube may be calculated.The hemispherical emittance of the SS-AlN solar absorbing coating of a vacuum tube at 80℃ was measured for several times,the measured value of εss-AlN(80℃) is 0.0596 ± 0.0004.In addition,the hemispherical emittance of the copper coating of a vacuum tube at 80℃ was measured,the measured value of εCu(80℃) is 0.0217 ±0.0002.The measured hemispherical emittance values with high precision have been achieved using this apparatus.%采用稳态量热法,研制了一台真空集热管内管外表面SS-AlN太阳吸收涂层半球发射比测量装置.集热管内置三段式加热器,采用直流电源给加热器供电,测量在恒定温度时主加热器的加热功率,计算得到该温度下吸收涂层的半球发射比.多次测量同一支SS-AlN集热管的选择性吸收涂层的80℃半球发射比εss-AlN(80℃) =0.0596±0.0004.另外,多次测量同一支Cu真空管的Cu涂层的半球发射比εCu(80℃) =0.0217 ±0.0002.采用该装置测量真空集热管的吸收涂层半球发射比,测量精度高.

  11. ROLE OF DIAMOND SECONDARY EMITTERS IN HIGH BRIGHTNESS ELECTRON SOURCES.

    Energy Technology Data Exchange (ETDEWEB)

    RAO, T.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-09-20

    In this paper we explore the possibility of using diamond secondary emitter in a high average current electron injector to amplify the current from the photocathode and to isolate the cathode and the injector from each other to increase the life time of the cathode and preserve the performance of the injector. Secondary electron yield of 225 and current density of 0.8 a/cm{sup 2} have been measured in the transmission mode from type 2 a natural diamond. Although the diamond will be heated during normal operation in the injector, calculations indicate that by cryogenically cooling the diamond, the temperature gradient along the diamond can be maintained within the acceptable range. The electron energy and temporal distributions are expected to be narrow from this device resulting in high brightness beams. Plans are underway to measure the SEY in emission mode, fabricate photocathode-diamond capsule and test diamond and capsule in superconducting RF injector.

  12. Industrial application of electron sources with plasma emitters

    CERN Document Server

    Belyuk, S I; Rempe, N G

    2001-01-01

    Paper contains a description, operation, design and parameters of electron sources with plasma emitters. One presents examples of application of these sources as part of automated electron-beam welding lines. Paper describes application of such sources for electron-beam deposition of composite powders. Electron-beam deposition is used to rebuild worn out part and to increase strength of new parts of machines and tools. Paper presents some examples of rebuilding part and the advantages gained in this case

  13. DC-SC Photoinjector with Low Emittance at Peking University

    CERN Document Server

    Xiang Rong; Hao, J; Huang, Senlin; Lu Xiang Yang; Quan, Shengwen; Zhang, Baocheng; Zhao, Kui

    2005-01-01

    High average power Free Electron Lasers require the high quality electron beams with the low emittance and the sub-picosecond bunches. The design of DC-SC photoinjector, directly combining a DC photoinjector with an SRF cavity, can produce high average current beam with moderate bunch charge and high duty factor. Because of the DC gun, the emittance increases quickly at the beginning, so a carefully design is needed to control that. In this paper, the simulation of an upgraded design has been done to lower the normalized emittance below 1.5mm·mrad. The photoinjector consists of a DC gap and a 2+1/2-cell SRF cavity, and it is designed to produce 4.2 MeV electron beams at 100pC bunch charge and 81.25MHz repetition rate (8 mA average current).

  14. Towards a mechanistic analysis of Benkelman beam deflection measurements

    NARCIS (Netherlands)

    Visser, A.F.H.M.; Priambodo Koesrindartono, D.

    2000-01-01

    This paper introduces and describes the Benkelman beam deflection test. Furthermore Benkelman beam tests are simulated using two multi-layer programs, based on an elastic and visco-elastic material model for asphalt. The results of these two programs are compared with each other. Finally, using the

  15. Subtraction of beam-associated background in R measurement

    CERN Document Server

    Yan Wen Biao; Chi Shao Peng; Huang Guang Shun; Zhang Lei; Zhang Li; Zhao Zheng Gu; Dai Yu Mei; Li Hui; Wang Zhi Yong

    2002-01-01

    Using R scan data collected at BES II detector, the authors study the character of beam-associated background. The authors use the method of f factor and the fitting of event vertices to subtract the residual beam-associated background. The difference between the R values obtained by using these two methods is between 0.3% and 2.3%

  16. Precisely measuring the orbital angular momentum of beams via weak measurement

    Science.gov (United States)

    Qiu, Jiangdong; Ren, Changliang; Zhang, Zhiyou

    2016-06-01

    We proposed and analyzed a scheme of precisely measuring orbital angular momentum (OAM) of the vortex beams with the help of weak measurement process. The orbital angular momentum information l of the unknown OAM state can be obtained by its spatial displacements. The valid condition of precisely measuring orbital angular momentum was completely discussed. Interestingly, it is shown that the measurement by using the two-dimensional spatial displacements jointly is very useful for precisely measuring the OAM state with a large orbital angular momentum l . The signal-to-noise ratio of the measurement can be enhanced by increasing the weak-coupling γ linearly as the valid condition is still satisfied. For fixed γ , the maximal signal-to-noise ratio for each weak value increases with the decrease of the weak value.

  17. Measuring the Polarization of a Rapidly Precessing Deuteron Beam

    CERN Document Server

    Bagdasarian, Z; Chiladze, D; Ciullo, G; Dietrich, J; Dymov, S; Eversmann, D; Fanourakis, G; Gaisser, M; Gebel, R; Gou, B; Guidoboni, G; Hejny, V; Kacharava, A; Kamerdzhiev, V; Lehrach, A; Lenisa, P; Lorentz, B; Magallanes, L; Maier, R; Mchedlishvili, D; Morse, W M; Nass, A; Oellers, D; Pesce, A; Prasuhn, D; Pretz, J; Rathmann, F; Shmakova, V; Semertzidis, Y K; Stephenson, E J; Stockhorst, H; Ströher, H; Talman, R; Engblom, P Thörngren; Valdau, Yu; Weidemann, C; Wüstner, P

    2014-01-01

    This paper describes a time-marking system that enables a measurement of the in-plane (horizontal) polarization of a 0.97-GeV/c deuteron beam circulating in the Cooler Synchrotron (COSY) at the Forschungszentrum J\\"ulich. The clock time of each polarimeter event is used to unfold the 120-kHz spin precession and assign events to bins according to the direction of the horizontal polarization. After accumulation for one or more seconds, the down-up scattering asymmetry can be calculated for each direction and matched to a sinusoidal function whose magnitude is proportional to the horizontal polarization. This requires prior knowledge of the spin tune or polarization precession rate. An initial estimate is refined by re-sorting the events as the spin tune is adjusted across a narrow range and searching for the maximum polarization magnitude. The result is biased toward polarization values that are too large, in part because of statistical fluctuations but also because sinusoidal fits to even random data will prod...

  18. Direct reaction measurements with a 132Sn radioactive ion beam

    CERN Document Server

    Jones, K L; Bardayan, D W; Blackmon, J C; Chae, K Y; Chipps, K A; Cizewski, J A; Erikson, L; Harlin, C; Hatarik, R; Kapler, R; Kozub, R L; Liang, J F; Livesay, R; Ma, Z; Moazen, B H; Nesaraja, C D; Nunes, F M; Pain, S D; Patterson, N P; Shapira, D; Shriner, J F; Smith, M S; Swan, T P; Thomas, J S

    2011-01-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the cross section. The magnitude of the nuclear effects was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N=82 shell closure. The data were analyzed using finite range adiabatic wave calculations and the results compared with the previous analysis using the distorted wave Born approximation. Angular distributions for the ground and first excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sect...

  19. Direct reaction measurements with a 132Sn radioactive ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine L.; Nunes, Filomena M.; Adekola, Aderemi S.; Bardayan, Dan W.; Blackmon, Jeff; Chae, K. Y.; Chipps, Kelly A.; Cizewski, Jolie A.; Erikson, Luke E.; Harlin, C.; Hatarik, R.; Kapler, R.; Kozub, Raymond L.; Liang, J. F.; Livesay, Ronald J.; Ma, Zhongguo J.; Moazen, B. H.; Nesaraja, Caroline D.; Pain, Steven D.; Patterson, N. P.; Shapira, Dan; Shriner, Jr., John F.; Smith, Michael S.; Swan, Thomas P.; Thomas, Jeff S.

    2011-09-01

    The (d,p) neutron transfer and (d,d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of 132Sn at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p1/2 state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus 208Pb.

  20. Experimental results of the laserwire emittance scanner for LINAC4 at CERN

    CERN Document Server

    Hofmann, T; Bosco, A.; Bravin, E.; Gibson, S.M.; Kruchinin, K.O.; Raich, U.; Roncarolo, F.; Zocca, F.

    2016-01-01

    Within the framework of the LHC Injector Upgrade (LIU), the new LINAC4 is currently being commissioned to replace the existing LINAC2 proton source at CERN. After the expected completion at the end of 2016, the LINAC4 will accelerate H- ions to 160 MeV. To measure the transverse emittance of the H- beam, a method based on photo-detachment is proposed. This system will operate using a pulsed laser with light delivered via an optical fibre and subsequently focused through a thin slice of the H- beam. The laser photons have sufficient energy to detach the outer electron and create H0/e- pairs. In a downstream dipole, the created H0 particles are separated from the unstripped H- ions and their distribution is measured with a dedicated detector. By scanning the focused laser across the H- beam, the transverse emittance of the H- beam can be reconstructed. This paper will first discuss the concept, design and simulations of the laser

  1. Variable emittance behavior of smart radiative coating

    Science.gov (United States)

    Guo, Li; Fan, Desong; Li, Qiang

    2016-02-01

    Smart radiative coating on yttria stabilized zirconia (YSZ) substrate was prepared by the sol-gel La{}1-xSr x MnO3 (x = 0.125, 0.175 and 0.2) nanoparticles and the binder composed of terpineol and ethyl cellulose. The crystallized structure, grain size, chemical compositions, magnetization and the surface morphology were characterized. The thermal radiative properties of coating in the infrared range was evaluated from infrared reflectance spectra at various temperatures. A single perovskite structure is detected in sol-gel nanoparticles with size 200 nm. Magnetization measurement reveals that room temperature phase transition samples can be obtained by appropriate Sr substitution. The influence of surface conditions and sintering temperature on the emittance of coating was observed. For rough coatings with root-mean-square roughness 640 nm (x = 0.125) and 800 nm (x = 0.175) , its emittance increment is 0.24 and 0.26 in in the temperature range of 173-373 K. Increasing sintering temperature to 1673 K, coating emittance variation improves to 0.3 and 0.302 respectively. After mechanical polishing treatment, the emittance increment of coatings are enhanced to 0.31 and 0.3, respectively. The results suggested that the emittance variation can be enhanced by reducing surface roughness and increasing sintering temperature of coating.

  2. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  3. Directional Thermal Emitter Simulation

    OpenAIRE

    Dhaka, Shailja; Sakr, Enas Said; Bermel, Peter

    2015-01-01

    The development of renewable energy sources has attracted increasing interest because of negative externalities associated with fossil fuel use. Thermophotovoltaics is a promising technology, in which a thermal emitter radiates photons which are directly converted into electricity using a photovoltaic diode. However, blackbody emission includes a broad range of wavelengths, but only higher energy photons can be converted into electricity. Thus, tailoring the selectivity of thermal emission is...

  4. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    CERN Document Server

    Sikora, John P

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. This paper describes a technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length, as well as greatly improving the signal to noise ratio.

  5. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  6. Measuring the non-separability of classically entangled vector vortex beams

    CERN Document Server

    McLaren, Melanie; Forbes, Andrew

    2015-01-01

    Given the multitude of applications of vector vortex beams there is a need for robust tools to measure them. Here we exploit the non-separability of such beams, akin to entanglement of quantum states, to apply tools traditionally associated with quantum measurements to these classical fields. We apply three measures of non-separability: a Bell inequality, a concurrence, and an entanglement entropy to define the "vectorness" of such beams. In addition to providing novel tools for the analysis of vector beams, we also introduce the concept of classical entanglement to explain why these tools are appropriate in the first place.

  7. Measurements of Spatial Dose Distributions of Proton Beam with the Use of Radiochromic Films

    CERN Document Server

    Mumot, M; Mytsin, G V

    2006-01-01

    A radiochromic film (RCF) is investigated for use in proton beam dosimetry in a water phantom. Investigations have been performed to measure the sensitivity of the RCF and its dependence on changing energy of the beam and on linear energy transfer (LET). Experiments were carried out with both unmodulated and modulated proton beams. The results show that the sensitivity of the RCF decreases with increasing LET and this effect increases errors of measurements for lower energies of the beam. Nevertheless, the radiochromic film seems to be an adequate detector for dosimetry in phantom measurements where high spatial resolution is required. The correction of the film sensitivity in the Bragg peak region is advisable.

  8. Procedures for the measurement of the extinction cross section of one particle using a Gaussian beam

    Science.gov (United States)

    Bosch, Salvador; Sancho-Parramon, Jordi

    2016-09-01

    Two procedures for the measurement of the extinction cross section (ECS) of one particle using a slightly focused Gaussian beam have been introduced and numerically tested. While the first one relies on previously introduced ideas and has close connection with the optical theorem, the second procedure is new and is mostly related with light measurements where the detector collects much of the energy of the incident beam. Both procedures prove to be valid and somehow complementary up to particle sizes of the order of the beam waist, thus enlarging the capability of simple measurement set-ups based on Gaussian beams for the estimation of the ECS of one particle.

  9. Electron beam dispersion measurements in nitrogen using two-dimensional imaging of N2(+) fluorescence

    Science.gov (United States)

    Clapp, L. H.; Twiss, R. G.; Cattolica, R. J.

    Experimental results are presented related to the radial spread of fluorescence excited by 10 and 20 KeV electron beams passing through nonflowing rarefied nitrogen at 293 K. An imaging technique for obtaining species distributions from measured beam-excited fluorescence is described, based on a signal inversion scheme mathematically equivalent to the inversion of the Abel integral equation. From fluorescence image data, measurements of beam radius, integrated signal intensity, and spatially resolved distributions of N2(+) first-negative-band fluorescence-emitting species have been made. Data are compared with earlier measurements and with an heuristic beam spread model.

  10. LHCb: A novel method for an absolute luminosity measurement at LHCb using beam-gas imaging

    CERN Multimedia

    Barschel, C

    2013-01-01

    A novel technique to measure the absolute luminosity at the Large Hadron Collider (LHC) using beam-gas interactions has been successfully used in the LHCb experiment. A gas injection device (SMOG) has been installed in the LHCb experiment to increase the pressure around the interaction point during dedicated fills. The Beam Gas Imaging method (BGI) has now the potential to surpass the accuracy of the commonly used van der Meer scan method (VDM). This poster presents the principles of the Beam Gas Imaging method used to measure the beam overlap integral. Furthermore the gas injection increased the accuracy measurement of the so-called ghost charges and also intensities per bunch.

  11. Simulated Measurements of Cooling in Muon Ionization Cooling Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [Fermilab

    2016-06-01

    Cooled muon beams set the basis for the exploration of physics of flavour at a Neutrino Factory and for multi-TeV collisions at a Muon Collider. The international Muon Ionization Cooling Experiment (MICE) measures beam emittance before and after an ionization cooling cell and aims to demonstrate emittance reduction in muon beams. In the current MICE Step IV configuration, the MICE muon beam passes through low-Z absorber material for reducing its transverse emittance through ionization energy loss. Two scintillating fiber tracking detectors, housed in spectrometer solenoid modules upstream and downstream of the absorber are used for reconstructing position and momentum of individual muons for calculating transverse emittance reduction. However, due to existence of non-linear effects in beam optics, transverse emittance growth can be observed. Therefore, it is crucial to develop algorithms that are insensitive to this apparent emittance growth. We describe a different figure of merit for measuring muon cooling which is the direct measurement of the phase space density.

  12. The Atacama Cosmology Telescope: Beam Measurements and the Microwave Brightness Temperatures of Uranus and Saturn

    OpenAIRE

    Hasselfield, Matthew; Moodley, Kavilan; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Dünner, Rolando; Fowler, Joseph W.; Gallardo, Patricio; Gralla, Megan B.; Hajian, Amir; Halpern, Mark; Hincks, Adam D.; Marriage, Tobias A.; Marsden, Danica

    2013-01-01

    We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilo-pixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty, to derive window functions relevant for angular power spect...

  13. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  14. Electron Cloud Density Measurements in Accelerator Beam-pipe Using Resonant Microwave Excitation

    OpenAIRE

    Sikora, John P.; Carlson, Benjamin T.; Duggins, Danielle O.; Hammond, Kenneth C.; De Santis, Stefano; Tencate, Alister J.

    2013-01-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the pha...

  15. On alternative methods for measuring the radius and propagation ratio of axially symmetric laser beams

    International Nuclear Information System (INIS)

    Based on the developed efficient numerical methods for calculating the propagation of light beams, the alternative methods for measuring the beam radius and propagation ratio proposed in the international standard ISO 11146 are analysed. The specific calculations of the alternative beam propagation ratios Mi2 performed for a number of test beams with a complicated spatial structure showed that the correlation coefficients ci used in the international standard do not establish the universal one-to-one relation between the alternative propagation ratios Mi2 and invariant propagation ratios Mσ2 found by the method of moments. (laser beams)

  16. An ultracold low emittance electron source

    CERN Document Server

    Xia, G; Murray, A J; Bellan, L; Bertsche, W; Appleby, R B; Mete, O; Chattopadhyay, S

    2014-01-01

    Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources lie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron s...

  17. Development of a Laser Wire Beam Profile Monitor, 1

    CERN Document Server

    Sakamura, Y; Matsuo, H; Sakai, H; Sasao, N; Higashi, Y; Korhonen, T T; Taniguchi, T; Urakawa, J; Sakamura, Yutaka; Hemmi, Yasuo; Matsuo, Hiroaki; Sakai, Hiroshi; Sasao, Noboru; Higashi, Yasuo; Korhonen, Timo; Taniguchi, Takashi; Urakawa, Junji

    1999-01-01

    A conceptual design work and a basic experimental study of a new beam profile monitor have been performed. The monitor will be used to measure emittance of an electron beam in the ATF damping ring at KEK, in which the transverse beam size of about 10 micron is expected. It utilizes a CW laser and an optical cavity, instead of a material wire, to minimize interference with an electron beam. A laser beam with a very thin waist is realized by employing the cavity of nearly concentric mirror configuration while the intensity is amplified by adjusting the cavity length to a Fabry-Perot resonance condition. We built a test cavity to establish a method to measure important parameters such as a laser beam waist and a power enhancement factor. Three independent methods were examined for the measurement of the beam waist. It was found that the cavity realized the beam waist of 20 micron with the power enhancement factor of 50.

  18. Measurement of the muon beam direction and muon flux for the T2K neutrino experiment

    CERN Document Server

    Suzuki, K; Ariga, A; Ariga, T; Bay, F; Bronner, C; Ereditato, A; Friend, M; Hartz, M; Hiraki, T; Ichikawa, A K; Ishida, T; Ishii, T; Juget, F; Kikawa, T; Kobayashi, T; Kubo, H; Matsuoka, K; Maruyama, T; Minamino, A; Murakami, A; Nakadaira, T; Nakaya, T; Nakayoshi, K; Oyama, Y; Pistillo, C; Sakashita, K; Sekiguchi, T; Suzuki, S Y; Tada, S; Yamada, Y; Yamamoto, K; Yokoyama, M

    2014-01-01

    The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties,measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be $(4.06\\pm0.05)\\times10^4$ cm$^{-2}$ normalized with $4\\times10^{11}$ protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected ba...

  19. Towards a mechanistic analysis of Benkelman beam deflection measurements

    OpenAIRE

    Visser, A.F.H.M.; Priambodo Koesrindartono, D.

    2000-01-01

    This paper introduces and describes the Benkelman beam deflection test. Furthermore Benkelman beam tests are simulated using two multi-layer programs, based on an elastic and visco-elastic material model for asphalt. The results of these two programs are compared with each other. Finally, using the model based on visco-elasticity as a benchmark, the limiting conditions for elastic analysis are indicated.

  20. Temperature measurements during high flux ion beam irradiations.

    Science.gov (United States)

    Crespillo, M L; Graham, J T; Zhang, Y; Weber, W J

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au(3+) ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. PMID:26931879