Molecular beam studies of reaction dynamics
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.
Beam Dynamics Studies in Recirculating Machines
Pellegrini, Dario; Latina, A
The LHeC and the CLIC Drive Beam share not only the high-current beams that make them prone to show instabilities, but also unconventional lattice topologies and operational schemes in which the time sequence of the bunches varies along the machine. In order to asses the feasibility of these projects, realistic simulations taking into account the most worrisome effects and their interplays, are crucial. These include linear and non-linear optics with time dependent elements, incoherent and coherent synchrotron radiation, short and long-range wakefields, beam-beam effect and ion cloud. In order to investigate multi-bunch effects in recirculating machines, a new version of the tracking code PLACET has been developed from scratch. PLACET2, already integrates most of the effects mentioned before and can easily receive additional physics. Its innovative design allows to describe complex lattices and track one or more bunches accordingly to the machine operation, reproducing the bunch train splitting and recombinat...
Beam Dynamics Simulation Platform and Studies of Beam Breakup in Dielectric Wakefield Structures
International Nuclear Information System (INIS)
Schoessow, P.; Kanareykin, A.; Jing, C.; Kustov, A.; Altmark, A.; Gai, W.
2010-01-01
A particle-Green's function beam dynamics code (BBU-3000) to study beam breakup effects is incorporated into a parallel computing framework based on the Boinc software environment, and supports both task farming on a heterogeneous cluster and local grid computing. User access to the platform is through a web browser.
Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator
Fraser, M A; Jones, R M
2011-01-01
The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering...
Radiation defect dynamics studied by pulsed ion beams
Wallace, J. B.; Bayu Aji, L. B.; Shao, L.; Kucheyev, S. O.
2017-10-01
The formation of stable radiation damage in solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. Our current understanding of the underlying physics is still not sufficient for predicting radiation damage even for Si, which is arguably the simplest and most extensively studied material. The complexity of radiation damage is closely related to radiation defect dynamics. Here, we demonstrate how defect interaction dynamics can be studied by pulsed beam irradiation when the total ion fluence is split into a train of equal square pulses. By varying the passive portion of the beam duty cycle, we measure a characteristic time constant of dynamic annealing and, hence, the defect relaxation rate. Measurements of stable lattice disorder as a function of the active portion of the beam duty cycle give an effective defect diffusion length. We illustrate the pulsed beam method with examples for Si bombarded at 100 °C with 500 keV Ar ions.
Beam dynamics design studies of a superconducting radioactive ion beam postaccelerator
Directory of Open Access Journals (Sweden)
M. A. Fraser
2011-02-01
Full Text Available The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently postaccelerated by the normal conducting radioactive ion beam experiment linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of transverse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wave resonator and the asymmetry of the rf defocusing forces in the solenoid focusing channel. A racetrack shaped beam port aperture was shown to improve the symmetry of the fields in the high-β quarter-wave resonator and reduce the loss of acceptance under the offset used to compensate the steering force. The methods used to compensate the beam steering are described and an optimization routine written to minimize the steering effect when all cavities of a given family are offset by the same amount, taking into account the different velocity profiles across the range of mass-to-charge states accepted. The assumptions made in the routine were shown to be adequate and the results well correlated with the beam quality simulated in multiparticle beam dynamics simulations. The specification of the design tolerances is outlined based on studies of the sensitivity of the beam to misalignment and errors, with particular
The Status of Optics Design and Beam Dynamics Study in J-PARC RCS
Noda, Fumiaki; Hotchi, Hideaki; Kishiro, Junichi; Machida, Shinji; Molodojentsev, Alexander Y; Saha, Pranab K; Shobuda, Yoshihiro; Yamamoto, Kazami
2005-01-01
The 3GeV RCS at J-PARC is designed to provide proton beam of 3GeV and a goal of output beam power is 1MW. The beam commissioning starts on May 2007. At present, more qualitative studies concerning beam dynamics are in progress: core beam handlings, halo beam handlings, instabilities and so on. In this paper, the RCS optics design and the present status of beam dynamics studies are summarized.
Beam Dynamics Design Studies of a Superconducting Radioactive Ion Beam Post-accelerator
Fraser, MA; Pasini, M
2011-01-01
The HIE-ISOLDE project at CERN proposes a superconducting upgrade to increase the energy range and quality of the radioactive ion beams produced at ISOLDE, which are currently post- accelerated by the normal conducting REX linac. The specification and design choices for the HIE-ISOLDE linac are outlined along with a comprehensive beam dynamics study undertaken to understand and mitigate the sources of beam emittance dilution. The dominant cause of transverse emittance growth was attributed to the coupling between the transverse and longitudinal motions through the phase dependence of the rf defocusing force in the accelerating cavities. A parametric resonance induced by the coupling was observed and its excitation surveyed as a function of trans- verse phase advance using numerical simulations and analytic models to understand and avoid the regions of transverse beam instability. Other sources of emittance growth were studied and where necessary ameliorated, including the beam steering force in the quarter-wa...
Study of longitudinal dynamics in space-charge dominated beams
Tian, Kai
Modern accelerator applications, such as heavy ion fusion drivers, pulsed neutron sources, electron injectors for high-energy linear colliders, and X-ray Free Electron Lasers, demand beams with high intensity, low emittance and small energy spread. At low (non-relativistic) energies, the "electrostatic", collective interactions from space-charge forces existing in such intense beams play the dominant role; we characterize these beams as space-charge dominated beams. This dissertation presents numerous new findings on the longitudinal dynamics of a space-charge dominated beam, particularly on the propagation of density perturbations. In order to fully understand the complex physics of longitudinal space-charge waves, we combine the results of theory, computer simulation, and experiment. In the Long Solenoid Experimental system (LSE), with numerous diagnostic tools and techniques, we have, for the first time, experimentally measured the detailed energy profiles of longitudinal space-charge waves at different locations, both near the beam source and at the end of the transport system. Along with the current profiles, we have a complete set of experimental data for the propagation of space-charge waves. We compare these measured results to a 1-D theory and find better agreement for beams with perturbations in the linear regime, where the perturbation strength is less than 10%, than those with nonlinear perturbations. Using fast imaging techniques that we newly developed, we have, for the first time, obtained the progressive time-resolved images of longitudinal slices of a space-charge dominated beam. These images not only provide us time-resolved transverse density distribution of the beam, but also enable us to take time-resolved transverse phase space measurement using computerized tomography. By combining this information with the longitudinal energy measurement, we have, for the first time, experimentally constructed the full 6-D phase space. Part of the results
Crossed-beam studies of the dynamics of radical reactions
Energy Technology Data Exchange (ETDEWEB)
Liu, K. [Argonne National Laboratory, IL (United States)
1993-12-01
The objective of this program is to characterize the detailed dynamics of elementary radical reactions and to provide a better understanding of radical reactivity in general. The radical beam is typically generated by a laser photolysis method. After colliding with the reacting molecule in a crossed-beam apparatus, the reaction product state distribution is interrogated by laser spectroscopic techniques. Several radicals of combustion significance, such as O, CH, OH, CN and NCO have been successfully generated and their collisional behavior at the state-to-state integral cross section level of detail has been studied in this manner. During the past year, the detection system has been converted from LIF to REMPI schemes, and the emphasis of this program shifted to investigate the product angular distributions. Both inelastic and reactive processes have been studied.
Dynamic modelling and experimental study of cantilever beam with clearance
International Nuclear Information System (INIS)
Li, B; Jin, W; Han, L; He, Z
2012-01-01
Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.
Studies of beam dynamics in relativistic klystron two-beam accelerators
Energy Technology Data Exchange (ETDEWEB)
Lidia, Steven M.
1999-11-01
Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
International Nuclear Information System (INIS)
Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin
2012-01-01
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
Directory of Open Access Journals (Sweden)
Shahid Ahmed
2012-02-01
Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.
Beam dynamics studies to develop LHC luminosity model
Campogiani, Giovanna; Papaphilippou, Ioannis
The thesis project aims at studying the different physical processes that are impacting luminosity, one of the key figures of merit of a collider operation. In particular the project focuses on extracting the most relevant parameters for the high-energy part of the model, which is mostly dominated by the beam-beam effect. LHC luminosity is degraded by parasitic collisions that reduce the beam lifetime and the particles stability in the collider. This instability is due to the non-linear effects of one beam electromagnetic field on another in the interaction region. Such parasitic encounters can be as many as 16 per interaction region, piling up to around 180 000 per second. Our goal is to study the evolution of charge density distribution in the beam, by tracking particles through a symplectic integrator that includes the beam-beam effect. In particular we want to obtain data on the halo particles, which are more sensible to instability, to better characterise the beam lifetime and monitor the luminosity evol...
Beam dynamics and optics studies for the LHC injectors upgrade
Bartosik, Hannes; Benedikt, Michael
The Large Hadron Collider (LHC) upgrade, which aims at reaching signiﬁcantly higher luminosities at the experiment sites, requires the existing injector chain to provide proton beams with unprecedented beam intensity and brightness. The required beam parameters are out of reach for the CERN accelerator complex in its present state. Therefore, upgrade possibilities of the existing injectors for mitigating their performance limitations or their partial replacement by new machines have been studied. The transition energy plays a central role for the performance of synchrotrons. Designing a lattice with negative momentum compaction (NMC), i.e. imaginary transition energy, allows avoiding transition crossing and thus the associated performance limitations. In the ﬁrst part of this thesis, the properties of an NMC cell are studied. The limits of betatron stability are evaluated by a combination of analytical and numerical calculations. The NMC cell is then used for the design study of a new synchrotron called P...
Kim, Chanmi; Kim, Eun-San; Hahn, Garam
2016-11-01
The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.
Beam Dynamics Studies for a Laser Acceleration Experiment
Spencer, James; Noble, Robert; Palmer, Dennis T; Siemann, Robert
2005-01-01
The NLC Test Accelerator at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun, originally proposed for the NLCTA, is being installed together with a large-angle extraction line at 60 MeV. This is followed by a matching section, final focus and buncher for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range, high resolution spectrometer (HES) for electron bunch analysis. The RF gun is discussed in another paper. We discuss only the beam dynamics and high resolution analysis system at 6 MeV based on using Parmela and high-order Transport for bunch charges from 50 pC to 1 nC. Beyond the diagnostics, this system uses the emittance compensating solenoids and a low energy, high resolution spectrometer (LES) to help tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without linear dispersion or use of sextu...
Beam dynamics study in the C235 cyclotron for proton therapy
International Nuclear Information System (INIS)
Karamysheva, G.A.; Kostromin, S.A.
2008-01-01
Study of the beam dynamics in the C235 cyclotron dedicated to the proton therapy is presented. Results of the computer simulations of the particle motion in the measured magnetic field are given. Study of the resonance influence on the acceleration process was carried out. The corresponding tolerances on the magnetic field imperfections and transverse beam parameters were defined using these simulations
APPLICATION OF UAL TO HIGH INTENSITY BEAM DYNAMICS STUDIES IN THE SNS ACCUMULATOR RING
International Nuclear Information System (INIS)
MALITSKY, N.; FEDOTOV, A.V.; WEI, J.
2002-01-01
The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has been implemented and used for extensive full-scale beam dynamics studies arising in high-intensity rings. The paper describes the structure of this environment and its application to the development and analysis of the SNS accumulator ring beam loss model including a complex combination of several physical effects
APPLICATION OF UAL TO HIGH INTENSITY BEAM DYNAMICS STUDIES IN THE SNS ACCUMULATOR RING.
Energy Technology Data Exchange (ETDEWEB)
MALITSKY,N.; FEDOTOV,A.V.; WEI,J.
2002-06-03
The SNS Ring off-line parallel simulation environment based on the Unified Accelerator Libraries (UAL) has been implemented and used for extensive full-scale beam dynamics studies arising in high-intensity rings. The paper describes the structure of this environment and its application to the development and analysis of the SNS accumulator ring beam loss model including a complex combination of several physical effects.
A Study of Particle Beam Spin Dynamics for High Precision Experiments
Energy Technology Data Exchange (ETDEWEB)
Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)
2017-05-01
In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.
Peggs, S.
This paper summarizes the activities of the beam dynamics working group of the LHC Collective Effects Workshop that was held in Montreux in 1994. It reviews the presentations that were made to the group, the discussions that ensued, and the consensuses that evolved.
Application of the Frequency Map Analysis to the Study of the Beam Dynamics of Light Sources
International Nuclear Information System (INIS)
Nadolski, Laurent
2001-01-01
The topic of this thesis is the study of beam dynamics in storage rings with a restriction to single particle transverse dynamics. In a first part, tools (Frequency Map Analysis, Hamiltonian, Integrator) are presented for studying and exploring the dynamics. Numerical simulations of four synchrotron radiation sources (the ALS, the ESRF, SOLEIL and Super-ACO) are performed. We construct a tracking code based on a new class of symplectic integrators (Laskar and Robutel, 2000). These integrators with only positive steps are more precise by an order of magnitude than the standard Forest and Ruth's scheme. Comparisons with the BETA, DESPOT and MAD codes are carried out. Frequency Map Analysis (Laskar, 1990) is our main analysis tool. This is a numerical method for analysing a conservative dynamical system. Based on a refined Fourier technique, it enables us to compute frequency maps which are real footprints of the beam dynamics of an accelerator. We stress the high sensitivity of the dynamics to magnetics errors and sextipolar strengths. The second part of this work is dedicated to the analysis of experimental results from two light sources. Together with the ALS accelerator team (Berkeley), we succeeded in obtaining the first experimental frequency map of an accelerator. The agreement with the machine model is very impressive. At the Super-ACO ring, the study of the tune shift with amplitude enabled us to highlight a strong octupolar-like component related to the quadrupole fringe field. The aftermaths for the beam dynamics are important and give us a better understanding the measured ring performance. All these results are based on turn by turn measurements. Many closely related phenomena are treated such as response matrix analysis or beam decoherence. (author) [fr
Beam Dynamics Studies for High-Intensity Beams in the CERN Proton Synchrotron
AUTHOR|(CDS)2082016; Benedikt, Michael
With the discovery of the Higgs boson, the existence of the last missing piece of the Standard Model of particle physics (SM) was confirmed. However, even though very elegant, this theory is unable to explain, for example, the generation of neutrino masses, nor does it account for dark energy or dark matter. To shed light on some of these open questions, research in fundamental particle physics pursues two complimentary approaches. On the one hand, particle colliders working at the high-energy frontier, such as the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), located in Geneva, Switzerland, are utilized to investigate the fundamental laws of nature. Alternatively, fixed target facilities require high-intensity beams to create a large flux of secondary particles to investigate, for example, rare particle decay processes, or to create neutrino beams. This thesis investigates limitations arising during the acceleration of high-intensity beams at the CERN Proton Synchrotro...
Energy Technology Data Exchange (ETDEWEB)
Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al
2012-07-01
The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.
Dynamic acoustic tractor beams
Energy Technology Data Exchange (ETDEWEB)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology – ETC, Santa Fe, New Mexico 87508 (United States)
2015-03-07
Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.
BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY
Energy Technology Data Exchange (ETDEWEB)
Plastun, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.
2016-05-01
Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.
Beam Dynamics and Beam Losses - Circular Machines
Kain, V
2016-01-01
A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.
First optics and beam dynamics studies on the MAX IV 3 GeV storage ring
Leemann, S. C.; Sjöström, M.; Andersson, Å.
2018-03-01
The MAX IV 3 GeV storage ring is the first light source to make use of a multibend achromat lattice to reach ultralow emittance. After extensive commissioning efforts, the storage ring is now ramping up its user program. We present results from beam commissioning of the MAX IV 3 GeV storage ring as well as a summary of the beam dynamics studies that have so for been carried out. We report on injection and accumulation using a single dipole kicker, top-up injection, slow orbit feedback, restoring the linear optics to design, effects of in-vacuum undulators with closed gaps, adjusting nonlinear optics to achieve design chromaticity correction and dynamic aperture sufficient for high injection efficiency and large Touschek lifetime.
Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver
International Nuclear Information System (INIS)
Ponton, A.
2009-07-01
EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)
Statics and rotational dynamics of composite beams
Ghorashi, Mehrdaad
2016-01-01
This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a t...
REX-ISOLDE RFQ Beam Dynamics Studies using CST EM Studio
Fraser, M A
2014-01-01
The original CNC milling files used to machine the electrodes of the REX-ISOLDE RFQ were acquired in late 2012 and electrostatic simulations were carried out using CST EM Studio in order to attain a 3D field map of the electric fields in the region around the beam axis. The objective was to construct a beam dynamics simulation tool that frees us from the constraints of the PARMTEQM code, which was used to design the RFQ, and that will afford us more flexibility in the studies needed for pre-bunching into the RFQ with an external multi-harmonic buncher. This note details the geometry of the electrodes and their simulation in CST EM Studio, the implementation of particle tracking in the computed field map using TRACK and benchmarking studies with PARMTEQM v3.09.
'Pipetron' beam dynamics with noise
International Nuclear Information System (INIS)
Shiltsev, V.D.
1996-10-01
Extra-large hadron collider, ''Pipetron'', at 100 TeV energy is currently under consideration. In this article we study the Pipetron transverse and longitudinal beam dynamics under influence of external noises. The major effects are growths of transverse and longitudinal emittances of the beam caused by noisy forces which vary over the revolution period or synchrotron oscillation period, respectively; and closed orbit distortions induced by slow drift of magnet positions. Based on analytical consideration of these phenomena, we estimate tolerable levels of these noises and compare them with available experimental data. Although it is concluded that transverse and, probably, longitudinal feedback systems are necessary for the emittance's preservation, and sophisticated beam-based orbit correction methods should be used at the Pipetron, we observe no unreasonable requirements which present and impenetrable barrier to the project
AUTHOR|(CDS)2248381
Antiprotons, like many other exotic particles, are produced by impacting high energy proton beams onto fixed targets. At the European Organization for Nuclear Research (CERN), this is done in the Antiproton Decelerator (AD) Facility. The engineering challenges related to the design of an optimal configuration of the AD-Target system derive from the extremely high energy depositions reached in the very thin target core as a consequence of each proton beam impact. A new target design is foreseen for operation after 2021, triggering multiple R&D activities since 2013 for this purpose. The goal of the present Master Thesis is to complement these activities with analytical and numerical calculations, delving into the phenomena associated to the dynamic response of the target core. In this context, two main studies have been carried out. First, the experimental data observed in targets subjected to low intensity proton pulses was cross-checked with analytical and computational methods for modal analysis, applie...
International Nuclear Information System (INIS)
Isono, Fumika; Nakajima, Mitsuo; Hasegawa, Jun; Kawamura, Tohru; Horioka, Kazuhiko
2013-01-01
The potential of laser ablation plasma was controlled successfully by using external ring electrodes. We found that an electron sheath is formed at the plasma boundary, which plays an important role in the potential formation. When the positively biased plasma reaches a grounded grid, electrons in the plasma are turned away and ions are accelerated, which leads to the formation of a virtual anode between the grid and an ion probe. We think that this device which can raise the plasma potential up to order of kV can be applied to the study of sheath dynamics and to a new type of ion beam extraction. (author)
Studying wedge factors and beam profiles for physical and enhanced dynamic wedges
Directory of Open Access Journals (Sweden)
Ahmad Misbah
2010-01-01
Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.
Studying wedge factors and beam profiles for physical and enhanced dynamic wedges
Ahmad, Misbah; Hussain, Amjad; Muhammad, Wazir; Rizvi, Syed Qaisar Abbas; Matiullah
2010-01-01
This study was designed to investigate variation in Varian's Physical and Enhanced Dynamic Wedge Factors (WF) as a function of depth and field size. The profiles for physical wedges (PWs) and enhanced dynamic wedges (EDWs) were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF) was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF) with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF) with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60°) at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation. PMID:20177568
Energy Technology Data Exchange (ETDEWEB)
Pikin, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a better EBIS.
Beam dynamics for induction accelerators
International Nuclear Information System (INIS)
Lee, Edward P.
2014-01-01
An induction linac uses pulsed power that is applied directly, without any intervening resonant cavities, to accelerate a charged particle pulse. This approach can accommodate a large multiple-beam focusing lattice capable of transporting a large total beam current with a long pulse duration, which may be compressed while accelerating as well as afterward. The mean accelerating gradient is relatively low (less than about 1.5 MV/m), but the potential efficiency of energy transfer can be large up to about 50%. A multiple-beam induction linac is therefore a natural candidate accelerator for a heavy ion fusion (HIF) driver. However, the accelerated beams must meet stringent requirements on occupied phase space volume in order to be focused accurately and with small radius onto the fusion target. Dynamical considerations in the beam injector and linac, as well as in the final compression, final focus, and the fusion chamber, determine the quality of the driver beams as they approach the target. Requirements and tolerances derived from beam dynamics strongly influence the linac configuration and component design. After a summary of dynamical considerations, two major topics are addressed here: transportable current limits, which determine the choice of focal system for the linac, and longitudinal control of the beams, which are potentially destabilized by their interaction with the pulsed power system
Zhang, Yunkai; Hsi, Wen C; Chu, James C H; Bernard, Damian B; Abrams, Ross A
2005-01-01
The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20 x 12 x 6 cm3 scanning Lucite block was designed as a cross-beam-profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full-size (60 x 60 x 50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full-size water phantom was first performed at a 0 degrees gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC-shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm
Parallel beam dynamics simulation of linear accelerators
International Nuclear Information System (INIS)
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
Studies of network structure and dynamics of e-beam crosslinked PVPs. From macro to nano
International Nuclear Information System (INIS)
Dispenza, C.; Grimaldi, N.; Sabatino, M.A.; Todaro, S.; Alessi, S.; Spadaro, G.; Bulone, D.; Giacomazza, D.; Przybytniak, G.
2011-01-01
Complete text of publication follows. Much interest has been paid to develop a variety of radiation-crosslinked hydrated polymeric materials, which swell in water but do not dissolve, as biocompatible materials used for wound healing, drug delivery system, surface-coating material for medically used devices, etc. With the aim of establishing design rules to produce hydrogels of controlled size at the nanoscale and desired internal network structure using conventional electron accelerators and set-ups, here we attempt a description in terms of structural and dynamic properties of polymer networks generated through e-beam irradiation of aqueous solutions of the same model polymer, a commercial grade poly(N-vinyl-pyrrolidone), subjected to e-beam irradiation with a 12 MeV Linac accelerator, at same dose (40 kGy) and dose-rate (100 kGy/h) and at the variance of polymer concentration in water. Concentration has been systematically varied from above (10, 8, 6, 4, 2% w) to below (1, 0.5, 0.25, 0.1, 0.05% w) the critical chain overlap concentration value (∼ 1% w) of the chosen polymer in water, as estimated by intrinsic viscosity measurements. The transition between macroscopic gelation and micro-/nanogels formation is observed just below the critical overlap concentration (0.5% w), whereas the net prevalence of intra-molecular over inter-molecular crosslinking occurs at a polymer concentration below 0.25% w, as revealed by both dynamic and static laser light scattering measurements. Significant structural differences between nanoscalar 'finite' crosslinked networks and macrogels are evidenced by both FTIR and solid state NMR spectra. Polymeric segments mobility of the formed networks, at the different scales, has been assessed through stress-rheometry, solid-state cross-polarization times and nuclear relaxation time NMR studies of the freeze-dried residues.
Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation
International Nuclear Information System (INIS)
Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.
2013-01-01
Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus
Zhang, Yunkai; Hsi, Wen C.; Chu, James C.H.; Bernard, Damian B.; Abrams, Ross A.
2005-01-01
The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20×12×6 cm3 scanning Lucite block was designed as a cross‐beam‐profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full‐size (60×60×50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full‐size water phantom was first performed at a 0° gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8 mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC‐shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm
Beam parameters of a possible emittance-dynamics test area for NLC studies at the SLC
International Nuclear Information System (INIS)
Seeman, J.T.; Fieguth, T.; Kheifets, S.; Raubenheimer, T.; Yeremian, A.D.
1992-08-01
A group at SLAC has studied the possibility of using the Stanford Linear Collider (SLC) to generate short-bunch small-emittance beams similar to those required for the Next Linear Collider (NLC). The conclusion is that such beams are feasible and that an experimental area for testing many concepts related to NLC beams can be provided with a reasonable addition of hardware to the existing SLC Linac. Some of the concepts that can be tested are: (1) effect tolerances of double bunch length compression, (2) wakefields of ultra-short bunches in accelerating structures, (3) the acceleration of short intense multiple bunches, (4) the generation and preservation of bunches with 100 to 1 emittances ratios, (5) beam deflections by collimators, (6) energy and energy spread control of multiple short bunches, and (7) vibration effects and trajectory stability for low emittance beams
Design and Beam Dynamics Studies of a Multi-Ion Linac Injector for the JLEIC Ion Complex
Energy Technology Data Exchange (ETDEWEB)
Ostroumov, P. N.; Plastun, A. S.; Mustapha, B.; Conway, Z. A.
2016-01-01
The electron-ion collider (JLEIC) being proposed at JLab requires a new ion accelerator complex which includes a linac capable of delivering any ion beam from hydrogen to lead to the booster. We are currently developing a linac which consists of several ion sources, a normal conducting (NC) front end, up to 5 MeV/u, and a SC section for energies > 5 MeV/u. This design work is focused on the beam dynamics and electrodynamics studies performed to design efficient and cost-effective accelerating structures for both the NC and SC sections of the linac. Currently, we are considering two separate RFQs for the heavy-ion and light-ion beams including polarized beams, and different types of NC accelerating structures downstream of the RFQ. Quarter-wave and half-wave resonators can be effectively used in the SC section.
Dynamic mechanical studies on epoxy resins cured by electron beam radiation
International Nuclear Information System (INIS)
Sui Gang; Zhang Zuoguang; Liang Zhiyong; Chen Changqi
2003-01-01
Dynamic mechanical analyses on electron beam (EB)-cured epoxy resins were made in the paper. Through the studies on variation rules of gel fraction, tan δ and storage modulus for varied samples, the important effects of EB radiation dosage, initiator dosage, chemical structure, molecular weight and distribution, and heat treatment on curing reaction and properties of epoxy resin systems have been obtained. Under low radiation doses, the gel fraction, glass transition temperature (Tg) and high temperature modulus of cured epoxy resin increase with increasing radiation dose and initiator dosage. The crosslinking density of epoxy resin decreases slightly with increasing molecular weight. When radiation doses increase, the molecular weight has a little influence on the increasing of curing level and an optimal dosage of initiator appears. The experimental results indicate that the radiation reactivity of epoxy resins is directly associated with their chemical structures. Under the same radiation dose, the reaction extent in sample with high polydispersity is higher than that in low polydispersity sample, but the degree of homogeneity in crosslinking structure is lower. When the EB-cured epoxy resin is heated, the crosslinking density is enhanced. If the temperature of heating treatment exceeds the thermal-initiating temperature of initiator, the local thermal-crosslinking network can be formed in resin system
Wilson, Edmund J N
2006-01-01
This contribution describes the transverse dynamics of particles in a synchrotron. It builds on other contributions to the General Accelerator School for definitions of transport matrices and lattice functions. After a discussion of the conservation laws which govern emittance, the effects of closed orbit distortion and other field errors are treated. A number of practical methods of measuring the transverse behaviour of particles are outlined.
Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University
Energy Technology Data Exchange (ETDEWEB)
Luo, Tianhuan [Indiana Univ., Bloomington, IN (United States)
2011-08-01
The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.
Nonlinear dynamics of a sliding beam on two supports under ...
Indian Academy of Sciences (India)
Abstract. This study deals with the nonlinear dynamics associated with large deformation of a beam sliding on two-knife edge supports under external excitation. The beam is referred to as a Gospodnetic–Frisch-Fay beam, after the researchers who reported its static deformation in closed form. The freedom of the beam to ...
Beam dynamics studies in the driver LINAC pre-stripper section of ...
Indian Academy of Sciences (India)
This section is designed to accept and accelerate two charge states (28 and 29) of uranium beam from an ECR ion source. The pre-stripper section must be designed to minimize the beam emittance distortion of this two-charge-state beam. In particular, the inter-cryostat spaces must be minimized and beam parameters ...
Beam dynamics issues for linear colliders
International Nuclear Information System (INIS)
Ruth, R.D.
1987-09-01
In this paper we discuss various beam dynamics issues for linear colliders. The emphasis is to explore beam dynamics effects which lead to an effective dilution of the emittance of the beam and thus to a loss of luminosity. These considerations lead to various tolerances which are evaluated for a particular parameter set
Energy Technology Data Exchange (ETDEWEB)
Blank, David Andrew [Univ. of California, Berkeley, CA (United States)
1997-08-01
This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.
Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo
International Nuclear Information System (INIS)
Nakamura, Nobuyuki; Hu, Zhimin; Watanabe, Hirofumi; Li, Yueming; Kato, Daiji; Currell, Fred J.; Tong Xiaomin; Watanabe, Tsutomu; Ohtani, Shunsuke
2011-01-01
In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the energy dependence of the ion abundance ratio in the trap at equilibrium, we have observed DR processes for open shell systems very clearly. Remarkable relativistic effects due to the generalized Breit interaction have been clearly shown in DR for highly charged heavy ions. We also present the first result for the coincidence measurement of two photons emitted from a single DR event.
Study of beam-beam long range compensation with octupoles
AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Tambasco, Claudia
2017-01-01
Long range beam-beam effects are responsible for particle losses and define fundamental operational parameters of colliders (i.e. crossing angles, intensities, emittances, ${\\beta}$${^∗}$). In this study we propose octuple magnets as a possible scheme to efficiently compensate long-range beam-beam interactions with a global correction scheme. The impact and improvements on the dynamic aperture of colliding beams together with estimates of the luminosity potentials are dis- cussed for the HL-LHC upgrade and extrapolations made for the FCC project.
Introduction to Transverse Beam Dynamics
Holzer, B.J.
2014-01-01
In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.
Molecular dynamics studies of the ion beam induced crystallization in silicon
International Nuclear Information System (INIS)
Marques, L.A.; Caturla, M.J.; Huang, H.
1995-01-01
We have studied the ion bombardment induced amorphous-to-crystal transition in silicon using molecular dynamics techniques. The growth of small crystal seeds embedded in the amorphous phase has been monitored for several temperatures in order to get information on the effect of the thermal temperature increase introduced by the incoming ion. The role of ion-induced defects on the growth has been also studied
Limitations of dynamic beam delivery systems
International Nuclear Information System (INIS)
Chu, W.T.; Kuenning, R.W.
1987-01-01
The heavy charged-particle beams which have been extracted from the accelerator and channeled to the treatment rooms are usually small in diameter compared to the target volumes. Many different methods have been devised to spread out the beams in order to cover the entire target volume with a uniform dose. When using the double-scattering beam delivery method, the entire target volume is irradiated simultaneously; whereas, in the other beam delivery methods, such as the wobbler system or the raster scanning system, a relatively small beam spot is moved around to cover the entire target volume with a uniform dose and only a part of the target volume is irradiated at a time. The latter methods are therefore called dynamic beam delivery methods, and the double scattering method is called a passive beam delivery method. In this note, the dose uniformities achievable using the dynamic beam delivery systems are analyzed, and the requirements placed on the systems specifications are discussed
Study of Acquisition Electronics with a High Dynamic Range for a Beam Loss Measurement System
Venturini, G; Dehning, B; Effinger, E
2010-01-01
The particles accelerated in CERN accelerator chain reach high energies, topped by the particle energy at collision in the LHC, 7 GeV. During the operation, an amount of particles is inevitably lost from the beam. Depending on the extent of the losses, physical damage to machine components may be caused and the shower of secondary emission particles deposits energy in the surrounding equipment constituting the accelerator. The hadronic cascade also activates their materials, representing a hazard to the workers at CERN. In the LHC, the superconducting magnets that constitute the synchrotron lattice are kept at an operating temperature of 1:9K through a cryogenic facility employing superliquid helium, the increase in their temperature potentially initiates a quench. In the SPS, the damage due to a lost beam is also visible. The Beam Loss Monitoring (BLM) system has been developed to reliably protect the machines composing CERN’s accelerator chain and additionally provide information about the beam status: th...
A parametric study of the nonlinear dynamics and sensitivity of a beam-rigid body microgyroscope
Lajimi, S. A. M.; Heppler, G. R.; Abdel-Rahman, E. M.
2017-09-01
The nonlinear dynamical features of a gyroscopic system manifesting in a rotation rate sensor are presented. A computational shooting method and Floquet multipliers are used to characterize the response. Response characteristics are demonstrated and studied by generating various frequency-response plots, force-response curves, time-history plots, and phase-portraits. The effects of varying the DC bias voltages, the AC drive-voltage and drive-frequency, and the quality factors on the system response are studied in detail. The advantages of operating in the nonlinear regime are shown to appear in larger bandwidth and higher sensitivity.
Dynamic beam filtering for miscentered patients.
Mao, Andrew; Shyr, William; Gang, Grace J; Stayman, J Webster
2018-02-01
Accurate centering of the patient within the bore of a CT scanner takes time and is often difficult to achieve precisely. Patient miscentering can result in significant dose and image noise penalties with the use of traditional bowtie filters. This work describes a system to dynamically position an x-ray beam filter during image acquisition to enable more consistent image performance and potentially lower dose needed for CT imaging. We propose a new approach in which two orthogonal low-dose scout images are used to estimate a parametric model of the object describing its shape, size, and location within the field of view (FOV). This model is then used to compute an optimal filter motion profile by minimizing the variance of the expected detector fluence for each projection. Dynamic filtration was implemented on a cone-beam CT (CBCT) test bench using two different physical filters: 1) an aluminum bowtie and 2) a structured binary filter called a multiple aperture device (MAD). Dynamic filtration performance was compared to a static filter in studies of dose and reconstruction noise as a function of the degree of miscentering of a homogeneous water phantom. Estimated filter trajectories were found to be largely sinusoidal with an amplitude proportional to the amount of miscentering. Dynamic filtration demonstrated an improved ability to keep the spatial distribution of dose and reconstruction noise at baseline levels across varying levels of miscentering, reducing the maximum noise and dose deviation from 53% to 15% and 42% to 14% respectively for the bowtie filter, and 25% to 8% and 24% to 15% respectively for the MAD filter. Dynamic positioning of beam filters during acquisition improves dose utilization and image quality over static filters for miscentered patients. Such dynamic filters relax positioning requirements and have the potential to reduce set-up time and lower dose requirements.
Beam Dynamics With Electron Cooling
Uesugi, T; Noda, K; Shibuya, S; Syresin, E M
2004-01-01
Electron cooling experiments have been carried out at HIMAC in order to develop new technologies in heavy-ion therapy and related researches. The cool-stacking method, in particular, has been studied to increase the intensity of heavy-ions. The maximum stack intensity was 2 mA, above which a fast ion losses occurred simulatneously with the vertical coherent oscillations. The instability depends on the working point, the stacked ion-density and the electron-beam density. The instability was suppressed by reducing the peak ion-density with RF-knockout heating.
Beam-dynamics codes used at DARHT
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-01
Several beam simulation codes are used to help gain a better understanding of beam dynamics in the DARHT LIAs. The most notable of these fall into the following categories: for beam production – Tricomp Trak orbit tracking code, LSP Particle in cell (PIC) code, for beam transport and acceleration – XTR static envelope and centroid code, LAMDA time-resolved envelope and centroid code, LSP-Slice PIC code, for coasting-beam transport to target – LAMDA time-resolved envelope code, LSP-Slice PIC code. These codes are also being used to inform the design of Scorpius.
Beam dynamics studies in the driver LINAC pre-stripper section of ...
Indian Academy of Sciences (India)
Effects of single errors on the longitudinal emittance. Random rf phase errors and field strength errors for the two charge states 28· and 29· of uranium beam were simulated using the program 'elegant'. Each error type was simulated at three error levels and for 200 distinct seeds. We considered phase errors of 0.3, 0.6, and.
Beam Dynamics Simulation for the CTF3 Drive Beam Accelerator
Schulte, Daniel
2000-01-01
A new CLIC Test Facility (CTF3) at CERN will serve to study the drive beam generation for the Compact Linear Collider (CLIC). CTF3 has to accelerate a 3.5 A electron beam in almost fully-loaded structures. The pulse contains more than 2000 bunches, one in every second RF bucket, and has a length of more than one microsecond. Different options for the lattice of the drive-beam accelerator are presented, based on FODO-cells and triplets as well as solenoids. The transverse stability is simulated, including the effects of beam jitter, alignment and beam-based correction.
Electron beam diagnostics study
International Nuclear Information System (INIS)
Garganne, P.
1989-08-01
This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr
Beam Dynamics Studies of the ISOLDE Post-accelerator for the High Intensity and Energy Upgrade
Fraser, Matthew Alexander; Pasini, M
2012-01-01
The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...
Directory of Open Access Journals (Sweden)
Ji Qiang
2002-06-01
Full Text Available Macroparticle simulation plays an important role in modern accelerator design and operation. Most linear rf accelerators have been designed based on macroparticle simulations using longitudinal position as the independent variable. In this paper, we have done a systematic comparison between using longitudinal position as the independent variable and using time as the independent variable in macroparticle simulations. We have found that, for an rms-matched beam, the maximum relative moment difference for second, fourth moments and beam maximum amplitudes between these two types of simulations is 0.25% in a 10 m reference transport system with physical parameters similar to the Spallation Neutron Source linac design. The maximum z-to- t transform error in the space-charge force calculation of the position dependent simulation is about 0.1% in such a system. This might cause a several percent error in a complete simulation of a linac with a length of hundreds of meters. Furthermore, the error may be several times larger in simulations of mismatched beams. However, if such errors are acceptable to the linac designer, then one is justified in using position dependent macroparticle simulations in this type of linac design application.
Beam dynamics studies of the ISOLDE post-accelerator for the high intensity and energy upgrade
Fraser, M A
2012-01-01
The High Intensity and Energy (HIE) project represents a major upgrade of the ISOLDE (On-Line Isotope Mass Separator) nuclear facility at CERN with a mandate to significantly increase the energy, intensity and quality of the radioactive nuclear beams provided to the European nuclear physics community for research at the forefront of topics such as nuclear structure physics and nuclear astrophysics. The HIE-ISOLDE project focuses on the upgrade of the existing Radioactive ion beam EXperiment (REX) post-accelerator with the addition of a 40MVsuperconducting linac comprising 32 niobium sputter-coated copper quarter-wave cavities operating at 101.28 MHz and at an accelerating gradient close to 6 MV/m. The energy of post-accelerated radioactive nuclear beams will be increased from the present ceiling of 3 MeV/u to over 10 MeV/u, with full variability in energy, and will permit, amongst others, Coulomb interaction and few-nucleon transfer reactions to be carried out on the full inventory of radionuclides available ...
Beam dynamics in Compton ring gamma sources
Directory of Open Access Journals (Sweden)
Eugene Bulyak
2006-09-01
Full Text Available Electron storage rings of GeV energy with laser pulse stacking cavities are promising intense sources of polarized hard photons which, via pair production, can be used to generate polarized positron beams. In this paper, the dynamics of electron bunches circulating in a storage ring and interacting with high-power laser pulses is studied both analytically and by simulation. Both the common features and the differences in the behavior of bunches interacting with an extremely high power laser pulse and with a moderate pulse are discussed. Also considerations on particular lattice designs for Compton gamma rings are presented.
Overview of magnetic nonlinear beam dynamics in the RHIC
International Nuclear Information System (INIS)
Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.
2009-01-01
In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed
Overview of magnetic nonlinear beam dynamics in the RHIC
Energy Technology Data Exchange (ETDEWEB)
Luo,Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, f.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, g.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.
2009-05-04
In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed.
Dynamic Stability of Euler Beams under Axial Unsteady Wind Force
Directory of Open Access Journals (Sweden)
You-Qin Huang
2014-01-01
Full Text Available Dynamic instability of beams in complex structures caused by unsteady wind load has occurred more frequently. However, studies on the parametric resonance of beams are generally limited to harmonic loads, while arbitrary dynamic load is rarely involved. The critical frequency equation for simply supported Euler beams with uniform section under arbitrary axial dynamic forces is firstly derived in this paper based on the Mathieu-Hill equation. Dynamic instability regions with high precision are then calculated by a presented eigenvalue method. Further, the dynamically unstable state of beams under the wind force with any mean or fluctuating component is determined by load normalization, and the wind-induced parametric resonant response is computed by the Runge-Kutta approach. Finally, a measured wind load time-history is input into the dynamic system to indicate that the proposed methods are effective. This study presents a new method to determine the wind-induced dynamic stability of Euler beams. The beam would become dynamically unstable provided that the parametric point, denoting the relation between load properties and structural frequency, is located in the instability region, no matter whether the wind load component is large or not.
Model Independent Analysis of Beam Centroid Dynamics in Accelerators
Energy Technology Data Exchange (ETDEWEB)
Wang, Chun-xi
2003-04-21
Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map
Model Independent Analysis of Beam Centroid Dynamics in Accelerators
International Nuclear Information System (INIS)
Wang, Chun-xi
2003-01-01
Fundamental issues in Beam-Position-Monitor (BPM)-based beam dynamics observations are studied in this dissertation. The major topic is the Model-Independent Analysis (MIA) of beam centroid dynamics. Conventional beam dynamics analysis requires a certain machine model, which itself of ten needs to be refined by beam measurements. Instead of using any particular machine model, MIA relies on a statistical analysis of the vast amount of BPM data that often can be collected non-invasively during normal machine operation. There are two major parts in MIA. One is noise reduction and degrees-of-freedom analysis using a singular value decomposition of a BPM-data matrix, which constitutes a principal component analysis of BPM data. The other is a physical base decomposition of the BPM-data matrix based on the time structure of pulse-by-pulse beam and/or machine parameters. The combination of these two methods allows one to break the resolution limit set by individual BPMs and observe beam dynamics at more accurate levels. A physical base decomposition is particularly useful for understanding various beam dynamics issues. MIA improves observation and analysis of beam dynamics and thus leads to better understanding and control of beams in both linacs and rings. The statistical nature of MIA makes it potentially useful in other fields. Another important topic discussed in this dissertation is the measurement of a nonlinear Poincare section (one-turn) map in circular accelerators. The beam dynamics in a ring is intrinsically nonlinear. In fact, nonlinearities are a major factor that limits stability and influences the dynamics of halos. The Poincare section map plays a basic role in characterizing and analyzing such a periodic nonlinear system. Although many kinds of nonlinear beam dynamics experiments have been conducted, no direct measurement of a nonlinear map has been reported for a ring in normal operation mode. This dissertation analyzes various issues concerning map
Beam dynamics design of the Compact Linear Collider Drive Beam injector
International Nuclear Information System (INIS)
Hajari, Sh. Sanaye; Shaker, H.; Doebert, S.
2015-01-01
In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane
Charged particle dynamics in axisymmetric nonconservative beams
International Nuclear Information System (INIS)
Radchenko, V.I.; Nikonov, O.I.
1998-01-01
Many of ion-beam technologies lead to the requirement of cross-section minimization of a particle beam in the object region acted upon, or to the problem of minimization of charged particle beam emittance (the growth rate of emittance) for a specified segment of the beam formation. In this paper we study the above problem for axisymmetric beams representing a nonconservative system of charged particles. It is shown that under certain assumptions the beam in question can be described by appropriate equations that possess an explicit solution. The latter allows one to study the influence of particle density distribution at the starting point on the future beam evolution. The results are based on approaches developed in J.D. Lawson (1977); V.I. Radchenko, G.D. Ved'manov (1995); O.I. Nikonov (1994). (orig.)
Single-particle beam dynamics in Boomerang
International Nuclear Information System (INIS)
Jackson, Alan; Nishimura, Hiroshi
2003-01-01
We describe simulations of the beam dynamics in the storage ring (Boomerang), a 3-GeV third-generation light source being designed for the Australian Synchrotron Project[1]. The simulations were performed with the code Goemon[2]. They form the basis for design specifications for storage ring components (apertures, alignment tolerances, magnet quality, etc.), and for determining performance characteristics such as coupling and beam lifetime
Studies of network organization and dynamics of e-beam crosslinked PVPs: From macro to nano
International Nuclear Information System (INIS)
Dispenza, C.; Grimaldi, N.; Sabatino, M.-A.; Todaro, S.; Bulone, D.; Giacomazza, D.; Przybytniak, G.; Alessi, S.; Spadaro, G.
2012-01-01
In this work the influence of poly(N-vinyl pyrrolidone) (PVP) concentration in water on the organization and dynamics of the corresponding macro-/nanogel networks has been systematically investigated. Irradiation has been performed at the same irradiation dose (within the sterilization dose range) and dose rate. In the selected irradiation conditions, the transition between macroscopic gelation and micro-/nanogels formation is observed just below the critical overlap concentration (∼1 wt%), whereas the net prevalence of intra-molecular over inter-molecular crosslinking occurs at a lower polymer concentration (below 0.25 wt%). Dynamic–mechanical spectroscopy has been applied as a classical methodology to estimate the network mesh size for macrogels in their swollen state, while 13 C NMR spin–lattice relaxation spectroscopy has been applied on both the macrogel and nanogel freeze dried residues to withdraw interesting information of the network spatial organization in the passage of scale from macro to nano. - Highlights: ► Aqueous solutions of commercial PVP were irradiated using linear electron accelerator. ► By varying polymer concentration it is possible to obtain information from macro to nano networks. ► Spin–lattice relaxation times are associated to the mobility of molecular segments. ► 1 H– 13 C-NMR proton relaxation time represents a junction between macro/nano world.
A contemporary guide to beam dynamics
International Nuclear Information System (INIS)
Forest, E.; Hirata, Kohji
1992-09-01
A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases
A contemporary guide to beam dynamics
International Nuclear Information System (INIS)
Forest, E.; Hirata, Kohji.
1992-08-01
A methodological discussion is given for single particle beam dynamics in circular machines. The discussions are introductory, but (or, even therefore) we avoid to rely on too much simplified concepts. We treat things from a very general and fundamental point of view, because this is the easiest and rightest way to teach how to simulate particle motion and how to analyze its results. We give some principles of particle tracking free from theoretical prejudices. We also introduce some transparent methods to deduce the necessary information from the tracking: many of the traditional beam-dynamics concepts can be abstracted from them as approximate quantities which are valid in certain limiting cases. (author)
NLC electron injector beam dynamics
International Nuclear Information System (INIS)
Yeremian, A.D.; Miller, R.H.
1995-10-01
The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC
Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers
DEFF Research Database (Denmark)
Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.
-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...... of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...
Beam dynamics simulation of a double pass proton linear accelerator
Hwang, Kilean; Qiang, Ji
2017-04-01
A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.
Beam dynamics simulation of a double pass proton linear accelerator
Directory of Open Access Journals (Sweden)
Kilean Hwang
2017-04-01
Full Text Available A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015NIMAER0168-900210.1016/j.nima.2015.05.056] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.
Sound transmission of sandwich beams with the dynamic vibration absorbers
Directory of Open Access Journals (Sweden)
Bohdan Diveyev
2015-07-01
Full Text Available This study aims to predict the sound transmission properties of composite layered beams structures with the system of dynamic vibration absorbers (DVA’s. The effective stiffness constants of equivalent to lamina Timoshenko beam and their damping properties have been determined by using a procedure based on multi-level numerical schemes and eigen-frequencies comparison. The strategy of an anisotropic beam to the Timoshenko beam seem to be such: the raw of models can be applied at different vibration or static conditions of the plate by a suitable analytical ore approximation method, research of sensitiveness in relation to the parameters of fixing and material anisotropy, numerical experiments on identification of elastic modules, practical module identification by exploring different schemes of experimental setup and, finally, posterior analysis of identification quality. The combined method of identification was proposed on the basis of the simultaneous use of information on a homogeneous beam and beam with an internal layer, with identical mechanical properties to the homogeneous beam. Numerical evaluations obtained for the vibration of the equivalent Timoshenko beam have been used to determine the sound transmission properties of laminated composite beams with the system of DVA’s. The optimization of beams-DVA’s system sound absorption properties is performed in the low frequency range.
Proton beam induced dynamics of tungsten granules
Caretta, O.; Loveridge, P.; O'Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Guinchard, M.; Lacny, L. J.; Lindstrom, B.
2018-03-01
This paper reports the results from single-pulse experiments of a 440 GeV /c proton beam interacting with granular tungsten samples in both vacuum and helium environments. Remote high-speed photography and laser Doppler vibrometry were used to observe the effect of the beam on the sample grains. The majority of the results were derived from a trough containing ˜45 μ m diameter spheres (not compacted) reset between experiments to maintain the same initial conditions. Experiments were also carried out on other open and contained samples for the purposes of comparison both with the 45 μ m grain results and with a previous experiment carried out with sub-250 μ m mixed crystalline tungsten powder in helium [Phys. Rev. ST Accel. Beams 17, 101005 (2014), 10.1103/PhysRevSTAB.17.101005]. The experiments demonstrate that a greater dynamic response is produced in a vacuum than in a helium environment and in smaller grains compared with larger grains. The examination of the dynamics of the grains after a beam impact leads to the hypothesis that the grain response is primarily the result of a charge interaction of the proton beam with the granular medium.
TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION
Energy Technology Data Exchange (ETDEWEB)
Yang, L.
2011-03-28
Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.
Stochastic beam dynamics in storage rings
International Nuclear Information System (INIS)
Pauluhn, A.
1993-12-01
In this thesis several approaches to stochastic dynamics in storage rings are investigated. In the first part the theory of stochastic differential equations and Fokker-Planck equations is used to describe the processes which have been assumed to be Markov processes. The mathematical theory of Markov processes is well known. Nevertheless, analytical solutions can be found only in special cases and numerical algorithms are required. Several numerical integration schemes for stochastic differential equations will therefore be tested in analytical solvable examples and then applied to examples from accelerator physics. In particular the stochastically perturbed synchrotron motion is treated. For the special case of a double rf system several perturbation theoretical methods for deriving the Fokker-Planck equation in the action variable are used and compared with numerical results. The second part is concerned with the dynamics of electron storage rings. Due to the synchrotron radiation the electron motion is influenced by damping and exciting forces. An algorithm for the computation of the density function in the phase space of such a dissipative stochastically excited system is introduced. The density function contains all information of a process, e.g. it determines the beam dimensions and the lifetime of a stored electron beam. The new algorithm consists in calculating a time propagator for the density function. By means of this propagator the time evolution of the density is modelled very computing time efficient. The method is applied to simple models of the beam-beam interaction (one-dimensional, round beams) and the results of the density calculations are compared with results obtained from multiparticle tracking. Furthermore some modifications of the algorithm are introduced to improve its efficiency concerning computing time and storage requirements. Finally, extensions to two-dimensional beam-beam models are described. (orig.)
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
TRACK The New Beam Dynamics Code
Mustapha, Brahim; Ostroumov, Peter; Schnirman-Lessner, Eliane
2005-01-01
The new ray-tracing code TRACK was developed* to fulfill the special requirements of the RIA accelerator systems. The RIA lattice includes an ECR ion source, a LEBT containing a MHB and a RFQ followed by three SC linac sections separated by two stripping stations with appropriate magnetic transport systems. No available beam dynamics code meet all the necessary requirements for an end-to-end simulation of the RIA driver linac. The latest version of TRACK was used for end-to-end simulations of the RIA driver including errors and beam loss analysis.** In addition to the standard capabilities, the code includes the following new features: i) multiple charge states ii) realistic stripper model; ii) static and dynamic errors iii) automatic steering to correct for misalignments iv) detailed beam-loss analysis; v) parallel computing to perform large scale simulations. Although primarily developed for simulations of the RIA machine, TRACK is a general beam dynamics code. Currently it is being used for the design and ...
Introduction to Longitudinal Beam Dynamics
Holzer, B J
2014-01-01
This chapter gives an overview of the longitudinal dynamics of the particles in an accelerator and, closely related to that, the issue of synchronization between the particles and the accelerating field. Beginning with the trivial case of electrostatic accelerators, the synchronization condition is explained for a number of driven accelerators like Alvarez linacs, cyclotrons and finally synchrotrons and storage rings, where it plays a crucial role. In the case of the latter, the principle of phase focusing is motivated qualitatively as well as on a mathematically more correct level and the problem of operation below and above the transition energy is discussed. Throughout, the main emphasis is more on physical understanding rather than on a mathematically rigorous treatment.
Bunching beam dynamics in final stage of heavy ion fusion driver
International Nuclear Information System (INIS)
Kikuchi, T.; Nakajima, M.; Horioka, K.
2003-01-01
A bunching beam dynamics in a final buncher of heavy ion fusion accelerator system is studied using a particle-in-cell method. Emittance evolutions are calculated during the longitudinal beam compression. The emittance dilution depends on the bunching process. The space charge oscillations affect the beam dynamics and emittance dilution. (author)
RIA Beam Dynamics Comparing TRACK to IMPACT
Mustapha, Brahim; Ostroumov, Peter; Qiang, Ji; Ryne, Robert D
2005-01-01
In order to benchmark the newly developed beam dynamics code TRACK we have performed comparisons with well established existing codes. During code development, codes like TRANSPORT, COSY, GIOS and RAYTRACE were used to check TRACK's implementation of the different beam line elements. To benchmark the end-to-end simulation of the RIA driver linac, the simulation of the low-energy part (from the ion source to the entrance of the SC linac) was compared with PARMTEQ and found to agree well. For the simulation of the SC linac the code IMPACT is used. Prior to these simulations, the code IMPACT had to be updated to meet the special requirements of the RIA driver linac. Features such as multiple charge state acceleration, stripper simulation and beam collimation were added to the code. IMPACT was also modified to support new types of rf cavities and to include fringe fields for all the elements. This paper will present a comparison of the beam dynamics simulation in the RIA driver linac between the codes TRACK and I...
Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers
DEFF Research Database (Denmark)
Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.
and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...
The δf algorithm for beam dynamics
International Nuclear Information System (INIS)
Koga, J.; Tajima, T.
1993-05-01
An algorithm is developed to study particle dynamics of beams including collective interaction with high accuracy and low noise. Particle dynamics with collective interactions is treated through particle simulation, where the main or average distribution f 0 and the deviation away from it δf are separately followed. The main distribution f 0 is handled by an analytic equilibrium solution and the perturbation away from it δf is followed by the method of characteristics. We call this the δf algorithm. We specifically model a synchrotron collider which includes the collision section where collective effects of collisions are simulated by this δf algorithm and the rest of the collider where single particle dynamics are treated by simple harmonic transport. The most important target of this simulation is to understand and predict the long-time behavior of the beam luminosity and lifetime. The δf method allows the study the effect of small perturbations over long timescales on beam lifetime by eliminating the numerical noise problem inherent in Particle-in-Cell techniques. In the δf code using the reference parameters of the SSC (Superconducting Super Collider), beam blow-up near resonances and oscillations in the tune shift, Δν, far from resonances are observed. In studying long timescale particle diffusion in the phase space of the beams away from resonances, the δf code performance is compared with a tracking code which does not incorporate collective interaction
Spatial-temporal dynamics of broadband terahertz Bessel beam propagation
International Nuclear Information System (INIS)
Semenova, V A; Kulya, M S; Bespalov, V G
2016-01-01
The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm. (paper)
Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros
Hassanpour, Soroosh; Heppler, G. R.
2016-01-01
This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.
Design Study for Pulsed Proton Beam Generation
Directory of Open Access Journals (Sweden)
Han-Sung Kim
2016-02-01
Full Text Available Fast neutrons with a broad energy spectrum, with which it is possible to evaluate nuclear data for various research fields such as medical applications and the development of fusion reactors, can be generated by irradiating proton beams on target materials such as beryllium. To generate short-pulse proton beam, we adopted a deflector and slit system. In a simple deflector with slit system, most of the proton beam is blocked by the slit, especially when the beam pulse width is short. Therefore, the available beam current is very low, which results in low neutron flux. In this study, we proposed beam modulation using a buncher cavity to increase the available beam current. The ideal field pattern for the buncher cavity is sawtooth. To make the field pattern similar to a sawtooth waveform, a multiharmonic buncher was adopted. The design process for the multiharmonic buncher includes a beam dynamics calculation and three-dimensional electromagnetic simulation. In addition to the system design for pulsed proton generation, a test bench with a microwave ion source is under preparation to test the performance of the system. The design study results concerning the pulsed proton beam generation and the test bench preparation with some preliminary test results are presented in this paper.
International Nuclear Information System (INIS)
Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.
2000-01-01
Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development
Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators
Energy Technology Data Exchange (ETDEWEB)
Mastoridis, Themistoklis [Stanford Univ., CA (United States)
2010-08-01
The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC
Beam stability ampersand nonlinear dynamics. Formal report
International Nuclear Information System (INIS)
Parsa, Z.
1996-01-01
This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report
Beam stability & nonlinear dynamics. Formal report
Energy Technology Data Exchange (ETDEWEB)
Parsa, Z. [ed.
1996-12-31
his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.
Electron-beam dynamics for an advanced flash-radiography accelerator
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Carl August Jr. [Los Alamos National Laboratory
2015-06-22
Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.
Beam-beam simulations: dynamical effects and beam-beam limit for LEP3
Ohmi, K
2012-01-01
Beam-beam simulations are reported for LEP3 and TLEP-H, including a rough tune scan. The results suggest that to achieve the design luminosity in LEP3, 10% higher bunch population may be necessary, while TLEP-H can achieve the design performance without any changes. The simulations indicate that the large synchrotron tune, in conjunction with a large hourglass effect, degrades the luminosity performance. This talk was given at CERN on 4 December 2012.
T10 Beam Studies & Beam Simulation
Bergmann, Michael Georges; Van Dijk, Maarten; CERN. Geneva. EN Department
2017-01-01
In order to test detector components before their installation in actual experiments, one uses test beams in which one can control particle typ, momentum and size to high degree. For this project the focus of a secondary beam at T10 in the East Area at CERN was analysed using an AZALEA telescope from DESY.
Beam structure studies of low-energy ion beams
Saadatmand, K.; Schneider, J. D.; Geisik, C.; Stevens, R. R.
1991-05-01
The ion beam structure at various axial positions along the beam-transport line has been monitored and studied utilizing a fluor screen and a video camera. The fluor material is aluminum oxide that is plasma-jet sprayed onto the surface of an aluminum or a water-cooled copper substrate. The visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for the on-line viewing by the experimentalist. Digitized video signals are stored for further off-line processing and extracting more information about the beam, such as beam profiles. This inexpensive and effective diagnostic enables the experimentalist to observe the real-time beam response (such as evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position) to parameter changes.
Dynamic Analysis of Elastically Supported Cracked Beam Subjected to a Concentrated Moving Load
Directory of Open Access Journals (Sweden)
Hasan Ozturk
Full Text Available Abstract This study deals with the dynamic behavior of a cracked beam subjected to a concentrated force traveling at a constant velocity. Dynamic analyses for a hinged-hinged cracked beam resting on elastic supports under the action of a moving load are carried out by the finite element method. For the beam having rectangular cross-section, element formulation for crack element is developed by using the principles of fracture mechanics. In the numerical analysis, Newmark integration method is employed in order to calculate the dynamic response of the beam. The effects of crack depth, crack location, elastic support and load velocity on the dynamic displacements calculated for different locations on the beam are investigated. The results related to the dynamic response of the beam are presented in 3D graphs.
International Nuclear Information System (INIS)
Freeman, J.H.; Chivers, D.J.; Gard, G.A.; Temple, W.
1977-04-01
A description of techniques for the production of intense beams of heavy ions is given. A table of recommended operational procedures for most elements is included. The ionisation of boron is considered in some detail because of its particular importance as a dopant for ion implantation. (author)
Energy Technology Data Exchange (ETDEWEB)
Saini, Arun [Univ. of Delhi, New Delhi (India)
2012-03-01
The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H^{-} linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H^{-} ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.
Experimental study of the molecular beam destruction by beam-beam and beam-background scattering
International Nuclear Information System (INIS)
Bossel, U.; Dettleff, G.
1974-01-01
The extraction of flow properties related to the molecular motion normal to stream lines of an expanding gas jet from observed intensity profiles of supersonic beams is critically assessed. The perturbation of the profile curves by various effects is studied for a helium beam. Exponential laws appear to describe scattering effects to a satisfactory degree
Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators
International Nuclear Information System (INIS)
Lehrach, Andreas
2008-01-01
In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)
AUTHOR|(CDS)2068329; Pieloni, Tatiana; Buffat, Xavier; Furuseth, Sondre Vik
2017-01-01
The Future Circular Collider hadron-hadron (FCC-hh) design study is currently exploring different IR design possibilities including round and flat optics or different crossing schemes. The present study intends to evaluate each scenario from the beam-beam effects point of view. In particular the single particle long term stability to maximize beam lifetimes and luminosity reach is used to quantify the differences. The impact of strong head on interactions on the beam quality and lifetime is addressed by means of GPU accelerated simulations code featuring a weak-strong 6-dimensional beam-beam interaction.
Multiscale, multiphysics beam dynamics framework design and applications
International Nuclear Information System (INIS)
Amundson, J F; Spentzouris, P; Dechow, D; Stoltz, P; McInnes, L; Norris, B
2008-01-01
Modern beam dynamics simulations require nontrivial implementations of multiple physics models. We discuss how component framework design in combination with the Common Component Architecture's component model and implementation eases the process of incorporation of existing state-of-the-art models with newly-developed models. We discuss current developments in componentized beam dynamics software, emphasizing design issues and distribution issues
Beam dynamics activities at the Thomas Jefferson National Accelerator Facility (Jefferson Lab)
International Nuclear Information System (INIS)
The Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been funded by the US Navy to build an infra-red FEL driven by an energy-recovering compact SRF-based linear accelerator. The machine is to produce a 1 kW IR photon beam. The Jefferson Lab Accelerator Division is presently engaged in detailed design and beam dynamics studies for the driver accelerator. Principle beam dynamics and beam transport considerations include: (1) generation and transport of a high-quality, high-current, space-charge dominated beam; (2) the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; (3) low-loss transport of a large momentum spread, high-current beam; (4) beam break up (BBU) instabilities in the recirculating accelerator; (5) impedance policing of transport system components; and (6) RF drive system control during energy recovery and FEL operation
Energy Technology Data Exchange (ETDEWEB)
Aguilar, J.; Andres, J. de; Lucas, J. M.; Alberti, M.; Huarte-Larranaga, F.; Bassi, D.; Aguilar, A. [Departament de Quimica Fisica, Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain); Dipartimento di Fisica, Universita degli Studi di Trento, 38123 Povo-Trento (Italy); Departament de Quimica Fisica, Institut de Quimica Teorica i Computacional (IQTCUB), Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona (Spain)
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structure information.
Modeling beam-front dynamics at low gas pressures
International Nuclear Information System (INIS)
Briggs, R.J.; Yu, S.
1982-01-01
The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development
Longitudinal beam dynamics with rf noise
International Nuclear Information System (INIS)
Shih, H.J.; Ellison, J.A.; Cogburn, R.; Newberger, B.S.
1993-06-01
The Dome-Krinsky-Wang (DKW) diffusion-inaction theory for rf-noise-induced emittance dilution is reviewed and related to recent work on the approximation of stochastic processes by Markov processes. An accurate and efficient numerical procedure is developed to integrate the diffusion equation of the DKW theory. Tracking simulations are undertaken to check the validity of the theory in the parameter range of the Superconducting Super Collider (SSC) and to provide additional information. The study of effects of rf noise is applied to two problems of interest at the SSC: (1) determination of noise tolerance levels in the rf system, and (2) feasibility of beam extraction using crystal channeling
Beam Dynamics Challenges for Future Circular Colliders
Zimmermann, Frank
2004-01-01
The luminosity of hadron colliders rises with the beam intensity, until some limit is encountered, mostly due to head-on and long-range beam-beam interaction, due to electron cloud, or due to conventional impedance sources. Also beam losses caused by various mechanisms may affect the performance. The limitations can be alleviated, if not overcome, by a proper choice of beam parameters and by dedicated compensation schemes. Examples include alternating crossing at several interaction points, electromagnetic wires, super-bunches, electron lenses, clearing electrodes, and nonlinear collimation. I discuss such mitigating measures and related research efforts, with special emphasis on the LHC and its upgrade.
Chaotic dynamics of flexible Euler-Bernoulli beams.
Awrejcewicz, J; Krysko, A V; Kutepov, I E; Zagniboroda, N A; Dobriyan, V; Krysko, V A
2013-12-01
Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c(2)) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions is carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q(0) and frequency ω(p) of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.
Particle-in-Cell Code BEAMPATH for Beam Dynamics Simulations in Linear Accelerators and Beamlines
Energy Technology Data Exchange (ETDEWEB)
Batygin, Y.
2004-10-28
A code library BEAMPATH for 2 - dimensional and 3 - dimensional space charge dominated beam dynamics study in linear particle accelerators and beam transport lines is developed. The program is used for particle-in-cell simulation of axial-symmetric, quadrupole-symmetric and z-uniform beams in a channel containing RF gaps, radio-frequency quadrupoles, multipole lenses, solenoids and bending magnets. The programming method includes hierarchical program design using program-independent modules and a flexible combination of modules to provide the most effective version of the structure for every specific case of simulation. Numerical techniques as well as the results of beam dynamics studies are presented.
Beam dynamics simulations for linacs driving short-wavelength FELs
International Nuclear Information System (INIS)
Ferrario, M.; Tazzioli, F.
1999-01-01
The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV)
Investigation on Beam Dynamics Design of High-Intensity RFQs
Zhang, C
2004-01-01
Recently various potential uses of high-intensity beams bring new opportunities as well as challenges to RFQ accelerator research because of the new problems arising from the strong space-charge effects. Unconventional concepts of beam dynamics design, which surround the choice of basic parameters and the optimization of main dynamics parameters variation along the machine, are illustrated by the designing Peking University (PKU) Deuteron RFQ. An efficient tool of LANL RFQ Design Codes for beam dynamics simulation and analysis, RFQBAT, is introduced. Some quality criterions are also presented for evaluating design results.
Model-Independent Beam Dynamics Analysis
International Nuclear Information System (INIS)
Irwin, J.; Wang, C.X.; Yan, Y.T.; Bane, K.L.; Cai, Y.; Decker, F.; Minty, M.G.; Stupakov, G.V.; Zimmermann, F.
1999-01-01
Using a singular value decomposition of a beam line matrix, composed of many beam position measurements for a large number of pulses, together with the measurement of pulse-by-pulse beam properties or machine attributes, the contributions of each variable to the beam centroid motion can be identified with a greatly improved resolution. The eigenvalues above the noise floor determine the number of significant physical variables. This method is applicable to storage rings, linear accelerators, and any system involving a number of sources and a larger number of sensors with unknown correlations. Applications are presented from the Stanford Linear Collider. copyright 1999 The American Physical Society
Nonlinear beam dynamics in a funnel for combining two intense ion beams
International Nuclear Information System (INIS)
Whealton, J.H.; Raridon, R.J.; Rothe, K.E.; Becraft, W.R.; Owens, T.L.
1989-01-01
The concept of funnels was introduced over the last few years with an endeavor to increase the beam intensity by combining two beams in the following fashion: The beam is, in each case, produced by an rf accelerator and thereby composed of bunches. The beam bunches are made to occupy relatively small fractions of the longitudinal phase in these cases. The bunches form each of the two beams are made to interlace and enter and rf deflector which produced the interlacing of the beams into one beam with twice as many bunches occupying twice the phase. The funnel itself, in one embodiment called the magnetic funnel, is composed of many transport elements with strong transverse focusing produced by quadruple permanent magnetic fields. An occasional rf rebuncher is introduced to recompress the beam longitudinally so the beam occupies the appropriate small fraction of velocity space in the parallel direction. Crucial elements of the funnel are the beam dynamics in the rf rebuncher and the deflector. Beam dynamics in either case must be assessed using an analysis which is described in this paper. Several components in a magnetic funnel have been examined by dint of a full three-dimensional solution to the time-dependent Vlasov-Poisson equations with all image charges included. Specifically, the rms emittance growth of subsystems is examined in detail. 11 refs., 26 figs
International Nuclear Information System (INIS)
Jiao Yi; Xiao Ouzheng
2014-01-01
The energy recovery linac test facility (ERL-TF), which is a compact ERL-FEL (free electron laser) two-purpose machine, was proposed at the Institute of High Energy Physics, Beijing. As one important component of the ERL-TF, the photo-injector that started with a photocathode direct-current gun has been designed. In this paper, optimization of the injector beam dynamics in low-charge operation mode is performed with iterative scans using Impact-T. In addition, the dependencies between the optimized beam quality and the initial offset at cathode and element parameters are investigated. The tolerance of alignment and rotation errors is also analyzed. (authors)
Dynamic bowtie filter for cone-beam/multi-slice CT.
Directory of Open Access Journals (Sweden)
Fenglin Liu
Full Text Available A pre-patient attenuator ("bowtie filter" or "bowtie" is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB filled in with heavy liquid and a weakly attenuating bowtie (WB immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV. The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.
Dynamic Bowtie Filter for Cone-Beam/Multi-Slice CT
Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge
2014-01-01
A pre-patient attenuator (“bowtie filter” or “bowtie”) is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067
Surface dynamics using pulsed electron beams
Chan, Ally S. Y.; Jones, Robert G.
2000-04-01
Line of sight time of flight has been used to measure the translational energy of ethene formed by dissociative electron attachment of adsorbed dihalocarbons (XCH 2CH 2Y) on Cu(111) at 100 K. A pulsed electron beam was used to generate low energy secondary electrons at the surface, which were the active agents in initiating the decomposition, XCH 2CH 2Y(ads)+e -→XCH 2CH 2rad (ads)+Y(chem)+e -, XCH 2CH 2rad (ads)→C 2H 4(g)+X(chem). For 1,2-dichloroethane (DCE) adsorbed with a spacer layer of chemisorbed chlorine between it and the Cu(111)surface, the TOF data could be fitted using three Maxwell distributions with fast (960 K), slow (180 K) and diffusion ('20 K') components. For a single monolayer of DCE adsorbed directly on the clean Cu(111) surface the fast (1230 K) and slow (225 K) components increased in temperature, indicating that the copper surface was affecting the reaction. For 1-bromo-2-chloroethane the results were the same, consistent with both molecules dissociating via a common intermediate, ClC 2H 4rad (ads). For 1,2-dibromoethane the intermediate is different, BrC 2H 4rad , and decomposition of a monolayer of this molecule on clean Cu(111) exhibited fast (1850 K) and slow (270 K) components, both higher than the corresponding temperatures for DCE. The dynamics of these reactions and the origin of the two Maxwell distributions are discussed in terms of the energy available within the radical, and from the formation of the chemisorbed halogen when the radical dissociates.
Halo control, beam matching, and new dynamical variables for beam distributions
International Nuclear Information System (INIS)
Lysenko, W.; Parsa, Z.
1997-01-01
We present the status of our work on physics models that relate release to the understanding and control of beam halo, which is a cause of particle loss in high power ion linear accelerators. We can minimize these particle losses, even in the presence of nonlinearities, by ensuring the beam is matched to high order. Our goal is to determine new dynamical variables that enable us to more directly solve for the evolution of the halo. We considered moments and several new variables, using a Lie-Poisson formulation whenever possible. Using symbolic techniques, we computed high-order matches and mode invariants (analogs of moment invariants) in the new variables. A promising new development developments is that of the variables we call weighted moments, which allow us to compute high-order nonlinear effects (like halos) while making use of well-developed existing results and computational techniques developed for studying first order effects. copyright 1997 American Institute of Physics
International Nuclear Information System (INIS)
Willis, B.T.M.; Apps, M.E.
1979-01-01
The report is in sections, entitled: metallurgy; reactor fuels; defect solid state and interatomic forces; surface studies; colloid, polymer and biological studies; glasses; energy-related materials; solid state physics and crystallography; instrumentation and experimental technique. (U.K.)
Dynamics of the off axis intense beam propagation in a spiral inflector
International Nuclear Information System (INIS)
Goswami, A.; Sing Babu, P.; Pandit, V.S.
2017-01-01
In this paper the dynamics of space charge dominated beam in a spiral inflector is discussed by developing equations of motion for centroid and beam envelope for the off axis beam propagation. Evolution of the beam centroid and beam envelope is studied as a function of the beam current for various input beam parameters. The transmission of beam through the inflector is also estimated as a function of the beam current for an on axis and off axis beam by tracking a large number of particles. Simulation studies show that shift of the centroid from the axis at the inflector entrance affects the centroid location at the exit of the inflector and causes reduction in the beam transmission. The centroid shift at the entrance in the horizontal plane (h plane) is more critical as it affects the centroid shift in the vertical plane (u plane) by a large amount near the inflector exit where the available aperture is small. The beam transmission is found to reduce with increase in the centroid shift as well as with the beam current.
International Nuclear Information System (INIS)
Guy, F.W.; Johnson, K.F.; Sander, O.R.
1991-01-01
Funnels in which two bunched ion beams are interlaced to form a single beam have been proposed for high-current low-emittance ion linacs. A well-designed funnel would produce a beam with twice the frequency and current and almost twice the brightness of each original beam. A single-beam funnel experiment exploring the beam- dynamics and physics issues of a discrete-element future has been completed at Los Alamos National Laboratory (LANL). The only known beam-dynamics issue of concern in a two-beam funnel not addressed was the beam-beam interaction, which is negligible. The rf deflector, in which beam merging occurs, is a key component of a discrete-element funnel. We report the beam-dynamics design procedure and experimental results for the rf deflector. 8 refs., 5 figs
Computer codes for beam dynamics analysis of cyclotronlike accelerators
Smirnov, V.
2017-12-01
Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.
Molecular beam studies and hot atom chemistry
International Nuclear Information System (INIS)
Continetti, R.E.; Lee, Y.T.
1993-01-01
The application of the crossed molecular beam technique to the study of hot atom chemistry has provided significant insights into the dynamics of hot atom reaction. To illustrate this, two recent studies are discussed. Those are the study on the influence of translational energy in 0.6 to 1.5 eV range on endoergic reaction, and the experimental study on the detailed dynamics of elementary reaction at translational energy of 0.53 and 1.01 eV. The first example illustrates the contribution that molecular beam experiment can make in the understanding of the dynamics of endoergic substitution reaction. The second example illustrates the role that such studies can play in evaluating exact three-dimensional quantum scattering calculation and ab initio potential energy surfaces for chemical reaction. In the case of endoergic reaction of halogen substitution, it was observed that the reactive collision involved short lived collision complexes. It is suggested that energetic effect alone cannot account for the difference in cross sections, and dynamic effect most play a large role. In atom-diatom reaction, the differential cross section measurement of D+H 2 →DH+H reaction was carried out, and the results are discussed. (K.I.)
Beam dynamics simulation in the X-ray Compton source
Energy Technology Data Exchange (ETDEWEB)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A
2002-05-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Beam dynamics simulation in the X-ray Compton source
International Nuclear Information System (INIS)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center
Beam dynamics simulation in the X-ray Compton source
Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams
International Nuclear Information System (INIS)
Alexander, K.F.; Hintze, W.
1976-01-01
Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)
Optodynamics: dynamic aspects of laser beam-surface interaction
International Nuclear Information System (INIS)
Možina, J; Diaci, J
2012-01-01
This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.
Influences of Dynamic Moving Forces on the Functionally Graded Porous-Nonuniform Beams
Directory of Open Access Journals (Sweden)
Nguyen Dinh Kien
2016-07-01
Full Text Available The dynamic response of functionally graded (FG porous-nonuniform beams subjected to moving forces is investigated. The beam cross-section is assumed to vary longitudinally in the width direction by a linear or quadratic function. A modified rule of mixture, taking the effect of porosities into account, is adopted in evaluating the effective material properties. Based on Timoshenko beam theory, governing equations of motion are derived from Hamilton's principle, and they are solved by a finite element model. The dynamic response of a simply supported FG porous beam is computed with the aid of the Newmark method. The validation of the derived formulation is confirmed by comparing the obtained numerical results with the data available in the literature. A parametric study is conducted to highlight the effect of the material inhomogeneity, porosity volume fraction, section profile and loading parameters on the dynamic behavior of the beams.
Intense beam dynamics in a magnetized plasma
International Nuclear Information System (INIS)
Saenz, G.A.
1984-01-01
The analysis of the trajectory of an intense charged-particle beam in a magnetic field presents many challenges. A major problem of the analysis is that the magnetic fields induced by the intense beam currents can significantly modify the pre-existing magnetic fields. A model is presented which suggests that single-particle analysis can be used to predict the self-consistent trajectory of an intense particle beam in a magnetized plasma when the particle velocity is much greater than the Alfven velocity. A relativistic Lagrangian formalism is used to calculate single-particle trajectories in magnetic fields. An experiment was constructed which investigated a region of parameter space where the theory was valid. A 1-MeV, 50-kA, 50-ns rotating electron beam was used to compare the theory with experiment. A technique is described which determines magnetic field magnitudes necessary for single particle trajectories to produce toroidal and poloidal currents. These are the required currents for producing compact-torus magnetic-confinement geometries. The trapping of relativistic-beam electrons in a plasma is reported
Beam Dynamics Challenges for FCC-ee
AUTHOR|(SzGeCERN)442987; Benedikt, Michael; Oide, Katsunobu; Bogomyagkov, Anton; Levichev, Evgeny; Migliorati, Mauro; Wienands, Uli
2015-01-01
The goals of FCC-ee include reaching luminosities of up to a few 1036 cm-2s-1 per interaction point at the Z pole or some 1034 cm-2s-1 at the ZH production peak, and pushing the beam energy up to ≥175 GeV, in a ring of 100 km circumference, with a total synchrotron-radiation power not exceeding 100 MW. A parameter baseline as well as high-luminosity crab-waist options were described in [1] and [2], respectively. The extremely high luminosity and resulting short beam lifetime (due to radiative Bhabha scattering) are sustained by top-up injection. The FCC-ee design status and typical beam parameters for different modes of operation are reported in [3]. One distinct feature of the FCC-ee design is its conception as a double ring, with separate beam pipes for the two counter-rotating (electron and positron) beams, resembling, in this aspect, the high-luminosity B factories PEP-II, KEKB and SuperKEKB as well as the LHC. The two separate rings do not only permit operation with a large number of bunches, up to a f...
National Research Council Canada - National Science Library
Trimble, Matthew
2003-01-01
.... The vehicle under consideration in this study was a U.S. Army Palletized Loading System (PLS) military vehicle. Results from this evaluation were compared to those obtained from a civilian dump truck owned by the Virginia Department of Transportation...
ORBIT : BEAM DYNAMICS CALCULATIONS FOR HIGH - INTENSITY RINGS
International Nuclear Information System (INIS)
HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, F.; WEI, J.
2002-01-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK the introduction of a treatment magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings
Modeled and Measured Dynamics of a Composite Beam with Periodically Varying Foam Core
Cabell, Randolph H.; Cano, Roberto J.; Schiller, Noah H.; Roberts Gary D.
2012-01-01
The dynamics of a sandwich beam with carbon fiber composite facesheets and foam core with periodic variations in material properties are studied. The purpose of the study is to compare finite element predictions with experimental measurements on fabricated beam specimens. For the study, three beams were fabricated: one with a compliant foam core, a second with a stiffer core, and a third with the two cores alternating down the length of the beam to create a periodic variation in properties. This periodic variation produces a bandgap in the frequency domain where vibrational energy does not readily propagate down the length of the beam. Mode shapes and natural frequencies are compared, as well as frequency responses from point force input to velocity response at the opposite end of the beam.
Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.
Porras, Miguel A; Ramos, Francisco
2017-09-01
The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.
Transverse particle dynamics in a Bessel beam
Czech Academy of Sciences Publication Activity Database
Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel
2007-01-01
Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007
Geometric nonlinear dynamic analysis of curved beams using curved beam element
Pan, Ke-Qi; Liu, Jin-Yang
2011-12-01
Instead of using the previous straight beam element to approximate the curved beam, in this paper, a curvilinear coordinate is employed to describe the deformations, and a new curved beam element is proposed to model the curved beam. Based on exact nonlinear strain-displacement relation, virtual work principle is used to derive dynamic equations for a rotating curved beam, with the effects of axial extensibility, shear deformation and rotary inertia taken into account. The constant matrices are solved numerically utilizing the Gauss quadrature integration method. Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system. The present results are compared with those obtained by commercial programs to validate the present finite method. In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation, comparison of the results of the present formulation with those of the ADAMS software are made. Furthermore, the present results obtained from linear formulation are compared with those from nonlinear formulation, and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.
Multiple-charge beam dynamics in an ion linac
Directory of Open Access Journals (Sweden)
P. N . Ostroumov
2000-03-01
Full Text Available An advanced facility for the production of nuclei far from stability could be based on a high-power driver accelerator providing ion beams over the full mass range from protons to uranium. A beam power of several hundred kilowatts is highly desirable for this application. At present, however, the beam power available for the heavier ions would be limited by ion source capabilities. A simple and cost-effective method to enhance the available beam current would be to accelerate multiple charge states through a superconducting ion linac. This paper presents results of numerical simulation of multiple charge state beams through a 1.3 GeV ion linac, the design of which is based on current state-of-the-art superconducting elements. The dynamics of multiple charge state beams are detailed, including the effects of possible errors in rf field parameters and misalignments of transverse focusing elements. The results indicate that operation with multiple charge state beams is not only feasible but straightforward and can increase the beam current by a factor of 3 or more.
Baimpas, Nikolaos; Drakopoulos, Michael; Connolley, Thomas; Song, Xu; Pandazaras, Costas; Korsunsky, Alexander M
2013-03-01
The present investigation establishes the feasibility of using synchrotron-generated X-ray beams for time-resolved in situ imaging and diffraction of the interior components of an internal combustion engine during its operation. The demonstration experiment was carried out on beamline I12 (JEEP) at Diamond Light Source, UK. The external hutch of the JEEP instrument is a large-scale engineering test bed for complex in situ processing and simulation experiments. The hutch incorporates a large capacity translation and rotation table and a selection of detectors for monochromatic and white-beam diffraction and imaging. These capabilities were used to record X-ray movies of a motorcycle internal combustion engine running at 1850 r.p.m. and to measure strain inside the connecting rod via stroboscopic X-ray diffraction measurement. The high penetrating ability and high flux of the X-ray beam at JEEP allowed the observation of inlet and outlet valve motion, as well as that of the piston, connecting rod and the timing chain within the engine. Finally, the dynamic internal strain within the moving connecting rod was evaluated with an accuracy of ~50 × 10(-6).
Kikuchi, Takashi; Katayama, Takeshi; Kawata, Shigeo; Nakajima, Mitsuo; Someya, Tetsuo
2005-01-01
Beam dynamics is investigated by multi-particle simulations during a final beam bunching in a driver system for heavy ion inertial fusion (HIF). The longitudinal bunch compression causes the beam instability induced by the strong space charge effect. The multi-particle simulation can indicate the emittance growth due to the longitudinal bunch compression. Dependence in the beam pulse duration is also investigated for effective pellet implosion in HIF. Not only the spatial nonuniformity of the beam illumination, but also the errors of the beam pulse duration cause changes of implosion dynamics. The allowable regime of the beam pulse duration for the effective fusion output becomes narrow with decreasing the input beam energy. The voltage accuracy requirement at the beam velocity modulator is also estimated for the final beam bunching. It is estimated that the integrated voltage error is allowable as a few percent.
DARHT-II Long-Pulse Beam-Dynamics Experiments
Ekdahl, Carl; Bartsch, Richard; Bender, Howard; Briggs, Richard J; Broste, William; Carlson, Carl; Caudill, Larry; Chan, Kwok-Chi D; Chen Yu Jiuan; Dalmas, Dale; Durtschi, Grant; Eversole, Steven; Eylon, Shmuel; Fawley, William M; Frayer, Daniel; Gallegos, Robert J; Harrison, James; Henestroza, Enrique; Holzscheiter, M H; Houck, Timothy L; Hughes, Thomas P; Jacquez, Edward; Johnson, Douglas; Johnson, Jeffrey; Jones, Kenneth; McCuistian, Brian T; Meidinger, Alfred; Montoya, Nicholas; Mostrom, Chris; Moy, Kenneth; Nath, Subrata; Nielsen, Kurt; Oro, David; Rodriguez, Leroy; Rodriguez, Patrick; Rowton, Larry J; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin; Schulze, Martin E; Simmons, David; Studebaker, Jan; Sturgess, Ronald; Sullivan, Gary; Swinney, Charles; Tang, Yan; Temple, Rodney; Tipton, Angela; Tom, C Y; Vernon Smith, H; Yu, Simon
2005-01-01
When completed, the DARHT-II linear induction accelerator (LIA) will produce a 2-kA, 18-MeV electron beam with more than 1500-ns current/energy "flat-top." In initial tests DARHT-II has already accelerated beams with current pulse lengths from 500-ns to 1200-ns full-width at half maximum (FWHM) with more than1.2-kA, 12.5-MeV peak current and energy. Experiments are now underway with a ~2000-ns pulse length, but reduced current and energy. These pulse lengths are all significantly longer than any other multi-MeV LIA, and they define a novel regime for high-current beam dynamics, especially with regard to beam stability. Although the initial tests demonstrated absence of BBU, the pulse lengths were too short to test the predicted protection against ion-hose instability. The present experiments are designed to resolve these and other beam-dynamics issues with a ~2000-ns pulse length beam.
Beam halo studies in LEHIPA DTL
Roy, S.; Pande, R.; Rao, S. V. L. S.; Krishnagopal, S.; Singh, P.
2015-11-01
The Low Energy High Intensity Proton Accelerator (LEHIPA) project at Bhabha Atomic Research Centre (BARC) consists of a 20 MeV, 30 mA proton linac. The accelerator comprises of a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV Drift Tube Linac (DTL). In such high intensity accelerators, beam halos are of concern as they not only cause an increase in emittance, but also lead to beam loss and radio activation. We have studied the effect of beam mismatch at the DTL input on halo formation and propagation. The particle core model is used to excite the three envelope eigen modes; the quadrupole mode, the fast mode and the slow mode by giving input beam mismatch. These modes get damped as the beam progresses through the DTL. The damping mechanism is clearly Landau damping and leads to increase in rms emittance of the beam. The evolution of these modes and the corresponding increase in beam emittance and maximum beam extent, as the beam propagates through the DTL, has been studied for different space charge tunes. The halo parameter based on the definition of Allen and Wangler has been calculated. It is seen that beam halos are very important for LEHIPA DTL, even at 20 MeV and leads to emittance and beam size increase and also to beam loss in some cases. The longitudinal halo is present even without mismatch and transverse halos arise in the presence of beam mismatch.
Beam dynamics simulations using a parallel version of PARMILA
International Nuclear Information System (INIS)
Ryne, R.D.
1996-01-01
The computer code PARMILA has been the primary tool for the design of proton and ion linacs in the United States for nearly three decades. Previously it was sufficient to perform simulations with of order 10000 particles, but recently the need to perform high resolution halo studies for next-generation, high intensity linacs has made it necessary to perform simulations with of order 100 million particles. With the advent of massively parallel computers such simulations are now within reach. Parallel computers already make it possible, for example, to perform beam dynamics calculations with tens of millions of particles, requiring over 10 GByte of core memory, in just a few hours. Also, parallel computers are becoming easier to use thanks to the availability of mature, Fortran-like languages such as Connection Machine Fortran and High Performance Fortran. We will describe our experience developing a parallel version of PARMILA and the performance of the new code
Cettour Cave, S; Giovannozzi, M; Ludwig, M; MacPherson, A; Redaelli, S; Roncarolo, F; Solfaroli Camillocci, M; Venturini Delsolaro, W
2013-01-01
For a second year in a row dynamic aperture experiments have been performed at the LHC. These studies have been carried out by two teams following alternative techniques: On Beam 1 a novel approach has been tested which heats the beam until the emittance becomes large, and derives the dynamic aperture from beam losses assuming an inverse logarithm model for the time-dependence of the intensity. On Beam 2, the traditional approach of sampling the dynamic aperture with large amplitude kicks has been pursued [1]. In 2011, considerable progress was made and impressive results have been reported. In 2012 a further Machine Development (MD) session was scheduled during which both teams have benefited from an improved availability of the beams and more optimal performance of the instrumentation. Observations and analysis are presented as two MD reports of the LHC dynamic aperture experiment MD. This note describes the observations made on Beam 1, when the strength of the spool pieces have been varied. The key quantit...
Dynamically loaded beam failure under corroded conditions
Veerman, R.P.; Koenders, E.A.B.
2014-01-01
De-icing salts, used on roads in heavy winters, may enter reinforced concrete (RC) structures via its capillary pore system or via cracks, initiating reinforcement corrosion and reducing its remaining service-life. Vehicles passing real bridges exert a dynamic impact action that might activate a
LYRAN: A program for the analysis of linac beam dynamics
International Nuclear Information System (INIS)
Lu, J.Q.; Ben-Zvi, I.; Cramer, J.G.
1987-01-01
The FORTRAN program LYRAN has been written for use in analyzing the beam dynamics of superconducting heavy ion linacs. The program is based on the program LYRA developed by A.H. Scholldorf at SUNY Stony Brook, but that original program has been extensively extended, modified, and restructured. LYRAN transports a group of input particles randomly distributed on a selected distribution function through linac elements which include RF accelerating and bunching elements, dipole and quadrupole magnets, electrostatic elements, and drift spaces. Second order corrections to dipoles and quadrupole fields are included. A nonlinear optimization routine is incorporated, providing fast and efficient determination of accelerator configurations and parameter settings that provide desired beam properties. Beam envelope plotting is also included to provide graphic display of beam characteristics
arXiv Cyclotrons: Magnetic Design and Beam Dynamics
Zaremba, Simon
Classical, isochronous, and synchro-cyclotrons are introduced. Transverse and longitudinal beam dynamics in these accelerators are covered. The problem of vertical focusing and iscochronism in compact isochronous cyclotrons is treated in some detail. Different methods for isochronization of the cyclotron magnetic field are discussed. The limits of the classical cyclotron are explained. Typical features of the synchro-cyclotron, such as the beam capture problem, stable phase motion, and the extraction problem are discussed. The main design goals for beam injection are explained and special problems related to a central region with an internal ion source are considered. The principle of a Penning ion gauge source is addressed. The issue of vertical focusing in the cyclotron centre is briefly discussed. Several examples of numerical simulations are given. Different methods of (axial) injection are briefly outlined. Different solutions for beam extraction are described. These include the internal target, extracti...
A modified space charge routine for LINAC beam dynamics codes
International Nuclear Information System (INIS)
Valero, S.; Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Warner, D.
1994-01-01
In 1991 a space charge calculation for bunched beams with three-dimensional ellipsoidal symmetry was proposed for the PARMILA code, replacing the usual SCHEFF routines: it removes the cylindrical symmetry needed for the Fast Fourier Transform method and avoids the point to point interaction computation, where the number of simulation points is limited. This routine has now been improved with the introduction of two (or more) ellipsoids, giving a good representation of actual, pear-shaped bunches (unlike the 3-D ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty caused by statistical effects, encountered near the centre (the axis in 2-D problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Introduced in the new, versatile beam dynamics code, DYNAC, it should provide a good tool for the study of the effects of the various parameters responsible for the halo formation in high intensity linacs. (authors). 11 refs
SciDAC Advances and Applications in Computational Beam Dynamics
International Nuclear Information System (INIS)
Ryne, R.; Abell, D.; Adelmann, A.; Amundson, J.; Bohn, C.; Cary, J.; Colella, P.; Dechow, D.; Decyk, V.; Dragt, A.; Gerber, R.; Habib, S.; Higdon, D.; Katsouleas, T.; Ma, K.-L.; McCorquodale, P.; Mihalcea, D.; Mitchell, C.; Mori, W.; Mottershead, C.T.; Neri, F.; Pogorelov, I.; Qiang, J.; Samulyak, R.; Serafini, D.; Shalf, J.; Siegerist, C.; Spentzouris, P.; Stoltz, P.; Terzic, B.; Venturini, M.; Walstrom, P.
2005-01-01
SciDAC has had a major impact on computational beam dynamics and the design of particle accelerators. Particle accelerators--which account for half of the facilities in the DOE Office of Science Facilities for the Future of Science 20 Year Outlook--are crucial for US scientific, industrial, and economic competitiveness. Thanks to SciDAC, accelerator design calculations that were once thought impossible are now carried routinely, and new challenging and important calculations are within reach. SciDAC accelerator modeling codes are being used to get the most science out of existing facilities, to produce optimal designs for future facilities, and to explore advanced accelerator concepts that may hold the key to qualitatively new ways of accelerating charged particle beams. In this poster we present highlights from the SciDAC Accelerator Science and Technology (AST) project Beam Dynamics focus area in regard to algorithm development, software development, and applications
Measuring radiation damage dynamics by pulsed ion beam irradiation: 2016 project annual report
Energy Technology Data Exchange (ETDEWEB)
Kucheyev, Sergei O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-01-04
The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 3, this project had the following two major milestones: (i) the demonstration of the measurement of thermally activated defect-interaction processes by pulsed ion beam techniques and (ii) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, both of these milestones have been met.
Internal dynamics of intense twin beams and their coherence
Czech Academy of Sciences Publication Activity Database
Peřina Jr., J.; Haderka, Ondřej; Allevi, A.; Bondani, M.
2016-01-01
Roč. 6, Feb (2016), 1-8, č. článku 22320. ISSN 2045-2322 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : dynamics of intense * twin beams * pump-depleted parametric * down-conversion * coherence Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.259, year: 2016
On the dynamics of viscous masonry beams
Czech Academy of Sciences Publication Activity Database
Lucchesi, M.; Pintucchi, B.; Šilhavý, Miroslav; Zani, N.
2015-01-01
Roč. 27, č. 3 (2015), s. 349-365 ISSN 0935-1175 R&D Projects: GA ČR GA201/09/0473 Institutional support: RVO:67985840 Keywords : non-linear dynamics * no-tension material * masonry slender towers and arches * coupling phenomena * Galerkin method Subject RIV: BA - General Mathematics Impact factor: 1.849, year: 2015 http://link.springer.com/article/10.1007%2Fs00161-014-0352-y
Static and dynamic testing of a damaged post tensioned concrete beam
Directory of Open Access Journals (Sweden)
Limongelli M.P.
2015-01-01
Full Text Available In this paper are reported the results of an experimental campaign carried out on a post tensioned concrete beam with the aim of investigating the possibility to detect early warning signs of deterioration basing on static and/or dynamic tests. The beam was tested in several configurations aimed to reproduce several different phases of the ‘life’ of the beam: the original undamaged state, increasing loss of tension in the post tensioning cables, a strengthening intervention carried out by means of a second tension cable, formation of further cracks on the strengthened beam. Responses of the beam were measured by an extensive set of instruments consisting of accelerometers, inclinometers, displacement transducers, strain gauges and optical fibres. The paper discusses the tests program and the dynamic characterization of the beam in the different damage scenarios. The modal properties of the beam in the different phases were recovered basing on the responses recorded on the beam during sine-sweep and impact hammer tests. The variation of the first modal frequency was studied to investigate the sensitivity of this parameter to both the cracking of the concrete section and the tension in the cables and also to compare results given by different types of experimental tests.
Numerical optimization of piezolaminated beams under static and dynamic excitations
Directory of Open Access Journals (Sweden)
Rajan L. Wankhade
2017-06-01
Full Text Available Shape and vibration controls of smart structures in structural applications have gained much attraction due to their ability of actuation and sensing. The response of structure to bending, vibration, and buckling can be controlled by the use of this ability of a piezoelectric material. In the present work, the static and dynamic control of smart piezolaminated beams is presented. The optimal locations of piezoelectric patches are found out and then a detailed analysis is performed using finite element modeling considering the higher order shear deformation theory. In the first part, for an extension mode, the piezolaminated beam with stacking sequence PZT5/Al/PZT5 is considered. The length of the beam is 100 mm, whereas the thickness of an aluminum core is 16 mm and that of the piezo layer is of 1 mm. The PZT actuators are positioned with an identical poling direction along the thickness and are excited by a direct current voltage of 10 V. For the shear mode, the stacking sequence Al/PZT5/Al is adopted. The length of the beam is kept the same as the extension mechanism i.e. 100 mm, whereas the thickness of the aluminum core is 8 mm and that of the piezo layer is of 2 mm. The actuator is excited by a direct current voltage of 20 V. In the second part, the control of the piezolaminated beam with an optimal location of the actuator is investigated under a dynamic excitation. Electromechanical loading is considered in the finite element formulation for the analysis purpose. Results are provided for beams with different boundary conditions and loading for future references. Both the extension and shear actuation mechanisms are employed for the piezolaminated beam. These results may be used to identify the response of a beam under static and dynamic excitations. From the present work, the optimal location of a piezoelectric patch can be easily identified for the corresponding boundary condition of the beam.
Beams dynamics optimisation of LINAC4 structures for increased operational flexibility
Bellodi, G; Garcia Tudela, M; Hein, L M; Lallement, J B; Lombardi, A M; Posocco, P A; Sargsyan, E; Stovall, J
2010-01-01
Linac4 is a new 160 MeV, 40 mA pulsed beam current H- accelerator which will be the source of particles for all proton accelerators at CERN. Construction started in October 2008, and beam commissioning of the 3 MeV front-end is scheduled for early next year. A baseline design of the linac beam dynamics was completed 2 years ago and validated by a systematic campaign of transverse and longitudinal error studies to assess tolerance limits and machine activation levels. Recent studies have been mainly focused on optimising this design to achieve both a smoother performance for nominal beam conditions and to gain operational flexibility for non-nominal scenarios. These include a review of the chopper beam dynamics design, a re-definition of the DTL and CCDTL inter-tank regions and a study of operational schemes for reduced beam currents (either permanent or in pulse-to-pulse mode). These studies have been carried out in parallel to first specifications for a beam commissioning strategy of the linac and its low-en...
Status of the studies on collective eﬀects involving beam-beam interactions at the HL-LHC
Buffat, Xavier; Metral, Elias; Ribes Metidieri, Ariadna; Barranco Garcia, Javier; Goncalves Jorge, Patrik; Pieloni, Tatiana; Tambasco, Claudia; CERN. Geneva. ATS Department
2018-01-01
This note summarised the status of the studies on the coherent beam-beam eﬀects in the HL-LHC project. It is shown that the obit, tune, chromaticity and dynamic β eﬀects due to head-on and long-range beam-beam interactions are tolerable without dedicated mitigations in the baseline scenario. The stability of coherent beam-beam modes under the inﬂuence of the beam coupling impedance is evaluated, as well as the impact of the beam-beam induced tune spread on the Landau damping of single beam head-tail modes of oscillation. Since the beam stability is marginal at the end of the squeeze for the ultimate scenario, it is suggested to use the ATS optics to increase the eﬀect of the octupoles at constant current, thus providing suﬃcient margins. Measurements suggesting that the transverse damper noise has to be signiﬁcantly reduced to allow for operation with large beam-beam parameter are shown.
International Nuclear Information System (INIS)
Kuppermann, A.
1978-01-01
Progress made in the following studies is reported: low-energy electron scattering; variable-angle photoelectron spectroscopy; laser photochemistry and spectroscopy; and collisions in crossed molecular beams
Molecular beam studies of stratospheric photochemistry
Moore, Teresa Anne
1998-12-01
Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm
Dynamics and adsorption of gas molecules using proton beams
Energy Technology Data Exchange (ETDEWEB)
Kim, J. Y.; Lee, M. S. [Hanyang Univ., Seoul (Korea, Republic of)
2007-04-15
MgO powders and Carbon nanotubes (CNTs) were irradiated by proton beams with high energy (10-35 MeV) for various exposure times, and Ar gas adsorption experiments were carried. A careful investigation measured by TEM studies revealed significant differences in morphological evolution before and after irradiating the proton beams. After irradiating the proton beams, adsorption properties of Ar measured below 80K on MgO powders having only (100) surface exposure exhibited an additional isotherm steps suggesting the creation of the local surface defects presumably due to the bombardments of the protons. Interestingly, CNTs that were radiated by proton beams with energy 35 MeV at the Bragg peak position contain much less Fe, Ni catalysts compare to the ones that were not irradiated by the proton beams. This experiment was re-performed at the same condition to confirm the reproducibility of the result, and the same outcomes were produced.
Measurement of dynamic wedge angles and beam profiles by means of MRI ferrous sulphate gel dosimetry
Bengtsson, Magnus; Furre, Torbjørn; Rødal, Jan; Skretting, Arne; Olsen, Dag R.
1996-02-01
The purpose of this study is to examine the possible value of measuring the dose distribution in dynamic wedge photon beams using ferrous sulphate gel phantoms analysed by MRI. The wedge angles and dose profiles were measured for a field size of and for dynamic wedge angles of , , and using a 15 MV photon beam generated from a Clinac 2100 CD (Varian). The dose profiles obtained from MRI ferrous sulphate gel were in good agreement with the dose measurements performed with a diode detector array. Also, the wedge angles determined from the MRI ferrous sulphate gel agreed well with the values obtained by using film dosimetry and with calculations by use of TMS (treatment planning system) (Helax, Uppsala, Sweden). The study demonstrated that MRI ferrous sulphate gel dosimetry is an adequate tool for measurements of some beam characteristics of dynamic radiation fields.
Computational study of a dynamic contact problem
Directory of Open Access Journals (Sweden)
Jigarkumar Patel
2013-10-01
Full Text Available In this article, we describe a computational framework to study the influence of a normal crack on the dynamics of a cantilever beam; i.e., changes in its natural frequency, amplitude and period of vibration, etc.
Evolution of a beam dynamics model for the transport line in a proton therapy facility
Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.
2017-12-01
During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.
Dynamics of beam pair coupled by visco-elastic interlayer
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Hračov, Stanislav
2015-01-01
Roč. 9, č. 2 (2015), s. 127-140 ISSN 1802-680X R&D Projects: GA ČR(CZ) GP13-41574P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : double-beam dynamics * visco-elastic interlayer * kinematic damping Subject RIV: JM - Building Engineering http://www.kme.zcu.cz/acm/acm/article/view/292
On the dynamics of space-charge dominated beams
International Nuclear Information System (INIS)
Lagniel, J.M.; Piquemal, A.C.
1994-01-01
A space-charge dominated beam is indubitably a complex system; both Chaos Dynamics and Plasma Physics can be used to explain its behaviour. It is shown that the nonlinear resonances induce local instabilities, mixing property and stochastic motions, and nonlinear space-charge waves which lead to meta-equilibria and thermalization of the particle system. Results obtained using the particle-core model and a self-consistent PIC code (RENOIR) are presented and compared. (authors). 5 figs., 10 refs
Dynamic properties of unbonded, multi-strand beams subjected to flexural loading
Asker, Haval K.; Rongong, Jem A.; Lord, Charles E.
2018-02-01
Beam-like structures, constructed from many long strands that are constrained rather than bonded together, can provide appreciable levels of structural damping through friction between individual strands. This paper describes experimental and numerical studies, carried out on square-section metal beams, which are aimed at improving understanding of the relationship between construction and performance. A beam is formed from a pack of square-section strands that is held together at various compression loads with pre-calibrated clamps. Flexural deformation of the assembled beam is simulated using standard finite element analysis employing simple Coulomb friction at the interfaces. The validity of the assumptions used in the models is confirmed by comparison with three point bend tests on a regular nine strand construction at several different clamp loads. Dynamic loss factors for this beam are obtained by conducting forced vibration tests, which show that the damping is insensitive to frequency. Subsequent numerical studies are used to investigate the effects of increasing the number of strands whilst maintaining the overall cross-section geometry of the beam. It is found that the system stiffness drops and loss factor increases when more strands are used for a maintained beam cross-section. Interestingly, the energy dissipated by each beam construction is almost the same. These results provide a vital and necessary insight into the physics for stranded structures and materials that are largely prevalent in mechanical (e.g. cables) and electrical (e.g. wires) elements.
Parallelization of a beam dynamics code and first large scale radio frequency quadrupole simulations
Directory of Open Access Journals (Sweden)
J. Xu
2007-01-01
Full Text Available The design and operation support of hadron (proton and heavy-ion linear accelerators require substantial use of beam dynamics simulation tools. The beam dynamics code TRACK has been originally developed at Argonne National Laboratory (ANL to fulfill the special requirements of the rare isotope accelerator (RIA accelerator systems. From the beginning, the code has been developed to make it useful in the three stages of a linear accelerator project, namely, the design, commissioning, and operation of the machine. To realize this concept, the code has unique features such as end-to-end simulations from the ion source to the final beam destination and automatic procedures for tuning of a multiple charge state heavy-ion beam. The TRACK code has become a general beam dynamics code for hadron linacs and has found wide applications worldwide. Until recently, the code has remained serial except for a simple parallelization used for the simulation of multiple seeds to study the machine errors. To speed up computation, the TRACK Poisson solver has been parallelized. This paper discusses different parallel models for solving the Poisson equation with the primary goal to extend the scalability of the code onto 1024 and more processors of the new generation of supercomputers known as BlueGene (BG/L. Domain decomposition techniques have been adapted and incorporated into the parallel version of the TRACK code. To demonstrate the new capabilities of the parallelized TRACK code, the dynamics of a 45 mA proton beam represented by 10^{8} particles has been simulated through the 325 MHz radio frequency quadrupole and initial accelerator section of the proposed FNAL proton driver. The results show the benefits and advantages of large-scale parallel computing in beam dynamics simulations.
Investigations of the Dynamics of Space Charged Dominated Beams
International Nuclear Information System (INIS)
York, Richard C.
2002-01-01
We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool
Fast beam studies of free radical photodissociation
Energy Technology Data Exchange (ETDEWEB)
Neumark, D.M. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
The authors have developed a novel technique for studying the photodissociation spectroscopy and dynamics of free radicals. In these experiments, radicals are generated by laser photodetachment of a fast (6-8 keV) mass-selected negative ion beam. The resulting radicals are photodissociated with a second laser, and the photofragments are collected and detected with high efficiency using a microchannel plate detector. The overall process is: ABC{sup -} {yields} ABC + e{sup -} {yields} A + BC, AB + C. Two types of fragment detection schemes are used. To map out the photodissociation cross-section of the radical, the photodissociation laser is scanned and the total photofragment yield is measured as a function of wavelength. In other experiments, the photodissociation frequency is fixed and the photofragment masses, kinetic energy release, and scattering angle is determined for each photodissociation event.
Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector
Energy Technology Data Exchange (ETDEWEB)
Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
2017-06-11
Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.
Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector
Zhang, X. H.; Yuan, Y. J.; Yin, X. J.; Qian, C.; Sun, L. T.; Du, H.; Li, Z. S.; Qiao, J.; Wang, K. D.; Zhao, H. W.; Xia, J. W.
2017-06-01
Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.
Goncalves Jorge, Patrik
The Future Circular hadron-hadron Collider (FCC-hh) is a design study for a 100 TeV centre-of-mass energy. The dynamics of the beams in such a collider poses many challenges, in particular the amount of energy stored in each beam (8.4 GJ) makes them very destructive and therefore requires a tight control of the machine and beam parameters during the full cycle in order to avoid damages and reach the collider designed performances. The FCC-hh features an increase of the beam brightness during the cycle due to the presence of synchrotron radiation damping at high energy. As a result, the electromagnetic forces that the two beams exert on each other, the so-called beam-beam forces, are enhanced and might become an issue for the safe operation of the machine. In this new regime, the impact of the beam-beam interaction on the optics becomes non-negligible. In this master thesis, for the first time, the impact of the beam-beam interaction on the optics ($\\beta$-beating) is measured in a hadron collider (LHC). The e...
Dynamic evaluation of swallowing disorders with electron-beam tomography
International Nuclear Information System (INIS)
Raith, J.; Lindbichler, F.; Kern, R.; Groell, R.; Rienmueller, R.
1996-01-01
Three cases preselected by videofluorography were studied to evaluate whether electron beam tomography (EBT) permits more detailed dynamic imaging of swallowing disorders focusing on the mesonasopharyngeal segment, the hypopharynx and the upper esophageal sphincter (UES). Immediately after videofluorographic examination of the oropharyngeal deglutition, EBT is performed. The patient is in a supine position and while the patient swallows a 20 ml bolus of water or diluted iodine containing contrast agent, a sequence of 20 images per level is scanned. The levels, which are determined by using the scout view, are oriented parallel to the hard palate either at the level of the hard palate to image the mesonasopharyngel segment or just above the hyoid bone to focus on the hypopharynx or at the location of the USE. The scan technique is a single-slice cinemode with a slice thickness of 3 mm (exposure time 100 ms, interscan delay 16 ms, 130 kV, 620 mA). The following structural interactions that we have so far been unable to image can be clearly demonstrated with EBT: During normal swallowing, the mesonasopharyngeal segment is completely and symmetrically closed by the soft palate and Passavant's cushion; lateral hypopharyngeal pouches can be located more precisely; and disorders of the UES can be differentiated into functional or morphologically caused disorders (e.g., goiter or cervical osteophytes). Videofluorography and cinematography are still the gold standard in functional evaluation of swallowing disorders. However, EBT permits dynamic imaging of pharyngeal deglutition in a preselected transverse plane and can give useful additional information concerning functional anatomical changes in the pharynx during swallowing. Further clinical evaluation is needed. (orig.) [de
Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions
Directory of Open Access Journals (Sweden)
R. Naz
2015-01-01
Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.
Dynamics of infrared multiphonon dissociation of SF6 by molecular beam method
International Nuclear Information System (INIS)
Grant, E.R.; Coggiola, M.J.; Lee, Y.T.; Schulz, P.A.; Shen, Y.R.
1977-01-01
A crossed molecular beam apparatus has been adapted to study the dynamics of excitation and dissociation of polyatomic molecules in intense IR laser fields. Initial experiments have involved the study of the dissociation of SF 6 by CO 2 laser radiation at 10.6 μm. A molecular beam of SF 6 was formed by supersonic expansion using three stages of differential pumping. A grating tuned pulsed CO 2 TEA laser was used as the excitation source. The laser beam was focused by a 25 cm focal length ZnSe lens, and crossed the molecular beam near its focal point. The fragments produced by multiphonon dissociation of SF 6 within the small interaction region were detected as a function of recoil angle and velocity. (Auth.)
Glukhov, S A
2017-01-01
In extremely high energy circular lepton colliders, correct consideration of synchrotron radiation is important for beam dynamics simulation. We developed a fast precise effective method to track particles in a realistic lattice when the radiation effects are distributed along the orbit. In the present paper we study an effect of decreasing dynamic aperture due to radiation from quadrupole lenses in the FCC-ee lepton collider.
Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics
Energy Technology Data Exchange (ETDEWEB)
Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne
1988-12-01
The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).
VARIATIONALLY-BASED EFFECTIVE DYNAMIC THICKNESS FOR LAMINATED GLASS BEAMS
Directory of Open Access Journals (Sweden)
Jaroslav Schmidt
2017-11-01
Full Text Available Laminated glass, consisting of glass layers connected with transparent foils, has found its applications in civil, automotive, or marine engineering. Due to a high contrast in layer properties, mechanical response of laminated glass structures cannot be predicted using classical laminate theories. On the other hand, engineering applications demand easy-to-use formulas of acceptable accuracy. This contribution addresses such simplified models for free vibrations of laminated glass beams, with the goal to determine their natural frequencies and modal damping properties. Our strategy is to approximate the complex behavior of a laminated structure with that of an equivalent monolithic beam. Its effective thickness is determined by the variational method proposed by Galuppi and Royer-Carfagni for static problems, which we extended for modal analysis. We show that this new approach overcomes inaccuracies of the currently used dynamic effective thickness model by López-Aenlle and Pelayo.
Charged beam dynamics, particle accelerators and free electron lasers
Dattoli, Giuseppe; Sabia, Elio; Artioli, Marcello
2017-01-01
Charged Beam Dynamics, Particle Accelerators and Free Electron Lasers summarises different topics in the field of accelerators and of Free Electron Laser (FEL) devices. It is intended as a reference manual for the different aspects of FEL devices, explaining how to design both a FEL device and the accelerator providing the driving beam. It covers both theoretical and experimental aspects, allowing researchers to attempt a first design of a FEL device in different operating conditions. It provides an analysis of what is already available, what is needed, and what the challenges are to determine new progress in this field. All chapters contain complements and exercises that are designed in such a way that the reader will gradually acquire self-confidence with the matter treated in the book.
New general beam dynamics formulation for the program Dynac
International Nuclear Information System (INIS)
Valero, S.
1992-01-01
Until recently beam dynamics programs for electrons and ions have been fundamentally different because longitudinally the energy can change much more quickly with respect to the rest mass for electrons than for ions. A program, DYNAC, was proposed with the aim to treat long accelerating elements as currently used in superconducting systems for any type of particle. To obtain high accuracy, keeping a relatively simple formalism, DYNAC is now using a new concept of equivalent accelerating fields. Many examples have been treated (different fields and particles) and results will be presented including the comparison with an elaborate step by step integration method with a realistic electromagnetic field
Beam dynamics issues of high-luminosity asymmetric collider rings
International Nuclear Information System (INIS)
Sessler, A.M.
1990-01-01
Machines for use in high-energy physics are advancing along two frontiers. First, there is the frontier of energy, currently being pressed by the Fermilab collider (p bar p), and SLC and LEP (e + e - ) and in the near future by HERA (ep), the LHC, and the SSC (pp). Second, there is the frontier of intensity, currently being pressed by a variety of low-energy machines and, at higher energies, by various linacs such as those at KEK. Fermilab, GSI, and LAMPF (p) and CEBAF (e - ). In the future there should be, along this frontier, various ''factories'' such as those for Kaons at TRIUMF, and those proposed for var-phi mesons, τ-charm particles, and B mesons. It is with the intensity frontier that these proceedings are concerned. The elementary particle motivation to study the nonconservation of PC in the B-stringB system (which topic is not covered in these Proceedings, but is treated extensively in the literature) has motivated the study of very high intensity asymmetric collider rings. It was for this purpose that a Workshop on Beam Dynamics Issues of High-Luminosity Asymmetric Collider Rings was held, in Berkeley, during February 12--16, 1990. A general introduction to the subject has been given in an article which is reprinted here as an Appendix. The nonexpert may wish to start there. The volume consists of four parts. The first part consists of Summaries; first an overall summary of the Workshop and then, second, more detailed summaries from each of the working groups. The second part consists of the Invited Talks at the workshop. The third part contains various Contributed Papers, most of which represent work that came out of the workshop. Finally, there are, in the fourth part, brief Summaries of the Various Proposed B-Factory Projects in the world
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Energy Technology Data Exchange (ETDEWEB)
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Beam dynamics simulation of the S-DALINAC injector section
Energy Technology Data Exchange (ETDEWEB)
Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)
2013-07-01
In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.
Photoionization studies with molecular beams
Energy Technology Data Exchange (ETDEWEB)
Ng, C.Y.
1976-09-01
A molecular beam photoionization apparatus which combines the advantages of both the molecular beam method with photoionization mass spectrometry has been designed and constructed for carrying out some unique photoionization experiments. Rotational cooling during the supersonic expansion has resulted in high resolution photoionization efficiency curves for NO, ICl, C/sub 2/H/sub 2/ and CH/sub 3/I. The analysis of these spectra has yielded ionization potentials for these molecules to an accuracy of +- 3 MeV. Detailed autoionization structures were also resolved. This allows the investigation of the selection rules for autoionization, and the identification of the Rydberg series which converge to the excited states of the molecular ions. The degree of relaxation for thermally populated excited states has been examined using NO and ICl as examples. As a result of adiabatic cooling, a small percentage of dimers is also formed during the expansion. The photoionization efficiency curves for (NO)/sub 2/, ArICl, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ have been obtained near the thresholds. Using the known dissociation energies of the (NO)/sub 2/, Ar/sub 2/, Kr/sub 2/ and Xe/sub 2/ van der Waals molecules, the corresponding dissociation energies for NO-NO/sup +/, Ar/sub 2//sup +/, Kr/sub 2//sup +/, and Xe/sub 2//sup +/ have been determined. The ionization mechanisms for this class of molecules are examined and discussed.
International Nuclear Information System (INIS)
Chen, P
2004-01-01
The Joint 28th ICFA (International Committee for Future Accelerators) Advanced Beam Dynamics and Advanced and Novel Accelerators Workshop on ''QUANTUM ASPECTS OF BEAM PHYSICS and Other Critical Issues of Beams in Physics and Astrophysics'', was held on January 7-11, 2003, in Hiroshima, Japan. This was the third in the QABP workshop series. The first QABP workshop was launched in January 1998, in Monterey, California, and the second was held in October 2000, in Capri, Italy. Over the past five years, this workshop series has passed its torch around the world, from the U.S. to Europe, and this time to Japan in Asia. Following the footsteps of the first two workshops, this one in Hiroshima was again a tremendous success. The frontier of beam research points to increasingly higher energy, greater brightness and lower emittance beams with ever-increasing particle species. These demands have triggered a rapidly growing number of beam phenomena that involve quantum effects. With the significant advancement of laser and accelerator technologies, there is also a growing interest in using high energy, high intensity particle and photon beams for laboratory astrophysics investigations, as well as the application of beam physics expertise to astrophysics studies. It has therefore become a tradition that this workshop series attracted a broad spectrum of experts from beam physics, astrophysics, cosmology, particle physics, condensed matter physics, nuclear physics, atomic physics, and laser science, to explore a common frontier where their individual expertise and interests overlapped
Self-consistent study of space-charge-dominated beams in a misaligned transport system
International Nuclear Information System (INIS)
Sing Babu, P.; Goswami, A.; Pandit, V.S.
2013-01-01
A self-consistent particle-in-cell (PIC) simulation method is developed to investigate the dynamics of space-charge-dominated beams through a misaligned solenoid based transport system. Evolution of beam centroid, beam envelope and emittance is studied as a function of misalignment parameters for various types of beam distributions. Simulation results performed up to 40 mA of proton beam indicate that centroid oscillations induced by the displacement and rotational misalignments of solenoids do not depend of the beam distribution. It is shown that the beam envelope around the centroid is independent of the centroid motion for small centroid oscillation. In addition, we have estimated the loss of beam during the transport caused by the misalignment for various beam distributions
Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)
Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J
2013-01-01
This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).
Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.
Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie
2015-06-30
In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats broaden their echolocation beam in the final stage of pursuit, presumably as a countermeasure to keep evading moths within their "acoustic field of view." In this study, we investigated if dynamic beam broadening is a general property of echolocation when catching moving prey. We recorded three species of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision" than the vespertilionids, but ensonifying objects far ahead suggesting more clutter. Thus, beam broadening is not a fundamental property of the echolocation system. However, based on the results, we hypothesize that increased peripheral detection is crucial to all aerial hawking bats in the final stages of prey pursuit and speculate that beam broadening is a feature characterizing more advanced echolocation.
Dynamic structural analysis of the TPSG4 & TPSG6 beam diluters
Massidda, L; Kadi, Y; Balhan, B
2005-01-01
In this report we present the technical specification for the numerical model and the study of the dynamic structural behaviour of the beam diluter elements (TPSG4 & 6) protecting the extraction septum magnets (MSE & MST) in the event of an asynchronous firing of the extraction kickers (MKE). The deposited energy densities, estimated by the high-energy particle transport code FLUKA, were converted to internal heat generation rates according to the time dependence of the extracted beam. The transient response to this thermal load was obtained by solving the power deposition and structural deformation problem by the spectral-element code ELSE.
SciDAC Advances in Beam Dynamics Simulation: From Light Sources to Colliders
Energy Technology Data Exchange (ETDEWEB)
Qiang, J.; Borland, M.; /LBL, Berkeley; Kabel, A.; /Argonne; Li, R.; /Jefferson Lab; Ryne, R.; /LBL, Berkeley; Stern, E.; /Fermilab; Wang, Y.; /Argonne; Wasserman, H.; /LBL, Berkeley; Zhang, Y.; /SLAC
2011-11-14
In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC). Particle accelerators are some of most important tools of scientific discovery. They are widely used in high-energy physics, nuclear physics, and other basic and applied sciences to study the interaction of elementary particles, to probe the internal structure of matter, and to generate high-brightness radiation for research in materials science, chemistry, biology, and other fields. Modern accelerators are complex and expensive devices that may be several kilometers long and may consist of thousands of beamline elements. An accelerator may transport trillions of charged particles that interact electromagnetically among themselves, that interact with fields produced by the accelerator components, and that interact with beam-induced fields. Large-scale beam dynamics simulations on massively parallel computers can help provide understanding of these complex physical phenomena, help minimize design cost, and help optimize machine operation. In this paper, we report on beam dynamics simulations in a variety of accelerators ranging from next generation light sources to high-energy ring colliders that have been studied during the first year of the SciDAC-2 accelerator project.
Cantilever-beam dynamic modulus for wood composite products. Part 1, apparatus
Chris Turk; John F. Hunt; David J. Marr
2008-01-01
A cantilever-beam vibration-testing apparatus has been developed to provide a means of dynamic and non-destructive evaluation of modulus of elasticity for small samples of wood or wood-composite material. The apparatus applies a known displacement to a cantilever beam and then releases the beam into its natural first-mode vibration and records displacement as a...
Dynamic thermal model of photovoltaic cell illuminated by laser beam
Liu, Xiaoguang; Hua, Wenshen; Guo, Tong
2015-07-01
Photovoltaic cell is one of the most important components of laser powered unmanned aerial vehicle. Illuminated by high power laser beam, photovoltaic cell temperature increases significantly, which leads to efficiency drop, or even physical damage. To avoid such situation, the temperature of photovoltaic cell must be predicted precisely. A dynamic thermal model of photovoltaic cell is established in this paper, and the relationships between photovoltaic cell temperature and laser power, wind speed, ambient temperature are also analyzed. Simulation result indicates that illuminated by a laser beam, the temperature of photovoltaic cell rises gradually and reach to a constant maximum value. There is an approximately linear rise in photovoltaic cell temperature as the laser flux gets higher. The higher wind speed is, the stronger forced convection is, and then the lower photovoltaic cell temperature is. But the relationship between photovoltaic cell temperature and wind speed is not linear. Photovoltaic cell temperature is proportional to the ambient temperature. For each increase of 1 degree of ambient temperature, there is approximate 1 degree increase in photovoltaic cell temperature. The result will provide fundamentals to take reasonable measures to control photovoltaic cell temperature.
Particle beam dynamics simulations using the POOMA framework
International Nuclear Information System (INIS)
Humphrey, W.; Ryne, R.; Cleland, T.; Cummings, J.; Habib, S.; Mark, G.; Ji Qiang
1998-01-01
A program for simulation of the dynamics of high intensity charged particle beams in linear particle accelerators has been developed in C++ using the POOMA Framework, for use on serial and parallel architectures. The code models the trajectories of charged particles through a sequence of different accelerator beamline elements such as drift chambers, quadrupole magnets, or RF cavities. An FFT-based particle-in-cell algorithm is used to solve the Poisson equation that models the Coulomb interactions of the particles. The code employs an object-oriented design with software abstractions for the particle beam, accelerator beamline, and beamline elements, using C++ templates to efficiently support both 2D and 3D capabilities in the same code base. The POOMA Framework, which encapsulates much of the effort required for parallel execution, provides particle and field classes, particle-field interaction capabilities, and parallel FFT algorithms. The performance of this application running serially and in parallel is compared to an existing HPF implementation, with the POOMA version seen to run four times faster than the HPF code
Grangeat, Pierre; Koenig, Anne; Rodet, Thomas; Bonnet, Stéphane
2002-08-07
Dynamic cone-beam reconstruction algorithms are required to reconstruct three-dimensional (3D) image sequences on dynamic 3D CT combining multi-row two-dimensional (2D) detectors and sub-second scanners. The speed-up of the rotating gantry allows one to improve the temporal resolution of the image sequence, but at the same time, it implies increase in the dose delivered during a given time period to keep constant the signal-to-noise ratio associated with each frame. The alternative solution proposed in this paper is to process data acquisition on several half-turns in order to reduce the dose delivered per rotation with the same signal-to-noise ratio. In order to compensate for time evolution and motion artefacts, we propose to use a dynamic particle model to describe the object evolution during the scan. In this article, we first introduce the dynamic particle model and the dynamic CT acquisition model. Then, we explain the principle of the proposed dynamic cone-beam reconstruction algorithm. Lastly, we present preliminary results on simulated data.
Beam dynamics calculations and particle tracking using massively parallel processors
International Nuclear Information System (INIS)
Ryne, R.D.; Habib, S.
1995-01-01
During the past decade massively parallel processors (MPPs) have slowly gained acceptance within the scientific community. At present these machines typically contain a few hundred to one thousand off-the-shelf microprocessors and a total memory of up to 32 GBytes. The potential performance of these machines is illustrated by the fact that a month long job on a high end workstation might require only a few hours on an MPP. The acceptance of MPPs has been slow for a variety of reasons. For example, some algorithms are not easily parallelizable. Also, in the past these machines were difficult to program. But in recent years the development of Fortran-like languages such as CM Fortran and High Performance Fortran have made MPPs much easier to use. In the following we will describe how MPPs can be used for beam dynamics calculations and long term particle tracking
Spin dynamics in LEP with 40-100 GeV beams
Assmann, R W; Blondel, A; Böge, M; Crozon, M; Dehning, Bernd; Grote, H; Koutchouk, Jean-Pierre; Placidi, Massimo; Schmidt, R; Sonnemann, F; Tecker, F A; Wenninger, J
2000-01-01
Radiative spin polarization has been studied in the Large Electron- Positron Collider (LEP) at CERN for beam energies from 40 GeV to 100 GeV. The data cover a unique range of spin dynamics, not previously accessible with other storage rings. After optimization of machine parameters and the successful application of new harmonic spin matching techniques, a transverse beam polarization of 57% was obtained at 44.7 GeV. At 60.6 GeV the maximum level reached 8%. The observed energy dependence of radiative spin polarization at LEP is in excellent agreement with the theoretically expected behavior. The LEP data provide the first experimental confirmation for a theory of depolarization at very high energies, first developed in the 1970s by Derbenev and Kontratenko. The results will help to guide the design of any future high energy electron-position storage ring requiring polarized beams. (13 refs).
Calculations of beam dynamics in Sandia linear electron accelerators, 1984
International Nuclear Information System (INIS)
Poukey, J.W.; Coleman, P.D.
1985-03-01
A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table
Nonlinear dynamics of a sliding beam on two supports under ...
Indian Academy of Sciences (India)
The beam is referred to as a Gospodnetic–Frisch-Fay beam, after the researchers who reported its static deformation in closed form. The freedom of the beam to slide on its supports imparts a nonlinear characteristic to the force-deﬂection response. The restoring elastic force of the beam possesses characteristics similar to ...
Thermal and dynamic effects in electron beam welding cavities
Energy Technology Data Exchange (ETDEWEB)
Schauer, D.A.
1977-08-01
An experimental and analytical study of the temperature distributions along the molten metal surface in an electron beam welding cavity is described. Surface temperature distributions in cavities were measured with a narrow band infrared radiation pyrometer. The availability of the cavity temperature measurements allowed estimates to be made for the vapor pressure and surface energy forces as a function of cavity position. The results indicated a force imbalance occurred in the cavity. It is postulated that at the location of the force imbalance a liquid material projection forms periodically and moves into the path of the electron beam. The liquid in this projection is driven towards the bottom, partially filling the cavity. This action is followed by the electron beam pushing the liquid aside to form a maximum depth cavity. This process is then repeated. An analysis for predicting cavity oscillation frequency shows reasonable agreement with frequencies measured at the weld root determined from weld sections. A study of the measured temperature distributions in cavities of varying depth combined with the force imbalance observations led to an interpretation of when spiking might occur. A procedure is proposed for determining the spiking tendency for a given set of weld parameters. The results of this study permit a designer to select apriori the best set of weld parameters to achieve a weld of predictable quality.
Thermal and dynamic effects in electron beam welding cavities
International Nuclear Information System (INIS)
Schauer, D.A.
1977-08-01
An experimental and analytical study of the temperature distributions along the molten metal surface in an electron beam welding cavity is described. Surface temperature distributions in cavities were measured with a narrow band infrared radiation pyrometer. The availability of the cavity temperature measurements allowed estimates to be made for the vapor pressure and surface energy forces as a function of cavity position. The results indicated a force imbalance occurred in the cavity. It is postulated that at the location of the force imbalance a liquid material projection forms periodically and moves into the path of the electron beam. The liquid in this projection is driven towards the bottom, partially filling the cavity. This action is followed by the electron beam pushing the liquid aside to form a maximum depth cavity. This process is then repeated. An analysis for predicting cavity oscillation frequency shows reasonable agreement with frequencies measured at the weld root determined from weld sections. A study of the measured temperature distributions in cavities of varying depth combined with the force imbalance observations led to an interpretation of when spiking might occur. A procedure is proposed for determining the spiking tendency for a given set of weld parameters. The results of this study permit a designer to select apriori the best set of weld parameters to achieve a weld of predictable quality
Slip-stacking Dynamics for High-Power Proton Beams at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)
2015-12-01
Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.
Generation and study of relativistic electron beam
International Nuclear Information System (INIS)
Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.
1977-01-01
Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)
Energy Technology Data Exchange (ETDEWEB)
Kucheyev, S. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-03-07
The major goal of this project is to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation processes in nuclear materials. In particular, the project exploits a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. For Year 2, this project had the following two major milestones: (i) measurement of the temperature dependence of defect dynamics in SiC and (ii) the evaluation of the robustness of the pulsed beam method from studies of the defect generation rate. As we describe below, both of these milestones have been met.
Dynamic analysis of a Bernoulli-Euler beam via the Laplace ...
African Journals Online (AJOL)
In this paper the dynamic analysis of a simply supported Bernoulli-Euler beam subjected to a distributed load was investigated. The simplified form of the mathematical expression defining the dynamic displacement of the beam was formulated using the variational Indicator of the Hamiltonian principle. The method of ...
An approach to fundamental study of beam loss minimization
International Nuclear Information System (INIS)
Jameson, R.A.
1999-01-01
The accelerator design rules involving rms matching, developed at CERN in the 1970's, are discussed. An additional rule, for equipartitioning the beam energy among its degrees of freedom, may be added to insure an rms equilibrium conditions. If the strong stochasticity threshold is avoided, as it is in realistic accelerator designs, the dynamics is characterized by extremely long transient settling times, making the role of equipartitioning hard to explain. An approach to systematic study using the RFQ accelerator as a simulation testbed is discussed. New methods are available from recent advances in research on complexity, nonlinear dynamics, and chaos
MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION
Energy Technology Data Exchange (ETDEWEB)
Lee, Yuan T.; Shen, Y. Ron
1980-06-01
The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.
Crossed beam polyatomic reaction dynamics: recent advances and new insights.
Pan, Huilin; Liu, Kopin; Caracciolo, Adriana; Casavecchia, Piergiorgio
2017-12-11
Over the past ten years or so, great advances in our understanding of the dynamics of elementary (bimolecular) polyatomic reactions in the gas-phase have occurred. This has been made possible by critical improvements (a) in crossed molecular beam (CMB) instruments with rotating mass spectrometric detection and time-of-flight analysis, especially following the implementation of soft ionization (by tunable low energy electrons or vacuum-ultraviolet synchrotron radiation) for product detection with increased sensitivity and universal detection power, and (b) in REMPI-slice velocity map ion imaging (VMI) detection techniques in pulsed CMB experiments for obtaining product pair-correlated information through high-resolution measurements directly in the center of mass system. The improved universal CMB method is permitting us to identify all primary reaction products, characterize their formation dynamics, and determine the branching ratios (BRs) for multichannel non-adiabatic reactions, such as those of ground state oxygen atoms, O( 3 P), with unsaturated hydrocarbons (alkynes, alkenes, dienes). The improved slice VMI CMB technique is permitting us to explore at an unprecedented level of detail, through pair-correlated measurements, the reaction dynamics of a prototype polyatomic molecule such as CH 4 (and isotopologues) in its ground state with a variety of important X radicals such as F, Cl, O, and OH. In this review, we highlight this recent progress in the field of CMB reaction dynamics, with an emphasis on the experimental side, but with the related theoretical work, at the level of state-of-the-art calculations of both the underlying potential energy surfaces and the reaction dynamics, noted throughout. In particular, the focus is (a) on the effect of molecular complexity and structure on product distributions, branching ratios and role of intersystem crossing for the multichannel, addition-elimination reactions of unsaturated hydrocarbons with O atoms, and (b) on
Gamma Putty dosimetric studies in electron beam
Directory of Open Access Journals (Sweden)
Aime M Gloi
2016-01-01
Full Text Available Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83, bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively and measured the ionizing radiation on the central axis (CAX for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12-20 MeV and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6-9 MeV.
A large ion beam device for laboratory solar wind studies
Ulibarri, Zach; Han, Jia; Horányi, Mihály; Munsat, Tobin; Wang, Xu; Whittall-Scherfee, Guy; Yeo, Li Hsia
2017-11-01
The Colorado Solar Wind Experiment is a new device constructed at the Institute for Modeling Plasma, Atmospheres, and Cosmic Dust at the University of Colorado. A large cross-sectional Kaufman ion source is used to create steady state plasma flow to model the solar wind in an experimental vacuum chamber. The plasma beam has a diameter of 12 cm at the source, ion energies of up to 1 keV, and ion flows of up to 0.1 mA/cm2. Chamber pressure can be reduced to 4 × 10-5 Torr under operating conditions to suppress ion-neutral collisions and create a monoenergetic ion beam. The beam profile has been characterized by a Langmuir probe and an ion energy analyzer mounted on a two-dimensional translation stage. The beam profile meets the requirements for planned experiments that will study solar wind interaction with lunar magnetic anomalies, the charging and dynamics of dust in the solar wind, plasma wakes and refilling, and the wakes of topographic features such as craters or boulders. This article describes the technical details of the device, initial operation and beam characterization, and the planned experiments.
Uses of pulsed electron beam to solid-states studies
International Nuclear Information System (INIS)
Itoh, Noriaki; Nakayama, Takeyoshi; Tanimura, Katsumi; Chong, Taisu; Saidoh, Masahiro
1982-01-01
A survey is given on the use of the pulsed electron beams to studies of solid states. Even though main emphasis is placed on the studies carried out at the Faculty of Engineering, Nagoya University, using the Pulsed Electron Facilities installed in 1970, the works carried out at other institutes are also included. Only the studies of crystalline solids with simple structures, such as alkali halides and aromatic hydrocarbons are covered. In the first place several instrumentations which have extended utilities of pulsed-electron beams are presented. Then we discuss the studies of the dynamic of excitons, emphasizing the advantages and disadvantages of the usage of the electron pulses. Then usages of the pulsed-electron beam for the studies of the excited states of the quasi-stable defects are described. Application of the electron pulse for studies of the excitation spectroscopy of the photochemistry is described. The dynamic studies of defects introduced by electron-pulse bombardment is discussed finally. A summary is given, which includes also the possible future experiments. (author)
Longitudinal dynamics of RF-bunched and electron-cooled ion beam at the CSRe
Energy Technology Data Exchange (ETDEWEB)
Wen, W.Q. [Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou (China); Ma, X., E-mail: x.ma@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou (China); Bussmann, M. [Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden (Germany); Yuan, Y.J.; Zhang, D.C. [Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou (China); Winters, D.F.A [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Zhu, X.L.; Li, J.; Liu, H.P.; Zhao, D.M.; Wang, Z.S.; Mao, R.S.; Zhao, T.C.; Wu, J.X.; Ma, X.M.; Yan, T.L.; Li, G.H.; Yang, X.D.; Liu, Y.; Yang, J.C. [Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou (China); and others
2014-02-01
The longitudinal dynamics of RF-bunched and electron cooled ion beams have been studied at the experimental cooler storage ring (CSRe), at IMP Lanzhou. By RF-bunching the ion beam at the 50th and 100th harmonic of the revolution frequency, the longitudinal momentum spread and the bunch length of the {sup 22}Ne{sup 10+} ion beam with an energy of 70 MeV/u were measured by the new resonant Schottky pick-up and the capacitive pick-up, respectively. A minimum momentum spread of Δp/p=1.6×10{sup −5} has been reached with less than 10{sup 7} ions stored in the ring. By using the harmonic potential extracted from the Taylor expansion and the real sinusoidal potential of the bucket, the trend of momentum spread and synchrotron frequency as well as the bunch length as a function of beam current can be interpreted very well. According to this experiment, the RF-buncher is suitable for upcoming experiments on laser cooling of relativistic heavy ion beams at the CSRe.
A Study of the Effect of Beam-Beam Interactions on CESR Optics
Crittenden, James Arthur; Rubin, David
2005-01-01
The CESR storage ring facility has begun operation in an energy region which allows high-statistics investigation of charm-quark bound states. Experience during the first year has shown that the effects of parasitic crossings in the pretzel orbits present an important factor in injection efficiency, in the beam lifetime and stored current limits. We compare the results of beam dynamics and tracking calculations which quantify the effects of these parasitic crossings on optics and dynamic aperture for the injected and stored trajectories to observations of beam behavior.
Dynamics of heavy ion beams during longitudinal compression
International Nuclear Information System (INIS)
Ho, D.D.M.; Bangerter, R.O.; Lee, E.P.; Brandon, S.; Mark, J.W.K.
1987-01-01
Heavy ion beams with initially uniform line charge density can be compressed longitudinally by an order of magnitude in such a way that the compressed beam has uniform line charge density and velocity-tilt profiles. There are no envelope mismatch oscillations during compression. Although the transverse temperature varies along the beam and also varies with time, no substantial longitudinal and transverse emittance growth has been observed. Scaling laws for beam radius and transport system parameters are given
Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)
Margraf, Rachel; CERN. Geneva. EN Department
2017-01-01
In this report, I summarize my work of detailed study and optimization of the muon beam configuration of H4 beam line in SPS North Area. Using Monte-Carlo simulations, I studied the properties and behavior of the muon beam in combination with the field of the large, spectrometer “ GOLIATH” magnet at -1.5, -1.0, 0, 1.0 and 1.5 Tesla, which is shown to affect the central x position of the muon beam that is delivered to the Gamma Irradiation Facility (GIF++). I also studied the muon beam for different configurations of the two XTDV beam dumps upstream of GIF++ in the H4 beam line. I will also discuss my role in mapping the magnetic field of the GOLIATH magnet in the H4 beam line.
International Nuclear Information System (INIS)
Fedorov, V.A.
2000-01-01
A study is made of the dynamics of the ionospheric plasma in the vicinity of an earth satellite injecting an electron beam. The time evolution of the electric charge of the satellite is determined. The electric potential of the satellite is found to be well below the beam-cutoff potential. It is shown that, under conditions typical of active experiments in space, the plasma electrons are capable of neutralizing the satellite's charge
Beamed-Energy Propulsion (BEP) Study
George, Patrick; Beach, Raymond
2012-01-01
The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.
Dynamic analysis of an axially moving beam subject to inner pressure using finite element method
Energy Technology Data Exchange (ETDEWEB)
Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)
2017-06-15
A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.
Muon Beam Studies in the H4 beam line and the Gamma Irradiation Facility (GIF++)
Margraf, Rachel; CERN. Geneva. ATS Department
2018-01-01
In this note, we present detailed simulation results for the trajectory of a muon beam, traversing beam zones PPE-134 and PPE-154, produced by a 150 GeV positive hadron beam incident on collimators 9 & 10 in the H4 beam line when these collimators are placed off-beam axis to stop all hadrons and electrons. Using G4Beamline, a GEANT-4 based Monte-Carlo program, the trajectory of the muon beam has been studied for several field strengths of the GOLIATH magnet, as well as for different polarities. The position of the beam at the Gamma Irradiation Facility (GIF++), located downstream the PPE-144 area, is also presented. In addition, two configurations of the two XTDV’s present in the line (XTDV.022.520 and XTDV.022.610) have been studied, with the purpose to simulate the pion contamination of the beam both in PPE134 and GIF++.
International Nuclear Information System (INIS)
Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F.; Balderas-Navarro, R.E.
2008-01-01
Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E 1 optical transition as a probe. We follow the kinetics of the deposition of GaAs and In 0.3 Ga 0.7 As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As 4 or As 2 flux pressure of 5 x 10 -6 Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ortega-Gallegos, J.; Lastras-Martinez, A.; Lastras-Martinez, L.F. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Balderas-Navarro, R.E. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico); Facultad de Ciencias, Universidad Autonoma de San Luis Potosi. Alvaro Obregon 64, San Luis Potosi (Mexico)
2008-07-01
Reflectance-Anisotropy (RA) observations during the Molecular Beam Epitaxy (MBE) growth of zincblende semiconductors films were carried out using the E{sub 1} optical transition as a probe. We follow the kinetics of the deposition of GaAs and In{sub 0.3}Ga{sub 0.7}As on GaAs(001) at growth rates of 0.2 and 0.25 ML/s, respectively. During growth we used a constant As{sub 4} or As{sub 2} flux pressure of 5 x 10{sup -6} Torr. Clear RA-oscillations were observed during growth with a period that nearly coincides with the growth period for a Ga-As bilayer. RHEED was used as an auxiliary technique in order to obtain a correlation between RHEED and RA oscillations. On the basis of our results, we argue that RAS oscillations are mainly associated to periodic changes in surface atomic structure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Beam structure and transverse emittance studies of high-energy ion beams
International Nuclear Information System (INIS)
Saadatmand, K.; Johnson, K.F.; Schneider, J.D.
1991-01-01
A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs
Beam structure and transverse emittance studies of high-energy ion beams
Saadatmand, K.; Johnson, K. F.; Schneider, J. D.
1991-05-01
A visual diagnostic technique was developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position).
Sonar beam dynamics in leaf-nosed bats.
Linnenschmidt, Meike; Wiegrebe, Lutz
2016-07-07
Ultrasonic emissions of bats are directional and delimit the echo-acoustic space. Directionality is quantified by the aperture of the sonar beam. Recent work has shown that bats often widen their sonar beam when approaching movable prey or sharpen their sonar beam when navigating through cluttered habitats. Here we report how nose-emitting bats, Phyllostomus discolor, adjust their sonar beam to object distance. First, we show that the height and width of the bats sonar beam, as imprinted on a parabolic 45 channel microphone array, varies even within each animal and this variation is unrelated to changes in call level or spectral content. Second, we show that these animals are able to systematically decrease height and width of their sonar beam while focusing on the approaching object. Thus it appears that sonar beam sharpening is a further, facultative means of reducing search volume, likely to be employed by stationary animals when the object position is close and unambiguous. As only half of our individuals sharpened their beam onto the approaching object we suggest that this strategy is facultative, under voluntary control, and that beam formation is likely mediated by muscular control of the acoustic aperture of the bats' nose leaf.
Adjustable static and dynamic actuation of clamped-guided beams using electrothermal axial loads
Alcheikh, Nouha
2018-02-14
The paper presents adjustable static and dynamic actuations of in-plane clamped-guided beams. The structures, of variable stiffness, can be used as highly tunable resonators and actuators. Axial loads are applied through electrothermal U-shaped and flexure beams actuators stacked near the edges of curved (arch) beams. The electrothermal actuators can be configurred in various ways to adjust as desired the mechanical stiffness of the structures; thereby controlling their deformation stroke as actuators and their operating resonance frequency as resonators. The experimental and finite element results demonstrate the flexibility of the designs in terms of static displacements and resonance frequencies of the first and second symmetric modes of the arches. The results show considerable increase in the resonance frequency and deflection of the microbeam upon changing end actuation conditions, which can be promising for low voltage actuation and tunable resonators applications, such as filters and memory devices. As case studies of potential device configurations of the proposed design, we demonstrate eight possibilities of achieving new static and dynamic behaviors, which produce various resonance frequencies and static displacement curves. The ability to actively shift the entire frequency response curve of a device is desirable for several applications to compensate for in-use anchor degradations and deformations. As an example, we experimentally demonstrate using the device as a resonant logic gate, with active resonance tuning, showing fundamental 2-bit logic functions, such as AND,XOR, and NOR.
Active Nozzle Control and Integrated Design Optimization of a Beam Subject to Fluid-Dynamic Forces
Borglund, D.
1999-02-01
Active nozzle control is used to improve the stability of a beam subject to forces induced by fluid flow through attached pipes. The control system has a significant effect on the structural stability, making both flutter and divergence type of instabilities possible. The stability analysis is carried out using a state-variable approach based on a finite element formulation of the structural dynamics. The simultaneous design of the control system and the beam shape minimizing structural mass is performed using numerical optimization. The inclusion of the control system in the optimization gives a considerable reduction of the structural mass but results in an optimal design which is very sensitive to imperfections. Using a simple model of the control system uncertainties, a more robust design is obtained by solving a modified optimization problem. Throughout the study, the theoretical findings are verified by experiments.
Energy Technology Data Exchange (ETDEWEB)
Wang, Guimei [Peking Univ., Beijing (China)
2011-12-31
Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam
Beam dynamics calculations for the acceleration of different ions in a heavy ion linac
International Nuclear Information System (INIS)
Deitinghoff, H.; Parisi, G.; Sauer, A.; Pabst, M.
1996-01-01
Heavy ion linear accelerators are well suited as driver in heavy ion inertial fusion facilities. In present scenarios the acceleration of different ion species or the simultaneous acceleration of different isotopes in the same linac are discussed. Beam dynamics calculations have been performed to check the beam behaviour and the conditions for such a kind of operation in RFQ and DTL. (author)
Diveyev, B.; Butyter, I.; Pelekh, Ya.
2018-03-01
A theory of dynamic bending of beams made of functionally graded materials is presented. The refined theoretical model takes into account the shear and normal strains and stresses. The distribution of stresses in the beams in cylindrical bending at different vibration frequencies is considered. Their damping properties in the frequency range are estimated.
Dynamic spatial structure of spontaneous beams in photorefractive bismuth sillicon oxide
DEFF Research Database (Denmark)
Buchhave, Preben; Lyuksyutov, S.; Vasnetsov, M.
1996-01-01
We report the domain structure of spontaneously occurring beams (subharmonics) in photorefractive bismuth silicon oxide with an applied electric field from 1 to 6 kV/cm and a running grating. The subharmonic beams are generated in a pattern of domains that evolve dynamically as they move through...
Studies of nuclei using radioactive beams
International Nuclear Information System (INIS)
Piercey, R.B.
1989-07-01
The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden
International Nuclear Information System (INIS)
Bohn, C.L.; Piot, P.; Erdelyi, B.
2008-01-01
According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.
Potentiodynamic corrosion studies on laser beam welded austenitic stainless steel AISI 321
Nair, Adithya R.; Niranjhan, P.; Abijith, M. N.; Arivarasu, M.; Manikandan, M.; Padmanaban, R.; Arivazhagan, N.
2017-11-01
In this study, the microstructure and corrosion characteristics of laser beam welded austenitic stainless plates has been studied. CO2 Laser beam produced defect free weldments in AISI 321 with no trace of heat affected zone. The microstructural studies revealed distributed ferrites in the weld zone. Potentio-dynamic polarization studies were carried out on the weldments in 5% NaCl environment in order to understand corrosion current, potential and rate.
Measurement techniques for low emittance tuning and beam dynamics at CESR
Billing, M. G.; Dobbins, J. A.; Forster, M. J.; Kreinick, D. L.; Meller, R. E.; Peterson, D. P.; Ramirez, G. A.; Rendina, M. C.; Rider, N. T.; Sagan, D. C.; Shanks, J.; Sikora, J. P.; Stedinger, M. G.; Strohman, C. R.; Williams, H. A.; Palmer, M. A.; Holtzapple, R. L.; Flanagan, J.
2018-03-01
After operating as a High Energy Physics electron-positron collider, the Cornell Electron-positron Storage Ring (CESR) has been converted to become a dedicated synchrotron light source for the Cornell High Energy Synchrotron Source (CHESS). Over the course of several years CESR was adapted for accelerator physics research as a test accelerator, capable of studying topics relevant to future damping rings, colliders and light sources. Initially some specific topics were targeted for accelerator physic research with the storage ring in this mode, labeled CesrTA. These topics included 1) tuning techniques to produce low emittance beams, 2) the study of electron cloud (EC) development in a storage ring and 3) intra-beam scattering effects. The complete conversion of CESR to CesrTA occurred over a several year period, described elsewhere [1–3]. A number of specific instruments were developed for CesrTA. Much of the pre-existing instrumentation was modified to accommodate the scope of these studies and these are described in a companion paper [4]. To complete this research, a number of procedures were developed or modified, often requiring coordinated measurements among different instruments [5]. This paper provides an overview of types of measurements employed for the study of beam dynamics during the operation of CesrTA.
Study on shear behavior of FRP strengthened concrete beams
Zhao, J. K.; Xu, X. S.
2017-04-01
There are many researches on concrete bending beams reinforced with FRP, and the beam section of the bending strength is enhanced, it is necessary to carry out an oblique section bearing capacity review, if the bearing capacity is insufficient, it is also necessary to strengthen, so as to ensure the ductility of the beam and meet the needs of Engineering safety. In this paper, four concrete beams strengthened with different fibers (CFRP, HFRP and GFRP) were used to study the stress characteristics, failure forms, reasonable reinforcement methods, beam strain conditions, bearing capacity, stiffness and deformation capacity of shear behavior of concrete beams strengthened with different fibers and different forms of reinforcement. The experimental results showed that the FRP reinforcement can not only improve the shear bearing capacity and ultimate deformation of beam, but also increase the stiffness of the beam, reduce the bending deformation under the same load beam, and delay the extension of diagonal cracks.
Beam Dynamics in an Electron Lens with the Warp Particle-in-cell Code
Stancari, Giulio; Redaelli, Stefano
2014-01-01
Electron lenses are a mature technique for beam manipulation in colliders and storage rings. In an electron lens, a pulsed, magnetically confined electron beam with a given current-density profile interacts with the circulating beam to obtain the desired effect. Electron lenses were used in the Fermilab Tevatron collider for beam-beam compensation, for abort-gap clearing, and for halo scraping. They will be used in RHIC at BNL for head-on beam-beam compensation, and their application to the Large Hadron Collider for halo control is under development. At Fermilab, electron lenses will be implemented as lattice elements for nonlinear integrable optics. The design of electron lenses requires tools to calculate the kicks and wakefields experienced by the circulating beam. We use the Warp particle-in-cell code to study generation, transport, and evolution of the electron beam. For the first time, a fully 3-dimensional code is used for this purpose.
Beam studies at the SPEAR3 synchrotron using a digital optical mask
Zhang, H. D.; Fiorito, R. B.; Corbett, J.; Shkvarunets, A. G.; Tian, K.; Fisher, A.
2016-05-01
The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40-80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.
Beam studies at the SPEAR3 synchrotron using a digital optical mask
Energy Technology Data Exchange (ETDEWEB)
Zhang, H. D.; Fiorito, R. B.; Corbett, J.; Shkvarunets, A. G.; Tian, K.; Fisher, A.
2016-05-01
The 3GeV SPEAR3 synchrotron light source operates in top-up injection mode with up to 500 mA circulating in the storage ring (equivalently 392 nC). Each injection pulse contains 40–80 pC producing a contrast ratio between total stored charge and injected charge of about 6500:1. In order to study transient injected beam dynamics during user operations, it is desirable to optically image the injected pulse in the presence of the bright stored beam. In the present work this is done by imaging the visible component of the synchrotron radiation onto a digital micro-mirror-array device (DMD), which is then used as an optical mask to block out light from the bright central core of the stored beam. The physical masking, together with an asynchronously-gated, ICCD imaging camera, makes it possible to observe the weak injected beam component on a turn-by-turn basis. The DMD optical masking system works similar to a classical solar coronagraph but has some distinct practical advantages: i.e. rapid adaption to changes in the shape of the stored beam, a high extinction ratio for unwanted light and minimum scattering from the primary beam into the secondary optics. In this paper we describe the DMD masking method, features of the high dynamic range point spread function for the SPEAR3 optical beam line and measurements of the injected beam in the presence of the stored beam.
Experimental and theoretical study of precast beam-slab construction
African Journals Online (AJOL)
Part of the experimental program was dedicated to the study of mix design for the production of suitable hollow concrete beam tiles which bridge the space between the precast beam elements. The second part of the test program included the study of the precast beam element alone in order to investigate the response ...
Dynamical Dipole mode in heavy-ion fusion reactions by using stable and radioactive beams
Directory of Open Access Journals (Sweden)
Molini P.
2011-10-01
Full Text Available The existence of the dynamical dipole mode in the 192Pb composite system was investigated through the study of its prompt γ decay employing the 40Ca + 152Sm and 48Ca + 144Sm reactions at Elab =11 and 10.1 MeV/u, respectively. The γ-rays and light charged particles were detected in coincidence with evaporation residues and ﬁssion fragments. First results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole γ radiation could be of interest for the synthesis of super-heavy elements through ”hot” fusion reactions. Furthermore, by using radioactive beams and the prompt γ radiation as a probe we could get information on the symmetry energy at sub-saturation densities.
Dynamical Dipole mode in heavy-ion fusion reactions by using stable and radioactive beams
Pierroutsakou, D.; Parascandolo, C.; Silvestri, R.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Colonna, M.; Coniglione, R.; De Filippo, E.; De Rosa, A.; Del Zoppo, A.; Di Toro, M.; Emanuele, U.; Farinon, F.; Guglielmetti, A.; Inglima, G.; La Commara, M.; Maiolino, C.; Martin, B.; Mazzocco, M.; Mazzocchi, C.; Molini, P.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Signorini, C.; Soramel, F.; Trifirò, A.; Trimarchi, M.
2011-10-01
The existence of the dynamical dipole mode in the 192Pb composite system was investigated through the study of its prompt γ decay employing the 40Ca + 152Sm and 48Ca + 144Sm reactions at Elab =11 and 10.1 MeV/u, respectively. The γ-rays and light charged particles were detected in coincidence with evaporation residues and fission fragments. First results of this experiment show that the dynamical dipole mode survives in collisions involving heavier mass reaction partners than those studied previously. As a fast cooling mechanism on the fusion path, the prompt dipole γ radiation could be of interest for the synthesis of super-heavy elements through "hot" fusion reactions. Furthermore, by using radioactive beams and the prompt γ radiation as a probe we could get information on the symmetry energy at sub-saturation densities.
International Nuclear Information System (INIS)
Yildiz, H. Duran; Cakir, R.; Porsuk, D.
2015-01-01
Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; E c =19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles
Beam-dynamic effects at the CMS BRIL van der Meer scans
Babaev, Anton
2017-01-01
The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC. BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-beta effect. Both effects are important to luminosity measurements and influence calibrat...
Element for Beam Dynamic Analysis Based on Analytical Deflection Trial Function
Directory of Open Access Journals (Sweden)
Qiongqiong Cao
2015-01-01
Full Text Available For beam dynamic finite element analysis, according to differential equation of motion of beam with distributed mass, general analytical solution of displacement equation for the beam vibration is obtained. By applying displacement element construction principle, the general solution of displacement equation is conversed to the mode expressed by beam end displacements. And taking the mode as displacement trial function, element stiffness matrix and element mass matrix for beam flexural vibration and axial vibration are established, respectively, by applying principle of minimum potential energy. After accurate integral, explicit form of element matrix is obtained. The comparison results show that the series of relative error between the solution of analytical trial function element and theoretical solution is about 1×10-9 and the accuracy and efficiency are superior to that of interpolation trial function element. The reason is that interpolation trial function cannot accurately simulate the displacement mode of vibrating beam. The accuracy of dynamic stiffness matrix method is almost identical with that of analytical trial function. But the application of dynamic stiffness matrix method in engineering is limited. The beam dynamic element obtained in this paper is analytical and accurate and can be applied in practice.
Beam dynamics and commissioning of low and medium energy H- beam at Linac4
Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad
The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...
Directory of Open Access Journals (Sweden)
Korhan Ozgan
2013-01-01
Full Text Available Dynamic analysis of foundation plate-beam systems with transverse shear deformation is presented using modified Vlasov foundation model. Finite element formulation of the problem is derived by using an 8-node (PBQ8 finite element based on Mindlin plate theory for the plate and a 2-node Hughes element based on Timoshenko beam theory for the beam. Selective reduced integration technique is used to avoid shear locking problem for the evaluation of the stiffness matrices for both the elements. The effect of beam thickness, the aspect ratio of the plate and subsoil depth on the response of plate-beam-soil system is analyzed. Numerical examples show that the displacement, bending moments and shear forces are changed significantly by adding the beams.
High resolution simulation of beam dynamics in electron linacs for x-ray free electron lasers
Directory of Open Access Journals (Sweden)
J. Qiang
2009-10-01
Full Text Available In this paper we report on large-scale high resolution simulations of beam dynamics in electron linacs for the next-generation x-ray free electron lasers (FELs. We describe key features of a parallel macroparticle simulation code including three-dimensional (3D space-charge effects, short-range structure wakefields, coherent synchrotron radiation (CSR wakefields, and treatment of radio-frequency (rf accelerating cavities using maps obtained from axial field profiles. We present a study of the microbunching instability causing severe electron beam fragmentation in the longitudinal phase space which is a critical issue for future FELs. Using parameters for a proposed FEL linac at Lawrence Berkeley National Laboratory (LBNL, we show that a large number of macroparticles (beyond 100 million is generally needed to control the numerical macroparticle shot noise and avoid overestimating the microbunching instability. We explore the effect of the longitudinal grid on simulation results. We also study the effect of initial uncorrelated energy spread on the final uncorrelated energy spread of the beam for the FEL linac.
Dynamics and transport of laser-accelerated particle beams
Energy Technology Data Exchange (ETDEWEB)
Becker, Stefan
2010-04-19
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
Dynamics and transport of laser-accelerated particle beams
International Nuclear Information System (INIS)
Becker, Stefan
2010-01-01
The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects
Design study of low-energy beam transport for multi-charge beams at RAON
Bahng, Jungbae; Qiang, Ji; Kim, Eun-San
2015-12-01
The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.
Beam dynamics simulation of the Spallation Neutron Source linear accelerator
International Nuclear Information System (INIS)
Takeda, H.; Billen, J.H.; Bhatia, T.S.
1998-01-01
The accelerating structure for Spallation Neutron Source (SNS) consists of a radio-frequency-quadrupole-linac (RFQ), a drift-tube-linac (DTL), a coupled-cavity-drift-tube-linac (CCDTL), and a coupled-cavity-linac (CCL). The linac is operated at room temperature. The authors discuss the detailed design of linac which accelerates an H - pulsed beam coming out from RFQ at 2.5 MeV to 1000 MeV. They show a detailed transition from 402.5 MHz DTL with a 4 βλ structure to a CCDTL operated at 805 MHz with a 12 βλ structure. After a discussion of overall feature of the linac, they present an end-to-end particle simulation using the new version of the PARMILA code for a beam starting from the RFQ entrance through the rest of the linac. At 1000 MeV, the beam is transported to a storage ring. The storage ring requires a large (±500-keV) energy spread. This is accomplished by operating the rf-phase in the last section of the linac so the particles are at the unstable fixed point of the separatrix. They present zero-current phase advance, beam size, and beam emittance along the entire linac
Awrejcewicz, J.; Krysko, A. V.; Pavlov, S. P.; Zhigalov, M. V.; Krysko, V. A.
2017-09-01
Chaotic dynamics of microbeams made of functionally graded materials (FGMs) is investigated in this paper based on the modified couple stress theory and von Kármán geometric nonlinearity. We assume that the beam properties are graded along the thickness direction. The influence of size-dependent and functionally graded coefficients on the vibration characteristics, scenarios of transition from regular to chaotic vibrations as well as a series of static problems with an emphasis put on the load-deflection behavior are studied. Our theoretical/numerical analysis is supported by methods of nonlinear dynamics and the qualitative theory of differential equations supplemented by Fourier and wavelet spectra, phase portraits, and Lyapunov exponents spectra estimated by different algorithms, including Wolf's, Rosenstein's, Kantz's, and neural networks. We have also detected and numerically validated a general scenario governing transition into chaotic vibrations, which follows the classical Ruelle-Takens-Newhouse scenario for the considered values of the size-dependent and grading parameters.
IMPACT simulation and the SNS linac beam
International Nuclear Information System (INIS)
Zhang, Y.; Qiang, J.
2008-01-01
Multi-particle tracking simulations for the SNS linac beam dynamics studies are performed with the IMPACT code. Beam measurement results are compared with the computer simulations, including beam longitudinal halo and beam losses in the superconducting linac, transverse beam Courant-Snyder parameters and the longitudinal beam emittance in the linac. In most cases, the simulations show good agreement with the measured results
Longitudinal dynamics of laser-cooled fast ion beams
DEFF Research Database (Denmark)
Weidemüller, M.; Eike, B.; Eisenbarth, U.
1999-01-01
-transverse coupling mechanisms. Laser cooling in novel bunch forms consisting of square-well buckets leads to longitudinally space-charge dominated beams. The observed longitudinal ion density distributions can be well described by a self-consistent mean-field model based on a thermodynamic Debye-Huckel approach......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...
Longitudinal dynamics of laser-cooled fast ion beams
DEFF Research Database (Denmark)
Weidemüller, M.; Eike, B.; Eisenbarth, U.
1999-01-01
We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...
Particle-core model for transverse dynamics of beam halo
Directory of Open Access Journals (Sweden)
T. P. Wangler
1998-12-01
Full Text Available The transverse motion of beam halo particles is described by a particle-core model which uses the space-charge field of a continuous cylindrical oscillating beam core in a uniform linear focusing channel to provide the force that drives particles to large amplitudes. The model predicts a maximum amplitude for the resonantly-driven particles as a function of the initial mismatch. We have calculated these amplitude limits and have estimated the growth times for extended-halo formation as a function of both the space-charge tune-depression ratio and a mismatch parameter. We also present formulas for the scaling of the maximum amplitudes as a function of the beam parameters. The model results are compared with multiparticle simulations and we find very good agreement for a variety of initial particle distributions.
Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory
Buakor, K.; Rimjaem, S.
2017-09-01
Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.
Beam Dynamics Simulations of the REX-ISOLDE A/q-separator
Fraser, M A; Wenander, F
2014-01-01
The REX-ISOLDE A=q-separator selects the radioactive species of interest from the background of residual gas ions coming from the EBIS ion source. In the context of the HIE-ISOLDE upgrade, including the implementation of a multi-harmonic buncher and an upgraded EBIS, the separator and the beam line between the EBIS and RFQ, which we will call the Low Energy Beam Transfer (LEBT) line, has been simulated by tracking particles through the field maps of each active element using the TRACK [4] code. The simulations were benchmarked with a COSY-1 model that was improved to take into account the fringe fields of the electrostatic quadrupoles, electrostatic deflector and magnetic bender; the model can be used to tune and optimise the separator with higher-order effects taken into account. In this note the beam dynamics simulations are documented and the transverse and longitudinal acceptance of the separator line studied to provide design constraints for the EBIS upgrade.
Experimental study on beam for composite CES structural system
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
International Nuclear Information System (INIS)
Rabitz, Herschel; Ho, Tak-San
2003-01-01
This final report draws together the research carried from February, 1986 through January, 2003 concerning a series of topics in chemical dynamics. The specific areas of study include molecular collisions, chemical kinetics, data inversion to extract potential energy surfaces, and model reduction of complex kinetic systems
Dynamic modeling of beams with non-material, deformation-dependent boundary conditions
Humer, Alexander
2013-02-01
In conventional problems of structural mechanics, both kinematic boundary conditions and external forces are prescribed at fixed material points that are known in advance. If, however, a structure may move relative to its supports, the position of the imposed constraint relations generally changes in the course of motion. A class of problems which inherently exhibits this particular type of non-material boundary conditions is that of axially moving continua. Despite varying in time, the positions of the supports relative to the material points of the body have usually assumed to be known a priori throughout the deformation process in previous investigations. This requirement is abandoned in the present paper, where the dynamic behavior of a structure is studied, which may move freely relative to one of its supports. As a consequence, the position of such a non-material boundary relative to the structure does not only change in time but also depends on the current state of deformation of the body. The variational formulation of the equilibrium relations of a slender beam that may undergo large deformations is presented. To this end, a theory based on Reissner's geometrically exact relations for the plane deformation of beams is adopted, in which shear deformation is neglected for the sake of brevity. Before a finite element scheme is developed, a deformation-dependent transformation of the beam's material coordinate is introduced, by which the varying positions of the constraint relations are mapped onto fixed points with respect to the new non-material coordinate. By means of this transformation, additional convective terms emerge from the virtual work of the inertia forces, whose symmetry properties turn out to be different from what has previously been presented in the literature. In order to obtain approximate solutions, a finite element discretization utilizing absolute nodal displacements as coordinates is subsequently used in characteristic numerical examples
Transverse wakefield of waveguide damped structures and beam dynamics
International Nuclear Information System (INIS)
Lin, X.
1995-08-01
In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield
Transverse wakefield of waveguide damped structures and beam dynamics
Energy Technology Data Exchange (ETDEWEB)
Lin, Xintian [Univ. of California, San Diego, CA (United States)
1995-08-01
In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q_{ext} of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q_{ext} of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t^{-3/2} rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield.
Study of computerized tomography using neutron beam
International Nuclear Information System (INIS)
Pereira, W.W.
1991-05-01
This paper aims to demonstrate the advantages, shortcomings and complementaries of a tomography development using neutrons over the one employing gamma rays in the context of their applications to non destructive essays. A simulated experimental study was performed in order to compare the two aforementioned tomographic procedures as applied to some materials. These materials were chosen for their clear advantages and complementaries as, for instance, aluminium, iron, plastic and aluminium hydroxide. In this work two tomographic systems, are employed both with parallel beams. The first with a gamma radiation source (Caesium-137), with an energy of 662 KeV and an activity of 3,9 x 10 9 Bq (100 mCi) and the second one employing a neutron source, the Argonaut Reactor of the Instituto de Engenharia Nuclear, IEN/CNEN, from where the thermal neutron beam of about 10 5 n/(cm.s) was obtained. It is possible to conclude from the simulated and experimental results, by means of image analysis and distortion measurements, that for a given material the adequate radiation and its energy may be chosen so as to better characterize it. (author)
Studies of space charge effects on operating electron beam ion trap at low electron beam energy
Energy Technology Data Exchange (ETDEWEB)
Jin, Xuelong; Fei, Zejie; Xiao, Jun; Lu, Di; Hutton, Roger [The Key Lab of Applied Ion Beam Physics, Ministry of Education (China); Shanghai EBIT Laboratory, Modern Physics Institute, Fudan University, Shanghai (China); Zou, Yaming, E-mail: zouym@fudan.edu.cn [The Key Lab of Applied Ion Beam Physics, Ministry of Education (China); Shanghai EBIT Laboratory, Modern Physics Institute, Fudan University, Shanghai (China)
2013-08-21
An electron beam ion trap (EBIT) is a powerful machine for disentangling studies of atomic processes in plasmas. To assist studies on edge plasma spectroscopic diagnostics, a very low energy EBIT, SH-PermEBIT, has been set up at the Shanghai EBIT lab. Large amounts of simulation works were done to study the factors which hinder the EBIT from operation at very low electron beam energies. Under the guide line of the simulation results, we finally managed to successfully reach 60 eV for the lower end of the electron beam energy with a beam transmission above 57%. In this presentation, simulation studies of the space charge effect, which is one of the most important causes of beam loss, was made based on Tricomp (Field precision)
Feasibility study for mega-electron-volt electron beam tomography.
Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R
2012-09-01
Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.
Beam and experiments summary [neutrino studies
Blondel, A; Campanelli, M; Cervera-Villanueva, Anselmo; Cline, David B; Collot, J; De Jong, M; Donini, Andrea; Dydak, Friedrich; Edgecock, R; Gavela-Legazpi, Maria Belen; Gómez-Cadenas, J J; González-Garciá, M Concepción; Gruber, P; Harris, D A; Hernández, Pilar; Kuno, Y; Litchfield, P J; McFarland, K; Mena, O; Migliozzi, P; Palladino, Vittorio; Panman, J; Papadopoulos, I M; Para, A; Peña-Garay, C; Pérez, P; Rigolin, Stefano; Romanino, Andrea; Rubbia, André; Strolin, P; Wojcicki, S G
2000-01-01
The discovery of neutrino oscillations marks a major milestone in the history of neutrino physics, and opens a new window to the still mysterious origin of masses and flavour mixing. Many current and forthcoming experiments will. Answer open questions; however, a major step forward, up to and possibly including CP violation in the neutrino-mixing matrix, requires the neutrino beams from a neutrino factory. The neutrino factory is a new concept for producing neutrino beams of unprecedented quality in terms of intensity, flavour composition, and precision of the beam parameters. Most importantly, the neutrino factory is the only known way to generate a high- intensity beam of electron neutrinos of high energy. The neutrino beam from a neutrino factory, in particular the electron-neutrino beam, enables the exploration of otherwise inaccessible domains in neutrino oscillation physics by exploiting baselines of planetary dimensions. Suitable detectors pose formidable challenges but seem within reach with only mode...
Energy Technology Data Exchange (ETDEWEB)
Devanz, Guillaume [Paris-6 Univ., 95 Paris (France)
1999-03-04
Laser triggered radiofrequency guns are the most luminous electron sources allowing to reach the performances requested by highly demanding applications like the e{sup +}/e{sup -}linear colliders and the short wave free electron lasers. CANDELA is a band S photo-injector triggered by a sub-picosecond laser. It allows reaching peak currents of hundred of amperes at average energies higher than 2 MeV. The original concept of two accelerating cavities aims at minimizing the transverse and longitudinal emittances following the Gao's principles. From practical reasons the operating parameters, particularly the laser pulse duration, do not correspond to those considered in the design. Hence, numerical simulations were performed to evaluate the gun's performances in experimental environment. The study of a stabile injector operation resulted in evolutions with consequences in the phase control systems implying the laser and the HF (Hyper Frequency) source. The beam transverse and longitudinal characteristics have been measured as a function of the main parameters i.e., the beam charge and the phase shift between the laser and the HF wave. Measurements of the transverse emittance energy dispersion and wave packed duration are presented for several injector configurations. The systems of existing beam measurements have been studied to determine the resolution and the experimental conditions to fulfill, in order to suggest improvements for the CANDELA beam. The experiments with the beam have been compared with numerical simulations. Agreement was obtained within wide ranges of parameters for most of the characteristic beam quantities.
Beam optics study of a negative ion source for neutral beam injection application at ASIPP
Energy Technology Data Exchange (ETDEWEB)
Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)
2017-04-15
In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.
Dynamic Response of Axially Loaded Euler-Bernoulli Beams
DEFF Research Database (Denmark)
Bayat, M.; Barari, Amin; Shahidi, M.
2011-01-01
The current research deals with application of a new analytical technique called Energy Balance Method (EBM) for a nonlinear problem. Energy Balance Method is used to obtain the analytical solution for nonlinear vibration behavior of Euler-Bernoulli beams subjected to axial loads. Analytical...
Dynamics of Pierce instability of hot electron beams
International Nuclear Information System (INIS)
Ignatov, A.M.; Novikov, V.N.
1986-01-01
On the base of a new method of numerical solution of the Vlasov equation evolution of complete function of electron distribution at the injection of hot electron beams into plasma bounded with electrodes is investigated. It is shown that despite the development of electrostatic instabilities in the system the currents can run substantially exceeding the Pierce critical current
Martin, Claudio Torregrosa; Calviani, Marco; Muñoz-Cobo, José-Luis
2016-01-01
Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 {\\deg}C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of...
ORBIT: A code for collective beam dynamics in high-intensity rings
International Nuclear Information System (INIS)
Holmes, J.A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-01-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings
ORBIT: A Code for Collective Beam Dynamics in High-Intensity Rings
Holmes, J. A.; Danilov, V.; Galambos, J.; Shishlo, A.; Cousineau, S.; Chou, W.; Michelotti, L.; Ostiguy, J.-F.; Wei, J.
2002-12-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK; the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings.
ORBIT: A CODE FOR COLLECTIVE BEAM DYNAMICS IN HIGH INTENSITY RINGS
International Nuclear Information System (INIS)
HOLMES, J.A.; DANILOV, V.; GALAMBOS, J.; SHISHLO, A.; COUSINEAU, S.; CHOU, W.; MICHELOTTI, L.; OSTIGUY, J.F.; WEI, J.
2002-01-01
We are developing a computer code, ORBIT, specifically for beam dynamics calculations in high-intensity rings. Our approach allows detailed simulation of realistic accelerator problems. ORBIT is a particle-in-cell tracking code that transports bunches of interacting particles through a series of nodes representing elements, effects, or diagnostics that occur in the accelerator lattice. At present, ORBIT contains detailed models for strip-foil injection, including painting and foil scattering; rf focusing and acceleration; transport through various magnetic elements; longitudinal and transverse impedances; longitudinal, transverse, and three-dimensional space charge forces; collimation and limiting apertures; and the calculation of many useful diagnostic quantities. ORBIT is an object-oriented code, written in C++ and utilizing a scripting interface for the convenience of the user. Ongoing improvements include the addition of a library of accelerator maps, BEAMLINE/MXYZPTLK, the introduction of a treatment of magnet errors and fringe fields; the conversion of the scripting interface to the standard scripting language, Python; and the parallelization of the computations using MPI. The ORBIT code is an open source, powerful, and convenient tool for studying beam dynamics in high-intensity rings
Directory of Open Access Journals (Sweden)
Claudio Torregrosa Martin
2016-07-01
Full Text Available Antiprotons are produced at CERN by colliding a 26 GeV/c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa’s. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii The existence of end-of-pulse tensile waves and its relevance on the overall response (iii A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.
Study on space charge compensation in negative hydrogen ion beam
Energy Technology Data Exchange (ETDEWEB)
Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)
2016-02-15
Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.
Molecular-beam studies of primary photochemical processes
International Nuclear Information System (INIS)
Lee, Y.T.
1982-12-01
Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser
Molecular-beam studies of primary photochemical processes
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.T.
1982-12-01
Application of the method of molecular-beam photofragmentation translational spectroscopy to the investigation of primary photochemical processes of polyatomic molecules is described. Examples will be given to illustrate how information concerning the energetics, dynamics, and mechanism of dissociation processes can be obtained from the precise measurements of angular and velocity distributions of products in an experiment in which a well-defined beam of molecules is crossed with a laser.
Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading
Goddard, B; Presland, A; Weterings, W
2006-01-01
In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.
Nonlinear Equations for Dynamics of Pretwisted Beams Undergoing Small Strains and Large Rotations.
1985-05-01
the objective is to develop a statement of the principle of virtual work for dynamic analysis of a rotating beam element with Euler-Bernoulli... virtual work as developed in the next three sections. ’i K~ .1" K’ 3. DEVELOPMENT OF GENERALIZED FORCES CAUSED BY INTERNAL LOADS FROM STRAIN ENERGY In...possible in the general case of beams being joined at arbitrary positions and orientations with respect to one another. The virtual work on the internal
TREDI: fully 3D beam dynamics simulation of RF guns, bendings and FELs
Giannessi, L; Quattromini, M
1999-01-01
We describe a three-dimensional code modelling the propagation of charged beams in accelerator devices. The inclusion of space charge fields is taken into account by means of the Lienard-Wiechert retarded potentials. As an illustration of the capabilities of the program, the results of a simulation are given that, describe the beam dynamics from the cathode to the undulator through the whole accelerating system. Evidence of bunching in the undulator, as an indication of SASE is observed.
Dynamic Effects on Chromaticity for the LHC beam cycle in the SPS
Wenninger, J
2002-01-01
During the energy ramp of the SPS the chromaticity is subject to significant dynamic effects. Sextupolar field errors due to eddy currents and remanent fields lead to beam momentum and ramp rate dependent corrections. Detailled measurements on the LHC beam cycle have been used to verify the modelling and reproducibility the chromaticity corrections. Large deviations were found between the presently used model and the measured chromaticity trims. An improved empirical model is suggested.
Recent Progress on the Marylie/Impact Beam Dynamics Code
International Nuclear Information System (INIS)
Ryne, R.D.; Qiang, J.; Bethel, E.W.; Pogorelov, I.; Shalf, J.; Siegerist, C.; Venturini, M.; Dragt, A.J.; Adelmann, A.; Abell, D.; Amundson, J.; Spentzouris, P.; Neri, F.; Walstrom, P.; Mottershead, C.T.; Samulyak, R.
2006-01-01
MARYLIE/IMPACT (ML/I) is a hybrid code that combines the beam optics capabilities of MARYLIE with the parallel Particle-In-Cell capabilities of IMPACT. In addition to combining the capabilities of these codes, ML/I has a number of powerful features, including a choice of Poisson solvers, a fifth-order rf cavity model, multiple reference particles for rf cavities, a library of soft-edge magnet models, representation of magnet systems in terms of coil stacks with possibly overlapping fields, and wakefield effects. The code allows for map production, map analysis, particle tracking, and 3D envelope tracking, all within a single, coherent user environment. ML/I has a front end that can read both MARYLIE input and MAD lattice descriptions. The code can model beams with or without acceleration, and with or without space charge. Developed under a US DOE Scientific Discovery through Advanced Computing (SciDAC) project, ML/I is well suited to large-scale modeling, simulations having been performed with up to 100M macroparticles. The code inherits the powerful fitting and optimizing capabilities of MARYLIE augmented for the new features of ML/I. The combination of soft-edge magnet models, high-order capability, space charge effects, and fitting/optimization capabilities, make ML/I a powerful code for a wide range of beam optics design problems. This paper provides a description of the code and its unique capabilities
Energy Technology Data Exchange (ETDEWEB)
C. L. Bohn (deceased), P. Piot and B. Erdelyi
2008-05-31
According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.
Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction
Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.
2016-03-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.
Concept Modelling of Vehicle Joints and Beam-Like Structures through Dynamic FE-Based Methods
Directory of Open Access Journals (Sweden)
G. De Gaetano
2014-01-01
Full Text Available This paper presents dynamic methodologies able to obtain concept models of automotive beams and joints, which compare favourably with the existing literature methods, in terms of accuracy, easiness of implementation, and computational loads. For the concept beams, the proposed method is based on a dynamic finite element (FE approach, which estimates the stiffness characteristics of equivalent 1D beam elements using the natural frequencies, computed by a modal analysis of the detailed 3D FE model of the structure. Concept beams are then connected to each other by a concept joint, which is obtained through a dynamic reduction technique that makes use of its vibration normal modes. The joint reduction is improved through the application of a new interface beam-to-joint element, able to interpolate accurately the nodal displacements of the outer contour of the section, to obtain displacements and rotations of the central connection node. The proposed approach is validated through an application case that is typical in vehicle body engineering: the analysis of a structure formed by three spot-welded thin-walled beams, connected by a joint.
Experimental studies with radioactive ion beams
International Nuclear Information System (INIS)
Sastry, D.L.; Sree Krishna Murty, G.; Chandrasekhar Rao, M.V.S.
1991-01-01
The sources of information presented are essentially taken from the papers reported at several international seminars and those appeared in the Journal of Nuclear Instruments and Methods in Physics Research. Production and usage of radioactive ion beams (RIB) in research have received the attention of scientists all over the world during the past six years. The first radioactive ion beams ( 19 Ne) were produced at Bevalac for the purpose of medical research using a primary beam of energy 800 MeV/a.m.u. (author). 19 refs., 2 figs., 3 tabs
The PIAFE project: instrumentation and beam studies
International Nuclear Information System (INIS)
Laamyem, M.
1996-01-01
The beam transport of low energy radioactive ions over long distances was a key problem for the PIAFE project. The construction of a 18 m long portion validated the technical choices. Problems dealing with the alignment of the beam transport line supports and the quadrupoles have been solved. The beam/residual gas interaction model was confirmed through the measurement of both the charge exchange cross section and the growth of the emittance due to coulomb scattering. This work shows that low energy exotic ions can be transported over long distances with a vacuum around 10 -8 mbar
Energy Technology Data Exchange (ETDEWEB)
Lachaize, A
2007-07-01
This study presents a quickly-pulsed synchrotron able to accelerate He{sup 6} and Ne{sup 18} beams from 100 MeV/u till 3.5 GeV (proton equivalent) The accelerator is made up of 48 bending dipoles and 42 focusing quadrupoles. The design of the HF accelerating system, the bunch injection and the correction of errors in beam dynamics are dealt with.
Tran Hy, J
1998-01-01
This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...
A beam expander facility for studying x-ray optics
DEFF Research Database (Denmark)
Christensen, Finn Erland; Hornstrup, Allan; Frederiksen, P.
1992-01-01
The detailed study of the performance of full scale x-ray optics often requires the illumination of large areas. This paper describes a beam expander facility at the Daresbury Synchrotron Radiation Facility. It combines monochromatization and beam expansion in one dimension. The beam expansion...... x-ray telescope will be studied, is described in detail. Review of Scientific Instruments is copyrighted by The American Institute of Physics....
Fast beam studies of free radical photodissociation
International Nuclear Information System (INIS)
Cyr, D.R.; California Univ., Berkeley, CA
1993-11-01
The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward
Fast beam studies of free radical photodissociation
Energy Technology Data Exchange (ETDEWEB)
Cyr, Douglas Robert [Univ. of California, Berkeley, CA (United States)
1993-11-01
The photodissociation of free radicals is studied in order to characterize the spectroscopy and dissociation dynamics of the dissociative electronic states in these species. To accomplish this, a novel method of radical production, based on the photodetachment of the corresponding negative ion, has been combined with a highly complementary form of photofragment translational spectroscopy. The optical spectroscopy of transitions to dissociative states is determined by monitoring the total photofragment yield as a function of dissociation photon energy. Branching ratios to various product channels, internal energy distributions of the fragments, bond dissociation energies, and the translational energy-dependent photofragment recoil angular distributions are then determined at selected excitation energies. A detailed picture of the dissociation dynamics can then be formulated, allowing insight concerning the interactions of potential energy surfaces involved in the dissociation. After an introduction to the concepts and techniques mentioned above, the experimental apparatus used in these experiments is described in detail. The basis and methods used in the treatment of data, especially in the dissociation dynamics experiments, are then put forward.
Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF
Energy Technology Data Exchange (ETDEWEB)
Yuhong Zhang,Ji Qiang
2009-05-01
The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.
Beam Loss Simulation Studies for ALS Top-Off Operation
Nishimura, Hiroshi; Robin, David; Steier, Christoph
2005-01-01
The ALS is planning to operate with top-off injection at higher beam currents and smaller vertical beam size. As part of a radiation safety study for top-off, we carried out two kinds of tracking studies: (1) to confirm that the injected beam cannot go into users' photon beam lines, and (2) to control the location of beam dump when the storage ring RF is tripped. (1) is done by tracking electrons from a photon beam line to the injection sector inversely by including the magnetic field profiles, varying the field strength with geometric aperture limits to conclude that it is impossible. (2) is done by tracking an electron with radiation in the 6-dim space for different combinations of vertical scrapers for the realistic lattice with errors.
IRT-Sofia BNCT beam tube optimization study.
Belousov, S; Mitev, M; Ilieva, K; Riley, K; Harling, O
2011-12-01
An optimization study of IRT-Sofia BNCT beam tube is presented. In the study we used the MIT/FCB experience. The enlarging of filter/moderator cross section dimensions and the decreasing of collimator length within the limits of the IRT-Sofia reactor design were analyzed. The influence of beam and reactor core axes non-coincidence on the beam properties was also evaluated. The irradiation resistance of polytetrafluoroethylene (Teflon(®)) was also evaluated. The results provide information for making decisions on the IRT-Sofia BNCT beam construction. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Dynamics and swing control of double-pendulum bridge cranes with distributed-mass beams
Huang, Jie; Liang, Zan; Zang, Qiang
2015-03-01
Motion-induced oscillations of crane payloads seriously degrade their effectiveness and safety. Significant progress has been achieved with reducing payload oscillations on a single-pendulum crane with a point-mass payload attached to the end of the cable. However, large payloads and the actual configuration of the hoisting mechanism may transform the crane to a double-pendulum system with a distributed-mass payload. The manipulation task can be more challenging because of the complicated dynamics. The dynamics of bridge cranes transporting distributed-mass beams are derived. A command-smoothing scheme is presented to suppress the complex payload oscillations. Simulations of a large range of motions are used to analyze the dynamic behavior of the cranes and the robustness of the method. Experimental results obtained from a small-scale double-pendulum bridge crane transporting a distributed-mass beam validate the simulated dynamic behavior and the effectiveness of the method.
International Nuclear Information System (INIS)
Nguyen, Phuong-Bac; Choi, Seung-Bok
2010-01-01
This paper proposes a novel hysteresis compensator to enhance control accuracy in open-loop position tracking control of a piezoceramic flexible beam. The proposed hysteresis compensator consists of two components: a rate-independent hysteresis compensator and a nonlinear filter. The compensator is formulated based on the inverse Preisach model, while the weight coefficients of the filter are identified adaptively using a recursive least square (RLS) algorithm. In this work, two dynamic hysteresis compensators (or rate-independent hysteresis compensators) are developed by adopting two different nonlinear filters: Volterra and bilinear filters. In order to demonstrate the improved control accuracy of the proposed dynamic compensators, a flexible beam associated with the piezoceramic actuator is modeled using the finite element method (FEM) and Euler–Bernoulli beam theory. The beam model is then integrated with the proposed hysteresis model to achieve accurate position tracking control at the tip of the beam. An experimental investigation on the tip position tracking control is undertaken by realizing three different hysteresis compensators: a rate-independent hysteresis compensator, a rate-dependent hysteresis compensator with a Volterra nonlinear filter and a rate-independent hysteresis compensator with a bilinear nonlinear filter. It is shown that the proposed dynamic hysteresis compensators can provide much better tracking control accuracy than conventional rate-independent hysteresis compensators
Technology integration box beam failure study
Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.
1993-01-01
Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
Study of electron beam curing process using epoxy resin system
Nishitsuji, Delmo A.; Marinucci, Gerson; Evora, Maria C.; de Andrade e Silva, Leonardo G.
2007-12-01
Polymeric matrix composite (PMC) has been used in engineering applications instead of metal in the last few years, due to its corrosion resistance and excellent relation between tensile strength/density and elastic modulus/density. However, PMC materials cured by thermal process require high temperature and are time-consuming. The electron beam (EB) curing technology allows its use at room temperature and reduced curing times, and this is one of the main advantages over thermal technology. The aim of this work is to investigate electron beam curable epoxy formulations to use in filament winding processes to produce composite material with similar or better properties than thermal curable composites. The study has been made with commercial epoxy resins and cationic initiators. The epoxy resin samples were irradiated for few minutes with total dose of 150 kGy. The glass transition temperatures ( Tg) were determined by dynamic mechanical analyzer (DMA) and the result was 137 °C. The thermal process was carried out in a furnace following three steps: 4 h at 90 °C, increasing temperature from 90 °C to 130 °C during 4 h and 12 h at 130 °C. The total process time was 20 h. The Tg of this sample was 102 °C.
Study of electron beam curing process using epoxy resin system
Energy Technology Data Exchange (ETDEWEB)
Nishitsuji, Delmo A. [Centro Tecnologico da Marinha - CTMSP, Sao Paulo/SP (Brazil); Marinucci, Gerson [Instituto de Pesquisas Energeticas e Nucleares, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil); Evora, Maria C. [Instituto de Estudos Avancados - IEAv/CTA, Sao Jose dos Campos/SP (Brazil); Andrade Silva, Leonardo G de e [Instituto de Pesquisas Energeticas e Nucleares, Av. Prof. Lineu Prestes, 2242 Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil)], E-mail: lgasilva@ipen.br
2007-12-15
Polymeric matrix composite (PMC) has been used in engineering applications instead of metal in the last few years, due to its corrosion resistance and excellent relation between tensile strength/density and elastic modulus/density. However, PMC materials cured by thermal process require high temperature and are time-consuming. The electron beam (EB) curing technology allows its use at room temperature and reduced curing times, and this is one of the main advantages over thermal technology. The aim of this work is to investigate electron beam curable epoxy formulations to use in filament winding processes to produce composite material with similar or better properties than thermal curable composites. The study has been made with commercial epoxy resins and cationic initiators. The epoxy resin samples were irradiated for few minutes with total dose of 150 kGy. The glass transition temperatures (T{sub g}) were determined by dynamic mechanical analyzer (DMA) and the result was 137 deg. C. The thermal process was carried out in a furnace following three steps: 4 h at 90 deg. C, increasing temperature from 90 deg. C to 130 deg. C during 4 h and 12 h at 130 deg. C. The total process time was 20 h. The T{sub g} of this sample was 102 deg. C.
Calculation of dynamic stresses in viscoelastic sandwich beams using oma
DEFF Research Database (Denmark)
Pelayo, F.; Aenlle, M. L.; Ismael, G.
2017-01-01
is modelled as linear-viscoelastic. Dynamic displacements and stresses can be estimated in structural elements combining the experimental responses measured in a reduced set of DOF's with standard sensors and the mode shapes of a finite element model which has to be correlated and updated using experimental...
International Nuclear Information System (INIS)
Fiuza, K.; Rizzato, F.B.; Pakter, R.
2006-01-01
In this paper we analyze the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similar to the case where conducting walls are absent, it is shown that the envelope and centroid dynamics decouple from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain characteristics of halo formation seen in the full simulations
Noether Symmetry Analysis of the Dynamic Euler-Bernoulli Beam Equation
Johnpillai, A. G.; Mahomed, K. S.; Harley, C.; Mahomed, F. M.
2016-05-01
We study the fourth-order dynamic Euler-Bernoulli beam equation from the Noether symmetry viewpoint. This was earlier considered for the Lie symmetry classification. We obtain the Noether symmetry classification of the equation with respect to the applied load, which is a function of the dependent variable of the underlying equation. We find that the principal Noether symmetry algebra is two-dimensional when the load function is arbitrary and extends for linear and power law cases. For all cases, for each of the Noether symmetries associated with the usual Lagrangian, we construct conservation laws for the equation via the Noether theorem. We also provide a basis of conservation laws by using the adjoint algebra. The Noether symmetries pick out the special value of the power law, which is -7. We consider the Noether symmetry reduction for this special case, which gives rise to a first integral that is used for our numerical code. For this, we then find numerical solutions using an in-built function in MATLAB called bvp4c, which is a boundary value solver for differential equations that are depicted in five figures. The physical solutions obtained are for the deflection of the beam with an increase in displacement. These are given in four figures and discussed.
Cylindrical shock waves and dynamic phenomena induced in solids by intense proton beams
Bertarelli, Alessandro; Carra, Federico; Dallocchio, Alessandro; Guinchard, Michael; Mariani, Nicola; Peroni, Lorenzo; Redaelli, Stefano; Scapin, Martina
2013-06-01
The accidental impact of hadron beams on matter can induce intense shockwaves along with complex dynamic phenomena (phase transitions, extended density changes, explosions and fragment projections). These events have been successfully modeled resorting to wave propagation codes; to produce accurate results, however, these programs require reliable material constitutive models that are often scarce and inaccurate. A complex and innovative experiment was carried out at CERN to benchmark existing material constitutive models and possibly derive new ones. The test setup, aimed at the characterization of six different materials impacted by 440 GeV intense proton pulses, allowed to generate cylindrical shockwaves on material specimens and to observe the effects induced by their propagation. This method, a combination between numerical simulations and an experimental technique, permitting to tune the intensity, location and timing of the beam-deposited energy, may allow to study the effects induced by internal, quasi-instantaneous loadings in domains well beyond particle physics (accidents in nuclear facilities, internal explosions, high pressure blasts etc.), particularly when relatively little explored cylindrical shockwaves are generated. The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD, grant agreement no. 227579.
Diagnosis and dynamics in a simple low energy medium current electron beam channel
Marghitu, S.; Marghitu, O.; Oproiu, C.; Marin, G.; Scarlat, Fl.
2004-05-01
We present a simple experimental setup and an associated method enabling both the non-destructive diagnosis and the calculation of the beam evolution in a low energy medium current electron beam channel, where the space-charge and emittance effects are comparable. The diagnosis makes use of an axially symmetric magnetic lens while a second lens is added to increase the flexibility in the beam processing. The paper emphasizes the three steps involved in the method: the evaluation of the lenses' magnetic field by numerical simulation, the beam diagnosis, and the computation of the beam envelope. The calculation of the magnetic field is based on the finite element method. Subsequently, the beam parameters at the electron source exit - emittance and cross-over radius and position - are found with the modified three gradient method. Finally, the beam dynamics are modeled with the K-V equation adapted for the particular case of axial symmetry. The results obtained in this paper can be used to optimize technological processes, such as welding, hardening, cladding, and surface alloying.
Flexible core masking technique for beam halo measurements with high dynamic range
International Nuclear Information System (INIS)
Egberts, J; Welsch, C P
2010-01-01
A thorough understanding of halo formation and its possible control is highly desirable for essentially all particle accelerators. Particles outside the beam core are not only lost for further experiments, they are also likely to hit the beam pipe, and activate this, as well as accelerator and experimental components in close proximity, which makes work on the accelerator costly and time consuming. Well established techniques for transverse beam profile measurements of electron or high energy hadron beams are the observation of synchrotron radiation, optical transition radiation or the like. A particular challenge, however, is the detection of particles in the tail regions of the beam distribution in close proximity of the very intense beam core. Results from laboratory measurements on two different devices are presented that might form the technical base of a future beam halo monitor: the novel SpectraCam XDR camera system which has an intrinsically high dynamic range due to its unique pixel design, and a flexible masking technique based on a DMD micro mirror array which allows for a fast mask generation to blank out the central core.
Beam Dynamics in the Fermilab Booster in the Presence of Space Charge.
Stahl, Steven Mark
The subject of this thesis is beam dynamics in the Fermilab Booster at low energy, with emphasis on a realistic treatment of space charge effects. At the injection energy of 200 MeV in the Booster, the forces due to the self-field of the proton beam strongly perturb the motion, limiting the achievable phase space density. The tracking program TEAPOT is adapted to simulate this beam behavior in order to elucidate the causes of observed limitations on beam intensity and brightness. The model includes the effects of space charge, rf, acceleration, gradient errors and sextupoles. The evolution of beam intensity and emittances in the initial milliseconds following injection is examined in the model and compared with the behavior of the real beam for various input parameters. It is shown that the proximity of the half-integer resonance is responsible for most of the beam growth in the real machine, while an intrinsic space charge limit at the integer tune also exists. The model is also used to extrapolate the performance of the Booster to 400 MeV, which is to be the output energy of the upgraded Fermilab Linac, and the Booster is projected to satisfy the emittance and intensity requirements of the Main Injector at the higher injection energy.
Golubev, Vladimir S.; Banishev, Alexander F.; Azharonok, V. V.; Zabelin, Alexandre M.
1994-09-01
A qualitative analysis of the role of some hydrodynamic flows and instabilities by the process of laser beam-metal sample deep penetration interaction is presented. The forces of vapor pressure, melt surface tension and thermocapillary forces can determined a number of oscillatory and nonstationary phenomena in keyhole and weld pool. Dynamics of keyhole formation in metal plates has been studied under laser beam pulse effect ((lambda) equals 1.06 micrometers ). Velocities of the keyhole bottom motion have been determined at 0.5 X 105 - 106 W/cm2 laser power densities. Oscillatory regime of plate break- down has been found out. Small-dimensional structures with d-(lambda) period was found on the frozen cavity walls, which, in our opinion, can contribute significantly to laser beam absorption. A new form of periodic structure on the frozen pattern being a helix-shaped modulation of the keyhole walls and bottom relief has been revealed. Temperature oscillations related to capillary oscillations in the melt layer were discovered in the cavity. Interaction of the CW CO2 laser beam and the matter by beam penetration into a moving metal sample has been studied. The pulsed and thermodynamic parameters of the surface plasma were investigated by optical and spectroscopic methods. The frequencies of plasma jets pulsations (in 10 - 105 Hz range) are related to possible melt surface instabilities of the keyhole.
Influence of the flexibility of beams and slabs in static response and dynamic properties
Directory of Open Access Journals (Sweden)
J. R. BUENO
Full Text Available Abstract This article examines numerically the flexibility influence of support beams in static response and dynamic properties of a symmetric plate formed by massive slabs of reinforced concrete in elastic linear regime, using the Finite Element Method. In the static response the variation of bending mo-ments and displacements are evaluated, which depend on the relationship between the flexibility of the slab and the beam. The evaluation of dynamic properties is held in undamped free vibration, through which the vibration modes and the values of the natural frequencies is obtained, which are compared with the limits of the Brazilian standard code for design of concrete structures. Results show that the response may show great variation due to the change in the relationship between bending stiffness of the slabs and the beams.
Rigid-flexible coupling dynamics of three-dimensional hub-beams system
International Nuclear Information System (INIS)
Liu Jinyang; Lu Hao
2007-01-01
In the previous research of the coupling dynamics of a hub-beam system, coupling between the rotational motion of hub and the torsion deformation of beam is not taken into account since the system undergoes planar motion. Due to the small longitudinal deformation, coupling between the rotational motion of hub and the longitudinal deformation of beam is also neglected. In this paper, rigid-flexible coupling dynamics is extended to a hub-beams system with three-dimensional large overall motion. Not only coupling between the large overall motion and the bending deformation, but also coupling between the large overall motion and the torsional deformation are taken into account. In case of temperature increase, the longitudinal deformation caused by the thermal expansion is significant, such that coupling between the large overall motion and the longitudinal deformation is also investigated. Combining the characteristics of the hybrid coordinate formulation and the absolute nodal coordinate formulation, the system generalized coordinates include the relative nodal displacement and the slope of each beam element with respect to the body-fixed frame of the hub, and the variables related to the spatial large overall motion of the hub and beams. Based on precise strain-displacement relation, the geometric stiffening effect is taken into account, and the rigid-flexible coupling dynamic equations are derived using velocity variational principle. Finite element method is employed for discretization. Simulation of a hub-beams system is used to show the coupling effect between the large overall motion and the torsional deformation as well as the longitudinal deformation. Furthermore, conservation of energy in case of free motion is shown to verify the formulation
Dynamic behaviour of non-uniform Bernoulli-Euler beams subjected ...
African Journals Online (AJOL)
This paper investigates the dynamics behaviour of non-uniform Bernoulli-Euler beams subjected to concentrated loads ravelling at variable velocities. The solution technique is based on the Generalized Galerkin Method and the use of the generating function of the Bessel function type. The results show that, for all the ...
Czech Academy of Sciences Publication Activity Database
Herman, Zdeněk
2015-01-01
Roč. 378, FEB 2015 (2015), s. 113-126 ISSN 1387-3806 Institutional support: RVO:61388955 Keywords : Multiply-charged ions * Dynamics of chemical reactions * Beam scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.183, year: 2015
Maisonny, R.; Ribière, M.; Toury, M.; Plewa, J. M.; Caron, M.; Auriel, G.; d'Almeida, T.
2016-12-01
The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.
Djomo Mbong, T. L. M.; Siewe Siewe, M.; Tchawoua, C.
2018-01-01
In this study, the effect of a controllable parametric excitation on both linear and nonlinear vibrational resonances on the dynamic of a buckled beam excited by a combination of uncontrollable low- and high-frequency periodic forces are investigated. First of all, the beam dynamic is assumed to be constrained by two periodic and independent ambient solicitations, such as wind and earthquake. An axial load of the beam represented by a periodic and parametric excitation is used to control the vibrational resonance phenomenon, induced by the presence of the two external excitations. Approximate analytical expressions for the linear response and the high-frequency force amplitude at which linear vibrational resonance occurs are obtained. An analytical expression of the amplitude of the nonlinear response at the superharmonic equal to the double of the low-frequency, is obtained. For all these expressions, we show the effect of the parametric excitation. We compare all the obtained results with the ones of the case where, the parametric force is absent. It is shown that, the presence of the parametric excitation permit the suppression of both linear and nonlinear vibrational resonances. Moreover, the vibration amplitudes of the buckled beam are significantly reduced, around certain threshold values for the amplitude and the frequency of the parametric excitation.
Beam extraction studies at 900 GeV using a channeling crystal
Directory of Open Access Journals (Sweden)
R. A. Carrigan, Jr.
2002-04-01
Full Text Available Luminosity-driven channeling extraction has been observed for the first time in a 900 GeV study at the Fermilab Tevatron. This experiment, Fermilab E853, demonstrated that useful TeV level beams can be extracted from a superconducting accelerator during high luminosity collider operations without unduly affecting the background at the collider detectors. Multipass extraction was found to increase the efficiency of the process significantly. The beam extraction efficiency was about 25%. Studies of time dependent effects found that the turn-to-turn structure was governed mainly by accelerator beam dynamics. Based on the results of this experiment, it is feasible to construct a parasitic 5–10 MHz proton beam from the Tevatron collider.
Investigations of Beam Dynamics Issues at Current and Future Hadron Accelerators
Energy Technology Data Exchange (ETDEWEB)
Ellison, James [Univ. of New Mexico, Albuquerque, NM (United States); Lau, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Heinemann, Klaus [Univ. of New Mexico, Albuquerque, NM (United States); Bizzozero, David [Univ. of New Mexico, Albuquerque, NM (United States)
2015-03-12
Final Report Abstract for DE-FG02-99ER4110, May 15, 2011- October 15, 2014 There is a synergy between the fields of Beam Dynamics (BD) in modern particle accelerators and Applied Mathematics (AMa). We have formulated significant problems in BD and have developed and applied tools within the contexts of dynamical systems, topological methods, numerical analysis and scientific computing, probability and stochastic processes, and mathematical statistics. We summarize the three main areas of our AMa work since 2011. First, we continued our study of Vlasov-Maxwell systems. Previously, we developed a state of the art algorithm and code (VM3@A) to calculate coherent synchrotron radiation in single pass systems. In this cycle we carefully analyzed the major expense, namely the integral-over-history (IOH), and developed two approaches to speed up integration. The first strategy uses a representation of the Bessel function J0 in terms of exponentials. The second relies on “local sequences” developed recently for radiation boundary conditions, which are used to reduce computational domains. Although motivated by practicality, both strategies involve interesting and rather deep analysis and approximation theory. As an alternative to VM3@A, we are integrating Maxwell’s equations by a time-stepping method, bypass- ing the IOH, using a Discontinuous Galerkin (DG) method. DG is a generalization of Finite Element and Finite Volume methods. It is spectrally convergent, unlike the commonly used Finite Difference methods, and can handle complicated vacuum chamber geometries. We have applied this in several contexts and have obtained very nice results including an explanation of an experiment at the Canadian Light Source, where the geometry is quite complex. Second, we continued our study of spin dynamics in storage rings. There is much current and proposed activity where spin polarized beams are being used in testing the Standard Model and its modifications. Our work has focused
Beam funneling studies at Los Alamos
International Nuclear Information System (INIS)
Stovall, J.E.; Guy, F.W.; Stokes, R.H.; Wangler, T.P.
1989-01-01
Funneling two ion beams by interlacing their bunches can reduce the cost and complexity of systems producing intense beams. Applications of funneling could include accelerators for heavy-ion inertial fusion, electronuclear breeding and fusion materials irradiation. Funneling in an RFQ-like structure is an elegant solution at low energy where electric fields are needed to provide strong focusing. Discrete-element funnels, with separate focusing elements, bending magnets, rebunchers and rf deflectors, are more flexible. At sufficiently high energies magnetic-quadrupole lenses can provide strong focusing in a discrete-element funnel. Such a funnel has been designed as a preliminary example of a second funnel in the HIBALL-II accelerator system. In a simulation, two Bi 1+ (mass = 209 amu) beams at 0.5 MeV/A, 20 MHz and 40 mA, separated by 55 cm and angled at ±6 0 were combined into a single 80 mA beam at 40 MHz. Emittance growth was calculated, by a modified version of the PIC (particle-in-cell) code PARMILA, to be about 1%. Funnel design experience at Los Alamos has evolved rules of thumb that reduce emittance growth. Some of these are to maintain focusing periodicity and strength in both transverse and longitudinal directions; use strong focusing so that the bunch will be small; minimize angles of bend and rf deflection; adjust longitudinal focusing to produce a short bunch at the rf deflector; and design rf deflectors for a uniform electrical field. (orig.)
Linac beam dynamics calculations for low-current large-emittance beams
International Nuclear Information System (INIS)
Swain, G.R.; Butler, H.S.
1992-01-01
The beam in PILAC, a superconducting linac for pions proposed at LAUFF, will have a lager momentum spread (7% dp/p) and occupy a larger transverse space (13 cm dia. bore) than is usual in high-beta linacs. To find the effects of this large phase space, a cavity element is being added to the MOTER code. With this addition, pions and other particles may be tracked through the injection line and the PILAC linac. In one option, the particles may be cell by cell through a multicell cavity using formulas. The formulas are derived by integrating the energy gain and transverse impulse from the fields in a cell along the path of the particle. What is new in this analysis is that the transverse momentum is considered to be a significant part of the total momentum. The effect of a difference in velocity from the design velocity of the structure is considered. In another option still under development, field information is specified, and the particles may be tracked by stepwise integration
Study and implant of a new beam detector at Ganil
International Nuclear Information System (INIS)
Vignet, J.L.
1992-01-01
This report explains the principle, study and installation of a new beam detector implanted at Ganil. This new detector uses the ionization by the beam of residual gas. It is formed of an accelerator (to canalize ions), an amplifier composed of 2 microchannel plates and of localization lattice (strips)
A Tool for Longitudinal Beam Dynamics in Synchrotrons
Energy Technology Data Exchange (ETDEWEB)
Ostiguy, J.-F. [Fermilab; Lebedev, V. A. [Fermilab
2017-05-01
A number of codes are available to simulate longitudinal dynamics in synchrotrons. Some established ones include TIBETAN, LONG1D, ESME and ORBIT. While they embody a wealth of accumulated wisdom and experience, most of these codes were written decades ago and to some extent they reflect the constraints of their time. As a result, there is an interest for updated tools taking better advantage of modern software and hardware capabilities. At Fermilab, the PIP-II project has provided the impetus for development of such a tool. In this contribution, we discuss design decisions and code architecture. A selection of test cases based on an initial prototype are also presented.
Dynamics and guided waves in a smart Timoshenko beam with lateral contraction
International Nuclear Information System (INIS)
Park, I; Kim, S; Lee, U
2013-01-01
Surface-bonded wafer-type piezoelectric transducers (PZTs) have been widely used to excite or measure ultrasonic guided waves for the structural health monitoring of thin-walled structures. For successful prediction of the dynamics and ultrasonic guided waves, it is essential to use very reliable computational models for the PZT-bonded multi-layer smart structures. In this paper, the spectral element model is developed for two-layer smart beams which consist of a metallic base beam layer and a PZT layer. Axial-bending-shear-contraction coupled equations of motion and boundary conditions are derived by using Hamilton’s principle with Lagrange multipliers based on the Timoshenko beam theory and Mindlin–Herrmann rod theory. The high accuracy of this spectral element model is verified in due course and the effects of a lateral contraction on the dynamics and guided wave characteristics of the example smart beams are investigated by using this spectral element model. In addition, the constraint forces at the interface between the base beam and the PZT layer are also investigated via Lagrange multipliers. (paper)
Comparison of Parmela and MAFIA Simulations of Beam Dynamics in High Current Photoinjector
Kurennoy, Sergey S
2004-01-01
A high-current RF photoinjector producing low-emittance electron beam is an important technology for high-power CW FEL. LANL-AES team designed a 2.5-cell, pi-mode, 700-MHz normal-conducting RF photoinjector with magnetic emittance compensation. With the electric field gradients of 7, 7, and 5 MV/m in the three subsequent cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Beam dynamics in the photoinjector has been modeled in details. In addition to the usual approach, with fields calculated by Superfish-Poisson and beam simulations performed by Parmela, we also used MAFIA group of codes, both to calculate cavity fields and to model beam dynamics with its particle-in-cell module TS. The second way naturally includes wake-field effects into consideration. The simulation results and comparison between two approaches will be presented.
Beam-dynamic effects at the CMS BRIL van der Meer scans
Babaev, A.
2018-03-01
The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1–2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.
COFS 1: Beam dynamics and control technology overview
Allen, John L.
1986-11-01
The Control of Flexible Structures (COFS) 1 Project provides the invaluable opportunity to test, validate, and measure the effectiveness of theories, structural concepts, control systems, and flight certification processes for future missions through a research program focusing on multiple issues in large flexible structures, dynamics, and controls. The COFS 1 Project consists of a series of ground and flight activities building progressively from modeling and dynamic characterization of large space systems to the more complex issues of flexible-body control. The program objectives are to: determine the degree to which theory and ground testing can predict flight performance of next-generation low-frequency structures; evaluate structural fidelity of representative next-generation large deployable precision structure; assess math modeling requirements for large lightweight complex systems on which ground test results are questionable; determine degree to which scale model analysis and tests can be correlated to full-scale performance; evaluate system identification and state estimation algorithms on complex lightweight structures in the space environment; evaluate and verify controls/structures modeling capability; evaluate control laws and control systems; and evaluate damping effects in micro-g environment.
Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam
Energy Technology Data Exchange (ETDEWEB)
Lan, Chunbo; Qin, Weiyang, E-mail: 353481781@qq.com; Deng, Wangzheng [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)
2015-08-31
We investigated the energy harvesting of a vertical beam with tip mass under vertical excitations. We applied dynamic unstability and internal resonance to improve the efficiency of harvesting. The experiments of harmonic excitation were carried out. Results show that for the beam there exist internal resonances in the dynamically unstable and the buckling bistable cases. The dynamic unstability is a determinant for strong internal resonance or mode coupling, which can be used to create a large output from piezoelectric patches. Then, the experiments of stochastic excitation were carried out. Results prove that the internal resonance or mode coupling can transfer the excitation energy to the low order modes, mainly the first and the second one. This can bring about a large output voltage. For a stochastic excitation, it is proved that there is an optimal weight of tip mass for realizing internal resonance and producing large outputs.
Experimental Studies for Future LHC Beams in the SPS
Bartosik, H; Bohl, T; Cettour-Cave, S; Esteban Muller, J; Hofle, W; Iadarola, G; Papaphilippou, Y; Rumolo, G; Salvant, B; Schmidt, F; Shaposhnikova, El; Timko, H
2013-01-01
The High Luminosity LHC (HL-LHC) project requires significantly higher beam intensity than presently accessible in the LHC injector chain. The aim of the LHC injectors upgrade project (LIU) is to prepare the CERN accelerators for the future needs of the LHC. Therefore a series of SPS machine studies with high brightness beams were performed, assessing the present performance reach and identifying remaining limitations. Of particular concern are beam loading and longitudinal instabilities at high energy, space charge for beams with 50 ns bunch spacing and electron cloud effects for beams with 25 ns bunch spacing. This paper provides a summary of the performed studies that have been possible thanks to the implementation of the SPS low gamma-transition optics.
A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams
Du, C. F.; Zhang, D. G.; Li, L.; Liu, G. R.
2017-10-01
We proposed a mesh-free method, the called node-based smoothed point interpolation method (NS-PIM), for dynamic analysis of rotating beams. A gradient smoothing technique is used, and the requirements on the consistence of the displacement functions are further weakened. In static problems, the beams with three types of boundary conditions are analyzed, and the results are compared with the exact solution, which shows the effectiveness of this method and can provide an upper bound solution for the deflection. This means that the NS-PIM makes the system soften. The NS-PIM is then further extended for solving a rigid-flexible coupled system dynamics problem, considering a rotating flexible cantilever beam. In this case, the rotating flexible cantilever beam considers not only the transverse deformations, but also the longitudinal deformations. The rigid-flexible coupled dynamic equations of the system are derived via employing Lagrange's equations of the second type. Simulation results of the NS-PIM are compared with those obtained using finite element method (FEM) and assumed mode method. It is found that compared with FEM, the NS-PIM has anti-ill solving ability under the same calculation conditions.
Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.
2017-12-01
When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.
Design Study for 10MHz Beam Frequency of Post-Accelerated RIBs at HIE-ISOLDE
Fraser, M A; Magdau, I B
2013-01-01
An increased bunch spacing of approximately 100 ns is requested by several research groups targeting experimental physics at HIE-ISOLDE. A design study testing the feasibility of retrofitting the existing 101.28MHz REX (Radioactive ion beam EXperiment) RFQ [1] with a subharmonic external pre-buncher at the ISOLDE radioactive nuclear beam facility has been carried out as a means of decreasing the beam frequency by a factor of 10. The proposed scheme for the 10MHz bunch repetition frequency is presented and its performance assessed with beam dynamics simulations. The opportunity to reduce the longitudinal emittance formed in the RFQ is discussed along with the options for chopping the satellite bunches populated in the bunching process.
Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings
International Nuclear Information System (INIS)
Nosochkov, Y. M.; Cai, Y.; Sullivan, M.; Wang, M-H; Wienands, U.; Morozov, V. S.; Derbenev, Ya. S.; Lin, F.; Pilat, F.; Zhang, Y.
2015-01-01
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10 34 cm -2 s -1 . The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings
International Nuclear Information System (INIS)
Morozov, Vasiliy S.; Derbenev, Yaroslav S.; Lin, Fanglei; Pilat, Fulvia; Zhang, Yuhong; Cai, Y.; Nosochkov, Y. M.; Sullivan, Michael; Wang, M.-H.; Wienands, Uli
2015-09-01
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10 34 cm -2 s -1 . The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
BEAMPATH: a program library for beam dynamics simulation in linear accelerators
International Nuclear Information System (INIS)
Batygin, Y.K.
1992-01-01
A structured programming technique was used to develop software for space charge dominated beams investigation in linear accelerators. The method includes hierarchical program design using program independent modules and a flexible combination of modules to provide a most effective version of structure for every specific case of simulation. A modular program BEAMPATH was developed for 2D and 3D particle-in-cell simulation of beam dynamics in a structure containing RF gaps, radio-frequency quadrupoles (RFQ), multipole lenses, waveguides, bending magnets and solenoids. (author) 5 refs.; 2 figs
International Nuclear Information System (INIS)
Ryu, Bong Jo; Shin, Kwang Bok; Yim, Kyung Bin; Yoon, Young Sik
2006-01-01
This paper presents the dynamic stability of a cantilevered Timoshenko beam with a concentrated mass, partially attached to elastic foundations, and subjected to a follower force. Governing equations are derived from the extended Hamilton's principle, and FEM is applied to solve the discretized equation. The influence of some parameters such as the elastic foundation parameter, the positions of partial elastic foundations, shear deformations, the rotary inertia of the beam, and the mass and the rotary inertia of the concentrated mass on the critical flutter load is investigated. Finally, the optimal attachment ratio of partial elastic foundation that maximizes the critical flutter load is presented
Polymeric membrane studied using slow positron beam
International Nuclear Information System (INIS)
Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.
2008-01-01
A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes
Study on broad beam heavy ion CT
International Nuclear Information System (INIS)
Ohno, Yumiko; Kohno, Toshiyuki; Sasaki, Hitomi; Nanbu, S.; Kanai, Tatsuaki
2003-01-01
To achieve the heavy ion radiotherapy more precisely, it is important to know the distribution of the electron density in a human body, which is highly related to the range of charged particles. From a heavy ion CT image, we can directly obtain the 2-D distribution of the electron density in a sample. For this purpose, we have developed a broad beam heavy ion CT system. The electron density was obtained using some kinds of solutions targets. Also the dependence of the spatial resolution on the target size and the kinds of beams was estimated in this work using cylinders targets of 40, 60 and 80 mm in diameter, each of them has a hole of 10 mm in diameter at the center of it. (author)
Radioactive beam studies of cosmological interest
International Nuclear Information System (INIS)
Sale, K.E.; Boyd, R.N.; Mathews, G.J.; Corn, B.P.; Islam, M.S.
1989-01-01
Experimental efforts by the LLNL/Ohio State radioactive ion beam collaboration are described. We are presently focusing on some reactions which are of great importance in the newly proposed inhomogeneous big bang cosmological models. Specifically we are using our system to make beams of 8 Li for measurements of the 8 Li(d, n) 9 Be and 8 Li(α, n) 11 B cross-sections. These are the key reactions which determine the production of heavy (A > 12) elements during the era of big bang nucleosynthesis, and thus the initial composition of stars and subsequent stellar isotope production. Plans for future experiments, including the measurement of the 7 Be(p, γ) 8 B cross section will be discussed. (orig.)
Study of a microwave power source for a two-beam accelerator
International Nuclear Information System (INIS)
Houck, T.L.
1994-01-01
A theoretical and experimental study of a microwave power source suitable for driving a linear e + e - collider is reported. The power source is based on the Relativistic Klystron Two-Beam Accelerator (RK-TBA) concept, is driven by a 5-MeV, 1-kA induction accelerator electron beam, and operates at X-band frequencies. The development of a computer code to simulate the transverse beam dynamics of an intense relativistic electron beam transiting a system of microwave resonant structures is presented. This code is time dependent with self-consistent beam-cavity interactions and uses realistic beam parameters. Simulations performed with this code are compared with analytical theory and experiments. The concept of spacing resonant structures at distances equal to the betatron wavelength of the focusing system to suppress the growth of transverse instabilities is discussed. Simulations include energy spread over the beam to demonstrate the effect of Landau damping and establish the sensitivity of the betatron wavelength spacing scheme to errors in the focusing system. The design of the Reacceleration Experiment is described in detail and includes essentially all the issues related to a full scale RK-TBA microwave source. A total combined power from three output structures in excess of 170 MW with an amplitude stability of ±4% over a 25 ns pulse was achieved. The results of the experiment are compared to simulations used during the design phase to validate the various codes and methods used. The primary issue for the RK-TBA concept is identified as transverse beam instability associated with the excitation of higher order modes in the resonant structures used for extracting microwave power from the modulated beam. This work represents the first successful experimental demonstration of repeated cycles of microwave energy extraction from and reacceleration of a modulated beam
Beam funneling studies at Los Alamos
International Nuclear Information System (INIS)
Stovall, J.E.; Guy, F.W.; Stokes, R.H.; Wangler, T.P.
1988-01-01
Funneling two ion beams by interlacing their bunches can reduce the cost and complexity of systems producing intense beams. Applications of funneling could include accelerators for heavy ion inertial fusion, electronuclear breeding, and fusion materials irradiation. Funneling in an RFQ-like structure is an elegant solution at low energy where electric fields are needed to provide strong focusing. Discrete-element funnels, with separate focusing elements, bending magnets, rebunchers and if deflectors, are more flexible. At sufficiently high energies, magnetic-quadrupole lenses can provide strong focusing in a discrete-element funnel. Such a funnel has been designed as a preliminary example of a second funnel in the HIBALL-II accelerator system. In a simulation, two Bi +1 (mass = 209 amu) beams at 0.5 MeV/A, 20 MHz, 40-mA, separated by 55 cm and angled at +-6/degree/ were combined into a single 80-mA beam at 40 MHz. Emittance growth was calculated, by a modified version of the PIC (particle-in-cell) code PARMILA, to be about 1%. Funnel design experience at Los Alamos has evolved rules-of-thumb that reduce emittance growth. Some of these are to maintain focusing periodicity and strength in both transverse and longitudinal directions; use strong focusing so that the bunch will be small; minimize angles of bend and rf deflection; adjust longitudinal focusing to produce a short bunch at the rf deflector; and design rf deflectors for a uniform electrical field. 4 refs., 3 figs., 2 tabs
Neutral beam source commercialization study. Final report
International Nuclear Information System (INIS)
King, H.J.
1980-06-01
The basic tasks of this Phase II project were to: generate a set of design drawings suitable for quantity production of sources of this design; fabricate a functional neutral beam source incorporating as many of the proposed design changes as proved feasible; and document the procedures and findings developed during the contract. These tasks have been accomplished and represent a demonstrated milestone in the industrialization of this complete device
Bediz, Bekir; Aksoy, Serdar
2018-01-01
This paper presents the application of the spectral-Tchebychev (ST) technique for solution of three-dimensional dynamics of curved beams/structures having variable and arbitrary cross-section under mixed boundary conditions. To accurately capture the vibrational behavior of curved structures, a three-dimensional (3D) solution approach is required since these structures generally exhibit coupled motions. In this study, the integral boundary value problem (IBVP) governing the dynamics of the curved structures is found using extended Hamilton's principle where the strain energy is expressed using 3D linear elasticity equation. To solve the IBVP numerically, the 3D spectral Tchebychev (3D-ST) approach is used. To evaluate the integral and derivative operations defined by the IBVP and to render the complex geometry into an equivalent straight beam with rectangular cross-section, a series of coordinate transformations are applied. To validate and assess the performance of the presented solution approach, two case studies are performed: (i) curved beam with rectangular cross-section, (ii) curved and pretwisted beam with airfoil cross-section. In both cases, the results (natural frequencies and mode shapes) are also found using a finite element (FE) solution approach. It is shown that the difference in predicted natural frequencies are less than 1%, and the mode shapes are in excellent agreement based on the modal assurance criteria (MAC) analyses; however, the presented spectral-Tchebychev solution approach significantly reduces the computational burden. Therefore, it can be concluded that the presented solution approach can capture the 3D vibrational behavior of curved beams as accurately as an FE solution, but for a fraction of the computational cost.
Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons
Energy Technology Data Exchange (ETDEWEB)
Alhumaidi, Mouhammad
2015-03-04
identifying and analyzing the betatron oscillation sourced from the kick based on its mixing and temporal patterns. The accelerator magnets can generate unwanted spurious linear and non-linear fields due to fabrication errors or aging. These error fields in the magnets can excite undesired resonances leading together with the space charge tune spread to long term beam losses and reducing dynamic aperture. Therefore, the knowledge of the linear and non-linear magnets errors in circular accelerator optics is very crucial for controlling and compensating resonances and their consequent beam losses and beam quality deterioration. This is indispensable, especially for high beam intensity machines. Fortunately, the relationship between the beam offset oscillation signals recorded at the BPMs is a manifestation of the accelerator optics, and can therefore be exploited in the determination of the optics linear and non-linear components. Thus, beam transversal oscillations can be excited deliberately for purposes of diagnostics operation of particle accelerators. In this thesis, we propose a novel method for detecting and estimating the optics lattice non-linear components located in-between the locations of two BPMs by analyzing the beam offset oscillation signals of a BPMs-triple containing these two BPMs. Depending on the non-linear components in-between the locations of the BPMs-triple, the relationship between the beam offsets follows a multivariate polynomial accordingly. After calculating the covariance matrix of the polynomial terms, the Generalized Total Least Squares method is used to find the model parameters, and thus the non-linear components. A bootstrap technique is used to detect the existing polynomial model orders by means of multiple hypothesis testing, and determine confidence intervals for the model parameters.
Beam generation at next generation RIB facilities: conceptual design studies
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.; Alton, G.D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2004-12-27
In order to produce useful intensities of radioactive ion beams, ISOL targets must be designed that can withstand direct irradiation with high power beams. Computational thermal modeling techniques offer a cost effective way for evaluating prototype target concepts in the quest to find an optimum design. In this report, a number of codes are utilized to select target materials and to model the primary beam power density, thermal transport and temperature distributions in ISOL targets. These studies suggest that radiation cooling, in combination with Lissajous beam scan techniques, can be used to control temperatures in practically sized targets, to levels commensurate with irradiation with 1-GeV, 400-kW proton beams for next generation RIB facilities.
Design study of the SPS beam dumping system
Faugeras, Paul E; Schröder, G H
1973-01-01
An internal beam dumping system is needed for the SPS, in order to prevent uncontrolled loss of the beam in the accelerator. Several possible dumping schemes have been studied and compared in Ref. (1), and the method using fast kicker magnets has been chosen. The beam dumping system will use a pair of kicker magnets, which deflect the beam verti-cally onto the absorber blocks, and the beam will be dumped in one SPS revolution. It has been shown$^{(1)}$ that dumping a ow emittance beam of 10$^{13}$ ppp at 400 GeV/c leads to severe thermal problems in the absorber blocks. In particular, dumping the beam with fast kickers induces in the absorber blocks instantaneous temperature rises. These depend on the proton density distributions in the beam and the material used for the block and can be at least as high as l000$^{°}$C in case of aluminium. Although the values of these temperature spikes cannot be calculated with good accuracy, they are certainly higher than permitted for a reliable absorber block design. It...
Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence
International Nuclear Information System (INIS)
Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; Commara, M. La; Parascandolo, C.; Sandoli, M.; Agodi, C.; Alba, R.; Colonna, M.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Cardella, G.; Filippo, E. De
2009-01-01
High-energy γ rays and light charged particles from the 36 Ar+ 96 Zr and 40 Ar+ 92 Zr reactions at E lab =16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt γ radiation, emitted in the decay of the dynamical dipole mode, in the ∼16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the γ-ray spectra of the charge symmetric reaction 40 Ar+ 92 Zr, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90 deg. γ-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra γ yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.
Nonlinear dynamics and chaos in an optomechanical beam
Navarro-Urrios, Daniel; Capuj, Néstor E.; Colombano, Martín F.; García, P. David; Sledzinska, Marianna; Alzina, Francesc; Griol, Amadeu; Martínez, Alejandro; Sotomayor-Torres, Clivia M.
2017-04-01
Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two- and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two- and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications.
Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation
Energy Technology Data Exchange (ETDEWEB)
Knez, Daniel, E-mail: daniel.knez@felmi-zfe.at [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Thaler, Philipp; Volk, Alexander [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Kothleitner, Gerald [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria); Ernst, Wolfgang E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Hofer, Ferdinand [Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz (Austria); Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz (Austria)
2017-05-15
We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures. - Highlights: • Beam induced conversion of Ni clusters into crystalline NiO rings has been observed. • Ni clusters were grown with the superfluid He-droplet technique. • oxidizeSTEM was utilized to investigate and simultaneously oxidize these clusters. • Oxidation dynamics was captured in real-time. • Cluster sizes and the oxidation rate were estimated via EELS and molecular dynamics.
Directory of Open Access Journals (Sweden)
Guangsong Chen
2014-01-01
Full Text Available This paper presents formulations for a Timoshenko beam subjected to an accelerating mass using spectral element method in time domain (TSEM. Vertical displacement and bending rotation of the beam were interpolated by Lagrange polynomials supported on the Gauss-Lobatto-Legendre (GLL points. By using GLL integration rule, the mass matrix was diagonal and the dynamic responses can be obtained efficiently and accurately. The results were compared with those obtained in the literature to verify the correctness. The variation of the vibration frequencies of the Timoshenko and moving mass system was researched. The effects of inertial force, centrifugal force, Coriolis force, and tangential force on a Timoshenko beam subjected to an accelerating mass were investigated.
Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit
DEFF Research Database (Denmark)
Jakobsen, Lasse; Surlykke, Annemarie
2010-01-01
Animals using sound for communication emit directional signals, focusing most acoustic energy in one direction. Echolocating bats are listening for soft echoes from insects. Therefore, a directional biosonar sound beam greatly increases detection probability in the forward direction and decreases...... off-axis echoes. However, high directionality has context-specific disadvantages: at close range the detection space will be vastly reduced, making a broad beam favorable. Hence, a flexible system would be very advantageous. We investigated whether bats can dynamically change directionality...... of their biosonar during aerial pursuit of insects. We trained five Myotis daubentonii and one Eptesicus serotinus to capture tethered mealworms and recorded their echolocation signals with a multimicrophone array. The results show that the bats broaden the echolocation beam drastically in the terminal phase...
Comparative study of direct and inverse problems of cracked beams
Directory of Open Access Journals (Sweden)
Mahieddine Chettah
2018-01-01
Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply
Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC
Energy Technology Data Exchange (ETDEWEB)
Rossi, Adriana; et al.
2017-05-01
Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.
SPES: exotic beams for nuclear physics studies
International Nuclear Information System (INIS)
Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Vasquez, J.; Rossignoli, M.; Monetti, A.; Calderolla, M.; Prete, G.
2014-01-01
The SPES project at Laboratori di Legnaro of INFN (Italy) is concentrating on the production of neutron-rich radioactive nuclei for nuclear physics experiments using uranium fission at a rate of 10 13 fission/s. The emphasis on neutron-rich isotopes is justified by the fact that this vast territory has been little explored. The Radioactive Ion Beam (RIB) will be produced by the ISOL technique using proton induced fission on a direct target of UCx. The most critical element of the SPES project is the Multi-Foil Direct Target. Up to the present time, the proposed target represents an innovation in terms of its capability to sustain the primary beam power. This talk will present the status of the project financed by INFN, which is actually in the construction phase at Legnaro. In particular, developments related to the target and the ion-source activities using the surface ion source, plasma ion source, and laser ion source techniques will be reported. (author)
End-to-End Beam Dynamics Simulations for the ANL-RIA Driver Linac
Ostroumov, P N
2004-01-01
The proposed Rare Isotope Accelerator (RIA) Facility consists of a superconducting (SC) 1.4 GV driver linac capable of producing 400 kW beams of any ion from hydrogen to uranium. The driver is configured as an array of ~350 SC cavities, each with independently controllable rf phase. For the end-to-end beam dynamics design and simulation we use a dedicated code, TRACK. The code integrates ion motion through the three-dimensional fields of all elements of the driver linac beginning from the exit of the electron cyclotron resonance (ECR) ion source to the production targets. TRACK has been parallelized and is able to track large number of particles in randomly seeded accelerators with misalignments and a comprehensive set of errors. The simulation starts with multi-component dc ion beams extracted from the ECR. Beam losses are obtained by tracking up to million particles in hundreds of randomly seeded accelerators. To control beam losses a set of collimators is applied in designated areas. The end-to-end simulat...
Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam
Ruzziconi, Laura
2016-12-05
This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario of the structure response in a neighborhood of the primary resonance. Extensive numerical simulations are performed when both the forcing amplitude and frequency are varied, ranging from low up to elevated excitations. The coexistence of competing attractors with different characteristics is analyzed. Both the non-resonant and the resonant behavior are observed, as well as ranges of inevitable escape. Versatility of behavior is highlighted, which may be attractive in applications. Special attention is devoted to the effects of the tip-sample separation distance, since this aspect is of fundamental importance to understand the operation of an AFM. We explore the metamorphoses of the multistability region when the tip-sample separation distance is varied. To have a complete description of the AFM response, comprehensive behavior charts are introduced to detect the theoretical boundaries of appearance and disappearance of the main attractors. Also, extensive numerical simulations investigate the AFM response when both the forcing amplitude and the tip-sample separation distance are considered as control parameters. The main features are analyzed in detail and the obtained results are interpreted in terms of oscillations of the cantilever-tip ensemble. However, we note that all the aforementioned results represent the limit when disturbances are absent, which never occurs in practice. Here comes the importance of overcoming local investigations and exploring dynamics from a global perspective, by introducing dynamical integrity concepts. To extend the AFM results to the practical case where disturbances exist, we develop a dynamical integrity analysis. After performing a systematic basin of attraction analysis, integrity
Directory of Open Access Journals (Sweden)
Ahmad Mamandi
2011-01-01
Full Text Available In this study, the nonlinear vibrations analysis of an inclined pinned-pinned self-weight Timoshenko beam made of linear, homogenous and isotropic material with a constant cross section and finite length subjected to a traveling mass/force with constant velocity is investigated. The nonlinear coupled partial differential equations of motion for the rotation of warped cross section, longitudinal and transverse displacements are derived using the Hamilton's principle. These nonlinear coupled PDEs are solved by applying the Galerkin's method to obtain dynamic responses of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various load velocity ratios and the outcome results have been compared to the results with those obtained from linear solution. The influence of the large deflections caused by a stretching effect due to the beam's fixed ends is captured. It was seen that existence of quadratic-cubic nonlinear terms in the nonlinear governing coupled PDEs of motion causes stiffening (hardening behavior of the dynamic responses of the self-weight beam under the act of a traveling mass as well as equivalent concentrated moving force. Furthermore, in a case where the object leaves the beam, its planar motion path is derived and the targeting accuracy is investigated and compared with those from the rigid solution assumption.
A High Dynamic-Range Beam Position Measurement System for ELSA-2
Balleyguier, P; Guimbal, P; Borrion, H
2003-01-01
New beamlines are presently under construction for ELSA, a 20 MeV electron linac located at Bruyères-le-Châtel. These lines need a beam position measurement system filling the following requirements: small footprint, wide dynamic range, single-bunch/multi-bunch capability, simple design. We designed a compact 4-stripline sensor and an electronic treatment chain based on logarithmic amplifiers. This paper presents the design, cold and hot test results.
International Nuclear Information System (INIS)
Marangoni, M.; Janner, D.; Ramponi, R.; Laporta, P.; Longhi, S.; Cianci, E.; Foglietti, V.
2005-01-01
A theoretical and experimental analysis of beam dynamics and wave packet splitting of light in a periodically bent optical waveguide, a phenomenon recently observed [Phys. Rev. Lett. 94, 073002 (2005)] which is the optical equivalent of adiabatic stabilization of atoms in intense and high-frequency laser fields, is presented in the multimode operational regime. Inhibition of wave packet splitting is theoretically predicted and experimentally observed for higher-order mode excitation
Dynamical manipulation of Cosine-Gauss beams in a graphene plasmonic waveguide.
He, Xueqing; Ning, Tigang; Li, Rujiang; Pei, Li; Zheng, Jingjing; Li, Jing
2017-06-12
In this paper, we theoretically propose for the first time that graphene monolayer can be used to manipulate the Cosine-Gauss beams (CGBs). We show that both the transverse oscillation period and propagation length of a CGB can be dynamically manipulated by utilizing the tunability of the graphene's chemical potential. The graphene-based planar plasmonic waveguide provides a good platform to investigate the propagation properties of CGBs, which is potentially compatible to the microelectronic technology.
Energy Technology Data Exchange (ETDEWEB)
Noll, Daniel [Goethe Univ., Frankfurt (Germany); Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
2015-11-17
An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.
Dynamic analysis of smart composite beams by using the frequency domain spectral element method
Energy Technology Data Exchange (ETDEWEB)
Park, Il Wook; Lee, Usik [Inha Univ., Incheon (Korea, Republic of)
2012-08-15
To excite or measure the dynamic responses of a laminated composite structure for the active controls of vibrations or noises, wafertype piezoelectric transducers are often bonded on the surface of the composite structure to form a multi layer smart composite structure. Thus, for such smart composite structures, it is very important to develop and use a very reliable mathematical and/or computational model for predicting accurate dynamic characteristics. In this paper, the axial-bending coupled equations of motion and boundary conditions are derived for two layer smart composite beams by using the Hamilton's principle with Lagrange multipliers. The spectral element model is then formulated in the frequency domain by using the variation approach. Through some numerical examples, the extremely high accuracy of the present spectral element model is verified by comparing with the solutions by the conventional finite element model provided in this paper. The effects of the lay up of composite laminates and surface bonded wafer type piezoelectric (PZT) layer on the dynamics and wave characteristics of smart composite beams are investigated. The effective constraint forces at the interface between the base beam and PZT layer are also investigated via Lagrange multipliers.
An analytical study on the bending of prismatic SMA beams
International Nuclear Information System (INIS)
Ostadrahimi, Alireza; Arghavani, Jamal; Poorasadion, Saeid
2015-01-01
In this study, an analytical solution is presented for pure bending of shape memory alloy (SMA) beams with symmetric cross section as well as symmetric behavior in tension and compression. To this end, a three-dimensional constitutive equation is reduced to one-dimensional form and employed to study the bending response of SMA beams at high (pseudo-elasticity) and low (shape memory effect) temperatures. An analytical expression for bending stress as well as polynomial approximation for shear stress and deflection are obtained. Derived equations for bending are employed to analyze an SMA beam with rectangular cross section and results are compared with those of the finite element method. The results of this work show good agreement when compared with experimental data and finite element results. Furthermore, the existence of several zero-stress fibers during unloading of SMA beams at low temperature is demonstrated. (paper)
Energy Technology Data Exchange (ETDEWEB)
MacKay, W. W. [Weirich Consulting Services, Inc. Hunterville, NC (United States); Fischer, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pile, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaskiewicz, M. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2013-12-13
When a substance is implanted with positive muons the precession of their magnetic moments can be used to sample the magnetic properties of the material. The information obtained is complementary to that from NMR, ESR, and neutron scattering. To date, only four user facilities exist in the world but none in the US. We explore the possibility of using the AGS complex at BNL for a μSR facility for the production of positive surface muons. With an incident proton intensity of 10^{14} protons per second hitting a 200 mm long 0.5 mm thick graphite target, our preliminary design of the beam line could produce low momentum surface muons (24–30 MeV/c) with a flux of 0.9 MHz/cm^{2} for experiments.
Beam-foil-gas spectroscopy - A technique for studying steady-state non-equilibrium processes.
Bickel, W. S.; Veje, E.; Carriveau, G.; Anderson, N.
1971-01-01
When a thin foil is inserted in the beam of a beam-gas experiment, the beam particle state populations are driven far from their beam-gas equilibrium values. Downstream from the foil, the 'new beam' and gas species interact to produce a new equilibrium, usually different from the beam-gas equilibrium. Experimental results are presented to demonstrate this effect and to show how relative cross-section measurements can be used to study the beam-foil interaction.
Studying Dynamics in Business Networks
DEFF Research Database (Denmark)
Andersen, Poul Houman; Anderson, Helen; Havila, Virpi
1998-01-01
This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland......This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...
Guobao, FENG; Wanzhao, CUI; Lu, LIU
2018-03-01
A series of synthetic variations of material intrinsic properties always come with charging phenomena due to electron beam irradiation. The effects of charging on the dielectric constant will influence the charging dynamic in return. In this paper, we propose a numerical simulation for investigating the dynamic characteristics of charging effects on the dielectric constant due to electron beam irradiation. The scattering process between electrons and atoms is calculated considering elastic and inelastic collisions via the Rutherford model and the fast secondary electron model, respectively. Internal charge drift due to E-field, density gradient caused diffusion, charges trap by material defect, free electron and hole neutralization, and variation in the internal dielectric constant are considered when simulating the transport process. The dynamics of electron and hole distributions and charging states are demonstrated during E-beam irradiation. As a function of material nonlinear susceptibility and primary energy, the dynamics of charging states and dielectric constants are then presented in the charging process. It is found that the variation in the internal dielectric constant is more with respect to the depth and irradiation time. Material with a larger nonlinear susceptibility corresponds a faster charging enhancement. In addition, the effective dielectric constant and the surface potential have a linear relationship in the charging balance. Nevertheless, with shrinking charging affect range, the situation with a higher energy primary electron comes with less dielectric constant variation. The proposed numerical simulation mode of the charging process and the results presented in this study offer a comprehensive insight into the complicated charging phenomena in electron irradiation related fields.
An exact dynamic stiffness matrix for axially loaded double-beam ...
Indian Academy of Sciences (India)
a Galerkin-type state-space approach for studying the transverse vibrations of double-beam sys- tems which was made of two ... First, the coupled governing equations of motion of the axially loaded double-beam system with shear deformation and .... and λ1 is a real root of the following cubic equation λ3 − a2λ2 + (a1a3 ...
Dynamics of the ion-ion acoustic instability in the thermalization of ion beams
Energy Technology Data Exchange (ETDEWEB)
Han, J.H.; Horton, W. (Texas Univ., Austin, TX (United States). Inst. for Fusion Studies); Leboeuf, J.N. (Oak Ridge National Lab., TN (United States))
1992-07-01
Particle simulation using a nonlinear adiabatic electron response with two streaming ion species and nonlinear theory are used to study the collisionless thermalization of ion beams in a hot electron plasma. The slow beam or subsonic regime is investigated and the criterion for the transition from predominantly light ion to predominantly heavy ion heating is developed. Long-lived ion hole structures a-re observed in the final state.
Bernhard, Axel; Casalbuoni, Sara; Ferracin, Paolo; Garcia Fajardo, Laura; Gerstl, Stefan; Gethmann, Julian; Grau, Andreas; Huttel, Erhard; Khrushchev, Sergey; Mezentsev, Nikolai; Müller, Anke-Susanne; Papaphilippou, Yannis; Saez de Jauregui, David; Schmickler, Hermann; Schoerling, Daniel; Shkaruba, Vitaliy; Smale, Nigel; Tsukanov, Valery; Zisopoulos, Panagiotis; Zolotarev, Konstantin
2016-01-01
In a collaboration between CERN, BINP and KIT a prototype of a superconducting damping wiggler for the CLIC damping rings has been installed at the ANKA synchrotron light source. On the one hand, the foreseen experimental program aims at validating the technical design of the wiggler, particularly the conduction cooling concept applied in its cryostat design, in a long-term study. On the other hand, the wiggler's influence on the beam dynamics particularly in the presence of collective effects is planned to be investigated. ANKA's low-alpha short-bunch operation mode will serve as a model system for these studies on collective effects. To simulate these effects and to make verifiable predictions an accurate model of the ANKA storage ring in low-alpha mode, including the insertion devices is under parallel development. This contribution reports on the first operational experience with the CLIC damping wiggler prototype in the ANKA storage ring and steps towards the planned advanced experimental program with th...
2011-08-01
78 5.2 Validation of Impact_Beam using SAP2000 .............................................................. 79 5.3...Figure 5.1. Moment time-history at midspan calculated using Impact_Beam and SAP2000 ...Impact_Beam and SAP2000
International Nuclear Information System (INIS)
Gladkikh, P.I.; Telegin, Yu.N.; Karnaukhov, I.M.
2002-01-01
The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented
Gladkikh, P I; Karnaukhov, I M
2002-01-01
The feasibility of the development of intense X-ray sources based on Compton scattering in laser-electron storage rings is discussed. The results of the electron beam dynamics simulation involving Compton and intrabeam scattering are presented.
Beam loss studies on silicon strip detector modules for the CMS experiment
Fahrer, Manuel
2006-01-01
The large beam energy of the LHC demands for a save beam abort system. Nevertheless, failures cannot be excluded with last assurance and are predicted to occur once per year. As the CMS experiment is placed in the neighboured LHC octant, it is affected by such events. The effect of an unsynchronized beam abort on the silicon strip modules of the CMS tracking detector has been investigated in this thesis by performing one accelerator and two lab experiments. The dynamical behaviour of operational parameters of modules and components has been recorded during simulated beam loss events to be able to disentangle the reasons of possible damages. The first study with high intensive proton bunches at the CERN PS ensured the robustness of the module design against beam losses. A further lab experiment with pulsed IR LEDs clarified the physical and electrical processes during such events. The silicon strip sensors on a module are protected against beam losses by a part of the module design that originally has not been...
Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P
2016-01-01
In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...
Free vibration of functionally graded beams and frameworks using the dynamic stiffness method
Banerjee, J. R.; Ananthapuvirajah, A.
2018-05-01
The free vibration analysis of functionally graded beams (FGBs) and frameworks containing FGBs is carried out by applying the dynamic stiffness method and deriving the elements of the dynamic stiffness matrix in explicit algebraic form. The usually adopted rule that the material properties of the FGB vary continuously through the thickness according to a power law forms the fundamental basis of the governing differential equations of motion in free vibration. The differential equations are solved in closed analytical form when the free vibratory motion is harmonic. The dynamic stiffness matrix is then formulated by relating the amplitudes of forces to those of the displacements at the two ends of the beam. Next, the explicit algebraic expressions for the dynamic stiffness elements are derived with the help of symbolic computation. Finally the Wittrick-Williams algorithm is applied as solution technique to solve the free vibration problems of FGBs with uniform cross-section, stepped FGBs and frameworks consisting of FGBs. Some numerical results are validated against published results, but in the absence of published results for frameworks containing FGBs, consistency checks on the reliability of results are performed. The paper closes with discussion of results and conclusions.
Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy
International Nuclear Information System (INIS)
Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David
2003-01-01
This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations
QA of intensity-modulated beams using dynamic MLC log files.
Dinesh Kumar, M; Thirumavalavan, N; Venugopal Krishna, D; Babaiah, M
2006-01-01
To evaluate the utility of Dynalog file information for planar dose verification in IMRT QA, a program is developed to convert Dynalog file data to DMLC field files. For this study, five predefined fluencies are planned and delivered using Varian, Eclipse 3D planning system and 6MV photon beam of Varian, Clinac DMX linear accelerator. To measure planar dose distribution, Kodak, EDR2 films are exposed in similar setup as planning setup. Dynalog files are recorded for each delivery and converted into DMLC field files using in-house program. Delivered dose distributions are calculated using DMLC field files from Dynalog files. Planned, Measured and Delivered dose distributions are compared using gamma evaluation in Scanditronix, Omni Pro IMRT software. The Planned and Delivered planar dose distributions agree within 2% dose difference and 2 mm DTA. Measured dose distributions agree within 4% dose difference and 4 mm DTA with Planned dose distribution. Our results show Dynalog file as a promising tool for dynamic IMRT QA.
Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy
Energy Technology Data Exchange (ETDEWEB)
Parsai, Homayon [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Cho, Paul S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Phillips, Mark H [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Giansiracusa, Robert S [Department of Radiation Oncology, University of Washington, Box 356043, Seattle, WA 98195 (United States); Axen, David [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)
2003-05-07
This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of {sigma} = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least {sigma} = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of {+-}0.5 mm were shown to result in significant dosimetric deviations.
Directory of Open Access Journals (Sweden)
Ronald C. Davidson
2004-02-01
Full Text Available This paper describes a self-consistent kinetic model for the longitudinal dynamics of a long, coasting beam propagating in straight (linear geometry in the z direction in the smooth-focusing approximation. Starting with the three-dimensional Vlasov-Maxwell equations, and integrating over the phase-space (x_{⊥},p_{⊥} transverse to beam propagation, a closed system of equations is obtained for the nonlinear evolution of the longitudinal distribution function F_{b}(z,p_{z},t and average axial electric field ⟨E_{z}^{s}⟩(z,t. The primary assumptions in the present analysis are that the dependence on axial momentum p_{z} of the distribution function f_{b}(x,p,t is factorable, and that the transverse beam dynamics remains relatively quiescent (absence of transverse instability or beam mismatch. The analysis is carried out correct to order k_{z}^{2}r_{w}^{2} assuming slow axial spatial variations with k_{z}^{2}r_{w}^{2}≪1, where k_{z}∼∂/∂z is the inverse length scale of axial variation in the line density λ_{b}(z,t=∫dp_{z}F_{b}(z,p_{z},t, and r_{w} is the radius of the conducting wall (assumed perfectly conducting. A closed expression for the average longitudinal electric field ⟨E_{z}^{s}⟩(z,t in terms of geometric factors, the line density λ_{b}, and its derivatives ∂λ_{b}/∂z,… is obtained for the class of bell-shaped density profiles n_{b}(r,z,t=(λ_{b}/πr_{b}^{2}f(r/r_{b}, where the shape function f(r/r_{b} has the form specified by f(r/r_{b}=(n+1(1-r^{2}/r_{b}^{2}^{n} for 0≤r
International Nuclear Information System (INIS)
Ohnuma, Shoroku.
1988-01-01
This paper summarizes the trip made by Shoroku Ohnuma to the Second Advanced ICFA Beam Dynamics Workshop in Switzerland. Discussed are the experimental and theoretical studies conducted on aperture- related limitations of storage ring performance. Lepton and hadron storage ring machines are mainly mentioned
Hape, M; Ricken, W
2005-01-01
The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...
Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls
Sivaneshan, P.; Harishankar, S.
2017-07-01
The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.
Dynamic wedge, electron energy and beam profile Q.A. using an ionization chamber linear array
International Nuclear Information System (INIS)
Kenny, M.B.; Todd, S.P.
1996-01-01
Since the introduction of multi-modal linacs the quality assurance workload of a Physical Sciences department has increased dramatically. The advent of dynamic wedges has further complicated matters because of the need to invent accurate methods to perform Q.A. in a reasonable time. We have been using an ionization chamber linear array, the Thebes 7000 TM by Victoreen, Inc., for some years to measure X-ray and electron beam profiles. Two years ago we developed software to perform Q.A. on our dynamic wedges using the array and more recently included a routine to check electron beam energies using the method described by Rosenow, U.F. et al., Med. Phys. 18(1) 19-25. The integrated beam and profile management system has enabled us to maintain a comprehensive quality assurance programme on all our linaccs. Both our efficiency and accuracy have increased to the point where we are able to keep up with the greater number of tests required without an increase in staff or hours spent in quality assurance. In changing the processor from the Z80 of the Thebes console to the 486 of the PC we have also noticed a marked increase in the calibration stability of the array. (author)
Simulation Study of a Thermionic RF Gun for High Brightness and Short Pulse Beam
Tanaka, Takumi; Hinode, Fujio; Kawai, Masayuki; Miyamoto, Atsushi; Shinto, Katsuhiro
2005-01-01
Characteristics of thermionic RF guns are not understood completely. In particular, measured intense beam emittances extracted from thermionic RF guns do not agree well with simulated values so far. Most of simulation codes solve the equation of electron motion in an intrinsic mode of the RF field calculated by a separated code. The way of such simulation codes is not self-consistent completely. That is probably a major reason for the discrepancy between the experiments and the simulations. One of the other way for a self-consistent simulation codes is to use an FDTD (Finite Difference Time Domain) method. Since the FDTD method can take into account the microwave propagation including the space charge effect and the beam loading self-consistently, we have developed an FDTD code as 3-D Maxwell's equation solver and applied for a study of beam dynamics in a thermionic RF gun. The main purpose of simulaiton study is to obtain overall properties of the beam dynamics at the time. The goal of this simulation study ...
Energy Technology Data Exchange (ETDEWEB)
Mulser, P. (ed.)
2008-04-15
The following topics are dealt with: The PHELIX laser-plasma facility, coupling of nuclear matter to intense photon fields, QED effects in strong laser fields, relativistic critical density increase in a linearly polarized laser beam, absorption of ultrashort laser pulses in strongly overdense targets, Coulomb focusing in electron-ion collisions in a strong laser field, quasiperiodic waves in relativistic plasmas, high-energy-density physics studied by intense particle beams, heavy ions in a high-power laser beam, Monte-Carlo study of electron dynamics in silicon during irradiation with an ultrashort VUV laser pulse. (HSI)
Coherent instabilities of a relativistic bunched beam
International Nuclear Information System (INIS)
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references
Coherent instabilities of a relativistic bunched beam
Energy Technology Data Exchange (ETDEWEB)
Chao, A.W.
1982-06-01
A charge-particle beam contained in an accelerator vacuum chamber interacts electromagnetically with its environment to create a wake field. This field than acts back on the beam, perturbing the particle motion. If the beam intensity is high enough, this beam-environment interaction may lead to an instability and to subsequent beam loss. The beam and its environment form a dynamical system, and it is this system that will be studied. 84 references.
Superconducting linac beam dynamics with high-order maps for RF resonators
Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177
2004-01-01
The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...
Dynamics of longitudinal phase-space modulations in an rf compressor for electron beams
Directory of Open Access Journals (Sweden)
M. Venturini
2010-08-01
Full Text Available Free-electron lasers operating in the UV or x-ray radiation spectrum require peak beam currents that are generally higher than those obtainable by present electron sources, thus making bunch compression necessary. Compression, however, may heighten the effects of collective forces and degrade the beam quality. In this paper we provide a framework for investigating some of these effects in rf compressors by focusing on the longitudinal dynamics of small-amplitude density perturbations, which have the potential to cause the disruptive appearance of the so-called microbunching instability. We develop a linear theory valid for low-to-moderate compression factors under the assumption of a 1D impedance model of longitudinal space charge and provide validation against macroparticle simulations.
Vertical dynamic deflection measurement in concrete beams with the Microsoft Kinect.
Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen
2014-02-19
The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.
Studies of the longitudinal instability with an electron beam
International Nuclear Information System (INIS)
1993-01-01
Goals for our first-year period are as follows: To study the evolution of a small perturbation in the current pulse (introduced via the grid voltage on the electron gun) when the beam propagates through our 5-m long periodic solenoid channel. Specifically, to see if the perturbation is reflected from the rear end of the pulse. So far these objectives have been met without any delays. We were able to launch different perturbations on the beam resulting in either a slow space-charge wave or a fast wave or both waves. The relative strength of each wave was found to depend on the electron emission temperature of the cathode. The propagation of these waves on an initially rectangular longitudinal beam profile was measured with fast current monitors and the kinetic energy was measured with sensitive energy analyzers at various positions along the 5-m long solenoidal focusing channel. We have also begun to study the behavior of the waves when they reach the respective edge of the beam. But this work is still of a preliminary nature, and we need to refine the beam conditions and measurements in future studies to reach any firm conclusions. Preparations for the resistive-wall instability experiment are in progress
International Nuclear Information System (INIS)
Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.
2009-01-01
Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.
Directory of Open Access Journals (Sweden)
Ramazan-Ali Jafari-Talookolaei
2015-09-01
Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.
Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports
Directory of Open Access Journals (Sweden)
Zuo-Yang Zhong
2013-11-01
Full Text Available Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq’s and Cerruti’s displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.
Samani, Farhad S.; Pellicano, Francesco
2012-05-01
The goal of the present work is to assess the performances of dynamic vibration absorbers (DVA) in suppressing the vibrations of a simply supported beam subjected to an infinite sequence of regularly spaced concentrated moving loads. In particular, several types of DVA are considered: linear, cubic, higher odd-order monomials and piecewise linear stiffness; linear, cubic and linear-quadratic viscous damping. The purpose is to clarify if nonlinear DVAs show improvements with respect to the classical linear devices. The dynamic scenario is deeply investigated in a wide range of operating conditions, spanning the parameter space of the DVA (damping, stiffness). Nonlinear stiffness can lead to complex dynamics such as quasi-periodic, chaotic and sub-harmonic responses; moreover, acting on the stiffness nonlinearity no improvement is found with respect to the linear DVA. A nonlinear non-symmetric dissipation in the DVA leads to a great reduction of the beam response, the reduction is larger with respect to the linear DVA.
Parametric study on a collocated PZT beam vibration absorber and power harvester
Energy Technology Data Exchange (ETDEWEB)
Huang, Shyh Chin [Mechanical Engineering, Ming Chi University of Technology, New Taipei (China); Tsai, Chao Yang [Mechanical Engineering Army Academy, R.O.C., Taoyuan (China); Liao, Hsiao Hui [LNG Construction and Project Division, CPC Corp., Taipei (China)
2016-11-15
The parametric effects of a PZT beam that is simultaneously used as a vibration absorber and a power harvester were investigated in this study. A cantilever beam paved with PZT layers and with added tip mass has been widely used as a harvester or sometimes as a Dynamic vibration absorber (DVA). However, the beam is rarely considered a collocated device. In this study, the first step was theoretical derivation of a distributed beam covered with bimorph PZT layers. Then, the beam was attached to a 1DOF vibratory main system. Two indicators for vibration absorption and power harvesting were defined. Numerical results demonstrated that the lumped mass ratio favored both of the abilities, but that the DVA mass ratio influenced these two abilities in exactly the opposite way. The conjunction of a harvester circuit into a DVA shifted its resonance frequency up to 5 % (an extreme case of open circuit R→∞). Simultaneous power harvesting diminished the absorption capability up to 35 % for each set of mass ratios. To achieve the maximum degree of power harvesting, a corresponding load resistance that somewhat increases with the lumped mass ratio is applied. Experimental results verified the existence of the best load resistance, but the measured harvested curve was lower than the theoretical calculation because of structure damping and deviations of PZT material properties.
Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor
Energy Technology Data Exchange (ETDEWEB)
Balcazar, Mario D. [Fermilab; Yonehara, Katsuya [Fermilab
2017-10-22
The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of the tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.
Therapeutic study of proton beam in vascular disease animal models
Energy Technology Data Exchange (ETDEWEB)
Lee, Y. M.; Jang, K. H.; Kim, M. J.; Choi, J. H. [Kyungpook National University, Daegu (Korea, Republic of)
2010-04-15
We previously reported that proton beam inhibited angiogenic vessels in zebrafish and that proton induced cancer cell apoptosis via p53 induction as well as caspase-3 activity. In this study, we performed to identity the effect of candidate chemicals on the angiogenic inhibition in vitro and in vivo (zebrafish Flk1:EGFP transgenic fish). And we treated small cell lung adenocarcinoma cell line, A549 cells with proton beam in combination with angiogenic inhibitors we found in this study. By the MTT assay, we performed cell viability assay with cancer cells and we investigated that HIF-1{alpha} induction by proton beam by the western blot analysis. We found novel anti-angiogenic chemicals from traditional herb. That is decursin, and glyceollins from the Angelica gigas, and soy bean. Decrusin and glyceollins inhibited VEGF- or bFGF-induced endothelial cell proliferation, migration and zebrafish microvessel development. Moreover, glyceollins inhibited hypoxia-induced HIF-1{alpha} in a dose dependent manner. However, proton beam itself did not induce HIF-1{alpha} whereas it increased HIF-1{alpha} stability under hypoxia. Even proton beam induced cell death of A549 small cell lung carcinoma cells but the combination of decrusin or glyceollins did not increase the cancer cell death
Therapeutic study of proton beam in vascular disease animal models
International Nuclear Information System (INIS)
Lee, Y. M.; Jang, K. H.; Kim, M. J.; Choi, J. H.
2010-04-01
We previously reported that proton beam inhibited angiogenic vessels in zebrafish and that proton induced cancer cell apoptosis via p53 induction as well as caspase-3 activity. In this study, we performed to identity the effect of candidate chemicals on the angiogenic inhibition in vitro and in vivo (zebrafish Flk1:EGFP transgenic fish). And we treated small cell lung adenocarcinoma cell line, A549 cells with proton beam in combination with angiogenic inhibitors we found in this study. By the MTT assay, we performed cell viability assay with cancer cells and we investigated that HIF-1α induction by proton beam by the western blot analysis. We found novel anti-angiogenic chemicals from traditional herb. That is decursin, and glyceollins from the Angelica gigas, and soy bean. Decrusin and glyceollins inhibited VEGF- or bFGF-induced endothelial cell proliferation, migration and zebrafish microvessel development. Moreover, glyceollins inhibited hypoxia-induced HIF-1α in a dose dependent manner. However, proton beam itself did not induce HIF-1α whereas it increased HIF-1α stability under hypoxia. Even proton beam induced cell death of A549 small cell lung carcinoma cells but the combination of decrusin or glyceollins did not increase the cancer cell death
Extending the Nonlinear-Beam-Dynamics Concept of 1D Fixed Points to 2D Fixed Lines
Franchetti, G.
2015-01-01
The origin of nonlinear dynamics traces back to the study of the dynamics of planets with the seminal work of Poincaré at the end of the nineteenth century: Les Méthodes Nouvelles de la Mécanique Céleste, Vols. 1–3 (Gauthier Villars, Paris, 1899). In his work he introduced a methodology fruitful for investigating the dynamical properties of complex systems, which led to the so-called “Poincaré surface of section,” which allows one to capture the global dynamical properties of a system, characterized by fixed points and separatrices with respect to regular and chaotic motion. For two-dimensional phase space (one degree of freedom) this approach has been extremely useful and applied to particle accelerators for controlling their beam dynamics as of the second half of the twentieth century.We describe here an extension of the concept of 1D fixed points to fixed lines in two dimensions. These structures become the fundamental entities for characterizing the nonlinear motion in the four-dimensional phas...
Comprehensive study of beam focusing by crystal devices
Scandale, W.; Arduini, G.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Masi, A.; Mirarchi, D.; Montesano, S.; Petrucci, S.; Redaelli, S.; Rossi, R.; Breton, D.; Burmistrov, L.; Dubos, S.; Maalmi, J.; Natochii, A.; Puill, V.; Stocchi, A.; Sukhonos, D.; Bagli, E.; Bandiera, L.; Guidi, V.; Mazzolari, A.; Romagnoni, M.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Bulgakov, M. K.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kolomiets, A. A.; Kovalenko, A. D.; Taratin, A. M.; Smirnov, G. I.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; Auzinger, G.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.
2018-01-01
This paper is devoted to an experimental study of focusing and defocusing positively charged particle beams with the help of specially bent single crystals. Four crystals have been fabricated for this purpose. The studies have been performed at the CERN SPS in 400 GeV /c proton and 180 GeV /c pion beams. The results of measurements of beam envelopes are presented. The rms size of the horizontal profile at the focus was 5-8 times smaller than at the exit of the crystals. The measured focal lengths were 4-21 m. The results of measurements are in good agreement with calculations. Possible applications of focusing crystals in present and future high energy accelerators are discussed.
Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.
Muñoz-García, Javier; Castro, Mario; Cuerno, Rodolfo
2006-03-03
Erosion by ion-beam sputtering (IBS) of amorphous targets at off-normal incidence frequently produces a (nanometric) rippled surface pattern, strongly resembling macroscopic ripples on aeolian sand dunes. A suitable generalization of continuum descriptions of the latter allows us to describe theoretically for the first time the main nonlinear features of ripple dynamics by IBS, namely, wavelength coarsening and nonuniform translation velocity, that agree with similar results in experiments and discrete models. These properties are seen to be the anisotropic counterparts of in-plane ordering and (interrupted) pattern coarsening in IBS experiments on rotating substrates and at normal incidence.
Beam dynamics in THz dielectric-loaded waveguides for the AXSIS project
Vinatier, T.; Assmann, R. W.; Dorda, U.; Lemery, F.; Marchetti, B.
2017-07-01
In this paper, we investigate with ASTRA simulations the beam dynamics in dielectric-loaded waveguides driven by THz pulses, used as linac structure for the AXSIS project. We show that the bunch properties at the linac exit are very sensitive to the phase velocity of the THz pulse and are limited by the strong phase slippage of the bunch respective to it. We also show that the bunch properties are optimized when low frequencies (Work supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 609920.
Directory of Open Access Journals (Sweden)
Tufoi Marius
2014-07-01
Full Text Available This paper series presents an analysis regarding the dynamics of sandwich composite beams, embedded at one end, in order to highlight the effect of geometrical and material discontinuities upon the natural frequencies. In first part (Part I, analysis was performed with EulerBernoulli analytical method for determining the vibration modes and in second part (Part II, analysis was performed with numerical simulation in SolidWorks software for a five-layer composite. In the last section of the paper, an example is shown regarding how to interpret the obtained results.
Energy Technology Data Exchange (ETDEWEB)
Bardinal, V.; Legros, R.; Fontaine, C.
1995-12-31
Highly accurate layer thickness are required for multilayers involved in photonic devices, such as Bragg reflectors. In this letter, we demonstrate that precise, real-time monitoring of molecular beam epitaxy growing layers can be achieved by near-normal incidence dynamic reflectometry with a tunable sapphire-titanium laser used as a source. The advantage of this new technique lies in the possibility of synchronizing the material changes and the reflectivity extrema by selecting adequate analysis wavelengths. This technique is shown to provide 885 nm GaAs-AlAs Bragg reflectors with a layer thickness accuracy in excess of 1%. (author). 17 refs.
International Nuclear Information System (INIS)
Chao, A.W.
1992-01-01
There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)
Geometric studies on variable radius spiral cone-beam scanning
International Nuclear Information System (INIS)
Ye Yangbo; Zhu Jiehua; Wang Ge
2004-01-01
The goal is to perform geometric studies on cone-beam CT scanning along a three-dimensional (3D) spiral of variable radius. First, the background for variable radius spiral cone-beam scanning is given in the context of electron-beam CT/micro-CT. Then, necessary and sufficient conditions are proved for existence and uniqueness of PI lines inside the variable radius 3D spiral. These results are necessary steps toward exact cone-beam reconstruction from a 3D spiral scan of variable radius, adapting Katsevich's formula for the standard helical cone-beam scanning. It is shown in the paper that when the longitudinally projected planar spiral is not always convex toward the origin, the PI line may not be unique in the envelope defined by the tangents of the spiral. This situation can be avoided by using planar spirals whose curvatures are always positive. Using such a spiral, a longitudinally homogeneous region inside the corresponding 3D spiral is constructed in which any point is passed by one and only one PI line, provided the angle ω between planar spiral's tangent and radius is bounded by vertical bar ω-90 deg. vertical bar ≤ε for some positive ε≤32.48 deg. If the radius varies monotonically, this region is larger and one may allow ε≤51.85 deg. Examples for 3D spirals based on logarithmic and Archimedean spirals are given. The corresponding generalized Tam-Danielsson detection windows are also formulated
Electron beam dynamics in an ultrafast transmission electron microscope with Wehnelt electrode
Energy Technology Data Exchange (ETDEWEB)
Bücker, K.; Picher, M.; Crégut, O. [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France); LaGrange, T. [Interdisciplinary Centre for Electron Microscopy, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland); Reed, B.W.; Park, S.T.; Masiel, D.J. [Integrated Dynamic Electron Solutions, Inc., 5653 Stoneridge Drive 117, Pleasanton, CA 94588 (United States); Banhart, F., E-mail: florian.banhart@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23 rue du Loess, 67034 Strasbourg (France)
2016-12-15
High temporal resolution transmission electron microscopy techniques have shown significant progress in recent years. Using photoelectron pulses induced by ultrashort laser pulses on the cathode, these methods can probe ultrafast materials processes and have revealed numerous dynamic phenomena at the nanoscale. Most recently, the technique has been implemented in standard thermionic electron microscopes that provide a flexible platform for studying material's dynamics over a wide range of spatial and temporal scales. In this study, the electron pulses in such an ultrafast transmission electron microscope are characterized in detail. The microscope is based on a thermionic gun with a Wehnelt electrode and is operated in a stroboscopic photoelectron mode. It is shown that the Wehnelt bias has a decisive influence on the temporal and energy spread of the picosecond electron pulses. Depending on the shape of the cathode and the cathode-Wehnelt distance, different emission patterns with different pulse parameters are obtained. The energy spread of the pulses is determined by space charge and Boersch effects, given by the number of electrons in a pulse. However, filtering effects due to the chromatic aberrations of the Wehnelt electrode allow the extraction of pulses with narrow energy spreads. The temporal spread is governed by electron trajectories of different length and in different electrostatic potentials. High temporal resolution is obtained by excluding shank emission from the cathode and aberration-induced halos in the emission pattern. By varying the cathode-Wehnelt gap, the Wehnelt bias, and the number of photoelectrons in a pulse, tradeoffs between energy and temporal resolution as well as beam intensity can be made as needed for experiments. Based on the characterization of the electron pulses, the optimal conditions for the operation of ultrafast TEMs with thermionic gun assembly are elaborated. - Highlights: • A detailed characterization of electron
International Nuclear Information System (INIS)
Chu, P.M.Y.
1991-10-01
The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH 3 production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam
Energy Technology Data Exchange (ETDEWEB)
Chu, P.M.Y.
1991-10-01
The vibrational to translational (V{yields}T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V{yields}T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH{sub 3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.
Energy Technology Data Exchange (ETDEWEB)
Chu, Pamela Mei-Ying [Univ. of California, Berkeley, CA (United States)
1991-10-01
The vibrational to translational (V→T) energy transfer in collisions between large highly vibrationally excited polyatomics and rare gases was investigated by time-of-flight techniques. Two different methods, UV excitation followed by intemal conversion and infrared multiphoton excitation (IRMPE), were used to form vibrationally excited molecular beams of hexafluorobenzene and sulfur hexafluoride, respectively. The product translational energy was found to be independent of the vibrational excitation. These results indicate that the probability distribution function for V→T energy transfer is peaked at zero. The collisional relaxation of large polyatomic molecules with rare gases most likely occurs through a rotationally mediated process. Photodissociation of nitrobenzene in a molecular beam was studied at 266 nm. Two primary dissociation channels were identified including simple bond rupture to produce nitrogen dioxide and phenyl radical and isomerization to form nitric oxide and phenoxy radical. The time-of-flight spectra indicate that simple bond rupture and isomerization occurs via two different mechanisms. Secondary dissociation of the phenoxy radicals to carbon monoxide and cyclopentadienyl radicals was observed as well as secondary photodissociation of phenyl radical to give H atom and benzyne. A supersonic methyl radical beam source is developed. The beam source configuration and conditions were optimized for CH_{3} production from the thermal decomposition of azomethane. Elastic scattering of methyl radical and neon was used to differentiate between the methyl radicals and the residual azomethane in the molecular beam.
Beam study of irradiated ATLAS-SCT prototypes
Akimoto, T; Eklund, L; García, J E; Hara, K; Ikegami, Y; Iwata, Y; Kato, Y; Ketterer, C; Kobayashi, H; Kohriki, T; Kondo, T; Koshino, T; Lacasta, C; Llosa, G; Macina, Daniela; Masuda, H; Matuo, T; Moorhead, G F; Nakano, I; Norimatsu, K; Ohsugi, T; Shinma, S; Takashima, R; Tanaka, R; Tanimoto, N; Terada, S; Ujiie, N; Unno, Y; Vos, M; Yamanaka, K; Yamashita, T
2002-01-01
Prototypes of ATLAS-SCT modules with ABCD readout chips were tested in a 4 GeV/c pion beam at KEK's proton synchrotron. Of both SCT module geometries - barrel and forward - three identical modules were placed in the beam. One module of each type had been irradiated to 3x10 sup 1 sup 4 protons/cm sup 2 in the CERN PS previous to the beam test. A method has been developed to reconstruct the time-resolved shaper pulse from the binary hit information, allowing a more detailed study of the timing properties of the ABCD. The present results will be compared to a simulation of the charge collection and Front End electronics response.
Study of ion beam induced depolymerization using positron annihilation techniques
Energy Technology Data Exchange (ETDEWEB)
Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F
2001-04-01
Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.
He, Wei
2018-03-01
This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.
Funneling study with a low energy proton beam
International Nuclear Information System (INIS)
Barth, W.; Schempp, A.
1991-01-01
Funneling is a method to increase the brightness of ion beams by filling all rf-buckets in order to use the full current transport capability of an rf accelerator by frequency jumps at higher energies. This has been proposed for HIIF type drivers and neutron sources. A simple funneling experiment is prepared at Frankfurt, using modest fields in a set up with a 50 keV proton beam and an rf deflector to study especially emittance growth effects in such funneling lines. First results will be reported
Studies of polarized beam acceleration and Siberian Snakes
International Nuclear Information System (INIS)
Lee, S.Y.
1992-01-01
We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined
Directory of Open Access Journals (Sweden)
F. Zhou
2003-05-01
Full Text Available Preservation of the femtosecond (fs microbunches, created during laser acceleration, is a crucial step to enable staging of the laser acceleration process. This paper focuses on the optimization of the beam dynamics of fs microbunches transported through the staged electron laser acceleration (STELLA-II experiment being carried out at the Brookhaven National Laboratory Accelerator Test Facility. STELLA-II consists of an inverse free electron laser (IFEL untapered undulator, which acts as an electron beam energy modulator; a magnetic chicane, which acts as a buncher; a second IFEL tapered undulator, which acts as an accelerator; and a dipole, which serves as an energy spectrometer. When the energy-modulated macrobunch traverses through the chicane and a short drift space, microbunches of order fs in duration (i.e., ∼3 fs FWHM are formed. The 3-fs microbunches are accelerated by interacting with a high-power CO_{2} laser beam in the following tapered undulator. These extremely short microbunches may experience significant space charge and coherent synchrotron radiation effects when traversing the STELLA-II transport line. These effects are analyzed and the safe operating conditions are determined. With less than 0.5-pC microbunch charge, both microbunch debunching and emittance growth are negligible, and the energy-spread increase is less than 5%. These results are also useful for the laser electron acceleration project at SLAC and in possible future programs where the fs microbunches are employed for other purposes.
J. Rodnizki, D. Berkovits, K. Lavie, I. Mardor, A. Shor and Y. Yanay (Soreq NRC, Yavne), K. Dunkel, C. Piel (ACCEL, Bergisch Gladbach), A. Facco (INFN/LNL, Legnaro, Padova), V. Zviagintsev (TRIUMF, Vancouver)
AbstractBeam dynamics simulations of SARAF (Soreq Applied Research Accelerator Facility) superconducting RF linear accelerator have been performed in order to establish the accelerator design. The multi-particle simulation includes 3D realistic electromagnetic field distributions, space charge forces and fabrication, misalignment and operation errors. A 4 mA proton or deuteron beam is accelerated up to 40 MeV with a moderated rms emittance growth and a high real-estate gradient of 2 MeV/m. An envelope of 40,000 macro-particles is kept under a radius of 1.1 cm, well below the beam pipe bore radius. The accelerator design of SARAF is proposed as an injector for the EURISOL driver accelerator. The Accel 176 MHZ β0=0.09 and β0=0.15 HWR lattice was extended to 90 MeV based on the LNL 352 MHZ β0=0.31 HWR. The matching between both lattices ensures smooth transition and the possibility to extend the accelerator to the required EURISOL ion energy.
Further development of the fast beam dynamics simulation tool V-code
Energy Technology Data Exchange (ETDEWEB)
Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, TU Darmstadt (Germany)
2010-07-01
The Vlasov equation describes the evolution of a particle density under the effects of electromagnetic fields. It is derived from the fact that the volume occupied by a given number of particles in the six-dimensional phase space remains constant when only long-range interaction as for example Coulomb forces are relevant and other particle collisions can be neglected. Because this is the case for typical charged particle beams in accelerators, the Vlasov equation can be used to describe their evolution within the whole beam line. This equation is a partial differential equation in 6D and thus it is very expensive to solve it via classical numerical methods. A more efficient approach consists in representing the particle distribution function by a discrete set of characteristic moments. For each moment a time evolution equation can be stated. These ordinary differential equations can then be evaluated efficiently by means of time integration methods if all considered forces and a proper initial condition are known. The beam dynamics simulation tool V-Code implemented at TEMF utilizes this approach.
International Nuclear Information System (INIS)
Ghayesh, Mergen H.; Amabili, Marco; Farokhi, Hamed
2013-01-01
In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)
Noise Studies on Injected-Beam Crossed-Field Devices.
1980-11-01
numerous experimental and theoretical studies. A large contribution to the understanding was made I by Van Duzer , Whinnery, and co-workers of the...Conference, Amsterdam, Netherlands, pp. 8-31, 1970. 10. T. Van Duzer , J. Whinnery, "Noise in Electron Beams", Crossed-Field Microwave Devices (E. Okress, ed
Studies on tin oxide films prepared by electron beam evaporation ...
Indian Academy of Sciences (India)
Unknown
Abstract. Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different pre- paration conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of un-.
Studies on tin oxide films prepared by electron beam evaporation ...
Indian Academy of Sciences (India)
Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated ...
On The Dynamic Analysis of Non-Uniform Beams With Non-Linear ...
African Journals Online (AJOL)
In the same way, the elastic properties of the beam, the flexural rigidity, and the mass density per unit length, and the elastic modulus parameter are expressed as functions of the spatial variable x. However, the main objectives of this study is to investigate the effect of (i) non-linear constant parameter (ii) velocity of the ...
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
Lu, Yuan; Katz, Joseph; Prosperetti, Andrea
2013-01-01
In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line
Studies on the beam system for the calibration of the OPAL jet chamber with laser beams
International Nuclear Information System (INIS)
Maringer, G.
1988-07-01
UV laser beams are an important tool for the calibration of the OPAL jet chamber. A beam transport system containing about 350 mirrors in total guides the beams from the laser outside the detector into the chamber. Four of the mirrors are moveable under remote control allowing to guide the beams into each of the 24 sectors and to correct the beam path in case of deviations. A program to control these moveable mirrors has been developed. Drift velocity measurements will be performed by means of double beams which are generated by appropriate beamsplitters. Accurate knowledge of the double beam distances is essential to obtain the desired accuracy of better than 0.1% or 10 μm. Using a CCD device with a pixel size of 23x23 μm 2 the beam distance could be measured with errors below the required limit. (orig.)
International Nuclear Information System (INIS)
Gao, J.
1996-01-01
The research works presented in this memoir are oriented not only to the R and D programs towards future linear colliders, but also to the pedagogic purposes. The first part of this memoir (from Chapter 2 to Chapter 9) establishes an analytical framework of the disk-loaded slow wave accelerating structures with can be served as the advanced courses for the students who have got some basic trainings in the linear accelerator theories. The analytical formulae derived in this part describe clearly the properties of the disk-loaded accelerating structures, such as group velocity, shunt impedance, coupling coefficients κ and β, loss factors, and wake fields. The second part (from Chapter 11 to Chapter 13) gives the beam dynamics simulations and the final proposal of an S-Band Superconducting Linear Collider (SSLC) which is aimed to avoid the dark current problem in TESLA project. This memoir has not included all the works conducted since April 1992, such as beam dynamics simulations for CLIC Test Facility (CFT-2) and the design of High Charge Structures (HCS) (11π/12 mode) for CFT-2, in order to make this memoir more harmonious, coherent and continuous. (author)
HIE-ISOLDE HEBT beam optics studies with MADX
Parfenova, A; Fraser, M A; Goddard, B; Martino, M; Voulot, D; CERN. Geneva. ATS Department
2014-01-01
Beam design and beam optics studies for the HIE-ISOLDE transfer lines [1, 2] have been carried out in MADX [3], and benchmarked against TRACE 3-D results [4, 5, 6]. Magnet field errors and alignment imperfections leading to deviations from design parameters have been treated explicitly, and the sensitivity of the machine lattice to different individual error sources was studied. Errors of different types have been considered and their effects on the machine have been corrected [7]. As a result, the tolerances for the various error contributions have been specified for the different equipment systems. The design choices for the expected magnet field and power supply quality, alignment tolerances, instrument resolution and physical apertures were validated. The baseline layout contains three identical branch lines as presented in Fig. 1. The detailed beam optics study with MADX was carried out for the beam line XT01. The large energy range from 0.3 to 10 MeV/u requested for the experiments sets a number of chal...
Energy Technology Data Exchange (ETDEWEB)
Raith, J. [Universitaetsklinik fuer Radiologie, Graz (Austria); Lindbichler, F. [Universitaetsklinik fuer Radiologie, Graz (Austria); Kern, R. [Universitaetsklinik fuer Radiologie, Graz (Austria); Groell, R. [Universitaetsklinik fuer Radiologie, Graz (Austria); Rienmueller, R. [Universitaetsklinik fuer Radiologie, Graz (Austria)
1996-03-01
Three cases preselected by videofluorography were studied to evaluate whether electron beam tomography (EBT) permits more detailed dynamic imaging of swallowing disorders focusing on the mesonasopharyngeal segment, the hypopharynx and the upper esophageal sphincter (UES). Immediately after videofluorographic examination of the oropharyngeal deglutition, EBT is performed. The patient is in a supine position and while the patient swallows a 20 ml bolus of water or diluted iodine containing contrast agent, a sequence of 20 images per level is scanned. The levels, which are determined by using the scout view, are oriented parallel to the hard palate either at the level of the hard palate to image the mesonasopharyngel segment or just above the hyoid bone to focus on the hypopharynx or at the location of the USE. The scan technique is a single-slice cinemode with a slice thickness of 3 mm (exposure time 100 ms, interscan delay 16 ms, 130 kV, 620 mA). The following structural interactions that we have so far been unable to image can be clearly demonstrated with EBT: During normal swallowing, the mesonasopharyngeal segment is completely and symmetrically closed by the soft palate and Passavant`s cushion; lateral hypopharyngeal pouches can be located more precisely; and disorders of the UES can be differentiated into functional or morphologically caused disorders (e.g., goiter or cervical osteophytes). Videofluorography and cinematography are still the gold standard in functional evaluation of swallowing disorders. However, EBT permits dynamic imaging of pharyngeal deglutition in a preselected transverse plane and can give useful additional information concerning functional anatomical changes in the pharynx during swallowing. Further clinical evaluation is needed. (orig.) [Deutsch] Videofluorographie und Kinematographie gelten derzeit als Goldstandard fuer die Abklaerung von Schluckstoerungen. Methodisch bedingt ist jedoch keine ueberlagerungsfreie Darstellung der
Looking skyward to study ecosystem carbon dynamics
Dye, Dennis G.
2012-01-01
Between May and October 2011 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, conducted a field campaign at the ARM Southern Great Plains site in north central Oklahoma to evaluate a new instrument for quantitative image-based monitoring of sky conditions and solar radiation. The High Dynamic Range All-Sky Imaging System (HDR-ASIS) was developed by USGS to support studies of cloud- and aerosol-induced variability in the geometric properties of solar radiation (the sky radiance distribution) and its effects on photosynthesis and uptake of carbon dioxide (CO2) by terrestrial ecosystems. Under a clean, cloudless atmosphere when the Sun is above the horizon, most of the solar radiation reaching an area of the Earth's surface is concentrated in a beam coming directly from the Sun; a relatively small proportion arrives as diffuse radiation from the rest of the sky. Clouds and atmospheric aerosols cause increased scattering of the beam radiation, which increases the proportion of diffuse radiation at the surface.
Study on external beam radiation therapy
International Nuclear Information System (INIS)
Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung
1999-04-01
To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT
Study on external beam radiation therapy
Energy Technology Data Exchange (ETDEWEB)
Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung
1999-04-01
To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.
Tunable Beam Diffraction in Infiltrated Microstructured Fibers
DEFF Research Database (Denmark)
Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.
We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....
International Nuclear Information System (INIS)
Kovalenko, Oleksandr
2015-01-01
The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U 90+ beam at the existing storage ring ESR, GSI.
Energy Technology Data Exchange (ETDEWEB)
Kovalenko, Oleksandr
2015-06-24
The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.
Study of relativistic electron beams generated by a foilless diode
International Nuclear Information System (INIS)
Jones, M.E.; Thode, L.E.
1979-01-01
Preliminary results of a numerical and analytical study of foilless diodes are presented. The work produced an electron emission algorithm for the particle-in-cell simulation code CCUBE. Diode performance was studied as a function of applied magnetic field strength and simple geometry changes. Annular electron beams with an energy of 5 MeV appear obtainable with densities exceeding 10 14 cm -3 . 8 figures
Theoretical studies of combustion dynamics
Energy Technology Data Exchange (ETDEWEB)
Bowman, J.M. [Emory Univ., Atlanta, GA (United States)
1993-12-01
The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.
Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.
Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P
2012-02-01
The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.
Radioactive beams in studies of primordial nucleosynthesis and stellar burning
International Nuclear Information System (INIS)
Boyd, R.N.
1992-01-01
Much of the interesting nucleosynthesis in inhomogeneous big bang models occurs beyond the neutron-rich side of stability, and so involves reactions on short-lived nuclei. Thus radioactive beams are required to measure the relevant cross sections. Import reactions involving 8 Li have thus been studied in recent experiments. Nuclei heavier than carbon may also provide important tests of primordial inhomogeneity, so reactions involving nuclei up to at least mass 28 amu may also be of interest. In addition, scenarios of high temperature stellar burning exist in which rapid proton-induced nuclear reactions occur, and so involve proton-rich short-lived nuclei. Specifically, explosive hydrogen burning requires reaction rates on such nuclides as 13 N. The radioactive ion beams relevant to studies on unstable nuclei, and some of the techniques necessary to obtain the desired cross sections are discussed
Feasibility study of beam-beam compensation in the Tevatron with wires
International Nuclear Information System (INIS)
Sen, Tanaji; Erdelyi, Bela
2005-01-01
We explore the possibility of compensating long-range beam-beam interactions in the Tevatron by current carrying wires. Compensation strategies depend on whether the compensation is done close to the interaction or nonlocally, on the aspect ratio of the strong beam and on other details. Strategies for each case have been developed and applied to the Tevatron. We discuss the results of these strategies at injection and collision energy
Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators
Energy Technology Data Exchange (ETDEWEB)
Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-02
In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.
Study of ECAL Energy Reconstruction Algorithms in Test Beam Data
Seez, Christopher
1998-01-01
The well understood data set taken in the test beam in August 1997, which has previously been used to study lateral uniformity of energy response, is used to investigate the performance of different sized summation areas for energy reconstruction. Results for 5x5, 4x4 and 3x3 areas are presented and compared with shower simulation results. The correction of the energy response as a function of position is also investigated.
Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response
International Nuclear Information System (INIS)
Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.
2007-01-01
We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation
Dynamics of Plasma-Surface Interactions using In-situ Ion Beam Analysis
International Nuclear Information System (INIS)
Whyte, D.G.
2009-01-01
The overall goal of this proposal was to develop an innovative experimental facility that would allow for the measurement of real-time response of a material surface to plasma bombardment by employing in-situ high-energy ion beam analysis. This facility was successfully developed and deployed at U. Wisconsin-Madison and was named DIONISOS (Dynamics of IONic Implantation and Sputtering on Surfaces). There were several major highlights to the DIONISOS research which we will briefly highlight below. The full technical details of the DIONISOS development, deployment and research results are contained in the Appendices which contain several peer-reviewed publications and a PhD thesis devoted to DIONISOS. The DIONISOS results on deuterium retention in molybdenum were chosen as an invited talk at the 2008 International Conference on Plasma-Surface Interactions in Toledo, Spain.
Beam Dynamics Requirements for the Powering Scheme of the HL-LHC Triplet
AUTHOR|(CDS)2075212; Fartoukh, Stephane; Giovannozzi, Massimo
2015-01-01
For the HL-LHC, β ∗ values as small as 15 cm are envisaged as baseline scenario for the high luminosity insertions IR1 and IR5, thus leading to an increase of the maximum β- functions in the inner triplet (IT). The larger beta-functions in the IT result in a higher sensitivity of the beam to any linear or non-linear, static or dynamic, field imperfections in the IT region. In this paper, we summarize accordingly the tolerances of the triplet power supplies in terms of current ripple, stability and reproducibility. Both the baseline IT powering scheme and other alternative schemes will be presented, the later reducing the tune shift caused by a current modulation and thus weakening its possible impact on the long term stability.
A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report
International Nuclear Information System (INIS)
Silbar, Richard R.
1999-01-01
In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavor of the look and feel of the presently available and upcoming modules
Confinement studies of neutral beam heated discharges in TFTR
International Nuclear Information System (INIS)
Murakami, M.; Arunasalam, V.; Bell, J.D.; Stauffer, F.; Bell, M.G.; Bitte, M.; Blanchard, W.R.; Boody, F.; Britz, N.
1985-11-01
The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D 0 neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 10 19 m -3 ), high ion temperatures (9 +- keV) and rotation speeds (7 x 10 5 m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 10 19 m -3 and the central density to 1.6 x 10 20 m -3 / This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 10 19 m -3 and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 10 19 m -3 , I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D 0 beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H 0 injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D 0 injection into high density pellet-injected plasmas. 25 refs
Confinement studies of neutral beam heated discharges in TFTR
Energy Technology Data Exchange (ETDEWEB)
Murakami, M.; Arunasalam, V.; Bell, J.D.; Stauffer, F.; Bell, M.G.; Bitte, M.; Blanchard, W.R.; Boody, F.; Britz, N.
1985-11-01
The TFTR tokamak has reached its original machine design specifications (I/sub p/ = 2.5 MA and B/sub T/ = 5.2T). Recently, the D/sup 0/ neutral beam heating power has been increased to 6.3 MW. By operating at low plasma current (I/sub p/ approx. = 0.8 MA) and low density anti n/sub e/ approx. = 1 x 10/sup 19/m/sup -3/), high ion temperatures (9 +- keV) and rotation speeds (7 x 10/sup 5/ m/s) have been achieved during injection. At the opposite extreme, pellet injection into high current plasmas has been used to increase the line-average density to 8 x 10/sup 19/m/sup -3/ and the central density to 1.6 x 10/sup 20/m/sup -3// This wide range of operating conditions has enabled us to conduct scaling studies of the global energy confinement time in both ohmically and beam heated discharges as well as more detailed transport studies of the profile dependence. In ohmic discharges, the energy confinement time is observed to scale linearly with density only up to anti n/sub e/ approx. 4.5 x 10/sup 19/m/sup -3/ and then to increase more gradually, achieving a maximum value of approx. 0.45 s. In beam heated discharges, the energy confinement time is observed to decrease with beam power and to increase with plasma current. With P/sub b/ = 5.6 MW, anti n/sub e/ = 4.7 x 10/sup 19/m/sup -3/, I/sub p/ = 2.2 MA and B/sub T = 4.7T, the gross energy confinement time is 0.22 s and T/sub i/(0) = 4.8 keV. Despite shallow penetration of D/sup 0/ beams (at the beam energy less than or equal to 80 keV with low species yield), tau/sub E/(a) values are as large as those for H/sup 0/ injection, but central confinement times are substantially greater. This is a consequence of the insensitivity of the temperature and safety factor profile shapes to the heating profile. The radial variation of tau/sub E/ is even more pronounced with D/sup 0/ injection into high density pellet-injected plasmas. 25 refs.
QA of intensity-modulated beams using dynamic MLC log files
Dinesh Kumar, M.; Thirumavalavan, N.; Venugopal Krishna, D.; Babaiah, M.
2006-01-01
To evaluate the utility of Dynalog file information for planar dose verification in IMRT QA, a program is developed to convert Dynalog file data to DMLC field files. For this study, five predefined fluencies are planned and delivered using Varian, Eclipse 3D planning system and 6MV photon beam of Varian, Clinac DMX linear accelerator. To measure planar dose distribution, Kodak, EDR2 films are exposed in similar setup as planning setup. Dynalog files are recorded for each delivery and converte...
International Nuclear Information System (INIS)
Mitra, Suman; Chattopadhyay, Santanu; Sabharwal, Sunil; Bhowmick, Anil K.
2010-01-01
Electron beam (EB) crosslinked natural rubber (NR) gels were prepared by curing NR latex with EB irradiation over a range of doses from 2.5 to 20 kGy using butyl acrylate as sensitizer. The NR gels were systematically characterized by solvent swelling, dynamic light scattering, mechanical and dynamic mechanical properties. These gels were introduced in virgin NR and styrene butadiene rubber (SBR) matrices at 2, 4, 8 and 16 phr concentration. Addition of the gels improved the mechanical and dynamic mechanical properties of NR and SBR considerably. For example, 16 phr of 20 kGy EB-irradiated gel-filled NR showed a tensile strength of 3.53 MPa compared to 1.85 MPa of virgin NR. Introduction of gels in NR shifted the glass transition temperature to a higher temperature. A similar effect was observed in the case of NR gel-filled SBR systems. Morphology of the gel-filled systems was studied with atomic force microscopy. The NR gels also improved the processability of the virgin rubbers greatly. Both the shear viscosity and the die swell values of EB-irradiated gel-filled NR and SBR were lower than their virgin counterparts as investigated by capillary rheometer.
Crossed Molecular Beam Studies of the Reactions of Oxygen and Fluorine Atoms.
1983-11-09
energies of formation of these compounds IF bond energies are determined to be 33, 31 and 19 kcal/mole for 12F, ClIF and HIF. C) New Mechanism of...Crossed Molecular Beam Study of F + CH31, J. M. Farrar and Y. T. Lee, J. Chem. Phys. 63, 3639 (1975). 2. Iodine-Fluorine Bond Strength in llF, ClIF ...Studies on Reaction Dynamics, Third West Coast Theoretical Chemistry Conference, NASA Ames Research Center, April 22-24, 1981. 102. Y. T. Lee, Reaction of
Energy Technology Data Exchange (ETDEWEB)
Araghi, Houshang, E-mail: araghi@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zabihi, Zabiholah [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nayebi, Payman [Department of Physics, College of Technical and Engineering, Saveh Branch, Islamic Azad University, Saveh (Iran, Islamic Republic of); Ehsani, Mohammad Mahdi [Department of Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2016-10-15
II–VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.
Directory of Open Access Journals (Sweden)
Mir Tahmaseb Kashani
2015-01-01
Full Text Available The dynamic analysis of prestressed, bending-torsion coupled beams is revisited. The axially loaded beam is assumed to be slender, isotropic, homogeneous, and linearly elastic, exhibiting coupled flexural-torsional displacement caused by the end moment. Based on the Euler-Bernoulli bending and St. Venant torsion beam theories, the vibration and stability of such beams are explored. Using the closed-form solutions of the uncoupled portions of the governing equations as the basis functions of approximation space, the dynamic, frequency-dependent, interpolation functions are developed, which are then used in conjunction with the weighted residual method to develop the Dynamic Finite Element (DFE of the system. Having implemented the DFE in a MATLAB-based code, the resulting nonlinear eigenvalue problem is then solved to determine the coupled natural frequencies of illustrative beam examples, subjected to various boundary and load conditions. The proposed method is validated against limited available experimental and analytical data, those obtained from an in-house conventional Finite Element Method (FEM code and FEM-based commercial software (ANSYS. In comparison with FEM, the DFE exhibits higher convergence rates and in the absence of end moment it produces exact results. Buckling analysis is also carried out to determine the critical end moment and compressive force for various load combinations.
RP process studies with radioactive beams at ATLAS
Energy Technology Data Exchange (ETDEWEB)
Rehm, K.E. [Argonne National Lab., Physics Div., Argonne, IL (United States)
1998-06-01
Reactions of interest to nuclear astrophysics have been studied with radioactive beams at the ATLAS accelerator. Using a modified ISOL technique, beams of {sup 18}F(T{sub 1/2}=110 min) and {sup 56}Ni(T{sub 1/2}=6.1 d) have been produced. The reactions {sup 18}F(p,{alpha}){sup 15}O, {sup 18}F(p,{gamma}){sup 19}Ne, and {sup 56}Ni(d,p){sup 57}Ni have been investigated. The results indicate that the {sup 18}F(p,{gamma}) route is a small contributor to the breakout from the hot CNO cycle into the rp process, while the {sup 56}Ni(p,{gamma}){sup 57}Cu rate is about ten times larger than previously assumed. (orig.)
Ottosson, R O; Karlsson, A; Behrens, C F
2010-08-21
The pencil beam dose calculation method is frequently used in modern radiation therapy treatment planning regardless of the fact that it is documented inaccurately for cases involving large density variations. The inaccuracies are larger for higher beam energies. As a result, low energy beams are conventionally used for lung treatments. The aim of this study was to analyze the advantages and disadvantages of dynamic IMRT treatment planning for high and low photon energy in order to assess if deviating from the conventional low energy approach could be favorable in some cases. Furthermore, the influence of motion on the dose distribution was investigated. Four non-small cell lung cancer cases were selected for this study. Inverse planning was conducted using Varian Eclipse. A total number of 31 dynamic IMRT plans, distributed amongst the four cases, were created ranging from PTV conformity weighted to normal tissue sparing weighted. All optimized treatment plans were calculated using three different calculation algorithms (PBC, AAA and MC). In order to study the influence of motion, two virtual lung phantoms were created. The idea was to mimic two different situations: one where the GTV is located centrally in the PTV and another where the GTV was close to the edge of the PTV. PBC is in poor agreement with MC and AAA for all cases and treatment plans. AAA overestimates the dose, compared to MC. This effect is more pronounced for 15 than 6 MV. AAA and MC both predict similar perturbations in dose distributions when moving the GTV to the edge of the PTV. PBC, however, predicts results contradicting those of AAA and MC. This study shows that PB-based dose calculation algorithms are clinically insufficient for patient geometries involving large density inhomogeneities. AAA is in much better agreement with MC, but even a small overestimation of the dose level by the algorithm might lead to a large part of the PTV being underdosed. It is advisable to use low energy as a
International Nuclear Information System (INIS)
Jameson, R.A.
1994-01-01
Beam halos are formed via self-consistent motion of the beam particles. Interactions of single particles with time-varying density distributions of other particles are a major source of halo. Aspects of these interactions are studied for an initially equilibrium distribution in a radial, linear, continuous focusing system. When there is a mismatch, it is shown that in the self-consistent system, there is a threshold in space-charge and mismatch, above which a halo is formed that extends to ∼1.5 times the initial maximum mismatch radius. Tools are sought for characterizing the halo dynamics. Testing the particles against the width of the mismatch driving resonance is useful for finding a conservative estimate of the threshold. The exit, entering and transition times, and the time evolution of the halo, are also explored using this technique. Extension to higher dimensions is briefly discussed
Barranco Garcia, Javier; CERN. Geneva. ATS Department
2017-01-01
The Large Hadron Collider has shown with various experimental verifications that one of the main limitations to the collider performance and to a possible upgrade can come from the long-range beam-beam effects which will define the operational parameters (intensities and emittances) and machine set-up (crossing angles and the minimum beta function at the interaction points). The High Luminosity project aims at very high intensities and will therefore need much larger separations to keep the long range effects weak. In the past several studies of possible active compensators have been carried out and experimental studies are planned to explore such schemes in the LHC. In this note we show the feasibility of using octupole magnets to compensate the effects of long range beam-beam interactions by use of dynamical aperture simulations. A prove of principle of such a compensation scheme is shown for the HL-LHC optics. Preliminary studies for the LHC optics ATS and standard are also presented pointing to the import...
Dynamics of the echolocation beam during prey pursuit in aerial hawking bats
DEFF Research Database (Denmark)
Jakobsen, Lasse; Olsen, Mads Nedergaard; Surlykke, Annemarie
2015-01-01
In the evolutionary arms race between prey and predator, measures and countermeasures continuously evolve to increase survival on both sides. Bats and moths are prime examples. When exposed to intense ultrasound, eared moths perform dramatic escape behaviors. Vespertilionid and rhinolophid bats...... of emballonurid bats, Saccopteryx bilineata, Saccopteryx leptura, and Rhynchonycteris naso, catching airborne insects in the field. The study shows that S. bilineata and S. leptura maintain a constant beam shape during the entire prey pursuit, whereas R. naso broadens the beam by lowering the peak call frequency...... from 100 kHz during search and approach to 67 kHz in the buzz. Surprisingly, both Saccopteryx bats emit calls with very high energy throughout the pursuit, up to 60 times more than R. naso and Myotis daubentonii (a similar sized vespertilionid), providing them with as much, or more, peripheral "vision...
Development of RFQ particle dynamics simulation tools and validation with beam tests
Energy Technology Data Exchange (ETDEWEB)
Maus, Johannes M.
2010-07-01
Two different strategies of designing RFQs have been introduced. The analytic description of the electric fields inside the quadrupole channel has been derived and the two term simplification was shown as well as the limitation of these approaches. The main work of this thesis was the implementation and analysis of a multigrid Poisson solver to describe the potential and electric field of RFQs which are needed to simulate the particle dynamics accurately. The main two ingredients of a multigrid Poisson solver are the ability of a Gauss-Seidel iteration method to smooth the error of an approximation within a few iteration steps and the coarse grid principle. The smoothing corresponds to a damping of the high frequency components of the error. After the smoothing, the error term can well be approximated on a coarser grid in which the low frequency components of the error on the fine grid are converted to high frequency errors on the coarse grid which can be damped further with the same Gauss-Seidel method. After implementation, the multigrid Poisson solver was analyzed using two different type of test problems: with and without a charge density. As a charge density, a homogeneously charged ball and cylinder were used to represent the bunched and unbunched beam and placed inside a quadruple channel. The solver showed a good performance. Next, the performance of the solver to calculate the external potentials (and fields) of RFQs was analyzed. Closing the analysis of the external field, the transmission and fraction of accelerated particles of the set of 12 RFQs for the two different methods were shown. In the last chapter of this thesis some experimental work on the MAFF (Munich Accelerator for Fission Fragments) IH-RFQ is described. The MAFF RFQ was designed to accelerate very neutron-rich fission fragments for various experiments. The machine was assembled in Frankfurt and a beam test stand was built. As a part of this thesis the shunt impedance of the structure was
International Nuclear Information System (INIS)
Lim, I.C.; Lee, B.C.; Kobayashi, H.; Sim, C.M.; Kim, M.S.; Lee, C.H.; Jun, B.J.; Watanabe, S.; Satoh, M.
2004-01-01
In HANARO, a BNCT facility was built at its IR beam port which can be used for neutron radiography as well. The values of important parameters for neutron radiography such as neutron flux, the L/D ratio and the effective energy of IR beam were obtained. The neutron flux was estimated theoretically by using an MCNP computer code simulation and was also obtained by using gold wire activation method. The L/D ratio was obtained by using the geometrical information for IR beam port as well as by using the Kobayashi's L/D device. The effective energy was measured by using the Kobayashi's BQI 1001. These evaluation of beam characteristics shows that the BNCT facility of HANARO is excellent for the dynamic neutron radiography. (orig.)
Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator
Energy Technology Data Exchange (ETDEWEB)
Ekdahl, Carl A [Los Alamos National Laboratory; Abeyta, Epifanio O [Los Alamos National Laboratory; Aragon, Paul [Los Alamos National Laboratory; Archuleta, Rita [Los Alamos National Laboratory; Cook, Gerald [Los Alamos National Laboratory; Dalmas, Dale [Los Alamos National Laboratory; Esquibel, Kevin [Los Alamos National Laboratory; Gallegos, Robert A [Los Alamos National Laboratory; Garnett, Robert [Los Alamos National Laboratory; Harrison, James F [Los Alamos National Laboratory; Johnson, Jeffrey B [Los Alamos National Laboratory; Jacquez, Edward B [Los Alamos National Laboratory; Mccuistian, Brian T [Los Alamos National Laboratory; Montoya, Nicholas A [Los Alamos National Laboratory; Nath, Subrato [Los Alamos National Laboratory; Nielsen, Kurt [Los Alamos National Laboratory; Oro, David [Los Alamos National Laboratory; Prichard, Benjamin [Los Alamos National Laboratory; Rowton, Lawrence [Los Alamos National Laboratory; Sanchez, Manolito [Los Alamos National Laboratory; Scarpetti, Raymond [Los Alamos National Laboratory; Schauer, Martin M [Los Alamos National Laboratory; Seitz, Gerald [Los Alamos National Laboratory; Schulze, Martin [Los Alamos National Laboratory; Bender, Howard A [Los Alamos National Laboratory; Broste, William B [Los Alamos National Laboratory; Carlson, Carl A [Los Alamos National Laboratory; Frayer, Daniel K [Los Alamos National Laboratory; Johnson, Douglas E [Los Alamos National Laboratory; Tom, C Y [Los Alamos National Laboratory; Williams, John [Los Alamos National Laboratory; Hughes, Thomas [Los Alamos National Laboratory; Anaya, Richard [LLNL; Caporaso, George [LLNL; Chambers, Frank [LLNL; Chen, Yu - Jiuan [LLNL; Falabella, Steve [LLNL; Guethlein, Gary [LLNL; Raymond, Brett [LLNL; Richardson, Roger [LLNL; Trainham, C [NSTEC/STL; Watson, Jim [LLNL; Weir, John [LLNL; Genoni, Thomas [VOSS; Toma, Carsten [VOSS
2009-01-01
The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 {micro}s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.
Electron beam dynamics in the long-pulse, high-current DARHT-II linear induction accelerator
International Nuclear Information System (INIS)
Ekdahl, Carl A.; Abeyta, Epifanio O.; Aragon, Paul; Archuleta, Rita; Cook, Gerald; Dalmas, Dale; Esquibel, Kevin; Gallegos, Robert A.; Garnett, Robert; Harrison, James F.; Johnson, Jeffrey B.; Jacquez, Edward B.; Mccuistian, Brian T.; Montoya, Nicholas A.; Nath, Subrato; Nielsen, Kurt; Oro, David; Prichard, Benjamin; Rowton, Lawrence; Sanchez, Manolito; Scarpetti, Raymond; Schauer, Martin M.; Seitz, Gerald; Schulze, Martin; Bender, Howard A.; Broste, William B.; Carlson, Carl A.; Frayer, Daniel K.; Johnson, Douglas E.; Tom, C.Y.; Williams, John; Hughes, Thomas; Anaya, Richard; Caporaso, George; Chambers, Frank; Chen, Yu-Jiuan; Falabella, Steve; Guethlein, Gary; Raymond, Brett; Richardson, Roger; Trainham, C.; Watson, Jim; Weir, John; Genoni, Thomas; Toma, Carsten
2009-01-01
The DARHT-II linear induction accelerator (LIA) now accelerates 2-kA electron beams to more than 17 MeV. This LIA is unique in that the accelerated current pulse width is greater than 2 microseconds. This pulse has a flat-top region where the final electron kinetic energy varies by less than 1% for more than 1.5 microseconds. The long risetime of the 6-cell injector current pulse is 0.5 (micro)s, which can be scraped off in a beam-head cleanup zone before entering the 68-cell main accelerator. We discuss our experience with tuning this novel accelerator; and present data for the resulting beam transport and dynamics. We also present beam stability data, and relate these to previous stability experiments at lower current and energy.
International Nuclear Information System (INIS)
Bohn, C.L.; Delayen, J.R.
1992-01-01
A distribution of deflecting-mode frequencies in the constituent cavities of a linear accelerator can lead to Q-independent damping of cumulative beam breakup. A probability density for the deflecting-mode frequencies generates an effective transverse wake function. The effective wake function can be used to calculate the transient dynamics of cumulative beam breakup within the framework of a continuum approximation provided the transverse beam displacement changes little over the correlation length of the deflecting-mode frequencies as the beam moves down the linac. We adopt this approach to show that the damping induced by the effective wake function causes the rate of approach to the steady state to depend strongly on the operative probability density for the deflecting-mode frequencies
High-$\\gamma$ Beta Beams within the LAGUNA design study
Orme, Christopher
2010-01-01
Within the LAGUNA design study, seven candidate sites are being assessed for their feasibility to host a next-generation, very large neutrino observatory. Such a detector will be expected to feature within a future European accelerator neutrino programme (Superbeam or Beta Beam), and hence the distance from CERN is of critical importance. In this article, the focus is a $^{18}$Ne and $^{6}$He Beta Beam sourced at CERN and directed towards a 50 kton Liquid Argon detector located at the LAGUNA sites: Slanic (L=1570 km) and Pyh\\"{a}salmi (L=2300 km). To improve sensitivity to the neutrino mass ordering, these baselines are then combined with a concurrent run with the same flux directed towards a large Water \\v{C}erenkov detector located at Canfranc (L=650 km). This degeneracy breaking combination is shown to provide comparable physics reach to the conservative Magic Baseline Beta Beam proposals. For $^{18}$Ne ions boosted to $\\gamma=570$ and $^{6}$He ions boosted to $\\gamma=350$, the correct mass ordering can be...
Scintillating screens study for LEIR/LHC heavy ion beams
Bal, C; Lefèvre, T; Scrivens, R; Taborelli, M
2005-01-01
It has been observed on different machines that scintillating ceramic screens (like chromium doped alumina) are quickly damaged by low energy ion beams. These particles are completely stopped on the surface of the screens, inducing both a high local temperature increase and the electrical charging of the material. A study has been initiated to understand the limiting factors and the damage mechanisms. Several materials, ZrO2, BN and Al2O3, have been tested at CERN on LINAC3 with 4.2MeV/u lead ions. Alumina (Al2O3) is used as the reference material as it is extensively used in beam imaging systems. Boron nitride (BN) has better thermal properties than Alumina and Zirconium oxide (ZrO2). BN has in fact the advantage of increasing its electrical conductivity when heated. This contribution presents the results of the beam tests, including the post-mortem analysis of the screens and the outlook for further measurements. The strategy for the choice of the screens for the Low Energy Ion Ring (LEIR), currently under ...
Study of materials properties by neutron beam applications
International Nuclear Information System (INIS)
Lee, Chang Hee; Kim, H. J.; Kim, B. C.; Jun, B. C.; Lee, J. S.; Seong, B. S.; Shim, H. S.; Choi, B. H.; Ho, J. W.; Kang, S. K.; Kim, J. Y.; Park, D. K.; Kim, C. K.; Kim, C. J.; Cho, Y. S.
1997-10-01
Horizontal and vertical beam ports related works for neutron beam experimental facilities in HANARO has been done. And the preparation works of neutron spectrometers, design, manufacture and installation of the high resolution powder diffractometer, the four circle diffractometer, the polarized neutron spectrometer, the small angle neutron spectrometer and the position sensitive detector unit for residual stress measurement have been done. The status for each spectrometer are described. The development of neutron spectroscopy technique for the crystal structure analysis on YBa 2 Cu 3 O 7-x , U 3 Si, Pb(Yb,Nb)O 3 by neutron diffraction, the anisotropic properties of textured orthorhombic polycrystalline materials and the low temperature sample environment facility has been performed and neutron reflectometry has been reviewed. After the design and manufacture of neutron radiography facility, it has been installed at NR beam tube and its' performance evaluation has been done. The image processing technique for real time testing is under development. As for neutron transmutation doping, design of irradiation tube, estimation on neutron flux distribution and flux quality, and study of irradiation damage recovery under annealing have been tried. (author). 11 refs., 40 tabs., 86 figs.
Study of Electron Beam Curing Process Using Epoxy Resin System
International Nuclear Information System (INIS)
Nishitsuji, D. A.
2006-01-01
The competition among industries in the current globalization system has required a systematic cost reduction without affecting the quality of the final product. This fact has encouraged the use of new technologies application on productive process, especially on polymeric composites, to assure the competitiveness. The possibility of producing a new type of carbon fiber reinforced composite by radiation process with excellent thermal and mechanical properties, has been researched since 90's and it can be a potential application in aerospace, marine and automobile industries. The polymeric composites cured by thermal process (furnace or autoclave) are an example of long curing cycles, which requires time and energy consumption. Electron beam curing technology allows the process at room temperature and reduces curing time; consequently, it becomes the main difference of this technology over thermal curing process. The aim of this work was to study electron beam curable epoxy formulation for filament winding process, as well as to investigate the electron beam curing process parameters using a DC 1500/25 - Job 188 Dynamitron model linear accelerator as radiation source, with 0.5 to 1.5 MeV, 0.1 to 25 mA and 60 to 120 cm scanning electron beam. The resin system consists of commercial epoxy resin (diglycidyl ether of bisphenol A - DGEBA) and cationic initiator (diaryliodonium hexafluoantimonate) and the polymerization carried out at room temperature with controlled dose rate. Thermal post cure took part of the process to improve the degree of cure and glass transition temperature (Tg) similar to thermal curable resin properties
Directory of Open Access Journals (Sweden)
R. Maisonny
2016-12-01
Full Text Available The performance of a 1 MV pulsed high-power linear transformer driver accelerator were extensively investigated based on a numerical approach which utilizes both electromagnetic and Monte Carlo simulations. Particle-in-cell calculations were employed to examine the beam dynamics throughout the magnetically insulated transmission line which governs the coupling between the generator and the electron diode. Based on the information provided by the study of the beam dynamics, and using Monte Carlo methods, the main properties of the resulting x radiation were predicted. Good agreement was found between these simulations and experimental results. This work provides a detailed understanding of mechanisms affecting the performances of this type of high current, high-voltage pulsed accelerator, which are very promising for a growing number of applications.
Internal dynamics and emittance growth in space-charge-dominated beams
International Nuclear Information System (INIS)
Anderson, O.A.
1987-01-01
Previous analytical studies have related transverse rms emittance growth in nonuniform beams to changes in the beam density profile, but the time evolution of the process has not been analyzed. Our new approach analyzes the internal motion of the beam and from this obtains the explicit time dependence of the rms emittance. It is shown to reach its peak value explosively in about one quarter of a plasma period. The subsequent behavior depends on the uniformity of the initial density profile. We derive a uniformity criterion that determines whether or not the emittance oscillates periodically and present examples of density profiles for which the emittance returns to its initial value and then continues to oscillate. We discuss a class of continuous initial profiles that lead to discontinuous shocklike behavior (with partial irreversibility of the oscillations) and a class of segmented profiles for which the emittance jumps to its maximum value in one fourth of a plasma period and remains at that value with essentially no further change. (author)
GATE Monte Carlo simulation in radiation therapy for complex and dynamic beams in IMRT
International Nuclear Information System (INIS)
Benhalouche, Saadia
2014-01-01
Radiotherapy is one of the three methods of cancer treatment along with surgery and chemotherapy. It has evolved with the development of treatment techniques such as IMRT and VMAT along with IGRT for patient positioning. The aim is to effectively treat tumors while limiting the dose to healthy organs. In our work, we use the GATE Monte Carlo simulation platform to model a LINAC for a 6 MV photon beam. The resulting model is then validated with a dosimetric study by calculating relevant parameters for the beam quality. The LINAC model is then used for simulating clinical IMRT treatment plans in the ORL domain. Simulation results are compared with experimental measurements. We also explored the possibility of modeling the LINAC portal imaging system. This technique referred to as MV-CBCT combine the LINAC source with a flat panel detector to acquire 3D images of the patient. This part was validated first by acquiring 2D projections on patient and anthropomorphic phantom, and by reconstructing 3D volumes. Here again, validation was performed by comparing simulated and actual images. As a second step, a dosimetric validation was done by evaluating the dose deposited by IMRT beams, by means of portal signal only. We show in the present work the ability of GATE to perform complex IMRT treatments and portal images as they are performed routinely for dosimetric quality control. (author) [fr
Dynamic analysis and evolution of mixed materials bombarded with multiple ions beams
International Nuclear Information System (INIS)
Sizyuk, T.; Hassanein, A.
2010-01-01
Materials modification and response to the impact of energetic particles is an important ongoing research area in several applications. This includes both experimental and theoretical work. We updated and improved our models for the simulation of Ion Transport in Materials and Compounds (ITMC-DYN), part of HEIGHTS package, to now include dynamic changing of materials composition as result of multiple ion beams bombardment and target atoms mixing, segregation, and diffusion. Implemented models consider detail processes of simultaneous and multiple ions penetration and mixing, scattering, reflection, physical and chemical sputtering of composite material atoms, dynamic surface evolution/modification, thermal diffusion, and surface segregation and recombination of species in multicomponent alloys. For benchmarking of the models we compared our simulations results with several recent experimental data for nanoapplications and for the developments of future fusion energy systems. Simulation of tungsten surface evolution and modification under the impact of hydrogen ions with carbon impurities demonstrated good agreement with recent experiments. Details of surface erosion and conditions for blisters formation as a function of fluence and material temperature were also analyzed and explained.
Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert
2017-10-01
Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Dosimetry study of split beam technique using megavoltage beams and its clinical implications. I
International Nuclear Information System (INIS)
Datta, R.; Mira, J.G.; Pomeroy, T.C.
1979-01-01
The problem of beam divergence and overlapping of adjacent fields in the treatment planning is well known. The use of split beam technique has been suggested as one way of addressing this problem. The present work reports a detailed dosimetry of this technique 60 Co beam (Theratron 780). The dose distributions at and near the junction plane between two adjacent fields were measured; they were compared with those for diverging fields (with and without gap on the skin). As an illustration, different treatment planning techniques for head and neck tumors and subsequent dose distributions are discussed. Our findings clearly indicate that the extension of penumbra near the geometrical edge of a split beam is considerably less than that of an open beam of the same field size. Consequently when two adjacent fields are used, the overdose at and near the junction plane is reduced greatly by the split beam. For head and neck tumors the split beam technique gives a much better dose distribution than any other conventional treatment techniques
Dynamic Aperture Studies for SPEAR 3
International Nuclear Information System (INIS)
Corbett, William
1998-01-01
The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm rad FODO lattice with an 18 nm rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity
Dynamic aperture studies for SPEAR 3
International Nuclear Information System (INIS)
Nosochkov, Y.; Corbett, J.
1999-01-01
The Stanford Synchrotron Radiation Laboratory is investigating an accelerator upgrade project that would replace the present 130 nm·rad FODO lattice with an 18 nm·rad double bend achromat (DBA) lattice: SPEAR 3. The low emittance design yields a high brightness beam, but the stronger focusing in the DBA lattice increases chromaticity and beam sensitivity to machine errors. To ensure efficient injection and long Touschek lifetime, an optimization of the design lattice and dynamic aperture has been performed. In this paper, we review the methods used to maximize the SPEAR 3 dynamic aperture including necessary optics modifications, choice of tune and phase advance, optimization of sextupole and coupling correction, and modeling effects of machine errors, wigglers and lattice periodicity
Dynamic Responses of Supported Beams with Intermediate Supports Under Moving Loads
Directory of Open Access Journals (Sweden)
Biaobiao Zhang
2012-01-01
Full Text Available In this paper, a new beam shape function configuration method for determining transient responses of a finite Euler-Bernoulli beam with two intermediate supports excited by moving pressure wave loads is developed. To clarify this method, this beam structure is excited by the moving sinusoidal loads as an example. Transient responses of this beam structure are investigated and verified by the traditional finite element method. This method can be used to solve transient response problems of moving pressure loads exciting the beam structure with intermediate support. Actually it can be extended to solve other complicated beam structure problems.
Design study of a radio-frequency quadrupole for high-intensity beams
Bahng, Jungbae; Kim, Eun-San; Choi, Bong-Hyuk
2017-07-01
The Rare isotope Accelerator Of Newness (RAON) heavy-ion accelerator has been designed for the Rare Isotope Science Project (RISP) in Korea. The RAON will produce heavy-ion beams from 660-MeV-proton to 200-MeV/u-uranium with continuous wave (CW) power of 400 kW to support research in various scientific fields. Its system consists of an ECR ion source, LEBTs with 10 keV/u, CW RFQ accelerator with 81.25 MHz and 500 keV/u, a MEBT system, and a SC linac. In detail, the driver linac system consists of a Quarter Wave Resonator (QWR) section with 81.25 MHz and a Half Wave Resonator (HWR) section with 162.5 MHz, Linac-1, and a Spoke Cavity section with 325 MHz, Linac-2. These linacs have been designed to optimize the beam parameters to meet the required design goals. At the same time, a light-heavy ion accelerator with high-intensity beam, such as proton, deuteron, and helium beams, is required for experiments. In this paper, we present the design study of the high intensity RFQ for a deuteron beam with energies from 30 keV/u to 1.5 MeV/u and currents in the mA range. This system is composed of an Penning Ionization Gauge ion source, short LEBT with a RF deflector, and shared SC Linac. In order to increase acceleration efficiency in a short length with low cost, the 2nd harmonic of 162.5 MHz is applied as the operation frequency in the D+ RFQ design. The D+ RFQ is designed with 4.97 m, 1.52 bravery factor. Since it operates with 2nd harmonic frequency, the beam should be 50% of the duty factor while the cavity should be operated in CW mode, to protect the downstream linac system. We focus on avoiding emittance growth by the space-charge effect and optimizing the RFQ to achieve a high transmission and low emittance growth. Both the RFQ beam dynamics study and RFQ cavity design study for two and three dimensions will be discussed. Supported by Korea University Future Research Grant
Molecular beam studies with a time-of-flight machine
International Nuclear Information System (INIS)
Beijerinck, H.C.W.
1975-01-01
The study concerns the development of the time-of-flight method for the velocity analysis of molecular beams and its application to the measurement of the velocity dependence of the total cross-section of the noble gases. It reviews the elastic scattering theory, both in the framework of classical mechanics and in the quantum mechanical description. Attention is paid to the semiclassical correspondence of classical particle trajectories with the partial waves of the quantum mechanical solution. The total cross-section and the small angle differential cross-section are discussed with special emphasis on their relation. The results of this chapter are used later to derive the correction on the measured total cross-section due to the finite angular resolution of the apparatus. Reviewed also is the available information on the intermolecular potential of the Ar-Ar system. Then a discussion of the measurement of total cross-sections with the molecular beam method and the time-of-flight method is compared to other methods used. It is shown that the single burst time-of-flight method can be developed into a reliable and well-calibrated method for the analysis of the velocity distribution of molecular beams. A comparison of the single burst time-of-flight method with the cross-correlation time-of-flight method shows that the two methods are complementary and that the specific experimental circumstances determine which method is to be preferred. Molecular beam sources are discussed. The peaking factor formalism is introduced and helps to compare the performance of different types of sources. The effusive and the supersonic source are treated and recent experimental results are given. The multichannel source is treated in more detail. For the opaque mode, an experimental investigation of the velocity distribution and the angular distribution of the flow pattern is presented. Comparison of these results with Monte Carlo calculations for free molecular flow in a cylindrical
Study on local vacuum electron beam welding of flange rim
He Cheng Dan; Ying Lei; Xu Qi Jin
2002-01-01
Local vacuum electron beam welding and its application prospect in military and civil industry are introduced. A home made local vacuum electron beam welding is completed. Its main technical parameters and key techniques are also presented
Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model
Energy Technology Data Exchange (ETDEWEB)
Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process
1993-12-31
In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
Viganò, W; Effinger, E; Venturini, G G; Zamantzas, C
2012-01-01
Three Different Concepts of High Dynamic Range and Dependability Optimised Current Measurement Digitisers for Beam Loss Systems will be compared on this paper. The first concept is based on Current to Frequency Conversion, enhanced with an ADC for extending the dynamic range and decreasing the response time. A summary of 3 years’ worth of operational experience with such a system for LHC beam loss monitoring will be given. The second principle is based on an Adaptive Current to Frequency Converter implemented in an ASIC. The basic parameters of the circuit are discussed and compared with measurements. Several measures are taken to harden both circuits against single event effects and to make them tolerant for operation in radioactive environments. The third circuit is based on a Fully Differential Integrator for enhanced dynamic range, where laboratory and test installation measurements will be presented. All circuits are designed to avoid any dead time in the acquisition and have reliability and fail safe...
Chirped-pulse manipulated carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs
International Nuclear Information System (INIS)
Lee, Chao-Kuei; Lin, Yuan-Yao; Lin, Sung-Hui; Lin, Gong-Ru; Pan, Ci-Ling
2014-01-01
Chirped pulse controlled carrier dynamics in low-temperature molecular-beam-epitaxy grown GaAs are investigated by degenerate pump-probe technique. Varying the chirped condition of excited pulse from negative to positive increases the carrier relaxation time so as to modify the dispersion and reshape current pulse in time domain. The spectral dependence of carrier dynamics is analytically derived and explained by Shockley-Read Hall model. This observation enables the new feasibility of controlling carrier dynamics in ultrafast optical devices via the chirped pulse excitations
Comprehensive proton dose algorithm using pencil beam redefinition and recursive dynamic splitting
Gottschalk, Bernard
2016-01-01
We compute, from first principles, the absolute dose or fluence distribution per incident proton charge in a known heterogeneous terrain exposed to known proton beams. The algorithm is equally amenable to scattered or scanned beams. All objects in the terrain (including collimators) are sliced into slabs, of any convenient thickness, perpendicular to the nominal beam direction. Transport is by standard Fermi-Eyges theory. Transverse heterogeneities are handled by breaking up pencil beams (PBs...
Nuclear Structure Studies with Stable and Radioactive Beams: The SPES radioactive ion beam project
de Angelis, G.; SPES Collaboration; Prete, G.; Andrighetto, A.; Manzolaro, M.; Corradetti, S.; Scarpa, D.; Rossignoli, M.; Monetti, A.; Lollo, M.; Calderolla, M.; Vasquez, J.; Zafiropoulos, D.; Sarchiapone, L.; Benini, D.; Favaron, P.; Rigato, M.; Pegoraro, R.; Maniero, D.; Calabretta, L.; Comunian, M.; Maggiore, M.; Lombardi, A.; Piazza, L.; Porcellato, A. M.; Roncolato, C.; Bisoffi, G.; Pisent, A.; Galatà, A.; Giacchini, M.; Bassato, G.; Canella, S.; Gramegna, F.; Valiente, J.; Bermudez, J.; Mastinu, P. F.; Esposito, J.; Wyss, J.; Russo, A.; Zanella, S.
2015-04-01
A new Radioactive Ion Beam (RIB) facility (SPES) is presently under construction at the Legnaro National Laboratories of INFN. The SPES facility is based on the ISOL method using an UCx Direct Target able to sustain a power of 10 kW. The primary proton beam is provided by a high current Cyclotron accelerator with energy of 35-70 MeV and a beam current of 0.2-0.5 mA. Neutron-rich radioactive ions are produced by proton induced fission on an Uranium target at an expected fission rate of the order of 1013 fissions per second. After ionization and selection the exotic isotopes are re-accelerated by the ALPI superconducting LINAC at energies of 10A MeV for masses in the region A=130 amu. The expected secondary beam rates are of the order of 107 - 109 pps. Aim of the SPES facility is to deliver high intensity radioactive ion beams of neutron rich nuclei for nuclear physics research as well as to be an interdisciplinary research centre for radio-isotopes production for medicine and for neutron beams.
Molecular dynamics study of silver
International Nuclear Information System (INIS)
Akhter, J.I.; Yaldram, K.; Ahmad, W.; Khan, M.K.; Rehman, T.S.
1995-03-01
We present results of molecular dynamics study using the embedded atom potential to examine the equilibrium bulk properties of Ag. We calculate the total energy and the lattice parameters as a function of temperature. From these we determine the specific heat and linear coefficient of thermal expansion. The comparison with experimental results of these two quantities is found to be excellent. We have also calculated the mean square displacement of the atoms in the three directions. As expected because of symmetry the displacements in the three directions are comparable and increase with increasing temperature. (author) 5 figs
Experimental study of intensive electron beam scattering in melting channel
International Nuclear Information System (INIS)
Balagura, V.S.; Kurilko, V.I.; Safronov, B.G.
1988-01-01
Multiple scattering of an intensive electron beam at 28 keV energy passing through a melting channel in iron targets is experimentally studied. The dependence of scattering on the melting current value is established. The material density in the channel on the basis of the binary collision method is evaluated. It is shown that these density values are of three orders less than the estimations made on the basis of the data on energy losses of electrons in the channel. 6 refs.; 4 figs
Parametric study for characterization of beam-matter interaction
International Nuclear Information System (INIS)
Richard, A.; Charissoux, C.; Calvet, J.N.; Contre, M.
1988-01-01
The requirements of the use of surface thermal treatment by laser (quenching for example) and the operation control involve a perfect knowledge of the specific action of each parameter. The characteristics and the thickness of the transformed metal are indeed, very directly related to the material and beam characteristics. A parametric study was made in this way on two alloys: zircaloy and TA6V. It has led to the setting up of an empiric formulation relating closely quenching penetration and test conditions. The application of this approach for the continuous surface treatment was examined through the analysis of the problems connected to the pass overlapping and the associated thermal cycles [fr