WorldWideScience

Sample records for beam emission spectroscopy

  1. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    Science.gov (United States)

    Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.

    2015-04-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.

  2. BATMAN beam properties characterization by the beam emission spectroscopy diagnostic

    International Nuclear Information System (INIS)

    Bonomo, F.; Ruf, B.; Schiesko, L.; Fantz, U.; Franzen, P.; Riedl, R.; Wünderlich, D.; Barbisan, M.; Pasqualotto, R.; Serianni, G.; Cristofaro, S.

    2015-01-01

    The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the H α light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of H α spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region

  3. Hard X-ray emission spectroscopy with pink beam

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Rossberg, Andre; Exner, Joerg; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    Valence-band X-ray emission spectroscopy (XES) with a ''pink beam'', i.e. a beam with large energy bandwidth produced by a double-multilayer monochromator, is introduced here to overcome the weak count rate of monochromatic beams produced by conventional double-crystal monochromators. Our results demonstrate that - in spite of the large bandwidth in the order of 100 eV - the high spectral resolution of the Johann-type spectrometer is maintained, while the two orders of magnitude higher flux greatly reduces the required counting time. The short working distance Johann-type X-ray emission spectrometer and multilayer monochromator is available at ROBL.

  4. Scrape-off layer-induced beam density fluctuations and their effect on beam emission spectroscopy

    Science.gov (United States)

    Moulton, D.; Marandet, Y.; Tamain, P.; Dif-Pradalier, G.

    2015-07-01

    A statistical model is presented to calculate the magnitude of beam density fluctuations generated by a turbulent scrape-off layer (SOL). It is shown that the SOL can induce neutral beam density fluctuations of a similar magnitude to the plasma density fluctuations in the core, potentially corrupting beam emission spectroscopy measurements. The degree of corruption is quantified by combining simulations of beam and plasma density fluctuations inside a simulated measurement window. A change in pitch angle from the separatrix to the measurement window is found to reduce the effect of beam fluctuations, whose largest effect is to significantly reduce the measured correlation time.

  5. Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission Spectroscopy system.

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J; Brix, M; Ghim, Y-C

    2016-02-01

    A Bayesian model of the emission spectrum of the JET lithium beam has been developed to infer the intensity of the Li I (2p-2s) line radiation and associated uncertainties. The detected spectrum for each channel of the lithium beam emission spectroscopy system is here modelled by a single Li line modified by an instrumental function, Bremsstrahlung background, instrumental offset, and interference filter curve. Both the instrumental function and the interference filter curve are modelled with non-parametric Gaussian processes. All free parameters of the model, the intensities of the Li line, Bremsstrahlung background, and instrumental offset, are inferred using Bayesian probability theory with a Gaussian likelihood for photon statistics and electronic background noise. The prior distributions of the free parameters are chosen as Gaussians. Given these assumptions, the intensity of the Li line and corresponding uncertainties are analytically available using a Bayesian linear inversion technique. The proposed approach makes it possible to extract the intensity of Li line without doing a separate background subtraction through modulation of the Li beam.

  6. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    NARCIS (Netherlands)

    Schmitz, O.; Beigman, I. L.; Vainshtein, L. A.; Schweer, B.; Kantor, M.; Pospieszczyk, A.; Xu, Y.; Krychowiak, M.; Lehnen, M.; Samm, U.; Unterberg, B.

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T-e(r, t) and electron density ne(r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed

  7. Time resolved optical emission spectroscopy of cross-beam pulsed laser ablation on graphite targets

    International Nuclear Information System (INIS)

    Sangines, R.; Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    Cross-beam pulsed laser ablation with two delayed lasers is performed on two perpendicular graphite targets. The time delay between lasers is varied by up to 5 μs, and physical changes on the second plasma, due to the interaction with the first generated one, are determined by time resolved optical emission spectroscopy

  8. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  9. Mechanical design of the two dimensional beam emission spectroscopy diagnostics on mast

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Istvan Gabor, E-mail: kiss.istvan.gabor@rmki.kfki.hu [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Meszaros, Botond; Dunai, Daniel; Zoletnik, Sandor; Krizsanoczi, Tibor [Association EURATOM, KFKI-RMKI, P.O. Box 49, H-1525 Budapest (Hungary); Field, Anthony R.; Gaffka, Rob [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2011-10-15

    A two dimensional beam emission spectroscopy (BES) system optimized for density turbulence measurements has recently been installed on the MAST tokamak. This system observes the emission of a Deuterium heating beam using a rotatable mirror to view from the plasma centre to the outboard edge (0.7-1.5 m), although the optics is optimized for core region (1.2 m). The beam is imaged onto a 4x8 pixel Avalanche Photodiode (APD) array detector, enabling measurements with 1 MHz bandwidth at photon-flux level of few times 10{sup 11} photons/s. This article will present the mechanical design of MAST BES equipment with special emphasis on its in-vessel components.

  10. 'Beam-emission spectroscopy' diagnostics also measure edge fast-ion light

    International Nuclear Information System (INIS)

    Heidbrink, W W; Bortolon, A; McKee, G R; Smith, D R

    2011-01-01

    Beam-emission spectroscopy (BES) diagnostics normally detect fluctuations in the light emitted by an injected neutral beam. Under some circumstances, however, light from fast ions that charge exchange in the high neutral-density region at the edge of the plasma make appreciable contributions to the BES signals. This 'passive' fast-ion D α (FIDA) light appears in BES signals from both the DIII-D tokamak and the National Spherical Torus Experiment (NSTX). One type of passive FIDA light is associated with classical orbits that traverse the edge. Another type is caused by instabilities that expel fast ions from the core; this light can complicate measurement of the instability eigenfunction.

  11. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  12. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J. [Department of Mechanical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Department of Electrical Engineering, University of Texas at Dallas, 800W Campbell Road, Richardson, Texas 75080 (United States); Verity Instruments, Inc., 2901 Eisenhower Street, Carrollton, Texas 75007 (United States); Department of Mathematical Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, Texas 75080 (United States)

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  13. Three-dimensional modeling of beam emission spectroscopy measurements in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guszejnov, D.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Pusztai, I. [Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Refy, D.; Zoletnik, S. [MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Lampert, M. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); MTA Wigner FK RMI, Association EURATOM, Pf. 49, H-1525 Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Gwahangno 113, Daejeon 305-333 (Korea, Republic of)

    2012-11-15

    One of the main diagnostic tools for measuring electron density profiles and the characteristics of long wavelength turbulent wave structures in fusion plasmas is beam emission spectroscopy (BES). The increasing number of BES systems necessitated an accurate and comprehensive simulation of BES diagnostics, which in turn motivated the development of the Rate Equations for Neutral Alkali-beam TEchnique (RENATE) simulation code that is the topic of this paper. RENATE is a modular, fully three-dimensional code incorporating all key features of BES systems from the atomic physics to the observation, including an advanced modeling of the optics. Thus RENATE can be used both in the interpretation of measured signals and the development of new BES systems. The most important components of the code have been successfully benchmarked against other simulation codes. The primary results have been validated against experimental data from the KSTAR tokamak.

  14. Status of electron temperature and density measurement with beam emission spectroscopy on thermal helium at TEXTOR

    International Nuclear Information System (INIS)

    Schmitz, O; Schweer, B; Pospieszczyk, A; Lehnen, M; Samm, U; Unterberg, B; Beigman, I L; Vainshtein, L A; Kantor, M; Xu, Y; Krychowiak, M

    2008-01-01

    Beam emission spectroscopy on thermal helium is used at the TEXTOR tokamak as a reliable method to obtain radial profiles of electron temperature T e (r, t) and electron density n e (r, t). In this paper the experimental realization of this method at TEXTOR and the status of the atomic physics employed as well as the major factors for the measurement's accuracy are evaluated. On the experimental side, the hardware specifications are described and the impact of the beam atoms on the local plasma parameters is shown to be negligible. On the modeling side the collisional-radiative model (CRM) applied to infer n e and T e from the measured He line intensities is evaluated. The role of proton and deuteron collisions and of charge exchange processes is studied with a new CRM and the impact of these so far neglected processes appears to be of minor importance. Direct comparison to Thomson scattering and fast triple probe data showed that for high densities n e > 3.5 x 10 19 m -3 the T e values deduced with the established CRM are too low. However, the new atomic data set implemented in the new CRM leads in general to higher T e values. This allows us to specify the range of reliable application of BES on thermal helium to a range of 2.0 x 10 18 e 19 m -3 and 10 eV e < 250 eV which can be extended by routine application of the new CRM.

  15. Turbulence imaging and applications using beam emission spectroscopy on DIII-D (invited)

    Science.gov (United States)

    McKee, G. R.; Fenzi, C.; Fonck, R. J.; Jakubowski, M.

    2003-03-01

    Two-dimensional measurements of density fluctuations are obtained in the radial and poloidal plane of the DIII-D tokamak with the Beam Emission Spectroscopy (BES) diagnostic system. The goals are to visualize the spatial structure and time evolution of turbulent eddies, as well as to obtain the 2D statistical properties of turbulence. The measurements are obtained with an array of localized BES spatial channels configured to image a midplane region of the plasma. 32 channels have been deployed, each with a spatial resolution of about 1 cm in the radial and poloidal directions, thus providing measurements of turbulence in the wave number range 0movies have broad application to a wide variety of fundamental turbulence studies: imaging of the highly complex, nonlinear turbulent eddy interactions, measurement of the 2D correlation function, and S(kr,kθ) wave number spectra, and direct measurement of the equilibrium and time-dependent turbulence flow field. The time-dependent, two-dimensional turbulence velocity flow-field is obtained with time-delay-estimation techniques.

  16. 2D scrape-off layer turbulence measurement using Deuterium beam emission spectroscopy on KSTAR

    Science.gov (United States)

    Lampert, M.; Zoletnik, S.; Bak, J. G.; Nam, Y. U.; Kstar Team

    2018-04-01

    Intermittent events in the scrape-off layer (SOL) of magnetically confined plasmas, often called blobs and holes, contribute significantly to the particle and heat loss across the magnetic field lines. In this article, the results of the scrape-off layer and edge turbulence measurements are presented with the two-dimensional Deuterium Beam Emission Spectroscopy system (DBES) at KSTAR (Korea Superconducting Tokamak Advanced Research). The properties of blobs and holes are determined in an L-mode and an H-mode shot with statistical tools and conditional averaging. These results show the capabilities and limitations of the SOL turbulence measurement of a 2D BES system. The results from the BES study were compared with the analysis of probe measurements. It was found that while probes offer a better signal-to-noise ratio and can measure blobs down to 3 mm size, BES can monitor the two-dimensional dynamics of larger events continuously during full discharges, and the measurement is not limited to the SOL on KSTAR.

  17. Bispectral analysis of harmonic oscillations measured using beam emission spectroscopy and magnetic probes in CHS

    International Nuclear Information System (INIS)

    Oishi, Tetsutarou; Yoshinuma, Mikirou; Ida, Katsumi; Akiyama, Tsuyoshi; Minami, Takashi; Nagaoka, Kenichi; Shimizu, Akihiro; Okamura, Shoichi; Kado, Shinichiro

    2008-01-01

    The coherent MHD oscillation, which consists of the fundamental frequency of several kilohertz and its higher harmonics, (harmonic oscillation: HO) has been observed in Compact Helical System. HO consists of two pairs of harmonic series. One is located in the core region near the ι=0.5 rational surface (denoted as 'HO (core)'), the other is located in the edge region near the ι=1.0 rational surface (denoted as 'HO (edge)'). In the present study, bispectral analysis is applied to the fluctuation data, for which HO is measured by beam emission spectroscopy (BES) and using magnetic probes. The analysis has revealed that fundamental mode of HO in both the magnetic and core density fluctuations have phase correlation with the harmonics including fundamental oscillation, while HO in edge density fluctuation does not have such phase correlation. Mode numbers of HOs are identical for harmonic components having different frequencies, i.e., m/n=-2/1 for HO (core) and m/n=-1/1 for HO (edge). It suggests that the generation of harmonics cannot be interpreted simply as mode coupling because the summation rule for the wavenumber is not satisfied, even though the bicoherence value is significant. The bicoherence value and relative amplitude of higher harmonics correlate with each other, which suggests that bicoherence indicates the degree of distortion of the signals. (author)

  18. Development of a high current 60 keV neutral lithium beam injector for beam emission spectroscopy measurements on fusion experiments

    Science.gov (United States)

    Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.

    2018-01-01

    A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.

  19. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian, E-mail: jsun@fudan.edu.cn

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission.

  20. A comparative study of the enhancement of molecular emission in a spatially confined plume through optical emission spectroscopy and probe beam deflection measurements

    International Nuclear Information System (INIS)

    Ding, Dayu; Liang, Peipei; Wu, Jiada; Xu, Ning; Ying, Zhifeng; Sun, Jian

    2013-01-01

    The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated. - Highlights: ► Spatial confinement and optical emission enhancement of carbon plume were studied. ► Ablation-generated shockwave propagating in air was reflected by a block disk. ► The effects of reflected shockwave on the emission enhancement were confirmed. ► The reflect shockwave confined the carbon plume and enhanced the plume emission

  1. Transient Infrared Emission Spectroscopy

    Science.gov (United States)

    Jones, Roger W.; McClelland, John F.

    1989-12-01

    Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a

  2. Ultrafast two-dimensional lithium beam emission spectroscopy diagnostic on the EAST tokamak

    Science.gov (United States)

    Zoletnik, S.; Hu, G. H.; Tál, B.; Dunai, D.; Anda, G.; Asztalos, O.; Pokol, G. I.; Kálvin, S.; Németh, J.; Krizsanóczi, T.

    2018-06-01

    A diagnostic instrument is described for the Experimental Advanced Superconducting Tokamak (EAST) for the measurement of the edge plasma electron density profile and plasma turbulence properties. An accelerated neutral lithium beam is injected into the tokamak and the Doppler shifted 670.8 nm light emission of the Li2p-2s transition is detected. A novel compact setup is used, where the beam injection and observation take place from the same equatorial diagnostic port and radial-poloidal resolution is achieved with microsecond time resolution. The observation direction is optimized in order to achieve a sufficient Doppler shift of the beam light to be able to separate from the strong edge lithium line emission on this lithium coated device. A 250 kHz beam chopping technique is also demonstrated for the removal of background light. First results show the capability of measuring turbulence and its poloidal flow velocity in the scrape-off layer and edge region and the resolution of details of transient phenomena like edge localized modes with few microsecond time resolution.

  3. Fast antihydrogen beam spectroscopy

    International Nuclear Information System (INIS)

    Neumann, R.

    1989-01-01

    The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydrogen beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described. (orig.)

  4. Sub-millisecond electron density profile measurement at the JET tokamak with the fast lithium beam emission spectroscopy system

    Science.gov (United States)

    Réfy, D. I.; Brix, M.; Gomes, R.; Tál, B.; Zoletnik, S.; Dunai, D.; Kocsis, G.; Kálvin, S.; Szabolics, T.; JET Contributors

    2018-04-01

    Diagnostic alkali atom (e.g., lithium) beams are routinely used to diagnose magnetically confined plasmas, namely, to measure the plasma electron density profile in the edge and the scrape off layer region. A light splitting optics system was installed into the observation system of the lithium beam emission spectroscopy diagnostic at the Joint European Torus (JET) tokamak, which allows simultaneous measurement of the beam light emission with a spectrometer and a fast avalanche photodiode (APD) camera. The spectrometer measurement allows density profile reconstruction with ˜10 ms time resolution, absolute position calculation from the Doppler shift, spectral background subtraction as well as relative intensity calibration of the channels for each discharge. The APD system is capable of measuring light intensities on the microsecond time scale. However ˜100 μs integration is needed to have an acceptable signal to noise ratio due to moderate light levels. Fast modulation of the beam up to 30 kHz is implemented which allows background subtraction on the 100 μs time scale. The measurement covers the 0.9 background subtraction, the relative calibration, and the comprehensive error calculation, runs a Bayesian density reconstruction code, and loads results to the JET database. The paper demonstrates the capability of the APD system by analyzing fast phenomena like pellet injection and edge localized modes.

  5. Edge electron density profiles and fluctuations measured by two-dimensional beam emission spectroscopy in the KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Y. U., E-mail: yunam@nfri.re.kr; Wi, H. M. [National Fusion Research Institute, Daejeon (Korea, Republic of); Zoletnik, S.; Lampert, M. [Wigner RCP Institute for Particle and Nuclear Physics, Budapest (Hungary); Kovácsik, Ákos [Institute of Nuclear Techniques, Budapest Technical University, Budapest (Hungary)

    2014-11-15

    Beam emission spectroscopy (BES) system in Korea Superconducting Tokamak Advanced Research (KSTAR) has recently been upgraded. The background intensity was reduced from 30% to 2% by suppressing the stray lights. This allows acquisition of the relative electron density profiles on the plasma edge without background subtraction from the beam power modulation signals. The KSTAR BES system has its spatial resolution of 1 cm, the temporal resolution of 2 MHz, and a total 32 channel (8 radial × 4 poloidal) avalanche photo diode array. Most measurements were done on the plasma edge, r/a ∼ 0.9, with 8 cm radial measurement width that covers the pedestal range. High speed density profile measurements reveal temporal behaviors of fast transient events, such as the precursors of edge localized modes and the transitions between confinement modes. Low background level also allows analysis of the edge density fluctuation patterns with reduced background fluctuations. Propagation of the density structures can be investigated by comparing the phase delays between the spatially distributed channels.

  6. Fast beam radiofrequency spectroscopy

    International Nuclear Information System (INIS)

    Pipkin, F.M.

    1983-01-01

    The combination of a fast atom or ion beam derived from a small accelerator with radiofrequency spectroscopy methods provides a powerful method for measuring the fine structure of atomic and molecular systems. The fast beam makes possible measurements in which two separated oscillatory fields are used to obtain resonance lines whose widths are less than the natural line width due to the lifetimes of the states. The separated oscillatory field lines have, in addition, a number of features which make possible measurements with greater precision and less sensitivity to systematic errors. The fast beam also makes accessible multiple photon radiofrequency transitions whose line width is intrinsically narrower than that of the single photon transitions and which offer great potential for high precision measurements. This report focuses on the techniques and their promise. Recent measurements of the fine structure of H and He + are used as illustrations

  7. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sechrest, Y.; Munsat, T. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Smith, D. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Stotler, D. P.; Zweben, S. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2015-05-15

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff.

  8. Comparison of beam emission spectroscopy and gas puff imaging edge fluctuation measurements in National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Sechrest, Y.; Munsat, T.; Smith, D.; Stotler, D. P.; Zweben, S. J.

    2015-01-01

    In this study, the close physical proximity of the Gas Puff Imaging (GPI) and Beam Emission Spectroscopy (BES) diagnostics on the National Spherical torus Experiment (NSTX) is leveraged to directly compare fluctuation measurements, and to study the local effects of the GPI neutral deuterium puff during H-mode plasmas without large Edge Localized Modes. The GPI and BES views on NSTX provide partially overlapping coverage of the edge and scrape-off layer (SOL) regions above the outboard midplane. The separation in the toroidal direction is 16°, and field lines passing through diagnostic views are separated by ∼20 cm in the direction perpendicular to the magnetic field. Strong cross-correlation is observed, and strong cross-coherence is seen for frequencies between 5 and 15 kHz. Also, probability distribution functions of fluctuations measured ∼3 cm inside the separatrix exhibit only minor deviations from a normal distribution for both diagnostics, and good agreement between correlation length estimates, decorrelation times, and structure velocities is found at the ±40% level. While the two instruments agree closely in many respects, some discrepancies are observed. Most notably, GPI normalized fluctuation levels exceed BES fluctuations by a factor of ∼9. BES mean intensity is found to be sensitive to the GPI neutral gas puff, and BES normalized fluctuation levels for frequencies between 1 and 10 kHz are observed to increase during the GPI puff

  9. Comparison between different methods of magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which are called 'static' and 'dynamic'. It is shown that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarisation analysers is installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of self-calibrating static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. (author) 5 refs.; 2 figs

  10. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  11. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  12. Extreme ultra-violet emission spectroscopy of highly charged gadolinium ions with an electron beam ion trap

    International Nuclear Information System (INIS)

    Ohashi, Hayato; Nakamura, Nobuyuki; Sakaue, Hiroyuki A

    2013-01-01

    We present extreme ultra-violet emission spectra of highly charged gadolinium ions obtained with an electron beam ion trap at electron energies of 0.53–1.51 keV. The electron energy dependence of the spectra in the 5.7–11.3 nm range is compared with calculation with the flexible atomic code. (paper)

  13. Edge harmonic oscillations at the density pedestal in the H-mode discharges in CHS Heliotron measured using beam emission spectroscopy and magnetic probe

    Energy Technology Data Exchange (ETDEWEB)

    Kado, S. [High Temperature Plasma Center, University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: kado@q.t.u-tokyo.ac.jp; Oishi, T. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yoshinuma, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ida, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Takeuchi, M. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Toi, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Minami, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nagaoka, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shimizu, A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Okamura, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Tanaka, S. [School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2007-06-15

    Edge harmonic oscillations (EHO) offer the potential to relax the H-mode pedestal in a tokamak, thus avoiding edge localised modes (ELM). The mode structure of the EHO in CHS was investigated using a poloidal array of beam emission spectroscopy (BES) and a magnetic probe array. The EHO exhibited a peculiar characteristic in which the first, second and third harmonics show the same wavenumber, suggesting that the propagation velocities are different. Change in the phase of higher harmonics at the time when that of the first harmonic is zero can be described as a variation along the (m, n) = (-2, 1) mode structure, though the EHO lies on the {iota} = 1 surface. This behavior leads to an oscillation that exhibits periodic dependence of shape on spatial position.

  14. Laser spectroscopy of radioactive beams

    International Nuclear Information System (INIS)

    Otten, E.W.

    1983-01-01

    The problem of using the laser spectroscopy in investigations radioactive beams is considered. The main attention is payed to the isotope shift of nuclear charge radii delta 2 >. The general trend of delta 2 > is discussed. Predictions for delta>r 2 < in the framework of the droplet model are given. It is noted that two parameter interpretation of the isotope shift based on the droplet model works the better, the further the distance spans and the clearer the nuclear structure is

  15. Active beam spectroscopy for ITER

    International Nuclear Information System (INIS)

    Von Hellermann, M.; Giroud, C.; Jaspers, R.; Hawkes, N.C.; Mullane, M.O.; Zastrow, K.D.; Krasilnikov, A.; Tugarinov, S.; Lotte, P.; Malaquias, A.; Rachlew, E.

    2003-01-01

    The latest status of 'Active Beam' related spectroscopy aspects as part of the ITER diagnostic scenario is presented. A key issue of the proposed scheme is based on the concept that in order to achieve the ultimate goal of global data consistency, all particles involved, that is, intrinsic and seeded impurity ions as well as helium ash ions and bulk plasma ions and also the plasma background data (e.g. magnetic and electric fields, electron density and temperature profiles) need to be addressed. A further sensible step in this direction is the decision of exploiting both a dedicated low-energy, low-power diagnostic beam (DNB, 2.2 MW 100 keV/amu) as well as the high-power, high-energy heating beams (HNB, 17 MW 500 keV/amu) for maximum diagnostic information. The authors report some new aspects referring to the use of DNB for motional Stark effect (MSE) where the main idea is to treat both beams (HNB and DNB) as potential diagnostic tools with complementary roles. The equatorial ports for the DNB promise excellent spatial resolution, however, the angles are less favourable for a polarimetric MSE exploitation. HNB can be used as probe beam for diagnosing slowing-down fusion alpha with a birth energy of 3,5 MeV

  16. Positronium emission spectroscopy

    International Nuclear Information System (INIS)

    Howell, R.H.; Tuomisaari, M.

    1988-08-01

    Measurements of the intensity, velocity, and angular distribution of positronium emitted from solid samples of metals and insulators have been performed using the intense, pulsed positron beam from the 100 MeV electron linac. From these data it is possible to determine properties of both the surface interactions and volume potentials of the materials studied. Examples of these effects will be given using measurements of positronium time of flight performed with the Livermore intense positron beam. The time of flight data have been augmented by positron lifetime and angular correlation measurements performed with the beam. Measurements resulting in workfunctions, deformation potentials and surface interaction effects will be reported for both metals and insulators. 18 refs., 2 figs

  17. Nanoscale Terahertz Emission Spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Kim, Hyewon; Colvin, Vicki L.

    By utilizing plasmonic coupling to an AFM probe, we demonstrate Laser Terahertz Emission Nanoscopy (LTEN) with sub-20 nm resolution. We demonstrate the resolution by imaging a single gold nanorod on an InAs substrate....

  18. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  19. Photoelectron spectroscopy of molecular beams

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1974-01-01

    The history of physical science is replete with examples of phenomena initially discovered and investigated by physicists, which have subsequently become tools of the chemist. It is demonstrated in this paper that the field of photoelectron spectroscopy may develop in a reverse fashion. After a brief introduction to the subject, the properties characterized as physical ones, are discussed. These are intensities and angular distributions, from which one can infer transition probabilities and phase shifts. Three separate experiments are described which involve accurate intensity measurements and it is shown how an interpretation of the results by appropriate theory has given new insight into the photoionization process. (B.R.H.)

  20. Analysis of emissions from prebunched electron beams

    Directory of Open Access Journals (Sweden)

    Jia Qika

    2017-07-01

    Full Text Available The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  1. EXAFS-spectroscopy on synchrotron radiation beam

    CERN Document Server

    Aksenov, V L; Kuzmin, A Y; Purans, Y

    2001-01-01

    In the review the basis theoretical principles of EXAFS spectroscopy are given, as one of principal directions of an absorption spectroscopy permitting with a high accuracy to gain parameters of the short-range order in multicomponent amorphous and quasi-crystal mediums. The methods of the analysis of EXAFS spectra with allowance of effects of multiply scattering are featured. The exposition of the experimental set-ups, which realize the method of EXAFS spectroscopy on beams of SR, requirement of the monochromatization of radiation beams are given. For investigation of phase transition and external effects the energy-dispersive EXAFS spectrometer is creating at the National center of SR Kurchatov Institute which can measure the EXAFS spectrum with a time resolution 3-5 ms. The experimental results on investigation (by the EXAFS spectroscopy method) of oxides of tungsten and molybdenum are given, which have unique property: the variable valence of an ion of metal is depending on external action. The most inter...

  2. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  3. Hertzian spectroscopy application to excited states in accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M L

    1974-01-01

    Accelerated ion beams enables the application of optical hertzian spectrometry methods to be extended to research on the excited states of free ionic systems. The photon beat method has proved especially simple to apply in beam foil geometry because of the unidirectional beam velocity while the beam gas device is suitable for experiments of the energy level crossing type. Only the resonance technique involving direct application of high-frequency magnetic fields poses serious problems because of the high HF powers necessary. So far structure intervals have been measured in ions carrying up to three charges (seven in the special case of Lamb shift measurements) with a precision of a few percent. Study of hydrogen-like or helium-like ions of high Z allows the fundamental calculations of quantum electrodynamics to be checked with regard to the Lamb shift or the spontaneous emission theory. In more complex electronic systems, optical spectroscopy of accelerated ion beams gives wavelengths with a resolution reaching 10/sup -5/, lifetimes with an accuracy better than 10% when the cascade effects are properly studied, and Lande factors with a precision of several % under present technical conditions. The photon beat method concerns hyperfine nuclear effects in light atoms of Z < = 20. (FR)

  4. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  5. Gamma spectroscopy: from steady beams to radioactive beams

    International Nuclear Information System (INIS)

    Stezowski, O.

    2008-06-01

    The author gives an overview of his research works in the field of gamma spectroscopy. First, he recalls some results of experiments performed for the study of peculiar structures associated with different modes of nucleus rotation, and notably in the case of collective rotation of deformed and even super-deformed nuclei. Then, he details tools and methods used to experimentally determine the level scheme. The main characteristics of steady and radioactive beams are briefly presented, and their complementarities and differences are highlighted. Specific spectrometers and sensors are described. In a last chapter, the author discusses several research projects he is involved in, and more particularly the 'gamma tracking' which is the fundamental principle for gamma multi-sensors of the next generations

  6. Characterizing Exoplanet Habitability with Emission Spectroscopy

    Science.gov (United States)

    Robinson, Tyler

    2018-01-01

    Results from NASA’s Kepler mission and other recent exoplanet surveys have demonstrated that potentially habitable exoplanets are relatively common, especially in the case of low-mass stellar hosts. The next key question that must be addressed for such planets is whether or not these worlds are actually habitable, implying they could sustain surface liquid water. Only through investigations of the potential habitability of exoplanets and through searches for biosignatures from these planets will we be able to understand if the emergence of life is a common phenomenon in our galaxy. Emission spectroscopy for transiting exoplanets (sometimes called secondary eclipse spectroscopy) is a powerful technique that future missions will use to study the atmospheres and surfaces of worlds orbiting in the habitable zones of nearby, low-mass stars. Emission observations that span the mid-infrared wavelength range for potentially habitable exoplanets provide opportunities to detect key habitability and life signatures, and also allow observers to probe atmospheric and surface temperatures. This presentation will outline the case for using emission spectroscopy to understand if an exoplanet can sustain surface liquid water, which is believed to be a critical precursor to the origin of life.

  7. Photon emission spectroscopy of ion-atom collisions

    International Nuclear Information System (INIS)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp 1 P 1 -levels have been measured by photon emission spectroscopy for the collision systems He + + He at 10 keV and He 2+ + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr q+ (q=7-9) and Xe q+ (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p 2 P-levels in Na-like Nb are reported together with lifetime for the 3s3p 3 P 1 -level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs

  8. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  9. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1974-01-01

    Practical aspects of the application of low-energy accelerators to research in beam-foil spectroscopy are discussed, and the kinds of equipment and associated costs are described in some detail. Some typical beam-foil experiments, emphasizing the most recent studies, are treated so as to show how relatively simple facilities can be used to produce physics of great interest

  10. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  11. Improving depth resolutions in positron beam spectroscopy by concurrent ion-beam sputtering

    Science.gov (United States)

    John, Marco; Dalla, Ayham; Ibrahim, Alaa M.; Anwand, Wolfgang; Wagner, Andreas; Böttger, Roman; Krause-Rehberg, Reinhard

    2018-05-01

    The depth resolution of mono-energetic positron annihilation spectroscopy using a positron beam is shown to improve by concurrently removing the sample surface layer during positron beam spectroscopy. During ion-beam sputtering with argon ions, Doppler-broadening spectroscopy is performed with energies ranging from 3 keV to 5 keV allowing for high-resolution defect studies just below the sputtered surface. With this technique, significantly improved depth resolutions could be obtained even at larger depths when compared to standard positron beam experiments which suffer from extended positron implantation profiles at higher positron energies. Our results show that it is possible to investigate layered structures with a thickness of about 4 microns with significantly improved depth resolution. We demonstrated that a purposely generated ion-beam induced defect profile in a silicon sample could be resolved employing the new technique. A depth resolution of less than 100 nm could be reached.

  12. Molecular-beam spectroscopy of interhalogen molecules

    International Nuclear Information System (INIS)

    Sherrow, S.A.

    1983-08-01

    A molecular-beam electric-resonance spectrometer employing a supersonic nozzle source has been used to obtain hyperfine spectra of 79 Br 35 Cl. Analyses of these spectra and of microwave spectra published by other authors have yielded new values for the electric dipole moment and for the nuclear quadrupole coupling constants in this molecule. The new constants are significantly different from the currently accepted values. Van der Waals clusters containing chlorine monofluoride have been studied under various expansion conditions by the molecular-beam electric-deflection method. The structural possibilities indicated by the results are discussed, and cluster geometries are proposed

  13. Atomic data for beam-stimulated plasma spectroscopy in fusion plasmas

    International Nuclear Information System (INIS)

    Marchuk, O.; Biel, W.; Schlummer, T.; Ralchenko, Yu.; Schultz, D. R.

    2013-01-01

    Injection of high energy atoms into a confined plasma volume is an established diagnostic technique in fusion research. This method strongly depends on the quality of atomic data for charge-exchange recombination spectroscopy (CXRS), motional Stark effect (MSE) and beam-emission spectroscopy (BES). We present some examples of atomic data for CXRS and review the current status of collisional data for parabolic states of hydrogen atoms that are used for accurate MSE modeling. It is shown that the collisional data require knowledge of the excitation density matrix including the off-diagonal matrix elements. The new datasets for transitions between parabolic states are used in an extended collisional-radiative model. The ratios between the σ- and π-components and the beam-emission rate coefficients are calculated in a quasi-steady state approximation. Good agreement with the experimental data from JET is found which points out to strong deviations from the statistical distribution for magnetic sublevels

  14. Laser spectroscopy in an lithium beam

    International Nuclear Information System (INIS)

    Duarte, A.; Sylvester, G.; Olivares, I.E.

    1998-01-01

    Full text: The absorption and fluorescence spectra were measured in a collimated and non-collimated atomic lithium beam by means of a diode laser. Spectral lines with a similar linewidth as the lines observed before in a stationary lithium vapor were observed in the non-collimated beam. The spatial structure of the gas region which emits fluorescence permits to observe in situ the hyperfine levels of lithium atoms: each level corresponds to a relatively plane and well defined region. This indicates that the atoms leave the oven following straight lines (otherwise the collisions would produce diffuse regions), which is in correspondence to the high values of the free mean path expected for the gas at this density, and the extension of the shadow left at the condensation plate. In the collimated beam (diameter D=1 mm, and divergence of 90 mrad), the absorption spectra has a width of 450 MHz (12 deg K or less), which permits the measurement of the hyperfine structure. In this case, from the absorption data we obtained ρD=2 x 10 14 atoms/m 2 . The temperature obtained from the Doppler width is consistent with the temperature obtained from the beam geometry. The lithium atom flow was measured with a quartz thickness monitor and based on estimates of the initial oven temperature and density measurements. Fluorescence measurements have better sensitivity ab do not present problems in the base line due to etalon effects. It is possible to observe the detail structure of the side wings in the line spectra

  15. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  16. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  17. On-line spectroscopy with thermal atomic beams

    International Nuclear Information System (INIS)

    Thibault, C.; Guimbal, P.; Klapisch, R.; Saint Simon, M. de; Serre, J.M.; Touchard, F.; Duong, H.T.; Jacquinot, P.; Juncar, P.

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a cw tunable dye laser interacts at right angles with a thermal atomic beam. sup(76-98)Rb, sup(118-145)Cs and sup(208-213)Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while sup(20-31)Na and sup(38-47)K have been studied by setting the apparaturs directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. (orig.)

  18. Polarization Studies in Fast-Ion Beam Spectroscopy

    International Nuclear Information System (INIS)

    Trabert, E

    2001-01-01

    In a historical review, the observations and the insight gained from polarization studies of fast ions interacting with solid targets are presented. These began with J. Macek's recognition of zero-field quantum beats in beam-foil spectroscopy as indicating alignment, and D.G. Ellis' density operator analysis that suggested the observability of orientation when using tilted foils. Lastly H. Winter's studies of the ion-beam surface interaction at grazing incidence yielded the means to produce a high degree of nuclear orientation in ion beams

  19. Inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyd, M.A.

    1985-01-01

    This atlas of inductively coupled plasma-atomic emission spectroscopy records the spectra of the elements in a way that would reveal the general nature of the spectra, in all their simplicity or complexity; and offers a definitive summary of the most prominent spectral lines of the elements, i.e., those most likely to be useful for the determination of trace and ultratrace concentrations; it provides reliable estimates, based on the recorded experimental spectra, of the powers of detection of the listed prominent lines; and assesses the very important problem of spectral interferences. The atlas is composed of three main sections. Part I is concerned with the historical aspects of compilations of spectral information. Part II is based on 232 wavelength scans of 70 elements. Each of the wavelength scans covers an 80 nm spectral region. These scans allow a rapid comparison of the background and spectral line intensities emitted in the ICP and provide a ready means for identification of the most prominent lines of each element and for estimation of the trace element analytical capabilities of these lines. A listing of 973 prominent lines with associated detection limits is also presented. Part III addresses the problem of spectral interferences. On this topic a detailed collection of coincidence profiles is presented for 281 of the most prominent lines, each with profiles of ten of the most prevalent concomitants superimposed. (Auth.)

  20. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  1. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  2. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  3. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  4. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  5. Laser spectroscopy of relativistic beams of H- and H

    International Nuclear Information System (INIS)

    Smith, W.W.; Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Bryant, H.C.; Reeder, R.A.; Toutounchi, H.; Sharifian, H.

    1989-01-01

    Laser spectroscopy on near-light velocity H- ions and H atoms has been carried out at the Los Alamos Meson Physics Facility using a variety of fixed frequency lasers intersecting accelerated beams at variable angles. Beam energies up to 800 MeV (v/c) = 0.84 make possible an unusually wide tuning range at modestly high resolution. A dedicated beam line, the High Resolution Atomic Beam (HIRAB), also makes possible Stark effect and field ionization studies in the multi-megavolt/cm range. Preliminary results on multiphoton detachment of fast H-ions using a pulsed CO 2 laser focussed to ∼10 11 W/cm 2 over a factor 10 photon energy range (CM frame) are presented in this paper

  6. Thermally emissive sensing materials for chemical spectroscopy analysis

    Science.gov (United States)

    Poole, Zsolt; Ohodnicki, Paul R.

    2018-05-08

    A sensor using thermally emissive materials for chemical spectroscopy analysis includes an emissive material, wherein the emissive material includes the thermally emissive materials which emit electromagnetic radiation, wherein the electromagnetic radiation is modified due to chemical composition in an environment; and a detector adapted to detect the electromagnetic radiation, wherein the electromagnetic radiation is indicative of the chemical interaction changes and hence chemical composition and/or chemical composition changes of the environment. The emissive material can be utilized with an optical fiber sensor, with the optical fiber sensor operating without the emissive material probed with a light source external to the material.

  7. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  8. Determination of Serum Lithium by Flame Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    R. Nafissy

    1976-07-01

    Full Text Available Lithum can be de termined both by atomic absorption spectroscopy andflame emission spectroscopy. We have used the later method with a Zeiss Model pMQlI spectro photometer fitt ed with ante-chamber atomizer and a potensiome rric line recorder. Accurate ana lysis for the clement was acco mplished due to a sophisracared measuring instrument.

  9. Beam line design for synchrotron spectroscopy in the VUV

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M R

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection.

  10. In-beam gamma spectroscopy of /sup 82/Sr

    CERN Document Server

    Dewald, A; Gelberg, A; Kaup, U; Von Brentano, P; Zell, K O

    1981-01-01

    The excited levels of /sup 82/Sr have been investigated by means of in-beam gamma-ray spectroscopy via the reactions /sup 72/Ge(/sup 12/C, 2n), /sup 66/Zn(/sup 19/F, p2n), and /sup 79/Br(/sup 6/Li, 3n). Lifetimes of excited states were measured by the recoil distance method. Excitation energies and B(E2) values have been compared with calculations using the Interacting Boson Model. (19 refs).

  11. Beam line design for synchrotron spectroscopy in the VUV

    International Nuclear Information System (INIS)

    Howells, M.R.

    1980-01-01

    The character of the radiation source provided by an electron storage ring is briefly reviewed from the point of view of utilization for VUV spectroscopy. The design of beam line components is then considered with special reference to the problems of contamination of optical surfaces and vacuum protection. The issues involved in designing mirrors for use with storage rings are considered with emphasis on the questions of power dissipation, image quality and materials selection

  12. In-beam spectroscopy of 253,254No

    International Nuclear Information System (INIS)

    Herzberg, R.D.; Amzal, N.; Bastin, J.E.; Brew, P.M.T.; Butler, P.A.; Chewter, A.J.C.; Hammond, N.J.; Humphreys, R.D.; Jones, G.D.; Becker, F.; Hauschild, K.; Houry, M.; Huerstel, A.; Cocks, J.F.C.; Dorvaux, O.; Greenlees, P.T.; Eskola, K.; Gerl, J.; Hessberger, F.; Helariutta, K.; Jones, P.M.; Julin, R.; Juutinen, S.; Kankaanpaeae, H.; Kettunen, H.; Khoo, T.L.; Korten, W.; Kuusiniemi, P.; Le Coz, Y.; Leino, M.; Leppaenen, C.J.; Lister, A.P.; Lucas, R.; Muikku, M.; Nieminen, P.; Page, R.D.; Page, T.; Rahkila, P.; Reiter, P.; Schlegel, Ch.; Scholey, C.; Sletten, G.; Stezowski, O.; Theisen, Ch.; Trzaska, W.H.; Uusitalo, J.; Wollersheim, H.J.

    2002-01-01

    In-beam conversion electron spectroscopy experiments have been performed on the transfermium nuclei 253, 254 No using the conversion electron spectrometer SACRED in nearly collinear geometry in conjunction with the gas-filled separator RITU at the University of Jyvaeskylae. The experimental setup is discussed and the spectra are compared to Monte Carlo simulations. The implications for the ground-state configuration of 253 No are discussed. (orig.)

  13. Laser Induced Breakdown Spectroscopy Based on Single Beam Splitting and Geometric Configuration for Effective Signal Enhancement

    Science.gov (United States)

    Yang, Guang; Lin, Qingyu; Ding, Yu; Tian, Di; Duan, Yixiang

    2015-01-01

    A new laser induced breakdown spectroscopy (LIBS) based on single-beam-splitting (SBS) and proper optical geometric configuration has been initially explored in this work for effective signal enhancement. In order to improve the interaction efficiency of laser energy with the ablated material, a laser beam operated in pulse mode was divided into two streams to ablate/excite the target sample in different directions instead of the conventional one beam excitation in single pulse LIBS (SP-LIBS). In spatial configuration, the laser beam geometry plays an important role in the emission signal enhancement. Thus, an adjustable geometric configuration with variable incident angle between the two splitted laser beams was constructed for achieving maximum signal enhancement. With the optimized angles of 60° and 70° for Al and Cu atomic emission lines at 396.15 nm and 324.75 nm respectively, about 5.6- and 4.8-folds signal enhancements were achieved for aluminum alloy and copper alloy samples compared to SP-LIBS. Furthermore, the temporal analysis, in which the intensity of atomic lines in SP-LIBS decayed at least ten times faster than the SBS-LIBS, proved that the energy coupling efficiency of SBS-LIBS was significantly higher than that of SP-LIBS. PMID:25557721

  14. PLASMA EMISSION BY COUNTER-STREAMING ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2016-02-10

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  15. In-beam conversion electron spectroscopy using the SACRED array

    International Nuclear Information System (INIS)

    Jones, P.M.; Cann, K.J.; Cocks, J.F.C.; Jones, G.D.; Julin, R.; Schulze, B.; Smith, J.F.; Wilson, A.N.

    1997-01-01

    Conversion electron studies of medium-heavy to heavy nuclear mass systems are important where the internal conversion process begins to dominate over gamma-ray emission. The use of a segmented detector array sensitive to conversion electrons has been used to study multiple conversion electron cascades from nuclear transitions. The application of the silicon array for conversion electron detection (SACRED) for in-beam measurements has successfully been implemented. (orig.). With 2 figs

  16. N-15 analysis by emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-12-31

    The stable isotope of nitrogen, N-15, has become widely used as tracer in agriculture, medicine and biology research. The film gives an overview of the sample preparation and analytical procedures followed in the analysis of the nitrogen isotopic composition (14N/15N ratio) by optical emission spectrometry at the Seibersdorf Laboratory. The subsampling of plant material and the several steps of chemical pretreatment such as Kjeldahl digestion, distillation, titration and adjustment of the proper N concentration in the extract are demonstrated. The preparation of the discharge tubes is shown in detail. Final measurement of the 14N/15N ratio is carried out with the NOI-5 and JASCO emission spectrometers

  17. Ion desorption induced by charged particle beams: mechanisms and mass spectroscopy

    International Nuclear Information System (INIS)

    Silveira, E.F. da; Schweikert, E.A.

    1988-01-01

    Surface analysis, through desorption, induced by fast particles, is presented and discussed. The stopping of projectils is essentially made by collisions with the target electrons. The desorbed particles are generally emmited with kinetic energy from 0.1 to 20 eV. Mass, charge, velocity and emission angle give information about the surface components, its structure as well as beam-solid interaction processes. Time-of-flight mass spectroscopy of desorbed ions, determine the mass of organic macromolecules and biomolecules. (A.C.A.S.) [pt

  18. Combined in-beam gamma-ray and conversion electron spectroscopy with radioactive ion beams

    Directory of Open Access Journals (Sweden)

    Konki J.

    2013-12-01

    Full Text Available In-beam gamma-ray and electron spectroscopy have been widely used as tools to study the broad variety of phenomena in nuclear structure. The SPEDE spectrometer is a new device to be used in conjunction with the MINIBALL germanium detector array to enable the detection of internal conversion electrons in coincidence with gamma rays from de-exciting nuclei in radioactive ion beam experiments at the upcoming HIE-ISOLDE facility at CERN, Switzerland. Geant4 simulations were carried out in order to optimise the design and segmentation of the silicon detector to achieve good energy resolution and performance.

  19. Practical and research aspects of beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Bashkin, S.

    1975-01-01

    The application of a heavy-ion accelerator to research in beam-foil spectroscopy requires certain capital equipment which is somewhat unorthodox when viewed from the standpoint of conventional, low-energy nuclear physics. It is necessary that people who wish to expand their accelerator work to include beam-foil studies understand the nature and cost of such major apparatus. We will survey the equipment needs, starting with the particle analyzer at the output of the accelerator and including the equipment used in a variety of beam-foil experiments. Electronic and computer devices will not be discussed since they are essentially identical with those employed in nuclear studies. Considerable attention will be given to optical spectrometers and spectographs including simple instruments which might be used by a laboratory just getting started in beam-foil research, or which has limited financial resources. Attention will be given to the production and use of the exciter foils. We will then discuss some typical beam-foil experiments having to do with the excitation, detection, and analysis of spectral lines from electronic levels in multiply-ionized atoms, and also with the measurement of the mean lives of such levels. Finally, we will review some of the special properties of the beam-foil light source as regards the population of the magnetic sub-states of a given level. Recent work on the character of the emitted light will be presented. That work will deal specifically with the origin of the polarization of the light. The relevant experiments involve varying the angle between the plane of the exciter foil and the particle velocity. (author)

  20. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Science.gov (United States)

    Peña-Díaz, M.; Ponce, L.; Arronte, M.; Flores, T.

    2007-04-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  1. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T [Laboratorio TecnologIa Laser, CICATA-IPN, Unidad Altamira, Carretera Tampico-Puerto Ind. Altamira, 89600, TAMPS (Mexico)

    2007-04-15

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained.

  2. Emission spectroscopy analysis during Nopal cladodes dethorning by laser ablation

    International Nuclear Information System (INIS)

    Pena-Diaz, M; Ponce, L; Arronte, M; Flores, T

    2007-01-01

    Optical emission spectroscopy of the pulsed laser ablation of spines and glochids from Opuntia (Nopal) cladodes was performed. Nopal cladodes were irradiated with Nd:YAG free-running laser pulses on their body, glochids and spines. Emission spectroscopy analyses in the 350-1000 nm region of the laser induced plasma were made. Plasma plume evolution characterization, theoretical calculations of plasma plume temperature and experiments varying the processing atmosphere showed that the process is dominated by a thermally activated combustion reaction which increases the dethorning process efficiency. Therefore, appropriate laser pulse energy for minimal damage of cladodes body and in the area beneath glochids and spines can be obtained

  3. Evaluation of two-beam spectroscopy as a plasma diagnostic

    International Nuclear Information System (INIS)

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler

  4. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    Science.gov (United States)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  5. Electron beam injection during active experiments. I - Electromagnetic wave emissions

    Science.gov (United States)

    Winglee, R. M.; Kellogg, P. J.

    1990-01-01

    The wave emissions produced in Echo 7 experiment by active injections of electron beams were investigated to determine the properties of the electromagnetic and electrostatic fields for both the field-aligned and cross-field injection in such experiments and to evaluate the sources of free energy and relative efficiencies for the generation of the VLF and HF emissions. It is shown that, for typical beam energies in active experiments, electromagnetic effects do not substantially change the bulk properties of the beam, spacecraft charging, and plasma particle acceleration. Through simulations, beam-generated whistlers; fundamental z-mode and harmonic x-mode radiation; and electrostatic electron-cyclotron, upper-hybrid, Langmuir, and lower-hybrid waves were identified. The characteristics of the observed wave spectra were found to be sensitive to both the ratio of the electron plasma frequency to the cyclotron frequency and the angle of injection relative to the magnetic field.

  6. Electron beam induced emission from carbon plasmas

    International Nuclear Information System (INIS)

    Whetstone, S.; Kammash, T.

    1989-01-01

    Plasma use as a lasing medium has many potential advantages over conventional techniques including increased power levels and greater wavelength ranges. The basic concept is to heat and then rapidly cool a plasma forcing inversion through bottleneck creation between the recombination reaction populating a given energy level and the subsequent decay processes. Much effort has been devoted to plasmas heated by lasers and pinch devices. The authors are concerned here with electron beam heated plasmas focusing on the CIV 5g-4f transition occurring at 2530 Angstroms. These studies were initiated to provide theoretical support for experiments being performed at the University of Michigan using the Michigan Electron Long-Pulse Beam Accelerator (MELBA)

  7. Erratum: Back reaction, emission spectrum and entropy spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Cai, Xu

    2012-06-01

    In our paper [Qing-Quan Jiang and Xu Cai, Back reaction, emission spectrum and entropy spectroscopy, JHEP 11 (2010) 066], there was an error in using the first law of black hole thermodynamic and the Bohr-Sommerfeld quantization rule. In this erratum, we attempt to rectify them.

  8. Emission spectroscopy on a supersonically expanding argon/silane plasma

    NARCIS (Netherlands)

    Meeusen, G.J.; Ershov-Pavlov, E.A.; Meulenbroeks, R.F.G.; Sanden, van de M.C.M.; Schram, D.C.

    1992-01-01

    Results from emission spectroscopy measurements on an Ar/SiH/sub 4/ plasma jet which is used for fast deposition of amorphous hydrogenated silicon are presented. The jet is produced by allowing a thermal cascaded arc plasma in argon (I=60 A, V=80 V, Ar flow=60 scc/s and pressure 4*10/sup 4/ Pa) to

  9. Emission Line Imaging and Spectroscopy of Distant Galaxies

    DEFF Research Database (Denmark)

    Zabl, Johannes Florian

    for the gas surrounding a galaxy. Around some objects the extended Ly αemission is so strong that it can be detected for individual objects. In this thesis extremely deep VLT/XSHOOTER rest-frame far-UV spectroscopy is presented for Himiko, a gigantic Ly α emitter at redshift z = 6.6 or a time when...

  10. Isotope analysis by emission spectroscopy; Analyse isotopique par spectroscopie d'emission

    Energy Technology Data Exchange (ETDEWEB)

    Artaud, J; Gerstenkorn, S [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Blaise, J [Centre National de la Recherche Scientifique (CNRS), Lab. Aime Cotton, 92 - Meudon-Bellevue (France)

    1959-07-01

    Quantitative analysis of isotope mixtures by emission spectroscopy is resulting from the phenomenon called 'isotope shift', say from the fact that spectral lines produced by a mixture of isotopes of a same element are complex. Every spectral line is, indeed, resulting from several lines respectively corresponding to each isotope. Then isotopic components are near one to others, and their separation is effected by means of Fabry-Perot calibration standard: the apparatus allowing to measure abundances is the Fabry-Perot photo-electric spectrometer, designed in 1948 by MM. JACQUINOT and DUFOUR. This method has been used to make abundance determination in the case of helium, lithium, lead and uranium. In the case of lithium, the utilised analysis line depends on the composition of examined isotopic mixture. For mixtures containing 7 to 93 pour cent of one of isotopes of lithium, this line is the lithium blue line: {lambda} = 4603 angstrom. In other cases the red line {lambda} = 6707 angstrom is preferable, though it allows to do easily nothing but relative determinations. Helium shows no particular difficulty and the analysis line selected was {lambda} = 6678 angstrom. For lead the line {lambda} = 5201 angstrom gives the possibility to determine the isotope abundance for the four isotopes of lead notwithstanding the presence of hyperfine structure of {sup 207}Pb. For uranium, line {lambda} 5027 angstrom is used, and this method allows to determine the composition of isotope mixtures, the content of which in {sup 235}U may shorten to 0,1 per cent. Relative precision is about 2 per cent for contents in {sup 235}U over 1 per cent. For lower contents, this line {lambda} = 5027 angstrom will allow relative measures when using previously dosed mixtures. (author) [French] L'analyse quantitative des melanges isotopiques par spectroscopie d'emission doit son existence au phenomene appele 'deplacement isotopique', c'est-a-dire au fait que les raies spectrales emises par un

  11. Multiphoton Ionization Detection in Collinear Laser Spectroscopy of Isolde Beams

    CERN Multimedia

    2002-01-01

    The experiments using the multiphoton ionization technique have been continued in the beginning of 1990 with stable beam tests on the modified apparatus and with another radioactive beam time on Yb. Higher laser power and an increased vacuum in the ionization region (see figure) yielded a further gain in sensitivity, mainly due to the better suppression of the background ions produced in rest gas collisions. For even Yb isotopes we have now reached a detection efficiency of $\\epsilon$~=~1~x~10$^{-5}$ ions per incoming atom at a background count rate of 30~ions from a beam of 5~x~10$^9$. This sensitivity was high enough for spectroscopy on $^{157}$Yb, where the typical ISOLDE yield of 5~x~10$^7$Yb ions is covered by an isobaric contamination of more than 10$^{10}$ ions. Measurements have also been performed on $^{175}$Yb. These give the first precise value for the magnetic moment of this isotope, $\\mu$~=~0.766(8)$ mu _{N} $, which agrees rather well with the magnetic moment of the isotone $^{177}$Hf. The isoto...

  12. Process control with optical emission spectroscopy in triode ion plating

    International Nuclear Information System (INIS)

    Salmenoja, K.; Korhonen, A.S.; Sulonen, M.S.

    1985-01-01

    Physical vapor deposition (PVD) techniques used to prepare, e.g., hard TiN, HfN, or ZrN coatings include a great variety of processes ranging from reactive evaporation to sputtering and ion plating. In ion plating one effective way to enhance ionization is to use a negatively biased hot filament. The use of an electron emitting filament brings an extra variable to be taken into account in developing the process control. In addition, proper control of the evaporation source is critical in ensuring reproducible results. With optical emission spectroscopy (OES) it should be possible to control the coating process more accurately. The stoichiometry and the composition of the growing coating may then be ensured effectively in subsequent runs. In this work the application of optical emission spectroscopy for process control in triode ion plating is discussed. The composition of the growing coating is determined experimentally using the relative intensities of specific emission lines. Changes in the evaporation rate and the gas flow can be seen directly from emission line intensities. Even the so-called poisoning of the evaporation source with reactive gas can be detected. Several experimental runs were carried out and afterwards the concentration profiles of the deposited coatings were checked with the nuclear resonance broadening (NRB) method. The results show the usefulness of emission spectroscopy in discharge control

  13. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I; Clarke, R

    2016-01-01

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  14. SU-F-J-46: Feasibility of Cerenkov Emission for Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oraiqat, I; Rehemtulla, A; Lam, K; Ten Haken, R; El Naqa, I [University of Michigan, Radiation Oncology, Ann Arbor, MI (United States); Clarke, R [University of Michigan, Physics Department, Ann Arbor, MI (United States)

    2016-06-15

    Purpose: Cerenkov emission (CE) is a promising tool for online tumor microenvironment interrogation and targeting during radiotherapy. In this work, we utilize CE generated during radiotherapy as a broadband excitation source for real-time absorption spectroscopy. We demonstrate the feasibility of CE spectroscopy using a controlled experiment of materials with known emission/absorption properties. Methods: A water tank is irradiated with 20 MeV electron beam to induce Cerenkov emission. Food coloring dyes (Yellow #5, Red #40, and Blue #1), which have known emission/absorption properties were added to the water tank with increasing concentration (1 drop (0.05 mL), 2 drops, and 4 drops from a dispenser bottle). The signal is collected using a condensing lens which is coupled into a 20m optical fiber that is fed into a spectrometer that measures the emitted spectra. The resulting spectra from water/food coloring dye solutions were normalized by the reference spectrum, which is the Cerenkov spectrum of pure water, correcting for both the nonlinearity of the broadband Cerenkov emission spectrum as well as the non-uniform spectral response of the spectrometer. The emitted spectra were then converted into absorbance and their characteristics were analyzed. Results: The food coloring dye had a drastic change on the Cerenkov emission, shifting its wavelength according to its visible color. The collected spectra showed various absorbance peaks which agrees with tabulated peak positions of the dyes added within 0.3% for yellow, 1.7% for red, and 0.16% for blue. The CE peak heights proportionally increased as the dye concentration is increased. Conclusion: This work shows the potential for real-time functional spectroscopy using Cerenkov emission during radiotherapy. It was demonstrated that molecule identification as well as relative concentration can be extracted from the Cerenkov emission color shift.

  15. Electron cyclotron emission spectroscopy on thermonuclear plasmas

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.

    1987-01-01

    Analysis of electron cyclotron emission (ECE) enables one to infer the radial profile of the electron temperature in tokamaks. The Dutch FOM institute for plasma physics has designed, built, installed and operated a grating polychromator for ECE measurements at JET. This thesis deals with a few instrumental aspects of this project and with applications of ECE measurements in tokamak physics studies. Ch. 3 and 4 deal with the wave transport in ECE systems. In Ch. 3 a method is developed to infer the mode conversion, which is a source for transmission losses, in a waveguide component from the antenna pattern of its exit aperture. In Ch. 4 the design and manufacture of the waveguide transition system to the grating polychromator are described. In Ch. 5 a method is reported for calibration of the spectrometers, based on the use of a microwave source which simulates a large area blackbody of very high temperature. The feasibility of the method is tested by applying it to two different ECE systems. In Ch. 6 a study of heat pulse propagation in tokamak plasma's, based on measurement of the electron temperature with the grating polychromator, is presented. 105 refs.; 48 figs.; 8 tabs

  16. Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation"

    CERN Document Server

    Gover, A

    2005-01-01

    A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a...

  17. Particle-Induced Gamma-ray Emission Spectroscopy Over a Broad Range of Elements

    Science.gov (United States)

    Olds, Hannah; Wilkinson, John; Tighe, Meghanne; McLallen, Walter; McGuire, Patrick

    2017-09-01

    Ion beam analysis is a common application of nuclear physics that allows elemental and isotopic information about materials to be determined from accelerated light ion beams One of the best know ion beam analysis techniques is Particle-Induced Gamma-ray Emission (PIGE) spectroscopy, which can be used ex vacuo to identify the elements of interest in almost any solid target. The energies of the gamma-rays emitted by excited nuclei will be unique to each element and depend on its nuclear structure. For the most sensitivity, the accelerated ions should exceed the Coulomb barrier of the target, but many isotopes are known to be accessible to PIGE even below the Coulomb barrier. To explore the sensitivity of PIGE across the periodic table, PIGE measurements were made on elements with Z = 5, 9, 11-15, 17, 19-35, 37, 42, 44-48, 53, 56, 60, 62, 73, and 74 using 3.4 MeV protons. These measurements will be compared with literature values and be used as a basis for comparison with higher-energy proton beams available at the University of Notre Dame's St. Andre accelerator when it comes online this Fall. The beam normalization technique of using atmospheric argon and its 1459 keV gamma-ray to better estimate the integrated beam on target will also be discussed. Funded by the NSF REU program and the University of Notre Dame.

  18. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    International Nuclear Information System (INIS)

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  19. Progress towards antihydrogen hyperfine spectroscopy in a beam

    Energy Technology Data Exchange (ETDEWEB)

    Widmann, Eberhard [Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Collaboration: ASACUSA CUSP collaboration

    2014-07-01

    The spectroscopy of antihydrogen promises one of the most precise tests of CPT symmetry. The ASACUSA CUSP collaboration at the Antiproton Decelerator of CERN is preparing an experiment to measure the ground-state hyperfine structure GS-HFS of antihydrogen, since this quantity is one of the most precisely determined transitions in ordinary hydrogen (relative accuracy ∝10{sup -12}). The experiment uses a Rabi-type atomic beam apparatus consisting of a source of spin-polarized antihydrogen (a so-called cusp trap), a microwave cavity to induce a spin flip, a superconducting sextuple magnet for spin analysis, and an antihydrogen detector. In this configuration, a relative accuracy of better than 10{sup -6} can be obtained. This precision will already allow to be sensitive to finite size effects of the antiproton, provided its magnetic moment will measured to higher precision, which is in progress by two collaborations at the AD. The recent progress in producing a beam of antihydrogen atoms and in the development of the apparatus as well as ways to further improve the accuracy by using the Ramsey method of separated oscillatory fields are presented.

  20. Development of a Reference Database for Particle Induced Gamma Ray Emission (PIGE) Spectroscopy

    International Nuclear Information System (INIS)

    2017-09-01

    Ion beam analysis techniques are non-destructive analytical techniques used to identify the composition and structure of surface layers of materials. The applications of these techniques span environmental control, cultural heritage and conservation, materials and fusion technologies. The particle-induced gamma-ray emission (PIGE) spectroscopy technique in particular, is a powerful tool for detecting light elements in certain depths of surface layers. This publication describes the coordinated effort to measure and compile cross section data relevant to PIGE analysis and make these data available to the community of practice through a comprehensive online database.

  1. Emission of electromagnetic radiation from beam driven plasmas

    International Nuclear Information System (INIS)

    Newman, D.L.

    1985-01-01

    Two production mechanisms for electromagnetic radiation from a plasma containing electron-beam-driven weak Langmuir turbulence are studied: induced Compton conversion and two-Langmuir-wave coalescence. Induced Compton conversion in which a Langmuir wave scatters off a relativistic electron while converting into a transversely polarized electromagnetic wave is considered as a means for producing amplified electromagnetic radiation from a beam-plasma system at frequencies well above the electron plasma frequency. The induced emission growth rates of the radiation produced by a monoenergetic ultrarelativistic electron beam are determined as a function of the Langmuir turbulence spectrum in the background plasma and are numerically evaluated for a range of model Langmuir spectra. Induced Compton conversion can play a role in emission from astrophysical beam-plasma systems if the electron beam is highly relativistic and sufficiently narrow. However, it is found that the growth rates for this process are too small in all cases studied to account for the intense high-frequency radiation observed in laboratory experiments. Two-Langmuir-wave coalescence as a means of producing radiation at 2omega/sub p/ is investigated in the setting of the earth's foreshock

  2. Electron beam injection during active experiments. 1. Electromagnetic wave emissions

    International Nuclear Information System (INIS)

    Winglee, R.M.; Kellogg, P.J.

    1990-01-01

    During the active injection of an electron beam, a broad spectrum of waves is generated. In this paper examples of spectra from the recent Echo 7 experiment are presented. These results show that the characteristics of the emissions can change substantially with altitude. Two-dimensional (three velocity) relativistic electromagnetic particle simulations are used to investigate the changes in the plasma conditions required to account for the observed spectral variations. It is shown that many of these variations can be accounted for by assuming that the ratio of the electron plasma frequency ω pe to cyclotron frequency Ω e is less than unity at the lower altitudes of about 200 km and near or above unity at apogee of about 300 km. In the former case, whistlers with a cutoff at ω pe , lower hybrid and plasma waves are driven by the parallel beam energy while electromagnetic fundamental z mode and second harmonic x mode and electrostatic upper hybrid waves are driven by the perpendicular beam energy through the master instability. E x B drifts driven by perpendicular electric fields associated with the beam-plasma interaction can also be important in generating maser emission, particularly for field-aligned injection where there is no intrinsic perpendicular beam energy. The power in the electrostatic waves is a few percent of the beam energy and that in the electromagnetic waves a few tenths of a percent. In the latter case, where ω pe /Ω e increases above unity, emission in the fundamental z mode and second harmonic x mode become suppressed

  3. Supplemental Report: Application of Emission Spectroscopy to Monitoring Technetium

    International Nuclear Information System (INIS)

    Spencer, W.A.

    2000-01-01

    This report provides supplemental information to an earlier report BNF-98-003-0199, ''Evaluation of Emission Spectroscopy for the On-Line Analysis of Technetium''. In this report data is included from real Hanford samples as well as for solutions spiked with technetium. This supplemental work confirms the ability of ICP-ES to monitor technetium as it breaks through an ion exchange process

  4. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    Science.gov (United States)

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  5. Novel field emission SEM column with beam deceleration technology

    Energy Technology Data Exchange (ETDEWEB)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-15

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications.

  6. Novel field emission SEM column with beam deceleration technology

    International Nuclear Information System (INIS)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-01-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications

  7. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  8. Study of electron beam effects on surfaces using x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Gettings, M.; Coad, J.P.

    1976-02-01

    Discrepancies in the surface analyses of oxidised or heavily contaminated materials have been observed between X-ray Photoelectron Spectroscopy (XPS) and techniques using electron beams (primarily Auger Electron Spectroscopy (AES)). These discrepancies can be ascribed to the influence of the primary electron beam and to illustrate the various types of electron effects different materials were analysed using XPS and Secondary Ion Mass Spectroscopy (SIMS) before and after large area electron bombardment. The materials used included chrome and stainless steels, nickel, platinum, glass and brass. (author)

  9. Direct emission of chirality controllable femtosecond LG01 vortex beam

    Science.gov (United States)

    Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.

    2018-05-01

    Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.

  10. Latitudinal beaming of Jupiter's low frequency radio emissions

    International Nuclear Information System (INIS)

    Alexander, J.K.; Desch, M.D.; Kaiser, M.L.; Thieman, J.R.

    1979-01-01

    By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10 0 range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes in the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3 0 in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet

  11. Applications and advances of positron beam spectroscopy: appendix a

    Energy Technology Data Exchange (ETDEWEB)

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  12. A multiwire secondary emission profile monitor for small emittance beams

    International Nuclear Information System (INIS)

    Chehab, R.; Bonnard, J.; Humbert, G.; Leblond, B.; Saury, J.L.

    1985-01-01

    A secondary emission monitor using two multiwire grids separated by a positively biased collector has been constructed and tested with a 1 GeV electron beam at the Orsay Linac. The monitor installed just before the electron-positron converter has 8 gold-plated-tungsten wires of 0.1 mm diameter equally spaced 0.2 mm apart in each plane. Each wire is connected with an integrator using a low-bias current operational amplifier. The wire planes and the collector are moved into the beam by a stepping motor : that allows beam-position verification. We measured narrow profiles for 1 Amp peak current pulses of 30 nanoseconds width. Profiles are displayed on a scope and allow emittance determination by the three gradient method. Such a monitor is very useful to control the electron beam position and dimensions on the converter, because the positron source dimensions are rather bigger than those of the incident beam and the geometrical acceptance of the positron Linac is limited

  13. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    Science.gov (United States)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  14. Exploitation of high resolution beam spectroscopy diagnostics on MAST

    Science.gov (United States)

    Michael, Clive; Debock, Maarten; Conway, Neil; Akers, Rob; Appel, Lynton; Field, Anthony; Walsh, Mike; Wisse, Marco

    2009-11-01

    Recent developments in beam spectroscopy on MAST, including CXRS, MSE and a pilot FIDA system have revealed new information about phenomena such as ITBs, MHD instabilities, transport and fast particle physics. For example, ITBs in the ion temperature and toroidal rotation have been observed with the 64ch CXRS system, while reverse-shear q profiles have been observed with the recently commissioned 35ch MSE system. Thus, the synergy of these diagnostics helps us to understand, among other things, the role of magnetic and rotational shear on ITBs. MSE measurements have also helped to understand MHD phenomena such as locked modes (characterized by changes in toroidal momentum, revealed by CXRS), sawteeth, and internal reconnection events. Finally, the temporal/spatial resolution and SNR of the MSE system have been exploited. Interesting results include the detection of low frequency (˜2kHz) magnetic field fluctuations, characterization of the radial structure of higher frequency (<100kHz) broadband and coherent density (BES) fluctuations, and the identification of short scale length features (˜1.8cm) in the current profile near the edge pedestal.

  15. Secondary Electron Emission Beam Loss Monitor for LHC

    CERN Document Server

    Dehning, B; Holzer, E B; Kramer, Daniel

    2008-01-01

    Beam Loss Monitoring (BLM) system is a vital part of the active protection of the LHC accelerators' elements. It should provide the number of particles lost from the primary hadron beam by measuring the radiation field induced by their interaction with matter surrounding the beam pipe. The LHC BLM system will use ionization chambers as standard detectors but in the areas where very high dose rates are expected, the Secondary Emission Monitor (SEM) chambers will be employed because of their high linearity, low sensitivity and fast response. The SEM needs a high vacuum for proper operation and has to be functional for up to 20 years, therefore all the components were designed according to the UHV requirements and a getter pump was included. The SEM electrodes are made of Ti because of its Secondary Emission Yield (SEY) stability. The sensitivity of the SEM was modeled in Geant4 via the Photo-Absorption Ionization module together with custom parameterization of the very low energy secondary electron production. ...

  16. New methods and applications in emission spectroscopy (1960)

    International Nuclear Information System (INIS)

    Baudin, G.

    1960-01-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [fr

  17. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  18. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  19. Chemistry, spectroscopy and isotope separation of zirconium and its compounds as revealed by laser diagnostics of laser produced metal beams

    International Nuclear Information System (INIS)

    Hackett, P.A.; Humphries, M.; Rayner, D.M.; Bourne, O.L.; Mitchell, A.

    1986-01-01

    Recent work from the author's laboratory on zirconium beams is reviewed. Zirconium metal beams have been produced by laser vaporization of solid zirconium targets coupled with supersonic expansion of helium gas. The resultant supersonic metal beam is shown to present an ideal environment for various spectroscopic techniques. The state distribution of zirconium atoms in the beam is obtained from low resolution laser induced fluorescence (LIF) studies. High resolution LIF studies give information on the hyperfine splitting in the ground state of the zirconium-91 isotope. Information on the hyperfine splitting in the excited state is obtained from quantum beat spectroscopy. Low resolution 2 color multiphoton ionization spectroscopy using a XeCl laser allows isotope separation of all isotopes of zirconium. These metal beams are highly reactive and can be used to produce novel chemical species. The results of two studies in which a reactant is added to the expansion gas are reported here. Zirconium oxide (ZrO), a molecule observed in the emission spectra of cool stars and in laboratory studies at high temperatures, is produced in a low temperature, collision free environment by adding small quantities of oxygen to the expansion gas. Zirconium fluoride (ZrF), a molecule previously unobserved, is produced by the addition of small quantities of CF/sub 4/

  20. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  1. Investigation of metal ions in fusion plasmas using emission spectroscopy

    International Nuclear Information System (INIS)

    Tale, I.

    2005-01-01

    Full text: The Latvian and Portugal Associations are performing development of advanced plasma - facing system using the liquid metal limiter. The objectives of this project require study of the influence of the liquid metal limiter on the main plasma parameters, including concentration of evaporated metal atoms in plasma. The fusion plasmas are related to the dense hot plasmas. The required average ion temperature according to the ITER project (International Thermonuclear Experimental Reactor) is 8,0 keV (9,3 x 10 7 0 K), the average electron temperature - 8,9 keV (1,04 x 10 8 0 K). Plasma temperature operated in the research tokamak ISSTOK, involved in testing of liquid metal limiter concept is considerably less, being of order of 10 50 K. The ionization degree of metal atoms considerably depends on the plasma ion temperature. Density of metal vapours in plasma can be estimated using the following two spectroscopic methods: The fluorescence of the multiple ionised metal ions in steady state concentration; The charge exchange emission during ionisation of evaporated metal ions. In the first step of development of testing system of metal vapours the equipment and instrumentation for charge exchange spectroscopy of Ga and In has been elaborated taking into account the following features of plasma emission. The Ga emission lines occur on the background high temperature plasma black body emission and stray light. Radial distribution of Ga in plasma in the facing plane of Ga flux is desirable

  2. Electron Cyclotron Maser Emissions from Evolving Fast Electron Beams

    Science.gov (United States)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-05-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q, but increase with the magnetic mirror ratio σ as well as with the steepness index δ. Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  3. ELECTRON CYCLOTRON MASER EMISSIONS FROM EVOLVING FAST ELECTRON BEAMS

    International Nuclear Information System (INIS)

    Tang, J. F.; Wu, D. J.; Chen, L.; Zhao, G. Q.; Tan, C. M.

    2016-01-01

    Fast electron beams (FEBs) are common products of solar active phenomena. Solar radio bursts are an important diagnostic tool for understanding FEBs and the solar plasma environment in which they propagate along solar magnetic fields. In particular, the evolution of the energy spectrum and velocity distribution of FEBs due to the interaction with the ambient plasma and field during propagation can significantly influence the efficiency and properties of their emissions. In this paper, we discuss the possible evolution of the energy spectrum and velocity distribution of FEBs due to energy loss processes and the pitch-angle effect caused by magnetic field inhomogeneity, and we analyze the effects of the evolution on electron-cyclotron maser (ECM) emission, which is one of the most important mechanisms for producing solar radio bursts by FEBs. Our results show that the growth rates all decrease with the energy loss factor Q , but increase with the magnetic mirror ratio σ as well as with the steepness index δ . Moreover, the evolution of FEBs can also significantly influence the fastest growing mode and the fastest growing phase angle. This leads to the change of the polarization sense of the ECM emission. In particular, our results also reveal that an FEB that undergoes different evolution processes will generate different types of ECM emission. We believe the present results to be very helpful for a more comprehensive understanding of the dynamic spectra of solar radio bursts.

  4. Overview of in-beam gamma-ray spectroscopy at the RIBF

    Energy Technology Data Exchange (ETDEWEB)

    Doornenbal, Pieter [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2016-07-07

    At the Radioactive Isotope Beam Factory stable primary beams are accelerated up to 345 MeV/u and incident on a primary target to produce cocktail secondary beams with the fragment separator BigRIPS ranging from the lightest nuclei up to the lead region. For in-beam γ-ray spectroscopy, the secondary beams impinge on a reaction target at energies between 100 and 300 MeV/u. Reaction residues are identified with the ZeroDegree spectrometer and γ-rays detected with the NaI(Tl) based DALI2 array. This conference paper outlines the experimental setup and presents recent exemplary results.

  5. New methods and applications in emission spectroscopy (1960); Methodes et applications nouvelles en spectroscopie d'emission (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Baudin, G [Commissariat a l' Energie Atomique, Grenoble (France).Centre d' Etudes Nucleaires

    1960-07-01

    Emission spectroscopy, are already well-established instrumental analytical technique, has in recent years known important developments. Two mains factors are responsible; firstly the demands of metallurgy for purer and purer materials or alloys which are increasingly complex and difficult to analyse by chemical means; secondly, progress in optics, especially in the production of gratings, and in electronics in the field of photomultiplier tubes. We will not here catalogue all the new applications and methods, but we will consider a few amongst the most representative outside the conventional field. (author) [French] La spectroscopie d'emission, technique analytique instrumentale deja ancienne, a pris, depuis quelques annees, une extension notable. Deux facteurs principaux ont contribue a ce succes: d'une part, l'exigence de la metallurgie en materiaux de plus en plus pur ou en alliages de plus en plus complexes, difficiles a analyser chimiquement, d'autre part, les progres realises en optique, principalement dans la fabrication des reseaux, et en electronique dans le domaine des tubes photomultiplicateurs. Nous ne ferons pas ici le recensement de toutes les applications ou methodes nouvelles, mais nous en choisirons quelques unes des plus representatives hors du domaine classique. (auteur)

  6. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  7. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  8. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, L. G., E-mail: Luis.Sarmiento@nuclear.lu.se; Rudolph, D. [Department of Physics, Lund University, 22100 Lund (Sweden)

    2016-07-07

    With the aid of a novel combination of existing equipment – JYFLTRAP and the TASISpec decay station – it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the I{sup π} = 19/2{sup −}, 3174-keV isomer in the N = Z − 1 nucleus {sup 53}Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into “open quantum systems”. The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  9. Nuclear spectroscopy with Geant4: Proton and neutron emission & radioactivity

    Science.gov (United States)

    Sarmiento, L. G.; Rudolph, D.

    2016-07-01

    With the aid of a novel combination of existing equipment - JYFLTRAP and the TASISpec decay station - it is possible to perform very clean quantum-state selective, high-resolution particle-γ decay spectroscopy. We intend to study the determination of the branching ratio of the ℓ = 9 proton emission from the Iπ = 19/2-, 3174-keV isomer in the N = Z - 1 nucleus 53Co. The study aims to initiate a series of similar experiments along the proton dripline, thereby providing unique insights into "open quantum systems". The technique has been pioneered in case studies using SHIPTRAP and TASISpec at GSI. Newly available radioactive decay modes in Geant4 simulations are going to corroborate the anticipated experimental results.

  10. Application of optical emission spectroscopy to high current proton sources

    International Nuclear Information System (INIS)

    Castro, G; Mazzaglia, M; Nicolosi, D; Mascali, D; Reitano, R; Celona, L; Leonardi, O; Leone, F; Naselli, E; Neri, L; Torrisi, G; Gammino, S; Zaniol, B

    2017-01-01

    Optical Emission Spectroscopy (OES) represents a very reliable technique to carry out non-invasive measurements of plasma density and plasma temperature in the range of tens of eV. With respect to other diagnostics, it also can characterize the different populations of neutrals and ionized particles constituting the plasma. At INFN-LNS, OES techniques have been developed and applied to characterize the plasma generated by the Flexible Plasma Trap, an ion source used as 'testbench' of the proton source built for European Spallation Source. This work presents the characterization of the parameters of a hydrogen plasma in different conditions of neutral pressure, microwave power and magnetic field profile, along with perspectives for further upgrades of the OES diagnostics system. (paper)

  11. Ballistic electron emission spectroscopy on Ag/Si devices

    Energy Technology Data Exchange (ETDEWEB)

    Bannani, A; Bobisch, C A; Matena, M; Moeller, R [Department of Physics, Center for Nanointegration Duisburg-Essen, University of Duisburg-Essen, 47048 Duisburg (Germany)], E-mail: amin.bannani@uni-due.de

    2008-09-17

    In this work we report on ballistic electron emission spectroscopy (BEES) studies on epitaxial layers of silver grown on silicon surfaces, with either a Si(111)-(7 x 7) or Si(100)-(2 x 1) surface reconstruction. The experiments were done at low temperature and in ultra-high vacuum (UHV). In addition, BEES measurements on polycrystalline Ag films grown on hydrogen-terminated H:Si(111)-(1 x 1) and H:Si(100)-(2 x 1) surfaces were performed. The Schottky barrier heights were evaluated by BEES. The results are compared to the values for the barrier height reported for macroscopic Schottky diodes. We show that the barrier heights for the epitaxial films substantially differ from the values measured on polycrystalline Ag films, suggesting a strong effect of the interface on the barrier height.

  12. Light emitting diode excitation emission matrix fluorescence spectroscopy.

    Science.gov (United States)

    Hart, Sean J; JiJi, Renée D

    2002-12-01

    An excitation emission matrix (EEM) fluorescence instrument has been developed using a linear array of light emitting diodes (LED). The wavelengths covered extend from the upper UV through the visible spectrum: 370-640 nm. Using an LED array to excite fluorescence emission at multiple excitation wavelengths is a low-cost alternative to an expensive high power lamp and imaging spectrograph. The LED-EEM system is a departure from other EEM spectroscopy systems in that LEDs often have broad excitation ranges which may overlap with neighboring channels. The LED array can be considered a hybrid between a spectroscopic and sensor system, as the broad LED excitation range produces a partially selective optical measurement. The instrument has been tested and characterized using fluorescent dyes: limits of detection (LOD) for 9,10-bis(phenylethynyl)-anthracene and rhodamine B were in the mid parts-per-trillion range; detection limits for the other compounds were in the low parts-per-billion range (LED-EEMs were analyzed using parallel factor analysis (PARAFAC), which allowed the mathematical resolution of the individual contributions of the mono- and dianion fluorescein tautomers a priori. Correct identification and quantitation of six fluorescent dyes in two to six component mixtures (concentrations between 12.5 and 500 ppb) has been achieved with root mean squared errors of prediction (RMSEP) of less than 4.0 ppb for all components.

  13. Optical emission spectroscopy of carbon laser plasma ion source

    Science.gov (United States)

    Balki, Oguzhan; Rahman, Md. Mahmudur; Elsayed-Ali, Hani E.

    2018-04-01

    Carbon laser plasma generated by an Nd:YAG laser (wavelength 1064 nm, pulse width 7 ns, fluence 4-52 J cm-2) is studied by optical emission spectroscopy and ion time-of-flight. Up to C4+ ions are detected with the ion flux strongly dependent on the laser fluence. The increase in ion charge with the laser fluence is accompanied by observation of multicharged ion lines in the optical spectra. The time-integrated electron temperature Te is calculated from the Boltzmann plot using the C II lines at 392.0, 426.7, and 588.9 nm. Te is found to increase from ∼0.83 eV for a laser fluence of 22 J cm-2 to ∼0.90 eV for 40 J cm-2. The electron density ne is obtained from the Stark broadened profiles of the C II line at 392 nm and is found to increase from ∼ 2 . 1 × 1017cm-3 for 4 J cm-2 to ∼ 3 . 5 × 1017cm-3 for 40 J cm-2. Applying an external electric field parallel to the expanding plume shows no effect on the line emission intensities. Deconvolution of ion time-of-flight signal with a shifted Maxwell-Boltzmann distribution for each charge state results in an ion temperature Ti ∼4.7 and ∼6.0 eV for 20 and 36 J cm-2, respectively.

  14. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  15. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  16. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  17. Auger electron spectroscopy, ionization loss spectroscopy, appearance potential spectroscopy

    International Nuclear Information System (INIS)

    Riwan, R.

    1973-01-01

    The spectroscopy of surfaces using an incident electron beam is studied. The fundamental mechanisms are discussed together with the parameters involved in Auger emission: excitation of the atom, de-excitation by electron emission, and the migration of electrons towards the surface and their ejection. Some examples of applications are given (surface structures, metallurgy, chemical information). Two new techniques for analyzing surfaces are studied: ionization spectroscopy, and appearance potential spectroscopy [fr

  18. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    International Nuclear Information System (INIS)

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for insitu measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification

  19. Plasma control using neural network and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kim, Byungwhan; Bae, Jung Ki; Hong, Wan-Shick

    2005-01-01

    Due to high sensitivity to process parameters, plasma processes should be tightly controlled. For plasma control, a predictive model was constructed using a neural network and optical emission spectroscopy (OES). Principal component analysis (PCA) was used to reduce OES dimensionality. This approach was applied to an oxide plasma etching conducted in a CHF 3 /CF 4 magnetically enhanced reactive ion plasma. The etch process was systematically characterized by means of a statistical experimental design. Three etch outputs (etch rate, profile angle, and etch rate nonuniformity) were modeled using three different approaches, including conventional, OES, and PCA-OES models. For all etch outputs, OES models demonstrated improved predictions over the conventional or PCA-OES models. Compared to conventional models, OES models yielded an improvement of more than 25% in modeling profile angle and etch rate nonuniformtiy. More than 40% improvement over PCA-OES model was achieved in modeling etch rate and profile angle. These results demonstrate that nonreduced in situ data are more beneficial than reduced one in constructing plasma control model

  20. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  1. Measurement of Moments and Radii of Light Nuclei by Collinear Fast-Beam Laser Spectroscopy and $\\beta$-NMR Spectroscopy

    CERN Multimedia

    Marinova, K P

    2002-01-01

    Nuclear Moments and radii of light unstable isotopes are investigated by applying different high-sensitivity and high-resolution techniques based on collinear fast-beam laser spectroscopy. A study of nuclear structure in the sd shell is performed on neon isotopes in the extended chain of $^{17-28}$Ne, in particular on the proton-halo candidate $^{17}$Ne. Measurements of hyperfine structure and isotope shift have become possible by introducing an ultra-sensitive non-optical detection method which is based on optical pumping, state-selective collisional ionization and $\\beta$-activity counting. The small effect of nuclear radii on the optical isotope shifts of light elements requires very accurate measurements. The errors are dominated by uncertainties of the Doppler shifts which are conventionally determined from precisely measured acceleration voltages. These uncertainties are removed by measuring the beam energy with simultaneous excitation of two optical lines in parallel / antiparallel beam configuration. ...

  2. Beam-foil spectroscopy of chlorine and sulfur ions

    International Nuclear Information System (INIS)

    Frot, D.; Barchewitz, R.; Cukier, M.; Bruneau, J.

    1987-01-01

    We report on the measurement of spectra of highly stripped chlorine and sulfur ions in the energy ranges of, respectively, 2900 - 3500 eV and 2300 - 2600 eV. The spectra have been obtained after excitation of ions travelling through a thin carbon foil. X-rays emitted by the emerging beam are analysed with a Johann-type bent crystal spectrometer. The observation angle with respect to the beam axis is 54 0 . The interpretation of the spectra is performed by comparing experimental results with Multiconfiguration Dirac-Fock (MCDF) calculated energies and intensities. All the lines are interpreted by 2p - ls transitions (K α spectrum) in excited ions with, respectively, H-, He-, Li-, Be- and B-like electron structures

  3. Beam synchronous detection techniques for X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Goujon, Gérard; Rogalev, Andreï; Goulon, José; Feite, Serge; Wilhelm, Fabrice

    2013-01-01

    The Photo diode detectors combine a set of properties that make them most appropriate, in particular, for X-ray Magnetic Circular Dichroism (XMCD) experiments. Under standard operating conditions, the detection bandwidth is primarily limited by the transimpedance preamplifier that converts the very low ac photocurrent into a voltage. On the other hand, when the photodiode is reverse biased, its finite shunt resistance will cause an undesirable, temperature dependent DC dark current. The best strategy to get rid of it is to use synchronous detection techniques. A classical implementation is based on the use of a chopper modulating the X-ray beam intensity at rather low frequencies (typically below 1 kHz). Here we report on the recent development of a fast Xray detection which has the capability to fully exploit the frequency structure of the ESRF X-ray beam (355 KHz and its harmonics). The availability of new wide band preamplifiers allowed us to extend the working frequency range up to a few MHz. A beam synchronous data processing was implemented in large FPGAs. Performances of the new detection system implemented at the ESRF beamline ID12 are illustrated with detection of the Fe K-edge XMCD spectra in garnets, using 4 bunches operation mode with modulation frequency of 1.4 MHz.

  4. Development of a Reference Database for Particle-Induced Gamma-ray Emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriou, P., E-mail: P.Dimitriou@iaea.org [International Atomic Energy Agency, Wagramerstrasse 5, A-1400 Vienna (Austria); Becker, H.-W. [Ruhr Universität Bochum, Gebäude NT05/130, Postfach 102148, Bochum 44721 (Germany); Bogdanović-Radović, I. [Department of Experimental Physics, Institute Rudjer Boskovic, Bijenicka Cesta 54, 10000 Zagreb (Croatia); Chiari, M. [Istituto Nazionale di Fisica Nucleare, Via Sansone 1, Sesto Fiorentino, 50019 Firenze (Italy); Goncharov, A. [Kharkov Institute of Physics and Technology, National Science Center, Akademicheskaya Str.1, Kharkov 61108 (Ukraine); Jesus, A.P. [Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (Portugal); Kakuee, O. [Nuclear Science and Technology Research Institute, End of North Karegar Ave., PO Box 14395-836, Tehran (Iran, Islamic Republic of); Kiss, A.Z. [Institute of Nuclear Research (ATOMKI), Bem ter 18/c, PO Box 51, 4001 Debrecen (Hungary); Lagoyannis, A. [National Center of Scientific Research “Demokritos”, Agia Paraskevi, P.O. Box 60228, 15310 Athens (Greece); Räisänen, J. [Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Strivay, D. [Institut de Physique Nucleaire, Atomique et de Spectroscopie, Universite de Liège, Sart Tilman, B15 4000 Liège (Belgium); Zucchiatti, A. [Centro de Micro Análisis de Materiales, Universidad Autónoma de Madrid, Faraday 3, Madrid 28049 (Spain)

    2016-03-15

    Particle-Induced Gamma-ray Emission (PIGE) is a powerful analytical technique that exploits the interactions of rapid charged particles with nuclei located near a sample surface to determine the composition and structure of the surface regions of solids by measurement of characteristic prompt γ rays. The potential for depth profiling of this technique has long been recognized, however, the implementation has been limited owing to insufficient knowledge of the physical data and lack of suitable user-friendly computer codes for the applications. Although a considerable body of published data exists in the nuclear physics literature for nuclear reaction cross sections with γ rays in the exit channel, there is no up-to-date, comprehensive compilation specifically dedicated to IBA applications. A number of PIGE cross-section data had already been uploaded to the Ion Beam Analysis Nuclear Data Library (IBANDL) ( (http://www-nds.iaea.org/ibandl)) by members of the IBA community by 2011, however a preliminary survey of this body of unevaluated experimental data has revealed numerous discrepancies beyond the uncertainty limits reported by the authors. Using the resources and coordination provided by the IAEA, a concerted effort to improve the situation was made within the Coordinated Research Project on the Development of a Reference Database for PIGE spectroscopy, from 2011 to 2015. The aim of the CRP was to create a data library for Ion Beam Analysis that contains reliable and usable data on charged particle γ-ray emission cross sections that would be made freely available to the user community. As the CRP has reached its completion, we shall present its main achievements, including the results of nuclear cross-section evaluations and the development of a computer code that will become available to the public allowing for the implementation of a standardless PIGE technique.

  5. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  6. X-ray spectroscopy of highly-ionized atoms in an electron beam ion trap (EBIT)

    International Nuclear Information System (INIS)

    Marrs, R.E.; Bennett, C.; Chen, M.H.

    1988-01-01

    An Electron Beam Ion Trap at Lawrence Livermore National Laboratory is being used to produce and trap very-highly-charged-ions (q /le/ 70+) for x-ray spectroscopy measurements. Recent measurements of dielectronic recombination, electron impact excitation and transition energies are presented. 15 refs., 12 figs., 1 tab

  7. E-beam irradiation effect on CdSe/ZnSe QD formation by MBE: deep level transient spectroscopy and cathodoluminescence studies

    International Nuclear Information System (INIS)

    Kozlovsky, V I; Litvinov, V G; Sadofyev, Yu G

    2004-01-01

    CdSe/ZnSe structures containing 1 or 15 thin (3-5 monolayers) CdSe layers were studied by cathodoluminescence (CL) and deep level transient spectroscopy (DLTS). The DLTS spectra consisted of peaks from deep levels (DLs) and an additional intense peak due to electron emission from the ground quantized level in the CdSe layers. Activation energy of this additional peak correlated with an energy of the CdSe-layer emission line in the CL spectra. Electron-beam irradiation of the structure during the growth process was found to influence the DLTS and CL spectra of the CdSe layers, shifting the CdSe-layer emission line to the long-wave side. The obtained results are explained using the assumption that e-beam irradiation stimulates the formation of quantum dots of various sizes in the CdSe layers

  8. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; Garten, Lauren M.; Ginley, David S.; Gorman, Brian P.

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.

  9. A study of molecular effects in beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Andresen, B.; Veje, E.

    1979-01-01

    Relative populations of ns + nd levels in hydrogen as functions of the principal quantum number n have been measured with beams of H + , H 2 + , and H 3 + impinging on thin carbon foils at 25 keV/amu and 100 keV/amu. Enhancements of 20% and 45% for dimer and trimer clusters are observed uniformly for all levels. A possible explanation in terms of screening of the Coulomb repulsion between the protons inside the foil, thus reducing the effective thickness of the foil, is given. All relative populations closely follow an nsup(P) power law with p = -4.0 and -3.7 at 25 keV/amu and 100 keV/amu, respectively, in perfect analogy with atomic collision experiments. O + /O 2 + -foil excitations at 100 keV and 155 keV show a simular molecular effect, but in reverse with a larger mean charge produced by the dimer. (Auth.)

  10. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  11. Optical emission spectroscopy at the large RF driven negative ion test facility ELISE: Instrumental setup and first results

    International Nuclear Information System (INIS)

    Wünderlich, D.; Fantz, U.; Franzen, P.; Riedl, R.; Bonomo, F.

    2013-01-01

    One of the main topics to be investigated at the recently launched large (A source = 1.0 × 0.9 m 2 ) ITER relevant RF driven negative ion test facility ELISE (Extraction from a Large Ion Source Experiment) is the connection between the homogeneity of the plasma parameters close to the extraction system and the homogeneity of the extracted negative hydrogen ion beam. While several diagnostics techniques are available for measuring the beam homogeneity, the plasma parameters are determined by optical emission spectroscopy (OES) solely. First OES measurements close to the extraction system show that without magnetic filter field the vertical profile of the plasma emission is more or less symmetric, with maxima of the emission representing the projection of the plasma generation volumes, and a distinct minimum in between. The profile changes with the strength of the magnetic filter field but under all circumstances the plasma emission in ELISE is much more homogeneous compared to the smaller IPP prototype sources. Planned after this successful demonstration of the ELISE OES system is to combine OES with tomography in order to determine locally resolved values for the plasma parameters

  12. Application of a sawtooth surface to accelerator beam chambers with low electron emission rate

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Tsuchiya, M.; Nishidono, T.; Kato, N.; Satoh, N.; Endo, S.; Yokoyama, T.

    2003-01-01

    One of the latest problems in positron or proton accelerators is a single-beam instability due to an electron cloud around the beam. The instability, for an example, causes a beam size blow up of the positron beam and deteriorates the performance of the electron-positron collider. the seed of the electron cloud is the electrons emitted from the surface of the beam chamber, which consists of electrons due to the synchrotron radiation (photoelectrons) and sometimes those multiplied by the multipactoring. Suppressing the electron emission from the surface is, therefore, an essential way to cure the instability. Here a rough surface with a sawtooth structure (sawtooth surface) is proposed to reduce the electron emission from the surface of the beam chamber. A new rolling-tap method is developed for this study to make the sawtooth surface in a circular beam chamber with a length of several meters. The first experiment using a test chamber at a photon beam line of the KEK Photon Factory verifies its validity. The photoelectron emission from the sawtooth surface reduces by one order of magnitude compared to the usual smooth surface. In the second experiment under a bunched positron beam in the KEK B-Factory, however, the electron emission is comparable to that of a smooth surface and the behavior is quite different from the previous one. The reason is that the beam field excites the multipactoring of electrons and the decrease of the photoelectron emission by the sawtooth surface is wiped out. The sawtooth surface will be effective to reduce the electron emission under the situation with external magnetic fields or without strong beam fields where the electron multipactoring hardly occurs

  13. Laser-Induced Breakdown Spectroscopy Infrared Emission From Inorganic and Organic Substances

    National Research Council Canada - National Science Library

    Yang, C.S; Brown, E; Hommerich, U; Trivedi, S. B; Snyder, A. P; Samuels, A. C

    2006-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been established as a powerful method for identifying trace elemental contaminants by analyzing the atomic spectral emission lines that result subsequent to plasmas generated by laser power...

  14. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  15. Revisiting the electrochemical impedance spectroscopy of magnesium with online inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Shkirskiy, Viacheslav; King, Andrew D; Gharbi, Oumaïma; Volovitch, Polina; Scully, John R; Ogle, Kevin; Birbilis, Nick

    2015-02-23

    The electrochemical impedance of reactive metals such as magnesium is often complicated by an obvious inductive loop with decreasing frequency of the AC polarising signal. The characterisation and ensuing explanation of this phenomenon has been lacking in the literature to date, being either ignored or speculated. Herein, we couple electrochemical impedance spectroscopy (EIS) with online atomic emission spectroelectrochemistry (AESEC) to simultaneously measure Mg-ion concentration and electrochemical impedance spectra during Mg corrosion, in real time. It is revealed that Mg dissolution occurs via Mg(2+) , and that corrosion is activated, as measured by AC frequencies less than approximately 1 Hz approaching DC conditions. The result of this is a higher rate of Mg(2+) dissolution, as the voltage excitation becomes slow enough to enable all Mg(2+) -enabling processes to adjust in real time. The manifestation of this in EIS data is an inductive loop. The rationalisation of such EIS behaviour, as it relates to Mg, is revealed for the first time by using concurrent AESEC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Bayesian electron density inference from JET lithium beam emission spectra using Gaussian processes

    Science.gov (United States)

    Kwak, Sehyun; Svensson, J.; Brix, M.; Ghim, Y.-C.; Contributors, JET

    2017-03-01

    A Bayesian model to infer edge electron density profiles is developed for the JET lithium beam emission spectroscopy (Li-BES) system, measuring Li I (2p-2s) line radiation using 26 channels with  ∼1 cm spatial resolution and 10∼ 20 ms temporal resolution. The density profile is modelled using a Gaussian process prior, and the uncertainty of the density profile is calculated by a Markov Chain Monte Carlo (MCMC) scheme. From the spectra measured by the transmission grating spectrometer, the Li I line intensities are extracted, and modelled as a function of the plasma density by a multi-state model which describes the relevant processes between neutral lithium beam atoms and plasma particles. The spectral model fully takes into account interference filter and instrument effects, that are separately estimated, again using Gaussian processes. The line intensities are inferred based on a spectral model consistent with the measured spectra within their uncertainties, which includes photon statistics and electronic noise. Our newly developed method to infer JET edge electron density profiles has the following advantages in comparison to the conventional method: (i) providing full posterior distributions of edge density profiles, including their associated uncertainties, (ii) the available radial range for density profiles is increased to the full observation range (∼26 cm), (iii) an assumption of monotonic electron density profile is not necessary, (iv) the absolute calibration factor of the diagnostic system is automatically estimated overcoming the limitation of the conventional technique and allowing us to infer the electron density profiles for all pulses without preprocessing the data or an additional boundary condition, and (v) since the full spectrum is modelled, the procedure of modulating the beam to measure the background signal is only necessary for the case of overlapping of the Li I line with impurity lines.

  17. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    Energy Technology Data Exchange (ETDEWEB)

    Lestinsky, M.

    2007-04-18

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc{sup 18+} yield a high-precision measurement of the 2s-2p{sub 3/2} transition energy in this system. Operation of the two-electron-beam setup at high collision energy ({approx}1000 eV) is established using resonances of hydrogenlike Mg{sup 11+}, while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F{sup 6+}. (orig.)

  18. High-resolution electron collision spectroscopy with multicharged ions in merged beams

    International Nuclear Information System (INIS)

    Lestinsky, M.

    2007-01-01

    The Heidelberg ion storage ring Tsr is currently the only ring equipped with two independent devices for the collinear merging of a cold electron beam with stored ions. This greatly improves the potential of electron-ion collision experiments, as the ion beam can be cooled with one electron beam, while the other one is used as a dedicated target for energy-resolved electron collision processes, such as recombination. The work describes the implementation of this system for rst electron collision spectroscopy experiments. A detection system has been realized including an ion detector and specroscopic beam-control software and instrumentation. Moreover, in order to improve the spectroscopic resolution systematical studies of intrinsic relaxation processes in the electron beam have been carried out. These include the dependence on the electron beam density, the magnetic guiding eld strength, and the acceleration geometry. The recombination measurements on low-lying resonances in lithiumlike Sc 18+ yield a high-precision measurement of the 2s-2p 3/2 transition energy in this system. Operation of the two-electron-beam setup at high collision energy (∼1000 eV) is established using resonances of hydrogenlike Mg 11+ , while the unique possibility of modifying the beam-merging geometry con rms its importance for the electron-ion recombination rate at lowest relative energy, as demonstrated on F 6+ . (orig.)

  19. Single photon emission computed tomography by using fan beam collimator

    International Nuclear Information System (INIS)

    Akiyama, Yoshihisa

    1992-01-01

    A multislice fan beam collimator which has parallel collimation along the cephalic-caudul axis of a patient and converging collimation within planes that are perpendicular to that axis was designed for a SPECT system with a rotating scintillation camera, and it was constructed by the lead casting method which was developed in recent years. A reconstruction algorithm for fan beam SPECT was formed originally by combining the reconstruction algorithm of the parallel beam SPECT with that of the fan beam X-ray CT. The algorithm for fan beam SPECT was confirmed by means of computer simulation and a head phantom filled with diluted radionuclide. Not only 99m Tc but also 123 I was used as a radionuclide. A SPECT image with the fan beam collimator was compared with that of a parallel hole, low energy, high resolution collimator which was routinely used for clinical and research SPECT studies. Both system resolution and sensitivity of the fan beam collimator were ∼20% better than those of the parallel hole collimator. Comparing SPECT images obtained from fan beam collimator with those of parallel hole collimator, the SPECT images using fan beam collimator had far better resolution. A fan beam collimator is a useful implement for the SPECT study. (author)

  20. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    CERN Document Server

    Krieger, A.; Catherall, R.; Hochschulz, F.; Kramer, J.; Neugart, R.; Rosendahl, S.; Schipper, J.; Siesling, E.; Weinheimer, Ch.; Yordanov, D.T.; Nortershauser, W.

    2011-01-01

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the highvoltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequencycomb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  1. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun; Jadhali, Rasha Al; Zhang, Likun; Wu, Ying

    2018-01-01

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation

  2. Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy

    Science.gov (United States)

    Guthrie, Daniel K.

    1998-09-01

    The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of

  3. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Song, Minsoo; Yoon, Tai Hyun [Department of Physics, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-02-15

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s{sup 2} {sup 1}S{sub 0}{r_reversible} 6s7s {sup 1}S{sub 0}) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm{sup 3} and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s{sup 1}S{sub 0} state via the intercombination 6s6p{sup 3}P{sub 1} state with a high signal-to-noise ratio even at the temperature of 340 Degree-Sign C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  4. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  5. Investigating the effect of electron emission pattern on RF gun beam quality

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, A. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Shokri, B., E-mail: b-shokri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of)

    2016-05-11

    Thermionic radio frequency gun is one of the most promising choices to gain a high quality electron beam, used in the infrared free electron lasers and synchrotron radiation injectors. To study the quality of the beam in a compact electron source, the emission pattern effect on the beam dynamics should be investigated. In the presented work, we developed a 3D simulation code to model the real process of thermionic emission and to investigate the effect of emission pattern, by considering geometrical constraints, on the beam dynamics. According to the results, the electron bunch emittance varies considerably with the emission pattern. Simulation results have been validated via comparison with the well-known simulation codes such as ASTRA simulation code and CST microwave studio, as well as other simulation results in the literature. It was also demonstrated that by using a continuous wave laser beam for heating the cathode, the emission pattern full width at half maximum (FWHM) of the transverse emission distribution is proportional to FWHM of the Gaussian profile for the laser beam. Additionally, by using the developed code, the effect of wall structure around the cathode on the back bombardment effect has been studied. According to the results, for a stable operation of the RF gun, one should consider the nose cone in vicinity of the cathode surface to reduce the back-bombardment effect. - Highlights: • We developed a 3D code to simulate the beam dynamics of thermionic RF gun. • Te impact of the emission pattern on the beam dynamic was investigated. • Different emission pattern results different emittance in the gun exit. • Using a nosecone around the cathode adjacent wall reduces back bombardment effect.

  6. Study on the effect of beam propagation through atmospheric turbulence on standoff nanosecond laser induced breakdown spectroscopy measurements.

    Science.gov (United States)

    Laserna, J J; Reyes, R Fernández; González, R; Tobaria, L; Lucena, P

    2009-06-08

    We report on an experimental study of the effect of atmospheric turbulence on laser induced breakdown spectroscopy (LIBS) measurements. The characteristics of the atmosphere dictate specific performance constraints to this technology. Unlike classical laboratory LIBS systems where the distance to the sample is well known and characterized, LIBS systems working at several tens of meters to the target have specific atmospheric propagation conditions that cause the quality of the LIBS signals to be affected to a significant extent. Using a new LIBS based sensor system fitted with a nanosecond laser emitting at 1064 nm, propagation effects at distances of up to 120 m were investigated. The effects observed include wander and scintillation in the outgoing laser beam and in the return atomic emission signal. Plasmas were formed on aluminium targets. Average signal levels and signal fluctuations are measured so the effect of atmospheric turbulence on LIBS measurements is quantified.

  7. Ion beam nanopatterning and micro-Raman spectroscopy analysis on HOPG for testing FIB performances

    International Nuclear Information System (INIS)

    Archanjo, B.S.; Maciel, I.O.; Martins Ferreira, E.H.; Peripolli, S.B.; Damasceno, J.C.; Achete, C.A.; Jorio, A.

    2011-01-01

    This work reports Ga + focused ion beam nanopatterning to create amorphous defects with periodic square arrays in highly oriented pyrolytic graphite and the use of Raman spectroscopy as a new protocol to test and compare progresses in ion beam optics, for low fluence bombardment or fast writing speed. This can be ultimately used as a metrological tool for comparing different FIB machines and can contribute to Focused Ion Beam (FIB) development in general for tailoring nanostructures with higher precision. In order to do that, the amount of ion at each spot was varied from about 10 6 down to roughly 1 ion per dot. These defects were also analyzed by using high resolution scanning electron microscopy and atomic force microscopy. The sensitivities of these techniques were compared and a geometrical model is proposed for micro-Raman spectroscopy in which the intensity of the defect induced D band, for a fixed ion dose, is associated with the diameter of the ion beam. In addition, the lateral increase in the bombarded spot due to the cascade effect of the ions on graphite surface was extracted from this model. A semi-quantitative analysis of the distribution of ions at low doses per dot or high writing speed for soft modification of materials is discussed. -- Highlights: → Highly oriented pyrolytic graphite surface is bombarded using a focused ion beam. → Raman spectroscopy is used to propose a new protocol to test focused ion beam optics. → Scattering diameter of the ions on HOPG surface is experimentally obtained. → Optical limitations of the ion column in fast writing speed are discussed. → Small level of modifications is considered for changing graphene conductive properties.

  8. Secondary electron emission studied by secondary electron energy loss coincidence spectroscopy (SE2ELCS)

    International Nuclear Information System (INIS)

    Khalid, R.

    2013-01-01

    Emission of secondary electrons is of importance in many branches of fundamental and applied science. It is widely applied in the electron microscope for the investigation of the structure and electronic state of solid surfaces and particle detection in electron multiplier devices, and generally it is related to the energy dissipation of energetic particles moving inside a solid. The process of secondary electron emission is a complex physical phenomenon, difficult to measure experimentally and treat theoretically with satisfactory accuracy. The secondary electron spectrum measured with single electron spectroscopy does not provide detailed information of the energy loss processes responsible for the emission of secondary electrons. This information can be accessed when two correlated electron pairs are measured in coincidence and the pair consists of a backscattered electron after a given energy loss and a resulting emitted secondary electron. To investigate the mechanisms responsible for the emission of secondary electrons, a reflection (e,2e) coincidence spectrometer named Secondary Electron Electron Energy Loss Coincidence Spectrometer (SE2ELCS) has been developed in the framework of this thesis which allows one to uncover the relation between the features in the spectra which are due to energy losses and true secondary electron emission structures. The correlated electron pairs are measured with a hemispherical mirror analyzer (HMA) and a time of flight analyzer (TOF) by employing a continuous electron beam. An effort has been made to increase the coincidence count rate by increasing the effective solid angle of the TOF analyzer and optimizing the experimental parameters to get optimum energy resolution. Double differential coincidence spectra for a number of materials namely, nearly free electron metals (Al, Si), noble metals (Ag, Au, Cu, W) and highly oriented pyrolytic graphite (HOPG) have been measured using this coincidence spectrometer. The

  9. Coherent emission from relativistic beam-plasma interactions

    International Nuclear Information System (INIS)

    Latham, P.E.

    1986-01-01

    A theoretical model for the production of high-power, high-frequency electromagnetic radiation from unmagnetized, relativistic beam-plasma interactions is studied. Emphasis is placed on the injected-beam system, for which the dominant portion of the radiation is emitted near the point where the beam enters the plasma. In such systems, frequencies much larger than the plasma frequency and power levels many orders of magnitude above that predicted by single-particle radiation have been observed experimentally. A two-step process is proposed to explain these observations: electrostatic bunching of the beam followed by coherent radiation by the bunches. The first step, beam bunching, produces large-amplitude electrostatic waves. A Green's function analysis is employed to understand the convective growth of those waves near the plasma boundary; their saturation amplitude is found by applying conservation of energy to the beam-plasma system. An azimuthally symmetric model is used to compute the saturated spectrum analytically, and a relatively simple expression is found. The second step, the interaction of the electron beam with the electrostatic spectrum, leads to the production of high-power, high-frequency electromagnetic radiation. From a detailed analysis of the phase-space evolution of the trapped beam, an analytic expression for the electromagnetic spectrum is found as a function of angle and frequency

  10. Electron beam effects in auger electron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Fontaine, J.M.; Duraud, J.P.; Le Gressus, C.

    1979-01-01

    Electron beam effects on Si(100) and 5% Fe/Cr alloy samples have been studied by measurements of the secondary electron yield delta, determination of the surface composition by Auger electron spectroscopy and imaging with scanning electron microscopy. Variations of delta as a function of the accelerating voltage Esub(p) (0.5 -9 Torr has no effect on technological samples covered with their reaction layers; the sensitivities to the beam depend rather on the earlier mechanical, thermal and chemical treatment of the surfaces. (author)

  11. Gamma-Ray Spectroscopy at TRIUMF-ISAC: the New Frontier of Radioactive Ion Beam Research

    Science.gov (United States)

    Ball, G. C.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Becker, J. A.; Bricault, P.; Brown, N.; Chan, S.; Churchman, R.; Colosimo, S.; Coombes, H.; Cross, D.; Demand, G.; Drake, T. E.; Dombsky, M.; Ettenauer, S.; Finlay, P.; Furse, D.; Garnsworthy, A.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hyland, B.; Hackman, G.; Kanungo, R.; Kulp, W. D.; Lassen, J.; Leach, K. G.; Leslie, J. R.; Mattoon, C.; Melconian, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Rand, E.; Sarazin, F.; Svensson, C. E.; Sumithrarachchi, S.; Schumaker, M. A.; Triambak, S.; Waddington, J. C.; Walker, P. M.; Williams, S. J.; Wood, J. L.; Wong, J.; Zganjar, E. F.

    2009-03-01

    High-resolution gamma-ray spectroscopy is essential to fully exploit the unique scientific opportunities at the next generation radioactive ion beam facilities such as the TRIUMF Isotope Separator and Accelerator (ISAC). At ISAC the 8π spectrometer and its associated auxiliary detectors is optimize for β-decay studies while TIGRESS an array of segmented clover HPGe detectors has been designed for studies with accelerated beams. This paper gives a brief overview of these facilities and also presents recent examples of the diverse experimental program carried out at the 8π spectrometer.

  12. Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

    International Nuclear Information System (INIS)

    Hellesen, C; Sunden, E Andersson; Conroy, S; Ericsson, G; Johnson, M Gatu; Hjalmarsson, A; Kaellne, J; Ronchi, E; Sjoestrand, H; Weiszflog, M; Albergante, M; Ballabio, L; Gorini, G; Tardocchi, M; Giacomelli, L; Jenkins, I; Voitsekhovitch, I

    2010-01-01

    The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.

  13. Ballistic Electron Emission Microscopy/Spectroscopy on Au/Titanylphthalocyanine/GaAs Heterostructures

    International Nuclear Information System (INIS)

    Oezcan, S; Roch, T; Strasser, G; Smoliner, J; Franke, R; Fritz, T

    2007-01-01

    In this article Au/titanylphthalocyanine/GaAs diodes incorporating ultra smooth thin films of the archetypal organic semiconductor titanylphthalocyanine (TiOPc) were investigated by Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/S). Analyzing the BEEM spectra, we find that the TiOPc increases the BEEM threshold voltage compared to reference Au/GaAs diodes. From BEEM images taken we conclude that our molecular beam epitaxial (MBE) grown samples show very homogeneous transmission, compare to wet chemically manufactured organic films. The barrier height measured on the Au- TiOPc-GaAs is V b ∼ 1.2eV, which is in good agreement with the data found in [T. Nishi, K. Tanai, Y. Cuchi, M. R. Willis, and K. Seki Chem. Phys. Lett., vol. 414, pp. 479-482, 2005.]. The results indicate that TiOPc functions as a p-type semiconductor, which is plausible since the measurements were carried out in air [K. Walzer, T. Toccoli, A. Pallaori, R. Verucchi, T. Fritz, K. Leo, A. Boschetti, and S. Iannotte Surf. Scie., vol. 573, pp. 346-358, 2004

  14. Study of a high power hydrogen beam diagnostic based on secondary electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, E., E-mail: emanuele.sartori@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Department of Management and Engineering, University di Padova strad. S. Nicola 3, 36100 Vicenza (Italy); Panasenkov, A. [NRC, Kurchatov Institute, 1, Kurchatov Sq, Moscow 123182 (Russian Federation); Veltri, P. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); INFN-LNL, viale dell’Università n. 2, 35020 Legnaro (Italy); Serianni, G.; Pasqualotto, R. [Consorzio RFX (CNR, ENEA, INFN, UNIPD, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-11-15

    In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.

  15. Monte Carlo simulations of secondary electron emission due to ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Mahady, Kyle [Univ. of Tennessee, Knoxville, TN (United States); Tan, Shida [Intel Corp., Santa Clara, CA (United States); Greenzweig, Yuval [Intel Israel Ltd., Haifa (Israel); Livengood, Richard [Intel Corp., Santa Clara, CA (United States); Raveh, Amir [Intel Israel Ltd., Haifa (Israel); Fowlkes, Jason D. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rack, Philip [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    We present a Monte Carlo simulation study of secondary electron emission resulting from focused ion beam milling of a copper target. The basis of this study is a simulation code which simulates ion induced excitation and emission of secondary electrons, in addition to simulating focused ion beam sputtering and milling. This combination of features permits the simulation of the interaction between secondary electron emission, and the evolving target geometry as the ion beam sputters material. Previous ion induced SE Monte Carlo simulation methods have been restricted to predefined target geometries, while the dynamic target in the presented simulations makes this study relevant to image formation in ion microscopy, and chemically assisted ion beam etching, where the relationship between sputtering, and its effects on secondary electron emission, is important. We focus on a copper target, and validate our simulation against experimental data for a range of: noble gas ions, ion energies, ion/substrate angles and the energy distribution of the secondary electrons. We then provide a detailed account of the emission of secondary electrons resulting from ion beam milling; we quantify both the evolution of the yield as high aspect ratio valleys are milled, as well as the emission of electrons within these valleys that do not escape the target, but which are important to the secondary electron contribution to chemically assisted ion induced etching.

  16. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  17. Triple-root jump in spacecraft potential due to electron beam emission or impact

    International Nuclear Information System (INIS)

    Lai, S.T.

    1992-01-01

    Triple-root jump in spacecraft potential is well understood in the double Maxwellian model of the natural space environment. In this paper, however, the author points out that triple-root jumps in spacecraft potential may also occur during photoemission or electron beam emission from a spacecraft. Impact of an incoming electron beam on a spacecraft may also cause triple-root jumps provided that the beam, ambient plasma, and surface parameters satisfy certain inequality conditions. The parametric conditions under which such beam induced triple-root jumps may occur are presented

  18. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  19. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  20. Neutron Spectroscopy for pulsed beams with frame overlap using a double time-of-flight technique

    Science.gov (United States)

    Harrig, K. P.; Goldblum, B. L.; Brown, J. A.; Bleuel, D. L.; Bernstein, L. A.; Bevins, J.; Harasty, M.; Laplace, T. A.; Matthews, E. F.

    2018-01-01

    A new double time-of-flight (dTOF) neutron spectroscopy technique has been developed for pulsed broad spectrum sources with a duty cycle that results in frame overlap, where fast neutrons from a given pulse overtake slower neutrons from previous pulses. Using a tunable beam at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory, neutrons were produced via thick-target breakup of 16 MeV deuterons on a beryllium target in the cyclotron vault. The breakup spectral shape was deduced from a dTOF measurement using an array of EJ-309 organic liquid scintillators. Simulation of the neutron detection efficiency of the scintillator array was performed using both GEANT4 and MCNP6. The efficiency-corrected spectral shape was normalized using a foil activation technique to obtain the energy-dependent flux of the neutron beam at zero degrees with respect to the incoming deuteron beam. The dTOF neutron spectrum was compared to spectra obtained using HEPROW and GRAVEL pulse height spectrum unfolding techniques. While the unfolding and dTOF results exhibit some discrepancies in shape, the integrated flux values agree within two standard deviations. This method obviates neutron time-of-flight spectroscopy challenges posed by pulsed beams with frame overlap and opens new opportunities for pulsed white neutron source facilities.

  1. X-ray spectroscopy of hydrogen-like ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Tarbutt, M.R.; Crosby, D.; Silver, J.D. [Univ. of Oxford, Clarendon Lab. (United Kingdom); Myers, E.G. [Dept. of Physics, Florida State Univ., Tallahassee, FL (United States); Nakamura, N.; Ohtani, S. [ICORP, JST, Chofu, Tokyo (Japan)

    2001-07-01

    The X-ray emission from highly charged hydrogen-like ions in an electron beam ion trap is free from the problems of satellite contamination and Doppler shifts inherent in fast-beam sources. This is a favourable situation for the measurement of ground-state Lamb shifts in these ions. We present recent progress toward this goal, and discuss a method whereby wavelength comparison between transitions in hydrogenlike ions of different nuclear charge Z, enable the measurement of QED effects without requiring an absolute calibration.

  2. X-ray Emission Line Spectroscopy of Nearby Galaxies

    Science.gov (United States)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  3. High power microwave emission and diagnostics of microsecond electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Gilgenbach, R; Hochman, J M; Jayness, R; Rintamaki, J I; Lau, Y Y; Luginsland, J; Lash, J S [Univ. of Michigan, Ann Arbor, MI (United States). Intense Electron Beam Interaction Lab.; Spencer, T A [Air Force Phillips Lab., Kirtland AFB, NM (United States)

    1997-12-31

    Experiments were performed to generate high power, long-pulse microwaves by the gyrotron mechanism in rectangular cross-section interaction cavities. Long-pulse electron beams are generated by MELBA (Michigan Electron Long Beam Accelerator), which operates with parameters: -0.8 MV, 1-10 kA, and 0.5-1 microsecond pulse length. Microwave power levels are in the megawatt range. Polarization control is being studied by adjustment of the solenoidal magnetic field. Initial results show polarization power ratios up to a factor of 15. Electron beam dynamics (V{sub perp}/V{sub par}) are being measured by radiation darkening on glass plates. Computer modeling utilizes the MAGIC Code for electromagnetic waves and a single electron orbit code that includes a distribution of angles. (author). 4 figs., 4 refs.

  4. Determination of quenching coefficients by time resolved emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Laser- und Plasmaphysik

    2001-07-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved.

  5. Determination of quenching coefficients by time resolved emission spectroscopy

    International Nuclear Information System (INIS)

    Gans, T.; Schulz-von der Gathen, V.; Doebele, H.F.

    2001-01-01

    Capacitively coupled RF discharges (CCRF discharges) at 13.56 MHz in hydrogen exhibit a field reversal phase of about 10 ns during which an intense electron current provides collisional excitation, within the sheath region. After this strongly dominant short pulsed electron impact excitation, it is possible to determine quenching coefficients from the lifetime of the fluorescence at various pressures by time resolved OES even for high energy levels and without any restrictions of optical selection rules. This novel technique allows the measurement of quenching coefficients for atomic and molecular emission lines of hydrogen itself, as well as for emission lines of small admixtures (e.g. noble gases) to the hydrogen discharge, since with a fast gate-able ICCD camera operating at 13.56 MHz it is possible to measure even faint emission lines temporally resolved

  6. Positron emission medical measurements with accelerated radioactive ion beams

    International Nuclear Information System (INIS)

    Llacer, J.

    1988-01-01

    This paper reviews in some detail the process by which a heavy ion accelerator can be used to inject positron emitting radioactive particles into a human body for a range of possible medical measurements. The process of radioactive beam generation and injection is described, followed by a study of the relationship between activity that can be injected versus dose to the patient as a function of which of the positron emitting ions is used. It is found that 6 C 10 and 10 Ne 19 are the two isotopes that appear more promising for injection into humans. The design considerations for a non-tomographic instrument to obtain images from beam injections are outlined and the results of 10 Ne 19 preliminary measurements with human phantoms and actual patients for the determination of end-of-range of cancer therapy ion beams is reported. Accuracies in the order of ±1 mm in the measurements of stopping point of a therapy beam with safe doses to the patient are reported. The paper concludes with a simple analysis of requirements to extend the technique to on-line verification of cancer treatment and to nuclear medicine research and diagnostics measurements. 17 refs.; 16 figs.; 3 tabs

  7. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  8. SO2 EMISSION MEASUREMENT BY DOAS (DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY AND COSPEC (CORRELATION SPECTROSCOPY AT MERAPI VOLCANO (INDONESIA

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2010-06-01

    Full Text Available The SO2 is one of the volcanic gases that can use as indicator of volcano activity. Commonly, SO2 emission is measured by COSPEC (Correlation Spectroscopy. This equipment has several disadvantages; such as heavy, big in size, difficulty in finding spare part, and expensive. DOAS (Differential Optical Absorption Spectroscopy is a new method for SO2 emission measurement that has advantages compares to the COSPEC. Recently, this method has been developed. The SO2 gas emission measurement of Gunung Merapi by DOAS has been carried out at Kaliadem, and also by COSPEC method as comparation. The differences of the measurement result of both methods are not significant. However, the differences of minimum and maximum result of DOAS method are smaller than that of the COSPEC. It has range between 51 ton/day and 87 ton/day for DOAS and 87 ton/day and 201 ton/day for COSPEC. The measurement of SO2 gas emission evaluated with the seismicity data especially the rockfall showed the presence of the positive correlation. It may cause the gas pressure in the subsurface influencing instability of 2006 eruption lava.   Keywords: SO2 gas, Merapi, DOAS, COSPEC

  9. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  10. 15N-urea tracing emission spectroscopy for detecting the infection of Helicobacter pylori

    International Nuclear Information System (INIS)

    Zhu Yayi

    2002-01-01

    Objective: To study a noninvasive and nonradioactive method, 15 N-urea tracing emission spectroscopy, for detecting the Helicobacter pylori (Hp) infection. Methods: A group of 26 patients was tested with a method of 15 N-urea tracing emission spectroscopy for detecting the Hp infection. Results: Taking the bacterial culture or (and) Gram stain as a standard, the specificity, sensitivity and positive predicting rate of the test were 81%, 89% and 84%, respectively. Conclusion: The method could be considered useful for clinical practice

  11. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  12. Resonant soft X-ray emission spectroscopy of liquids

    International Nuclear Information System (INIS)

    Guo, J.-H.; Augustsson, A.; Englund, C.-J.; Nordgren, J.

    2004-01-01

    We present now a possible way to carry out soft-x-ray fluorescence spectroscopy of liquids. The liquid cell has a window to attain compatibility with UHV conditions of the spectrometer and beamline. The synchrotron radiation enters the liquid cell through a 100nm-thick silicon nitride window and the emitted x-rays exit through the same window. This allows in particular liquid solid interfaces to be studied. Such a liquid cell has been used to study the electronic structure of a variety of systems ranging from water solutions of inorganic salts and inertial drugs to nano materials and actinide compounds in their wet conditions

  13. Resonant X-ray emission spectroscopy in Dy compounds

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Okada, Kozo; Kotani, Akio.

    1994-01-01

    The excitation spectrum of the L 3 -M 5 X-ray emission of Dy compounds in the pre-edge region of Dy L 3 X-ray absorption near edge structure (L 3 -XANES) is theoretically investigated based upon the coherent second order optical formula with multiplet coupling effects. The spectral broadening of the excitation spectrum is determined by the M 5 core hole lifetime, being free from the L 3 core hole lifetime. The fine pre-edge structure of the L 3 edge due to the 2p→4f quadrupole transition can be seen in the excitation spectrum, while this structure is invisible in the conventional XANES, in agreement with the recent experimental results. We clarify the conditions for the excitation spectrum to be regarded as the absorption spectrum with a smaller width. The resonant X-ray emission spectra for various incident photon energies around the L 3 edge are also calculated. (author)

  14. Radially resolved emission spectroscopy on ZT-40M

    International Nuclear Information System (INIS)

    Watt, R.G.

    1982-05-01

    Measurements of line integrated emission profiles of D/sub β/, OIII, OV, OVI, and CV line radiation have been performed in the ZT-40M device at Los Alamos National Laboratory. The behavior of these emission profiles will be presented for several operating currents, fill pressures, and current risetimes. The basic oxygen radial structures are seen to resemble an onion skin at any particular time, with OIII farthest out in radius and OVI nearest the axis, as one would expect in the absence of any anomalous heating mechanisms (such as thermal instabilities). The rate at which the various lines occur during several different current level discharges appears to be consistent with increased losses for increased I/sub phi/ during the early phases of heating (up to OVI), while the later stages are consistent with a much lower energy loss and a heating rate proportional to I 2 . Evidence of enhanced wall interaction in the latter stages of the discharge is presented

  15. CN emission spectroscopy study of carbon plasma in nitrogen environment

    International Nuclear Information System (INIS)

    Abdelli-Messaci, S.; Kerdja, T.; Bendib, A.; Malek, S.

    2005-01-01

    Spectroscopic emission diagnostics of a carbon plasma created by an excimer KrF laser pulse at three laser fluences (12, 25 and 32 J/cm 2 ) is performed under nitrogen ambient at pressures of 0.5 and 1 mbar. By following the time evolution of the radical CN spectral emission profiles, we notice, at a certain distance from the target surface, the existence of twin peaks for the time of flight distribution. This double structure depends on laser fluence and gas pressure parameters. The first peak moves forward in relation with the plasma expansion whereas the second peak moves backward and it is attributed to CN species undergoing oscillations or reflected shocks

  16. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  17. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  18. High-stable secondary-emission monitor for accelerated electron beam current

    International Nuclear Information System (INIS)

    Prudnikov, I.A.; Saksaganskij, G.L.; Bazhanov, E.B.; Zabrodin, B.V.

    1977-01-01

    A secondary-emission monitor for a 10 to 30 MeV electron beam (beam current is 10 -4 to 10 -2 A) is described. The monitor comprises a measuring electrode unit, titanium discharge-type pump, getter made of porous titanium, all enclosed in a metal casing. The measuring unit comprises three electrodes made of 20 μm aluminium foil. The secondary emission coefficient (5.19%+-0.06% for the electron energy of 20 MeV) is maintained stable for a long time. The monitor detects pulses of up to some nanoseconds duration. It is reliable in operation, and is recommended for a wide practical application

  19. Experimental detection of iron overload in liver through neutron stimulated emission spectroscopy

    International Nuclear Information System (INIS)

    Kapadia, A J; Tourassi, G D; Sharma, A C; Crowell, A S; Kiser, M R; Howell, C R

    2008-01-01

    Iron overload disorders have been the focus of several quantification studies involving non-invasive imaging modalities. Neutron spectroscopic techniques have demonstrated great potential in detecting iron concentrations within biological tissue. We are developing a neutron spectroscopic technique called neutron stimulated emission computed tomography (NSECT), which has the potential to diagnose iron overload in the liver at clinically acceptable patient dose levels through a non-invasive scan. The technique uses inelastic scatter interactions between atomic nuclei in the sample and incoming fast neutrons to non-invasively determine the concentration of elements in the sample. This paper discusses a non-tomographic application of NSECT investigating the feasibility of detecting elevated iron concentrations in the liver. A model of iron overload in the human body was created using bovine liver tissue housed inside a human torso phantom and was scanned with a 5 MeV pulsed beam using single-position spectroscopy. Spectra were reconstructed and analyzed with algorithms designed specifically for NSECT. Results from spectroscopic quantification indicate that NSECT can currently detect liver iron concentrations of 6 mg g -1 or higher and has the potential to detect lower concentrations by optimizing the acquisition geometry to scan a larger volume of tissue. The experiment described in this paper has two important outcomes: (i) it demonstrates that NSECT has the potential to detect clinically relevant concentrations of iron in the human body through a non-invasive scan and (ii) it provides a comparative standard to guide the design of iron overload phantoms for future NSECT liver iron quantification studies

  20. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Bengtson, Arne

    2008-01-01

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C 2 ). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed

  1. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  2. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    International Nuclear Information System (INIS)

    Curis, Emmanuel; Osan, Janos; Falkenberg, Gerald; Benazeth, Simone; Toeroek, Szabina

    2005-01-01

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented

  3. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  4. Optical and x-ray imaging of electron beams using synchrotron emission

    International Nuclear Information System (INIS)

    Wilke, M.D.

    1994-01-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory

  5. Vibrational emission analysis of the CN molecules in laser-induced breakdown spectroscopy of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bravo, Ángel; Delgado, Tomás; Lucena, Patricia; Laserna, J. Javier, E-mail: laserna@uma.es

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) of organic materials is based on the analysis of atomic and ionic emission lines and on a few molecular bands, the most important being the CN violet system and the C{sub 2} Swan system. This paper is focused in molecular emission of LIBS plasmas based on the CN (B{sup 2}Σ–X{sup 2}Σ) band, one of the strongest emissions appearing in all carbon materials when analyzed in air atmosphere. An analysis of this band with sufficient spectral resolution provides a great deal of information on the molecule, which has revealed that valuable information can be obtained from the plume chemistry and dynamics affecting the excitation mechanisms of the molecules. The vibrational emission of this molecular band has been investigated to establish the dependence of this emission on the molecular structure of the materials. The paper shows that excitation/emission phenomena of molecular species observed in the plume depend strongly on the time interval selected and on the irradiance deposited on the sample surface. Precise time resolved LIBS measurements are needed for the observation of distinctive CN emission. For the organic compounds studied, larger differences in the behavior of the vibrational emission occur at early stages after plasma ignition. Since molecular emission is generally more complex than that involving atomic emission, local plasma conditions as well as plume chemistry may induce changes in vibrational emission of molecules. As a consequence, alterations in the distribution of the emissions occur in terms of relative intensities, being sensitive to the molecular structure of every single material. - Highlights: • Vibrational emission of CN species in laser-induced plasmas has been investigated. • Distribution of vibrational emission of CN has been found to be time dependent. • Laser irradiance affects the vibrational distribution of the CN molecules. • Plume chemistry controls the excitation mechanisms of CN

  6. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Lastras-Martínez, A., E-mail: alm@cactus.iico.uaslp.mx, E-mail: alastras@gmail.com; Ortega-Gallegos, J.; Guevara-Macías, L. E.; Nuñez-Olvera, O.; Balderas-Navarro, R. E.; Lastras-Martínez, L. F. [Instituto de Investigación en Comunicación Optica, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, San Luis Potosí, SLP 78000 (Mexico); Lastras-Montaño, L. A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Lastras-Montaño, M. A. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-03-01

    We report on real time-resolved Reflectance-difference (RD) spectroscopy of GaAs(001) grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  7. Real-time reflectance-difference spectroscopy of GaAs molecular beam epitaxy homoepitaxial growth

    Directory of Open Access Journals (Sweden)

    A. Lastras-Martínez

    2014-03-01

    Full Text Available We report on real time-resolved Reflectance-difference (RD spectroscopy of GaAs(001 grown by molecular beam epitaxy, with a time-resolution of 500 ms per spectrum within the 2.3–4.0 eV photon energy range. Through the analysis of transient RD spectra we demonstrated that RD line shapes are comprised of two components with different physical origins and determined their evolution during growth. Such components were ascribed to the subsurface strain induced by surface reconstruction and to surface stoichiometry. Results reported in this paper render RD spectroscopy as a powerful tool for the study of fundamental processes during the epitaxial growth of zincblende semiconductors.

  8. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  9. Proceeding of the workshop on gamma-ray spectroscopy utilizing heavy-ion, photon and RI beams

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Masumi; Sugita, Michiaki; Hayakawa, Takehito [eds.

    1998-03-01

    Three time since 1992, we have held the symposia entitled `Joint Spectroscopy Experiments Utilizing JAERI Tandem-Booster Accelerator` at the Tokai Research Establishment. In the symposia, we have mainly discussed the plans of experiments to be done in this joint program. The joint program started in 1994. Several experiments have been made since and some new results have already come up. This symposium `Gamma-ray Spectroscopy utilizing heavy-ion, Photon and RI beams` was held at Tokai Research Establishment of JAERI. Because this symposium is the first occasion after the program started, the first purpose of the symposium is to present and discuss the experimental results so far obtained using the JAERI Tandem-Booster. The second purpose of the symposium is to discuss new possibilities of gamma-ray spectroscopy using new resources such as RI-beam and Photon-beam. The participants from RIKEN, Tohoku University and JAERI Neutron Science Research Center presented the future plans of experiments with RI-beam at each facility. Compared with these nuclear beams, photon beam provides a completely new tool for the {gamma}-ray spectroscopy, which is achieved by inverse Compton scattering between high-energy electron and laser beams. The 23 of the presented papers are indexed individually. (J.P.N.)

  10. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  11. Precessed electron beam electron energy loss spectroscopy of graphene: Beyond channelling effects

    Energy Technology Data Exchange (ETDEWEB)

    Yedra, Ll.; Estradé, S., E-mail: sestrade@ub.edu [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); TEM-MAT, CCiT, Universitat de Barcelona, Solé i Sabarís 1, 08028 Barcelona (Spain); Torruella, P.; Eljarrat, A.; Peiró, F. [LENS, MIND-IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Darbal, A. D. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); Weiss, J. K. [AppFive LLC, 1095 W Rio Salado Pkway, Suite 110, Tempe, Arizona 85281 (United States); NanoMEGAS SPRL, Blvd. Edmond Machtens 79, B-1080 Brussels (Belgium)

    2014-08-04

    The effects of beam precession on the Electron Energy Loss Spectroscopy (EELS) signal of the carbon K edge in a 2 monolayer graphene sheet are studied. In a previous work, we demonstrated the use of precession to compensate for the channeling-induced reduction of EELS signal when in zone axis. In the case of graphene, no enhancement of EELS signal is found in the usual experimental conditions, as graphene is not thick enough to present channeling effects. Interestingly, though it is found that precession makes it possible to increase the collection angle, and, thus, the overall signal, without a loss of signal-to-background ratio.

  12. Emission Spectroscopy of OH Radical in Water-Argon Arc Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Mašláni, Alan; Sember, Viktor

    2014-01-01

    Roč. 2014, April (2014), "952138"-"952138" ISSN 2314-4920 R&D Projects: GA ČR GAP205/11/2070 Institutional support: RVO:61389021 Keywords : Emission spectroscopy * OH radical * arc plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.538, year: 2014 http://www.hindawi.com/journals/jspec/2014/952138/abs/

  13. Diagnosis of the local thermal equilibrium by optical emission spectroscopy in the evolution of electric discharge

    International Nuclear Information System (INIS)

    Valdivia B, R.; Pacheco S, J.; Pacheco P, M.; Ramos F, F.; Cruz A, A.; Velazquez P, S.

    2008-01-01

    In this work applies the technique of optical emission spectroscopy to diagnose the temperature of the species generated in plasma in the transition to glow discharge arc. Whit this diagnosis is possible to determine the local thermal equilibrium conditions of the discharge. (Author)

  14. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  15. Programs in Fortran language for reporting the results of the analyses by ICP emission spectroscopy

    International Nuclear Information System (INIS)

    Roca, M.

    1985-01-01

    Three programs, written in FORTRAN IV language, for reporting the results of the analyses by ICP emission spectroscopy from data stored in files on floppy disks have been developed. They are intended, respectively, for the analyses of: 1) waters, 2) granites and slates, and 3) different kinds of geological materials. (Author) 8 refs

  16. Optical Emission Spectroscopy of Plasma in Hybrid Pulsed Laser Deposition System

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Jelínek, Miroslav; Bulíř, Jiří; Lančok, Ján; Jastrabík, Lubomír; Zelinger, Zdeněk

    2002-01-01

    Roč. 52, Suppl. D (2002), s. 292-298 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1010110 Keywords : optical emission spectroscopy * pulsed laser deposition * RF discharge Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.311, year: 2002

  17. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    NARCIS (Netherlands)

    Timmermans, E.A.H.; de Groote, F.P.J.; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, van der J.J.A.M.

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly

  18. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    International Nuclear Information System (INIS)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Highlights: ► Stimulated emission pumping for nitric oxide was studied using picosecond lasers. ► Weak and tightly focused pulses provide sufficient energy for population transfer. ► Selective excitation at the bandhead yields strong fluorescence depletion signals. ► We observe 19% population transfer to v″ = 2 of the X 2 Π 1/2 ground electronic state. - Abstract: Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17–25 ps. A lambda excitation scheme, or ‘‘pump–dump” arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin (λ pump =226.35(1)nm) of the A 2 Σ + (v′ = 0, J′) ← X 2 Π 1/2 (v″ = 0, J″) and the dump laser scanned from 246–248 nm within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A 2 Σ + (v′ = 0, J′) → X 2 Π 1/2 (v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ pump =226.35(1)nm and λ dump =247.91(1)nm. This value reflects the percent transfer of the NO population from the A 2 Σ + (V′ = 0, J′) excited electronic state to the X 2 Π 1/2 (v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  19. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  20. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    Science.gov (United States)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  1. Picosecond rotationally resolved stimulated emission pumping spectroscopy of nitric oxide

    Science.gov (United States)

    Tanjaroon, Chakree; Reeve, Scott W.; Ford, Alan; Murry, W. Dean; Lyon, Kevin; Yount, Bret; Britton, Dan; Burns, William A.; Allen, Susan D.; Bruce Johnson, J.

    2012-01-01

    Stimulated emission pumping (SEP) experiments were performed on the nitric oxide molecule in a flow cell environment using lasers with pulse widths of 17-25 ps. A lambda excitation scheme, or ''pump-dump" arrangement, was employed with the pump laser tuned to the T 00 vibronic band origin ( λ=226.35(1)nm) of the A2Σ+( v' = 0, J') ← X2Π1/2( v″ = 0, J″) and the dump laser scanned from 246-248 nm within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 2, J″) transition. The rotationally resolved SEP spectra were measured by observing the total fluorescence within the A2Σ+( v' = 0, J') → X2Π1/2( v″ = 1, J″) transition between 235 nm and 237.2 nm while scanning the dump laser wavelengths. Multiple rotational states were excited due to the broad laser bandwidth. Measurements showed that the resolved rotational structure depended on the energy and bandwidth of the applied pump and dump laser pulses. Analysis of the observed fluorescence depletion signals yielded an average percent fluorescence depletion of about 19% when λ=226.35(1)nm and λ=247.91(1)nm. This value reflects the percent transfer of the NO population from the A2Σ+( V' = 0, J') excited electronic state to the X2Π1/2( v″ = 2, J″) ground electronic state. The maximum expected depletion is 50% in the limit of dump saturation. Selective excitation of NO at the bandhead provides good spectral discrimination from the background emission and noise and unambiguously confirms the identity of the emitter.

  2. Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, A., E-mail: kriegea@uni-mainz.d [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Geppert, Ch. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Catherall, R. [CERN, CH-1211 Geneve 23 (Switzerland); Hochschulz, F. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Kraemer, J.; Neugart, R. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); Rosendahl, S. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Schipper, J.; Siesling, E. [CERN, CH-1211 Geneve 23 (Switzerland); Weinheimer, Ch. [Institut fuer Kernphysik, Universitaet Muenster, 48149 Muenster (Germany); Yordanov, D.T. [Max-Planck-Institut fuer Kernphysik, 69117 Heidelberg (Germany); Noertershaeuser, W. [Institut fuer Kernchemie, Johannes Gutenberg, Universitaet Mainz, Fritz-Strassmann-Weg 2, 55128 Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany)

    2011-03-11

    A high-voltage divider with accuracy at the ppm level and collinear laser spectroscopy were used to calibrate the high-voltage installation at the radioactive ion beam facility ISOLDE at CERN. The accurate knowledge of this voltage is particularly important for collinear laser spectroscopy measurements. Beam velocity measurements using frequency-comb based collinear laser spectroscopy agree with the new calibration. Applying this, one obtains consistent results for isotope shifts of stable magnesium isotopes measured using collinear spectroscopy and laser spectroscopy on laser-cooled ions in a trap. The long-term stability and the transient behavior during recovery from a voltage dropout were investigated for the different power supplies currently applied at ISOLDE.

  3. The influence of atomic alignment on absorption and emission spectroscopy

    Science.gov (United States)

    Zhang, Heshou; Yan, Huirong; Richter, Philipp

    2018-06-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining physical parameters in the universe, providing information about the chemistry of various astronomical environments. The proper execution of the spectroscopic analysis requires accounting for all the physical effects that are compatible to the signal-to-noise ratio. We find in this paper the influence on spectroscopy from the atomic/ground state alignment owing to anisotropic radiation and modulated by interstellar magnetic field, has significant impact on the study of interstellar gas. In different observational scenarios, we comprehensively demonstrate how atomic alignment influences the spectral analysis and provide the expressions for correcting the effect. The variations are even more pronounced for multiplets and line ratios. We show the variation of the deduced physical parameters caused by the atomic alignment effect, including alpha-to-iron ratio ([X/Fe]) and ionisation fraction. Synthetic observations are performed to illustrate the visibility of such effect with current facilities. A study of PDRs in ρ Ophiuchi cloud is presented to demonstrate how to account for atomic alignment in practice. Our work has shown that due to its potential impact, atomic alignment has to be included in an accurate spectroscopic analysis of the interstellar gas with current observational capability.

  4. Spontaneous and stimulated emission induced by an electron, electron bunch, and electron beam in a plasma

    International Nuclear Information System (INIS)

    Kuzelev, M V; Rukhadze, A A

    2008-01-01

    Two fundamental mechanisms - the Cherenkov effect and anomalous Doppler effect - underlying the emission by an electron during its superluminal motion in medium are considered. Cherenkov emission induced by a single electron and a small electron bunch is spontaneous. In the course of spontaneous Cherenkov emission, the translational motion of an electron is slowed down and the radiation energy grows linearly with time. As the number of radiating electrons increases, Cherenkov emission becomes stimulated. Stimulated Cherenkov emission represents a resonance beam instability. This emission process is accompanied by longitudinal electron bunching in the beam or by the breaking of an electron bunch into smaller bunches, in which case the radiation energy grows exponentially with time. In terms of the longitudinal size L e of the electron bunch there is a transition region λ e 0 -1 between the spontaneous and stimulated Cherenkov effects, where λ is the average radiation wavelength, and δ 0 is the dimensionless (in units of the radiation frequency) growth rate of the Cherenkov beam instability. The range to the left of this region is dominated by spontaneous emission, whereas the range to the right of this region is dominated by stimulated emission. In contrast to the Vavilov-Cherenkov effect, the anomalous Doppler effect should always (even for a single electron) be considered as stimulated, because it can only be explained by accounting for the reverse action of the radiation field on the moving electron. During stimulated emission in conditions where anomalous Doppler effect shows itself, an electron is slowed down and spins up; in this case, the radiation energy grows exponentially with time. (reviews of topical problems)

  5. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  6. The impact of molecular emission in compositional depth profiling using Glow Discharge-Optical Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson, Arne [Corrosion and Metals Research Institute, Dr. Kristinas vaeg 48, Stockholm (Sweden)], E-mail: arne.bengtson@kimab.com

    2008-09-15

    The scope of this paper is to investigate and discuss how molecular emission can affect elemental analysis in glow discharge optical emission (GD-OES), particularly in compositional depth profiling (CDP) applications. Older work on molecular emission in glow discharges is briefly reviewed, and the nature of molecular emission spectra described. Work on the influence of hydrogen in the plasma, in particular elevated background due to a continuum spectrum, is discussed. More recent work from sputtering of polymers and other materials with a large content of light elements in a Grimm type source is reviewed, where substantial emission has been observed from several light diatomic molecules (CO, CH, OH, NH, C{sub 2}). It is discussed how the elevated backgrounds from such molecular emission can lead to significant analytical errors in the form of 'false' depth profile signals of several atomic analytical lines. Results from a recent investigation of molecular emission spectra from mixed gases in a Grimm type glow discharge are presented. An important observation is that dissociation and subsequent recombination processes occur, leading to formation of molecular species not present in the original plasma gas. Experimental work on depth profiling of a polymer coating and a thin silicate film, using a spectrometer equipped with channels for molecular emission lines, is presented. The results confirm that molecular emission gives rise to apparent depth profiles of elements not present in the sample. The possibilities to make adequate corrections for such molecular emission in CDP of organic coatings and very thin films are discussed.

  7. Directional sound beam emission from a configurable compact multi-source system

    KAUST Repository

    Zhao, Jiajun

    2018-01-12

    We propose to achieve efficient emission of highly directional sound beams from multiple monopole sources embedded in a subwavelength enclosure. Without the enclosure, the emitted sound fields have an indistinguishable or omnidirectional radiation directivity in far fields. The strong directivity formed in the presence of the enclosure is attributed to interference of sources under degenerate Mie resonances in the enclosure of anisotropic property. Our numerical simulations of sound emission from the sources demonstrate the radiation of a highly directed sound beam of unidirectional or bidirectional patterns, depending on how the sources are configured inside the enclosure. Our scheme, if achieved, can solve the challenging problem of poor directivity of a subwavelength sound system, and can guide beam forming and collimation by miniaturized devices.

  8. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  9. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.

    Science.gov (United States)

    Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E

    2017-06-12

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  10. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  11. The influence of magnetic fields on absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Heshou; Yan, Huirong

    2016-10-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H II Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show that due to GSA, magnetic fields will affect the spectra of diffuse gas with high signal-to-noise(S/N) ratio under the condition that photon-excitation is much more efficient than thermal collision.

  12. Cone beam tomography of the heart using single-photon emission-computed tomography

    International Nuclear Information System (INIS)

    Gullberg, G.T.; Christian, P.E.; Zeng, G.L.; Datz, F.L.; Morgan, H.T.

    1991-01-01

    The authors evaluated cone beam single-photon emission-computed tomography (SPECT) of the heart. A new cone beam reconstruction algorithm was used to reconstruct data collected from short scan acquisitions (of slightly more than 180 degrees) of a detector anteriorally traversing a noncircular orbit. The less than 360 degrees acquisition was used to minimize the attenuation artifacts that result from reconstructing posterior projections of 201T1 emissions from the heart. The algorithm includes a new method for reconstructing truncated projections of background tissue activity that eliminates reconstruction ring artifacts. Phantom and patient results are presented which compare a high-resolution cone beam collimator (50-cm focal length; 6.0-mm full width at half maximum [FWHM] at 10 cm) to a low-energy general purpose (LEGP) parallel hole collimator (8.2-mm FWHM at 10 cm) which is 1.33 times more sensitive. The cone beam tomographic results are free of reconstruction artifacts and show improved spatial and contrast resolution over that obtained with the LEGP parallel hole collimator. The limited angular sampling restrictions and truncation problems associated with cone beam tomography do not deter from obtaining diagnostic information. However, even though these preliminary results are encouraging, a thorough clinical study is still needed to investigate the specificity and sensitivity of cone beam tomography

  13. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, A. [Northern Illinois U.; Grote, D. [LLNL, Livermore; Mihalcea, D. [Northern Illinois U.; Piot, P. [Fermilab; Vay, J.-L. [LBNL, Berkeley

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  14. SPIDER beam dump as diagnostic of the particle beam

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it; Sartori, E. [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Dalla Palma, M.; Brombin, M.; Pasqualotto, R. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-11-15

    The beam power produced by the negative ion source for the production of ion of deuterium extracted from RF plasma is mainly absorbed by the beam dump component which has been designed also for measuring the temperatures on the dumping panels for beam diagnostics. A finite element code has been developed to characterize, by thermo-hydraulic analysis, the sensitivity of the beam dump to the different beam parameters. The results prove the capability of diagnosing the beam divergence and the horizontal misalignment, while the entity of the halo fraction appears hardly detectable without considering the other foreseen diagnostics like tomography and beam emission spectroscopy.

  15. In-beam γ-ray spectroscopy of the neutron rich 39Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Achouri, N.L.; Angelique, J.C.; Bastin, B.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2009-01-01

    Complete text of publication follows. In order to clarify the role of proton excitations across the Z = 14 subshell closure in neutron-rich Si isotopes, we investigated the structure of the 14 39 Si 25 isotope, having three neutron-hole configurations with respect to an N = 28 core. The excited states of 39 Si were studied by in-beam γ-ray spectroscopy trough fragmentation of radioactive beams. The experiment was performed at the GANIL facility in France. The radioactive beams were produced by the fragmentation of the stable 48 Ca beam of 60 MeV/u energy and 4μA intensity on a 12 C target in the SISSI device. The cocktail beam produced was impinged onto a 9 Be target. The nuclei produced in the secondary fragmentation reaction were selected and unambiguously identified by the SPEG spectrometer. In the performed experiment the 39 Si nuclei were obtained via 1p, 1p1n, 2p1n and 2p2n knockout reactions from the 40,41 P and 42,43 S secondary beams. To measure the γ rays emitted from the excited states, the secondary target was surrounded by the 4π 'Chateau de Crystal' array consisting of 74 BaF 2 scintillators. The γ-ray spectra were generated by gating event-by-event on the incoming secondary beam particles and the ejectiles after the secondary target. For the γ rays emitted by the fast moving fragments accurate Doppler correction was performed. From the obtained γ spectra of 39 Si displayed in Figure 1, two strong γ transitions at 163 and 397 keV as well as weaker ones at 303, 657, 906, 1143 and 1551 keV have been identified. γγ coincidences were obtained in 39 Si after having added all data from the various reaction channels giving rise to 39 Si. Analysing these data the 163 keV transition was found to be in coincidence with the 657, 1143 and 1551 keV ones, but not with the 397 keV transition. The two lines of the 303+397 keV doublet are in mutual coincidence, and one or both of them are found in coincidence with the 906 keV transition.

  16. Effect of analytical proton beam irradiation on lead-white pigments, characterized by EPR spectroscopy

    Science.gov (United States)

    Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas

    2018-01-01

    Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.

  17. Multiple track Doppler-shift spectroscopy system for TFTR neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Kugel, H.W.; Reale, M.A.

    1986-09-01

    A Doppler-shift spectroscopy system has been installed on the TFTR neutral beam injection system to measure species composition during both conditioning and injection pulses. Two intensified vidicon detectors and two spectrometers are utilized in a system capable of resolving data from up to twelve ion sources simultaneously. By imaging the light from six ion sources onto one detector, a cost-effective system has been achieved. Fiber optics are used to locate the diagnostic in an area remote from the hazards of the tokamak test cell allowing continuous access, and eliminating the need for radiation shielding of electronic components. Automatic hardware arming and interactive data analysis allow beam composition to be computed between tokamak shots for use in analyzing plasma heating experiments. Measurements have been made using lines of sight into both the neutralizer and the drift duct. Analysis of the data from the drift duct is both simpler and more accurate since only neutral particles are present in the beam at this location. Comparison of the data taken at these two locations reveals the presence of partially accelerated particles possessing an estimated 1/e half-angle divergence of 15 0 and accounting for up to 30% of the extracted power

  18. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    Science.gov (United States)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  19. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    International Nuclear Information System (INIS)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  20. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Chalbot, M.-C.; Nikolich, G.; Etyemezian, V.; Dubois, D.W.; King, J.; Shafer, D.; Gamboa da Costa, G.; Hinton, J.F.; Kavouras, I.G.

    2013-01-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  1. Fluorescence excitation-emission matrix spectroscopy for degradation monitoring of machinery lubricants

    Science.gov (United States)

    Sosnovski, Oleg; Suresh, Pooja; Dudelzak, Alexander E.; Green, Benjamin

    2018-02-01

    Lubrication oil is a vital component of heavy rotating machinery defining the machine's health, operational safety and effectiveness. Recently, the focus has been on developing sensors that provide real-time/online monitoring of oil condition/lubricity. Industrial practices and standards for assessing oil condition involve various analytical methods. Most these techniques are unsuitable for online applications. The paper presents the results of studying degradation of antioxidant additives in machinery lubricants using Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy and Machine Learning techniques. EEM Spectroscopy is capable of rapid and even standoff sensing; it is potentially applicable to real-time online monitoring.

  2. Determining the phonon energy of highly oriented pyrolytic graphite by scanning tunneling microscope light emission spectroscopy

    Science.gov (United States)

    Uehara, Yoichi; Michimata, Junichi; Watanabe, Shota; Katano, Satoshi; Inaoka, Takeshi

    2018-03-01

    We have investigated the scanning tunneling microscope (STM) light emission spectra of isolated single Ag nanoparticles lying on highly oriented pyrolytic graphite (HOPG). The STM light emission spectra exhibited two types of spectral structures (step-like and periodic). Comparisons of the observed structures and theoretical predictions indicate that the phonon energy of the ZO mode of HOPG [M. Mohr et al., Phys. Rev. B 76, 035439 (2007)] can be determined from the energy difference between the cutoff of STM light emission and the step in the former structure, and from the period of the latter structure. Since the role of the Ag nanoparticles does not depend on the substrate materials, this method will enable the phonon energies of various materials to be measured by STM light emission spectroscopy. The spatial resolution is comparable to the lateral size of the individual Ag nanoparticles (that is, a few nm).

  3. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  4. Optical emission from a high-refractive-index waveguide excited by a traveling electron beam

    International Nuclear Information System (INIS)

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    An optical emission scheme was demonstrated, in which a high-refractive-index waveguide is excited by a traveling electron beam in a vacuum environment. The waveguide was made of Si-SiO 2 layers. The velocity of light propagating in the waveguide was slowed down to 1/3 of that in free space due to the high refractive index of Si. The light penetrated partly into the vacuum in the form of a surface wave. The electron beam was emitted from an electron gun and propagated along the surface of the waveguide. When the velocity of the electron coincided with that of the light, optical emission was observed. This emission is a type of Cherenkov radiation and is not conventional cathode luminescence from the waveguide materials because Si and SiO 2 are transparent to light at the emitted wavelength. This type of emission was observed in an optical wavelength range from 1.2 to 1.6 μm with an electron acceleration voltage of 32-42 kV. The characteristics of the emitted light, such as the polarization direction and the relation between the acceleration voltage of the electron beam and the optical wavelength, coincided well with the theoretical results. The coherent length of an electron wave in the vacuum was confirmed to be equal to the electron spacing, as found by measuring the spectral profile of the emitted light

  5. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  6. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  7. Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors.

    Science.gov (United States)

    Bocoum, Maïmouna; Thévenet, Maxence; Böhle, Frederik; Beaurepaire, Benoît; Vernier, Aline; Jullien, Aurélie; Faure, Jérôme; Lopez-Martens, Rodrigo

    2016-05-06

    We report for the first time on the anticorrelated emission of high-order harmonics and energetic electron beams from a solid-density plasma with a sharp vacuum interface-plasma mirror-driven by an intense ultrashort laser pulse. We highlight the key role played by the nanoscale structure of the plasma surface during the interaction by measuring the spatial and spectral properties of harmonics and electron beams emitted by a plasma mirror. We show that the nanoscale behavior of the plasma mirror can be controlled by tuning the scale length of the electron density gradient, which is measured in situ using spatial-domain interferometry.

  8. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    International Nuclear Information System (INIS)

    Amami, Souhail; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim

    2010-01-01

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  9. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  10. Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser

    Czech Academy of Sciences Publication Activity Database

    Dzelzainis, T.W.J.; Chalupský, Jaromír; Fajardo, M.; Fäustlin, R.; Heimann, P.A.; Hájková, Věra; Juha, Libor; Jurek, Karel; Khattak, F.Y.; Kozlová, Michaela; Krzywinski, J.; Lee, R. W.; Nagler, B.; Nelson, A.J.; Rosmej, F.B.; Soberierski, R.; Toleikis, S.; Tschentscher, T.; Vinko, S.M.; Wark, J. S.; Whitcher, T.; Riley, D.

    2010-01-01

    Roč. 6, č. 1 (2010), 109-112 ISSN 1574-1818 R&D Projects: GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAAX00100903 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z10100521 Keywords : XUV emission spectroscopy * free-electron laser * warm dense matter Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.206, year: 2010

  11. Inductively coupled plasma for atomic emission spectroscopy at the Savannah River Plant

    International Nuclear Information System (INIS)

    Coleman, J.T.

    1986-01-01

    The Savannah River Plant atomic emission spectroscopy laboratory has been in operation for over 30 years. Routine analytical methods and instrumentation are being replaced with current technology. Laboratory renovation will include the installation of contained dual excitation sources (inductively coupled plasma and d-c arc) with a direct reading spectrometer. The instrument will be used to provide impurity analyses of plutonium, uranium, and other nuclear fuel cycle materials

  12. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, B. S., E-mail: ben.cooper.13@ucl.ac.uk; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  13. In-beam γ-ray spectroscopy of 38,40,42Si

    Directory of Open Access Journals (Sweden)

    Matsushita M.

    2014-03-01

    Full Text Available Excited states in the nuclei 38,40,42 Si have been studied using in-beam Γ-ray spectroscopy following multi-nucleon removal reactions to investigate the systematics of excitation energies along the Z=14 isotopic chain. The most probable candidates for the transition from the yrast 4+ state were tentatively assigned among several γ lines newly observed in the present study. The energy ratios between the 21+ and 41+ states were obtained to be 2.09(5, 2.56(5 and 2.93(5 for 38,40,42Si, respectively, indicating a rapid development of deformation in Si isotopes from N=24 to, at least, N=28.

  14. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    Directory of Open Access Journals (Sweden)

    C. C. Fan

    2017-08-01

    Full Text Available High-quality (001-oriented perovskite [(SrIrO3m/(SrTiO3] superlattices (m=1/2, 1, 2, 3 and ∞ films have been grown on SrTiO3(001 epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  15. Proton beam characterization by proton-induced acoustic emission: simulation studies

    International Nuclear Information System (INIS)

    Jones, K C; Witztum, A; Avery, S; Sehgal, C M

    2014-01-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ∼1 mm. (paper)

  16. Emission of a propagation invariant flat-top beam from a microchip laser

    International Nuclear Information System (INIS)

    Naidoo, Darryl; Harfouche, A.; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2016-01-01

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  17. Emission of a propagation invariant flat-top beam from a microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Darryl [Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001 (South Africa); Harfouche, A. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumédiène, B.P. no 32, El Alia, 16111 Algiers (Algeria); Fromager, Michael; Ait-Ameur, Kamel [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche de Recherche 6252, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Caen Basse Normandie, Ecole Nationale Supérieure des Ingénieurs de Caen, Boulevard Maréchal Juin, F14050 Caen (France); Forbes, Andrew, E-mail: andrew.forbes@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa)

    2016-02-15

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  18. The Application of Moessbauer Emission Spectroscopy to Industrial Cobalt Based Fischer-Tropsch Catalysts

    International Nuclear Information System (INIS)

    Loosdrecht, J. van de; Berge, P. J. van; Craje, M. W. J.; Kraan, A. M. van der

    2002-01-01

    The application of Moessbauer emission spectroscopy to study cobalt based Fischer-Tropsch catalysts for the gas-to-liquids process was investigated. It was shown that Moessbauer emission spectroscopy could be used to study the oxidation of cobalt as a deactivation mechanism of high loading cobalt based Fischer-Tropsch catalysts. Oxidation was observed under conditions that are in contradiction with the bulk cobalt phase thermodynamics. This can be explained by oxidation of small cobalt crystallites or by surface oxidation. The formation of re-reducible Co 3+ species was observed as well as the formation of irreducible Co 3+ and Co 2+ species that interact strongly with the alumina support. The formation of the different cobalt species depends on the oxidation conditions. Iron was used as a probe nuclide to investigate the cobalt catalyst preparation procedure. A high-pressure Moessbauer emission spectroscopy cell was designed and constructed, which creates the opportunity to study cobalt based Fischer-Tropsch catalysts under realistic synthesis conditions.

  19. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)

    2016-12-15

    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  20. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong; Kim, Ju-Hyung; Hatami, Fariba; Kung, Patrick; Kim, Seongsin Margaret

    2017-07-01

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As a result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.

  1. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    Science.gov (United States)

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  2. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Francisco J. Rescalvo

    2018-04-01

    Full Text Available This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes, reinforced using carbon composite materials (CFRP. Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE sensors. Results demonstrate that: (1 the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness; (2 Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  3. Electron beam interactions with CO on W[100] studied by Auger electron spectroscopy

    International Nuclear Information System (INIS)

    Housley, M.; King, D.A.

    1977-01-01

    The interaction of 2500 eV electrons with carbon monoxide chemisorbed on tungsten [100] was investigated by rapid-scan Auger electron spectroscopy. When no α state was present the O and C signals from the β state of CO were invariant during electron bombardment, giving an upper limit estimate for the electron stimulated desorption cross section, Qsub(β), of 2 x 10 -21 cm 2 . With the crystal at room temperature and saturated with CO, however, electron-beam induced accumulation of carbon was observed and characterised, the rate of the process being independent of CO pressure at pressures above 2 x 10 -8 Torr. At 450 K the rate was found to be pressure dependent up to at least 6 x 10 -7 Torr. A model is proposed for the accumulation process, which is based on electron beam dissociation of α 2 -CO to form adsorbed carbon and gaseous O and the creation of new sites for further α 2 -CO adsorption; it is in quantitative agreement with the results and yields a cross section for ESD of α 2 -CO (Qsub(α 2 )=1.55 X 10 -18 cm 2 ) in clo 2 e agreement with direct measurements. (Auth.)

  4. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    Science.gov (United States)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  5. Vehicle charging and return current measurements during electron-beam emission experiments from the Shuttle Orbiter

    International Nuclear Information System (INIS)

    Hawkins, J.G.

    1988-01-01

    The prime objective of this research was to investigate the electro-dynamic response of the Shuttle Orbiter during electron beam emission from the payload bay. This investigation has been conducted by examining data collected by the Vehicle Charging And Potential (VCAP) Experiment. The VCAP experiment has flown on two Shuttle missions with a Fast Pulse Electron Generator (FPEG) capable of emitting a 100 mA beam of 1 keV electrons. Diagnostics of the charging and return current during beam emission were provided by a combined Charge and Current Probe (CCP) located in the payload bay of the Orbiter. The CCP measurements were used to conduct a parametric study of the vehicle charging and return current as a function of vehicle attitude, ambient plasma parameters, and emitted beam current. In particular, the CCP measurements were found to depend strongly on the ambient plasma density. The vehicle charging during a 100 mA beam emission was small when the predicted ambient plasma density was greater than 3 x 10 5 cm -3 , but appreciable charging occurred when the density was less than this value. These observations indicated that the effective current-collecting area of the Orbiter is approximately 42 m 2 , consistent with estimates for the effective area of the Orbiter's engine nozzles. The operation of the Orbiter's Reaction Control System thrusters can create perturbations in the Orbiter's neutral and plasma environment that affect the CCP measurements. The CCP signatures of thruster firings are quite complex, but in general they are consistent with the depletion of plasma density in the ram direction and the enhancement of plasma density in the Orbiter's wake

  6. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  7. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  8. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  9. Beam brightness from a relativistic, field-emission diode with a velvet covered cathode

    International Nuclear Information System (INIS)

    Bekefi, G.; Shefer, R.E.; Tasker, S.C.

    1985-08-01

    The beam emittance and brightness from a mildly relativistic (200 to 400 kV) high current density (0.5 to 3.5kA/cm 2 ) planar, field emission diode provided with a velvet covered cathode have been studied experimentally as a function of the applied electric field (100 to 600kV/cm). Transverse beam spreading has been measured using a conventional pinhole arrangement followed by a fluorescent screen and open shutter camera. Good turn-on, and a high normalized beam brightness (B/sub n/ = 300kA/cm 2 -rad 2 ) have been observed. The results are compared with those obtained with a graphite cathode. 11 refs., 6 figs

  10. Observation of damage process in RC beams under cucle bending by acoustic emission

    International Nuclear Information System (INIS)

    Shigeishi, Mitsuhiro; Ohtsu, Masayasu; Tsuji, Nobuyuki; Yasuoka, Daisuke

    1997-01-01

    Reinforced concrete (RC) structures are generally applied to construction of buildings and bridges, and are imposed on cyclic loading incessantly. It is considered that detected acoustic emission (AE) waveforms are associated with the damage degree and the fracture mechanisms of RC structures. Therefor, the cyclic bending tests are applied to damaged RC beam specimens. To evaluate the interior of the damaged RC beams, the AE source kinematics are determined by 'SiGMA' procedure for AE moment tensor analysis. By using 'SiGMA' procedure, AE source kinematics, such as source locations, crack types, crack orientations and crack motions, can be identified. The results show the applicability to observation of the fracture process under cyclic bending load and evaluation the degree of damage of RC beam.

  11. Beam profile measurement of ES-200 using secondary electron emission monitor

    Directory of Open Access Journals (Sweden)

    E Ebrahimi Basabi

    2015-09-01

    Full Text Available Up to now, different designs have been introduced for measurement beam profile accelerators. Secondary electron emission monitors (SEM are one of these devices which have been used for this purpose. In this work, a SEM has been constructed to measure beam profile of ES-200 accelerator, a proton electrostatic accelerator which is installed at SBU. Profile grid for both planes designed with 16 wires which are insulated relative to each other. The particles with maximum energy of 200 keV and maximum current of 400 μA are stopped in copper wires. Each of the wires has an individual current-to-voltage amplifier. With a multiplexer, the analogue values are transported to an ADC. The ADCs are read out by a microcontroller and finally profile of beam shows by a user interface program

  12. Nuclear structure of light thallium isotopes as deduced from laser spectroscopy on a fast atom beam

    International Nuclear Information System (INIS)

    Bounds, J.A.

    1985-08-01

    After optimizing the system by experiments on /sup 201,203,205/Tl, the neutron-deficient isotopes 189-193 Tl have been studied using the collinear fast atom beam laser spectroscopy system at UNISOR on-line to the Holifield Heavy Ion Research Facility. A sensitive system for the measurements was developed since the light isotopes were available in mass-separated beams of only 7 x 10 4 to 4 x 10 5 atoms per second. By laser excitation of the 535 nm atomic transitions of atoms in the beam, the 6s 2 7s 2 S/sub 1/2/ and 6s 2 6s 2 P/sub 3/2/ hyperfine structures were measured, as were the isotope shifts of the 535 nm transitions. From these, the magnetic dipole moments, spectroscopic quadrupole moments and isotopic changes in mean-square charge radius were deduced. The magnetic dipole moments are consistent with previous data. The /sup 190,192/Tl isotopes show a considerable difference in quadrupole deformations as well as an anomalous isotope shift with respect to 194 Tl. A large isomer shift in 193 Tl is observed implying a larger deformation in the 9/2 - isomer than in the 1/2 + ground state. The /sup 189,191,193/Tl isomers show increasing deformation away from stability. A deformed shell model calculation indicates that this increase in deformation can account for the dropping of the 9/2 - band in these isotopes while an increase in neutron pairing correlations, having opposite and compensating effects on the rotational moment of inertia, maintains the 9/2 - strong-coupled band structure. 105 refs., 27 figs

  13. Study of the effective inverse photon efficiency using optical emission spectroscopy combined with cavity ring-down spectroscopy approach

    Science.gov (United States)

    Wu, Xingwei; Li, Cong; Wang, Yong; Wang, Zhiwei; Feng, Chunlei; Ding, Hongbin

    2015-09-01

    The hydrocarbon impurities formation is inevitable due to wall erosion in a long pulse high performance scenario with carbon-based plasma facing materials in fusion devices. The standard procedure to determine the chemical erosion yield in situ is by means of inverse photon efficiency D/XB. In this work, the conversion factor between CH4 flux and photon flux of CH A → X transition (effective inverse photon efficiency PE-1) was measured directly using a cascaded arc plasma simulator with argon/methane. This study shows that the measured PE-1 is different from the calculated D/XB. We compared the photon flux measured by optical emission spectroscopy (OES) and calculated by electron impact excitation of CH(X) which was diagnosed by cavity ring-down spectroscopy (CRDS). It seems that charge exchange and dissociative recombination processes are the main channels of CH(A) production and removal which lead to the inconsistency of PE -1 and D/XB at lower temperature. Meanwhile, the fraction of excited CH(A) produced by dissociative recombination processes was investigated, and we found it increased with Te in the range from 4% to 13% at Te definition instead of D/XB since the electron impact excitation is not the only channel of CH(A) production. These results have an effect on evaluating the yield of chemical erosion in divertor of fusion device.

  14. [Study on Ammonia Emission Rules in a Dairy Feedlot Based on Laser Spectroscopy Detection Method].

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; You, Kun; Wang, Li-ming; Gao, Yan-wei; Xu, Jin-feng; Gao, Zhi-ling; Ma, Wen-qi

    2016-03-01

    It needs on-line monitoring of ammonia concentration on dairy feedlot to disclose ammonia emissions characteristics accurately for reducing ammonia emissions and improving the ecological environment. The on-line monitoring system for ammonia concentration has been designed based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) technology combining with long open-path technology, then the study has been carried out with inverse dispersion technique and the system. The ammonia concentration in-situ has been detected and ammonia emission rules have been analyzed on a dairy feedlot in Baoding in autumn and winter of 2013. The monitoring indicated that the peak of ammonia concentration was 6.11 x 10(-6) in autumn, and that was 6.56 x 10(-6) in winter. The concentration results show that the variation of ammonia concentration had an obvious diurnal periodicity, and the general characteristic of diurnal variation was that the concentration was low in the daytime and was high at night. The ammonia emissions characteristic was obtained with inverse dispersion model that the peak of ammonia emissions velocity appeared at noon. The emission velocity was from 1.48 kg/head/hr to 130.6 kg/head/hr in autumn, and it was from 0.004 5 kg/head/hr to 43.32 kg/head/hr in winter which was lower than that in autumn. The results demonstrated ammonia emissions had certain seasonal differences in dairy feedlot scale. In conclusion, the ammonia concentration was detected with optical technology, and the ammonia emissions results were acquired by inverse dispersion model analysis with large range, high sensitivity, quick response without gas sampling. Thus, it's an effective method for ammonia emissions monitoring in dairy feedlot that provides technical support for scientific breeding.

  15. Optical emission spectroscopy during fabrication of indium-tin-oxynitride films by RF-sputtering

    International Nuclear Information System (INIS)

    Koufaki, M.; Sifakis, M.; Iliopoulos, E.; Pelekanos, N.; Modreanu, M.; Cimalla, V.; Ecke, G.; Aperathitis, E.

    2006-01-01

    Indium-tin-oxide (ITO) and indium-tin-oxynitride (ITON) films have been deposited on glass by rf-sputtering from an ITO target, using Ar plasma and N 2 plasma, respectively, and different rf-power. Optical emission spectroscopy (OES) was employed to identify the species present in the plasma and to correlate them with the properties of the ITO and ITON thin films. Emission lines of ionic In could only be detected in N 2 plasma, whereas in the Ar plasma additional lines corresponding to atomic In and InO, were detected. The deposition rate of thin films was correlated with the In species, rather than the nitrogen species, emission intensity in the plasma. The higher resistivity and lower carrier concentration of the ITON films, as compared to the respective properties of the ITO films, were attributed to the incorporation of nitrogen, instead of oxygen, in the ITON structure

  16. Spectroscopy of optically selected BL Lac objects and their γ-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Sandrinelli, A.; Treves, A.; Farina, E. P.; Landoni, M. [Università degli Studi dell' Insubria, Via Valleggio 11, I-22100 Como (Italy); Falomo, R. [INAF-Osservatorio Astronomico di Padova, Vicolo dell Osservatorio 5, I-35122 Padova (Italy); Foschini, L.; Sbarufatti, B., E-mail: angela.sandrinelli@brera.inaf.it [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy)

    2013-12-01

    We present Very Large Telescope optical spectroscopy of nine BL Lac objects of unknown redshift belonging to the list of optically selected radio-loud BL Lac candidates. We explore their spectroscopic properties and possible link with gamma-ray emission. From the new observations we determine the redshifts of four objects from faint emission lines or from absorption features of their host galaxies. In three cases we find narrow intervening absorptions from which a lower limit to the redshift is inferred. For the remaining two featureless sources, lower limits to the redshift are deduced from the absence of spectral lines. A search for γ counterpart emission shows that six out of the nine candidates are Fermi γ-ray emitters and we find two new detections. Our analysis suggests that most of the BL Lac objects still lacking redshift information are most likely located at high redshifts.

  17. Process control of high rate microcrystalline silicon based solar cell deposition by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Kilper, T.; Donker, M.N. van den; Carius, R.; Rech, B.; Braeuer, G.; Repmann, T.

    2008-01-01

    Silicon thin-film solar cells based on microcrystalline silicon (μc-Si:H) were prepared in a 30 x 30 cm 2 plasma-enhanced chemical vapor deposition reactor using 13.56 or 40.68 MHz plasma excitation frequency. Plasma emission was recorded by optical emission spectroscopy during μc-Si:H absorber layer deposition at deposition rates between 0.5 and 2.5 nm/s. The time course of SiH * and H β emission indicated strong drifts in the process conditions particularly at low total gas flows. By actively controlling the SiH 4 gas flow, the observed process drifts were successfully suppressed resulting in a more homogeneous i-layer crystallinity along the growth direction. In a deposition regime with efficient usage of the process gas, the μc-Si:H solar cell efficiency was enhanced from 7.9 % up to 8.8 % by applying process control

  18. End point detection in ion milling processes by sputter-induced optical emission spectroscopy

    International Nuclear Information System (INIS)

    Lu, C.; Dorian, M.; Tabei, M.; Elsea, A.

    1984-01-01

    The characteristic optical emission from the sputtered material during ion milling processes can provide an unambiguous indication of the presence of the specific etched species. By monitoring the intensity of a representative emission line, the etching process can be precisely terminated at an interface. Enhancement of the etching end point is possible by using a dual-channel photodetection system operating in a ratio or difference mode. The installation of the optical detection system to an existing etching chamber has been greatly facilitated by the use of optical fibers. Using a commercial ion milling system, experimental data for a number of etching processes have been obtained. The result demonstrates that sputter-induced optical emission spectroscopy offers many advantages over other techniques in detecting the etching end point of ion milling processes

  19. Current control of the electron beam formed in the magnetron gun with a secondary-emission cathode

    International Nuclear Information System (INIS)

    Dovbnya, A.N.; Reshetnyak, N.G.; Zakutin, V.V.; Chertishchev, I.A.; Romas'ko, V.P.; Dovbnyan, N.A.

    2013-01-01

    Data are reported on electron beam generation and beam current control in two types of secondary-emission cathode magnetron guns. The influence of the magnetic field value and field distribution on the formation of the beam and its parameters has been investigated in the electron energy range between 20 and 150 keV. The influence of local magnetic field variations on the cathode and the electron beam characteristics has been studied. The possibility to control the electron beam current in various ways has been demonstrated

  20. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-06-15

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work of T. Tanaka, H. Kitamura, and T. Shintake (2004), which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS, where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  1. On radiation emission from a microbunched beam with wavefront tilt and its experimental observation

    Science.gov (United States)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2018-03-01

    In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work Tanaka et al. (2004) , which predicts, in this case, exponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS (Nuhn et al., 2015; Lutman etal., 2016), where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.

  2. Multiwire secondary-emission monitor and the emittance measurement of the AGS beam

    International Nuclear Information System (INIS)

    Weng, W.T.; Chiang, I.H.; Smith, G.A.; Soukas, A.

    1983-01-01

    For CBA injection the transverse emittances and the Twiss parameters of the AGS beam have to be well defined to minimize the phase space dilution in CBA. Althoug there exists a profile monitor device at U165, there are three reasons why construction of multiwire profile monitor system at three locations from U500 to U168 is required: (1) the dispersion function is not zero at U165 which makes it harder to interpret the measurement; (2) the original single wire device takes five minutes to traverse the whole beam; (3) a three station multiwire system can provide the profile information at all locations in one pulse which makes on-line analysis possible. In summary, a set of three stations of Multiwire Secondary Emission Monitor (MSEM) has been built and installed in the fast external beam line for the measurement of beam profiles. Each unit consists of two planes each with 30 nickel wires having a diameter of 5 mils. The signal is linear within the range of 10 10 to 10 13 incident protons on the wire and the resolution of the signal is well within a few percent. A least-square fitting routine has been used to extract the emittance and phase space parameters of the beam. The emittances obtained at various intensities will help us to understand the AGS acceleration process and to choose the optimal injection scheme for CBA

  3. Characterisation of a micro-plasma device sensor using electrical measurements and emission spectroscopy

    International Nuclear Information System (INIS)

    Mariotti, D.

    2002-04-01

    This thesis reports on research undertaken on the characterisation of a micro-plasma device to be used for gas analysis by mean of plasma emission spectroscopy. The work covers aspects related to the micro-plasma electrical and optical emission parameters, and their importance for the utilisation of the micro-plasma device in gas analysis. Experimental results have been used to analyse the fundamental micro-plasma processes and to develop a model, which could provide additional information. This dissertation contains a general literature review of topics related to plasma physics, plasma emission spectroscopy, gas analysis (chemical analysis and artificial olfaction) and other micro-plasma applications. Experimental work focuses on two main areas: electrical measurements and emission measurements. Firstly, electrical measurements are taken and interpretations are given. Where necessary, new theoretical treatments are suggested in order to describe better the physical phenomena. Plasma emission has been considered under different working conditions. This allowed the characterisation of the micro-plasma emission and also a better understanding of the micro-plasma processes. On the basis of the experimental data obtained and other assumptions a model has been developed. A computer simulation based on this model provided additional useful information on the micro- plasma behaviour. The first fundamental implication of this new research is the peculiar behaviour of the micro-plasma. This micro-plasma exhibited deviations from Paschen law and strong dependency on cathode material, which contributed to the formation of a low current stable regime. These results have been followed by physical interpretations and theoretical descriptions. The second implication is the establishment of the boundaries and of the influencing parameters for plasma emission spectroscopy as an analytical tool in this particular micro-plasma. From the applied perspective this study has shown that

  4. Measuring the Density of a Molecular Cluster Injector via Visible Emission from an Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, D. P.; Kaita, R.; Majeski, R. M.; Stotler, D. P.

    2010-06-28

    A method to measure the density distribution of a dense hydrogen gas jet is pre- sented. A Mach 5.5 nozzle is cooled to 80K to form a flow capable of molecular cluster formation. A 250V, 10mA electron beam collides with the jet and produces Hα emission that is viewed by a fast camera. The high density of the jet, several 1016cm-3, results in substantial electron depletion, which attenuates the Hα emission. The attenuated emission measurement, combined with a simplified electron-molecule collision model, allows us to determine the molecular density profile via a simple iterative calculation.

  5. Optical emission and mass spectroscopy of plasma processes in reactive DC pulsed magnetron sputtering of aluminium oxide

    Czech Academy of Sciences Publication Activity Database

    Novotný, Michal; Bulíř, Jiří; Pokorný, Petr; Bočan, Jiří; Fitl, Přemysl; Lančok, Ján; Musil, Jindřich

    2010-01-01

    Roč. 12, č. 3 (2010), 697-700 ISSN 1454-4164 R&D Projects: GA AV ČR IAA100100718; GA AV ČR KAN400100653; GA ČR GP202/09/P324 Institutional research plan: CEZ:AV0Z10100522 Keywords : reactive magnetron sputtering * alumina * plasma spectroscopy * mass spectroscopy * optical emission spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.412, year: 2010

  6. Analysis of two colliding laser-produced plasmas by emission spectroscopy and fast photography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ake, C., E-mail: citlali.sanchez@ccadet.unam.m [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Mustri-Trejo, D. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico); Garcia-Fernandez, T. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, Mexico DF, C.P. 09790 (Mexico); Villagran-Muniz, M. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, Mexico D.F., C.P. 04510 (Mexico)

    2010-05-15

    In this work two colliding laser-induced plasmas (LIP) on Cu and C were studied by means of time resolved emission spectroscopy and fast photography. The experiments were performed using two opposing parallel targets of Cu and C in vacuum, ablated with two synchronized ns lasers. The results showed an increased emission intensity from copper ions Cu II (368.65, 490.97, 493.16, 495.37 and 630.10 nm) and Cu III (374.47 and 379.08 nm) due to the ionization that occurs during collisions of Cu and C species. It was found that the optimum delay between pulses, which yields the maximum emission enhancement of Cu ions, depends on the sampling distance. On the other hand, the emission intensity of C lines, C II (426.70 nm), C III (406.99 and 464.74 nm) and C IV (465.83 nm), decreased and the formation of C{sub 2} molecules was observed. A comparison between the temporal evolution of the individual plasmas and their collision performed by combining imaging and the time resolved emission diagnostics, revealed an increase of the electron temperature and electron density and the splitting of the plume into slow and fast components.

  7. Long-wave, infrared laser-induced breakdown (LIBS) spectroscopy emissions from energetic materials.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Ei E; Hommerich, Uwe; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2012-12-01

    Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof. The silicon-based detector for conventional ultraviolet-visible LIBS operations was replaced with a mercury-cadmium-telluride detector for MIR-LWIR spectral detection. The IR spectral signature region between 4 and 12 μm was mined for the appearance of MIR and LWIR-LIBS emissions directly indicative of oxygenated breakdown products as well as dissociated, and/or recombined sample molecular fragments. Distinct LWIR-LIBS emission signatures from dissociated-recombination sample molecular fragments between 4 and 12 μm are observed for the first time.

  8. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  9. Gamma ray tracking with the AGATA demonstrator. A novel approach for in-beam spectroscopy

    International Nuclear Information System (INIS)

    Birkenbach, Benedikt

    2014-01-01

    -rays were detected with the AGATA demonstrator consisting of five AGATA triple cluster detectors. An additional micro channel plate detector for particle detection was mounted inside the scattering chamber in order to request kinematic coincidences. The analysis procedures for the two complex sub-detectors AGATA and PRISMA were extended and adapted to the specific requirements of this new approach for actinide spectroscopy. First the complex analysis of the magnetic spectrometer PRISMA and solutions for unexpected detector behaviour like time drifts and aberration corrections are described. As a result the individual isotopes of elements from Barium to Tellurium were identified confirming the very high quality of the PRISMA spectrometer and its design parameters. The analysis of the γ-ray spectra comprised a detailed PSA and GRT analysis of the AGATA demonstrator. This analysis included also data analysis developments for the AGATA collaboration. The data of the AGATA demonstrator, the PRISMA spectrometer and the ancillary detectors were merged to obtain background free Doppler corrected spectra for the beam- and target-like reaction products. The simultaneous Doppler correction for beam and target-like ions included an elaborate optimization procedure for unobservable experimental parameters. The γ-ray spectra for the individual isotopes is consistent with the isotope identification of the PRISMA analysis. For the beam like particles γ-ray spectra of the isotopes 128-139 Xe are presented and discussed. For the target like nuclei γ-ray spectra of the isotopes 236-240 U are deduced. By gating on the remaining excitation energy after the multi-nucleon transfer reaction the neutron evaporation and fission of the excited actinide nuclei were suppressed. Coincidences between AGATA and PRISMA were exploited for the first time together with the particle coincidence between beam- and target-like nuclei. These triple coincidences allowed further background reduction. The results

  10. Emission spectrochemical analysis

    International Nuclear Information System (INIS)

    Rives, R.D.; Bruks, R.R.

    1983-01-01

    The emission spectrochemical method of analysis based on the fact that atoms of elements can be excited in the electric arc or in the laser beam and will emit radiation with characteristic wave lengths is considered. The review contains the data on spectrochemical analysis, of liquids geological materials, scheme of laser microprobe. The main characteristics of emission spectroscopy, atomic absorption spectroscopy and X-ray fluorescent analysis, are aeneralized

  11. Neutron emission in neutral beam heated KSTAR plasmas and its application to neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jong-Gu, E-mail: jgkwak@nfri.re.kr; Kim, H.S.; Cheon, M.S.; Oh, S.T.; Lee, Y.S.; Terzolo, L.

    2016-11-01

    Highlights: • We measured the neutron emission from KSTAR plasmas quantitatively. • We confirmed that neutron emission is coming from neutral beam-plasma interactions. • The feasibility study shows that the fast neutron from KSTAR could be used for fast neutron radiography. - Abstract: The main mission of Korea Superconducting Tokamak Advanced Research (KSTAR) program is exploring the physics and technologies of high performance steady state Tokamak operation that are essential for ITER and fusion reactor. Since the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 s which corresponds to a few times of current diffusion time and surpassing the current conventional Tokamak operation. In addition to long-pulse operation, the operational boundary of the H-mode discharge is further extended over MHD no-wall limit(β{sub N} ∼ 4) transiently and higher stored energy region is obtained by increased total heating power (∼6 MW) and plasma current (I{sub p} up to 1 MA for ∼10 s). Heating system consists of various mixtures (NB, ECH, LHCD, ICRF) but the major horse heating resource is the neutral beam(NB) of 100 keV with 4.5 MW and most of experiments are conducted with NB. So there is a lot of production of fast neutrons coming from via D(d,n){sup 3}He reaction and it is found that most of neutrons are coming from deuterium beam plasma interaction. Nominal neutron yield and the area of beam port is about 10{sup 13}–10{sup 14}/s and 1 m{sup 2} at the closest access position of the sample respectively and neutron emission could be modulated for application to the neutron radiography by varying NB power. This work reports on the results of quantitative analysis of neutron emission measurements and results are discussed in terms of beam-plasma interaction and plasma confinement. It also includes the feasibility study of neutron radiography using KSTAR.

  12. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Science.gov (United States)

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  13. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the financial support of the W. M. Keck Foundation.

  14. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  15. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  16. The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy

    Science.gov (United States)

    Flikweert, A. J.; Nimalasuriya, T.; Kroesen, G. M. W.; Haverlag, M.; Stoffels, W. W.

    2009-11-01

    Diffusive and convective processes in the metal-halide lamp cause an unwanted axial colour segregation. Convection is induced by gravity. To understand the flow phenomena in the arc discharge lamp it has been investigated under normal laboratory conditions, micro-gravity (ISS and parabolic flights) and hyper-gravity (parabolic flights 2 g, centrifuge 1 g-10 g). The measurement techniques are webcam imaging, and emission and laser absorption spectroscopy. This paper aims to give an overview of the effect of different artificial gravity conditions on the lamp and compares the results from the three measurement techniques.

  17. Elemental analysis of halogens using molecular emission by laser-induced breakdown spectroscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Gaft, M.; Nagli, L.; Eliezer, N.; Groisman, Y. [Laser Distance Spectrometry, 9 Mota Gur St., Petah Tikva 49514 (Israel); Forni, O. [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2014-08-01

    Fluorine and chlorine do not produce atomic and ionic line spectra of sufficient intensity to permit their detection by laser-induced breakdown spectroscopy. They do, however, combine with alkali-earths and other elements to form molecules whose spectra may be easily identified, enabling detection in ambient conditions with much higher sensitivity than using F I and Cl I atomic lines. - Highlights: • We studied laser induced breakdown spectra of halogens with alkali-earth elements. • Emission and temporal behavior of CaF and CaCl molecules were determined. • Sensitivity of F and Cl detection by molecules and atoms was compared.

  18. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  19. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  20. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  1. Influences on the Emissions of Bacterial Plasmas Generated through Nanosecond Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Malenfant, Dylan J.

    In the past decade, laser-induced breakdown spectroscopy has been shown to provide compositional data that can be used for discrimination between bacterial specimens at the strain level. This work demonstrates the viability of this technique in a clinical setting. Studies were conducted to investigate the impact of emissions generated by a nitrocellulose filter paper background on the classification of four species: E. coli, S. epidermidis, M. smegmatis, and P. aeruginosa. Limits of detection were determined as 48+/-12 kCFU per ablation event for new mounting procedures using standard diagnostic laboratory techniques, and a device for centrifuge filtration was designed for sampling from low-titer bacterial suspensions. Plasma emissions from samples grown at biological levels of magnesium, zinc, and glucose were shown not to deviate from controls. A limit of detection for environmental zinc was found to be 11 ppm. Discrimination with heat-killed samples was demonstrated, providing a sterile diagnostic environment.

  2. Laser induced aluminiun plasma analysis by optical emission spectroscopy in a nitrogen background gas

    International Nuclear Information System (INIS)

    Chamorro, J C; Uzuriaga, J; Riascos, H

    2012-01-01

    We studied an Al plasma generated by a Nd:YAG laser with a laser fluence of 4 J/cm 2 , a wavelength of 1064 nm, energy pulse of 500 mJ and 10 Hz repetition rate. We studied their spectral characteristics at various ambient nitrogen pressures by optical emission spectroscopy (OES). The N 2 gas pressure was varied from 20 mTorr to 150 mTorr. In Al plume, both atomic and ionic spectra were observed. The electron temperature and electron number density of the plume as of the function ambient gas pressure were determined. The electron temperature was calculated by using the Boltzmann-plot method and the number density was calculated considering the stark effect as dominating on the emission lines.

  3. Electrolytic cell-free 57Co deposition for emission Mössbauer spectroscopy

    Science.gov (United States)

    Zyabkin, Dmitry V.; Procházka, Vít; Miglierini, Marcel; Mašláň, Miroslav

    2018-05-01

    We have developed a simple, inexpensive and efficient method for an electrochemical preparation of samples for emission Mössbauer spectroscopy (EMS) and Mössbauer sources. The proposed electrolytic deposition procedure does not require any special setup, not even an electrolytic cell. It utilizes solely an electrode with a droplet of electrolyte on its surface and the second electrode sunk into the droplet. Its performance is demonstrated using two examples, a metallic glass and a Cu stripe. We present a detailed description of the deposition procedure and resulting emission Mössbauer spectra for both samples. In the case of a Cu stripe, we have performed EMS measurements at different stages of heat-treatment, which are required for the production of Mössbauer sources with the copper matrix.

  4. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  5. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    Science.gov (United States)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  6. Overview of the current spectroscopy effort on the Livermore electron beam ion traps

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Brown, G.

    1995-01-01

    An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr 34+ and the 2s-2p intrashell transitions in lithiumlike Th 87+ and U 89+ , which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti 20+ through CO 25+ . A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT

  7. Helium implanted Eurofer97 characterized by positron beam Doppler broadening and Thermal Desorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, I., E-mail: i.carvalho@m2i.nl [Materials Innovation Institute (M2i), Delft (Netherlands); Schut, H. [Delft University of Technology, Faculty of Applied Sciences, Delft (Netherlands); Fedorov, A.; Luzginova, N. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands); Desgardin, P. [CEMHTI-CNRS, 3A Rue de la Férolerie, 45071 Orléans Cedex (France); Sietsma, J. [Delft University of Technology, Faculty of Mechanical, Maritime and Materials Engineering, Delft (Netherlands)

    2013-11-15

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To produce irradiation induced defects, Eurofer97 samples were implanted with helium at energies of 500 keV and 2 MeV and doses of 1 × 10{sup 15}–10{sup 16} He/cm{sup 2}, creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). Results show that up to ∼600 K peaks that can be attributed to He desorption from overpressured He{sub n}V{sub m} (n > m) clusters and vacancy assisted mechanism in the case of helium in the substitutional position. The temperature range 600–1200 K is related to the formation of larger clusters He{sub n}V{sub m} (n < m). The dissociation of the HeV and the phase transition attributed to a sharp peak in the TDS spectra at 1200 K. Above this temperature, the release of helium from bubbles is observed.

  8. Helium implanted RAFM steels studied by positron beam Doppler Broadening and Thermal Desorption Spectroscopy

    International Nuclear Information System (INIS)

    Carvalho, I; Schut, H; Fedorov, A; Luzginova, N; Desgardin, P; Sietsma, J

    2013-01-01

    Reduced Activation Ferritic/Martensitic steels are being extensively studied because of their foreseen application in fusion and Generation IV fission reactors. To mimic neutron irradiation conditions, Eurofer97 samples were implanted with helium ions at energies of 500 keV and 2 MeV and doses of 5x10 15 -10 16 He /cm 2 , creating atomic displacements in the range 0.07–0.08 dpa. The implantation induced defects were characterized by positron beam Doppler Broadening (DB) and Thermal Desorption Spectroscopy (TDS). The DB data could be fitted with one or two layers of material, depending on the He implantation energy. The S and W values obtained for the implanted regions suggest the presence of not only vacancy clusters but also positron traps of the type present in a sub-surface region found on the reference sample. The traps found in the implanted layers are expected to be He n V m clusters. For the 2 MeV, 10 16 He/cm 2 implanted sample, three temperature regions can be observed in the TDS data. Peaks below 450 K can be ascribed to He released from vacancies in the neighbourhood of the surface, the phase transition is found at 1180 K and the peak at 1350 K is likely caused by the migration of bubbles.

  9. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  10. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  11. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    International Nuclear Information System (INIS)

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-01-01

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring

  12. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  13. Emission control of InGaN nanocolumns grown by molecular-beam epitaxy on Si(111) substrates

    International Nuclear Information System (INIS)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.; Lefebvre, P.; Jahn, U.; Trampert, A.

    2011-01-01

    This work studies the effect of the growth temperature on the morphology and emission characteristics of self-assembled InGaN nanocolumns grown by plasma assisted molecular beam epitaxy. Morphology changes are assessed by scanning electron microscopy, while emission is measured by photoluminescence. Within the growth temperature range of 750 to 650 deg. C, an increase in In incorporation for decreasing temperature is observed. This effect allows tailoring the InGaN nanocolumns emission line shape by using temperature gradients during growth. Depending on the gradient rate, span, and sign, broad emission line shapes are obtained, covering the yellow to green range, even yielding white emission.

  14. Real-time measurement of electron beam weld penetration in uranium by acoustic emission monitoring

    International Nuclear Information System (INIS)

    Whittaker, J.W.; Murphy, J.L.

    1991-07-01

    High quality electron beam (EB) welds are required in uranium test articles. Acoustic emission (AE) techniques are under development with the goal of measuring weld penetration in real-time. One technique, based on Average Signal Level (ASL) measurement was used to record weld AE signatures. Characteristic AE signatures were recorded for bead-on-plate (BOP) and butt joint (BJ) welds made under varied welding conditions. AE waveforms were sampled to determine what microscopic AE behavior led to the observed macroscopic signature features. Deformation twinning and weld expulsion are two of the main sources of emission. AE behavior was correlated with weld penetration as measured by standard metallographic techniques. The ASL value was found to increase approximately linearly with weld penetration in BJ welds. These results form the basis for a real-time monitoring technique for weld penetration. 5 refs

  15. Quantitative assessment of the ion-beam irradiation induced direct damage of nucleic acid bases through FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qing, E-mail: huangq@ipp.ac.cn [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); University of Science and Technology of China, Hefei 230029, Anhui (China); Su, Xi; Yao, Guohua; Lu, Yilin; Ke, Zhigang; Liu, Jinghua; Wu, Yuejin; Yu, Zengliang [Key Laboratory of Ion Beam Bio-engineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China)

    2014-07-01

    Energetic particles exist ubiquitously in nature, and when they hit DNA molecules in organisms, they may induce critical biological effects such as mutation. It is however still a challenge to measure directly and quantitatively the damage imposed by the energetic ions on target DNA molecules. In this work we attempted to employ Fourier transformation infrared (FTIR) spectroscopy to assess the ion-induced direct damage of four nucleic acid bases, namely, thymine (T), cytosine (C), guanine (G), and adenine (A), which are the building blocks of DNA molecules. The samples were prepared as thin films, irradiated by argon ion-beams at raised ion fluences, and in the meantime measured by FTIR spectroscopy for the damage in a quasi-in-situ manner. It was found that the low-energy ion-beam induced radiosensitivity of the four bases shows the sequence G > T > C > A, wherein the possible mechanism was also discussed.

  16. Extracting chemical information from high-resolution Kβ X-ray emission spectroscopy

    Science.gov (United States)

    Limandri, S.; Robledo, J.; Tirao, G.

    2018-06-01

    High-resolution X-ray emission spectroscopy allows studying the chemical environment of a wide variety of materials. Chemical information can be obtained by fitting the X-ray spectra and observing the behavior of some spectral features. Spectral changes can also be quantified by means of statistical parameters calculated by considering the spectrum as a probability distribution. Another possibility is to perform statistical multivariate analysis, such as principal component analysis. In this work the performance of these procedures for extracting chemical information in X-ray emission spectroscopy spectra for mixtures of Mn2+ and Mn4+ oxides are studied. A detail analysis of the parameters obtained, as well as the associated uncertainties is shown. The methodologies are also applied for Mn oxidation state characterization of double perovskite oxides Ba1+xLa1-xMnSbO6 (with 0 ≤ x ≤ 0.7). The results show that statistical parameters and multivariate analysis are the most suitable for the analysis of this kind of spectra.

  17. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  18. Mineral distribution in rice: Measurement by Microwave Plasma Atomic Emission Spectroscopy (MP-AES)

    International Nuclear Information System (INIS)

    Ramos, Nerissa C.; Ramos, R.G.A.; Quirit, L.L.; Arcilla, C.A.

    2015-01-01

    Microwave Plasma Atomic Emission Spectroscopy (MP-AES) is a new technology with comparable performance and sensitivity to Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Both instrument use plasma as the energy source that produces atomic and ionic emission lines. However, MP-AES uses nitrogen as the plasma gas instead of argon which is an additional expense for ICP-OES. Thus, MP-AES is more economical. This study quantified six essential minerals (Se, Zn, Fe, Cu, Mn and K) in rice using MP-AES. Hot plate digestion was used for sample extraction and the detection limit for each instrument was compared with respect to the requirement for routine analysis in rice. Black, red and non-pigmented rice samples were polished in various intervals to determine the concentration loss of minerals. The polishing time corresponds to the structure of the rice grains such as outer bran layer (0 to 15), inner bran layer (15 to 30), outer endosperm layer (30 to 45), and middle endosperm layer (45 to 60). Results of MP-AES analysis showed that black rice had all essential materials (except K) in high concentration at the outer bran layer. The red and non-pigmented rice samples on the other hand, contained high levels of Se, Zn, Fe, and Mn in the whole bran portion. After 25 seconds, the mineral concentrations remained constant. The concentration of Cu however, gave consistent value in all polishing intervals, hence Cu might be located in the inner endosperm layer. Results also showed that K was uniformly distributed in all samples where 5% loss was consistently observed for every polishing interval. Therefore, the concentration of K was also affected by polishing time. Thus, the new MP-AES technology with comparable performance to ICP-OES is a promising tool for routine analysis in rice. (author)

  19. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  20. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    International Nuclear Information System (INIS)

    Du, Y.; Liyu, A. V.; Droubay, T. C.; Chambers, S. A.; Li, G.

    2014-01-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio

  1. Design and development of high-resolution atomic beam fluorescence spectroscopy facility for isotope shift and hyperfine structure measurements

    International Nuclear Information System (INIS)

    Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.

    2012-01-01

    A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)

  2. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  3. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  4. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  5. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2012-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of y-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  6. Study on detection of electron beam irradiated food by ESR spectroscopy and comparison of the ESR spectrum of electron beams and γ-rays

    International Nuclear Information System (INIS)

    Li Weiming; Ha Yiming; Wang Feng

    2011-01-01

    The study was conducted to detect electron beam irradiated food by ESR spectroscopy. The white pepper powder, paprika powder, cumin powder and pistachios were used as test materials to study the feature changes of ESR spectrum and the relationship between ESR intensity and irradiation dose in different doses, the shape variation of ESR spectrum in γ-rays and electron beams in the same sample was also compared. The results showed that the ESR spectrum of 4 kinds of irradiated samples was obviously different before and after irradiation, the intensity of ESR signal increased with the increasing of the absorbed dose. The dose above 432 Gy could be detected in white pepper powder and pistachios, the dose above 875 Gy could be detected in paprika powder and cumin powder. The ESR intensity of all samples decreased during the storage time (200 d), even after 200 days the ESR method could also be used to detect whether or not the samples have been irradiated. The same dosage of γ-rays and electron beams has no significant influence on the shape of ESR spectrum, however, the difference of irradiation mechanism caused slight impact on ESR intensity. The results could provide the technical basis for the application of ESR method in detecting electron beam irradiated food. (authors)

  7. Emission Spectroscopy as a Probe into Photoinduced Intramolecular Electron Transfer in Polyazine Bridged Ru(II,Rh(III Supramolecular Complexes

    Directory of Open Access Journals (Sweden)

    Karen J. Brewer

    2010-08-01

    Full Text Available Steady-state and time-resolved emission spectroscopy are valuable tools to probe photochemical processes of metal-ligand, coordination complexes. Ru(II polyazine light absorbers are efficient light harvesters absorbing in the UV and visible with emissive 3MLCT excited states known to undergo excited state energy and electron transfer. Changes in emission intensity, energy or band-shape, as well as excited state lifetime, provide insight into excited state dynamics. Photophysical processes such as intramolecular electron transfer between electron donor and electron acceptor sub-units may be investigated using these methods. This review investigates the use of steady-state and time-resolved emission spectroscopy to measure excited state intramolecular electron transfer in polyazine bridged Ru(II,Rh(III supramolecular complexes. Intramolecular electron transfer in these systems provides for conversion of the emissive 3MLCT (metal-to-ligand charge transfer excited state to a non-emissive, but potentially photoreactive, 3MMCT (metal-to-metal charge transfer excited state. The details of the photophysics of Ru(II,Rh(III and Ru(II,Rh(III,Ru(II systems as probed by steady-state and time-resolved emission spectroscopy will be highlighted.

  8. Pre-concentration of Cr, Mn, Fe and Co of water sea and analysis by plasma emission spectroscopy - DCP

    International Nuclear Information System (INIS)

    Ferreira, E.M.M.

    1985-01-01

    Studies of separation and pre-concentration methods of chromium, manganese, iron and cobalt from seawater, that allow use control methods of 5 1 Cr, 5 4 Mn, 5 5 , 5 9 Fe, 5 8 , 5 9 Co with a better sensibility and the determination of this elements by atomic absorption spectroscopy or plasma emission spectroscopy are described. This methods of seawater analysis will use near the region of Angra I reactor. (author)

  9. Remote Monitoring of a Multi-Component Liquid-Phase Organic Synthesis by Infrared Emission Spectroscopy: The Recovery of Pure Component Emissivities by Band-Target Entropy Minimization

    Czech Academy of Sciences Publication Activity Database

    Cheng, S.; Tjahjono, M.; Rajarathnam, D.; Chuanzhao, L.; Lyapkalo, Ilya; Chen, D.; Garland, M.

    2007-01-01

    Roč. 61, č. 10 (2007), s. 1057-1062 ISSN 0003-7028 Institutional research plan: CEZ:AV0Z40550506 Keywords : infrared emission spectroscopy * liquid phase reaction * band-target entropy minimization * BTEM * emittance Subject RIV: CC - Organic Chemistry Impact factor: 1.902, year: 2007

  10. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  11. Sample preparation techniques in trace element analysis by X-ray emission spectroscopy

    International Nuclear Information System (INIS)

    Valkovic, V.

    1983-11-01

    The report, written under a research contract with the IAEA, contains a detailed presentation of the most difficult problem encountered in the trace element analysis by methods of the X-ray emission spectroscopy, namely the sample preparation techniques. The following items are covered. Sampling - with specific consideration of aerosols, water, soil, biological materials, petroleum and its products, storage of samples and their handling. Pretreatment of samples - preconcentration, ashing, solvent extraction, ion exchange and electrodeposition. Sample preparations for PIXE - analysis - backings, target uniformity and homogeneity, effects of irradiation, internal standards and specific examples of preparation (aqueous, biological, blood serum and solid samples). Sample preparations for radioactive sources or tube excitation - with specific examples (water, liquid and solid samples, soil, geological, plants and tissue samples). Finally, the problem of standards and reference materials, as well as that of interlaboratory comparisons, is discussed

  12. [Desmoid fibromatosis in absorption infrared spectroscopy, emission spectral analysis and roentgen diffraction recording].

    Science.gov (United States)

    Zejkan, A; Bejcek, Z; Horejs, J; Vrbová, H; Bakosová, M; Macholda, F; Rykl, D

    1989-10-01

    The authors present results of serial quality and quantity microanalyses of bone patterns and dental tissue patterns in patient with desmoid fibromatosis. Methods of absorption spectroscopy, emission spectral analysis and X-ray diffraction analysis with follow-up to x-ray examination are tested. The above mentioned methods function in a on-line system by means of specially adjusted monitor unit which is controlled centrally by the computer processor system. The whole process of measurement is fully automated and the data obtained are recorded processed in the unit data structure classified into index sequence blocks of data. Serial microanalyses offer exact data for the study of structural changes of dental and bone tissues which manifest themselves in order of crystal grid shifts. They prove the fact that microanalyses give new possibilities in detection and interpretation of chemical and structural changes of apatite cell.

  13. Imaging buried organic islands by spatially resolved ballistic electron emission spectroscopy

    International Nuclear Information System (INIS)

    Goh, Kuan Eng J; Bannani, A; Troadec, C

    2008-01-01

    The well-known Au/n-Si(111) Schottky interface is modified by a discontinuous pentacene film (∼1.5 nm thick) and studied using spatially resolved ballistic electron emission spectroscopy (BEES). The pentacene film introduced subtle changes to the interface which cannot be definitively detected by current-voltage measurements or a standard BEES analysis of the barrier height. In contrast, analyzing the BEES results in a dual-parameter (transmission attenuation and barrier height) space allows the effect of the pentacene film on the Au/n-Si(111) interface to be clearly demonstrated. We found that the pentacene film behaves like a tunneling barrier and increases the distribution of local barrier heights with a tendency toward lower values. Our results highlight the potential of the dual-parameter BEES analysis for understanding local interface modification by molecules.

  14. Analysis of bauxite by inductively coupled plasma-atomic emission spectroscopy

    Science.gov (United States)

    Barnes, Ramon M.; Mahanti, Himansu S.

    Methods are described for the analysis of bauxite by inductively coupled plasma (ICP) emission spectroscopy. Bauxite samples were dissolved either in HCl, HNO 3, and HF at 160°C in all-PTFE bomb or fused with NaOH. Spectral lines were selected after examination of experimental wavelength scans at each potential analyte wavelength. Limits of detection, background equivalent concentration, and analytical figures of merit were established. The accuracy of the method was confirmed by determining 17 elements in NBS-SRM bauxite samples. Silicon in HF solutions was analyzed using a modified ICP torch with a graphite injector tube, an inert nebulizer using PTFE capillary tubes, and a PTFE spray chamber.

  15. Method validation in plasma source optical emission spectroscopy (ICP-OES) - From samples to results

    International Nuclear Information System (INIS)

    Pilon, Fabien; Vielle, Karine; Birolleau, Jean-Claude; Vigneau, Olivier; Labet, Alexandre; Arnal, Nadege; Adam, Christelle; Camilleri, Virginie; Amiel, Jeanine; Granier, Guy; Faure, Joel; Arnaud, Regine; Beres, Andre; Blanchard, Jean-Marc; Boyer-Deslys, Valerie; Broudic, Veronique; Marques, Caroline; Augeray, Celine; Bellefleur, Alexandre; Bienvenu, Philippe; Delteil, Nicole; Boulet, Beatrice; Bourgarit, David; Brennetot, Rene; Fichet, Pascal; Celier, Magali; Chevillotte, Rene; Klelifa, Aline; Fuchs, Gilbert; Le Coq, Gilles; Mermet, Jean-Michel

    2017-01-01

    Even though ICP-OES (Inductively Coupled Plasma - Optical Emission Spectroscopy) is now a routine analysis technique, requirements for measuring processes impose a complete control and mastering of the operating process and of the associated quality management system. The aim of this (collective) book is to guide the analyst during all the measurement validation procedure and to help him to guarantee the mastering of its different steps: administrative and physical management of samples in the laboratory, preparation and treatment of the samples before measuring, qualification and monitoring of the apparatus, instrument setting and calibration strategy, exploitation of results in terms of accuracy, reliability, data covariance (with the practical determination of the accuracy profile). The most recent terminology is used in the book, and numerous examples and illustrations are given in order to a better understanding and to help the elaboration of method validation documents

  16. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DEFF Research Database (Denmark)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    2017-01-01

    We probe the dynamics of valence electrons in photoexcited [Fe(terpy)2]2+ in solution to gain deeper insight into the Fe ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making...... valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitals directly involved in the light-driven dynamics; a change in the metal ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations...... and more subtle features at the highest energies reflect changes in the frontier orbital populations....

  17. Emission spectroscopy diagnostics of rare gases in the PNX-U facility

    International Nuclear Information System (INIS)

    Vetrov, S. I.; Spitsyn, A. V.; Shuvaev, D. A.; Yanchenkov, S. V.

    2006-01-01

    Results are presented from measurements of the electron temperature and neutral atom density in a low-temperature microwave plasma by the method of emission spectroscopy. The measurements were conducted in the PNX-U facility-a magnetic confinement system with a 'magnetic wall.' Multichord measurements of plasma radiation at a wavelength of 750.37 nm were performed with the help of an absolutely calibrated monochromator. The neutral atom density was calculated using the collisional-radiative model. The degree of plasma ionization near the axis of the facility was found to be close to unity. The electron temperature of the argon plasma was measured from the relative intensities of the spectral lines of neutral helium injected in small amounts into the plasma (the so-called helium thermometer method). At a low microwave heating power, the results of these measurements agree well with the results of probe measurements

  18. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    International Nuclear Information System (INIS)

    Sole, Angelo Del; Gambini, Anna; Falini, Andrea; Lecchi, Michela; Lucignani, Giovanni

    2002-01-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  19. In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Angelo Del [Azienda Ospedaliera San Paolo e Universita di Milano, 20142 Milan (Italy); Gambini, Anna; Falini, Andrea [IRCCS H San Raffaele e Universita Vita e Salute, 20132 Milan (Italy); Lecchi, Michela [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Lucignani, Giovanni [Azienda Ospedaliera L. Sacco e Universita di Milano, 20157 Milan (Italy); Universita di Milano, Istituto di Scienze Radiologiche, Cattedra di Medicina Nucleare c/o Ospedale L. Sacco, Via G.B. Grassi, 74, 20157 Milan (Italy)

    2002-10-01

    The assessment of neurochemical processes in vivo has received much attention in the past decade as techniques such as positron or single photon emission tomography (PET and SPET), and magnetic resonance spectroscopy (MRS) have become more available. With PET and SPET, basic processes, such as blood flow and oxygen or glucose metabolism, can be regionally assessed, along with more specific functions such as the production, release, and reuptake of neurotransmitters and their occupancy of specific receptors. At the same time, MRS can reveal changes in concentration of several hydrogenate compounds in the brain. All these methods have been extensively applied for research in neurology, and some applications have reached the clinical level, namely for the study of degenerative diseases, motor-neuron diseases, movement disorders, cerebrovascular diseases, and epilepsy. This article focuses on the most relevant information that can be obtained with these complementary techniques to help clinicians in the assessment of neurological diseases. (orig.)

  20. HYDRO2GEN: Non-thermal hydrogen Balmer and Paschen emission in solar flares generated by electron beams

    Science.gov (United States)

    Druett, M. K.; Zharkova, V. V.

    2018-03-01

    Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum

  1. SU-C-201-07: Towards Clinical Cherenkov Emission Dosimetry: Stopping Power-To-Cherenkov Power Ratios and Beam Quality Specification of Clinical Electron Beams

    International Nuclear Information System (INIS)

    Zlateva, Y; Seuntjens, J; El Naqa, I

    2016-01-01

    Purpose: We propose a Cherenkov emission (CE)-based reference dosimetry method, which in contrast to ionization chamber-based dosimetry, employs spectrum-averaged electron restricted mass collision stopping power-to-Cherenkov power ratios (SCRs), and we examine Monte Carlo-calculated SCRs and beam quality specification of clinical electron beams. Methods: The EGSnrc user code SPRRZnrc was modified to compute SCRs instead of stopping-power ratios (single medium: water; cut-off: CE threshold (observing Spencer-Attix conditions); CE power: Frank-Tamm). SCRs are calculated with BEAMnrc for realistic electron beams with nominal energies of 6–22 MeV from three Varian accelerators (TrueBeam Clinac 21EX, Clinac 2100C/D) and for mono-energetic beams of energies equal to the mean electron energy at the water surface. Sources of deviation between clinical and mono-energetic SCRs are analyzed quantitatively. A universal fit for the beam-quality index R_5_0 in terms of the depth of 50% CE C_5_0 is carried out. Results: SCRs at reference depth are overestimated by mono-energetic values by up to 0.2% for a 6-MeV beam and underestimated by up to 2.3% for a 22-MeV beam. The variation is mainly due to the clinical beam spectrum and photon contamination. Beam angular spread has a small effect across all depths and energies. The influence of the electron spectrum becomes increasingly significant at large depths, while at shallow depths and high beam energies photon contamination is predominant (up to 2.0%). The universal data fit reveals a strong linear correlation between R_5_0 and C_5_0 (ρ > 0.99999). Conclusion: CE is inherent to radiotherapy beams and can be detected outside the beam with available optical technologies, which makes it an ideal candidate for out-of-beam high-resolution 3D dosimetry. Successful clinical implementation of CE dosimetry hinges on the development of robust protocols for converting measured CE to radiation dose. Our findings constitute a key step

  2. Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Science.gov (United States)

    Rampe, E. B.; Kraft, M. D.; Sharp, T. G.; Golden, D. C.; Ming, Douglas W.

    2010-01-01

    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models.

  3. Spatially Resolved HST Grism Spectroscopy of a Lensed Emission Line Galaxy at z ~ 1

    Science.gov (United States)

    Frye, Brenda L.; Hurley, Mairead; Bowen, David V.; Meurer, Gerhardt; Sharon, Keren; Straughn, Amber; Coe, Dan; Broadhurst, Tom; Guhathakurta, Puragra

    2012-07-01

    We take advantage of gravitational lensing amplification by A1689 (z = 0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i 775 = 27.3 via slitless grism spectroscopy. One ELG (at z = 0.7895) is very bright owing to lensing magnification by a factor of ≈4.5. Several Balmer emission lines (ELs) detected from ground-based follow-up spectroscopy signal the onset of a major starburst for this low-mass galaxy (M * ≈ 2 × 109 M ⊙) with a high specific star formation rate (≈20 Gyr-1). From the blue ELs we measure a gas-phase oxygen abundance consistent with solar (12+log(O/H) = 8.8 ± 0.2). We break the continuous line-emitting region of this giant arc into seven ~1 kpc bins (intrinsic size) and measure a variety of metallicity-dependent line ratios. A weak trend of increasing metal fraction is seen toward the dynamical center of the galaxy. Interestingly, the metal line ratios in a region offset from the center by ~1 kpc have a placement on the blue H II region excitation diagram with f ([O III])/f (Hβ) and f ([Ne III])/f (Hβ) that can be fitted by an active galactic nucleus (AGN). This asymmetrical AGN-like behavior is interpreted as a product of shocks in the direction of the galaxy's extended tail, possibly instigated by a recent galaxy interaction. Based, in part, on data obtained with the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W. M. Keck Foundation.

  4. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  5. Gold removal rate by ion sputtering as a function of ion-beam voltage and raster size using Auger electron spectroscopy. Final report

    International Nuclear Information System (INIS)

    Boehning, C.W.

    1983-01-01

    Gold removal rate was measured as a function of ion beam voltage and raster size using Auger electron spectroscopy (AES). Three different gold thicknesses were developed as standards. Two sputter rate calibration curves were generated by which gold sputter rate could be determined for variations in ion beam voltage or raster size

  6. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  7. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  8. The PRESPEC liquid-hydrogen target for in-beam gamma spectroscopy of exotic nuclei at GSI

    International Nuclear Information System (INIS)

    Louchart, C.; Gheller, J.M.; Chesny, Ph.; Authelet, G.; Rousse, J.Y.; Obertelli, A.; Boutachkov, P.; Pietri, S.; Ameil, F.; Audirac, L.; Corsi, A.; Dombradi, Z.; Gerl, J.; Gillibert, A.; Korten, W.; Mailleret, C.; Merchan, E.; Nociforo, C.; Pietralla, N.; Ralet, D.

    2014-01-01

    We report on a new liquid hydrogen and deuterium target dedicated to in-beam γ spectroscopy experiments in inverse kinematics at relativistic incident energies at GSI/FAIR. Target thicknesses from 10 to 80 mm can be achieved for an effective diameter of 60 mm. The target-cell and entrance window are maded of 200μm thick Mylar. The design has the advantage of being free of absorbing material at forward angles and 90°, allowing the detection of photons in a wide angular range. A commissioning experiment with a 54 Cr beam at 130 MeV/nucleon has been performed at GSI, using the Rare Isotopes INvestigation at GSI (RISING) detectors. The target has been shown to behave as expected and is ready for experiments at fragmentation Radioactive-Ion Beam Facilities. -- Highlights: • We report on a new liquid hydrogen target for gamma spectroscopy experiments at FAIR. • A commissioning experiment has been performed at GSI, using the RISING detectors. • The target behaves as expected and is ready for experiments

  9. Comparison between measurements of hyperfine structures of Pr II - lines investigated by collinear laser ion beam spectroscopy (CLIBS) ans saturation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)

    2011-07-01

    Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.

  10. Characterization of majority and minority carrier deep levels in p-type GaN:Mg grown by molecular beam epitaxy using deep level optical spectroscopy

    International Nuclear Information System (INIS)

    Armstrong, A.; Caudill, J.; Ringel, S. A.; Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.

    2008-01-01

    Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E v +3.05 eV, E v +3.22 eV and E v +3.26 eV. Additionally, DLOS revealed levels at E c -3.24 eV and E c -2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film

  11. Complex Molecules in the Laboratory - a Comparison of Chriped Pulse and Emission Spectroscopy

    Science.gov (United States)

    Hermanns, Marius; Wehres, Nadine; Maßen, Jakob; Schlemmer, Stephan

    2017-06-01

    Detecting molecules of astrophysical interest in the interstellar medium strongly relies on precise spectroscopic data from the laboratory. In recent years, the advancement of the chirped-pulse technique has added many more options available to choose from. The Cologne emission spectrometer is an additional path to molecular spectroscopy. It allows to record instantaneously broad band spectra with calibrated intensities. Here we present a comparison of both methods: The Cologne chirped-pulse spectrometer as well as the Cologne emission spectrometer both cover the frequency range of 75-110 GHz, consistent with the ALMA Band 3 receivers. High sensitive heterodyne receivers with very low noise temperature amplifiers are used with a typical bandwidth of 2.5 GHz in a single sideband. Additionally the chirped-pulse spectrometer contains a high power amplifier of 200 mW for the excitation of molecules. Room temperature spectra of methyl cyanide and comparison of key features, such as measurement time, sensitivity, limitations and commonalities are shown in respect to identification of complex molecules of astrophysical importance. In addition, future developments for both setups will be discussed.

  12. Sub-microanalysis of solid samples with near-field enhanced atomic emission spectroscopy

    Science.gov (United States)

    Wang, Xiaohua; Liang, Zhisen; Meng, Yifan; Wang, Tongtong; Hang, Wei; Huang, Benli

    2018-03-01

    A novel approach, which we have chosen to name it as near-field enhanced atomic emission spectroscopy (NFE-AES), was proposed by introducing a scanning tunnelling microscope (STM) system into a laser-induced breakdown spectrometry (LIBS). The near-field enhancement of a laser-illuminated tip was utilized to improve the lateral resolution tremendously. Using the hybrid arrangement, pure metal tablets were analyzed to verify the performance of NFE-AES both in atmosphere and in vacuum. Due to localized surface plasmon resonance (LSPR), the incident electromagnetic field is enhanced and confined at the apex of tip, resulting in sub-micron scale ablation and elemental emission signal. We discovered that the signal-to-noise ratio (SNR) and the spectral resolution obtained in vacuum condition are better than those acquired in atmospheric condition. The quantitative capability of NFE-AES was demonstrated by analyzing Al and Pb in Cu matrix, respectively. Submicron-sized ablation craters were achieved by performing NFE-AES on a Si wafer with an Al film, and the spectroscopic information from a crater of 650 nm diameter was successfully obtained. Due to its advantage of high lateral resolution, NFE-AES imaging of micro-patterned Al lines on an integrated circuit of a SIM card was demonstrated with a sub-micron lateral resolution. These results reveal the potential of the NFE-AES technique in sub-microanalysis of solids, opening an opportunity to map chemical composition at sub-micron scale.

  13. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  14. Updated Spitzer emission spectroscopy of bright transiting hot Jupiter HD 189733b

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Kamen O. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Grillmair, Carl J., E-mail: todorovk@phys.ethz.ch [Spitzer Science Center, California Institute of Technology, Mail Stop 220-6, Pasadena, CA 91125 (United States)

    2014-12-01

    We analyze all existing secondary eclipse time series spectroscopy of hot Jupiter HD 189733b acquired with the now defunct Spitzer/Infrared Spectrograph (IRS) instrument. We describe the novel approaches we develop to remove the systematic effects and extract accurate secondary eclipse depths as a function of wavelength in order to construct the emission spectrum of the exoplanet. We compare our results with a previous study by Grillmair et al. that did not examine all data sets available to us. We are able to confirm the detection of a water feature near 6 μm claimed by Grillmair et al. We compare the planetary emission spectrum to three model families—based on isothermal atmosphere, gray atmosphere, and two realizations of the complex radiative transfer model by Burrows et al., adopted in Grillmair et al.'s study. While we are able to reject the simple isothermal and gray models based on the data at the 97% level just from the IRS data, these rejections hinge on eclipses measured within a relatively narrow wavelength range, between 5.5 and 7 μm. This underscores the need for observational studies with broad wavelength coverage and high spectral resolution, in order to obtain robust information on exoplanet atmospheres.

  15. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  16. Injectable silver nanosensors: in vivo dosimetry for external beam radiotherapy using positron emission tomography

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Rydhög, J. S.; Søndergaard, Rikke Vicki

    2016-01-01

    Development of safe and efficient radiotherapy routines requires quantification of the delivered absorbed dose to the cancer tissue in individual patients. In vivo dosimetry can provide accurate information about the absorbed dose delivered during treatment. In the current study, a novel silver......-nanosensor formulation based on poly(vinylpyrrolidinone)-coated silver nanoparticles formulated in a gelation matrix composed of sucrose acetate isobutyrate has been developed for use as an in vivo dosimeter for external beam radiotherapy. In situ photonuclear reactions trigger the formation of radioactive (106)Ag......, which enables post treatment verification of the delivered dose using positron emission tomography imaging. The silver-nanosensor was investigated in a tissue equivalent thorax phantom using clinical settings and workflow for both standard fractionated radiotherapy (2 Gy) and stereotactic radiotherapy...

  17. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY

    International Nuclear Information System (INIS)

    BEEBE-WANG, J.J.; DILMANIAN, F.A.; PEGGS, S.G.; SCHLYEER, D.J.; VASKA, P.

    2002-01-01

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as 12 C, 14 N, and 16 O. These radioisotopes, mainly 11 C, 13 N and 15 O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner

  18. Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.

    Science.gov (United States)

    Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz

    2010-08-01

    The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such

  19. Integration of Correlative Raman microscopy in a dual beam FIB-SEM J. of Raman Spectroscopy

    NARCIS (Netherlands)

    Timmermans, Frank Jan; Liszka, B.; Lenferink, Aufrid T.M.; van Wolferen, Hendricus A.G.M.; Otto, Cornelis

    2016-01-01

    We present an integrated confocal Raman microscope in a focused ion beam scanning electron microscope (FIB SEM). The integrated system enables correlative Raman and electron microscopic analysis combined with focused ion beam sample modification on the same sample location. This provides new

  20. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  1. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  2. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-01-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s 5 ) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s 3 ) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations. (paper)

  3. Extended calibration range for prompt photon emission in ion beam irradiation

    CERN Document Server

    Bellini, F.

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum.This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is report...

  4. Extended calibration range for prompt photon emission in ion beam irradiation

    International Nuclear Information System (INIS)

    Bellini, F.; Boehlen, T.T.; Chin, M.P.W.; Collamati, F.; De Lucia, E.; Faccini, R.; Ferrari, A.; Lanza, L.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Morganti, S.; Ortega, P.G.; Patera, V.; Piersanti, L.; Russomando, A.; Sala, P.R.

    2014-01-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported

  5. Extended calibration range for prompt photon emission in ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Boehlen, T.T.; Chin, M.P.W. [CERN, Geneva (Switzerland); Collamati, F. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Faccini, R., E-mail: riccardo.faccini@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Ferrari, A. [CERN, Geneva (Switzerland); Lanza, L. [Dipartimento di Fisica, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mancini-Terracciano, C. [CERN, Geneva (Switzerland); Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Marafini, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Mattei, I. [Dipartimento di Fisica, Università Roma Tre, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Morganti, S. [INFN Sezione di Roma, Roma (Italy); Ortega, P.G. [CERN, Geneva (Switzerland); Patera, V. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Piersanti, L. [Dipartimento di Scienze di Base e Applicate per Ingegneria, Sapienza Università di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Russomando, A. [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Sala, P.R. [INFN Sezione di Milano, Milano (Italy); and others

    2014-05-01

    Monitoring the dose delivered during proton and carbon ion therapy is still a matter of research. Among the possible solutions, several exploit the measurement of the single photon emission from nuclear decays induced by the irradiation. To fully characterize such emission the detectors need development, since the energy spectrum spans the range above the MeV that is not traditionally used in medical applications. On the other hand, a deeper understanding of the reactions involving gamma production is needed in order to improve the physic models of Monte Carlo codes, relevant for an accurate prediction of the prompt-gamma energy spectrum. This paper describes a calibration technique tailored for the range of energy of interest and reanalyzes the data of the interaction of a 80 MeV/u fully stripped carbon ion beam with a Poly-methyl methacrylate target. By adopting the FLUKA simulation with the appropriate calibration and resolution a significant improvement in the agreement between data and simulation is reported.

  6. Hot gas cleaning in power stations by using electron beam technology. Influence on PAH emissions

    International Nuclear Information System (INIS)

    Callen, M.S.; de la Cruz, M.T.; Mastral, A.M.; Murillo, R.; Marinov, S.; Stefanova, M.

    2007-01-01

    The Electron Beam Technology (EBT), proven treatment for SO 2 and NO x removal, is applied to different power stations as a hot gas cleaning system. In this paper, an assessment of this technique installed in a Bulgarian power station on organic emissions is analyzed. The Polycyclic Aromatic Hydrocarbons (PAH) content, not only emitted in the gas phase but also trapped in the solid phase, has been carried out before and after the irradiation. The main aim has been to know whether the EBT affects organic emissions, like PAH, as it happens with inorganic pollutants, like SO 2 and NO x , studying EBT effects from an organic environmental point of view. The PAH quantification was performed by using a very sensitive analytical technique, gas chromatography with mass spectrometry mass spectrometry detection (GC-MS-MS). Results showed that PAH are influenced by the EBT showing a reduction of the most volatile PAH in the gas phase. With regard to the solid by-products obtained after the irradiation, fertilizers, similar PAH concentration to the fly ashes produced when no irradiation is applied were found. These fertilizers were considered like unpolluted soils being adequate for agriculture applications with PAH concentrations below the target value set up by the Dutch government. (author)

  7. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  8. Oxidation of nanostructured Ti films produced by low energy cluster beam deposition: An X-ray Photoelectron Spectroscopy characterization

    International Nuclear Information System (INIS)

    Simone, Monica de; Snidero, Elena; Coreno, Marcello; Bongiorno, Gero; Giorgetti, Luca; Amati, Matteo; Cepek, Cinzia

    2012-01-01

    We used in-situ X-ray Photoelectron Spectroscopy (XPS) to study the oxidation process of a cluster-assembled metallic titanium film exposed to molecular oxygen at room temperature. The nanostructured film has been grown on a Si(111) substrate, in ultra high vacuum conditions, by coupling a supersonic cluster beam deposition system with an XPS experimental chamber. Our results show that upon in-situ oxygen exposure Ti 3+ is the first oxidation state observed, followed by Ti 4+ , whereas Ti 2+ is practically absent during the whole process. Our results compare well with the existing literature on Ti films produced using other techniques.

  9. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  10. Auger electron spectroscopy analysis of high metal content micro-structures grown by electron beam induced deposition

    International Nuclear Information System (INIS)

    Cicoira, F.; Hoffmann, P.; Olsson, C.O.A.; Xanthopoulos, N.; Mathieu, H.J.; Doppelt, P.

    2005-01-01

    An auger electron spectroscopy study was carried out on Rh-containing micro-structures grown by electron beam induced deposition (EBID) of the iso-structural and iso-electronic precursors [RhCl(PF 3 ) 2 ] 2 and [RhCl(CO) 2 ] 2 . A material containing between 55 and 60 at.% Rh was obtained from both precursors. The chemical composition of structures grown from the two different precursors indicates a similar decomposition mechanism. Deposits grown from [RhCl(PF 3 ) 2 ] 2 showed a chemical composition independent of electron energy and electron dose in the investigated range of conditions

  11. Ionization, charge exchange, and secondary electron emission in the extractor of an LBL/LLL neutral beam source

    International Nuclear Information System (INIS)

    Fink, J.H.; McDowell, C.E.

    1975-01-01

    Using a computer code, bombardment of the electrodes resulting from ionization, charge-exchange, and back-ion emission from the neutralizer cell is studied in the positive-ion extractor region of a Lawrence Berkeley Laboratory/Lawrence Livermore Laboratory (LBL/LLL) neutral beam source. Ion and electron trajectories are presented, grid dissipations estimated, and proposals made for future designs

  12. Effectiveness of the use of emission data by fan beam collimator for TCT on TCT/ECT simultaneous acquisition

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Nishimura, Yoshihiro; Murase, Kenya

    2003-01-01

    On transmission CT (TCT)/emission CT (ECT) simultaneous acquisition in the three detector SPECT system (one fan beam collimator for TCT and two parallel-hole collimators for ECT), count loss of the ECT data of the fan beam collimator for TCT occurs, which may deteriorate image quality. We thought that it might be possible to retrieve the ECT counts and improve image quality, when ECT data of the fan beam collimator for TCT were added to ECT data of two other parallel-hole collimators. To prove our hypothesis, we performed a phantom and clinical studies. We compared the ECT images of the following protocols: ECT data of a fan beam collimator+ECT data of two parallel beam collimators with attenuation correction (protocol A), ECT data of two parallel beam collimators with attenuation correction (protocol B), ECT data of two parallel beam collimators without attenuation correction (protocol C). In the phantom study, pixel counts of protocol A were as 1.3 to 1.6 times as protocol B. Profile curve improved up to 7 to 10%. Clinical images also improved. In conclusion, ECT data of the fan beam collimator for TCT can be retrieved to increase ECT counts, which improved image quality. (author)

  13. Reduction of organic solvent emission by industrial use of electron-beam curable coatings

    International Nuclear Information System (INIS)

    Haering, E.

    1982-01-01

    Most industrial finishing processes operate by the use of liquid organic coating materials drying by solvent evaporation and subsequent chemical crosslinking reactions, in many cases also releasing cleavage products. These organic emissions contribute to air pollution and therefore many countries have issued restrictions in order to protect the environment. Complementary to other modern methods for reducing this problem, radiation chemistry enables an approach by radical chain polymerization which can be induced by exposure to electron radiation. This procedure is known as electron-beam curing of coatings or the EBC process. It utilizes well-developed accelerator equipment with voltages of 150 to 400kV at a minimum energy consumption. There is no necessity to use irradiation facilities based on the decay of radioisotopes. Free radical polymerization requires unsaturated resins as pain binders and polymerizable liquid compounds (monomers) as reactive diluents. Their crosslinking yields a high molecular network, the coating, without any emission of organic solvents or cleavage products. Moreover, the radiochemical formation of the paint film occurs extremely rapidly. The technical application of EBC coatings began by coating automotive plastic parts; a little later the finishing of wood products gained more industrial use as a non-polluting and energy-saving coating technology. Application methods in coating plastic foils in combination with vacuum metallizing and the production of decorative laminating papers for furniture followed. In 1981 new EBC pilot lines were installed for curing top coats on PVC foil and also for the coating of prefinished steel wheels for automobiles. In comparison with conventional solvent-based methods the industrial EBC process results in a nearly complete reduction of organic solvent emission avoiding air pollution and saving valuable petrochemical raw materials. This paper reviews the development of EBC during the last decade. (author)

  14. Development of a pulsed laser with emission at 1053 nm for Cavity Ring-Down Spectroscopy

    International Nuclear Information System (INIS)

    Cavalcanti, Fabio

    2014-01-01

    In this work, a pulsed and Q-switched laser resonator was developed using the double-beam mode-controlling technique. A Nd:LiYF4 crystal with 0,8mol% of doping concentration was used to generate a giant pulse with duration of 5,5 ns (FWHM), 1,2 mJ of energy and 220 kW peak power for the Cavity Ring-Down Spectroscopy (CRDS) technique. The CRDS technique is used to measure absorption spectra for gases, liquids and solids. With the CRDS technique it is possible to measure losses with high degree of accuracy, underscoring the sensitivity that is confirmed by the use of mirrors with high reflectivity. With this technique, the losses by reflection and scattering of transparent materials were evaluated. By calibrating the resonant cavity, it was possible to measure the losses in the samples with resolution of 0,045%, the maximum being reached by 0,18%. The calibration was possible because there was obtained to measure a decay time of approximately 20 μs with the empty cavity. Besides was obtained a method for determining the refractive index of transparent materials with accuracy of five decimals. (author)

  15. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  16. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  17. Determination of total tin in canned food using inductively coupled plasma atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Perring, Loic; Basic-Dvorzak, Marija [Department of Quality and Safety Assurance, Nestle Research Centre, P.O. Box 44, Vers chez-les-Blanc, 1000, Lausanne (Switzerland)

    2002-09-01

    Tin is considered to be a priority contaminant by the Codex Alimentarius Commission. Tin can enter foods either from natural sources, environmental pollution, packaging material or pesticides. Higher concentrations are found in processed food and canned foods. Dissolution of the tinplate depends on the of food matrix, acidity, presence of oxidising reagents (anthocyanin, nitrate, iron and copper) presence of air (oxygen) in the headspace, time and storage temperature. To reduce corrosion and dissolution of tin, nowadays cans are usually lacquered, which gives a marked reduction of tin migration into the food product. Due to the lack of modern validated published methods for food products, an ICP-AES (Inductively coupled plasma-atomic emission spectroscopy) method has been developed and evaluated. This technique is available in many laboratories in the food industry and is more sensitive than atomic absorption. Conditions of sample preparation and spectroscopic parameters for tin measurement by axial ICP-AES were investigated for their ruggedness. Two methods of preparation involving high-pressure ashing or microwave digestion in volumetric flasks were evaluated. They gave complete recovery of tin with similar accuracy and precision. Recoveries of tin from spiked products with two levels of tin were in the range 99{+-}5%. Robust relative repeatabilities and intermediate reproducibilities were <5% for different food matrices containing >30 mg/kg of tin. Internal standard correction (indium or strontium) did not improve the method performance. Three emission lines for tin were tested (189.927, 283.998 and 235.485 nm) but only 189.927 nm was found to be robust enough with respect to interferences, especially at low tin concentrations. The LOQ (limit of quantification) was around 0.8 mg/kg at 189.927 nm. A survey of tin content in a range of canned foods is given. (orig.)

  18. High resolution X-ray emission spectroscopy: An advanced tool for actinide research

    Science.gov (United States)

    Vitova, T.; Brendebach, B.; Dardenne, K.; Denecke, M. A.; Lebid, A.; Löble, M.; Rothe, J.; Batuk, O. N.; Hormes, J.; Liu, D.; Breher, F.; Geckeis, H.

    2010-03-01

    High resolution X-ray emission spectroscopy (HRXES) is becoming increasingly important for our understanding of electronic and coordination structures. The combination of such information with development of quantum theoretical tools will advance our capability for predicting reactivity and physical behavior especially of 5f elements. HRXES can be used to remove lifetime broadening by registering the partial fluorescence yield emitted by the sample (i.e., recording a windowed signal from the energy dispersed fluorescence emission while varying incident photon energy), thereby yielding highly resolved X-ray absorption fine structure (XAFS) spectra. Such spectra often display resonant features not observed in conventional XAFS. The spectrometer set-up can also be used for a wide range of other experiments, for example, resonant inelastic X-ray scattering (RIXS), where bulk electron configuration information in solids, liquids and gases is obtained. Valence-selective XAFS studies, where the local structure of a selected element's valence state present in a mixture of valence states can be obtained, as well as site-selective XAFS studies, where the coordination structure of a metal bound to selected elements can be differentiated from that of all the other ligating atoms. A HRXES spectrometer has been constructed and is presently being commissioned for use at the INE-Beamline for actinide research at the synchrotron source ANKA at FZK. We present the spectrometer's compact, modular design, optimized for attaining a wide range of energies, and first test measurement results. Examples from HRXES studies of lanthanides, actinides counter parts, are also shown.

  19. Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescence spectroscopy

    Science.gov (United States)

    Birdwell, J.E.; Valsaraj, K.T.

    2010-01-01

    Dissolved organic matter (DOM) present in fogwater samples collected in southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix fluorescence spectroscopy. The goal of the study was to illustrate the utility of fluorescence for obtaining information on the large fraction of organic carbon in fogwaters (typically >40% by weight) that defies characterization in terms of specific chemical compounds without the difficulty inherent in obtaining sufficient fogwater volume to isolate DOM for assessment using other spectroscopic and chemical analyses. Based on the findings of previous studies using other characterization methods, it was anticipated that the unidentified organic carbon fraction would have characteristic peaks associated with humic substances and fluorescent amino acids. Both humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices for the fogwater had similar values to those of soil and sediment porewater. Greater biological character was observed in samples with higher organic carbon concentrations. Fogwaters are shown to contain a mixture of terrestrially- and microbially-derived fluorescent organic material, which is expected to be derived from an array of different sources, such as suspended soil and dust particles, biogenic emissions and organic substances generated by atmospheric processes. The fluorescence results indicate that much of the unidentified organic carbon present in fogwater can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems, though it should be noted that fluorescent signatures representative of DOM produced by atmospheric processing of organic aerosols may be contributing to or masked by humic-like fluorophores. ?? 2010.

  20. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  1. DETECTION OF REST-FRAME OPTICAL LINES FROM X-SHOOTER SPECTROSCOPY OF WEAK EMISSION-LINE QUASARS

    International Nuclear Information System (INIS)

    Plotkin, Richard M.; Gallo, Elena; Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Luo, Bin; Schneider, Donald P.; Fan, Xiaohui; Lira, Paulina; Richards, Gordon T.; Strauss, Michael A.; Wu, Jianfeng

    2015-01-01

    Over the past 15 yr, examples of exotic radio-quiet quasars with intrinsically weak or absent broad emission line regions (BELRs) have emerged from large-scale spectroscopic sky surveys. Here, we present spectroscopy of seven such weak emission line quasars (WLQs) at moderate redshifts (z = 1.4–1.7) using the X-shooter spectrograph, which provides simultaneous optical and near-infrared spectroscopy covering the rest-frame ultraviolet (UV) through optical. These new observations effectively double the number of WLQs with spectroscopy in the optical rest-frame, and they allow us to compare the strengths of (weak) high-ionization emission lines (e.g., C iv) to low-ionization lines (e.g., Mg ii, Hβ, Hα) in individual objects. We detect broad Hβ and Hα emission in all objects, and these lines are generally toward the weaker end of the distribution expected for typical quasars (e.g., Hβ has rest-frame equivalent widths ranging from 15–40 Å). However, these low-ionization lines are not exceptionally weak, as is the case for high-ionization lines in WLQs. The X-shooter spectra also display relatively strong optical Fe ii emission, Hβ FWHM ≲ 4000 km s −1 , and significant C iv blueshifts (≈1000–5500 km s −1 ) relative to the systemic redshift; two spectra also show elevated UV Fe ii emission, and an outflowing component to their (weak) Mg ii emission lines. These properties suggest that WLQs are exotic versions of “wind-dominated” quasars. Their BELRs either have unusual high-ionization components, or their BELRs are in an atypical photoionization state because of an unusually soft continuum

  2. A small electron beam ion trap/source facility for electron/neutral–ion collisional spectroscopy in astrophysical plasmas

    Science.gov (United States)

    Liang, Gui-Yun; Wei, Hui-Gang; Yuan, Da-Wei; Wang, Fei-Lu; Peng, Ji-Min; Zhong, Jia-Yong; Zhu, Xiao-Long; Schmidt, Mike; Zschornack, Günter; Ma, Xin-Wen; Zhao, Gang

    2018-01-01

    Spectra are fundamental observation data used for astronomical research, but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations. Different models give different insights for understanding a specific object. Hence, laboratory benchmarks for these theoretical models become necessary. An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae, supernova remnants and so on. In this paper, we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories, Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission, ion production, the ionization process of trapped ions as well as the effects of charge exchange on the ionization.

  3. Quantifying the relative contribution of natural gas fugitive emissions to total methane emissions in Colorado, Utah, and Texas using mobile isotopic methane analysis based on Cavity Ringdown Spectroscopy

    Science.gov (United States)

    Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric

    2014-05-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to

  4. Holographic interferometry as electrochemical emission spectroscopy of carbon steel in seawater with low concentration of RA-41 corrosion inhibitor

    International Nuclear Information System (INIS)

    Habib, K.; Al-Muhana, K.; Habib, A.

    2009-01-01

    In the present investigation, holographic interferometry was utilized for the first time to determine the rate change of the number of the fringe evolutions during the corrosion test of carbon steel in blank seawater and with seawater with different concentrations of a corrosion inhibitor. In other words, the anodic dissolution behaviors (corrosion) of the carbon steel were determined simultaneously by holographic interferometry, an electromagnetic method, and by the electrochemical impedance (EI) spectroscopy, an electronic method. So, the abrupt rate change of the number of the fringe evolutions during corrosion test (EI) spectroscopy, of the carbon steel is called electrochemical emission spectroscopy. The corrosion process of the steel samples was carried out in blank seawater and seawater with different concentrations, 5-20 ppm, of RA-41 corrosion inhibitor using the EI spectroscopy method, at room temperature. The electrochemical emission spectra of the carbon steel in different solutions represent a detailed picture of the rate change of the anodic dissolution of the steel throughout the corrosion processes. Furthermore, the optical interferometry data of the carbon steel were compared to the data, which were obtained from the EI spectroscopy. Consequently, holographic interferometric is found very useful for monitoring the anodic dissolution behaviors of metals, in which the number of the fringe evolutions of the steel samples can be determined in situ. (Author)

  5. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  6. Environmental samples analysis by Atomic Absorption Spectrophotometry and Inductively Coupled Plasma-Optical Emission Spectroscopy

    International Nuclear Information System (INIS)

    Popescu, I.V.; Iordan, M.; Stihi, C.; Bancuta, A.; Busuioc, G.; Dima, G.; Ciupina, V.; Belc, M.; Vlaicu, Gh.; Marian, R.

    2002-01-01

    Biological samples are interesting from many aspects of environmental monitoring. By analyzing tree leaves conclusions can be drown regarding the metal loading in the growth medium. So that, starting from assumption that the pollution factors from environmental medium can modify the normal concentration of elements, we decided to control the presence of toxic elements and the deviation from normal state of elements in leaves of different trees from areas situated at different distances of pollution source. The aim of this work is to determine the elemental composition of tree leaves using Atomic Absorption Spectrophotometry (AAS) method and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) method. Using AAS spectrophotometer SHIMADZU we identified and determined the concentration of: Cd, Co, Cu, Zn, Mn, Cr, Fe, Se, Pb with an instrumental error less than 1% for most of the elements analyzed. The same samples were analyzed by ICP-OES spectrometer, BAIRD ICP2070-Sequential Plasma spectrometer. We identified and determined in leaves of different trees the concentration of Mg, Ca, and Sr with a precision less than 6%. (authors)

  7. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Science.gov (United States)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S. V.

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below Ec) and at 415 K (0.9 below Ec); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below Ec known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below Ec is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  8. Atomic emission spectroscopy for the on-line monitoring of incineration processes

    International Nuclear Information System (INIS)

    Timmermans, E.A.H.; Groote, F.P.J. de; Jonkers, J.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2003-01-01

    A diagnostic measurement system based on atomic emission spectroscopy has been developed for the purpose of on-line monitoring of hazardous elements in industrial combustion gases. The aim was to construct a setup with a high durability for rough and variable experimental conditions, e.g. a strongly fluctuating gas composition, a high gas temperature and the presence of fly ash and corrosive effluents. Since the setup is primarily intended for the analysis of combustion gases with extremely high concentrations of pollutants, not much effort has been made to achieve low detection limits. It was found that an inductively coupled argon plasma was too sensitive to molecular gas introduction. Therefore, a microwave induced plasma torch, compromising both the demands of a high durability and an effective evaporation and excitation of the analyte was used as excitation source. The analysis system has been installed at an industrial hazardous waste incinerator and successfully tested on combustion gases present above the incineration process. Abundant elements as zinc, lead and sodium could be easily monitored

  9. Inductively coupled plasma emission spectroscopy. Part II: applications and fundamentals. Volume 2

    International Nuclear Information System (INIS)

    Boumans, P.W.J.M.

    1987-01-01

    This is the second part of the two-volume treatise by this well-known and respected author. This volume reviews applications of inductively coupled plasma atomic emission spectroscopy (ICP-AES), summarizes fundamental studies, and compares ICP-AES methods with other methods of analysis. The first six chapters are devoted to specific fields of application, including the following: metals and other industrial materials, geology, the environment, agriculture and food, biology and clinical analysis, and organic materials. The chapter on the analysis of organic materials also covers the special instrumental considerations required when organic solvents are introduced into an inductively coupled plasma. A chapter on the direct analysis of solids completes the first part of this volume. Each of the applications chapters begins with a summary of the types of samples that are encountered in that field, and the kinds of problems that an elemental analysis can help to solve. This is followed by a tutorial approach covering applicability, advantages, and limitations of the methods. The coverage is thorough, including sample handling, storage, and preparation, acid, and fusion dissolution, avoiding contamination, methods of preconcentration, the types of interferences that can be expected and ways to reduce them, and the types of ICP plasmas that are used. The second half of the volume covers fundamental studies of ICP-AES: basic processes of aerosol generation, plasma modeling and computer simulation, spectroscopic diagnostics, excitation mechanisms, and discharge characteristics. This section introduces the experimental and modeling methods that have been used to obtain fundamental information about ICPs

  10. Trace cobalt speciation in bacteria and at enzymic active sites using emission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kamnev, A.A.; Antonyuk, L.P.; Smirnova, V.E.; Serebrennikova, O.B. [Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov (Russian Federation); Kulikov, L.A.; Perfiliev, Yu.D. [Laboratory of Nuclear Chemistry Techniques, Department of Radiochemistry, Faculty of Chemistry, Moscow State University (Russian Federation)

    2002-02-01

    {sup 57}Co emission Moessbauer spectroscopy (EMS) allows the chemical state of cobalt, as influenced by its coordination environment, to be monitored in biological samples at its physiological (trace) concentrations. To draw attention to EMS as a valuable tool for speciation of cobalt in biocomplexes, the process of cobalt(II) metabolism in cells of the plant growth-promoting rhizobacterium Azospirillum brasilense Sp245 was investigated using EMS of {sup 57}Co{sup II}-doped bacterial cells. EMS measurements also showed {sup 57}Co{sup II}-activated glutamine synthetase (GS, a key enzyme of nitrogen metabolism, isolated from this bacterium) to have two different cobalt(II) forms at its active sites, in agreement with data available on other bacterial GSs. Chemical after-effects following electron capture by the nucleus of the parent {sup 57}Co{sup II} during the {sup 57}Co{yields}{sup 57}Fe transition, which contribute to the formation of a stabilised daughter {sup 57}Fe{sup III} component along with the nucleogenic {sup 57}Fe{sup II} forms, are also briefly considered. (orig.)

  11. Diagnostics of helium plasma by collisional-radiative modeling and optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonwook; Kwon, Duck-Hee [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Optical diagnostics for the electron temperature (T{sub e}) and the electron density (n{sub e}) of fusion plasma is important for understanding and controlling the edge and the divertor plasmas in tokamak. Since the line intensity ratio method using the collisional-radiative modeling and OES (optical emission spectroscopy) is simple and does not disturb the plasma, many fusion devices with TEXTOR, JET, JT-60U, LHD, and so on, have employed the line intensity ratio method as a basic diagnostic tool for neutral helium (He I). The accuracy of the line intensity ratio method depends on the reliability of the cross sections and rate coefficients. We performed state-of-the-art R-matrix calculations including couplings up to n=7 states and the distorted wave (DW) calculations for the electron-impact excitation (EIE) cross sections of He I using the flexible atomic code (FAC). The collisional-radiative model for He I was constructed using the calculated the cross sections. The helium collisional-radiative model for He I was constructed to diagnose the electron temperature and the electron density of the plasma. The electron temperature and density were determined by using the line intensity ratio method.

  12. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... characterized by using phenotypic, API and Fourier transform infrared (FTIR) spectroscopy methods. One hundred and fifty-seven (157) strains were isolated from 13 cheese samples, and identification test was performed for 83 strains. At the end of the study, a total of 22 Lactococcus sp., 36 Enterecoccus ...

  13. A single-beam titration method for the quantification of open-path Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    Sung, Lung-Yu; Lu, Chia-Jung

    2014-01-01

    This study introduced a quantitative method that can be used to measure the concentration of analytes directly from a single-beam spectrum of open-path Fourier Transform Infrared Spectroscopy (OP-FTIR). The peak shapes of the analytes in a single-beam spectrum were gradually canceled (i.e., “titrated”) by dividing an aliquot of a standard transmittance spectrum with a known concentration, and the sum of the squared differential synthetic spectrum was calculated as an indicator for the end point of this titration. The quantity of a standard transmittance spectrum that is needed to reach the end point can be used to calculate the concentrations of the analytes. A NIST traceable gas standard containing six known compounds was used to compare the quantitative accuracy of both this titration method and that of a classic least square (CLS) using a closed-cell FTIR spectrum. The continuous FTIR analysis of industrial exhausting stack showed that concentration trends were consistent between the CLS and titration methods. The titration method allowed the quantification to be performed without the need of a clean single-beam background spectrum, which was beneficial for the field measurement of OP-FTIR. Persistent constituents of the atmosphere, such as NH 3 , CH 4 and CO, were successfully quantified using the single-beam titration method with OP-FTIR data that is normally inaccurate when using the CLS method due to the lack of a suitable background spectrum. Also, the synthetic spectrum at the titration end point contained virtually no peaks of analytes, but it did contain the remaining information needed to provide an alternative means of obtaining an ideal single-beam background for OP-FTIR. - Highlights: • Establish single beam titration quantification method for OP-FTIR. • Define the indicator for the end-point of spectrum titration. • An ideal background spectrum can be obtained using single beam titration. • Compare the quantification between titration

  14. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  15. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  16. Electron beam effects on the spectroscopy of multiply charged ions in plasma focus experiments

    International Nuclear Information System (INIS)

    Abdallah, J.; Clark, R.E.H.; Faenov, A.Y.; Karpinski, L.; Pikuz, S.A.; Romanova, V.M.; Sadowski, M.; Scholz, M.; Szydlowski, A.

    1999-01-01

    Argon-hydrogen mixture plasma focus experiments performed at the Warsaw Institute of Plasma Physics and Laser Microfusion show detailed space resolved spectra for Ar K-shell satellite lines up to F-like Ar and K-alpha of Ar. These transitions originating from autoionizing levels are caused by collisions of ions with the energetic electron beams which are created by the constrictions of the plasma column due to the development of magnetohydrodynamic instabilities. A collisional-radiative model was constructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high-energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 20 and 230 eV, and beam densities of about 10 -3 times the plasma electron density. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Electron beam effects on the spectroscopy of multiply charged ions in plasma focus experiments

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J. [UCLA Plasma Physics Laboratory, Los Angeles, CA (United States); Clark, R.E.H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Faenov, A.Y. [MISDC, NPO ' VNIIFTRI' , Mendeleevo, Moscow region, 141570 (Russian Federation); Karpinski, L. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pikuz, S.A.; Romanova, V.M. [P. N. Lebedev Physical Institute, Moscow (Russian Federation); Sadowski, M. [Soltan Institute for Nuclear Studies, Swierk (Poland); Scholz, M.; Szydlowski, A. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland)

    1999-05-01

    Argon-hydrogen mixture plasma focus experiments performed at the Warsaw Institute of Plasma Physics and Laser Microfusion show detailed space resolved spectra for Ar K-shell satellite lines up to F-like Ar and K-alpha of Ar. These transitions originating from autoionizing levels are caused by collisions of ions with the energetic electron beams which are created by the constrictions of the plasma column due to the development of magnetohydrodynamic instabilities. A collisional-radiative model wasconstructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high-energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 20 and 230 eV, and beam densities of about 10{sup -3} times the plasma electron density. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  19. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    International Nuclear Information System (INIS)

    Alberts, D.; Horvath, P.; Nelis, Th.; Pereiro, R.; Bordel, N.; Michler, J.; Sanz-Medel, A.

    2010-01-01

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 μs. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 μs, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  20. Time-resolved measurement of emission profiles in pulsed radiofrequency glow discharge optical emission spectroscopy: Investigation of the pre-peak

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, D. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Horvath, P. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nelis, Th. [LAPLACE, Universite Paul Sabatier, 118 rte de Narbonne, Bat3R2, 31062 Toulouse Cedex (France); CU Jean Francois Champollion, Place de Verdun 81012 Albi Cedex 9 (France); Pereiro, R. [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Bordel, N. [Department of Physics, Faculty of Science, University of Oviedo, Calvo Sotelo, 33007 Oviedo (Spain); Michler, J. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Sanz-Medel, A., E-mail: asm@uniovi.e [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2010-07-15

    Radiofrequency glow discharge coupled to optical emission spectroscopy has been used in pulsed mode in order to perform a detailed study of the measured temporal emission profiles for a wide range of copper transitions. Special attention has been paid to the early emission peak (or so-called pre-peak), observed at the beginning of the emission pulse profile. The effects of the important pulse parameters such as frequency, duty cycle, pulse width and power-off time, have been studied upon the Cu pulse emission profiles. The influence of discharge parameters, such as pressure and power, was studied as well. Results have shown that the intensity observed in the pre-peak can be 10 times as large as the plateau value for resonant lines and up to 5 times in case of transitions to the metastable levels. Increasing pressure or power increased the pre-peak intensity while its appearance in time changed. The pre-peak decreased when the discharge off-time was shorter than 100 {mu}s. According to such results, the presence of the pre-peak could be probably due to the lack of self-absorption during the first 50 {mu}s, and not to the ignition of the plasma. Under the selected operation conditions, the use of the pre-peak emission as analytical signals increases the linearity of calibration curves for resonant lines subjected to self-absorption at high concentrations.

  1. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  2. Assisted Interpretation of Laser-Induced Fluorescence Spectra of Egg-Based Binding Media Using Total Emission Fluorescence Spectroscopy

    International Nuclear Information System (INIS)

    Anglos, D.; Nevin, A.

    2006-01-01

    Laser-induced fluorescence (LIF) spectroscopy can provide nondestructive, qualitative analysis of protein-based binding media found in artworks. Fluorescence emissions from proteins in egg yolk and egg white are due to auto fluorescent aromatic amino acids as well as other native and age-related fluorophores, but the potential of fluorescence spectroscopy for the differentiation between binding media is dependent on the choice of a suitable excitation wavelength and limited by problems in interpretation. However, a better understanding of emission spectra associated with LIF can be achieved following comparisons with total emission fluorescence spectra where a series of consecutive emission spectra are recorded over a specific range. Results using nanosecond UV laser sources for LIF of egg-based binding media are presented which are rationalised following comparisons with total emission spectra. Specifically, fluorescence is assigned to tryptophan and oxidation products of amino acids; in the case of egg yolk, fatty-acid polymerisation and age-related degradation products account for the formation of fluorophores.

  3. Assessment of high precision, high accuracy Inductively Coupled Plasma-Optical Emission Spectroscopy to obtain concentration uncertainties less than 0.2% with variable matrix concentrations

    International Nuclear Information System (INIS)

    Rabb, Savelas A.; Olesik, John W.

    2008-01-01

    The ability to obtain high precision, high accuracy measurements in samples with complex matrices using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy (HP-ICP-OES) was investigated. The Common Analyte Internal Standard (CAIS) procedure was incorporated into the High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method to correct for matrix-induced changes in emission intensity ratios. Matrix matching and standard addition approaches to minimize matrix-induced errors when using High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy were also assessed. The High Performance Inductively Coupled Plasma-Optical Emission Spectroscopy method was tested with synthetic solutions in a variety of matrices, alloy standard reference materials and geological reference materials

  4. Focussed ion beam thin sample microanalysis using a field emission gun electron probe microanalyser

    Science.gov (United States)

    Kubo, Y.

    2018-01-01

    Field emission gun electron probe microanalysis (FEG-EPMA) in conjunction with wavelength-dispersive X-ray spectrometry using a low acceleration voltage (V acc) allows elemental analysis with sub-micrometre lateral spatial resolution (SR). However, this degree of SR does not necessarily meet the requirements associated with increasingly miniaturised devices. Another challenge related to performing FEG-EPMA with a low V acc is that the accuracy of quantitative analyses is adversely affected, primarily because low energy X-ray lines such as the L- and M-lines must be employed and due to the potential of line interference. One promising means of obtaining high SR with FEG-EPMA is to use thin samples together with high V acc values. This mini-review covers the basic principles of thin-sample FEG-EPMA and describes an application of this technique to the analysis of optical fibres. Outstanding issues related to this technique that must be addressed are also discussed, which include the potential for electron beam damage during analysis of insulating materials and the development of methods to use thin samples for quantitative analysis.

  5. In-beam γ-ray spectroscopy in the vicinity of 100Sn

    International Nuclear Information System (INIS)

    Seweryniak, D.

    1998-01-01

    In recent years, in-beam x-ray experiments supplied a vast amount of data on high-spin states in nuclei in the vicinity of 100 Sn. The present contribution reviews spectroscopic information obtained recently for N ≥ 50 nuclei around 100 Sn, with emphasis on isomer studies, and discusses selected results in the frame of the shell model

  6. Spectroscopy of highly charged tungsten ions with Electron Beam Ion Traps

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Kato, Daiji; Morita, Shigeru; Murakami, Izumi; Yamamoto, Norimasa; Ohashi, Hayato; Yatsurugi, Junji; Nakamura, Nobuyuki

    2013-01-01

    We present spectra of highly charged tungsten ions in the extreme ultra-violet (EUV) by using electron beam ion traps. The electron energy dependence of spectra is investigated of electron energies from 490 to 1440 eV. Previously unreported lines are presented in the EUV range, and some of them are identified by comparing the wavelengths with theoretical calculations. (author)

  7. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  8. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dzierzega, K; Pokrzywka, B; Pellerin, S

    2004-01-01

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  9. Tomography feasibility study on the optical emission spectroscopy diagnostic for the negative ion source of the ELISE test facility

    International Nuclear Information System (INIS)

    Bonomo, F; Agostini, M; Brombin, M; Pasqualotto, R; Fantz, U; Franzen, P; Wünderlich, D

    2014-01-01

    A feasibility study of a spectroscopic tomographic diagnostic for the emissivity reconstruction of the plasma parameters in the large negative ion source of the test facility ELISE is described. Tomographic tools are developed to be applied to the measurements of the ELISE optical emission spectroscopy (OES) diagnostic, in order to reconstruct the emissivity distribution from hydrogen (or deuterium) plasma close to the plasma grid, where negative ions are produced and extracted to be accelerated. Various emissivity phantoms, both symmetric and asymmetric, reproducing different plasma experimental conditions have been simulated to test the tomographic algorithm. The simultaneous algebraic reconstruction technique has been applied, accounting for the OES geometrical layout together with a suitable pixel representation. Even with a limited number of 14 lines of sight (LoSs), the plasma emissivity distribution expected on the ELISE source can be successfully reconstructed. In particular, asymmetries in the emissivity pattern can be detected and reproduced with low errors. A systematic investigation of different geometrical layouts of the LoSs as well as of the pixel arrangements has been carried out, and a final configuration has been identified. Noise on the simulated experimental spectroscopic measurements has been tested, confirming the reliability of the adopted tomographic tools for the plasma emissivity reconstructions of the source plasma in ELISE with the actual OES diagnostic system. (paper)

  10. Localization of the antimony impurity atoms in the PbTe lattice determined by the Moessbauer emission spectroscopy

    International Nuclear Information System (INIS)

    Masterov, V.F.; Nasredinov, F.S.; Nemov, S.A.; Seregin, P.P.; Troitskaya, N.N.; Bondarevskij, S.I.

    1997-01-01

    The 119 Sb ( 119m Sn) emission Moessbauer spectroscopy has shown that a localization of the antimony impurity atoms in the PbTe lattice is affected by the conductivity type of the host material, the antimony atoms occupied mainly anion and cation sites in n-type and p-type samples, respectively. The 119 Sn impurity in the anion sublattice of PbTe formed an decay. Its charge state was shown to be independent of the Fermi level position

  11. Soft X-ray emission spectroscopy of liquids and lithium battery materials

    International Nuclear Information System (INIS)

    Augustsson, Andreas

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  12. Optical emissions from an ionized channel produced by an electron beam

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1977-01-01

    Quantitative measurements of the visible light generated by the Astron beam (5 MeV, 400 A) in passing through 500 torr air and nitrogen are reported. Experiments show that in the presence of the beam, the light is from .01 to 0.1 percent sun's brightness. After the beam, the light decays extremely rapidly. The size and position of the beam in the gas can be determined from observations of the channel light

  13. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential

    Energy Technology Data Exchange (ETDEWEB)

    Uhlig, J.; Doriese, W. B.; Fowler, J. W.; Swetz, D. S.; Jaye, C.; Fischer, D. A.; Reintsema, C. D.; Bennett, D. A.; Vale, L. R.; Mandal, U.; O' Neil, G. C.; Miaja-Avila, L.; Joe, Y. I.; El Nahhas, A.; Fullagar, W.; Parnefjord Gustafsson, F.; Sundström, V.; Kurunthu, D.; Hilton, G. C.; Schmidt, D. R.; Ullom, J. N.

    2015-04-21

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  14. Consequences of trapped beam ions of the analysis of neutron emission data

    International Nuclear Information System (INIS)

    Loughlin, M.J.; Hone, M.; Jarvis, O.N.; Laundy, B.; Sadler, G.; Belle, P. van

    1989-01-01

    Neutron energy spectra have been measured during D o neutral beam heating of deuterium plasmas. The thermonuclear to beam-plasma neutron production ratios are deduced. For a non-radial spectrometer line-of-sight, the trapped beam-ion fraction must be considered. (author) 5 refs., 4 figs

  15. Effectiveness of revascularization surgery evaluated by proton magnetic resonance spectroscopy and single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masaaki; Ueda, Shin; Hondo, Hideki; Matsumoto, Keizo; Harada, Masafumi [Tokushima Univ. (Japan). School of Medicine

    1996-08-01

    Proton magnetic resonance spectroscopy (MRS) and single photon emission computed tomography (SPECT) were used to evaluate chronic ischemic regions in 26 stroke patients before and 1, 3, and 6 months after revascularization surgery. The volume of interest for proton MRS was placed in an area including part of the frontal and temporal opercula, insular cortex, and basal ganglia. Twenty healthy volunteers served as controls for proton MRS. Patients were divided into three groups according to the preoperative proton MRS. Group A (n=12) had significantly lower N-acetylaspartate/choline (NAA/Cho) and N-acetylaspartate/creatine (NAA/Cr) ratios on the operative side compared to those on the contralateral side, and also lower than those in normal subjects. In seven patients in Group A, postoperative serial proton MRS demonstrated no recovery of these ratios on the operative side. However, proton MRS of the other five patients indicated gradual improvement in these ratios on the operative side at 3 to 6 months after surgery, and SPECT indicated an increase in cerebral blood flow on the operative side in four of these five patients. In Group B (n=9), proton MRS and SPECT showed no laterality before revascularization and no remarkable change during the postoperative course. In Group C (n=5), NAA/Cho or NAA/Cr decreased on the contralateral side preoperatively. Two patients showed fluctuating values of NAA/Cho or NAA/Cr during the postoperative period. Serial proton MRS and SPECT Studies may be useful for the evaluation of revascularization surgery on ischemic regions. The efficacy of revascularization surgery on the metabolism may appear gradually within 3-6 months. (author)

  16. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    International Nuclear Information System (INIS)

    Ikuta, Naomi

    1998-01-01

    Using proton magnetic resonance spectroscopy ( 1 H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm 3 (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01±0.247; controls, 1.526±0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285±0.228; controls 1.702±0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793±0.186; controls, 0.946±0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947±0.096; controls, 1.06±0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  17. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Schram, Daan [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Gonzalez, Manuel A [Departamento de Fisica Aplicada, Universidad de Valladolid, 47011 Valladolid (Spain); Rego, Robby [Flemish Institute of Technological Research, VITO Materials, Boeretang 200, B-2400 Mol (Belgium); Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom)], E-mail: peter.bruggeman@ugent.be

    2009-05-01

    Dc-excited discharges generated in water at the tip of a tungsten wire which is located at the orifice of a quartz capillary are investigated by time-averaged optical emission spectroscopy. Two distinctive discharge modes are observed. For small conductivities of the liquid the discharge is a streamer-like discharge in the liquid itself (liquid mode). For conductivities above typically 45 {mu}S cm{sup -1} a large vapour bubble is formed and a streamer discharge in this vapour bubble is observed (bubble mode). Plasma temperatures and electron densities are investigated for both modes. The gas temperature is estimated from the rotational temperature of N{sub 2}(C-B) and is 1600 {+-} 200 K for the bubble mode and 1900 {+-} 200 K for the liquid mode. The rotational temperature of OH(A-X) is up to 2 times larger and cannot be used as an estimate for the gas temperature. The rotational population distribution of OH(A), {nu} = 0 is also non-Boltzmann with a large overpopulation of high rotational states. This discrepancy in rotational temperatures is discussed in detail. Electron densities are obtained from the Stark broadening of the hydrogen Balmer beta line. The electron densities in the liquid mode are of the order of 10{sup 21} m{sup -3}. In the bubble mode electron densities are significantly smaller: (3-4) x 10{sup 20} m{sup -3}. These values are compared with the Stark broadening of the hydrogen alpha and gamma lines and with electron densities obtained from current density measurements. The chemical reactivities of the bubble and liquid modes are compared by means of the hydrogen peroxide production rate.

  18. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2001-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species

  19. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    International Nuclear Information System (INIS)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V.

    2004-01-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E c ) and at 415 K (0.9 below E c ); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E c known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E c is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species. (author)

  20. Detection of oxygen-related defects in GaAs by exo-electron emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hulluvarad, Shiva S.; Naddaf, M.; Bhoraskar, S.V. E-mail: svb@physics.unipune.ernet.in

    2001-10-01

    The influence of intentional introduction of oxygen, at the surface of GaAs, on its native surface states was studied. Oxygen was made to interact with the surface of GaAs by three different means: (1) by growing native oxides, (2) exposing to oxygen plasma in an electron cyclotron resonance (ECR) plasma reactor and by (3) high energy oxygen ion irradiation. Thermally stimulated exo-electron emission (TSEE) spectroscopy was used to estimate the relative densities and energies of the surface states induced by the three different modes of introducing oxygen. Out of the two native defect levels found in GaAs by TSEE; at 325 K (0.7 eV below E{sub c}) and at 415 K (0.9 below E{sub c}); the former is seen to get broadened or split into multiple peaks in each of the methods. Multiple peaks in TSEE signify the presence of a closely spaced band of defect levels. Therefore the results exclusively point out that oxygen-related complexes contribute to the formation of a band of defects centered at 325 K in TSEE which is correlated to an energy level 0.7 eV below E{sub c} known as the EL2 defect level. The results reported in this paper thus confirm that the TSEE peak at 0.7 eV below E{sub c} is related to oxygen induced defects whereas the peak at 0.9 eV is not affected by the presence of oxygen-related species.

  1. Characterization of a direct dc-excited discharge in water by optical emission spectroscopy

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Leys, Christophe; Schram, Daan; Gonzalez, Manuel A; Rego, Robby; Kong, Michael G

    2009-01-01

    Dc-excited discharges generated in water at the tip of a tungsten wire which is located at the orifice of a quartz capillary are investigated by time-averaged optical emission spectroscopy. Two distinctive discharge modes are observed. For small conductivities of the liquid the discharge is a streamer-like discharge in the liquid itself (liquid mode). For conductivities above typically 45 μS cm -1 a large vapour bubble is formed and a streamer discharge in this vapour bubble is observed (bubble mode). Plasma temperatures and electron densities are investigated for both modes. The gas temperature is estimated from the rotational temperature of N 2 (C-B) and is 1600 ± 200 K for the bubble mode and 1900 ± 200 K for the liquid mode. The rotational temperature of OH(A-X) is up to 2 times larger and cannot be used as an estimate for the gas temperature. The rotational population distribution of OH(A), ν = 0 is also non-Boltzmann with a large overpopulation of high rotational states. This discrepancy in rotational temperatures is discussed in detail. Electron densities are obtained from the Stark broadening of the hydrogen Balmer beta line. The electron densities in the liquid mode are of the order of 10 21 m -3 . In the bubble mode electron densities are significantly smaller: (3-4) x 10 20 m -3 . These values are compared with the Stark broadening of the hydrogen alpha and gamma lines and with electron densities obtained from current density measurements. The chemical reactivities of the bubble and liquid modes are compared by means of the hydrogen peroxide production rate.

  2. Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography

    International Nuclear Information System (INIS)

    Go, K.G.; Kamman, R.L.; Mooyaart, E.L.; Heesters, M.A.A.M.; Pruim, J.; Vaalburg, W.; Paans, A.M.J.

    1995-01-01

    In 32 patients with gliomas, one- and two-dimensional proton magnetic resonance spectroscopy ( 1 H-MRS) has been conducted, the latter allowing reconstruction of spectroscopic data into a spectroscopic image (MRSI), showing the distribution of the various metabolite concentrations over the cross-sectional plane. For lack of absolute concentrations, the measured concentrations of phosphocholine (CHOL), N-acetyl-L-aspartate (NAA), and lactate (LAC) were conventionally expressed in ratios relative to that of creatine (CREAT). Compared to normal brain tissue, an increased CHOL/CREAT ratio was found in all groups of tumours, in glioblastomas, high-, middle- and low-grade astrocytomas both at the margin and the core of the tumours, but in oligodendrogliomas only at the margin. This is consistent with an increased phosphocholine turnover in relation to membrane biosynthesis by the proliferating cells. The NAA/CREAT ratio was decreased in all groups of tumours, both in the centre and at the margin, reflecting replacement of functioning neurons by neoplastic cells. The LAC/CREAT ratio was elevated in the core of malignant gliomas, which may be the result of a prevailing glycolysis, characteristic of tumours, possibly in conjunction with hypoxia/ischaemia. In the perifocal oedema, there was neither elevation of the CHOL/CREAT ratio nor decrease of the NAA/CREAT ratio; an increased LAC/CREAT ratio therefore rather reflected ischaemia/hypoxia probably due to locally elevated pressure and compromised regional perfusion. In the normal brain, the metabolite ratios of grey matter did not differ from those of white matter. The frontal lobe and basal ganglia showed lower NAA/CREAT ratios than the other cerebral areas. In 7 patients positron emission tomography was also performed with [ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG) or L-[1- 11 C]-tyrosine ( 11 C-TYR); the latter demonstrated a pattern of 11 C-TYR uptake similar to that of CHOL elevation in the MRSI. (orig.)

  3. Copper Determination in Gunshot Residue by Cyclic Voltammetric and Inductive Coupled Plasma-Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mohd Hashim Nurul’Afiqah Hashimah

    2016-01-01

    Full Text Available Analysis of gunshot residue (GSR is a crucial evidences for a forensic analyst in the fastest way. GSR analysis insists a suitable method provides a relatively simple, rapid and precise information on the spot at the crime scene. Therefore, the analysis of Cu(II in GSR using cyclic voltammetry (CV on screen printed carbon electrode (SPCE is a better choice compared to previous alternative methods such as Inductive Coupled Plasma-Optical Emission Spectroscopy (ICP-OES those required a long time for analysis. SPCE is specially designed to handle with microvolumes of sample such as GSR sample. It gives advantages for identification of copper in GSR on-site preliminary test to prevent the sample loss on the process to be analyzed in the laboratory. SPCE was swabbed directly on the shooter’s arm immediately after firing and acetate buffer was dropped on SPCE before CV analysis. For ICP-OES analysis, cotton that had been soaked in 0.5 M nitric acid was swabbed on the shooter’s arm immediately after firing and kept in a tightly closed sampling tube. Gold coated SPCE that had been through nanoparticles modification exhibits excellent performance on voltammograms. The calibration was linear from 1 to 50 ppm of copper, the limit of detection for copper was 0.3 ppm and a relative standard deviation was 6.1 %. The method was successfully applied to the determination of copper in GSR. The Cu determination on SPCE was compared and validated by ICP-OES method with 94 % accuracy.

  4. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  5. The experiments of high power electron beam emission by the K-9M-57 and K-9M-58 rockets

    International Nuclear Information System (INIS)

    Kaneko, Osamu; Sasaki, Susumu; Yamori, Akira; Hagiwara, Michinobu; Kawashima, Nobuki

    1977-01-01

    Active experiments have been conducted to obtain the precise picture of the ionosphere and magnetosphere. As the turbulence source of the active experiment by the authors, electron beam was employed, and the variation of the rocket potential, wave excitation and turbulence of peripheral plasma were investigated. The rated voltage and current of the present electron gun were 6 kV and 500 mA, respectively. The Langmuir probe, floating probe, optical detector and wave receiver were used for the measurement of various phenomena associated with electron beam emission. The experimental data on the voltage-current characteristics of the electron gun, the rocket potential, total light emission and plasma density and temperature were obtained by the K-9M-57 and K-9M-58 rockets. (Yoshimori, M.)

  6. An electrostatic beam line for accelerator mass spectroscopy of exotic particles

    International Nuclear Information System (INIS)

    Elmore, D.; Kubik, P.W.; Hemmick, T.; Teng, R.; Kagan, H.; Haas, P.; Boyd, R.N.; Turner, R.; Nitz, D.; Ciampa, D.; Olsen, S.L.; Gentile, T.; Haelen, T.

    1985-01-01

    An all-electrostatic charged particle spectrometer has been constructed to perform high sensitivity searches for exotic states of matter. This spectrometer consists of an electrosatic beam line capable of mass independent charged particle transport and selection together with time-of-flight, energy loss and total energy detectors. This system has been used in conjunction with the tandem electrostatic accelerator at the Nuclear Structure Research Laboratory of the University of Rochester to search for fractionally charged or anomalously heavy particles. (orig.)

  7. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  8. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  9. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  10. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  11. Far-infrared phonon spectroscopy of Pb1-xMn xTe layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Romcevic, N.; Nadolny, A.J.; Romcevic, M.; Story, T.; Taliashvili, B.; Milutinovic, A.; Trajic, J.; Lusakowska, E.; Vasiljevic-Radovic, D.; Domukhovski, V.; Osinniy, V.; Hadzic, B.; Dziawa, P.

    2007-01-01

    In this paper we used far-infrared spectroscopy, reflection high energy electron diffraction (RHEED), X-ray diffraction and atomic force microscopy (AFM) to investigate structural and optical properties of Pb 1-x Mn x Te layers grown by molecular beam epitaxy (MBE). A numerical model for calculating the reflectivity coefficient for complex systems which include films, buffer layer and substrate has been applied. The infrared reflectivity spectra consist of Pb 1-x Mn x Te phonons, which exhibit intermediate one-two mode behavior, and MnTe phonons. A good agreement between calculated and experimental spectra is achieved. We registered the local distribution of Mn impurities depending on substrate type. For films growth on BaF 2 substrate we registered the orthorhombic local structure of MnTe clusters, while in the case of KCl substrate this structure is cubic. The Pb 1-x Mn x Te long wavelength optical phonons were described by the modified Genzel's model

  12. Determination of Metals Present in Textile Dyes Using Laser-Induced Breakdown Spectroscopy and Cross-Validation Using Inductively Coupled Plasma/Atomic Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Rehan

    2017-01-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS was used for the quantitative analysis of elements present in textile dyes at ambient pressure via the fundamental mode (1064 nm of a Nd:YAG pulsed laser. Three samples were collected for this purpose. Spectra of textile dyes were acquired using an HR spectrometer (LIBS2000+, Ocean Optics, Inc. having an optical resolution of 0.06 nm in the spectral range of 200 to 720 nm. Toxic metals like Cr, Cu, Fe, Ni, and Zn along with other elements like Al, Mg, Ca, and Na were revealed to exist in the samples. The %-age concentrations of the detected elements were measured by means of standard calibration curve method, intensities of every emission from every species, and calibration-free (CF LIBS approach. Only Sample 3 was found to contain heavy metals like Cr, Cu, and Ni above the prescribed limit. The results using LIBS were found to be in good agreement when compared to outcomes of inductively coupled plasma/atomic emission spectroscopy (ICP/AES.

  13. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    International Nuclear Information System (INIS)

    Ludwig, Benno

    2009-01-01

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni 63 Al 37 , Au 50.5 Cd 49.5 , and Fe 68.8 Pd single 31.2 , and the polycrystalline sample Fe 68.8 Pd poly 31.2 . Moreover, a ferromagnetic Ni 52 Mn 23 Ga 25 single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni 52 Mn 23 Ga 25 sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni 63 Al 37 , the combination of relevant thermal fluctuations, different involved time scales, and a high degree of intrinsic disorder leads to a lower acoustic activity and weaker signals under

  14. Avalanche dynamics of structural phase transitions in shape memory alloys by acoustic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Benno

    2009-09-24

    In this work the avalanche dynamics of five shape memory samples has been analyzed by acoustic emission spectroscopy. The acoustic emission spectroscopy is particularly suitable for this analysis as it couples with high sensitivity to small structural changes caused by nucleation processes, interface movements, or variant rearrangements [91]. Owing to its high time resolution it provides a statistical approach to describe the jerky and intermittent character of the avalanche dynamics [20]. Rate-dependent cooling and heating runs have been conducted in order to study time-dependent aspects of the transition dynamics of the single crystals Ni{sub 63}Al{sub 37}, Au{sub 50.5}Cd{sub 49.5}, and Fe{sub 68.8}Pd{sup single}{sub 31.2}, and the polycrystalline sample Fe{sub 68.8}Pd{sup poly}{sub 31.2}. Moreover, a ferromagnetic Ni{sub 52}Mn{sub 23}Ga{sub 25} single crystal has been studied by temperature cycles under an applied magnetic field and additionally by magnetic-field cycles at a constant temperature in the martensitic phase. All samples analyzed in this work show power law behavior in the acoustic emission features amplitude, energy, and duration, which indicates scale-free behavior. The access to these power law spectra allows an investigation of energy barriers separating the metastable states, which give rise to avalanche transition dynamics. By performing rate-dependent experiments the importance of thermal fluctuations and the impact of martensite respectively twin stabilization processes have been examined. In the case of the Ni{sub 52}Mn{sub 23}Ga{sub 25} sample, the magnetic-field-induced variant rearrangement at slow field cycles leads to stronger signals than the rearrangement at quick cycles. This behavior can be explained by twin stabilization processes, which are accompanied by a reduction of the twin boundary mobility. For Ni{sub 63}Al{sub 37}, the combination of relevant thermal fluctuations, different involved time scales, and a high degree of

  15. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  16. Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater.

    Science.gov (United States)

    Bugden, J B C; Yeung, C W; Kepkay, P E; Lee, K

    2008-04-01

    Excitation-emission matrix spectroscopy (EEMS) was used to characterize the ultra violet fluorescence fingerprints of eight crude oils (with a 14,470-fold range of dynamic viscosity) in seawater. When the chemical dispersant Corexit 9500 was mixed with the oils prior to their dispersion in seawater, the fingerprints of each oil changed primarily as an increase in fluorescence over an emission band centered on 445 nm. In order to simplify the wealth of information available in the excitation-emission matrix spectra (EEMs), two ratios were calculated. A 66-90% decrease in the slope ratio was observed with the addition of Corexit. When the slope ratios were reduced in complexity to intensity ratios, similar trends were apparent. As a result either of the ratios could be used as a simple and rapid means of identifying and monitoring chemically dispersed oil in the open ocean.

  17. Space-resolved characterization of high frequency atmospheric-pressure plasma in nitrogen, applying optical emission spectroscopy and numerical simulation

    International Nuclear Information System (INIS)

    Rajasekaran, Priyadarshini; Ruhrmann, Cornelia; Bibinov, Nikita; Awakowicz, Peter

    2011-01-01

    Averaged plasma parameters such as electron distribution function and electron density are determined by characterization of high frequency (2.4 GHz) nitrogen plasma using both experimental methods, namely optical emission spectroscopy (OES) and microphotography, and numerical simulation. Both direct and step-wise electron-impact excitation of nitrogen emissions are considered. The determination of space-resolved electron distribution function, electron density, rate constant for electron-impact dissociation of nitrogen molecule and the production of nitrogen atoms, applying the same methods, is discussed. Spatial distribution of intensities of neutral nitrogen molecule and nitrogen molecular ion from the microplasma is imaged by a CCD camera. The CCD images are calibrated using the corresponding emissions measured by absolutely calibrated OES, and are then subjected to inverse Abel transformation to determine space-resolved intensities and other parameters. The space-resolved parameters are compared, respectively, with the averaged parameters, and an agreement between them is established. (paper)

  18. Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

    Science.gov (United States)

    Hosseini, Seyedeh Sona

    The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters. An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high etendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large etendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very

  19. [Enhancement effect of double-beam laser processed aqueous solution on ICP emission spectrum].

    Science.gov (United States)

    Chen, Jin-zhong; Xu, Li-jing; Su, Hong-xin; Li, Xu; Wang, Shu-fang

    2015-01-01

    In order to change the physical properties of aqueous solution and improve the radiation intensity of the ICP emission spectrum, the effects of different laser power density and irradiation time on the surface tension and viscosity of aqueous solution were investigated by using near infrared laser at 976 nm and CO2 laser at 10. 6 µm to irradiate aqueous solution orthogonally, then the enhancement of ICP spectral intensity with processed solution was discussed. The results showed that the surface tension and viscosity of aqueous solution reduced by 42. 13% and 14. 03% compared with the untreated, and the atomization efficiency increased by 51.26% at the laser power density 0. 265 7 W . cm-2 of 976 nm and 0. 206 9 W . cm-2 of CO2 laser with 40 min irradiation time. With the optimized aqueous solution introduced into the ICP source, the spectral line intensity of sample elements As, Cd, Cr, Hg and Pb was enhanced by 46.29%, 94. 65%, 30. 76%, 33.07% and 94. 58% compared to the untreated aqueous solution, while the signal-to-background ratio increased by 43. 84%, 85. 35%, 28. 71%, 34. 37% and 90. 91%, respectively. Plasma temperature and electron density also increased by 5. 94% and 1. 18% respectively. It is obvious that the method of double-beam laser orthogonal irradiation on solution can reduce the surface tension and viscosity of aqueous solution significantly, and raise the radiationintensity of ICP source, and will provide a better condition for detecting the trace heavy metal elements in water samples.

  20. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  1. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS and lidar

    Directory of Open Access Journals (Sweden)

    Galtier Sandrine

    2018-01-01

    Full Text Available Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  2. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    Science.gov (United States)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  3. Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy

    Science.gov (United States)

    Khidir, Jarjees; Chen, Youhua; Anderson, Gary

    2013-05-01

    This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.

  4. Applications of resonance-averaged gamma-ray spectroscopy with tailored beams

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    The use of techniques based on the direct experimental averaging over compound nuclear capturing states has proved valuable for investigations of nuclear structure. The various methods that have been employed are described, with particular emphasis on the transmission filter, or tailored beam technique. The mathematical limitations on averaging imposed by the filter band pass are discussed. It can readily be demonstrated that a combination of filters at different energies can form a powerful method for spin and parity predictions. Several recent examples from the HFBR program are presented

  5. Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy

    International Nuclear Information System (INIS)

    Martinson, I.

    1982-01-01

    A review is given of recent studies of atomic structure (in particular atomic spectra, energy levels and transition probabilities) using fast beams from ion accelerators. Thanks to improved spectral resolution detailed and quite accurate studies of energy levels are now possible, a number of such results will be discussed. The non-autoionizing, multiply excited levels in atoms and ions (including negative ions) are being vigorously investigated at present, some new results will be reported. The accuracy in lifetime determinations continues to improve, and several new ways for reduction of cascading effects have been developed. Some selected examples of recent progress in lifetime measurements are also included. (orig.)

  6. High-precision laser and rf spectroscopy of atomic, molecular, and slow ion beams

    International Nuclear Information System (INIS)

    Childs, W.J.; Steimle, T.C.; Sen, A.; Azuma, Y.

    1988-01-01

    We have obtained extensive new structural information on the light diatomic radical ScO since the last report in this series. The new studies complete our systematic investigation of the fine and hyperfine structure (hfs) of the group IIIa monoxides LaO, YO, and ScO. The studies of the molecular X 2 Σ + electronic ground state were carried out using the molecular-beam laser-rf double-resonance method, and the excited electronic state information was obtained by complementing this data with Doppler-free laser fluorescence studies

  7. Applications of resonance-averaged gamma-ray spectroscopy with tailored beams

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1982-01-01

    The use of techniques based on the direct experimental averaging over compound nuclear capturing states has proved valuable for investigations of nuclear structure. The various methods that have been employed are described, with particular emphasis on the transmission filter, or tailored beam technique. The mathematical limitations on averaging imposed by the filtre band pass are discussed. It can readily be demonstrated that a combination of filters at different energies can form a powerful method for spin and parity predictions. Several recent examples from the HFBR program are presented. (author)

  8. Process analytical technology (PAT) in insect and mammalian cell culture processes: dielectric spectroscopy and focused beam reflectance measurement (FBRM).

    Science.gov (United States)

    Druzinec, Damir; Weiss, Katja; Elseberg, Christiane; Salzig, Denise; Kraume, Matthias; Pörtner, Ralf; Czermak, Peter

    2014-01-01

    Modern bioprocesses demand for a careful definition of the critical process parameters (CPPs) already during the early stages of process development in order to ensure high-quality products and satisfactory yields. In this context, online monitoring tools can be applied to recognize unfavorable changes of CPPs during the production processes and to allow for early interventions in order to prevent losses of production batches due to quality issues. Process analytical technologies such as the dielectric spectroscopy or focused beam reflectance measurement (FBRM) are possible online monitoring tools, which can be applied to monitor cell growth as well as morphological changes. Since the dielectric spectroscopy only captures cells with intact cell membranes, even information about dead cells with ruptured or leaking cell membranes can be derived. The following chapter describes the application of dielectric spectroscopy on various virus-infected and non-infected cell lines with respect to adherent as well as suspension cultures in common stirred tank reactors. The adherent mammalian cell lines Vero (African green monkey kidney cells) and hMSC-TERT (telomerase-immortalized human mesenchymal stem cells) are thereby cultured on microcarrier, which provide the required growth surface and allow the cultivation of these cells even in dynamic culture systems. In turn, the insect-derived cell lines S2 and Sf21 are used as examples for cells typically cultured in suspension. Moreover, the FBRM technology as a further monitoring tool for cell culture applications has been included in this chapter using the example of Drosophila S2 insect cells.

  9. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard

    2015-01-01

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  10. An atomic hydrogen beam to test ASACUSA’s apparatus for antihydrogen spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diermaier, M., E-mail: martin.diermaier@oeaw.ac.at; Caradonna, P.; Kolbinger, B. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Wolf, M.; Zmeskal, J.; Widmann, E. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)

    2015-08-15

    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter counterpart to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth’s magnetic field.

  11. Measurement of the spectral shift of the 3d→4p transitions in Ar+, Cl+ and S+ by means of collinear fast-beam laser spectroscopy

    International Nuclear Information System (INIS)

    Eichhorn, A.

    1981-01-01

    The spectral shift of the 3d→4p transitions in Ar + ( 36 Ar + and 40 Ar + ) Cl + ( 35 Cl + and 37 Cl + ) and S + ( 32 S + + 34 S + ) were measured by means of collinear fast-beam laser spectroscopy. Since the volume effect is neglectible only the normal and specific mass effect give contributions to the spectral shift. (BEF)

  12. Electron beam effects on the spectroscopy of satellite lines in aluminum X-pinch experiments

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Csanak, G.; Clark, R.E.H.; Faenov, A.Ya.; Hammer, D.A.; Pikuz, S.A.; Romanova, P.N.; Shelkovenko, T.A.

    1996-01-01

    Aluminum wire X-pinch experiments performed at the Cornell University XP pulsed power generator and at the Lebedev Institute BIN generator show detailed high resolution spectra for satellite lines of Li-like, Be-like, B-like, and C-like ions. These lines, which correspond to transitions originating from autoionizing levels, are observed in the direction of the anode with respect to the bright X-pinch cross point. The intensities of these satellites are much smaller or absent in the direction of the cathode. Such transitions are caused by collisions of ions with energetic electrons (5-15 keV) which are created by the inductive voltage drop between the cross point and the anode. A collisional-radiative model was constructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 30-100 eV, and beam densities of about 10 -7 times the plasma electron density. (author). 3 figs., 7 refs

  13. Instrumental development of a quasi-relativistic ultrashort electron beam source for electron diffractions and spectroscopies.

    Science.gov (United States)

    Shin, Young-Min; Figora, Michael

    2017-10-01

    A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within quasi-relativistic UED system.

  14. Spectroscopy of high lying resonances in {sup 9}Be produced with radioactive {sup 8}Li beams

    Energy Technology Data Exchange (ETDEWEB)

    Lepini-Szily, A.; Leistenschneider, E.; Lichtenthäler, R.; Guimaraes, V.; Condori, R. Pampa; Scarduelli, V.; Rossi, E.; Zagatto, V.A.; Aguiar, V.A.P.; Duarte, J., E-mail: alinka@if.usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Mendes Junior, D.R.; Faria, P.N. de; Santos, H. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica; Descouvemont, P. [Physique Nucleaire Theorique et Physique Mathematique, Universite Libre de Bruxelles (ULB), Brussels (Belgium); Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Pires, K.C.C. [Universidade Tecnologica Federal do Parana (UFTPR), Cornelio Procopio, PR (Brazil); Morcelle, V. [Universidade Federal de Itajuba (UNIFEI), Itabira, MG (Brazil); Moraes, M.C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Britos, T.; Assuncao, M. [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Zamora, J.C. [Technische Universität Darmstadt, (Germany); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    We present the results of the {sup 8}Li(p,α){sup 5}He and {sup 8}Li(p,p){sup 8}Li reactions measured at the RIBRAS (Radioactive Ion Beams in Brazil) system. The experiment was realized in inverse kinematics using a thick [CH{sub 2}]{sub n} polyethylene target and an incident {sup 8}Li beam, produced by RIBRAS. Using the thick target method, the complete excitation function could be measured between E{sub cm} = 0.2 - 2.1 MeV, which includes the Gamow peak energy region. The excitation function of the {sup 8}Li(p,α){sup 5}He reaction, populating resonances between 16.888 and 19.0 MeV in {sup 9}Be, was obtained[1] and the resonances were fitted using R-matrix calculations. This study shed light on spins, parities, partial widths and isospin values of high lying resonances in {sup 9}Be. The measurement of the resonant elastic scattering {sup 8}Li(p,p){sup 8}Li populating resonances in the same energy region can constrain the resonance parameters. Preliminary results of the elastic scattering are also presented. (author)

  15. Electron beam effects on the spectroscopy of satellite lines in aluminum X-pinch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J Jr; Csanak, G; Clark, R E.H. [Los Alamos National Laboratory, NM (United States); Faenov, A Ya [VNIIFTRI, Mendeleevo (Russian Federation); Hammer, D A [Cornell Univ., Ithaca, NY (United States); Pikuz, S A; Romanova, P N; Shelkovenko, T A [P.N. Lebedev Physical Inst., Moscow (Russian Federation)

    1997-12-31

    Aluminum wire X-pinch experiments performed at the Cornell University XP pulsed power generator and at the Lebedev Institute BIN generator show detailed high resolution spectra for satellite lines of Li-like, Be-like, B-like, and C-like ions. These lines, which correspond to transitions originating from autoionizing levels, are observed in the direction of the anode with respect to the bright X-pinch cross point. The intensities of these satellites are much smaller or absent in the direction of the cathode. Such transitions are caused by collisions of ions with energetic electrons (5-15 keV) which are created by the inductive voltage drop between the cross point and the anode. A collisional-radiative model was constructed using a non-Maxwellian electron energy distribution consisting of a thermal Maxwellian part plus a Gaussian part to represent the high energy electron beam. The shapes of the observed satellite structures are consistent with the calculated spectrum for electron temperatures between 30-100 eV, and beam densities of about 10{sup -7} times the plasma electron density. (author). 3 figs., 7 refs.

  16. Study of emission episodes of urban aerosol by ion beam analytical techniques

    International Nuclear Information System (INIS)

    Angyal, A.; Kertesz, Zs.; Szikszai, Z.; Szoboszlai, Z.; Furu, E.; Csedreki, L.; Daroczi, L.

    2010-01-01

    atmospheric aerosol in Debrecen were biomass burning (S-K-rich particles), which in our case is domestic heating in winter and field burning in summer. Furthermore trace metals originated from traffic or industrial emission. Zn compounds could be abrasion products of brake and tire wear of cars. Ni and V originated from oil combustion. Pb was products of winter tyre abrasion, industrial emission or waste burning. Origin of salts was sea-salt, fertilizer or construction. Single particle analysis in the combination of ion beam analytical methods and electron microscopy proved to be a powerful tool in the characterization of atmospheric aerosol particles in the micrometer size range. Acknowledgement. This work was supported by the Hungarian Research Fund OTKA and the EGT Norwegian Financial Mechanism Programme (contract no. NNF78829) and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences.

  17. Positron emission tomography-guided magnetic resonance spectroscopy in Alzheimer disease.

    Science.gov (United States)

    Sheikh-Bahaei, Nasim; Sajjadi, S Ahmad; Manavaki, Roido; McLean, Mary; O'Brien, John T; Gillard, Jonathan H

    2018-04-01

    To determine whether the level of metabolites in magnetic resonance spectroscopy (MRS) is a representative marker of underlying pathological changes identified in positron emission tomographic (PET) images in Alzheimer disease (AD). We performed PET-guided MRS in cases of probable AD, mild cognitive impairment (MCI), and healthy controls (HC). All participants were imaged by 11 C-Pittsburgh compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET followed by 3T MRS. PET images were assessed both visually and using standardized uptake value ratios (SUVRs). MRS voxels were placed in regions with maximum abnormality on amyloid (Aβ+) and FDG (hypometabolic) areas on PET scans. Corresponding normal areas were selected in controls. The ratios of total N-acetyl (tNA) group, myoinositol (mI), choline, and glutamate + glutamine over creatine (Cr) were compared between these regions. Aβ + regions had significantly higher (p = 0.02) mI/Cr and lower tNA/Cr (p = 0.02), whereas in hypometabolic areas only tNA/Cr was reduced (p = 0.003). Multiple regression analysis adjusting for sex, age, and education showed mI/Cr was only associated with 11 C-PiB SUVR (p < 0.0001). tNA/Cr, however, was associated with both PiB (p = 0.0003) and 18 F-FDG SUVR (p = 0.006). The level of mI/Cr was not significantly different between MCI and AD (p = 0.28), but tNA/Cr showed significant decline from HC to MCI to AD (p = 0.001, p = 0.04). mI/Cr has significant temporal and spatial associations with Aβ and could potentially be considered as a disease state biomarker. tNA is an indicator of early neurodegenerative changes and might have a role as disease stage biomarker and also as a valuable surrogate marker for treatment response. Ann Neurol 2018;83:771-778. © 2018 American Neurological Association.

  18. Inductively coupled plasma-atomic emission spectroscopy glovebox assembly system at the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    Marlow, J.H.; McCarthy, K.M.; Tamul, N.R.

    1999-01-01

    The inductively coupled plasma/atomic emission spectroscopy [ICP/AES (ICP)] system for elemental analyses in support of vitrification processing was first installed in 1986. The initial instrument was a Jobin Yvon (JY) Model JY-70 ICP that consisted of sequential and simultaneous spectrometers for analysis of nonradioactive samples as radioactive surrogates. The JY-70 ICP continued supporting nonradioactive testing during the Functional and Checkout Testing of Systems (FACTS) using the full-scale melter with ''cold'' (nonradioactive) testing campaigns. As a result, the need for another system was identified to allow for the analysis of radioactive samples. The Mass Spec (Spectrometry) Lab was established for the installation of the modified ICP system for handling radioactive samples. The conceptual setup of another ICP was predicated on the use of a hood to allow ease of accessibility of the torch, nebulizer, and spray chamber, and the minimization of air flow paths. However, reconsideration of the radioactive sample dose rate and contamination levels led to the configuration of the glovebox system with a common transfer interface box for the ICP and the inductively coupled plasma-mass spectrometer (ICP-MS) glovebox assemblies. As a result, a simultaneous Model JY-50P ICP with glovebox was installed in 1990 as a first generation ICP glovebox system. This was one of the first ICP glovebox assemblies connected with an ICP-MS glovebox system. Since the economics of processing high-level radioactive waste (HLW) required the availability of an instrument to operate 24 hours a day throughout the year without any downtime, a second generation ICP glovebox assembly was designed, manufactured, and installed in 1995 using a Model JY-46P ICP. These two ICP glovebox systems continue to support vitrification of the HLW into canisters for storage. The ICP systems have been instrumental in monitoring vitrification batch processing. To date, remote sample preparation and

  19. Analytical applications of atomic spectroscopy, with particular reference to inductively coupled plasma emission analysis of coal and fly ash

    International Nuclear Information System (INIS)

    Pougnet, M.A.B.

    1983-08-01

    This thesis outlines the analytical applications of atomic emission and absorption spectroscopy to a variety of materials. Special attention was directed to the analysis of coal and coal ashes. A simple slurry sampling technique was developed and used to determine V, Ni, Co, Mo and Mn in the National Bureau of Standards Standard Reference Materials (NBS-SRM) coals 1632a and 1635 by furnace atomic absorption spectroscopy (FAAS). Coal and fly ash were analysed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The determination of B, Be, Li, C, K and other trace elements by ICP-AES was investigated. Analytical methods were developed for the analysis of coal, fly ash and water samples. Fusion with sodium carbonate and a digestion bomb dissolution method were compared for the determination of boron in a South African boron-rich mineral (Kornerupine). Eight elements were determined in 10 industrial water samples from a power plant. Ca, Mg, Si and B were determined by ICP-AES and V, Ni, Co and Mo by FAAS. Various problems encountered during the course of the work and interferences in ICP-AES analysis are discussed. Some recommendations concerning method development and routine analysis by this technique are suggested

  20. Ion cyclotron emission due to collective instability of fusion products and beam ions in TFTR and JET

    International Nuclear Information System (INIS)

    Dendy, R.O.; McClements, K.G.; Lashmore Davies, C.N.; Cottrell, G.A.; Majeski, R.; Cauffman, S.

    1995-01-01

    Ion cyclotron emission (ICE) has been observed from neutral beam heated TFTR and JET tritium experiments at sequential cyclotron harmonics of both fusion products and beam ions. The emission originates from the outer midplane plasma, where fusion products and beam ions are likely to have a drifting ring-type velocity-space distribution that is anisotropic and sharply peaked. Fusion product driven ICE can be attributed to the magnetoacoustic cyclotron instability, which involves the excitation of obliquely propagating waves on the fast Alfven/ion Bernstein branch at cyclotron harmonics of the fusion products. Differences between ICE observations in JET and TFTR appear to reflect the sensitivity of the instability growth rate to the ratio υ birth /c A , where υ birth is the fusion product birth speed and c A is the local Alfven speed: for fusion products in the outer midplane edge of TFTR supershots, υ birth A ; for alpha particles in the outer midplane edge of JET, the opposite inequality applies. If sub-Alfvenic fusion products are isotropic or have undergone even a moderate degree of thermalization, the magnetoacoustic instability cannot occur. In contrast, the super-Alfvenic alpha particles that are present in the outer midplane of JET can drive the magnetoacoustic cyclotron instability even if they are isotropic or have a relatively broad distribution of speeds. These conclusions may account for the observation that fusion product driven ICE in JET persists for longer than fusion product driven ICE in TFTR. A separate mechanism is proposed for the excitation of beam driven ICE in TFTR: electrostatic ion cyclotron harmonic waves, supported by strongly sub-Alfvenic beam ions, can be destabilized by a low concentration of such ions with a very anrrow spread of velocities in the parallel direction. 25 refs, 14 figs

  1. Variable low energy positron beams for depth resolved defect spectroscopy in thin film structures

    International Nuclear Information System (INIS)

    Amarendra, G.; Viswanathan, B.; Venugopal Rao, G.; Parimala, J.; Purniah, B.

    1997-01-01

    The design, development and commissioning details of an ultra high vacuum compatible, magnetically-guided and compact variable low energy positron beam facility are reported. Information pertaining to the nature, concentration and spatial distribution of defects present at various depths in the near-surface layers of a material can be obtained using this technique. Some of the experimental results obtained using this facility, in terms of surface-sensitive positronium fraction measurements on Cu surfaces as well as defect-sensitive Doppler broadening measurements on semiconductor interfaces and ion irradiated silicon are presented. These results essentially provide an illustration of the research capability of the technique for the study of sub-surface regions and thin film interfaces. (author)

  2. Study of heavy element structure with in-beam α-, β- and γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Meyer, R.A.; Decman, D.J.; Henry, E.A.; Hoff, R.W.; Mann, L.G.; Struble, G.L.; Ussery, L.E.

    1984-01-01

    We describe our in-beam superconducting conversion electron spectrometer and its use in a (t,p) proton-conversion electron coincidence mode. Several examples of completed and on-going investigations are presented. These include: E0 strength from the 238 U fission isomer; electromagnetic properties of the J/sup π/ = 6 + and 8 + states of 210 Pb; single particle and cluster states of 213 Fr; the J/sup π/ = 21/2 + isomer in 197 Au and 199 Au; and the cluster states of 199 Au. Results of the study of odd-odd deformed 244 Am are presented. The latter results performed using neutron-capture gamma-ray and conversion electron techniques are compared to recent developments in the modeling of deformed odd-odd nuclei. 23 refs., 10 figs., 1 tab

  3. First prompt in-beam γ-ray spectroscopy of a superheavy element: the 256Rf

    International Nuclear Information System (INIS)

    Rubert, J; Dorvaux, O; Gall, B J P; Asfari, Z; Piot, J; Greenlees, P T; Grahn, T; Herzan, A; Jakobsson, U; Jones, P; Julin, R; Juutinen, S; Andersson, L L; Cox, D M; Herzberg, R-D; Asai, M; Dechery, F; Hauschild, K; Henning, G; Heßberger, F P

    2013-01-01

    Using state-of-the-art γ-ray spectroscopic techniques, the first rotational band of a superheavy element, extending up to a spin of 20 h, was discovered in the nucleus 256 Rf. To perform such an experiment at the limits of the present instrumentation, several developments were needed. The most important of these developments was of an intense isotopically enriched 50 Ti beam using the MIVOC method. The experimental set-up and subsequent analysis allowed the 256 Rf ground-state band to be revealed. The rotational properties of the band are discussed and compared with neighboring transfermium nuclei through the study of their moments of inertia. These data suggest that there is no evidence of a significant deformed shell gap at Z = 104.

  4. Charmonium Spectroscopy at the ISR using an Antiproton Beam and a Hydrogen Jet Target

    CERN Multimedia

    2002-01-01

    This experiment studies the formation of charmonium states not directly accessible in e|+e|- annihilation. The good momentum definition of the cooled @* beam allows a precise measurement of the width of these states. A hydrogen gas jet has been used, yielding a luminosity of 3.10|3|0 cm|-|2sec|-|1 with 10|1|1~@*. Three types of exclusive events are selected: e|+e|-~(J/@Y) for calibration of the energy of the machine, e|+e|-@g~(@c states) and @g@g~(@h^c, @h'^c). The experiment uses MWPC, scintillator hodoscopes, Freon Cerenkov counters for the e|+e|- determination and electromagnetic calorimeters (@g detection and energies of the electrons).

  5. Supersonic molecular beam electric resonance spectroscopy and van der Waals molecules

    International Nuclear Information System (INIS)

    Luftman, H.S.

    1982-09-01

    A supersonic molecular beam electric resonance (MBER) spectrometer was built to study the radiofrequency spectra of weakly bound gas phase van der Waals molecules. The instrument and its operating characteristics are described in detail. Sample mass spectra of Ar-ClF gas mixtures are also presented as an illustration of the synthesis of van der Waals molecules. The Stark focusing process for linear polar molecules is discussed and computer-simulated using both second order perturbation and variational methods. Experimental refocusing spectra of OCS and ClF are studied and compared with these trajectory calculations. Though quantitative fitting is poor, there are strong qualitative indicators that the central part of a supersonic beam consists of molecules with a significantly greater population in the lowest energy rotational states than generally assumed. Flop in as opposed to flop out resonance signals for OCS are also numerically predicted and observed. The theoretical properties of the MBER spectrum for linear molecules are elaborated upon with special emphasis on line shape considerations. MBER spectra of OCS and ClF under a variety of conditions are presented and discussed in context to these predictions. There is some uncertainty expressed both in our own modeling and in the manner complex MBER spectra have been analyzed in the past. Finally, an electrostatic potential model is used to quantitatively describe the class of van der Waals molecules Ar-MX, where MX is an alkali halide. Energetics and equilibrium geometries are calculated. The validity of using an electrostatic model to predict van der Waals bond properties is critically discussed

  6. Spectroscopy with trapped highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, Peter

    2009-01-01

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed; and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  7. Study of the light emission from hydrogen atoms excited by the beam-foil technique

    International Nuclear Information System (INIS)

    Broll, Norbert.

    1976-01-01

    Zero-field and Stark-induced quantum beat measurements have been performed for beam foil excited hydrogen (H + and H 2 + beam). Experimental evidence of coherent excitation of S and P states of Lyman α line has been demonstrated [fr

  8. A portable optical emission spectroscopy-cavity ringdown spectroscopy dual-mode plasma spectrometer for measurements of environmentally important trace heavy metals: Initial test with elemental Hg

    Science.gov (United States)

    Sahay, Peeyush; Scherrer, Susan T.; Wang, Chuji

    2012-09-01

    A portable optical emission spectroscopy-cavity ringdown spectroscopy (OES-CRDS) dual-mode plasma spectrometer is described. A compact, low-power, atmospheric argon microwave plasma torch (MPT) is utilized as the emission source when the spectrometer is operating in the OES mode. The same MPT serves as the atomization source for ringdown measurements in the CRDS mode. Initial demonstration of the instrument is carried out by observing OES of multiple elements including mercury (Hg) in the OES mode and by measuring absolute concentrations of Hg in the metastable state 6s6p 3P0 in the CRDS mode, in which a palm-size diode laser operating at a single wavelength 405 nm is incorporated in the spectrometer as the light source. In the OES mode, the detection limit for Hg is determined to be 44 parts per 109 (ppb). A strong radiation trapping effect on emission measurements of Hg at 254 nm is observed when the Hg solution concentration is higher than 50 parts per 106 (ppm). The radiation trapping effect suggests that two different transition lines of Hg at 253.65 nm and 365.01 nm be selected for emission measurements in lower (50 ppm), respectively. In the CRDS mode, the detection limit of Hg in the metastable state 6s6p 3P0 is achieved to be 2.24 parts per 1012 (ppt) when the plasma is operating at 150 W with sample gas flow rate of 480 mL min-1; the detection limit corresponds to 50 ppm in Hg sample solution. Advantage of this novel spectrometer has two-fold, it has a large measurement dynamic range, from a few ppt to hundreds ppm and the CRDS mode can serve as calibration for the OES mode as well as high sensitivity measurements. Measurements of seven other elements, As, Cd, Mn, Ni, P, Pb, and Sr, using the OES mode are also carried out with detection limits of 1100, 33, 30, 144, 576, 94, and 2 ppb, respectively. Matrix effect in the presence of other elements on Hg measurements has been found to increase the detection limit to 131 ppb. These elements in lower

  9. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  10. To the application of the emission Mössbauer and positron annihilation spectroscopies for detection of carcinogens

    Science.gov (United States)

    Bokov, A. V.; Byakov, V. M.; Kulikov, L. A.; Perfiliev, Yu. D.; Stepanov, S. V.

    2017-11-01

    Being the main cause of cancer, almost all chemical carcinogens are strong electrophiles, that is, they have a high affinity for the electron. We have shown that positron annihilation lifetime spectroscopy (PALS) is able to detect chemical carcinogens by their inhibition of positronium (Ps) formation in liquid media. Electrophilic carcinogens intercept thermalized track electrons, which are precursors of Ps, and as a result, when they are present Ps atom does not practically form. Available biophysical data seemingly indicate that frozen solutions model better an intracellular medium than the liquid ones. So it is reasonable to use emission Mössbauer spectroscopy (EMS) to detect chemical carcinogens, measuring the yield of 57Fe2+ions formed in reactions of Auger electrons and other secondary electrons they produced with 57Fe3+. These reactions are similar to the Ps formation process in the terminal part the positron track: e++ e- =>Ps. So EMS and PALS are complementary methods for detection of carcinogenic compounds.

  11. Electron emission relevant to inner-shell photoionization of condensed water studied by multi-electron coincidence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hikosaka, Y., E-mail: hikosaka@las.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan); Mashiko, R.; Konosu, Y.; Soejima, K. [Department of Environmental Science, Niigata University, Niigata 950-2181 (Japan); Shigemasa, E. [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); SOKENDAI, Okazaki 444-8585 (Japan)

    2016-11-15

    Highlights: • Multi-electron coincidence spectroscopy is applied to the study of electron emissions from condensed H2O molecules. • Coincidence Auger spectra are obtained for different photoelectron energies. • The energy distribution of the slow electrons ejected in the Auger decay is deduced from three-fold coincidences. - Abstract: Multi-electron coincidence spectroscopy using a magnetic-bottle electron spectrometer has been applied to the study of the Auger decay following O1s photoionization of condensed H{sub 2}O molecules. Coincidence Auger spectra are obtained for three different photoelectron energy ranges. In addition, the energy distribution of the slow electrons ejected in the Auger decay of the O1s core hole is deduced from three-fold coincidences.

  12. Fluorescence excitation-emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes.

    Science.gov (United States)

    Omrani, Hengameh; Barnes, Jack A; Dudelzak, Alexander E; Loock, Hans-Peter; Waechter, Helen

    2012-06-21

    Excitation emission matrix (EEM) and cavity ring-down (CRD) spectral signatures have been used to detect and quantitatively assess contamination of jet fuels with aero-turbine lubricating oil. The EEM spectrometer has been fiber-coupled to permit in situ measurements of jet turbine oil contamination of jet fuel. Parallel Factor (PARAFAC) analysis as well as Principal Component Analysis and Regression (PCA/PCR) were used to quantify oil contamination in a range from the limit of detection (10 ppm) to 1000 ppm. Fiber-loop cavity ring-down spectroscopy using a pulsed 355 nm laser was used to quantify the oil contamination in the range of 400 ppm to 100,000 ppm. Both methods in combination therefore permit the detection of oil contamination with a linear dynamic range of about 10,000.

  13. The nature of extreme emission line galaxies at z = 1-2: kinematics and metallicities from near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maseda, Michael V.; Van der Wel, Arjen; Rix, Hans-Walter; Da Cunha, Elisabete; Meidt, Sharon E. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pacifici, Camilla [Yonsei University Observatory, Yonsei University, Seoul 120-749 (Korea, Republic of); Momcheva, Ivelina; Van Dokkum, Pieter; Nelson, Erica J. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Brammer, Gabriel B.; Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Franx, Marijn; Fumagalli, Mattia [Leiden Observatory, Leiden University, Leiden (Netherlands); Bell, Eric F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Förster-Schreiber, Natascha M. [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Koo, David C. [UCO/Lick Observatory and Department of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Lundgren, Britt F. [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States); Marchesini, Danilo [Physics and Astronomy Department, Tufts University, Robinson Hall, Room 257, Medford, MA 02155 (United States); Patel, Shannon G., E-mail: maseda@mpia.de [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); and others

    2014-08-10

    We present near-infrared spectroscopy of a sample of 22 Extreme Emission Line Galaxies at redshifts 1.3 < z < 2.3, confirming that these are low-mass (M{sub *} = 10{sup 8}-10{sup 9} M{sub ☉}) galaxies undergoing intense starburst episodes (M{sub *}/SFR ∼ 10-100 Myr). The sample is selected by [O III] or Hα emission line flux and equivalent width using near-infrared grism spectroscopy from the 3D-HST survey. High-resolution NIR spectroscopy is obtained with LBT/LUCI and VLT/X-SHOOTER. The [O III]/Hβ line ratio is high (≳ 5) and [N II]/Hα is always significantly below unity, which suggests a low gas-phase metallicity. We are able to determine gas-phase metallicities for seven of our objects using various strong-line methods, with values in the range 0.05-0.30 Z{sub ☉} and with a median of 0.15 Z{sub ☉}; for three of these objects we detect [O III] λ4363, which allows for a direct constraint on the metallicity. The velocity dispersion, as measured from the nebular emission lines, is typically ∼50 km s{sup –1}. Combined with the observed star-forming activity, the Jeans and Toomre stability criteria imply that the gas fraction must be large (f{sub gas} ≳ 2/3), consistent with the difference between our dynamical and stellar mass estimates. The implied gas depletion timescale (several hundred Myr) is substantially longer than the inferred mass-weighted ages (∼50 Myr), which further supports the emerging picture that most stars in low-mass galaxies form in short, intense bursts of star formation.

  14. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  15. A separation method to overcome the interference of aluminium on zinc determination by inductively coupled plasma atomic emission spectroscopy

    OpenAIRE

    Jesus, Djane S. de; Korn, Maria das Graças Andrade; Ferreira, Sergio Luis Costa; Carvalho, Marcelo Souza de

    2000-01-01

    Texto completo: acesso restrito. p.389–394 The use of polyurethane foam (PUF) to separate zinc from large amounts of aluminium and its determination by inductively coupled plasma atomic emission spectroscopy technique (ICP-AES) in aluminium matrices is described. The proposed method is based on the solid-phase extraction of the zinc(II) cation as a thiocyanate complex. Parameters such as effect of pH on zinc sorption, zinc desorption from the foam and analytical features of the procedure w...

  16. Determination of Cr(VI) and Cr(III) in urine and dextrose by inductively coupled plasma emission spectroscopy

    Science.gov (United States)

    Mianzhi, Zhuang; Barnes, Ramon M.

    The determination of Cr(VI) and Cr(III) in human urine and in commercial dextrose solution is performed by induclively coupled plasma-atomic emission spectroscopy after selective preconcentration of the chromium species at different pH values by poly(dithiocarbamate) and poly(acrylamidoxime) chelating resins. The chelating properties of these resins with chromium, including the kinetics of uptake and removal of Cr(III), and the influence of matrix concentrations were evaluated. Chromium in human urine was found to exist exclusively as Cr(III).

  17. Least squares autoregressive (maximum entropy) spectral estimation for Fourier spectroscopy and its application to the electron cyclotron emission from plasma

    International Nuclear Information System (INIS)

    Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.

    1981-07-01

    A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)

  18. Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements

    International Nuclear Information System (INIS)

    El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E.

    2005-01-01

    In quantitative Laser Induced Breakdown Spectroscopy (LIBS) measurements it is essential to account for the effect of self-absorption on the emission lines intensity. In order to quantify this effect, in this paper we propose a simple method for evaluating the ratio between the actual measured line intensity and the intensity expected in absence of self-absorption and, if necessary, correcting the effect of self-absorption on line intensity. The method, based on a homogeneous plasma model, is applicable when the plasma electron density is known and in particular to lines whose Stark broadening parameter is available

  19. Investigation of electric fields in B-implanted Si by positron beam spectroscopy

    International Nuclear Information System (INIS)

    Abdulmalik, D.A.; Coleman, P.G.

    2007-01-01

    Besides its conventional applications in defect characterization, variable-energy positron annihilation spectroscopy can be employed to monitor internal electric fields in the depletion regions in semiconductor structures. In this work, electric fields were studied in pre-amorphized Cz Si wafers (background dopant level ∝10 15 cm -3 ) implanted with 0.5 keV B ions at a dose of 10 15 cm -2 , and then annealed isothermally at 800 C for times ranging from 1 to 2700 s. Differences in the S parameter with annealing time were observed in samples implanted (a) with B ions only and (b) with B followed by F ions at 10 keV; these were attributed to different electric fields, which drift positrons back (a) to the surface, or (b) to a vacancy-like defected layer. Fitting of the data revealed depletion regions of widths between 150-350 nm centered at depths between 250-350 nm, with electric field values in the range -9 x 10 6 to -3 x 10 6 Vm -1 . The depth and width of the depletion regions increase significantly for annealing times greater than 100 s, attributed to B diffusion. The results are consistent with simple theoretical estimates, but the uncertainties on the latter are large. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. In-beam alpha, electron, and gamma-ray spectroscopy of 215Fr

    International Nuclear Information System (INIS)

    Decman, D.J.; Grawe, H.; Kluge, H.; Maier, K.H.; Maj, A.; Menningen, M.; Roy, N.; Wiegner, W.

    1983-01-01

    The nucleus 215 Fr was studied using the 208 Pb( 11 B, 4n) and 204 Hg( 15 N, 4n) reactions. The measurements included α-γ, γ-γ, and e-e coincidence experiments as well as γ-ray and α-particle DPAD studies. The decay scheme gives levels up to a 3068 keV 39/2 - isomer with tsub(1/2)=(33 +- 5) ns as well as 3 shorter-lived isomers (tsub(1/2) approx.= 4 ns); g-factors have been measured for these isomers. The alpha-particle spectroscopy showed the existence of 4 longrange alphas which could be assigned to excited states in 215 Fr. tsub(1/2)( 215 Frsup(gs)) = (86+-5) ns has been remeasured. The negative parity states up to 1680 keV seem to be members of the π(h9/2) 5 9/2sup(ν)(g9/2) 2 configuration; a strong hindrance of M1 transitions is found. The higher lying states are compared with the DIPM model. (orig.)

  1. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    Science.gov (United States)

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  2. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak.

  3. Study of the trace tritium content in deuterium plasmas of the JET tokamak based on neutron emission spectroscopy measurements

    International Nuclear Information System (INIS)

    Ringmar, David

    2001-02-01

    This thesis describes a study of the evolution of the trace tritium content in the JET tokamak. The study is based on measurements of the neutron emission, which were performed with the magnetic proton recoil (MPR) spectrometer. Data analysis procedures used to extract the results are described in some detail. The thesis also describes a simplified theoretical model to calculate the absolute tritium concentration with a comparison to the experimental results. The present study covers the time period 1996-2000 and the evolution of neutron emission spectroscopy (NES) results are compared with information from related diagnostic sources, and used to discuss the important issue of how tritium is retained in the JET tokamak

  4. The effects of electron spiraling on the anisotropy and polarization of photon emission from an electron beam ion trap

    International Nuclear Information System (INIS)

    Savin, D.W.; Gu, M.F.; Beiersdorfer, P.

    1998-01-01

    We present a theoretical formalism for calculating the anisotropy and polarization of photon emission due to a spiraling beam of electrons in an electron beam ion trap (EBIT). We present measurements of the polarization for the Fe XXIV 4p 2 P 3/2 → 2s 2 S 1/2 X-ray transition due to electron impact excitation. We discuss these results, together with previously reported EBIT polarization measurements, in the light of electron spiraling. We find that spiraling effects cannot yet be discerned in these measurements. This is important for many EBIT measurements concerned with X-ray line intensity measurements. While the amount of spiraling is not accurately known, neglecting its effects introduces an error typically no larger than that given by counting statistics. (author)

  5. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  6. Double pulse laser induced breakdown spectroscopy: Experimental study of lead emission intensity dependence on the wavelengths and sample matrix

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli S, V; Martinez L, M A; Fernandez C, A J [Laboratorio de Espectroscopia Laser, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, DC 1020 (Venezuela, Bolivarian Republic of); Gonzalez, J J; Mao, X L [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Russo, R.E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: RERusso@lbl.gov

    2009-02-15

    Lead (Pb) emission intensity (atomic line 405.78 nm) dependence on the sample matrix (metal alloy) was studied by means of collinear double pulse (DP)-laser induced breakdown spectroscopy (LIBS). The measurement of the emission intensity produced by three different wavelength combinations (i.e. I:532 nm-II:1064 nm, I:532 nm-II:532 nm, and I:532 nm-II:355 nm) from three series of standard reference materials showed that the lead atomic line 405.78 nm emission intensity was dependent on the sample matrix for all the combination of wavelengths, however reduced dependency was found for the wavelength combination I:532 nm-II:355 nm. Two series of standard reference materials from the National Institute of Standards and Technology (NIST) and one series from the British Chemical Standards (BCS) were used for these experiments. Calibration curves for lead ablated from NIST 626-630 ('Zn{sub 95}Al{sub 4}Cu{sub 1}') provided higher sensitivity (slope) than those calibration curves produced from NIST 1737-1741 ('Zn{sub 99.5}Al{sub 0.5}') and with the series BCS 551-556 ('Cu{sub 87}Sn{sub 11}'). Similar trends between lead emission intensity (calibration curve sensitivities) and reported variations in plasma temperatures caused by the differing ionization potentials of the major and minor elements in these samples were established.

  7. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D α . The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  8. Initial Beam Dynamics Simulations of a High-Average-Current Field-Emission Electron Source in a Superconducting RadioFrequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Mohsen, O. [Northern Illinois U.; Gonin, I. [Fermilab; Kephart, R. [Fermilab; Khabiboulline, T. [Fermilab; Piot, P. [Northern Illinois U.; Solyak, N. [Fermilab; Thangaraj, J. C. [Fermilab; Yakovlev, V. [Fermilab

    2018-01-05

    High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $\\sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.

  9. Laser induced breakdown spectroscopy in water | Boudjemai ...

    African Journals Online (AJOL)

    Sparks were generated in water by the focused beam of a Q-switched Nd:YAG laser Na and Cu aqueous solutions exhibited fluorescence signal on the decaying edge of plasma emission at their respective characteristic resonance lines. Potential of the laser plasma spectroscopy for in-situ pollution monitoring in natural ...

  10. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  11. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-07-14

    The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.

  12. The Development of Cavity Ringdown Spectroscopy as a Toxic Metal Continuous Emission Monitor

    International Nuclear Information System (INIS)

    Miller, Goeroge P.; Winstead, Christopher B.

    2001-01-01

    Innovative program to explore the viability of using Cavity Ringdown Spectroscopy (CRDS) for trace analysis and monitoring of remediation processes for hazardous and radioactive wastes. Cavity ringdown spectroscopy is a measurement of the rate of absorption of a sample within a closed optical cavity rather than the standard measurement of the absorbed signal strength over a given sample path. It is a technique capable of providing ultra-sensitive absorption measurements in hostile environments using commercially available easy-to-use pulsed lasers. The inherent high sensitivity stems from both the long effective sample pathlengths possible and the relaxed constraints on the accuracy of the measurement of the cavity decay time

  13. Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coatings and thin films

    KAUST Repository

    Wilke, Marcus; Teichert, Gerd; Gemma, Ryota; Pundt, Astrid; Kirchheim, Reiner; Romanus, Henry; Schaaf, Peter

    2011-01-01

    overview on new developments in instrument design for accurate and well resolved thin film analyses is presented. The article focuses on the analytical capabilities of glow discharge optical emission spectrometry in the analysis of metallic coatings

  14. Flash Spectroscopy: Emission Lines From the Ionized Circumstellar Material Around 10-Day-Old Type II Supernovae

    Science.gov (United States)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; hide

    2016-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.

  15. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy

    Science.gov (United States)

    2011-02-01

    thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic emission lines in the spectrum of aluminum...candidate thermometric species must produce several strong emission lines in the spectrum that originate from different upper energy levels in order to...allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric impurity for the current work since Ba

  16. Study on the proton-induced X-ray emission(PIXE) using external proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, M. Y.; Yoon, J. C.; Park, K. J. [Seoul Natioanl University, Seoul (Korea, Republic of)

    2008-04-15

    We intend to develop a system that can extract a proton beam into air for a qualitative, and quantitative PIXE analysis up to ppm(percent per million) composition. When such an R and D is accomplished, first it is possible to get equipped with a system for PIXE and PIGmE, second, it is possible to contribute to an academic progress by the study for physical properties of matter through an nuclear science methods when the comparison between the measurement and the calculated quantities, and third, it is possible to contribute to a multi-disciplinary researches by the measurements of the samples for which it is hard to get the SRM for the samples. We intend to develop methods to measure the beam current for an air-borne proton beam, and to minimize the energy and current loss of the beam. We intend to acquire a set of PIXE data for rare-earth metals and transient metals, to form a basic database for the analysis for various samples for which it is hard to get the SRM. Developed PIXE beamline can extract the beam diameter up to 5mm, and beam intensity in the range 0.5nA to 10nA variable. sustaining the vacuum better than 10{sup -6} mtorr. Necessary detection system and methodology are complete. As the application of the present research achievements, we studied the analysis of aerosol composition, the appraisal of the cultural heritages, and a feasibility study for a proton beam writing. It is expected to become possible to analyse the compositions of the gems, the elemental compositions of the food, the discrimination of the traditional ink and the modern ink on the documents, the evaluation of the documents by the analysis of the elemental composition of the stamps, The analysis of the paper with respect to the date and the quality, the analysis of the color, and the core bored samples

  17. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra

    Czech Academy of Sciences Publication Activity Database

    Benda, A.; Kapusta, Peter; Hof, Martin; Gaus, K.

    2014-01-01

    Roč. 22, č. 3 (2014), s. 2973-2988 ISSN 1094-4087 R&D Projects: GA AV ČR KJB400400904; GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : spectroscopy * fluorescence and luminiscence * confocal microscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.488, year: 2014

  18. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  19. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    Science.gov (United States)

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  20. Is low-energy-ion bombardment generated X-ray emission a secondary mutational source to ion-beam-induced genetic mutation?

    Energy Technology Data Exchange (ETDEWEB)

    Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Thopan, P.; Yaopromsiri, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Suwannakachorn, D. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Detected X-ray emission from metal, plastic and biological samples. ► Characteristic X-ray emission was detected from metal but not from non-metals. ► Low-energy ion bombarded bacteria held in different sample holders. ► Bacteria held in metal holder had higher mutation rate than in plastic holder. ► Ion-beam-induced X-ray from biological sample is not a basic mutation source. -- Abstract: Low-energy ion beam biotechnology has achieved tremendous successes in inducing crop mutation and gene transfer. However, mechanisms involved in the related processes are not yet well understood. In ion-beam-induced mutation, ion-bombardment-produced X-ray has been proposed to be one of the secondary mutation sources, but the speculation has not yet been experimentally tested. We carried out this investigation to test whether the low-energy ion-beam-produced X-ray was a source of ion-beam-induced mutation. In the investigation, X-ray emission from 29-keV nitrogen- or argon- ion beam bombarded bacterial Escherichia coli (E. coli) cells held in a metal or plastic sample holder was in situ detected using a highly sensitive X-ray detector. The ion beam bombarded bacterial cells held in different material holders were observed for mutation induction. The results led to a conclusion that secondary X-ray emitted from ion-beam-bombarded biological living materials themselves was not a, or at least a negligible, mutational source, but the ion-beam-induced X-ray emission from the metal that made the sample holder could be a source of mutation.